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Abstract

Cervical Spine Injuries (CSIs) arising from collisions are rare in contact sports, such as rugby
union, but their consequences can be devastating as they can lead to paraplegia, tetraplegia
and death. Finite Element (FE) models have been widely used to give a more in-depth un-
derstanding of the biomechanics of injury. Several FE modelling approaches are available
in the literature, but a fully calibrated and validated FE modelling framework for cervical
spines under compressive dynamic loading is still lacking and material properties are prop-
erly not calibrated for such events. This study developed and validated a methodology for
specimen-specific FE modelling of the cervical spine under impact loading.

Thirty-five (n=35) individual vertebral bodies (VBs) and three (n=3) whole cervical spines
(C2 to C7) were dissected from porcine spine segments. Samples were potted in bone ce-
ment, mCT scanned and a speckle pattern was applied to the anterior aspect of the bones
to allow Digital Image Correlation (DIC). Surface displacements and strains were acquired
using DIC. Twenty-seven (n=27) VBs were compressively tested to a load up to 10 kN ap-
plied at a rate of 1000 N min�1 from the cranial side. Specimen-specific FE models were
developed for fourteen (n=14) samples in this group and the material properties were op-
timised based on the experimental load-displacement data and using a factor (KGSStatic ) to
calibrate a density to Young’s modulus equation. Thirteen (n=13) FE models were created
from the remaining tested samples: the previously optimised density to Young’s modulus
relationship was applied to this group and the resulting vertebral stiffness was compared to
experimental findings. This allowed validation of the developed density to Young’s mod-
ulus relationship. Eight (n=8) remaining VBs were subjected to an impact load applied via
a falling mass of 7.4 kg at a velocity of 3.1 m s�1. Surface displacements and strains were
acquired from the anterior VB surface via DIC, and the impact load was monitored with two
load cells. Specimen-specific FE models were created for this group and material properties
were assigned again based on the density-Young’s modulus relationship previously valid-
ated for static experiments, supplemented by an additional factor (KGSDynamic ) derived from
an iterative comparison between numerical stiffness predictions and experimental findings.

Three (n=3) whole cervical spines were subjected to the spine impact loading conditions
and surface displacements, strains and force profiles were also acquired. Spine specimen-
specific FE models were created for these samples using the previously developed mod-
elling workflow. VBs material properties were assigned via KGSDynamic , grey-scale and the
density-Young‘s modulus relationship. Intervertebral discs were defined as homogeneous
and isotropic and mechanical properties were assigned to the specimens using a kinematic
approach. Experimental and numerical load-displacement curves for these spinal segments
were compared using Bland-Altman plots, non-parametric tests and Lin’s concordance coef-
ficient (CCC).

The optimised conversion factor for quasi-static loading, KGSStatic , had an average of 0.033.
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Using this factor, the validation models presented average numerical stiffness value 3.72 %
greater than experimental. From the dynamic loading experiments, the value for KGSDynamic

was found to be 0.14, 4.2 times greater than KGSStatic . Average numerical stiffness was 2.3 %
greater than experimental. Almost all models presented similar stiffness variation and re-
gions of maximum displacement and strains similar to what observed via DIC. Spine models
presented similar biomechanical behaviour to experimental data in terms of predicted peak
load, vertebral displacements and strains and three-dimensional spine movements. Strain
patterns exhibited a high level of similarity to those recorded via DIC but strain magnitudes
were consistently smaller. Deformation by buckling was observed. The developed FE mod-
elling methodology allowed the creation of models which predicted both static and dynamic
behaviour of VBs. The same methodology was then applied to the modelling of the whole
cervical spine, which resulted in predictions showing agreement with experimental data.
Strains and deformation patterns were assessed and evaluated, showing that buckling was
the main deformation mode for this type of impact. This methodology is now validated to
be fully applied to simulate axial impact scenarios replicating rugby collisions events.

ii



Acknowledgements

Firstly and above all, I would like to thank and express my gratitude to God. He gave me
life, a family, friends, and every single opportunity that I had so far. I know that without
God in my life I would not have achieved what I got. I would like to give a huge and special
thanks to my mother, Angela, and my sister, Ana Luı́sa, who really supported me through
this time with their daily presence in my life, although being 9000 km far away. I love you
both. I would also like to thank the rest of my family for the continuous support.

I express my gratitude to my supervisors, Dr Sabina Gheduzzi and Prof Richie Gill. To Sa-
bina for all of the support you have provided for the past four years, your patience when
correcting and teaching me, the English revisions of my writings (a lot of extra work), and
the beers that we shared. Thank you also for supporting me for the BORS fellowship ap-
plication and for every time that I knocked on your door asking for five minutes and you
patiently received me. Thank you to Richie for also supporting me and for your guidance
and beers. Thank you also for trusting and inviting me to be part of the several experiments
and research projects along the way. Both are more than supervisors to me, they are friends
and research partners. Thank you both.

I would like to say thank all my friends in the Biomechanics Research Office, Ali, Nathaniel,
Sonia, Jan, Evelyn, Doyin, Kinga, Samantha, Fedra, Prof Tony Miles, Dr Kate Fraser, Dr Sally
Clift, Dr Elise Pegg, Dr Andrew Cookson, and the intruders in our office, James, Sam, Philipp
and Alfie. Together we shared wonderful and highly alcoholic moments, which I will always
keep in my heart. You guys helped me adapt to this new country, understand the differences
between cultures, improve my English and to become a better person. I am glad that I have
you guys in my life! A thanks to the technicians, whose help and work were essential to the
success of my research, especially Jack, Nick, Dan, Gary, Nigel and Clare (who I think is tired
of me asking for another CT scan).

I would like to say thank you to Maria, for all the support, love and courage that you gave
to me in these past years. My life was easier with you alongside me. I love you. I would like
also to thank all my friends from the Young Adult Group at St John’s the Evangelist Catholic
Church. You were essential for me to adapt in the new life in the UK. When I felt that I was
alone, you guys were there to make me feel at home. Thank you. May God bless you!

iii



Finally, I thank the Brazilian Government and CAPES for the scholarship, support and the
opportunity that you gave to me to accomplish my dream of getting a PhD abroad. I also
thank the São Paulo State Government and FAPESP for the initial support to this work.
I wish and I hope that I can contribute for the improvement of the national research and
education and help Brazil to become a better place to live and work.

iv



List of Figures

1-1 General and spine anatomic reference directions (adapted from Kurtz [3]). . 3

1-2 Spine components (from Newell et al. [30]). IVD: Intervertebral disc; ALL:
Anterior longitudinal ligament; PLL: Posterior longitudinal ligament. . . . . . 4

1-3 The human spine and its main sections. (a) The whole spine (from Hines [31]);
(b) Detail of the cervical spine (adapted from Heller et al. [32]). . . . . . . . . . 4

1-4 Cervical vertebral anatomy. (a) Geometrical features (adapted from Artner
[36]); (b) Cancellous and cortical bone (adapted from Chiro [37]). . . . . . . . 5

1-5 Trabecular structure in cancellous bone. (a) 3D structure from cancellous bone
(from Chen et al. [43]); (b) Cross-sectional area of a vertebral body (from White
and Panjabi. [33]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1-6 Stress-Strain behaviour of cancellous bone (from Keaveny and Buckley [35]). 7

1-7 CT image of a vertebral body. Shades of grey range from black, low density,
to white, high density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1-8 Comparison between mathematical relationships which relate density and Young’s
modulus (from Gustafson et al. [72]). . . . . . . . . . . . . . . . . . . . . . . . . 10

1-9 Compressive test of a vertebral body (from Dall’Ara et al. [79]). (a) Exper-
imental set-up. LVDT: Linear Variable Differential Transformer; (b) Load-
displacement curve: stiffness (SExp) and strength (FMExp). . . . . . . . . . . 11

1-10 Two different clamping techniques: end-cap (left) and the platen (right) (from
Keaveny et al. [89]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1-11 Digital Image Correlation (DIC) technique (from Palanca et al. [95]). (a) DIC
work-flow: images are taken during loading and pixels displacements are cor-
related to a static image taken before the test; (b) Prepared specimen with a
black speckled pattern on a white surface; (c) DIC correlation analysis, strain
contour plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1-12 Intervertebral disc (adapted from Newell et al. [30]). (a) The disc between to
adjacent vertebral bodies. (b) Isolated view of the disc. NP: nucleus pulposus,
AF: annulus fibrosus, CEP: Cartilaginous end-plate and BEP: bone end-plate. . . . . 14

1-13 Detail of the Annulus Fibrosus fibres (adapted from Newell et al. [30]). . . . . 15

v



1-14 Nucleus pulposus and other structures of the disc (adapted from Lotz et al.
[102]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1-15 Load sharing between IVD and facets (adapted from Adams and Dolan [105]). 17

1-16 Material mechanical behaviour. (a) Linear elastic material. (b) Viscous mater-
ial; (c) Kelvin-Voight model; (d) Maxwell model. . . . . . . . . . . . . . . . . . 19

1-17 Viscoelastic behaviour of cortical bone (from Keaveny and Hayes [48]). . . . . 20

1-18 Viscoelastic behaviour of the IVD as a function of the loading rate (from Ma-
souros et al. [100]). Each colour is a different IVD. . . . . . . . . . . . . . . . . 22

1-19 Load-displacement curves for 2 cm and 64 cm drop heights, respectively (from
Newell et al. [118]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1-20 Difference in stiffness between porcine and human vertebral body (from Men-
goni et al. [124]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1-21 Force vectors in the cervical spine (from Cusick and Yoganandan [12]). . . . . 26

1-22 Injury mechanisms in the cervical spine (from Dennison et al. [14]). . . . . . . 27

1-23 Spinal cord injuries (adapted from Cusick and Yoganandan [12]). (a) Hyper-
flexion injury; (b) Hyperextension injury. . . . . . . . . . . . . . . . . . . . . . 27

1-24 Experimental apparatus used by Nightingale et al. [140]. . . . . . . . . . . . . 28

1-25 Tackle in Rugby Union (from Patricios [142]). . . . . . . . . . . . . . . . . . . . 29

1-26 Scrum in Rugby Union. (a) Scrum tactics view (from Patricios [142]); (b) Game
scrum (from Trewartha et al. [28]). . . . . . . . . . . . . . . . . . . . . . . . . . 30

1-27 Loads developed during a Rugby Union match (adapted from Dennison et al.
[14]). (a) During the scrum; (b) During the tackle. . . . . . . . . . . . . . . . . 32

2-1 Examples of spinal component FE models. (a) Vertebral body FE model used
by Gustafson et al. [72]; (b) Vertebral body FE model used by Buckley [165];
(c) Intervertebral disc FE models used by Masouros et al. [100]. . . . . . . . . 35

2-2 An example of a FSU FE model used by Barker et al. [168] to assess the kin-
ematic and kinetic response of the disc for dynamic loading. . . . . . . . . . . 35

2-3 Four models compared by Dreischarf et al. [19]. . . . . . . . . . . . . . . . . . 36

2-4 Modelling steps (from Kim et al. [148]). . . . . . . . . . . . . . . . . . . . . . . 37

2-5 An example of image segmentation (from Synopsys [174]). . . . . . . . . . . . 38

2-6 Geometrical models of a vertebral body. (a) Two geometrical models with
a complete description of the anterior-posterior components (from Schmidt
et al. [53]); (b) Vertebral body geometrical model: only the core was modelled
(from Giambini et al. [94]); (c) Geometrical model of a vertebrae created based
on the external surface (from Kim et al. [148]). . . . . . . . . . . . . . . . . . . 38

vi



2-7 Geometric models of the disc. (a) Specimen-specific geometrical model of the
disc created based on symmetric dimensions and flat contact surfaces (from
Jaramillo et al. [179]); (b) Specimen-specific geometrical model of the disc cre-
ated from CT images (from Kim et al. [148]). . . . . . . . . . . . . . . . . . . . 39

2-8 Vertebral body FE models; (a) Pure tetrahedron (from Pahr et al. [80]); (b) Pure
hexahedrons (from Pahr et al. [80]); (c) Mixed element model (from Wijayathunga
et al. [88]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2-9 Tetrahedron elements. (a) Element type, from ANSYS (Ansys Inc., Pennsylvania,
USA) software library. (b) Element cross section areas for different element
positions, in black. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2-10 Finite element modelling of cortical bone. (a) Using external nodes (from Garo
et al. [191]); (b) Extracting a uniform layer from the VB external surface (from
Kim et al. [148]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2-11 Examples of intervertebral disc mesh. (a) Panzer et al. [198] using shell ele-
ments with embedded rebar elements to mimic the fibres in the annulus; (b)
Rohlmann et al. [197] used explicit rebars to mimic the fibres in the annulus. . 42

2-12 An example of FE modelling of a facet (from Kim et al. [148]). ALL: Anterior
longitudinal ligament, PLL: Posterior longitudinal ligament, ISL: Interspinous
ligament, SSL: Supraspinous ligament, CL: Capsular ligament, and LF: Liga-
mentum flavum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2-13 Conversion technique used by Wijayathunga et al. [88] and Robson Brown
et al. [81]. Images adapted from Robson Brown et al. [81]. . . . . . . . . . . . . 45

2-14 The conversion from GS scale to Young’s modulus via phantoms. (a) Phantom
discs at the bottom of the image (from Zeinali et al. [71]); (b) Typical graph
which converts GS numbers to density. . . . . . . . . . . . . . . . . . . . . . . 46

2-15 BV
TV and apparent density approach (from Mengoni et al. [124]). . . . . . . . . . 46

2-16 Spine segment FE model (adapted from Schmidt et al. [53]). ALL: Anterior
longitudinal ligament, PLL: Posterior longitudinal ligament, ISL: Interspinous
ligament, SSL: Supraspinous ligament, FC: Capsular ligament, VA: Vertebral
arches and FL: Flaval ligamentum. . . . . . . . . . . . . . . . . . . . . . . . . . 49

2-17 Modelling of annulus fibrosis layers (from Marini and Ferguson [176]). . . . . 51

2-18 Sensitivity analysis results from Fagan et al. [232]. (a) Influence of geomet-
rical and material properties non-linearity; (b) Influence of fibres’ Young’s
modulus; (c) Influence of annulus Young’s modulus; (d) Influence of nucleus
Young’s modulus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2-19 Modelling approach used by Esat and Acar [236]. (a) MBS model; (b) FE model. 54

2-20 Collision kinematics. Elastic collision: conservation of kinetic energy and mo-
mentum. Inelastic collision: conservation of momentum and change of kinetic
energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

vii



4-1 Specimen preparation. (a) Porcine cervical spine section before dissection
(from Dyke [246]); (b) Dissected, cleaned, and potted spine 04, sample C2 ver-
tebral body, before painting - both caudal and cranial bone cement pots caps
were approximately parallel to each other; (c) Spine 04, sample C2 painted for
DIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4-2 Potting procedures were similar to those used by Sleeman [247]. VBs were
held by the support and horizontally aligned in the transverse plane using a
digital spirit level, positioned in the cranial surface, in both anterior-posterior
and medial-lateral directions. Once the samples were satisfactorily aligned,
the caudal side was then potted in PMMA bone cement using a custom cyl-
indrical mould made PTFE. Once the caudal side was potted, the sample was
turned upside down, and the same procedures of levelling were conducted
but using the flat bottom surface of the caudal cement cap as reference. . . . . 67

4-3 mCT scanning procedures. (a) Sample positioning inside the mCT scanner us-
ing a custom made jig; (b) Representative slice of a vertebral body transverse
plane obtained using aforementioned settings - Red line indicates where DIC
was acquired in the anterior surface. . . . . . . . . . . . . . . . . . . . . . . . . 68

4-4 Testing procedure set-up. (a) Experimental Set-up: Specimen dummy (i), DIC
Camera (ii) and Instron head (iii); (b) High speed cameras (Photron Europe
Ltd, UK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4-5 Modelling a vertebral body. Cement bridge linking two bone cement speci-
men holder pots. Detail in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4-6 Spine 01, C4 Vertebral Body. (a) CT images in XY plane view; (b) 3D model. . 71

4-7 Typical graph GS - density. Spine 01, Vertebral body C2. . . . . . . . . . . . . . 73

4-8 Boundary conditions applied into vertebral body FE models. (a) Perspective
view of a typical VB FE model and its BCs; (b) Caudal view depicting the
constrains in movement; (c) Cranial view illustrating the loading point and its
constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4-9 Comparison between experimental and numerical data. (a) Experimental-DIC
data: DIC was acquired from the majority of the anterior surface of the sample
but only the defined ROI (white square) was used to calculate vertebral stiff-
ness. A dot in the cranial side of the DIC data was also used to acquire data for
comparison with Instron data; (b) Numerical data: only the data from the ROI
(white square) drawn in similar position to experimental was used to calculate
stiffness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4-10 Correlation between Instron crosshead and DIC cranial point stiffness. . . . . 78

4-11 Load - Displacement (left side) and Load - Strain (right side) curves from the calib-
ration models. Red curves are DIC/experimental results. Black curves are numerical
results. (a) and (b) Spine 01, sample C4. Some of the experimental curves presented
inconsistent behaviour, mostly after 5 kN. This was mainly caused by blood leaking
through the VB surface during loading. The blood disrupted the paint speckle pattern
which caused the DIC algorithm to output non-physical displacements and strains. . 79

viii



4-12 Load - Displacement (left side) and Load - Strain (right side) curves from the calib-
ration models. Red curves are DIC/experimental results. Black curves are numerical
results. (a) and (b) Spine 03, sample C2; (c) and (d) Spine 04, sample C2; (e) and (f)
Spine 12, sample C3. Stiffness was calculated from 3 kN to 5 kN. . . . . . . . . . . . 80

4-13 Sensitivity analysis of the average factor, KGS, to sample size using one-in-one-
out methodology. The red line represents the average factor, 0.033. Each blue
bar represents a new average factor without a sample, following Table 4.1. For
example, the first bar is the average without sample C4, from spine 01. The
yellow line is the standard deviation for each new average calibration factor. 81

4-14 Spine 01, Sample C4 calibration results. The load magnitude is 4.8 kN. (a) DIC
ROI; (b) FE ROI; (c) DIC vertical displacement contour plot, in mm, adjusted
to toe region width; (d) FE vertical displacement contour plot, in mm; (e) DIC
vertical strain contour plot, in # (strain); (f) FE vertical strain contour plot, in #
(strain). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4-15 Spine 03, Sample C2 calibration results. The load magnitude is 5 kN. (a) DIC
ROI; (b) FE ROI; (c) DIC vertical displacement contour plot, in mm, adjusted
to toe region width; (d) FE vertical displacement contour plot, in mm; (e) DIC
vertical strain contour plot, in # (strain); (f) FE vertical strain contour plot, in #
(strain). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4-16 Spine 04, Sample C2 calibration results. DIC acquired with high-speed cam-
eras and analysed via VIC-3D software. The load magnitude is 5 kN. (a) DIC
ROI; (b) FE ROI; (c) DIC vertical displacement contour plot, in mm, adjusted
to toe region width; (d) FE vertical displacement contour plot, in mm; (e) DIC
vertical strain contour plot, in # (strain); (f) FE vertical strain contour plot, in #
(strain). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4-17 Spine 12, Sample C3 calibration results. The load magnitude is 5 kN. (a) DIC
ROI; (b) FE ROI; (c) DIC vertical displacement contour plot, in mm, adjusted
to toe region width; (d) FE vertical displacement contour plot, in mm; (e) DIC
vertical strain contour plot, in # (strain); (f) FE vertical strain contour plot, in #
(strain). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4-18 Load - Displacement (left side) and Load - Strain (right side) curves from the valida-
tion models. Red curves are DIC/experimental results. Black curves are the numer-
ical results. (a) and (b) Spine 04, sample C5; (c) and (d) Spine 06, sample C7; (e) and
(f) Spine 12, sample C6; (g) and (h) Spine 13, sample C2. Stiffness was calculated from
3 kN to 5 kN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4-19 Bland-Altman plot comparing experimental and numerical stiffness. D is the
difference between experimental and numerical stiffness. Average is the aver-
age between experimental and numerical stiffness. . . . . . . . . . . . . . . . . 88

4-20 Correlation between experimental and numerical stiffness. R2 = 0.74 for a
relationship of 0.95. Dashed red line is the unit line for comparison. . . . . . . 88

4-21 Comparison between experimental and numerical stiffness variability in the
calibration and validation phases. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

ix



4-22 Spine 04, Sample C5 calibration results. DIC acquired with high-speed cam-
eras and analysed via VIC-3D software. The load magnitude is 5 kN. (a) DIC
ROI; (b) FE ROI; (c) DIC vertical displacement contour plot, in mm, adjusted
to toe region width; (d) FE vertical displacement contour plot, in mm; (e) DIC
vertical strain contour plot, in # (strain); (f) FE vertical strain contour plot, in #
(strain). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4-23 Spine 06, Sample C7 calibration results. DIC acquired with high-speed cam-
eras and analysed via VIC-3D software. The load magnitude is 4 kN. (a) DIC
ROI; (b) FE ROI; (c) DIC vertical displacement contour plot, in mm, adjusted
to toe region width; (d) FE vertical displacement contour plot, in mm; (e) DIC
vertical strain contour plot, in # (strain); (f) FE vertical strain contour plot, in #
(strain). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4-24 Spine 12, Sample C6 calibration results. The load magnitude is 5 kN. (a) DIC
ROI; (b) FE ROI; (c) DIC vertical displacement contour plot, in mm, adjusted
to toe region width; (d) FE vertical displacement contour plot, in mm; (e) DIC
vertical strain contour plot, in # (strain); (f) FE vertical strain contour plot, in #
(strain). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4-25 Spine 13, Sample C2 calibration results. The load magnitude is 2 kN. (a) DIC
ROI; (b) FE ROI; (c) DIC vertical displacement contour plot, in mm, adjusted
to toe region width; (d) FE vertical displacement contour plot, in mm; (e) DIC
vertical strain contour plot, in # (strain); (f) FE vertical strain contour plot, in #
(strain). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5-1 Specimens preparation. (a) Dissected, cleaned, and potted vertebral bodies;
(b) DIC prepared sample with white background and black speckled dots,
Spine 07, Sample C2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5-2 Impact cage design (adapted from Holsgrove et al. [137]). . . . . . . . . . . . . 103

5-3 Impact machine and its main parts; (a) Detail on the bearing housing; (b) im-
pact mass and light gate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5-4 Cranial specimen holder velocity for spine 07, sample C2, measured via DIC. 105

5-5 DIC results for spine 07, sample C6. Taking the centre of the screw of the
caudal specimen holder as reference (Figure 5-5a - red line), it can be seen
that it moves downwards, up to 2 mm, for the maximum load (Figure 5-5b -
green line). When the load decreases to zero (Figure 5-5c - red line), the screw
returns to its original position. (a) Before the impact; (b) During the impact -
maximum load; (c) After the impact. . . . . . . . . . . . . . . . . . . . . . . . . 107

5-6 Boundary Conditions. (a) Fully constrained; (b) Partially Constrained. . . . . 108

5-7 DIC displacement data from cranial and caudal specimen holders; (a) Defini-
tion of spring stiffness, red circle dots; (b) Load-displacement curves from the
caudal and cranial specimen holders for spine 07, sample C2. . . . . . . . . . . 108

x



5-8 Comparison between rigid and non-rigid body material properties for the spe-
cimen holders and bone cement caps for both BCs. Blue curves are the res-
ults for the models with deformable, homogeneous and isotropic properties
for cements and specimen holders. Black curves are the results for the mod-
els with rigid body material properties definitions for cements and specimen
holders. Red curve is the input/experimental caudal load, which was ap-
plied to the fully constrained BC models. (a) Load-Displacement curves for
fully constrained BC; (b) Load-Displacement curves for partially constrained
BC; (c) Load-Strain curves for fully constrained BC; (d) Load-Strain curves for
partially constrained BC; (e) Load-Time curves for fully constrained BC with
deformable material properties and experimental/input load; (f) Load-Time
curves for partially constrained BC. . . . . . . . . . . . . . . . . . . . . . . . . . 110

5-9 Regions where experimental and numerical data were extracted. White circle
indicates were data for the caudal specimen holder was acquired. (a) DIC/-
Experimental ROI; (b) Numerical data ROI. . . . . . . . . . . . . . . . . . . . . 112

5-10 Typical experimental/DIC results. (a) Displacement-time curves (Green curve
is the DIC displacement from the ROI on the anterior surface of the VB. Magenta
is the displacement from the caudal specimen holder and red is the difference
between VB and specimen holder displacements); (b) Strain-time curve. . . . 113

5-11 Typical numerical results. Displacement and Strain-Time curves. (a) and (b)
Numerical results from the fully constrained BC models - acquired from sim-
ilar ROI to DIC on the anterior VB surface; (c) and (d) Numerical results from
the partially constrained BC models - Green curve is the numerical displace-
ment acquired from similar ROI to DIC on the anterior VB surface. Blue is
the numerical displacement from the caudal specimen holder and black is the
difference between numerical VB and specimen holder displacements. . . . . 113

5-12 Load-Time curves. (a) Experimental/DIC - Magenta curve is the caudal load
cell data. Red curve is the cranial load cell data. (b) Numerical reaction load
from the partially constrained BC models. . . . . . . . . . . . . . . . . . . . . . 114

5-13 Example of the presented results format, from spine 07, sample C2. Red curve
is the experimental/DIC resultant displacement from the VB anterior surface.
Blue curve is from VB anterior surface for partially constrained boundary con-
dition models. Black curve is from VB anterior surface for fully constrained
boundary condition models. (a) Load- displacement curves. (b) Load-Strain
curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5-14 Load-Displacement and Load-Strain curves. Red curve is the experiment-
al/DIC from the VB anterior surface. Blue curve is from the VB anterior sur-
face for partially constrained boundary condition models. Black curve is from
the VB anterior surface for fully constrained boundary condition models. (a)
and (b) Spine 07, sample C2; (c) and (d) Spine 08, sample C7; (e) and (f) Spine
10, sample C7; (g) and (h) Spine 11, sample C7. . . . . . . . . . . . . . . . . . . 117

5-15 Bland-Altman plot comparing experimental and numerical stiffness for both
BC models. D is the difference between experimental and numerical stiff-
ness. Average is the average between experimental and numerical stiffness.
(a) Fully constrained BC models; (b) Partially constrained BC models. . . . . . 118

xi



5-16 Box and Whiskers plots comparison between experimental and numerical stiff-
ness for both BCs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5-17 Correlation plot comparing experimental and numerical stiffness values. (a)
Fully constrained BC models. R2 = 0.42 for a relationship of 0.57; (b) Partially
constrained BC models. R2 = 0.58, for a relationship of 1.13. . . . . . . . . . . 119

5-18 Load-Time curves. Magenta curves are the caudal load cell data. Red curves
are the cranial load cell data. Black curves are the numerical reaction load from
the partially constrained BC. (a) Spine 07, sample C2; (b) Spine 08, sample C7;
(c) Spine 10, sample C7; (d) Spine 11, sample C7. . . . . . . . . . . . . . . . . . 120

5-19 Spine 07, Sample C2. The load magnitude is 5 kN. (a) DIC Vertical displacements, in
m; (b) DIC vertical strains, in # (strain); (c) FE fully constrained BC vertical displace-
ments, in m; (d) FE fully constrained BC vertical strains, in # (strain); (e) FE partially
constrained BC vertical displacements, in m; (f) FE partially constrained BC vertical
strains, in # (strain). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5-20 Spine 08, Sample C7. The load magnitude is 5 kN. (a) DIC Vertical displacements, in
m; (b) DIC vertical strains, in # (strain); (c) FE fully constrained BC vertical displace-
ments, in m; (d) FE fully constrained BC vertical strains, in # (strain); (e) FE partially
constrained BC vertical displacements, in m; (f) FE partially constrained BC vertical
strains, in # (strain). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5-21 Spine 10, Sample C7. The load magnitude is 5 kN. (a) DIC Vertical displacements, in
m; (b) DIC vertical strains, in # (strain); (c) FE fully constrained BC vertical displace-
ments, in m; (d) FE fully constrained BC vertical strains, in # (strain); (e) FE partially
constrained BC vertical displacements, in m; (f) FE partially constrained BC vertical
strains, in # (strain). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5-22 Spine 11, Sample C7. The load magnitude is 5 kN. (a) DIC Vertical displacements, in
m; (b) DIC vertical strains, in # (strain); (c) FE fully constrained BC vertical displace-
ments, in m; (d) FE fully constrained BC vertical strains, in # (strain); (e) FE partially
constrained BC vertical displacements, in m; (f) FE partially constrained BC vertical
strains, in # (strain). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5-23 Energy-Time. Black curves are the potential energy from the fully constrained
models. Blue curves are the potential and kinetic energies from the partially
constrained models. (a) Fully Constrained BC, Spine 07, sample C2; (b) Par-
tially Constrained BC, Spine 07, sample C2; (c) Fully Constrained BC, Spine
08, sample C7; (d) Partially Constrained BC, Spine 08, sample C7; (e) Fully
Constrained BC, Spine 10, sample C7; (f) Partially Constrained BC, Spine 10,
sample C7; (g) Fully Constrained BC, Spine 11, sample C7; (h) Partially Con-
strained BC, Spine 11, sample C7. . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6-1 Specimens preparation (from Boyd [261]). (a) Porcine cervical spine section;
(b) Dissected spine; (c) Screws inserted at the cranial end-plate to enhance
fixation; (d) Potted sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6-2 Specimen preparation for motion capture and DIC. (a) Qualisys clusters and
spheres from 3D motion capture were attached to the dissected and potted
porcine spines (from Boyd [261] and Silvestros et al. [109]); (b) DIC pattern
together with motion capture markers (from Boyd [261]). . . . . . . . . . . . . 133

xii



6-3 Impact cage. (a) Schematic design of the impact cage (from Holsgrove et al.
[137]); (b) Spine assembled into the cage (from Boyd [261]). . . . . . . . . . . . 134

6-4 Cranial specimen holder velocity for spine 01 measure via DIC. . . . . . . . . 135

6-5 Experiment conducted by Silvestros et al. [109]. (a) Spine 01 musculoskeletal
model with kinematic markers; (b) Kelvin-Voight bushing elements used to
represent the biomechanical behaviour of the intervertebral discs under impact.135

6-6 Experimental Procedures: impact rig, five cameras motion capture system,
two high-speed cameras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6-7 The division of the multiple vertebral bodies within the spine into individual
and independent files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6-8 Geometrical modelling of the spine. (a) Vertebral body and specimen holder
models; (b) Intervertebral discs models. . . . . . . . . . . . . . . . . . . . . . . 137

6-9 Diagram of an axially loaded beam and comparison with the intervertebral
disc. (a) Diagram of a loaded beam and its dimensions; (b) The equivalence
of an intervertebral disc to a beam and the geometrical description of the disc:
a is the anterior-posterior width, b is the medio-lateral length and tDisc is the
hight of the disc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6-10 Data acquisition. (a) From DIC, averages from the Region of Interest (ROI)
areas on each VB level; (b) From 3D markers, average from the lateral clusters
on each VB level, in red; (c) From FE models, node displacements on each VB
level, in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6-11 Experimental and numerical data. (a) Example of data Displacement-time for cranial
specimen holder from spine 01. The blue curve is the 3D marker data, the red curve is
the DIC data and the black curve is the FE data; (b) Example of a load-time plot from
spine 01. Red curve is the caudal load and the magenta curve is the cranial load; (c)
Load-displacement plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6-12 Spine 01 geometrical models. (a) The whole model; (b) Vertebral bodies; (c)
intervertebral discs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6-13 Load-time plots. Red curve is the caudal load and the magenta curve is the
cranial load. Solid line is from spine 01, dashed line is from spine 02 and
dotted line is from spine 03. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6-14 Load-vertical displacement plots. Top left are the C2 level results. Top right
are the C3 level results. Bottom left are the C4 level results. Bottom right
are the C5 level results. Blue curves are the 3D marker data, red curves are
the DIC data and black curves are the FE data. Solid lines are from spine 01,
dashed lines are from spine 02 and dotted lines are from spine 03. . . . . . . . 143

xiii



6-15 Bland-Altman plots comparing experimental and FE displacements for spine
01. On the left hand side is the comparison between DIC and FE displace-
ments. On the right hand side is the comparison between markers and FE
displacements. D is the difference between experimental and numerical dis-
placements. Average is the average between experimental and numerical dis-
placements. (a) and (b) C2 vertebrae; (c) and (d) C3 vertebrae; (e) and (f) C4
vertebrae; (g) and (h) C5 vertebrae. . . . . . . . . . . . . . . . . . . . . . . . . . 144

6-16 Vertical and Shear strains, in # (strain). (a) Spine 01 - Vertical strains; (b) Spine
01 - Shear strains; (c) Spine 02 - Vertical strains; (d) Spine 02 - Shear strains; (e)
Spine 03 - Vertical strains; (f) Spine 03 - Shear strains. . . . . . . . . . . . . . . 146

6-17 Anterior-posterior displacement-time plots. Top left is the C3 level results.
Top right is the C4 level results. Bottom centre is the C5 level results. Blue
curves are the 3D marker data, red curves are the DIC data and black curves
are the FE data. Solid lines are from spine 01, dashed lines are from spine 02,
and dotted lines are from spine 03. . . . . . . . . . . . . . . . . . . . . . . . . . 147

6-18 Spine Boundary Conditions. (a) Fully constrained; (b) Partially constrained. . 148

6-19 Regions of interest (ROIs) were defined by a rectangular area on the anterior
surface of each vertebral body. Average displacements of each ROI was ob-
tained via VIC-3D software for DIC (Correlated Solutions, South Carolina,
USA). Caudal and cranial displacements were acquired next to the junction
between specimen holders and bone cement. In a similar way, numerical dis-
placements were acquired by setting identical experimental ROIs to the nu-
merical models. Displacements from the surface nodes within each ROI were
acquired and averaged for a given load step.(a) From DIC; (b) From FE models. 149

6-20 Numerical model for spine 01. (a) Fully constrained BC model; (b) Partially
constrained BC model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6-21 Load-time plots. Red curve is the experimental caudal load, the magenta
curve is the experimental cranial load and black curve is the numerical load
from partially constrained BC models. Solid line is from spine 01, dashed line
is from spine 02 and dotted line is from spine 03. . . . . . . . . . . . . . . . . . 151

6-22 Load-vertical displacement plots. Top left is the C2 level results. Top right
is the C3 level results. Bottom left is the C4 level results. Bottom right is the
C5 level results. The red curves are the DIC data, the black curves are the FE
data for the fully constrained BC models, and the blue curves are the FE data
for the partially constrained BC models. Solid lines are from spine 01, dashed
lines are from spine 02, and dotted lines are from spine 03. . . . . . . . . . . . 152

6-23 Box and Whiskers plots comparison between experimental and numerical stiff-
ness for both BCs for each spine. . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6-24 Bland-Altman plot comparing experimental and numerical stiffness for both
BC models. D is the difference between experimental and numerical stiff-
ness. Average is the average between experimental and numerical stiffness.
(a) Fully constrained BC models; (b) Partially constrained BC models. . . . . . 153

xiv



6-25 Correlation plot comparing experimental and numerical stiffness values. Top
plot is for fully constrained models. Bottom plot is for partially constrained
models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6-26 Load-vertical strain plots. Top left is the C3 level results. Top right is the C4
level results. The bottom is the C5 level results. The red curves are the DIC
data, the black curves are the FE data for the fully constrained BC models, and
the blue curves are the FE data for the partially constrained BC models. Solid
lines are from spine 01, dashed lines are from spine 02, and dotted lines are
from spine 03. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6-27 Vertical displacements and strains for spine 01. (a) DIC Vertical displacements,
in m; (b) DIC vertical strains, in # (strain); (c) FE fully constrained BC vertical
displacements, in m; (d) FE fully constrained BC vertical strains, in # (strain);
(e) FE partially constrained BC vertical displacements, in m; (f) FE partially
constrained BC vertical strains, in # (strain). . . . . . . . . . . . . . . . . . . . . 156

6-28 Anterior-posterior displacement-time plots. Top left are C3 level results. Top
right are C4 level results. Bottom centre are C5 level results. Red curves are
DIC data, black curves are the FE data for the fully constrained BC models,
and blue curves are FE data for the partially constrained BC models. Solid
lines are from spine 01, dashed lines are from spine 02, and dotted lines are
from spine 03. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6-29 Anterior-posterior displacements and shear strains for spine 01. (a) DIC Ver-
tical displacements, in m; (b) DIC strains, in # (strain); (c) FE fully constrained
BC displacements, in m; (d) FE fully constrained BC strains, in # (strain); (e)
FE partially constrained BC displacements, in m; (f) FE partially constrained
BC strains, in # (strain). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6-30 Vertical and shear strains for the intervertebral discs from spine 01, in # (strain).
(a) Vertical strains for numerical fully constrain BC; (b) Anterior-posterior
strains for numerical fully constrain BC; (c) Vertical strains for numerical par-
tially constrain BC; (d) Anterior-posterior strains for numerical partially con-
strain BC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A-1 Load-Displacement (left side) and Load-Strain (right side) curves from the calibration
models. Red curves are DIC/experimental results. Black curves are numerical results.
(a) and (b) Spine 01, sample C6. Stiffness was calculated from 3 kN to 5 kN. Some of
the experimental curves presented inconsistent behaviour, mostly after 5 kN. This
was mainly caused by blood leaking through the VB surface during loading. The
blood disrupted the paint speckle pattern which caused the DIC algorithm to output
non-physical displacements and strains. . . . . . . . . . . . . . . . . . . . . . . . . 186

A-2 Load-Displacement (left side) and Load-Strain (right side) curves from the calibration
models. Red curves are DIC/experimental results. Black curves are numerical res-
ults. (a) and (b) Spine 02, sample C2; (c) and (d) Spine 02, sample C3; (e) and (f) Spine
02, sample C4; (g) and (h) Spine 02, sample C5. Stiffness was calculated from 3 kN to
5 kN. Some of the experimental curves presented inconsistent behaviour, mostly after
5 kN. This was mainly caused by blood leaking through the VB surface during load-
ing. The blood disrupted the paint speckle pattern which caused the DIC algorithm
to output non-physical displacements and strains. . . . . . . . . . . . . . . . . . . . 187

xv



A-3 Load-Displacement (left side) and Load-Strain (right side) curves from the calibration
models. Red curves are DIC/experimental results. Black curves are numerical res-
ults. (a) and (b) Spine 03, sample C4; (c) and (d) Spine 03, sample C6; (e) and (f) Spine
04, sample C4; (g) and (h) Spine 12, sample C2. Stiffness was calculated from 3 kN to
5 kN. Some of the experimental curves presented inconsistent behaviour, mostly after
5 kN. This was mainly caused by blood leaking through the VB surface during load-
ing. The blood disrupted the paint speckle pattern which caused the DIC algorithm
to output non-physical displacements and strains. . . . . . . . . . . . . . . . . . . . 188

A-4 Load-Displacement (left side) and Load-Strain (right side) curves from the calibration
models. Red curves are DIC/experimental results. Black curves are numerical results.
(a) and (b) Spine 12, sample C4. Stiffness was calculated from 3 kN to 5 kN. Some of
the experimental curves presented inconsistent behaviour, mostly after 5 kN. This
was mainly caused by blood leaking through the VB surface during loading. The
blood disrupted the paint speckle pattern which caused the DIC algorithm to output
non-physical displacements and strains. . . . . . . . . . . . . . . . . . . . . . . . . 189

A-5 Spine 01, sample C6 calibration results. The load magnitude is 5 kN. (a) DIC
vertical displacement contour plot, in mm, adjusted to toe region width; (b)
FE vertical displacement contour plot, in mm; (c) DIC vertical strain contour
plot, in # (strain); (d) FE vertical strain contour plot, in # (strain). . . . . . . . . 189

A-6 Spine 02, samples C2 and C3 calibration results. The load magnitude is 5 kN. (a) C2 DIC vertical
displacement contour plot adjusted to toe region width, in mm; (b) C2 FE vertical displacement
contour plot, in mm; (c) C2 DIC vertical strain contour plot, in # (strain); (d) C2 FE vertical strain
contour plot, in # (strain); (e) C3 DIC vertical displacement contour plot adjusted to toe region
width, in mm; (f) C3 FE vertical displacement contour plot, in mm; (g) C3 DIC vertical strain
contour plot, in # (strain); (h) C3 FE vertical strain contour plot, in # (strain). . . . . . . . . . 190

A-7 Spine 02, samples C4 and C5 calibration results with the load magnitudes of 2 kN and 5 kN,
respectively. (a) C4 DIC vertical displacement contour plot adjusted to toe region width, in mm;
(b) C4 FE vertical displacement contour plot, in mm; (c) C4 DIC vertical strain contour plot, in
# (strain); (d) C4 FE vertical strain contour plot, in # (strain); (e) C5 DIC vertical displacement
contour plot adjusted to toe region width, in mm; (f) C5 FE vertical displacement contour plot,
in mm; (g) C5 DIC vertical strain contour plot, in # (strain); (h) C5 FE vertical strain contour
plot, in # (strain). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

A-8 Spine 03, samples C5 and C6 calibration results. The load magnitude is 5 kN. (a) C5 DIC vertical
displacement contour plot adjusted to toe region width, in mm; (b) C5 FE vertical displacement
contour plot, in mm; (c) C5 DIC vertical strain contour plot, in # (strain); (d) C5 FE vertical strain
contour plot, in # (strain); (e) C6 DIC vertical displacement contour plot adjusted to toe region
width, in mm; (f) C6 FE vertical displacement contour plot, in mm; (g) C6 DIC vertical strain
contour plot, in # (strain); (h) C6 FE vertical strain contour plot, in # (strain). . . . . . . . . . 192

A-9 Spine 04, sample C4 and spine 12, sample C2 calibration results with the load magnitudes
of 2 kN and 5 kN, respectively. DIC for spine 04, sample C4 was acquired with high-speed
cameras and analysed via VIC-3D software. (a) C4 DIC vertical displacement contour plot
adjusted to toe region width, in mm; (b) C4 FE vertical displacement contour plot, in mm; (c)
C4 DIC vertical strain contour plot, in # (strain); (d) C4 FE vertical strain contour plot, in #
(strain); (e) C2 DIC vertical displacement contour plot adjusted to toe region width, in mm; (f)
C2 FE vertical displacement contour plot, in mm; (g) C2 DIC vertical strain contour plot, in #
(strain); (h) C2 FE vertical strain contour plot, in # (strain). . . . . . . . . . . . . . . . . . 193

xvi



A-10 Spine 12, Sample C4 calibration results. The load magnitude is 5 kN. (a) DIC
vertical displacement contour plot, in mm, adjusted to toe region width; (b)
FE vertical displacement contour plot, in mm; (c) DIC vertical strain contour
plot, in # (strain); (d) FE vertical strain contour plot, in # (strain). . . . . . . . . 194

A-11 Load-Displacement (left side) and Load-Strain (right side) curves from the validation
models. Red curves are DIC/experimental results. Black curves are numerical results.
(a) and (b) Spine 04, sample C6. Stiffness was calculated from 3 kN to 5 kN. . . . . . 194

A-12 Load-Displacement (left side) and Load-Strain (right side) curves from the validation
models. Red curves are DIC/experimental results. Black curves are numerical res-
ults. (a) and (b) Spine 04, sample C7; (c) and (d) Spine 05, sample C7; (e) and (f) Spine
12, sample C5; (g) and (h) Spine 12, sample C7. Stiffness was calculated from 3 kN to
5 kN. Some of the experimental curves presented inconsistent behaviour, mostly after
5 kN. This was mainly caused by blood leaking through the VB surface during load-
ing. The blood disrupted the paint speckle pattern which caused the DIC algorithm
to output non-physical displacements and strains. . . . . . . . . . . . . . . . . . . . 195

A-13 Load-Displacement (left side) and Load-Strain (right side) curves from the validation
models. Red curves are DIC/experimental results. Black curves are numerical results.
(a) and (b) Spine 13, sample C3 (c) and (d) Spine 13, sample C4; (e) and (f) Spine 13,
sample C5; (g) and h) Spine 13, sample C7. Stiffness was calculated from 3 kN to 5 kN.
Some of the experimental curves presented inconsistent behaviour, mostly after 5 kN.
This was mainly caused by blood leaking through the VB surface during loading. The
blood disrupted the paint speckle pattern which caused the DIC algorithm to output
non-physical displacements and strains. . . . . . . . . . . . . . . . . . . . . . . . . 196

A-14 Spine 04, Sample C6 validation results. The load magnitude is 3 kN. (a) DIC
vertical displacement contour plot, in mm, adjusted to toe region width; (b)
FE vertical displacement contour plot, in mm; (c) DIC vertical strain contour
plot, in # (strain); (d) FE vertical strain contour plot, in # (strain). . . . . . . . . 197

A-15 Spine 04, sample C7 and spine 05, sample C7 validation results. The load magnitude is 4 kN.
DIC for spine 04, sample C7 was acquired with high-speed cameras and analysed via VIC-3D
software. (a) S04 C7 DIC vertical displacement contour plot adjusted to toe region width, in
mm; (b) S04 C7 FE vertical displacement contour plot, in mm; (c) S04 C7 DIC vertical strain
contour plot, in # (strain); (d) S04 C7 FE vertical strain contour plot, in # (strain); (e) S05 C7 DIC
vertical displacement contour plot adjusted to toe region width, in mm; (f) S05 C7 FE vertical
displacement contour plot, in mm; (g) S05 C7 DIC vertical strain contour plot, in # (strain); (h)
S05 C7 FE vertical strain contour plot, in # (strain). . . . . . . . . . . . . . . . . . . . . . 198

A-16 Spine 12, samples C5 and C7 validation results. The load magnitude is 5 kN. (a) C5 DIC vertical
displacement contour plot adjusted to toe region width, in mm; (b) C5 FE vertical displacement
contour plot, in mm; (c) C5 DIC vertical strain contour plot, in # (strain); (d) C5 FE vertical strain
contour plot, in # (strain); (e) C7 DIC vertical displacement contour plot adjusted to toe region
width, in mm; (f) C7 FE vertical displacement contour plot, in mm; (g) C7 DIC vertical strain
contour plot, in # (strain); (h) C7 FE vertical strain contour plot, in # (strain). . . . . . . . . . 199

xvii



A-17 Spine 13, samples C3 and C4 validation results. The load magnitude is 4 kN. (a) C3 DIC vertical
displacement contour plot adjusted to toe region width, in mm; (b) C3 FE vertical displacement
contour plot, in mm; (c) C3 DIC vertical strain contour plot, in # (strain); (d) C3 FE vertical strain
contour plot, in # (strain); (e) C4 DIC vertical displacement contour plot adjusted to toe region
width, in mm; (f) C4 FE vertical displacement contour plot, in mm; (g) C4 DIC vertical strain
contour plot, in # (strain); (h) C4 FE vertical strain contour plot, in # (strain). . . . . . . . . . 200

A-18 Spine 13, samples C5 and C7 validation results. The load magnitude is 5 kN. (a) C5 DIC vertical
displacement contour plot adjusted to toe region width, in mm; (b) C5 FE vertical displacement
contour plot, in mm; (c) C5 DIC vertical strain contour plot, in # (strain); (d) C5 FE vertical strain
contour plot, in # (strain); (e) C7 DIC vertical displacement contour plot adjusted to toe region
width, in mm; (f) C7 FE vertical displacement contour plot, in mm; (g) C7 DIC vertical strain
contour plot, in # (strain); (h) C7 FE vertical strain contour plot, in # (strain). . . . . . . . . . 201

A-19 Load-Displacement and Load-Strain curves - Red curve is the experimental/DIC from
the VB anterior surface. Blue curve is from the VB anterior surface for partially con-
strained boundary condition models. Black curve is from the VB anterior surface for
fully constrained boundary condition models. (a) and (b) Spine 07, sample C3; (c) and
(d) Spine 07, sample C5; (e) and (f) Spine 07, sample C7. . . . . . . . . . . . . . . . 202

A-20 Load-Displacement and Load-Strain curves - Red curve is the experiment-
al/DIC from the VB anterior surface. Blue curve is from the VB anterior sur-
face for partially constrained boundary condition models. Black curve is from
the VB anterior surface for fully constrained boundary condition models. (a)
and (b) Spine 09, sample C7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

A-21 Load-Time curves - Magenta curves are the caudal load cell data. Red curve
are the cranial load cell data. Black curves are the reaction load from the par-
tially constrained models. (a) Spine 07, sample C3; (b) Spine 07, sample C5; (c)
Spine 07, sample C7; (d) Spine 09, sample C7. . . . . . . . . . . . . . . . . . . . 203

A-22 Energy-Time. Black curves are the potential energy from the fully constrained mod-
els. Blue curves are the potential and kinetic energies from the partially constrained
models. (a) and (b) Spine 07, sample C3; (c) and (d) Spine 07, sample C5; (e) and (f)
Spine 07, sample C7; (g) and (h) Spine 09, sample C7. . . . . . . . . . . . . . . . . . 204

A-23 Spine 07, Sample C3. The load magnitude is 5 kN. (a) DIC vertical displacement
contour plot adjusted to toe region width, in m; (b) DIC vertical strain contour plot,
in # (strain); (c) FE vertical displacement contour plot for fully constrained BC, in m;
(d) FE vertical strain contour plot for fully constrained BC, in # (strain); (e) FE vertical
displacement contour plot for partially constrained BC, in m; (f) FE vertical strain
contour plot for partially constrained BC, in # (strain). . . . . . . . . . . . . . . . . . 205

A-24 Spine 07, Sample C5. The load magnitude is 5 kN. (a) DIC vertical displacement
contour plot adjusted to toe region width, in m; (b) DIC vertical strain contour plot,
in # (strain); (c) FE vertical displacement contour plot for fully constrained BC, in m;
(d) FE vertical strain contour plot for fully constrained BC, in # (strain); (e) FE vertical
displacement contour plot for partially constrained BC, in m; (f) FE vertical strain
contour plot for partially constrained BC, in # (strain). . . . . . . . . . . . . . . . . . 206

xviii



A-25 Spine 07, Sample C7. The load magnitude is 5 kN. a) DIC vertical displacement con-
tour plot adjusted to toe region width, in m; (b) DIC vertical strain contour plot, in #
(strain); (c) FE vertical displacement contour plot for fully constrained BC, in m; (d)
FE vertical strain contour plot for fully constrained BC, in # (strain); (e) FE vertical
displacement contour plot for partially constrained BC, in m; (f) FE vertical strain
contour plot for partially constrained BC, in # (strain). . . . . . . . . . . . . . . . . . 207

A-26 Spine 09, Sample C7. The load magnitude is 5 kN. (a) DIC vertical displacement
contour plot adjusted to toe region width, in m; (b) DIC vertical strain contour plot,
in # (strain); (c) FE vertical displacement contour plot for fully constrained BC, in m;
(d) FE vertical strain contour plot for fully constrained BC, in # (strain); (e) FE vertical
displacement contour plot for partially constrained BC, in m; (f) FE vertical strain
contour plot for partially constrained BC, in # (strain). . . . . . . . . . . . . . . . . . 208

A-27 Bland-Altman plots comparing experimental and FE displacements for spine
02. On the left side is the comparison between DIC and FE displacements. On
the right side is the comparison between markers and FE displacements. D is
the difference between experimental and numerical displacements. Average
is the average between experimental and numerical displacements. (a) and (b)
C2 vertebrae; (c) and (d) C3 vertebrae; (e) and (f) C4 vertebrae; (g) and (h) C5
vertebrae. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

A-28 Bland-Altman plots comparing experimental and FE displacements for spine
03. On the left side is the comparison between DIC and FE displacements. On
the right side is the comparison between markers and FE displacements. D is
the difference between experimental and numerical displacements. Average
is the average between experimental and numerical displacements. (a) and (b)
C2 vertebrae; (c) and (d) C3 vertebrae; (e) and (f) C4 vertebrae; (g) and (h) C5
vertebrae. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

A-29 Vertical displacements and strains for spine 02. (a) DIC Vertical displacements,
in m; (b) DIC vertical strains, in # (strain); (c) FE fully constrained BC vertical
displacements, in m; (d) FE fully constrained BC vertical strains, in # (strain);
(e) FE partially constrained BC vertical displacements, in m; (f) FE partially
constrained BC vertical strains, in # (strain). . . . . . . . . . . . . . . . . . . . . 211

A-30 Vertical displacements and strains for spine 03. (a) DIC Vertical displacements,
in m; (b) DIC vertical strains, in # (strain); (c) FE fully constrained BC vertical
displacements, in m; (d) FE fully constrained BC vertical strains, in # (strain);
(e) FE partially constrained BC vertical displacements, in m; (f) FE partially
constrained BC vertical strains, in # (strain). . . . . . . . . . . . . . . . . . . . . 212

A-31 Anterior-posterior displacements and shear strains for spine 02. (a) DIC Ver-
tical displacements, in m; (b) DIC vertical strains, in # (strain); (c) FE fully con-
strained BC vertical displacements, in m; (d) FE fully constrained BC vertical
strains, in # (strain); (e) FE partially constrained BC vertical displacements, in
m; (f) FE partially constrained BC vertical strains, in # (strain). . . . . . . . . . 213

A-32 Anterior-posterior displacements and shear strains for spine 03. (a) DIC Ver-
tical displacements, in m; (b) DIC vertical strains, in # (strain); (c) FE fully con-
strained BC vertical displacements, in m; (d) FE fully constrained BC vertical
strains, in # (strain); (e) FE partially constrained BC vertical displacements, in
m; (f) FE partially constrained BC vertical strains, in # (strain). . . . . . . . . . 214

xix



A-33 Vertical and shear strains for the intervertebral discs from spine 02, in # (strain).
(a) Axial strains for numerical fully constrain BC; (b) Shear strains for numer-
ical fully constrain BC; (c) Axial strains for numerical partially constrain BC;
(d) Shear strains for numerical partially constrain BC. . . . . . . . . . . . . . . 215

A-34 Vertical and shear strains for the intervertebral discs from spine 03, in # (strain).
(a) Axial strains for numerical fully constrain BC; (b) Shear strains for numer-
ical fully constrain BC; (c) Axial strains for numerical partially constrain BC;
(d) Shear strains for numerical partially constrain BC. . . . . . . . . . . . . . . 216

B-1 Mesh sensitivity test. (a) 2 mm mesh (b) 0.6 mm mesh. . . . . . . . . . . . . . . 217

B-2 Mesh sensitivity test plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

B-3 NCorr parameters sensitivity testing set-up. (a) Acrylic plates with DIC speckle
pattern; (b) GigE DFK 23GP01 Camera. . . . . . . . . . . . . . . . . . . . . . . 219

B-4 NCorr parameters sensitivity testing set-up. (a) Ramped displacement up to
10 mm; (b) Following ramped displacement up to 20 mm. . . . . . . . . . . . . 219

B-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

B-6 NCorr parameters sensitivity testing set-up. Response table. . . . . . . . . . . 220

B-7 Vic-3D software parameters sensitivity testing set-up. (a) Acrylic plates with
DIC speckle pattern; (b) High Speed Cameras. . . . . . . . . . . . . . . . . . . 222

B-8 Vic-3D software parameters sensitivity testing set-up. (a) 10 mm; (b) 20 mm. . 222

B-9 Average displacement using spacing 21 and 69 on VIC-3D software. . . . . . . 223

C-1 Cement samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

C-2 Experimental set-up. (a) Experimental devices; (b) Experimental procedure. . 226

C-3 Load-Displacement curves for all samples, linear sections and weighted aver-
aged curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

C-4 Stress-Strain curves for all samples, linear sections and weighted averaged
curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

C-5 Porosity of bone cement. (a) Micro-CT images from samples 1 (top) and 5
(bottom) - cross section views; (b) Micro-CT images from C2 - cross-section
views. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

D-1 (a) Potted C2 vertebral body. (b) Testing set-up. . . . . . . . . . . . . . . . . . . 231

D-2 Numerical model of C2 vertebral body in Simpleware ScanIP. . . . . . . . . . 231

D-3 Numerical model of C2 with boundary conditions in ANSYS Mechanical APDL
v18.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

D-4 Experimental results of C2 vertebral body. . . . . . . . . . . . . . . . . . . . . . 233

D-5 Stiffness predictions from the eight numerical models. . . . . . . . . . . . . . . 234

xx



D-6 Response graph from ANOVA. As the gradient of the curve between levels
one and two was the highest among the variables, GS factor is the main vari-
able, followed by mesh size. The results also showed that these three factors
are independent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

xxi



xxii



List of Tables

1.1 Compressive modulus in the caudal-cranial direction for human vertebral body
cancellous bone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Density to Young’s modulus mathematical relationships for vertebral bodies
on the principal direction (E1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Vertebral body stiffness and ultimate load values from human samples in the
literature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Results from compressive loading test conducted by Kazarian [115]. . . . . . 21

1.5 Comparison of BMD between human and porcine vertebral bodies, adapted
from Schmidt et al. [123]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1 Values for Young‘s modulus used in generic models. . . . . . . . . . . . . . . . 44

4.1 Vertebral body tested samples list. . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Typical values of density and GS for phantom discs. Spine 01, Vertebral body
C2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Materials properties for bone cement, cartilage and the steel plate. . . . . . . . 74

4.4 Average quantity of elements in the calibration models. . . . . . . . . . . . . . 77

4.5 Stiffness data measured from Instron corsshead data and from DIC cranial point. 78

4.6 Experimental and numerical results for the calibration models. . . . . . . . . . 79

4.7 Average quantity of elements in the validation models. . . . . . . . . . . . . . 86

4.8 Experimental and numerical results for the validation models. . . . . . . . . . 86

5.1 Specimens used for the modelling on the dynamic phase. . . . . . . . . . . . . 105

5.2 Materials properties for bone cement, cartilage and specimen holders. . . . . 109

5.3 Average quantity of elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4 Results comparison for the fully constrained boundary conditions models. . . 115

5.5 Results comparison for the partially constrained boundary conditions models. 116

xxiii



6.1 Optimised axial stiffness calculated using a 3D motion capture system, from
Silvestros et al. [109]. Spines 01 and 02 are the same as spines 01 and 02 in this
present study. Spine 03 is this study was not included in the dataset studied
by Silvestros et al. [109]. The material properties for the discs of this specimen
were derived from the average properties on the Silvestros et al. [109] dataset. 139

6.2 Average quantity of elements per spine. . . . . . . . . . . . . . . . . . . . . . . 142

6.3 Intervertebral disc geometrical dimensions for the spine samples: a is the
anterior-posterior length, b is the medial-lateral length and tDisc is the caudal-
cranial length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.4 Lin’s Concordance Correlation Coefficient (CCC) between numerical and ex-
perimental displacements, for both DIC and markers. . . . . . . . . . . . . . . 145

6.5 Results comparison for the fully constrained boundary conditions models.
Young’s modulus and density were not available for rigid bodies. . . . . . . . 150

6.6 Results comparison for the partially constrained boundary conditions models.
Young’s modulus and density were not available for rigid bodies. . . . . . . . 151

B.1 Mesh sensitivity data. Difference to previous is the difference in stiffness from
the previous mesh size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

B.2 NCorr parameters sensitivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

B.3 Taguchi orthogonal array L4 (23) for 10 mm. . . . . . . . . . . . . . . . . . . . 220

B.4 Taguchi orthogonal array L4 (23) for 20 mm. . . . . . . . . . . . . . . . . . . . 221

B.5 Response table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

B.6 Analysis of Variance (ANOVA) of the main contributors for numerical stiff-
ness, where Sq is the Sum of Squares, n is DoF of the variable, ST is the total
sum, Mq is the Mean Sum of Squares, F-Ratio is a hypothesis test, and r is the
contribution percentage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

D.1 Analysed factors and their levels. . . . . . . . . . . . . . . . . . . . . . . . . . . 230

D.2 L8(27) Orthogonal Array for Taguchi Experiments. . . . . . . . . . . . . . . . . 230

D.3 Material properties applied to the FE model. . . . . . . . . . . . . . . . . . . . 232

D.4 Results for the Taguchi Experiments . . . . . . . . . . . . . . . . . . . . . . . . 234

D.5 Analysis of Variance (ANOVA) of the main contributors for numerical stiff-
ness, where Sq is the Sum of Squares, n is DoF of the variable, Mq is the
Mean Sum of Squares, F-Ratio is a hypothesis test, Sq’ is the Corrected Sum of
Squares after pooling, and r is the contribution percentage. . . . . . . . . . . 235

xxiv



Contents

Abstract i

Acknowledgements iii

List of Figures v

List of Tables xxiii

Contents xxv

1 The cervical spine and the cervical spine injuries 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Basic anatomic directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Anatomy of the cervical spine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Anterior elements: the vertebral body . . . . . . . . . . . . . . . . . . . 5

1.3.2 Anterior elements: the intervertebral disc . . . . . . . . . . . . . . . . . 13

1.3.3 Posterior elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Viscoelasticity of biological materials . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.1 Viscoelastic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.2 Viscoelastic behaviour of bone . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.3 Viscoelastic behaviour of the intervertebral disc . . . . . . . . . . . . . 20

1.5 Specimens for spine research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6 Cervical Spine Injuries (CSIs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6.1 Spine stability and load application . . . . . . . . . . . . . . . . . . . . 25

1.6.2 Mechanisms leading to CSIs . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.6.3 Biomechanical studies of CSIs . . . . . . . . . . . . . . . . . . . . . . . . 28

xxv



1.7 Rugby Union and CSIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.7.1 Prevalence of CSIs in rugby . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.7.2 Biomechanics of CSI in rugby . . . . . . . . . . . . . . . . . . . . . . . . 31

1.8 Studies of CSIs in rugby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 Finite element modelling of the spine: static and dynamic approaches 33

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Modelling the spine and its components . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1 Spinal Components (SCs) . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.2 Functional Spinal Unit (FSU) . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.3 Whole Spine Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Geometry definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Model definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.1 Element type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.2 Material properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5 Calibration of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.6 Verification of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.7 Validation of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.8 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.8.1 Sensitivity analysis methodologies . . . . . . . . . . . . . . . . . . . . . 50

2.8.2 Geometrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.8.3 Material properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.8.4 Boundary Conditions (BCs) . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.9 Continuous and discrete models . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.10 Finite element spine models for dynamic loading . . . . . . . . . . . . . . . . . 55

2.10.1 Material properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.10.2 Solution type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.10.3 Dynamics of an impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.10.4 Finite Element spine models for sports . . . . . . . . . . . . . . . . . . 59

2.11 Modelling framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

xxvi



3 Aims and Objectives 61

3.1 Summary of literature findings . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Gaps in the literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Development and validation of efficient specimen-specific finite element models
of vertebral bodies subject to quasi-static loading 65

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Experimental procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Finite element modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.1 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.2 Meshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.3 Material properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.4 Boundary conditions and load application . . . . . . . . . . . . . . . . 74

4.3.5 Model’s material calibration . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.6 Validation of the numerical model . . . . . . . . . . . . . . . . . . . . . 75

4.3.7 Presentation and analysis of experimental and numerical data . . . . . 76

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.1 Calibration of the numerical models . . . . . . . . . . . . . . . . . . . . 77

4.4.2 Validation of the numerical models . . . . . . . . . . . . . . . . . . . . 86

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 Development of efficient specimen-specific finite element models of vertebral bod-
ies subjected to impact loading 101

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Experimental procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Finite element modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.1 Segmentation and meshing . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.2 Material properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.3 Boundary conditions and load application . . . . . . . . . . . . . . . . 106

5.3.4 Components material properties . . . . . . . . . . . . . . . . . . . . . . 109

xxvii



5.3.5 Model’s material calibration . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4 Presentation and analysis of experimental and numerical data . . . . . . . . . 112

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6 Development and validation of efficient specimen-specific finite element models
of the cervical spine subject to impact loading 131

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2 Experimental procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.3 Finite element modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.3.1 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.3.2 Meshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.3.3 Material properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.4 Validation of the intervertebral disc material properties . . . . . . . . . . . . . 139

6.4.1 Boundary conditions, material properties and load application . . . . 139

6.4.2 Presentation and analysis of experimental and numerical data . . . . . 140

6.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.5 Evaluation of the cervical spine FE models . . . . . . . . . . . . . . . . . . . . 145

6.5.1 Presentation and analysis of experimental and numerical data . . . . . 148

6.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.6.1 IVD validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.6.2 Cervical spine FE models . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7 Discussion, limitations, conclusions and further work 167

7.1 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.3 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Bibliography 173

xxviii



Appendix A Remaining results 186

A.1 Chapter 04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

A.1.1 Calibration Results - Load-Displacement and Load-Strain curves . . . 186

A.1.2 Calibration Results - Contour plots . . . . . . . . . . . . . . . . . . . . . 189

A.1.3 Validation Results - Load-Displacement and Load-Strain curves . . . . 194

A.1.4 Validation Results - Contour plots . . . . . . . . . . . . . . . . . . . . . 197

A.2 Chapter 05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

A.2.1 Load-Displacement and Load-Strain curves . . . . . . . . . . . . . . . . 202

A.2.2 Load-Time curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

A.2.3 Energy-Time curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

A.2.4 Contour plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

A.3 Chapter 06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

A.3.1 Bland-Altman Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

A.3.2 Contour plots of vertical displacements and strains . . . . . . . . . . . 211

A.3.3 Contour plots of anterior-posterior displacements and strains . . . . . 213

A.3.4 Contour plots of axial and anterior-posterior strains for the interver-
tebral discs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Appendix B Verification and Sensitivity Analysis 217

B.1 Mesh Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

B.2 DIC software paramerters Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . 218

B.2.1 NCorr software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

B.2.2 VIC-3D software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Appendix C Bone cement material caracterization 224

C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

C.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

C.2.1 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

C.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

C.3.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

xxix



Appendix D Taguchi analysis of the FE modelling parameters 228

D.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

D.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

D.2.1 Taguchi Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

D.2.2 Experimental Procedure for comparison . . . . . . . . . . . . . . . . . . 230

D.2.3 Numerical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

D.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

D.3.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

D.3.2 Numerical and Taguchi Results . . . . . . . . . . . . . . . . . . . . . . . 233

D.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

D.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

xxx







Chapter 1

The cervical spine and the cervical
spine injuries

1.1 Introduction

The human spine is one of the most complex and important structures in the human body
in terms of geometry, functions and number of structures involved. It extends from the skull
to the pelvis and aims to protect the spinal cord, to allow body motion, to attach the muscles
and to support internal and external loads. [1–4].

According to the World Health Organization, between 250,000 and 500,000 people suffer a
spinal cord injury every year and a considerable number of such injuries involve the cervical
spine [5, 6]. Cervical Spine Injuries (CSIs) can be profoundly debilitating, and they can lead
to permanent impairment, tetraplegia, and death [7–10].

Due to their severe consequences, CSIs have become a popular topic of research in recent
years [6]. The majority of published works have focused on the understanding of injury
mechanisms, the identification of the conditions leading to CSIs, injury avoidance, and the
improvement of treatments. Several hypotheses have been formulated to explain the preval-
ence of hyperflexion, hyperextension or buckling; however, the exact mechanism leading to
CSIs is still debatable [4, 11–15].

Numerical methods have been increasingly applied to predict CSI occurrence in a range of
scenarios and to analyse situations that cannot be replicated in vitro [16]. Among these, the
Finite Element (FE) method is widely used [17–19]. The advantages of this approach are
numerous: it is less time consuming when compared to in vitro studies; it has an ability
to predict localized strains and stresses; it has the capability to represent complex loading,
geometries, boundary conditions and material properties; and it is relatively cheap to im-
plement, requiring limited costs. However, the complex nature of the problem makes the
creation of reliable FE models for CSI evaluation a challenging process. Many different mod-
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elling procedures are described in the literature, and they vary widely in terms of material
properties, geometry description, boundary conditions and load application, rendering dir-
ect comparisons between studies and models a difficult enterprise [18–20].

The majority of CSIs occur due to head impact, usually in motor crashes, falls, diving and
sports events [12]. In sports, the risk of injury is directly related to the type of sport [21],
with contact sports, such as rugby union, exhibiting a higher risk of injury compared to
non-contact ones [7, 22, 23]. Rugby is one of the most popular games worldwide, and its
popularity has been increasing over the last years [24, 25]. Full contact is a defining charac-
teristic of rugby, with many collisions and impacts occurring during a match. The sport is
practised without any general body protection, as opposed to American Football, and since
the introduction of professionalism in 1995, the number of reported injuries has increased
significantly [22, 26].

Although rugby union is characterised by a high overall injury incidence, the risk of cata-
strophic spine injuries is relatively low [27, 28]. The majority of spine injuries in rugby occur
in the lumbar region; usually with no serious consequence for the player [27]. On the other
hand, while CSIs are rare, their effects can be devastating; moreover, concerns about prema-
ture brain degenerative diseases in rugby players due to CSIs have highlighted the necessity
of better understanding how injuries occur and improve treatments and training protocols
[22, 29]. Many experimental and in vivo studies have been conducted, but the real mechan-
isms that lead to these injuries during a match remain unclear [14, 24]. The finite element
method could allow a more in-depth understanding of the mechanisms leading to injury in
this context through the reproduction of realistic loading scenarios.

Therefore, this study aims to develop a validated finite element modelling framework for
the creation of specimen-specific cervical spine models for the study of rugby collisions.
This methodology will be based on a validated procedure to assign specimen-specific geo-
metry and material properties to the bone segments. It will develop a direct correlation
between vertebral body material properties for static and dynamic conditions and combine
both continuous and multi-body approaches to assess cervical spine kinematics and struc-
tural behaviour. It is expected that the use of such modelling framework will allow a better
understanding of the factors leading to CSIs arising from rugby collisions, ultimately guid-
ing rule changes to safeguard players and advance knowledge in the way FE can be utilised
in the modelling of biological structures.

1.2 Basic anatomic directions

The descriptions used to reference directions in the body are derived from the field of ana-
tomy [3]. With reference to an individual standing upright, the direction towards the head is
named the superior direction and the opposite, the inferior direction. The posterior direction
is towards the backside of the body and the anterior direction towards the front. The lateral
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direction is from the centre of the body to the sides, while medial is the inverse, from the
sides towards the centre. With regards to the spine, the commonly used directions are the
caudal direction, towards the pelvis, and the cranial direction, towards to the head, Figure
1-1.

Figure 1-1: General and spine anatomic reference directions (adapted from Kurtz [3]).

1.3 Anatomy of the cervical spine

The basic structures of the cervical spine comprise bone segments, i.e. vertebrae, interverteb-
ral discs (IVDs), joints, ligaments, spinal cord and spinal nerves. The spine can be divided
into the anterior and posterior columns, Figure 1-2. The anterior column comprises vertebral
bodies, IVDs and anterior and posterior ligaments; the posterior column comprises process,
pedicles, facet joints and ligaments, such as flavum, super and interspinous and the inter-
transverse [30].

The cervical spine consists of seven different vertebrae, C1 to C7, and it is the upper section
of the spine (Figure 1-3a). It has the smallest vertebral bodies in the whole spine, and it is
frequently subdivided into three regions: the upper cervical spine (C1 and C2), the middle
cervical spine (C3 - C5), and the lower cervical spine (C6-T1 - the T1 vertebra is often in-
cluded in the cervical set due to the intervertebral joint with C7 [1, 2]). Except for C1 (atlas)
and C2 (axis), the shape of the vertebral bodies is remarkably similar for the various seg-
ments (Figure 1-3b).

Ligaments are fibrous structures mainly responsible for transmitting tensile loads alongside
the direction of the fibres and for controlling and limiting movements of the bones to which
they are attached [33]. Within the spine, they also protect the spinal cord by restricting the
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Figure 1-2: Spine components (from Newell et al. [30]). IVD: Intervertebral disc; ALL:
Anterior longitudinal ligament; PLL: Posterior longitudinal ligament.

(a) (b)

Figure 1-3: The human spine and its main sections. (a) The whole spine (from Hines [31]);
(b) Detail of the cervical spine (adapted from Heller et al. [32]).

motion of the spine. The spine has seven main ligaments: anterior longitudinal ligament
(ALL), posterior longitudinal ligament (PLL), ligamentum flavum (LF), facet capsular liga-
ments (CL), interspinous (IL) and supraspinous (SL) ligaments (Figure 1-2).

Cartilage is a type of connective tissue, and it is primarily composed of water (around 75 %
of its weight), collagen and aggrecan. There are three types of cartilage: articular, elastic and
fibrocartilage. The first works as a bearing surface, and it is usually found in synovial joints,
such as the hip, and facets. The second type gives shape to structures, such as the nose and
ear. The last, fibrocartilage, is a dense fibrous material, with relatively high elasticity and
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tensile strength and it is the main component of the annulus fibrosus [1, 34].

The material properties of cartilage are dependant on its condition and health. For example,
healthier fibrocartilage has Young’s modulus varying from 0.5 MPa to 0.9 MPa, based on the
collagen fibres being tested in isolation, without the aggregate and water [34].

1.3.1 Anterior elements: the vertebral body

The division of the spine into the anterior and posterior column results in each vertebra also
being divided into anterior and posterior regions (Figure 1-4a). The anterior region is also
known as the vertebral body, while the posterior corresponds to other structures attached to
the vertebral body (VB), such as pedicles, articular facets and transverse processes [35].

(a) (b)

Figure 1-4: Cervical vertebral anatomy. (a) Geometrical features (adapted from Artner
[36]); (b) Cancellous and cortical bone (adapted from Chiro [37]).

The vertebral bodies are made up of cancellous and cortical bones (Figure 1-4b). Cancel-
lous bone is a composite of bone marrow filling the open porous spaces in the trabecular
structure [35, 38]. The trabeculae form a porous-net architecture, and they are responsible
for the structural strength of the vertebral body [33, 35, 39]. Their organisation resembles
that of scaffolds, with 100 µm to 640 µm vertically aligned thick lamellae (”beams”), bearing
the majority of the load, and thinner cross-links, adding horizontal stability to the structure
(Figure 1-5). The trabeculae can be considered as the building unit of cancellous bone [38].

Cortical bone in the vertebral body is a thin and dense shell which encloses cancellous bone,
and it is present in every bone in the human skeleton, Figure 1-4. Histologically, the cortical
bone in a vertebral body resembles a denser and more compact version of the cancellous
bone, with a smaller lamellar thickness, ranging from 1 µm to 5 µm [38]. The macro-scale
shell thickness ranges from 0.10 mm to 0.30 mm [40], thicker at the cranial and caudal sur-
faces of the vertebral body but thinner in the central part [33, 35].

Load sharing with cancellous, cortical bone also carries and transmits all the compressive
loads through the spine [33]. The proportion of load sharing and distribution between cor-
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tical and cancellous bone is subject to debate. Some studies reported that due to its relatively
small thickness, cortical bone is responsible for carrying the only 10 % of the load [33], while
others, reported load-sharing as varying between 10 % to 75 %, depending on the distance of
the tissue from the end-plate [35, 41, 42].

(a) (b)

Figure 1-5: Trabecular structure in cancellous bone. (a) 3D structure from cancellous bone
(from Chen et al. [43]); (b) Cross-sectional area of a vertebral body (from White and Panjabi.

[33]).

Properties of cancellous bone

The mechanical behaviour of cancellous bone has been widely explored [35, 38, 44–47].
Nano-indentation, uni-axial compressive/tensile loading, ultrasound and four-point bend-
ing have all been used to this end [38]. These studies have highlighted the large variability
in the mechanical behaviour exhibited by cancellous bone as age, mineral content, porosity,
density, trabecular structure and orientation and even measuring technique can affect the
measured mechanical properties of the tissue.

It is well known that the trabecular structure in any bone aligns and organises itself ac-
cording to the loading regime, a phenomenon known as Wolff’s law [48]. As the spine is
predominantly axially loaded in compression, most of the trabeculae are aligned vertically
and are thicker in that direction, Figure 1-5b [33]. As a result, the vertebral cancellous bone
usually presents stiffness in the inferior-superior (caudal-cranial) direction, on average, three
times higher than in other directions [33, 49], resulting in the tissue being often classified as
a transversally isotropic material [35, 38, 44, 48]. The reported modulus of vertebral body
cancellous bone in the direction caudal to cranial varies widely, as shown in Table 1.1.

The stress-strain curve of vertebral cancellous bone under quasi-static loading resembles
that of a typical ductile material, exhibiting approximately linear behaviour until yield and a
plastic region before failure (Figure 1-6). Cancellous bone is slightly weaker in tension than
in compression, but this effect can be usually neglected if the material is within the elastic
region [35, 48].

The Poisson’s ratio for cancellous bone is reported to range from 0.06 to 0.90, depending on
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the trabecular architecture and mineral content [48], with many authors agreeing on between
0.30 to 0.40 as reasonable compromise range [19, 50–54].

Table 1.1: Compressive modulus in the caudal-cranial direction for human vertebral body
cancellous bone.

Young’s
Modulus (SD)

[MPa]
Reference

344 (48) Morgan and Keaveny [47]
190 (67) Aiyangar et al. [55]
291 (113) Kopperdahl and Keaveny [46]
56 (0.3) Lindahl [56]

Figure 1-6: Stress-Strain behaviour of cancellous bone (from Keaveny and Buckley [35]).

The mechanical strength of the bone is closely related to its density [48]. As will be described
in a later section, the relationship between density and Young’s modulus is often used to
assign material properties to numerical models [57]. This parameter is also of significant
clinical importance as it is assumed as a surrogate measure to identify patients affected by
osteoporosis [35, 38].

There are six different definitions of density for bone [57]. The first one is known as the ac-
tual density, ract, which follows the well known and daily used definition of density, Equa-
tion 1.1, thus including the marrow. The apparent density or apparent wet density, rapp, is
defined as the ratio of the hydrated tissue mass over the total specimen volume, Equation
1.2. The apparent dry density, rdry, is defined as the ratio of the dry tissue mass over the total
specimen volume, Equation 1.3, while ash density, rash, is the ash mass over total specimen
volume, Equation 1.4. Bone Volume Fraction is the total bone volume over the total speci-
men volume, Equation 1.5. Finally, the real density, rreal , is the hydrated tissue mass over
bone tissue volume (i.e. excluding the voids), Equation 1.6.
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ract =
total sample mass

total specimen volume
(1.1)

rapp =
hydrated tissue mass

total specimen volume
(1.2)

rdry =
dry tissue mass

total specimen volume
(1.3)

rash =
ash mass

total specimen volume
(1.4)

BV
TV

=
bone tissue volume

total specimen volume
(1.5)

rreal =
hydrated tissue mass
bone tissue volume

(1.6)

The apparent density of human vertebral cancellous bone was reported ranging from 0.10
g cm�3 to 0.30 g cm�3, while actual density from 1 g cm�3 to 2 g cm�3 [57–61].

Bone density can be inferred through the use of imaging techniques, such as Computer-
ised Tomography (CT), where X-rays waves emitted from a generator are passed through a
sample and recorded by a detector, resulting in a map of X-ray absorption. As the specimen
is rotated, a three-dimensional image of the objected is produced.

CT images are produced in shades of grey in which each pixel contains a different shade
of grey; ranging from white to black, the variation is due to the X-ray attenuation through
a sample, Figure 1-7. X-ray traversing a sample will undergo different degrees of absorp-
tion depending on the characteristic of the sample material; materials characterised by high
density (such as bone) generally absorb more X-rays than low-density materials (such as
cartilage) [62].

The assess to bone density is usually made through the use of phantoms; known density
materials called phantoms are allocated and CT scanned alongside the specimens. Bone
density is thus inferred by comparing the bone shades of grey to the phantom ones [63]. The
phantom material is usually made of hydroxyapatite, mineral which bone is composed of.
Nevertheless, such a way of acquiring bone density requires some considerations. Firstly, the
radiological density is assumed to be similar to apparent density. Secondly, the hydroxyapat-
ite phantom discs are usually homogeneous, while the bone is completely heterogeneous,
especially the cancellous bone. Finally, the attenuation coefficient of a pure hydroxyapatite
mineral is slightly different from the hydroxyapatite component present in the bone [63].
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Figure 1-7: CT image of a vertebral body. Shades of grey range from black, low density, to
white, high density.

Based on the grey-scale density acquired through CT, several studies have proposed math-
ematical relationships between Young‘s modulus (E) and bone density [48, 57, 64, 65]. These
relationships are often presented as a function of rash or rapp and they are either formulated
using linear coefficients, Equation 1.7, or power-laws, Equation 1.8:

E = a + b � r (1.7)

E = a + b � rc (1.8)

where a, b and c are constants dependent on bone architecture, mineral content, age, porosity,
trabecular structure and anatomical site [48]. A large number of these equations have been
empirically derived and validated using samples harvested from elderly donors, which im-
plies that the density range over which they have been validated is relatively small (Figure
1-8). As a consequence, their use for denser samples, such as those obtained from young
individuals or animals, might not be appropriated and re-calibration should be carried out
[57, 66].

The majority of the published relationships presents a reasonable correlation between pre-
dicted and measured values of Young’s modulus, usually greater than 0.6 [57]. However, due
to the high heterogeneity of bone, and other factors, such as experiment type and anatomical
site, those equations widely vary, Table 1.2.

Some studies have indicated that power-law expressions with an exponent close to 2 could
provide a good representation of the bone mechanical properties [48, 66]. However, a later
investigation has shown that those studies were affected by experiment artefacts and linear
equations might be more suitable [57]. Of particular interest is the relationship developed
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by Kopperdahl et al. [67], Table 1.2, as it achieved high correlation to experimental data (R2

= 0.90), and it is widely used in the literature [16, 50, 68–71].

Figure 1-8: Comparison between mathematical relationships which relate density and
Young’s modulus (from Gustafson et al. [72]).

Table 1.2: Density to Young’s modulus mathematical relationships for vertebral bodies on
the principal direction (E1).

Site
Type

of Bone
Range

[g cm�3]
Equation
E1 [GPa]

References

Human femoral
neck

Trabecular 0.18-0.95 1.3 � r1.40
app Lotz et al. [73]

Human spine Trabecular 0.028-0.182 1.9 � r1.92
ash Keller and Spengler [65]

Human proximal
tibia

Trabecular 0.06-0.27 33.9 � r3.20
ash Keyak et al. [74]

Human spine Trabecular 0-0.2 �34.7 + 3230 � rapp Kopperdahl et al. [67]

Properties of cortical bone

Similarly to cancellous, cortical bone properties depend on the orientation and loading dir-
ection; in mechanical terms, this can be described by an orthotropic constitutive model [48].
However, due to the alignment of its lamellae, vertebral cortical bone presents some sym-
metry, allowing it to be frequently described via a transversally isotropic constitutive model
[48].

Compared with cancellous, cortical bone exhibits significantly different behaviour when in
tension compared to compression. For example, the strength in compression is almost 45 %
higher than that in tension [48]. The Young’s modulus of cortical bone usually ranges from
10 GPa to 25 GPa, depending on the location, bone structure, mineral content and density
[48, 75]. It is considered that cortical bone starts yielding with strains ranging from 1 % to
2 % [48].
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As cortical bone histologically resembles a compact version of cancellous bone, the actual
and apparent densities for the tissue assume similar values at approximately 1.8 g cm�3 [48].

Properties of the vertebral body

Vertebral body stiffness and strength are essential properties which help to understand how
changes in the internal bone structure affect the whole mechanical behaviour of the bone as
well to assess bone fracture risk [76].

These properties are determined via compressive tests, where samples are axially loaded
to failure (Figure 1-9a). The specimen behaviour is summarised by its load-displacement
curve, which is typically characterised by a non-linear toe region for low values of load
and displacement, followed by linear and plastic regions. Stiffness and ultimate load are
evaluated from the slope of the linear region and the maximum of the load-displacement
curve, respectively (Figure 1-9b). The reported values of stiffness and maximum load vary
widely in the literature [35, 52, 68, 69, 72, 77–84], as they are dependent on the anatomic
geometry, apparent density, loading, mineralization, testing method and sample age, etc
[44, 85], Table 1.3.

(a)

(b)

Figure 1-9: Compressive test of a vertebral body (from Dall’Ara et al. [79]). (a)
Experimental set-up. LVDT: Linear Variable Differential Transformer; (b)

Load-displacement curve: stiffness (SExp) and strength (FMExp).
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Table 1.3: Vertebral body stiffness and ultimate load values from human samples in the
literature.

Study Species
Stiffness
[N mm�1]

Ultimate
Load
[kN]

Kopperdahl et al. [86] Human 6400 to 40 400 2 to 16
Chevalier et al. [78] Human 5600 to 12 700 3 to 10
Dall’Ara et al. [79] Human 20 000 to 55 000 2 to 7

Liebschner et al. [77] Human 7000 to 30 000 2 to 8
Robson Brown et al. [81] Human 900 to 1500 -
Robson Brown et al. [81] Porcine 5300 to 6400 -

Sahli et al. [87] Porcine 7080 to 9780 6 to 9
Wijayathunga et al. [88] Porcine 2000 to 5000 1 to 3

One of the main sources of errors in compressive tests is the end-artefact, i.e. how the speci-
men is positioned in the testing machine [57, 89]. Keaveny et al. [89] evaluated the uncertain-
ties in compression tests of trabecular bone harvested from three different sources: bovine
proximal humerus and tibia and human lumbar spine. Two different clamping techniques
were evaluated: end-cap and platens (Figure 1-10). Care was taken to ensure all tested speci-
mens had similar values of BMD so not bias the results. Specimens tested with compression
plates, a less constraining experimental set-up, presented values of Young’s Modulus up to
30 % smaller than samples tested with end-caps. This finding was also confirmed by a later
FE study [90]. The authors suggest that the measurements should be taken far from attach-
ment point or optical systems should be used if end-caps are not available and platens are
the only available solution [57, 89].

Figure 1-10: Two different clamping techniques: end-cap (left) and the platen (right) (from
Keaveny et al. [89]).

An additional problem associated with experimentation is that of machine compliance [52,
79, 91]. Usually, data is acquired directly from the testing machine, and machine compliance
is assumed to be small and is neglected. However, when bone samples are tested, the max-
imum displacement at failure is often up to 1 mm [78, 80, 92–94]. As a result, any fraction of
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millimetre of compliance caused by the machine can significantly affect the results [57, 91].

Alternatively to the traditional methods, Digital Image Correlation (DIC) has been increas-
ingly used to evaluate displacement and strain of biological tissues, especially the spine and
spinal segments subjected to loading [72, 95–97]. This method uses a sequence of images
to evaluate displacements and strains (Figure 1-11a). The advantage of using DIC over tra-
ditional experimental methods, which rely mostly on the information from a single point,
is that DIC is able to acquire data from large external surfaces, providing field information
of the parameter of interest [95]. Moreover, DIC is a contactless technique, eliminating the
interference of the experimental artefacts arising from measuring sensors on the specimen.

It is widely known that adequate image resolution, brightness and speckle pattern size and
distribution are essential for the accuracy of DIC results [95]. High-resolution cameras can be
used to increase image resolution; the higher number of pixels per image improves software
accuracy as a single speckle dot will be characterised by several pixels. Brightness is essential
to reduce external shadows over the surface of the sample and to enhance the contrast of the
speckle pattern.

Sample preparation and speckle pattern size are the most important parameters influencing
DIC [95]. The technique relies on monitoring the movement of the speckle dots through a
stack of images to calculate the surface displacement and then surface strain. Therefore, the
speckle pattern needs to have a random distribution, to avoid mismatch. High contrast with
the surface, such as black and white in a 50:50 ratio, is most commonly used (Figure 1-11b);
and each dot dimension needs to extend over pixels to avoid tracking issues. A resolution of
3 to 5 pixels per speckle dot is often recommended [95].

After the images are taken, the correlation analysis is performed, using specifically developed
software (Figure 1-11c). At this stage, several parameters need to be adjusted to improve the
results from the analysis. The main parameters affecting the results are radius and spacing
[95, 98]. Radius is the size of the subdivisions of the image (also known as facet), while
spacing is the distance between seed points used to run the analysis.

1.3.2 Anterior elements: the intervertebral disc

The intervertebral disc (IVD) is an almost circular non-calcified structure adjoining two ver-
tebral bodies. It is divided into three basic structures: annulus fibrosus, nucleus pulposus
and bone end-plates (Figure 1-12). The disc contributes up to 30 % of the spine height, it is
7 mm to 12 mm thick and 35 mm to 40 mm wide in the anterior-posterior direction. Almost
70% of the disc content is water and, alongside with the facet joints, it has the main function
of absorbing and distributing the mainly compressive loads between vertebral bodies and to
give flexibility to the spine [30, 33, 99]. It has been shown that the load magnitude to which
the IVD is subject to is usually higher than any other spine component, such as the VB or
facets [33].
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(a)

(b) (c)

Figure 1-11: Digital Image Correlation (DIC) technique (from Palanca et al. [95]). (a) DIC
work-flow: images are taken during loading and pixels displacements are correlated to a

static image taken before the test; (b) Prepared specimen with a black speckled pattern on a
white surface; (c) DIC correlation analysis, strain contour plot.

(a) (b)

Figure 1-12: Intervertebral disc (adapted from Newell et al. [30]). (a) The disc between to
adjacent vertebral bodies. (b) Isolated view of the disc. NP: nucleus pulposus, AF: annulus

fibrosus, CEP: Cartilaginous end-plate and BEP: bone end-plate.

Experimentation on the IVD is a challenging process. Disrupting the disc for instrumentation
purposes may cause changes in its internal pressure, affecting its behaviour [100]; as a result,
a precise definition of the material properties of the various structures forming the IVD is
still a complex experimental challenge.

14



Annulus Fibrosus

The annulus fibrosus is the outer part of the disc and consists of 15 to 25 concentric layers
of fibrous cartilage, each having a thickness ranging between 0.05 mm to 0.5 mm [30, 99].
Around 70 % of the ground substance weight is composed of water. Half of the annulus
layers are incomplete and do not fully encircle the annulus. Collagen fibres run alongside
the layers’ surface in alternating 30o or 120o angles with the transverse plane (Figure 1-13)
[33]. This structure allows the IVD to hold high internal pressures and to return to its original
shape after load removal [30]. The fibres are connected to the end-plates or the adjacent
vertebral bodies, depending on their location, and work in traction only [101].

Figure 1-13: Detail of the Annulus Fibrosus fibres (adapted from Newell et al. [30]).

The main and stiffest direction of the annulus is in the same direction of the collagen fibres,
i.e. at an angle, with an average Young‘s modulus of 183 MPa. The second main direction is
circumferential, with a modulus of 16 MPa, while in the other directions, this value is lower
than 2 MPa [30]. All mechanical properties reported in the literature for this tissue type are
related to quasi-static loading.

Nucleus Pulposus

The nucleus pulposus is a collagen-viscous structure in the centre of the IVD (Figure 1-14).
It consists of water (80 % in weight), and fine collagen fibrous rods and fills up to 50 % of the
cross-section disc area [30, 33, 99]. The high level of water content and the encircled annulus
give rise to hydrostatic pressures, which enhance the shocking absorbing performance of the
IVD. Some studies have shown that the internal nucleus pressure is up to 1330 kPa when
seated, and up to 870 kPa in a standing position [30]. The water content of the nucleus
decreases over time, resulting in a more rigid, less shock-absorbent and more susceptible to
injury tissue [1].

The mechanical behaviour of the nucleus is still not fully understood. Under static condi-
tions, the nucleus is usually treated as a fluid, due to its high water content. However, under
dynamic conditions, it is often described as solid due to the high pressure developed intern-
ally as a consequence of the constraint posed by the annulus [30]. The Young’s modulus of
the nucleus is usually reported to be around 1 MPa.
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Figure 1-14: Nucleus pulposus and other structures of the disc (adapted from Lotz et al.
[102]).

End-Plates

The end-plates (EPs) are circular cartilaginous structures, approximately 0.6 mm thick, loc-
ated at the cranial and caudal surfaces of an IVD (Figure 1-12) [30, 103]. Their main function
is to absorb the hydrostatic pressure that comes from the disc and to distribute it to the adja-
cent vertebral body, avoiding bulging of the disc [35, 102].

The mechanical properties of the end-plates are still not well defined, as they are usually
tested in conjunction with other structures [104]. The Young’s modulus is estimated at ap-
proximately 24 MPa [30].

Properties of the intervertebral disc

The shape and size of an IVD vary according to its position within the spine. As a con-
sequence, each disc level is characterised by a slightly different mechanical behaviour. Cer-
vical spine discs usually are stiffer in compression than in lateral bending when compared to
other discs. Lumbar discs, on the other hand, present similar stiffness in any loading/move-
ment condition. Torsional rigidity is higher in lower thoracic and lumbar regions as a result
of higher disc dimensions [30].

1.3.3 Posterior elements

Pedicles and process

Pedicles are located on each lateral side of a vertebral body (Figure 1-4). They are short,
thick, rounded, and they connect the anterior elements with the posterior. They also form an
arch to protect the spinal cord, and, in combination with the facets, they limit the movement
between vertebrae [1].

The main function of a process is to provide a point of attachment for the muscles in the
spine and to form a joint with the adjacent vertebrae, such as seen in the articular facet [1].
There are seven processes in a vertebral body: one spinous and six articular, Figure 1-4.
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Facets

The facets zygapophyseal joints are a cartilaginous structure located at the posterior side of a
vertebral body, at the end of each process. They have angled joints which contribute to spine
stability, protect the spinal cord, transmit vertical loads within the spine (sharing with the
disc [84]) and provide and restrict relative motion between two adjacent vertebrae during
flexion, extension and torsion [1].

The loading sharing between disc and facets is still subjected to debate as the load distribu-
tion is inferred from the disc’s internal pressure and varies according to the activity. How-
ever, it is understood that the disc carries most of the load when it is healthy. When disc
degeneration occurs, a substantial part of this load is beared by the facets, Figure 1-15 [105].

The angle between facets to the sagittal plane, a, can range from 10� to 120�, while the inclin-
ation angle to the axial plane, b, is between 20� and 86� [106].

The facet is classified as a synovial joint as the joint space is filled with synovial fluid and
covered by a fibrous capsule. This arrangement provides an almost frictionless and lub-
ricated sliding surface [1]. The compressive loads are supported by the process, while the
capsules resist traction [106].

Figure 1-15: Load sharing between IVD and facets (adapted from Adams and Dolan [105]).

1.4 Viscoelasticity of biological materials

The vast majority of biological materials exhibit viscoelastic behaviour [38, 85]. This charac-
teristic helps the biological structures to adapt to the variation in loading conditions.
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The response to the loading of a viscoelastic material is given by a combination of elastic and
viscous behaviours. Stress applied on a linear elastic material will induce an instantaneous
strain of magnitude proportional to the stress via a constant of proportionality, i.e. the mod-
ulus of the material (Figure 1-16a). In the case of tension-compression, this can be expressed
as:

s = s(e) = E � e (1.9)

where s is the normal stress, e the normal strain and E is the modulus of elasticity or Young‘s
modulus. When the stress is released, the material returns to its original dimension, releasing
all the potential energy accumulated during loading. This behaviour is independent of the
loading rate and is analogous to the response loading of a spring [85].

A viscous fluid, on the other hand, exhibits a response to loading which is dependant on the
loading rate (Figure 1-16b). This relationship is given by:

s = s(e, ė) = h � ė (1.10)

where s is the normal stress and ė is the normal strain rate, and h is the viscosity coefficient.
When the stress is released, there is no shape recovery, no energy is stored within the material
and all the energy is dissipated as heat. Such behaviour is analogous to that of a dashpot.

1.4.1 Viscoelastic models

A viscoelastic material is usually modelled as a combination of springs and dashpots [85].
The first one accounts for the elastic deformation, while the latter for the viscous fluid beha-
viour. Among many viscoelastic models, two are widely known: Kelvin-Voight and Maxwell
models.

Kelvin-Voight model

In the Kelvin-Voight, a spring and a dashpot are connected in parallel, Figure 1-16c. Under
a constant load, the load is distributed between spring and dashpot, while the strains are
the same for both components, Equations 1.11 and 1.12. In this model, the dashpot will hold
any immediate deformation caused by the application of a sudden the force, as it is in par-
allel with the spring [107]. Because this characteristic is similar to what is seen during IVD
deformation [108], this model is often used to represent the intervertebral discs in muscu-
loskeletal models [109–113]. The disadvantages of this model in describing the mechanical
behaviour of the disc are that it only accounts for the axial deformation; it assumes a uni-
form deformation through the disc, and it is usually decoupled, i.e. angular movements of

18



the disc are not accounted for [110]. However, meaningful results have been achieved using
this approach [111, 114] and, as it will be seen in a later section, this modelling approach can
provide inputs to finite element models.

s = ss + sd (1.11)

e = es = ed (1.12)

where s is the total stress, ss is the spring stress, sd is the dashpot stress, e is the total strain, es

is the spring strain and ed is the dashpot strain. It can be easily shown that for this material,
the relationship between stress and strain is given by:

s = E � e + h � ė (1.13)

(a) (b) (c) (d)

Figure 1-16: Material mechanical behaviour. (a) Linear elastic material. (b) Viscous
material; (c) Kelvin-Voight model; (d) Maxwell model.

Maxwell model

In the Maxwell model, the spring and the dashpot are linked in series (Figure 1-16d). Under
a constant load, the load is the same for both spring and dashpots, while the strains are
distributed between the two elements, Equations 1.14 and 1.15. Any sudden application of
force in this model will instantaneously elongate the spring, followed by a decrease in the
deformation rate due to the dashpot and a subsequent stress relaxation [107].

s = ss = sd (1.14)

e = es + ed (1.15)

It can be shown that, in this case, the stress-strain relationship takes the form:

s = h � (ė�
ṡ
E

) (1.16)
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1.4.2 Viscoelastic behaviour of bone

As any biological material, cancellous bone displays time-dependent or viscoelastic beha-
viour. In other words, its mechanical properties change with the loading rate. The higher the
loading rate is, the stiffer the bone response to loading. In a vertebral body, this phenomenon
also happens due to the interaction between the trabecular structure with the bone marrow.
At high loading rates, the bone marrow is restrained in the trabecular space, behaving as
a compressed fluid [115]. This effect increases the mechanical stiffness of the bone and en-
hances energy absorption properties. On the other hand, a stiffer structure, and less flexible,
could lead to injuries in severe situations and changes in the fracture patterns [48, 116].

Cortical bone also displays viscoelastic behaviour [33, 48]. A change in strain rate from
0.001 s�1 to 0.1 s�1 has been reported to increase Young’s Modulus by 30 %, Figure 1-17 [48].
However, in contrast to what is reported for the cancellous bone, cortical bone exhibits brittle
behaviour at very high load or strain rate [33]. As a consequence, any impact can give rise to
small cracks, which can lead to severe injuries.

Figure 1-17: Viscoelastic behaviour of cortical bone (from Keaveny and Hayes [48]).

The combination of both materials’ viscoelastic behaviour, i.e. cancellous and cortical bone,
contributes to the whole VB viscoelastic behaviour. Kazarian [115] conducted a study to
evaluate the biomechanical behaviour of the vertebral body over different loading rates.
Forty-eight young human thoracic vertebral bodies were extracted, potted and tested at
three different loading rates: 0.9 m s�1, 0.009 m s�1 and 0.00009 m s�1. Stiffness and ulti-
mate load were measured from the load-displacement curves. As seen in Table 1.4, stiffness
and ultimate load increased with loading rate. These results clearly illustrate the viscoelastic
characteristic of the bone.

1.4.3 Viscoelastic behaviour of the intervertebral disc

The viscoelastic behaviour of the disc is dominated by the interaction between the nucleus
and the annulus (solid phase and fluid flow) [117]. Basically, at high rates, the water content
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Table 1.4: Results from compressive loading test conducted by Kazarian [115].

Rate
[m s�1]

Stiffness
[N mm�1]

Ultimate
Load
[N]

0.9 2000 - 19000 3000 - 15568
0.009 1546 - 6500 3200 - 6672

0.00009 1000 - 6800 1700 - 5000

inside the nucleus does not have time to permeate to the outside of the disc and, in com-
bination with the physical barrier made by the annulus and its collagen fibres, the internal
pressure increases, giving rise to an overall increase in stiffness. However, some recent stud-
ies have pointed out that the disc behaviour at high rates might be more complex than those
outlined above.

Some studies have suggested that the inherent viscoelastic property of the ground substance
of both the annulus (caused by the collagen fibres) and the nucleus (caused by the collagen
fibrous rods dispersed in it) also plays an important role into the disc viscoelastic behaviour.
Costi et al. [117] conducted an experiment to measure the IVD stiffness and phase angle
across four different loading rates, in each of the six DOFs (Degrees of Freedom). They
aimed to assess how each mode of deformation, i.e. bending, twisting, etc., occurs, either
by the fluid-flow process between nucleus and annulus or by the viscoelastic property of the
annulus solid-phase. Nine sets of human FSUs were prepared and cyclically tested in each of
the six DOFs at a frequency of 0.001 Hz, 0.01 Hz, 0.1 Hz and 1 Hz. These values were selected
to represent the physiologic disc loading rates for activities of daily living, such as walking
and sitting. The study found that the disc stiffness increased in each DOF with the loading
rate, the opposite of the phase angle. They also found that compression, lateral bending,
extension and flexion deformation modes were clearly affected by both mechanisms, i.e.
fluid-flow process and viscoelastic property of the solid-phase, while shear and axial rotation
were dominated by viscoelastic effects. A limitation of this study is that the authors were not
able to describe the contribution of each mechanism in the deformation mode, nor were they
able to describe the individual behaviour of each component.

In another study, Masouros et al. [100] conducted an experiment in order to obtain the ma-
terial properties of each component of the IVD, i.e. fibres, nucleus and annulus, over a range
of loading rates. Ten sets of VB-disc-VB bovine samples were loaded at four different strain
rates: 0.001 Hz, 0.01 Hz, 0.1 Hz and 1 Hz. The samples were potted in bone cement and axi-
ally loaded via the cranial VB. The authors took care not to disrupt the discs, which would
have changed the mechanical response. Their results demonstrated that the loading rate has
a strong influence on the mechanical response of the disc, Figure 1-18; however, there was no
significant difference in disc stiffness after 0.01 Hz. In other words, above a certain loading
rate threshold, IVD rigidity does not significantly change. Similar findings have also been
reported by Race et al. [108].
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Figure 1-18: Viscoelastic behaviour of the IVD as a function of the loading rate (from
Masouros et al. [100]). Each colour is a different IVD.

Later, Newell et al. [118] carried out a study to investigate the role of the nucleus and annulus
on the mechanical response of the IVD under impact loading. Sixteen VB-disc-VB bovine
samples were prepared and initially impacted, without damaging the disc, via a 2.5 kg falling
mass. Six different heights were tested. Following this, a hole was drilled into the cranial
surface of the disc on each sample, in order to release the nucleus internal pressure, and the
samples were re-tested following the same loading protocol. The authors did not find any
difference on IVD stiffness with or without an intact nucleus (Figure 1-19), and from this,
they concluded that the nucleus might primarily act to restore the disc height rather than
redistributing the load, as a change on IVD height was noticed. It is important to recognise,
however, that the nucleus is rather stiff gel-like substance [99, 118, 119], therefore the site of
the hole drilled on the cranial VB will have an effect on its ability to release the pressure. Too
small a hole would not achieve this aim, keeping the nucleus trapped within the IVD.

Figure 1-19: Load-displacement curves for 2 cm and 64 cm drop heights, respectively (from
Newell et al. [118]).
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1.5 Specimens for spine research

Three sample types are typically used for spine research [4]:

(a) Spinal Components: Spinal components, such as vertebral bodies, discs and tendons,
are used to acquire basic material, physiological and structural behaviour. For ex-
ample, a compressive test of a vertebral body can provide its stiffness profile, which
can be used for numerical modelling proposes;

(b) Functional Spinal Units (FSUs): Functional Spinal Units (FSUs) consists of two ad-
jacent vertebral bodies and the intervertebral disc (IVD). FSUs can be used in the de-
termination of the dynamic properties of the disc and the development of a stiffness
matrix which can represent the non-linear behaviour of an IVD;

(c) Spinal Segments: Whole spine, or sections, such as the cervical spine, are usually
used for the evaluation of spine biomechanics and the testing of devices and implants.

Human cadaver specimens are considered the gold standard for spine in vitro studies as they
are anatomically and physiologically accurate [120]. However, such specimens are often
difficult to acquire and manage, and there are ethical and availability issues relating to their
use. Furthermore, their properties can vary widely according to age, weight, mineral density,
degenerative diseases, gender, etc. As a result, porcine, calf and sheep spinal specimens are
often proposed as a viable alternative [120–122].

The advantages of using animal specimens lie in their uniformity, availability and homogen-
eity; animals are typically raised in large quantities, they are fed similar diets and it is easier
to obtain specimens of a desired age - all these factors are known to reduce sample variab-
ility. Therefore, animal specimens are deemed an acceptable compromise in biomechanical
research [120–122].

Samples from various species have been used in biomechanical studies, including calf, por-
cine and sheep, with a prevalence in the use of porcine [4, 88, 121–123]. The geometrical
similarities of such samples with the human spine, mainly in the cervical region, have been
quantified by several studies [121–123]. Similarities in terms of their vertebral body height
and width and depth of end-plates have been reported, while disc height is rather different
from humans, being smaller in pigs [121].

Furthermore, the Range Of Motion (ROM) of porcine spine samples compares well with that
of humans; in particular in terms of flexion/extension, lateral bending and axial twist, al-
though lower cervical segments (C3-C7) show some differences in combined lateral bending
[121, 122].

Some authors have raised concerns with regards to the mechanical properties of animal
spines [120, 122]. Animals are quadruped, which means that the load and muscle forces
might not be similar to humans. Smit [120] conducted a survey to evaluate and compare
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animal spines in terms of loading and trabecular architecture. The authors highlighted the
animal spines might be more resistant to bending then humans as ligaments and muscles
have to balance the horizontal spine from the vertical gravitational forces. However, as the
majority of tests are made with cadavers, muscle and ligament loadings might not be ap-
parent during testing and, as ligaments and muscles have to resist to moments to keep the
spine in balance, additional compressive loads are often applied in the spine. As a result,
the trabecular structure in the vertebral bodies from animal spines are aligned in the same
direction as humans, i.e. from caudal to cranial, as confirmed by CT images [120].

Another difference between animal and human spine samples is the density. Animal spines
are usually denser than human ones. For example, Bone Mineral Density (BMD) of porcine
VBs is up to 30 % higher than humans, Table 1.5 [123]. This difference is usually attributed
to the fact that human samples are often harvested from elderly donors and might have a
lower density than young porcine samples due to the mineral loss due to ageing. Similarly to
humans, porcine BMD also increases towards lower levels, i.e. from cranial to caudal, with
lumbar VBs being characterised by the highest values of BMD. Furthermore, axial compress-
ive stiffness is also reported to be higher in porcine specimens than in humans, mostly due
to the higher BMD (Figure 1-20).

Table 1.5: Comparison of BMD between human and porcine vertebral bodies, adapted from
Schmidt et al. [123].

Median Human
BMD (%)

Median Porcine
BMD (%)

Vertebra C4 180 � 57 248 � 10
Vertebra C6 194 � 30 285 � 5

Figure 1-20: Difference in stiffness between porcine and human vertebral body (from
Mengoni et al. [124]).
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1.6 Cervical Spine Injuries (CSIs)

One of the most threatening injury to the spine, due to its potentially catastrophic nature, is
the Cervical Spine Injury (CSI) [6, 12, 13, 125]. CSIs can lead to paraplegia, tetraplegia or even
death. The severity of the injury is linked to the level of disruption of the spinal structures,
in particular to the spinal cord. Therefore, understanding how injury occurs is crucial to
develop new treatments, new prevention plans and to increase the long-term well-being of
patients with a spine injury [126].

1.6.1 Spine stability and load application

Spine injury generally occurs when the column loses stability [12, 127, 128]. Mechanical
stability is defined as an ability of an object to return in its original position or state. Essen-
tially, the vertebral column is stable and has symmetrical movements, which are provided
by muscles, tendons and ligaments [127, 128]. When one of these structures fails or does not
work in unison with the others, the column loses its stability, causing some areas to become
overloaded and making them more susceptible to injury [12, 129]. It has been shown that,
without muscle stabilisation, the spine can lose its stability when a very low compressive
load is applied. This is a low as 80 N for the lumbar spine and 12 N for the cervical [4]. In
fast events, when the muscles do not have time to activate to protect the spine [130], a small
load magnitude could cause the spine to become unstable.

Studies have investigated the relationship between the load conditions and type of injury
[12, 131–133]; the type of injury is directly related to the load magnitude, rate and direc-
tion. These three components determine the type of injury, severity and post-trauma con-
sequences.

Load magnitude is directly related to the stiffness of the various structures, for example, the
compressive loading limits for the human vertebral body have been estimated as 3.4 kN to
4.5 kN [13]. If the load applied exceeds this limit, the VBs can fracture, leading to injury.

The second component, rate, is associated with spine dynamics. The ligaments, discs and
other viscoelastic structures can bear high loads but at low loading rates. When large loads
are applied over a short period, like in impact situations, these structures will stiffen, dimin-
ishing the capacity of load/energy absorption and increasing the chance of fracture. As a
result, it has been claimed that the injury and the biomechanical behaviour of the spine are
time-dependent [12].

Another aspect that contributes to spine injury is the muscle activation response, which is
related to the rate of load application. The cervical muscle response of an average adult has
been reported to be around 60 ms for flexors and 70 ms for extensors [130]. Some studies
have shown that the peak load can occur from 6 ms to 15 ms after an impact in the cervical
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spine [12, 134]. As a consequence, muscle activation might occur after the point of peak load,
decreasing the muscles effectiveness in protecting the inner structures.

Finally, load direction could be considered the main factor for injury occurrence [12]. Al-
though some injuries are related to axial compressive loads [13], the anatomic curvature of
the spine in its neutral position, “the normal lordosis”, will give rise to internal flexion and
extension movements; hence the direction of the load can significantly increase the severity
of the injury through increasing bending moment intensity in the spine, causing a rise in
displacement and strain magnitudes. Because of this, cervical injury modes are often related
to bending moments: compression-flexion, compression-extension, tension-flexion, tension-
extension and lateral bending, Figure 1-21 [125].

Figure 1-21: Force vectors in the cervical spine (from Cusick and Yoganandan [12]).

1.6.2 Mechanisms leading to CSIs

Many hypotheses have been formulated to describe the mechanisms leading to CSIs, and
currently, there is no agreement in the literature as to which is the more accurate; however,
the majority of authors points to hyperflexion, hyperextension or buckling as the leading
causes of injury [11–13, 125], (Figure 1-22).

Hyperflexion is defined as a flexion movement, due to a force in the posterior-anterior dir-
ection, that exceeds the normal anatomical range [24]. During flexion, the spinal cord is
stretched by the spine, giving rise to axial tensile stresses. When hyperflexion occurs, the
tensile stress increases, and because of Poisson’s effect, the diameter and the wall thickness
of the spinal cord decrease in the posterior side of the cord (Figure 1-23a). At the same
time, due to the flexion movement, vertebral movement can further displace the cord locally,
leading to an injury [12]. Moreover, a large displacement can induce facet dislocation and
vertebral fracture.

In the case of hyperextension, on the other hand, the injury process is the opposite [12]. With
the extension movement, the spinal cord is shortened, the diameter and the wall thickness
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of the spinal cord increase and the discs ”pincer” the now ”thicker” spinal cord, giving rise
to the injury (Figure 1-23b).

Figure 1-22: Injury mechanisms in the cervical spine (from Dennison et al. [14]).

(a) (b)

Figure 1-23: Spinal cord injuries (adapted from Cusick and Yoganandan [12]). (a)
Hyperflexion injury; (b) Hyperextension injury.

Buckling has been shown to occur in the spine [134–137]. In structural engineering, the term
buckling refers to a wide range of structural failure conditions. The most common situation
occurs when a structure, under a constant high axial compressive stresses (but less than
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the ultimate compressive stress) suddenly fails. This is characterized by a sideways failure,
where the structure changes its shape abruptly, sometimes causing the fracture of the entire
structure [138]. Buckling is characterised by several modes, with the most commonly seen is
the first (the ’C’ shape) and second orders (the ’S’ shape).

In the cervical spine, the injury process due to buckling is similar to that described above [13].
When subject to a compressive load, the buckling effect produces significant angulations
within the cervical spine as a way of releasing the additional strain-stress energy produced
by the vertical load, Figure 1-22. In fast events, the large inertia combined with high loading
rate gives rise to high order buckling, which stiffens up the spine, leading to injury [139].

1.6.3 Biomechanical studies of CSIs

Several studies have investigated the response of the cervical spine to head-first impacts.
Nightingale et al. [140] investigated the dynamic responses of the cervical spine under axial
impact loading. Using a drop track apparatus and a high-speed camera system, unem-
balmed human head-neck-spine samples, average age of 50 years old, were inversely drop-
ped from different heights, and load, time to maximum load and impact velocity were ac-
quired, Figure 1-24. The axial peak force was found to be around 1.70 kN, impact velocity
ranged from 2.0 m s�1 to 3.5 m s�1, and time to injury was around 5 ms for rigid and 20 ms for
padded surfaces. Deformation by buckling was observed in all samples, with second-order
buckling occurring just after the impact and followed by a fast transition to first order. Head
movement was noticed only after 22 ms to 100 ms. These findings indicate that buckling is
likely to be the main mechanism leading to injury and that injuries mostly occurred well
before muscle contraction would have stabilised the spine (i.e. at 5 ms vs 60 ms required for
muscle to activate [130]). This study also revealed that head movement is not a reliable way
of assessing the injury, as it happened after the trauma had occurred; this study supports the
finding of Swartz et al. [13] that head is not a reliable indicator of injury.

Figure 1-24: Experimental apparatus used by Nightingale et al. [140].

Ivancic [136] also studied the injury mechanisms of the cervical spine due to axial impact
loading; in this case, a horizontal platform was used to mimic a horizontal neck impact,

28



which is more similar to real-life conditions in sports. Human cervical spines, using a sur-
rogate head, were impacted against a barrier at 4.1 m s�1. Impact load, time and video were
acquired. Peak compression forces were around 2.8 kN, and occurred within 25 ms; max-
imum displacements were around 5 mm, and buckling was present; similar to Nightingale
et al. [140]’s study.

In a further study, Ivancic [141] investigated the atlas injury mechanisms during head-first
contact. They subjected eight human cervical spines, coupled to anthropometric surrogate
head, to an impact against a padded barrier was at 4.1 m s�1. Peak forces were found to vary
from 2 kN to 3 kN, time to peak forces at 24 ms, and axial and anterior-posterior displace-
ments of the head were around 10 mm and 3 mm, respectively. They also found that the
fracture of the atlas is primarily caused by the radial expansion of C2 during axial impact.

1.7 Rugby Union and CSIs

Rugby Union, or rugby, is a full-contact game that has been practised since the 19th century.
Since it became professional at the elite level in 1995, the number of players has been in-
creasing worldwide every year. The game is practised in more than 120 countries, across six
continents [22, 142].

The aim of rugby, as in other group games, is to score as many points as possible. The
game is played with two teams with 15 players on each side. The game is considered a high
intense-contact activity, as the players walk, jog, run, jump and collide with each other in
their pursuit of a ball [22].

The main events during the game are the tackle and the scrum [28, 142, 143]. The tackle aims
to stop the progress of the opponent team by bringing the players to the ground. Tackles can
only be conducted on the opponent team ball carrier, and use of the arms to wrap around the
opponent is mandatory, Figure 1-25. The scrum is a set formation used to restart play after
an illegal action. Eight players from each team have to dispute the ball in a scrum position
by pushing the opponent’s scrum, Figure 1-26.

Figure 1-25: Tackle in Rugby Union (from Patricios [142]).
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(a) (b)

Figure 1-26: Scrum in Rugby Union. (a) Scrum tactics view (from Patricios [142]); (b) Game
scrum (from Trewartha et al. [28]).

1.7.1 Prevalence of CSIs in rugby

Among the many contact sports, rugby has one of the highest overall rates of injury, 69 per
1000 playing hours. This number is more than twice the football rate (28 per 1000 playing
hours) and 30 % more than ice hockey (53 per 1000 playing hours). However, the risk of
catastrophic spine injuries is low, less than two per 1000 playing hours [27, 142].

The majority of spine injuries in rugby are not life-threatening or incapacitating and usually
occur in the lumbar region [27]. On the other hand, CSIs are rare, up to a rate of 13 occur-
rences per 100000 players per year [24], but their consequences can be devastating for the
individual, their family and society as a whole.

Depending on the injury intensity, the consequences of CSI can vary across a wide range,
from facet and muscle dislocation to death [10]. Besides, the repetitive exposure of the spine
and the head to impact can cause long-term disabling injuries, such as degenerative diseases
and altered mental state [22, 28, 29, 144]. Because of the relationship between impacts and
long-term degenerative disease, and the concerns about the consequences of CSIs, a consid-
erable amount of research regarding this injury mechanism in rugby has been conducted
[7, 28, 137, 142, 145, 146].

CSIs usually occur during the tackle and scrum events [10, 14, 15, 24]. It was estimated that
42 % and 34 % of all catastrophic cervical spine injuries that occurred in rugby between 1956
and 2004 were due to the scrum and tackle, respectively. Both are considered the most chal-
lenging, intense and aggressive phases of playing during a rugby match. As a consequence,
many studies concerning the biomechanics of these events and how they can give rise to
injury have been performed [28, 146].
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1.7.2 Biomechanics of CSI in rugby

Early studies have pointed to the scrum engagement or the scrum collapse as the main cause
of CSIs. However, after some alterations in-game rules, mainly after 2000, the tackle has
now been indicated as the primary source of such injuries [24]. Whichever the method of
occurrence, tackle or scrum, the most crucial focus for research should be the understand-
ing of the injury mechanisms and how to avoid or diminish the consequences of injury by
changing game rules.

There is no consensus among research studies on the mechanical factors leading to injury
[14]. Some have pointed to hyperflexion or hyperextension as the leading cause of CSIs due
to lateral loads that arise during a scrum and tackle [28]. Others, on the other hand, have
indicated buckling as the principal cause due to the high compressive loads experienced in
those events [24], Figure 1-27.

During a rugby game, many players slightly flex the neck for engagement in the scrum or
collision in the tackle, eliminating the natural lordosis of the spine. As a consequence, the
resulting load from the contact is applied on a flexed cervical spine instead of across the
shoulders, inducing flexion or extension head movements [28]. A moving scrum exacerbates
these unfavourable conditions during scrum collapse, where hyperflexion or hyperextension
of the player’s neck has been proposed as the dominant cause of injury [14, 24]. The short
occurrence period increases the movement severity, as there is no time for muscle activation
(or response of the body) for cervical spine protection [12].

Recent research studies, however, have theorized that buckling is the real cause of injury in
rugby [24, 28]. Such injury occurs around 20 ms after impact, which is too short for com-
plete head flexion or extension. This hypothesis is partially supported by the fact that many
studies failed in achieving the same injury pattern sustained by rugby players when using
flexion loads [14, 24, 28].

Supporters of the buckling theory argue that the impact forces are mainly axial to the head.
The load acts to compress the head, ultimately producing considerable angulation within the
cervical spine as a way of releasing the additional strain-stress energy arising from the impact
and deforming the whole structure. Evidence in favour of this scenario includes the fact that
injury occurs from 2 ms to 20 ms after impact, and in the same patterns as observed in rugby
players, i.e. bilateral facet dislocations at C4-C5, which did not occur due to hyperflexion
movements [14, 24, 28].

1.8 Studies of CSIs in rugby

A large number of studies conducted on CSIs arising from rugby collisions are restricted to
a statistical analysis of their occurrence over the years [22, 23, 25]. These studies are essential

31



Figure 1-27: Loads developed during a Rugby Union match (adapted from Dennison et al.
[14]). (a) During the scrum; (b) During the tackle.

for a complete injury characterization and control but do not add substantial knowledge
about the injury mechanism.

Other studies, on the other hand, aim to understand player kinematics during a match and
how this leads to injury. This way, games rules and player movements can be changed to
avoid dangerous situations [28, 143, 146].

A third approach commonly used in CSI studies is the analysis of the injury mechanism.
Several methods and techniques are used to evaluate what happens to the spine at the mo-
ment of collision and how the various anatomical structures dissipate the impact energy.
Some studies use mCT or X-ray images of injured players to analyse the injury pattern and
reproduce it in vitro [26, 147]. Others, in order to investigate the fracture propagation, use
techniques such as strain gauges and DIC to measure strains on the spine surface [137].
However, there are no studies so far about CSI in rugby players that use the Finite Element
(FE) method to evaluate the problem. The FE method is a reliable tool for injury evaluation,
and prediction in spinal studies [61, 148] and its use can allow a deeper understanding of
the head and neck movements and give insights of how the strains are related to the injury.
This information can be used in the formulation of the rules for the game and in designing
protection measures for players to adopt.
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Chapter 2

Finite element modelling of the spine:
static and dynamic approaches

2.1 Introduction

The Finite Element (FE) method first came to light in the 1920s, but it was not fully applied
until the late 1950s with the development of modern computers [17, 149]. The first applica-
tion in biomechanics was only in 1972, and since then it has been extensively and increasingly
used across bioengineering and biomedical fields [17, 149, 150].

The first use of FE in spine research was recorded in 1973 when a model was created to study
kinematics and biomechanics of the spine. In this model, vertebral bodies were represen-
ted as rigid bodies and soft tissues as spring or beam elements [148, 149]. Later, more de-
tailed models were created, and more anatomical and physiological features were included.
Nowadays, FE models are widely adopted and accepted to evaluate biomechanical problems
[16]. For example, the International Society of Clinical Densitometry (ISCD) suggests the use
of FE models to assess bone strength in postmenopausal women and elderly men [151].

The importance and preference for the FE method rather than other numerical methods are
due to its ability to represent complex systems (in terms of geometries, contact connections,
material properties, etc.) and its inherent precision and accuracy [17–19, 81, 83, 152, 153].

In spine biomechanics, the FE method has been applied, among many others, to evaluate
spine fracture risks [77, 154–157], to assess bone strength and spine health [74, 91, 149, 151,
152, 158–160], to determine the biomechanics of soft tissues [49, 161], to develop spinal in-
strumentation [149] and to simulate impact conditions arising from car and sports collisions
[162–164].

In the study of spinal impact loading, FE models present significant advantages: as the injury
occurs over a short period of time, which sometimes can be challenging to visualise and to
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quantify experimentally, FE can give an insight on injury mechanisms at the time of the
collision, in terms of stress and strain. Other methodologies, such as impact dummies or
video analysis, cannot highlight regions likely to be susceptible to injury, only being suitable
to study the kinematics of impact.

The following sections will describe the various modelling methodologies used to create FE
models of the spine.

2.2 Modelling the spine and its components

The complexity of the spine makes it necessary sometimes to subdivide it into individual
structures for better testing and modelling. Three kinds of models are often found in spine
studies: spine components, Functional Spine Units (FSUs) and multilevel sections of the
spine. Each one has a different purpose.

2.2.1 Spinal Components (SCs)

Modelling single structures, such as vertebral bodies, discs and tendons, facilitate the under-
standing of their structural behaviour and gives, for example, insights on the loading regime
and consequent mechanical response [16].

The advantage of modelling and testing single VBs is its simplicity. Usually, soft tissue or
other complex structures are not included in such models, and validation and sensitivity
tests are much simpler when compared to models with discs or with the whole spine section
[16]. For example, a compressive test of a vertebral body (VB) can provide its stiffness profile,
which can subsequently be used for numerical modelling of the whole spine (Figure 2-1a
and 2-1b) [4]. FE models have been used to assess VB strength alongside the traditional
experimental techniques [16].

Another structure that is often studied in isolation is the intervertebral disc (IVD). The IVD
is one of the most complex structures within the spine, and its modelling in isolation helps to
understand, for example, how it responds to external loading [16]. For instance, Masouros
et al. [100] used a simplified FE model of the disc to evaluate the mechanical properties of
each component of the disc (Figure 2-1c).

2.2.2 Functional Spinal Unit (FSU)

The Functional Spinal Unit (FSU) consists of a set of two adjacent vertebral bodies and the
disc between them. The first use of FSUs came from the 1980s [166, 167], and they were used
to determine the primary material and physical properties of the vertebral bodies and discs.
Nowadays, the research is concentrated on the determination of the dynamic properties of
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(a) (b)

(c)

Figure 2-1: Examples of spinal component FE models. (a) Vertebral body FE model used by
Gustafson et al. [72]; (b) Vertebral body FE model used by Buckley [165]; (c) Intervertebral

disc FE models used by Masouros et al. [100].

the disc and the analysis of the cellular response to injury [4, 16]. For instance, Barker et al.
[168] built an FSU model to assess the kinematic and kinetic response of the disc to dynamic
loading, Figure 2-2.

The building of FSU models, however, is more challenging than modelling individual struc-
tures as discs, facets, and some ligaments and tendons need to be included in such models.
Furthermore, this requires additional features to be added to the model, such as contacts for
example, and validation becomes a more challenging process.

Figure 2-2: An example of a FSU FE model used by Barker et al. [168] to assess the
kinematic and kinetic response of the disc for dynamic loading.
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2.2.3 Whole Spine Models

Spine sections, e.g. cervical, lumbar, etc., are usually modelled for the evaluation of spine
kinematics, to analyse implant efficiency, or to assess failures patterns [16]. The most com-
monly studied spinal section is the lumbar one, as back pain is a major topic of research
[102]. For example, one study revised and compared eight different finite element mod-
els, all of them based on the lumbar spine, Figure 2-3 [19]. All models were geometrically
based on CT images of human subjects, but only one model had material properties based on
the specimen; one used rigid bodies for bone segments, and the other six used isotropic and
homogeneous materials. Bending and compression loading profiles were applied to all mod-
els; displacement and moment results were compared to in vitro data. The study found that
the models, as a group, exhibited good agreement with experimental results in terms of in-
tervertebral rotations; however, the level of agreement quickly deteriorated when intradiscal
pressures and facet joint forces were compared. It is worth pointing out that the model with
the specimen-specific material properties most closely agreed with the experiment findings
when compared to the others.

Figure 2-3: Four models compared by Dreischarf et al. [19].

An analysis of the current literature reveals that there are three basic steps to create an
FE model: geometrical data acquisition, geometrical modelling (graphical and CAD mod-
els) and FE modelling (meshing, material properties and boundary conditions) [148]. This
pipeline is briefly illustrated in Figure 2-4.

2.3 Geometry definition

In terms of geometry, FE models can be classified as generic or specimen-specific. Generic
geometries are usually based on anthropometric data of a given population, acquired from
books and databases [16, 169]. This kind of geometry is relatively easy to create, to paramet-
rise and to apply [16]. As a result, generic models have been widely used when a feature
has to be analysed over a large population, such as to assess the performance of a given im-
plant [170]. For example, Campbell and Petrella [170] developed an automated landmark
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Figure 2-4: Modelling steps (from Kim et al. [148]).

identification algorithm to create generic models of the lumbar spine. They aimed to create
computationally efficient models to facilitate population studies requiring several simula-
tions.

Spine components have complex geometries and interactions; therefore, the use of this method
is not always appropriate as it can oversimplify the study by not capturing the morpholo-
gical differences between specimens [50, 171]. Therefore, when the question is linked to the
geometry of the problem, specimen-specific models become necessary. For example, it has
been demonstrated that stiffness predictions from FE models with generic VB geometries
have lower correlation to experimental stiffness compared to specimen-specific VB geomet-
ries [83].

The first specimen-specific FE models of the spine were based on manual measurements of
the dimensions of the sample [149]. Later, advances in imaging techniques, such as Magnetic
Resonance Imaging (MRI) and Micro Computer Tomography (mCT), allowed the develop-
ment of tools for more precise geometry creation [83, 152]. The advent of such techniques
resulted in more fidelity models: the inner structures of the bone can be modelled in detail,
and anatomical and biological differences can be taken into account in the models, allowing
a more realistic representation of the problem, such as in the evaluation of the fracture sites
of a VB under compressive load [94].

After the collection from imaging devices, the data is usually exported to software packages
in which a geometry or model is created. This process is called segmentation (Figure 2-
5) and several pieces of software, as well as modelling approaches, are available for this
[17, 124, 172, 173].

The vertebral body is usually represented by its anterior-posterior parts and the foramen,
Figure 2-6a. However, when it is experimentally tested in isolation, the posterior section
is removed so not add stiffness to the model [82], and, consequently, some studies even
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Figure 2-5: An example of image segmentation (from Synopsys [174]).

segment only the core of the vertebral body, Figure 2-6b [41, 175].

The cortical bone, as it is a thin structure, is often segmented as a smooth surface enclosing
the VB. Sometimes, a VB external surface is firstly extracted, and the inner space is filled
starting from the outer surface. Some studies also model the cranial and caudal regions
separately to create end-plates when the behaviour of these structures is important in the
study, Figure 2-6c [148].

(a) (b) (c)

Figure 2-6: Geometrical models of a vertebral body. (a) Two geometrical models with a
complete description of the anterior-posterior components (from Schmidt et al. [53]); (b)

Vertebral body geometrical model: only the core was modelled (from Giambini et al. [94]);
(c) Geometrical model of a vertebrae created based on the external surface (from Kim et al.

[148]).

The geometric representation of the intervertebral disc is one of the most challenging pro-
cesses within spine modelling [176]. As the disc is a soft tissue, it is often difficult to distin-
guish between the nucleus and the annulus when the image acquisition is carried out via CT
or mCT. As a result, the majority of the models are based on data from the literature. For ex-
ample, the separation into nucleus and annulus is often based on assumed nucleus-annulus
ratios, in which the nucleus takes around 45 % of the total disc surface area [148, 162, 176].

Another question that is often debated is how to create the constituents of the disc. As
previously highlighted, the disc is composed of concentric layers forming an outer ring,
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the annulus fibrosus, and a collagen-viscous structure in the centre, the nucleus pulposus.
Commonly, the disc is created by an overlap of two consecutive VBs [148]. Some studies,
on the other hand, generate disc geometries using symmetric dimensions and flat contact
surfaces, although the disc is slightly asymmetrical and its cranial and caudal aspects are
characterised by complex geometries [16]. A further way is to create two solid bodies, in
which an outer solid ring surrounds an inner solid disc, Figure 2-7 [17, 148, 149, 177, 178].

(a) (b)

Figure 2-7: Geometric models of the disc. (a) Specimen-specific geometrical model of the
disc created based on symmetric dimensions and flat contact surfaces (from Jaramillo et al.
[179]); (b) Specimen-specific geometrical model of the disc created from CT images (from

Kim et al. [148]).

Tendons, muscles and facets are usually not created at this stage as their role in spine bio-
mechanics are more structural than anatomic. For example, tendons and muscles are thin in-
dividual fibres which are grouped and work purely in traction, similarly to structural beams
or links. Therefore, their action is usually accounted for at a later stage, in the numerical
modelling step [180].

2.4 Model definition

The creation of a finite element (FE) model is the step in which geometry is converted into a
numerical model. The assumptions underpinning the construction of the model at this stage
will directly affect the final results [124]. Although some procedures are well established,
there is still debate as to how each element of the spine should be modelled, in terms of the
element type, material properties and boundary conditions [124].

2.4.1 Element type

Vertebral Body (VB)

Two element types are generally used to model a vertebral body’s cancellous bone: solid
tetrahedrons and solid hexahedrons, with either linear or quadratic behaviours [181]. Some
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studies have modelled VBs using only tetrahedron elements, (Figure 2-8a) [80, 153, 175, 182,
183]; others have applied only hexahedrons (Figure 2-8b) [68, 69, 78, 94, 154, 184–186]; while
a third option is to use a combination: hexahedrons for the internal cancellous structure and
tetrahedrons for the external/cortical shell, (Figure 2-8c) [81, 88, 152].

The advantage of using only tetrahedrons is that they can fit almost any shape, which well
suits the irregular VB geometry. A limitation of this approach is given by the fact that tet-
rahedrons have a pyramidal shape, and the elements are randomly orientated. This results
in each element not being aligned in any particular direction, and therefore the cross-section
area of each element along a given plane will vary according to the element orientation so
the load distribution at each node and element stiffness might vary (Figure 2-9) [187]. As
the anatomical trabecular structure is preferably aligned to the caudal-cranial direction, this
results in a suboptimal VB FE model. Besides, tetrahedrons are more sensitive to element
inversions and distortions [187].

(a) (b) (c)

Figure 2-8: Vertebral body FE models; (a) Pure tetrahedron (from Pahr et al. [80]); (b) Pure
hexahedrons (from Pahr et al. [80]); (c) Mixed element model (from Wijayathunga et al.

[88]).

(a) (b)

Figure 2-9: Tetrahedron elements. (a) Element type, from ANSYS (Ansys Inc.,
Pennsylvania, USA) software library. (b) Element cross section areas for different element

positions, in black.
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On the other hand, the advantage of using only hexahedron elements is that they can be
quickly and directly generated from the voxels of CT or MRI images. This speeds up the
modelling process and decreases, on average, the number of elements, as the external surface
is often not modelled (Figure 2-8b) [16, 188, 189]. Moreover, hexahedron elements have a
constant cross-section area along a given plane, leading to a uniform load distribution among
the nodes. Thus, the regular cubic shape of the element makes it preferably aligned with the
main physiological directions, which facilitates the use of directional materials models. This
approach has been used frequently in models to simulate load distribution patterns, strength
and internal strains of VB under compression [80, 92, 165, 190].

The disadvantage of the pure hexahedron approach is given by the inability of this element
type to achieve a smooth outer surface, with the final model resembling a ”pile of bricks”.
This can lead to unrealistic strain predictions on the surface as nodes in this region are not
connected to other elements [52].

In order to overcome this problem, a hybrid approach has been proposed, relying on a mix-
ture of tetrahedron and hexahedron elements (Figure 2-8c) [16, 88]. This brings together
the positive aspects of each element type, i.e. the regular shape from the hexahedrons and
the geometry adaptability from the tetrahedrons. Hexahedrons are typically used to model
the inner structure and tetrahedrons are used to smooth the surface of the model. The hy-
brid approach can, therefore, facilitate the application of directional material models via the
hexahedron and still allows strain predictions at the model surface thanks to the use of tet-
rahedron elements in this region [16].

Cortical bone, when present, is usually modelled by shell elements. FE models are often
based on clinical CT images, which resolution is around 1 mm. As a consequence, the dis-
tinction between cortical and cancellous bone is limited (as cortical thickness varies between
0.10 mm to 0.30 mm, Section 1.3.1), thus recurring to external shell elements to reproduce
the cortical bone layer. These elements are created either using the surface nodes (Figure
2-10a) [77, 191, 192], or by extracting an uniform and separated layer from the VB external
surface (Figure 2-10b) [51, 52, 148]. A constant cortical thickness is often applied to the whole
bone, varying between 0.3 mm to 0.5 mm [52, 69, 77, 78, 96, 133, 191, 193], although, as seen
previously, this is not anatomically correct [33].

The effect of including a cortical layer on a vertebral body stiffness was studied by Chevalier
et al. [52]. Lumbar human VBs were compressively tested, and specimen-specific FE mod-
els were generated using pure hexahedron or pure tetrahedron (with cortical shell elements)
approaches. Transversally isotropic density-based material properties were applied to the
cancellous bone. The study found that the overall predicted vertebral stiffness was higher
than that measured experimentally for all cases, with the difference being even more signific-
ant for the cases with an explicit cortical shell. The reasons for this, according to the authors,
might be due to an overestimation of the thickness of the shell, which resulted in a higher
overall stiffness. When the cortical thickness is based on medical images, an overestimation
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(a) (b)

Figure 2-10: Finite element modelling of cortical bone. (a) Using external nodes (from Garo
et al. [191]); (b) Extracting a uniform layer from the VB external surface (from Kim et al.

[148]).

of the thickness by a factor of two has been reported [68].

A direct result of the overestimation of cortical thickness and the application on a uniform
thicken layer to the model is an increase in predicted strength. The stronger outside layer
represents a favourable path for the ”flow” of stress, leading to an underestimation of can-
cellous bone material properties. In order to deal with this issue, some studies do not make
the use of shell elements and use specimen-specific material property based on CT density
to mimic the strength of the cortical bone [16, 83, 88].

Intervertebral Disc (IVD)

In comparison to the VB, there are very few approaches to modelling the IVD. The majority
of IVD models use solid hexahedrons as the primary element type, for both nucleus and
annulus (Figure 2-11) [194–196]. Truss or link elements, which are usually set in 30�, 45�,
135� or 150� angles, are often used in order to mimic the fibres presented in the annulus
[30, 100, 197]. An alternative to this is the use of solid hexahedrons with embedded fibres
[198].

(a) (b)

Figure 2-11: Examples of intervertebral disc mesh. (a) Panzer et al. [198] using shell
elements with embedded rebar elements to mimic the fibres in the annulus; (b) Rohlmann

et al. [197] used explicit rebars to mimic the fibres in the annulus.
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Facets, muscles and tendons

As facets mainly work in compression and as sliding surfaces, they are usually modelled
either using sliding frictionless contact [20, 61, 131, 148, 168, 182, 189, 199, 200], or using
contact shell elements [163, 201] or solid elements (Figure 2-12) [54, 133, 148, 202]. Some
studies, on the other hand, tried to replicate the structures presented in the joint, such as
the cartilage, the capsule, the synovium and the synovial fluid [203]. In order to mimic the
capsule, rebar elements are often set [168, 203]; membrane and cartilage are usually defined
as solid elements [129, 203–205]; and synovial fluid is modelled using incompressible fluid
elements [203].

Muscles and tendons are usually modelled as truss or link elements as they only act in ten-
sion. These kinds of elements are defined according to physiological characteristics, such as
the origin and endpoints, stiffness and cross-sectional area [17, 148, 206].

Figure 2-12: An example of FE modelling of a facet (from Kim et al. [148]). ALL: Anterior
longitudinal ligament, PLL: Posterior longitudinal ligament, ISL: Interspinous ligament,

SSL: Supraspinous ligament, CL: Capsular ligament, and LF: Ligamentum flavum.

2.4.2 Material properties

One of the main challenges in FE modelling is to characterize the material properties of
biological tissues correctly. Some authors even define this as the most important step in the
process [202]. As discussed, soft and hard tissues’ properties vary widely, depending on age,
internal structure and biological characteristics. Therefore, unlike most of the traditional
engineering materials, there is not a single value which can fully describe their mechanical
properties. As a result, the number of options and approaches available in the literature is
vast. For example, some studies define bone as a homogeneous, linear and isotropic material
[129, 152, 163, 207], while others apply specimen-specific properties inferred from the grey-
scale value of the images used to create the geometrical model [52, 153, 178].
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Vertebral Body (VB)

Early VB models defined bone as a homogeneous, linear and isotropic material. Although
it is a simplistic approach, a good correlation has been found between experimental and
numerical results, which makes these models still in frequent current use [129, 152, 163, 207–
209]. Some later studies incorporated transversally isotropic material properties into the
models in an attempt to introduce some anisotropy into the modelling process [182, 210, 211].

When the cancellous bone is defined as transversally isotropic, Young’s modulus of 100 MPa
is often assigned in the main direction (i.e. caudal to cranial), ranging up to 1000 MPa in
some studies. In the other two directions (i.e. lateral and anterior-posterior), the moduli
vary between 75 MPa and 500 MPa. The value for Young’s modulus for cortical bone var-
ies widely, with the main direction ranging from 1000 MPa to 22 000 MPa [16, 19], and the
other directions varying between 10 000 MPa and 15 000 MPa, Table 2.1. These values were
originated from early FE models [212].

Table 2.1: Values for Young‘s modulus used in generic models.

Bone
Type

Young’s
Modulus

[MPa]
Behaviour Reference

Cancellous 100
Isotropic Teo and Ng [129]

Cortical 10000
Cancellous 344

Isotropic Tyndyk et al. [152]
Cortical 12000

Cancellous 327-495
Isotropic Östh et al. [208]

Cortical 17100
Cancellous 450

Isotropic Kallemeyn et al. [18]
Cortical 10000

Cancellous
E1 = 200
E2 = 140
E3 = 140 Transversally

Isotropic
Toosizadeh and Haghpanahi [211]

Cortical
E1 = 22000
E2 = 11300
E3 = 11300

Specimen-specific material properties are defined based on specimen density and are usually
assigned from high definition medical images, such as clinical CT and mCT. The contrast
generated by the X-rays, which is translated into Hounsfield units (HUs) or grey-scale values
(GS), is a result of their attenuation when passing through a body. Dense materials absorb
more X-rays, and this is translated into images with a whitish appearance while low-density
materials will result in a darker tone.

A few studies tried to use this density data to generate fabric tensors to infer trabecular ori-
entation [52, 93, 183]. However, this method often requires very high-resolution images that
can only be obtained from powerful scanners and extensive back-calculation to set elastic
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tensors.

There are basically two ways to acquire and to apply specimen-specific material properties
using medical images: via direct conversion of grey-scale (GS) values from CT images into
mechanical properties [81, 88] or via density-Young’s modulus equations [51, 72, 82, 190,
213].

In the first case, GS values are converted directly into Young’s modulus. For example, some
authors have used a linear factor, k, to adjust BV

TV from CT images directly into mechanical
properties for FE VB models (Figure 2-13) [81, 88]. Although the results from the models
have had good agreement with experimental data, this approach is dependent on the settings
used for image acquisition. The grey-scale intensity is dependent on X-ray intensity, voltage,
age of the filament, etc. As a result, the same specimen can have different GS distributions
if different settings are used to obtain the images, thus rendering k a dependent variable,
requiring a calibration every time that the imaging parameters are changed.

Figure 2-13: Conversion technique used by Wijayathunga et al. [88] and Robson Brown
et al. [81]. Images adapted from Robson Brown et al. [81].

The second method, which is more often applied, involves the use of phantoms. These are
known density materials which are mCT scanned together with the samples so that a direct
conversion between GS and density can be generated, Figure 2-14. Usually, at least three
different phantoms are scanned together with the specimens. The most common phantom
material is hydroxyapatite. The GS of the object of interest is related to a density value using
the GS of the phantoms of known density. Once a map of densities is obtained, equations,
such as those obtained in Table 1.2, Section 1.3.1, are used to assign mechanical properties to
each element.

Quantitative Computed Tomography (QCT) is also used to acquire BV
TV ratio [214]. Through

the images, bone volume in each pixel (BV) can be calculated and divided by pixel’s volume
(TV) (Figure 2-15). As scan resolution has to be high to capture bone structure, this approach
is not viable with clinical images; furthermore, its accuracy is dependant on the segmentation
threshold values used [124].

A third way to convert density into mechanical properties is to use apparent (rapp) or ash
density (rash). The latter is typically obtained through burning the cancellous bone and meas-
uring the weight of the ashes, i.e. the mineral content. Apparent density, on the other hand,
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is obtained from medical images, and it accounts for both mineral and interstitial fluid mass.
Each pixel is, therefore, the average of both contents, which is captured by the X-ray (Figure
2-15).

(a) (b)

Figure 2-14: The conversion from GS scale to Young’s modulus via phantoms. (a) Phantom
discs at the bottom of the image (from Zeinali et al. [71]); (b) Typical graph which converts

GS numbers to density.

Figure 2-15: BV
TV and apparent density approach (from Mengoni et al. [124]).

In order to obtain rapp, phantoms are needed to convert HU to density. If rash is used instead,
a further step is necessary to convert from rapp to rash. Keller and Spengler [65] proposed the
following equations to link the two densities:

rash = 0.522 � rapp (2.1)

A study compared the accuracy of both rapp and BV
TV methods to predict vertebral stiffness

[124]. Ten VB models were created, and both methods were used to set material properties.
The results were then compared to experimental data, and both methods were found to

46



produce similar results.

Anisotropy is often applied into FE models. Ulrich et al. [215] conducted a study to determ-
ine the three dimensional structural indices of trabecular bone. They harvested trabecular
samples from several sources, such as femur, iliac crest and lumbar vertebral body, and, us-
ing FE models and mCT, calculated the orthotropic elastic stiffness of the samples. This data
was later simplified to transversally isotropic by Crawford et al. [68] and their results for
vertebral body cancellous bone are summarised as:

E2 = 0.333 � E1 (2.2)
E3 = 0.333 � E1

G23 = 0.121 � E1

G12 = 0.157 � E1

G13 = 0.157 � E1

n23 = 0.381
n12 = 0.104
n13 = 0.104

where E1 is Young’s modulus in the principal direction (caudal-cranial), E2 and E3 are Young’s
moduli in the other secondary directions (medial-lateral and anterior-posterior), G23 is the
shear modulus in the plane perpendicular to the principal direction, G12 and G13 are the
shear moduli in the other vertical planes, n23 is the Poisson’s ratio in the plane perpendicular
to the principal direction and n12 and n13 are the Poisson’s ratio in the other planes.

Many studies [50, 68, 69, 71, 213, 216] have assigned material properties to FE VB models fol-
lowing the approach outlined by Crawford et al. [68] and correlations between experimental
data and numerical predictions have been generally good. The popularity of this technique
resides in the fact that it approximately matches the orthotropic behaviour of bone by setting
a transversally isotropic model and by imposing relationships of one third between the main
principal axis and the other two [68, 215]. Furthermore, these structural relationships are
similar to histological findings [33, 49]. The use of specimen-specific element based material
property is now a common approach in FE modelling of vertebral bodies [151].

Intervertebral disc (IVD)

The determination of the mechanical properties of each component of the IVD is challenging,
because of the difficulty of assessing them in isolation and the fact that disc can only be tested
in conjunction with other structures and, therefore, its mechanical properties are indirectly
inferred.

As a result, many modelling approaches are available, ranging from applying homogeneous
and isotropic material properties [148, 152, 201] to more complex material models, aimed at
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capturing the solid-fluid interaction within the tissue [18, 210].

Facets, muscles and ligaments

When all facet structures are required in an FE model, such as seen in Kumaresan et al. [203]
study, rebars with Young’s modulus are set to mimic the joint capsule, and fluid properties
are defined for the synovial fluid. Muscles and ligaments, on the other hand, are generally
characterized using physiological and experimental load-displacement curves [148].

2.5 Calibration of the model

The high variability in biological materials makes the model calibration process an important
step. Calibration is defined as a process of adjustment of FE model settings to minimise the
difference between numerical and experimental results [53]. In order words, FE modelling
parameters, typically material properties, are adapted to reflect what is seen in vitro or in
vivo.

In specimen-specific models, calibration is usually performed by either adjusting the many
fabric coefficients [52, 54, 191] or by adapting density-Young’s modulus equations [53, 88,
217] to match experimental results. Range Of Motion (ROM) and stiffness are often used as
calibration parameters.

Several studies performed model’s calibration [52, 54, 179, 191, 214, 218]. Schmidt et al. [53]
created an FE model of an L4-L5 FSU using hexahedron solid elements. Ligaments and fibres
were represented by spring elements; facet joints were defined as a surface to surface contact,
the intervertebral disc was set as a hyperelastic Mooney-Rivlin material (Figure 2-16), and
the model was stepwise calibrated. A second model using the current geometry, but with
literature-based material properties, was also produced. Bending moments were applied,
and the ROM was evaluated. The study found that the calibrated models performed on
average 14 % to 20 % better than the non-calibrated one. In general, the first one was able to
predict changes in ROM, such as when a ligament was removed, while the latter was not.
Nevertheless, the authors pointed out that only the material properties were calibrated and,
therefore, if a different geometry was used with the same material properties configuration,
the results might be different.

Calibration is even more important in the case of FE models for dynamic loading given that
biological material stiffness changes with the loading rate. As a result, the material has to
be adjusted for the desired loading rate, as demonstrated by Garo et al. [191]. However, still
very few studies focusing on this aspect are available in the literature.
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Figure 2-16: Spine segment FE model (adapted from Schmidt et al. [53]). ALL: Anterior
longitudinal ligament, PLL: Posterior longitudinal ligament, ISL: Interspinous ligament,
SSL: Supraspinous ligament, FC: Capsular ligament, VA: Vertebral arches and FL: Flaval

ligamentum.

2.6 Verification of the model

Verification aims to assess the numerical accuracy of the model. In other words, how accurate
your model represents the situation and how likely the response of the model to be the real
response [16, 219]. The importance of this step was highlighted in an ASME Guide (PT60)
on Verification and Validation in Computational Solid Mechanics [220]. There are basically
two types of verification: code and model. In the first one, the code of the FE software is
evaluated to assess its accuracy of solving the mathematical equations. As the majority of
the studies use commercial software, such as ANSYS and Abaqus, this step is usually not
conducted as such pieces of software were already extensively evaluated. The second one,
model verification, often assess the effect of mesh size [16].

Ideal mesh size is a compromise between accuracy in the description of geometrical and
material features and computational costs [212]. In other words, the number of elements in
the model must be sufficient to describe all the necessary features of the problem but still be
manageable in terms of solution time and accuracy [181].

Several studies have evaluated vertebral stiffness and strength sensitivity to element size
and scan resolution [68, 186, 212, 221, 222]. Using three different in-plane resolutions, 2 mm2,
3 mm2 and 4 mm2, combined with two different slice thickness, 1.5 mm and 3 mm, and spe-
cimen -specific material properties, Crawford et al. [68] generated voxel-based models and
assessed changes in the predicted vertebral stiffness. The study found that mesh resolution
did not affect the model stiffness, and it had a similar influence as anatomic variability. A
significant difference, however, has been reported by Jones and Wilcox [212] for larger ele-
ment sizes (more than 3 mm), especially for specimen-specific models. This happened due
to the averaging of several smaller voxels into a single one, which might result in the loss of
the trabecular structure detail.

49



2.7 Validation of the model

Every numerical model has to be validated. In other words, it has to be proved that the
results predicted by the model correspond to those seen in the real world [16, 223].

The meaning of validation in the biomechanical modelling field has been described as the
need to achieve statistically significant model predictions within specific boundary condi-
tions, thus ensuring that the model predictions are accurate and robust [223].

There are two recurrent validation methods: direct and indirect [223]. Direct validation is
when an experiment is explicitly designed to validate a model. In other words, the model is
built and validated based on a specific experiment. This approach is the most recommended
as the researcher has control of the errors and can assess the real boundary conditions.

On the other hand, indirect validation makes the use of already published data [16]. Al-
though this approach can give insights into the accuracy of the model, care must be exercised
when drawing conclusions. The reliance on published information often makes it difficult
to assess the level of accuracy of the data set and whether the model boundary conditions
accurately describe the experimental ones.

Single vertebral bodies are typically validated through stiffness comparisons [79, 87, 151,
180, 223] as such models are often used for the understanding of the mechanical behaviour
of VBs, while, FSU or whole spine models typically use ROM, as they are usually aiming to
simulate physiological conditions [133, 162, 168, 192, 200].

2.8 Sensitivity analysis

A sensitivity analysis is always necessary to evaluate the effect of the input parameters on the
results produced by the FE models [16]. In other words, it helps to assess how an error on an
input parameter impacts the output results [223]. Sensitivity analysis is most commonly ap-
plied to investigate the effects of element size, however, since the advent of specimen-specific
FE models, other parameters - such as the level of discretisation of the applied material prop-
erties - have demanded this analysis.

2.8.1 Sensitivity analysis methodologies

There are several methods to perform a sensitivity analysis. The most basic one, and also
most used, consists of varying the desired parameter within a specific range and then eval-
uating the resulting variation in the output [119]. As it is a time-consuming technique, the
effects of only a few parameters can be assessed in this way.
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Statistical approaches, such as Monte Carlo and Taguchi, can be used instead to improve ef-
ficiency in such analysis. The Taguchi method, in particular, has been increasingly employed
in biomedical studies as it is simple and efficient [119, 224–226]. This technique, which was
first developed in the field of quality control, makes the use of orthogonal arrays to set com-
binations between the variables. These arrays dictate parameter level of combinations to be
tested at the same time, thus minimising the number of trials [226]. Combined with Ana-
lysis of Variance (ANOVA), the Taguchi method allows quantifying the influence of each
parameter on the output [227].

2.8.2 Geometrical parameters

Vertebral Body

Several studies have investigated the influence of the geometrical parameters on the model’s
response. Wilcox [83] analysed the influence of generic and specimen-specific geometries on
VB stiffness and found better agreement when a sample-specific geometry was used. They
also highlighted that specimen-specific material properties play a more important role in
the model’s response than geometrical parameters, as their generic model with specimen-
specific material properties also exhibited good agreement with experimental data.

Meijer et al. [228] studied how the major geometrical parameters influence spinal stiffness
in flexion, extension, lateral bending and axial rotation loading. They found that vertebral
body height had a significant influence on the model response, a finding later confirmed by
Putzer et al. [229].

Intervertebral disc (IVD)

Marini and Ferguson [176] investigated the role of the number of layers in the annulus, as
well the fibres, on the axial mechanical response of the IVD to impact loading (Figure 2-17).
They found that the results were similar, whether using 10 or 20, as well for two layers with
mesh refined to 1 mm3. They also showed that using the same mesh, the absence of fibres
does not change the disc response. There is a consensus in the literature that, among the main
geometrical parameters, disc height has the greatest influence on specimen-specific models
[119, 228–230].

Figure 2-17: Modelling of annulus fibrosis layers (from Marini and Ferguson [176]).
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2.8.3 Material properties

Vertebral Body

Specimen-specific models can be characterised by hundreds of different material properties,
depending on the scan resolution. As a result, it is important to assess the sensitivity of the
model to the degree of discretisation of such properties, i.e. how many different materials
are included [94, 212].

In a study to evaluate the feasibility of specimen-specific FE models to predict fractures in the
VB, the effect of including 8, 18 and 50 different materials in the model produced differences
in the predicted and experimental VB stiffness of 21 %, 6 % and 1 %, respectively [94].

The effects of mesh size, the number of materials included in the model and calibration factor
to relate Young’s modulus to apparent density was investigated (Appendix D). Calibration
factor accounted for 97 % of the predicted stiffness, with the remaining 3 % being traceable
to the number of materials included in the model and mesh size.

The influence of scan and model segmentation resolution on the prediction of Young‘s mod-
ulus and Von Mises stress of bone was investigated by Yeni et al. [186]. Eight cylindrical can-
cellous bone specimens were scanned using three different resolutions. Each case was mod-
elled also using these in three distinct resolution combinations. Samples scanned with high
resolution but segmented with lower resolutions responded similarly to the ones scanned
with high and segmented at high resolution. However, the opposite, i.e. scanned with lower
and segmented at high resolution, showed considerable difference in Young’s modulus and
stress predictions. The main reason for this difference was attributed to the change in BV

TV .
From higher to lower resolutions, some trabecular structure information is still kept, and
the error in averaging is relatively small. From lower to high resolution, on the other hand,
interpolation is necessary to create the new pixels; this has the potential to introduce errors
due to the underlying interpolation algorithm.

The same authors also identified the effect of the segmentation threshold on the model’s
predictions, mainly when using the BV

TV approach. Depending on the scan resolution, some
bone cannot be captured by the manual or automatic threshold settings. The authors, as a
consequence, recommended the use of averaged grey-scale to assess density as it takes into
account both bone and non-bone regions in the calculation [186].

Intervertebral disc (IVD)

The influence of the many parameters defining disc material properties has been studied by a
few authors [230–232]. In particular, Fagan et al. [232] conducted a geometrical and material
sensitivity study of the IVD using FE models. They generated several disc models, with the
nucleus, annulus and fibres, and analysed the influence of linear and non-linear geometry
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and material properties on stiffness. For compressive loading, the geometrical non-linearity
had a more considerable influence in the disc response than material properties. For other
loading regimes, e.g. flexion, this was also true but for large values of movement only. The
increase of the fibres’ stiffness little increased the overall disc rigidity (Figure 2-18); however,
Young’s modulus of the annulus showed to have a large influence on the IVD compressive
behaviour.

(a) (b) (c) (d)

Figure 2-18: Sensitivity analysis results from Fagan et al. [232]. (a) Influence of geometrical
and material properties non-linearity; (b) Influence of fibres’ Young’s modulus; (c) Influence

of annulus Young’s modulus; (d) Influence of nucleus Young’s modulus.

2.8.4 Boundary Conditions (BCs)

Many studies have evaluated the sensitivity of the boundary conditions into model predic-
tions [124, 186, 212, 233–235].

A 2 mm offset from the original load point was found to decrease the predicted stiffness
value by 20 %, and, for larger offsets, this difference can increase up to 60 % [212]. This study
also pointed out that stiffness is also sensitive to node constraints. The authors proposed
a solution to diminish the influence of these parameters, i.e. load position and node con-
straints: the load point should be moved far from the sample, and all specimen housings
should be modelled as well, to ensure that all boundary and loading conditions are accur-
ately described.

The effect of various boundary conditions on VB fractures prediction was evaluated by
Clouthier et al. [233]. Rigid BCs were found not suitable to predict some types of fractures
due to their overconstraining effect on the VB as both end-plates deformation and shearing
of the material in the transverse plane are prevented. Fixed-end boundary conditions also
predicted larger values of modulus than free-end BCs, as found by Yeni et al. [186].
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2.9 Continuous and discrete models

Finite element method is frequently used to evaluate the mechanical behaviour of the spine
[110]. FE allows the creation of models using a continuum approach and with a continuum
material characterization. An alternative is offered by the discrete, Multi-Body System (MBS),
approach. Here, hard tissues are defined as rigid bodies and soft tissues are modelled as
simple viscoelastic elements, using spring and dashpot models of varying complexities. This
method has been frequently used to simulate spine kinematics and kinetics during impacts
[109].

Both methods have advantages and disadvantages. On the one hand, FE allows to output
strain and stress fields, for example, but this at the cost of having a significant number of de-
grees of freedom; material properties settings are relatively challenging, and computational
time is generally long. On the other hand, the MBS approach decreases the complexity of the
models; reduces computational time and allows accurate kinematics predictions. However,
stress and strain distributions cannot be inferred from these models.

Recently, the idea of using both methodologies has gained popularity, either to use one to
inform the other with BCs and kinematics or to create a hybrid model [110, 131, 236–238].
For example, multi-body models have been used to acquire initial inputs and boundary con-
ditions for FE models, and FE models have been applied to access fracture and deformation
patterns [236, 237].

An example of this symbiotic MBS-FE modelling approach is given by the work of Esat and
Acar [236] (Figure 2-19). An MBS model was created to evaluate the neck response to an
8.5g and to a 15g rear end-impact. Forces on the discs were extracted from this model and
imposed as BC on an FE model. This allowed the authors to correlate stress and strains on
the IVD to the global kinematics of the neck during impacts.

(a) (b)

Figure 2-19: Modelling approach used by Esat and Acar [236]. (a) MBS model; (b) FE
model.
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2.10 Finite element spine models for dynamic loading

Cervical spine injuries (CSIs) and severe spinal trauma are often related to fast events; as a
result, there is a great interest to replicate these events in the laboratory to quantify and to
determine injury mechanisms and human tolerance to injury [12]. In vitro experiments in
this area of research, however, are often time-consuming, expensive, specimen and loading
scenario dependent. Furthermore, the dynamic nature of such events makes it difficult to
visualise the exact moment of injury. The advent of non-contact measurement techniques,
such as Digital Image Correlation (DIC) and high-speed motion capture camera systems
have allowed image-based studies to be conducted, giving an insight into the mechanics of
impacts [11, 96, 175, 239].

Finite Element models can supplement experimental findings by providing information on
injury mechanisms and the kinematics of impact at the moment of the event. Furthermore,
FE allows researches to explore ”what if” scenarios, an advantage of this approach, which
is unmatched by experimentation. The establishment of dynamic FE models, however, re-
quires careful consideration of material properties, boundary conditions and solution type.

2.10.1 Material properties

Vertebral body

It is well known that biological materials exhibit viscoelastic behaviour, and therefore, their
properties change with loading rate. It has been shown, for example, that loading rate affects
the fracture patterns of bone [116] and that cortical bone behaves as a brittle material at high
loading rates [33]. There is not, however, a single study which incorporates the effects of
bone viscoelasticity correctly as a function of loading rate into FE models, i.e. the change
of stiffness for a specific loading rate. The majority of studies either set VBs as rigid bodies
[164, 234, 240], use quasi-static bone properties [61, 133, 163, 168], use elastic-plastic material
laws with a hardening parameter [61, 162, 175], or randomly increase Young’s modulus from
quasi-static regime to match the rise in stiffness in impact scenarios, often using data from
literature [154, 168, 241].

The use of rigid bodies is often adopted based on the idea that the viscoelastic effects would
significantly raise the vertebral body stiffness under dynamic conditions, justifying approx-
imation to rigid body behaviour and saving computational resources. However, as shown
by Kazarian [115] and others [8, 11, 241], buckling deformation, burst and wedge fractures,
frequently occur at high loading rates thus setting vertebral bodies as rigid entities do not
replicate these conditions. Besides, this simplification results in an overloading of the IVD
and alters the kinematic response of the spine.

The limitations of using quasi-static material properties have the effect of altering the stress
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and strain distributions and therefore is not recommended [242].

Elastic-plastic material laws are occasionally applied; for example, Wagnac et al. [61] ana-
lysed the influence of loading rate on the lumbar spine. The bone components were defined
using the Johnson-Cook material law, as described in Equation 2.3:

s = (a + b � #n
p) � (1 + ln(

#̇
#̇0

)) (2.3)

where s is the equivalent stress, a is yield stress, b is the hardening modulus, n is the harden-
ing exponent, #p is the plastic strain (true strain), #̇ is the current strain rate, and #̇0 is the
reference strain rate. In this representation, bone is evidently a rate-dependent elastoplastic
solid. This method, although it attempts a more realistic description of the material proper-
ties of bone, requires a whole set of extra parameters, taken from the literature, thus adding
more uncertainty to the modelling process, as more variables have to be calibrated and val-
idated.

A simpler alternative is based on the consideration that if the stiffness increases with the
loading rate, the apparent Young’s modulus will increase. In practical terms, this just re-
quires a recalibration of the density to modulus relationship for the loading rates of interest
in the study. This approach has been shown to produce satisfactory results in some dynamic
studies, although none of them used the specific moduli for the loading rate [154, 168, 241].

Intervertebral disc (IVD)

Very few studies have been found attempting to include the IVD rate dependency in FE
models, with the majority of the authors relying on static or quasi-static material properties,
which, similarly to VB, might change the mechanical behaviour and load distribution under
impact [242].

The few authors who tried to consider the rate dependency of the IVD have usually fo-
cused on calibrating the materials properties of each structure [242], which can be a time-
consuming process. Nonetheless, for some loading modes and rates, the modelling of the
disc could be simplified, which would also simplify the material properties settings. For
example, Newell et al. [118] showed that the nucleus does not play a significant role in the
disc response to axial impact loading; Masouros et al. [100] found no changes in the IVD
stiffness above a threshold rate of 0.01 s�1 and Marini and Ferguson [176] demonstrated that
the number of annulus layers included in the model also has no influence on the IVD re-
sponse to impact. Therefore it can be deduced that the IVD could be modelled as a single
structure with specimen-specific material properties calibrated to the loading rate of interest,
significantly simplifying the modelling effort.
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2.10.2 Solution type

A finite element model solution can be obtained in two different ways: implicitly or expli-
citly. An implicit solution does not take into account damping or inertia effects, and it is
usually applied to static or quasi-static problems. An explicit solution, on the other hand, is
used in dynamic analysis, in which inertia is an important factor.

The main difference between these two analysis types is how the equations are solved [243].
In basic terms, the FE method demands the solution of the following equation for each node:

[m] � fẍg+ [z] � fẋg+ [k] � fxg = f f (x)g (2.4)

where [m] is the element mass matrix, fẍg is the acceleration vector, [z] is the damping coef-
ficient matrix, fẋg is the velocity vector, [k] is the stiffness matrix, fxg is the displacement
vector and f f (x)g is the resultant load vector. In the implicit case, the first two members of
the equation and the resultant force are equal to zero. The solution is obtained by inverting
the stiffness matrix fkg and using iterative solvers, which might be computationally expens-
ive. Additionally, it is said the implicit solutions are unconditionally stable, which means
that for any time step size, the solution is achievable.

In an explicit analysis, Equation 2.4 is solved for fẍg. As a result, this type of analysis is
usually less computationally expensive because there are no matrix inversions; however,
density and mass information has to be inputted to this type of analysis.

It is said that an explicit analysis is conditionally stable because the time step depends on
mass and density, and it is calculated based on sound wave propagation speed within the
element. The speed of sound, c, in a material is related to its density, r, and mechanical
properties, E, n:

c =

s
E � (1� n)

r � (1 + n) � (1� 2n)
(2.5)

The minimum time step (Dtmin) for an explicit solution can be calculated from the speed of
sound and the characteristic element length, l:

Dtmin =
l
c

(2.6)

2.10.3 Dynamics of an impact

An impact arises from the application of a load over a short period of time, and it is often
characterised as a high energy event. There are two types of impacts: elastic and inelastic
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(Figure 2-20). The first one is characterised by the conservation of kinetic energy and mo-
mentum after the impact. As a result, the colliding bodies are not plastically deformed, and
velocity is reversed but with the same magnitude. In this case, two boundary conditions are
available, the conservation of momentum and the conservation of kinetic energy:

MomentumInitial = MomentumFinal (2.7)

KineticInitial = KineticFinal (2.8)

With reference to Figure 2-20, these can be written as

mA � vAi + mB � vBi = mA � vA f + mB � vB f (2.9)

1
2
�mA.v2

Ai +
1
2
�mB � v2

Bi =
1
2
�mA � v2

A f +
1
2
�mB � v2

B f (2.10)

where mA is mass of body A, vAi is the initial velocity of body A, mB is the mass of body B,
vBi is the initial velocity of body B, vA f is the final velocity of body A, vB f is the final velocity
of body B.

Figure 2-20: Collision kinematics. Elastic collision: conservation of kinetic energy and
momentum. Inelastic collision: conservation of momentum and change of kinetic energy

The second type of impact, inelastic, is the collision with a change/loss in kinetic energy,
but the momentum is still conserved. This type of collision is depicted in Figure 2-20; the
inelastic collision results in an increase in mass, and both bodies move with a common final
velocity, v f . The equation governing this event is:

mA � vAi + mB � vBi = (mA + mB) � v f (2.11)
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2.10.4 Finite Element spine models for sports

Notwithstanding their popularity, the development of spine FE models, especially for dy-
namic events, is still a challenging process [19, 113, 152, 153]. The spine is one of the most
complex structures in the musculoskeletal system, with distinct components, functions, phys-
ical properties and mechanical behaviours - which makes the creation of FE models a time-
consuming process [17]. Moreover, uncertainties regarding material properties of biological
structures, boundary conditions, model validation and element size and type, populate the
literature with a large number of different FE modelling methodologies - each one focused
on a particular phenomenon or feature of the spine. In models aimed at capturing dy-
namic events, the complexity increases even more as bone and soft tissue physical properties
change according to the loading rate due to their viscoelastic nature.

The majority of the spine or vertebral body FE models available in the literature, however,
either simulate situations of daily life, such as sitting, standing and walking [234], patholo-
gies, such as osteoporosis [151], explore spine biomechanics [149, 209], or exceptional events,
such as car accidents [133, 198, 239]. Although it is widely known that sports are responsible
for the majority of CSIs [239, 244, 245], very few models have investigated injuries arising
from contact sports, and no one has looked into specifically into rugby.

Therefore, the use of FE models is advocated as it has the potential to significantly improve
the understanding of injury mechanism leading to CSIs as the local mechanics, load distri-
bution, and regions of fracture can be assessed with this technique.

2.11 Modelling framework

Suarez-Escobar and Rendon-Velez [180] carried out a survey of quasi-static FE cervical spine
models; They found that hard tissue is often modelled using linear-elastic isotropic material
properties, although linear orthotropic models are also common; the annulus ground sub-
stance is frequently assigned isotropic material properties with multiple layers, fibres are
modelled as rebars at �65o; the nucleus is typically defined as an isotropic solid or incom-
pressible fluid. The IVD is often geometrically modelled based on literature and qualitative
anatomical data or based on the geometry of the adjacent VB.

This survey highlighted that in all analysed studies, assumptions and simplifications had
been made to obtain manageable, cost-effective and functional models. The authors advoc-
ate for such assumptions to be anchored in scientific facts and that the researcher has to
understand their implications and limitations.

This study found the most frequent simplification to be related to material properties. Biolo-
gical materials are heterogeneous, anisotropic, non-linear and viscoelastic. However, the use
of simplified material models, such as linear isotropic, might be suitable for specific applic-
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ations. For example, linear isotropic models can identify regions where a crack is likely to
initiate, but for a complete description of crack propagation, a more complex material model
is required [180].

Notwithstanding the variation in assumptions and simplifications, biomechanical studies
must point towards the establishment of guidelines for finite element modelling of biological
structures. According to Jones and Wilcox [16]’s review, which summarised the main FE
modelling techniques used for the spine, a robust framework would allow the discoveries
made with FE models to be directly applied and accepted clinically, which certainly would
improve patient’s recovery and well-being.
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Chapter 3

Aims and Objectives

3.1 Summary of literature findings

The spine is one of the most complex structures in the human body. In Chapter 1, its com-
plexity, primary structures and functions were reviewed. The vertebral body (VB) was de-
scribed in term of its main components: cancellous and cortical bone. Although made of
the same chemicals, the two bones types exhibit inhomogeneous internal structural arrange-
ments, which allow them to have distinct functions and mechanical properties. Chapter 1
also emphasised that bone properties are highly dependent on several factors, such as age,
mineral content and porosity.

It was demonstrated that mechanical properties could be directly related to density, which
could lead to better estimation and prediction of the mechanical behaviour of the bone. Be-
sides, the development of more precise and powerful imaging techniques makes the acquis-
ition of density an easier task.

Chapter 1 also highlighted that the intervertebral disc (IVD) is responsible for absorbing and
distributing load through the spine and providing flexibility to it. The components of the
disc were described, and the difficulties associated with its mechanical characterisation were
discussed.

A common characteristic of soft and hard tissues is the dependence of their mechanical prop-
erties on the loading rate. Due to their viscoelastic nature, an increase in loading rate renders
them stiffer; this improves their mechanical capabilities during an impact, but it makes them
more brittle and susceptible to fractures.

The combination of these characteristics with high rate and complex loading conditions,
make Cervical Spine Injury (CSI) potentially catastrophic. Although less frequent than other
kinds of spine injuries, CSIs are associated with an increased in the risk of tetraplegia and
even death. This becomes even more dangerous in high contact sports, such as rugby union,
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when the unpredictability of the impact can lead to catastrophic injury scenarios.

There are many theories about how CSI occurs in terms of mechanical behaviour. Many
studies have highlighted that the leading causes are either buckling, hyperflexion or hyper-
extension. However, no consensus has been achieved so far.

One way of analysing the causes of CSI arising from rugby is through the use of imaging
techniques, such as video analysis. Here, the match and the moment of impact are evaluated
frame by frame. Although this approach can give useful insights on general kinematics, it
cannot ascertain the mechanics of injury, making its usefulness limited. The use of 3D motion
capture techniques, where makers are placed on a player to monitor the movements of bone
landmarks, coupled with electronography, where sensors monitor the activation of muscle
groups, has provided detailed insights on the sequence of events during various phases of
the game. The information collected from these in vivo experiments has been exploited in
Multi-Body System (MBS) simulations which have allowed joint contact and muscle forces
to be studied during the various phases of the game. Information obtained from MBS models
can be used to enhance a player’s technique and training protocols. MBS models, however,
are not able to provide information on the likelihood of injury in a specific tissue type.

Another method frequently used in orthopaedics and biomechanics is the Finite Element
(FE) method, described and discussed in Chapter 2. Similarly to MBS models, it can create
numerical models and evaluate different loading and boundary conditions scenarios. How-
ever, it can also access strain, stress and deformation patterns, which can give more in-depth
insight about fractures and biomechanics of injury.

The difference between MBS, where only muscles and general kinematics are needed as in-
put, and FE, is that the latter models require the mechanical properties of each structure.
This is the most challenging aspect of FE because, as stated before, the properties of soft and
hard tissues vary widely and depend on several factors.

Among the many modelling options, FE specimen-specific models are growing in popularity.
Specimen-specific models exhibit good predictive potential and are based on the geometry
and material properties of each specimen under investigation. The main challenges associ-
ated with this approach are that of material properties, calibration and validation (Chapter
2, Sections 2.4.2, 2.5 and 2.7).

3.2 Gaps in the literature

As highlighted, CSI is recurrent in rugby. Several different research methods have been used
to determine the mechanisms of injury, but no consensus on defining buckling, hyperflexion
or hyperextension as the leading cause of spine injury has been achieved. Although widely
used in the biomechanics of the spine, the Finite Element (FE) method has so far not been
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applied to study rugby collisions. It could give insights about the biomechanical behaviour
of the spine during extreme events, such as tackle or scrum, and the likelihood of injury.

In terms of modelling, there are a vast amount of approaches for spine used within the FE
modelling community. Each one uses a different methodology, element type, material prop-
erties and boundary conditions. Generic FE models, i.e. models based on average population
data, in terms of material and geometry, have been successfully used in many fields of com-
putational biomechanics; however, their predictive value in terms of likelihood of injury is
questionable. Specimen-specific, on the other hand, provides a better input into spine bio-
mechanics as the differences in anatomy and material properties are accounted. Neverthe-
less, the multitude of modelling options and assumptions makes it difficult to compare the
results between models and to apply the results into the clinical environment. A calibrated
and validated FE modelling framework is thus necessary.

Another limitation with the current studies which use specimen-specific FE models is the
accuracy of the equations linking density into Young’s modulus. Such equations were de-
veloped based on several assumptions, sample types and loading conditions, which may
lead to wrong predictions in terms of material properties as their accuracy and precision are
not often assessed or calibrated.

Another gap in the literature is regarding the material properties for dynamic loading. As
seen, biological materials are defined as viscoelastic. However, there is not a single FE model
of the spine studying dynamic scenarios which defines the material properties accordingly
for the loading rate, for both bone and intervertebral discs.

Finally, studies have pointed out that the several structures that comprise the IVD might
not play an essential role during impact loading scenarios. This information could be used
to simplify the modelling of the disc while still retaining some accuracy in terms of IVD
mechanical behaviour.

3.3 Aims

This study aimed to develop a calibrated and validated finite element modelling framework
to investigate the biomechanical response of the cervical spine, in terms of displacement,
stiffness and strain, to axial impact loading arising from rugby.

3.3.1 Objectives

In order to achieve this aim, the following objectives were defined:

1. To develop a methodology to create specimen-specific finite element models of VBs
based on CT images:
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(a) To obtain quasi-static compressive mechanical properties of vertebral bodies in
terms of load-displacement through experimental tests;

(b) To develop a methodology to apply specimen-specific material properties on FE
VB models based on the specimen density acquired from CT images;

(c) To calibrate the VB quasi-static and specimen-specific material properties meth-
odology through the comparison of the predicted FE load-displacement results to
experimental data;

(d) To validate the specimen-specific VB FE modelling and quasi-static material prop-
erties application methodology through the comparison of the predicted FE load-
displacement results to experimental data;

2. To calibrate the validated quasi-static FE modelling methodology, in terms of material
properties, to the specific impact loading scenario seen experimentally:

(a) To obtain the compressive mechanical properties of vertebral bodies under a spe-
cific impact loading scenario in terms of load-displacement through experimental
tests;

(b) To calibrate the quasi-static FE modelling methodology using load-displacement
data from experimental tests;

3. To develop a simplified methodology to model and to convert specimen-specific MBS
disc stiffness data into Young’s modulus to be applied into FE models:

(a) To obtain the compressive mechanical behaviour of the cervical spine under im-
pact loading scenarios in terms of load-displacement through experimental tests;

(b) To develop a methodology to create simplified FE models of the IVD;

(c) To validate the methodology to convert specimen-specific MBS disc stiffness data
into Young’s modulus;

4. To create specimen-specific FE models of cervical spines using the calibrated and val-
idated VB and IVD FE modelling methodology developed previously;

5. To validate the specimen-specific FE models of cervical spines.
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Chapter 4

Development and validation of
efficient specimen-specific finite
element models of vertebral bodies
subject to quasi-static loading

This chapter describes the development and validation of a finite element modelling meth-
odology of vertebral bodies, including the experimental procedures. Micro-CT images of
the VBs were acquired using the Nikon CT Scanning Unit available in the Department of
Mechanical Engineering at the University of Bath. The author conducted the remaining pro-
cedures described in this chapter.

4.1 Introduction

Specimen-specific vertebral body models are generally created using image techniques, such
as Magnetic Resonance (MRI) and Micro Computer Tomography (mCT) [148]. Although
good geometry accuracy had been achieved, most of the studies reported segmentation and
modelling as being a time-consuming process, requiring up to 100 h to create a single model
[152]. In order to make this methodology accessible, this procedure has to be optimised and
simplified.

Another characteristic of a specimen-specific model is the use of density-to-Young’s mod-
ulus equations to set its material properties. Based on density data acquired from medical
images, Young’s modulus is calculated for each element, mimicking trabecular heterogen-
eity. However, these equations vary widely in terms of the density range for which they
are valid, density variable (e.g. apparent density, ash density, etc.), sample type and exper-
imental technique. Several equations have been formulated [48, 57, 64, 65] and the most
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commonly used have been presented and discussed in Section 1.3.1. The use of such equa-
tions to assign material properties introduces uncertainties in the model results; which are
seldom studied in the literature. The exception being the work of Gustafson et al. [72], who
evaluated five of those equations but found that only two presented significant accuracy in
terms of predicted displacement.

Therefore, before evaluating the dynamic behaviour of VBs, an FE modelling methodology
has to be first developed to optimise the segmentation and modelling processes and to as-
sess and calibrate the equations used in specimen-specific heterogeneous material proper-
ties. This step should be conducted under quasi-static loading scenarios as bone properties
are more frequently defined in this case and to allow a comparison with published data.

4.2 Experimental procedures

Experimental procedures were developed to assess the mechanical behaviour of VB under
compressive quasi-static loading conditions and to acquire data for the creation, calibration
and validation of VB FE models.

Eight porcine cervical spines, containing VBs from C1 to T1 and ages between 8 and 12
months, were acquired from local butchers with the specification to leave them intact, with
no cuts or removed parts. Permissions for the use of animal samples in this study was
obtained from the local Animal Welfare, and Ethics Review Body (AWERB) - none of the
experiments carried out as part of this research are subject to Home Office approval. All
spinal specimens were wrapped in 0.2 % saline solution moistened tissue paper and stored
at �18 �C until the day before dissection, when they were left in a fridge at 8 �C to slowly
defrost overnight (Figure 4-1a).

(a) (b) (c)

Figure 4-1: Specimen preparation. (a) Porcine cervical spine section before dissection (from
Dyke [246]); (b) Dissected, cleaned, and potted spine 04, sample C2 vertebral body, before
painting - both caudal and cranial bone cement pots caps were approximately parallel to

each other; (c) Spine 04, sample C2 painted for DIC.
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Thirty-five (n=35) individual vertebral bodies were then thoroughly dissected from those
spinal sections: they had all soft tissue, pedicles, transverse and spinous processes removed.
The VB samples were then held (clamped) by support (Figure 4-2) and horizontally aligned
in the transverse plane using a digital spirit level, positioned in the cranial surface, in both
anterior-posterior and medial-lateral directions. Once the samples were satisfactorily aligned,
angle deviation less than 3� to the transverse plane, the caudal side was then potted in
PMMA (PolyMethyl Methacrylate) bone cement (Simplex, Stryker Corporation, USA), us-
ing a custom cylindrical mould made of Polytetrafluoroethylene (PTFE). Once the caudal
side was potted, the sample was turned upside down, and the same procedures of level-
ling were conducted but using the flat bottom surface of the caudal cement cap as reference.
This ensures that both caudal and cranial bone cement pots caps were approximately paral-
lel to each other (Figure 4-1b). All samples were labelled, wrapped in 0.2 % saline solution
moistened tissue paper, double sealed and refrozen.

Figure 4-2: Potting procedures were similar to those used by Sleeman [247]. VBs were held
by the support and horizontally aligned in the transverse plane using a digital spirit level,
positioned in the cranial surface, in both anterior-posterior and medial-lateral directions.
Once the samples were satisfactorily aligned, the caudal side was then potted in PMMA

bone cement using a custom cylindrical mould made PTFE. Once the caudal side was
potted, the sample was turned upside down, and the same procedures of levelling were

conducted but using the flat bottom surface of the caudal cement cap as reference.

The potted, double sealed and frozen VB samples were mCT scanned using a Nikon XTH225ST
CT Scanning Unit, alongside three phantom discs of known density and mechanical prop-
erties. They were placed in a custom made jig inside the mCT scanner, which could allocate
up to nine samples per scan, Figure 4-3a. The scanning parameters were, for all scans: circu-
lar CT mode, slice spacing and slice reconstruction of 0.2 mm, peak voltage 142 kV, current
of 137 µA, two images per projection, no filter used, 1800 projections, tungsten filament, 24
gain, pixel dimensions of 121.8 µm x 121.8 µm, with a float data type of 32 bits per element.
The images were reconstructed using CT Pro-3D software (Nikon Metrology Inc, Michigan,
USA), Figure 4-3b.

Each VB was also prepared to allow Digital Image Correlation (DIC) measurements of its
anterior aspect. Therefore one layer of matt white primer was applied to the cleaned an-
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(a) (b)

Figure 4-3: mCT scanning procedures. (a) Sample positioning inside the mCT scanner using
a custom made jig; (b) Representative slice of a vertebral body transverse plane obtained

using aforementioned settings - Red line indicates where DIC was acquired in the anterior
surface.

terior face of each vertebral body. Subsequently, a toothbrush was used to apply black matte
speckles over the white surface (Figure 4-1c). Care was taken to ensure a homogeneous dot
pattern, larger than 3 pixels, and with a density ratio between white and black ranging from
30 % to 50 % [98].

Each VB was subjected to a compressive loading ramp to a maximum load of 10 kN, ap-
plied at a rate of 1 kN min�1, using a materials’ testing machine (Instron 5967, Instron, High
Wycombe, UK), equipped with a 30 kN load cell. A steel plate was inserted between the
specimen and the Instron crosshead for a uniform load application and to avoid any local
deformation (Figure 4-4a). The load was applied to the plate via a ball bearing mounted on
the machine crosshead.

(a) (b)

Figure 4-4: Testing procedure set-up. (a) Experimental Set-up: Specimen dummy (i), DIC
Camera (ii) and Instron head (iii); (b) High speed cameras (Photron Europe Ltd, UK).

Before each test, point marks were drawn on the top surface of the cranial PMMA specimen
holder cap to locate the centre of each vertebral body. This was chosen as the load application
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point, and it was necessary to translate this position to the corresponding finite element
models in later stages. It is known that the location of the load application point significantly
affects the prediction of the compressive stiffness on VB FE models [212]; the standardisation
of the point of application of the load was adopted to reduce the variation in measured
stiffness arising from this.

The load was applied to the centre of the samples at the aforementioned mark via a 35 mm
ball bearing in order to minimise shear forces. Prior to testing, 5 N preload was applied to
the sample to ensure the contact was achieved between the sample and the crosshead of the
machine.

Two different sets of cameras were used for DIC, depending on the availability: a single
GigE DFK 23GP01 digital camera (The Imaging Source Europe GmbH, Germany) or two
high-speed cameras (Photron Europe Ltd, UK). For the single-camera set, Figure 4-4a, the
camera was positioned in front of the sample, with the camera lenses positioned at 90� of
the centre of the VB surface and at the VB level. A rate of 1 image every 5 s was used (the
maximum speed supported by the computer); data were acquired by a custom MatLab code
(MathWorks, Massachusetts, USA) and processed by Ncorr V2.1 free software Matlab based
[248].

For the high-speed camera’s set-up, the cameras were positioned in front of the sample, and
the angle between the cameras was approximately 20� [98], Figure 4-4b. A rate of 1 image
every second was used; DIC data was acquired via Photron FASTCAM Viewer (PFV) soft-
ware (Photron Europe Ltd, UK), and post-test analysis was carried out by Vic-3D software
(Correlated Solutions, South Carolina, USA).

Sensitivity analysis using the Taguchi method was conducted to obtain the optimum para-
meters for DIC analysis, in terms of radius and node spacing, as suggested in the literature
[98]. The procedures and complete results are presented in Appendix B. For the one camera
set-up, a radius of 30 and spacing of 5 was used at Ncorr V2.1 software. Zero strain error
was assessed, and it was quantified as 40 m#. This error was quantified for a plane and uni-
form surface (Appendix B). As the vertebral bodies are curved and non-uniform, it is thus
expected a more significant error. However, as the DIC data was acquired at the central and
small part of the anterior surface of the vertebral body (Figure 4-3b, red line), it was con-
sidered that the curvature did not affect the accuracy of DIC drastically, as it a small and
central region. For the two cameras set-up, only radius is available, and a value of 31 was
chosen, the minimum allowed by the software for a complete analysis. Zero strain error was
assessed, and it was quantified as 60 m#, also measured in a plane and uniform surface. Same
considerations about the accuracy of DIC for curved surfaces is valid.

Once the samples were positioned, and DIC calibrated through the use of a standard pattern,
the experimental tests were conducted, with the Instron and DIC being triggered simultan-
eously. Load-displacement data from the Instron machine and DIC images were stored on a
personal computer until the time of analysis of the results.
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4.3 Finite element modelling

From the 35 tested samples, eight samples and their data had to be discarded. On most of
them, a cement bridge was formed during potting at the posterior side of the VB (Figure 4-5
- detail in red). It was not possible to remove the bridge without damaging the samples. In
others, DIC data was corrupted and no images were available.

Figure 4-5: Modelling a vertebral body. Cement bridge linking two bone cement specimen
holder pots. Detail in red.

The 27 remaining tested samples were then divided into two different groups, Table 4.1. The
first group was used for the calibration procedures of the finite element modelling methodo-
logy. The second group was used later on to validate such methodology. This division aimed
to ensure that the differences in anatomy and size from different spine sections were present
in both calibration and validation process.

Table 4.1: Vertebral body tested samples list.

Spine No Samples Total

Calibration

1 C4 to C6

14 vertebral
bodies

2 C2 to C5
3 C2, C5 and C6
4 C2 and C4

12 C2 to C4

Validation

4 C5 to C7

13 vertebral
bodies

5 C7
6 C7

12 C5 to C7
13 C2 to C5 and C7

Total 8 Spines 27 vertebral
bodies

4.3.1 Segmentation

The mCT images of each VB were initially imported into ScanIP Simpleware (v2017-18, Sim-
pleware Synopsys, California, USA) and downsized from about 0.12 mm to a resolution
(voxel size) of 0.40 mm. This resolution value was chosen because it keeps enough geometry
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details to create models and decreases the number of slices considerably, from roughly 1600
to only 400. Resolutions lower than 0.40 mm, e.g. 0.50 mm, resulted in a loss of the fine details
required for accurate modelling. Following downscaling, the average time to create a single
model of a VB, including all the components, was about 30 min, compared to approximately
2 h necessary to create models of the same part without downscaling.

The geometrical modelling consisted of the use of threshold, flood filling, interpolation,
painting and filter tools to create geometries based on the background images. Some slices
across the vertebral body were drawn and, using the interpolation tool, the main body was
created by linking those slices. The use of this interpolation tool contributed to reducing
the geometrical modelling time. The painting tool was used to add details which were not
captured by the interpolation, such as facets.

The other bodies, i.e. bone cement specimen holder caps and cartilage, were modelled us-
ing threshold and boolean tools to obtain a perfect contact interface area between the parts.
However, the high porosity in the cement (Figure 4-5) made the use of automatic tools less
efficient and extra steps of painting and mask filling became necessary to uniformly close
the voids and obtain a homogeneous model.

Cartilage was only included in the model when its thickness exceeded three pixels to avoid
any model distortion, as recommended by software guidelines [174]. The steel plate used in
the experiments was modelled and positioned over the cranial cement cap using the meas-
urements acquired during the experimental set-up.

Once the geometrical modelling step was completed, the resulting geometries were imported
back to the high-resolution file (0.12 mm pixel size) to keep the high-resolution background
for a later setting the material properties. Each model contained both cranial and caudal
bone cement specimen holder caps, the vertebral body, any remaining cartilage and the steel
plate used in the laboratory experiments to apply the load to the sample, Figure 4-6.

(a) (b)

Figure 4-6: Spine 01, C4 Vertebral Body. (a) CT images in XY plane view; (b) 3D model.
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4.3.2 Meshing

A mesh sensitivity test was initially conducted to determine the optimum element size. Ele-
ment size from and higher than 1 mm3 was found as the best option for the FE VB models
(Appendix B). For this study, in order to be comparable to clinical CT images and their lim-
itations, a mesh size of 1 mm3 was chosen. The final geometrical models were downscaled
again, but from 0.12 mm to 1 mm voxel size. Each background voxel was then converted into
FE elements using the meshing tool within the Simpleware software package. Each element
had the same size as the background voxel size, i.e. 1 mm3. Linear hexahedron elements
were applied internally, in order to simulate the trabecular architecture, and linear tetrahed-
ron elements were used on the external surface, to produce a smooth surface and to avoid
the sharp edges which would have resulted from the use of the pure hexahedrons technique
(Chapter 2, Section 2.4.1).

4.3.3 Material properties

Material properties were defined based on pixel Hounsfield Units (HU), i.e. grey-scale (GS)
number. Three phantom discs were scanned together with each sample: hydroxyapatite
(HA), acrylic and polythene. Geometrical models of the discs were created with ScanIP soft-
ware and volume, and average GS number were acquired from each of these models. The
weight of each disc was measured via a digital scale, and density was calculated, Table 4-7.
The density of each disc was plotted as a function of GS value (Figure 4-7); the relationship
between density and GS value was obtained by fitting a linear equation to the data points
using the least-squares fit. Equation 4.1 illustrates a typical GS to density equation, where
rapp is the apparent density, in kg m�3, and GS is a number.

Table 4.2: Typical values of density and GS for phantom discs. Spine 01, Vertebral body C2.

Sample
Polythene
[kg m�3]

HA
[kg m�3]

Acrylic
[kg m�3]

Density 948 2533 940
Grey-scale - Mean 24 146 32

rapp = 13.5 � GS + 562 (4.1)

The GS value of each pixel within the vertebral body model was converted into density,
which in turn, allowed an estimate of Young’s modulus to be obtained via the relationship
developed by Kopperdahl et al. [67]:

E1 = �0.00347 + 0.323 � rapp (4.2)
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Figure 4-7: Typical graph GS - density. Spine 01, Vertebral body C2.

where E1 is the Young’s modulus in the principal (caudal-cranial) direction, in MPa, and rapp

is the apparent density from Equation 4.1, in kg m�3.

A transversally linear isotropic element based material model was chosen for the VBs [50,
68, 69, 71, 213, 216]. This model was fully described in Chapter 2, Section 2.4.2, Equation 2.2.
There, the directions were defined in terms of the principal (caudal-cranial) and secondary
directions (medial-lateral and anterior posterior). In the present study, the tetrahedron and
hexahedron axis were defined in terms of z, x and y axis. The z axis was defined as the
principal axis, aligned to the caudal-cranial direction; the x and y axis were aligned to the
secondary axis, medial-lateral and anterior posterior, respectively. Therefore, Equations 2.2,
from Section 2.4.2, and 4.2 can be re-written as:

Ezz = �0.00347 + 0.323 � rapp (4.3)

Exx = 0.333 � Ezz (4.4)
Eyy = 0.333 � Ezz

Gxy = 0.121 � Ezz

Gxz = 0.157 � Ezz

Gyz = 0.157 � Ezz

nxy = 0.381
nxz = 0.104
nyz = 0.104

where Ezz is Young’s modulus in principal (caudal-cranial) direction, Eyy and Exx are Young’s
moduli in the posterior-anterior and medial-lateral directions, Gxy is the shear modulus in
the plane perpendicular to caudal-cranial direction, Gxz and Gyz are the shear moduli in the
planes perpendicular to posterior-anterior and medial-lateral directions, respectively, nxy is
the Poisson’s ratio in the plane perpendicular to caudal-cranial direction, and nxz and nyz

are the Poisson’s ratio in the planes perpendicular to posterior-anterior and medial-lateral
directions, respectively. Between 40 and 60 different material properties were generated
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within each VB model, as suggested in the literature [94].

The material properties of bone cement and the steel plate were defined as homogeneous and
isotropic, with the first being obtained from preliminary experiments (Appendix C), and the
latter from literature data. The cartilage was set as homogeneous and hyperelastic, Table 4.3.

Table 4.3: Materials properties for bone cement, cartilage and the steel plate.

Structure Material Model
Elastic

Parameter
[MPa]

Poisson
Density
[kg m�3]

Ref

Plate Steel Isotropic E = 200x103 0.3 8000 [249]
Cement PMMA Isotropic E = 1177 0.35 1200 [Appendix C]

Cartilage Cartilage
Hyperelastic

Mooney-Rivlin
C10 = 0.24
C01 = -0.06 - 1100 [202]

4.3.4 Boundary conditions and load application

In order to correctly represent the experimental boundary conditions, the bottom surface of
the caudal bone cement cap was constrained in the caudal-cranial direction (vertical direc-
tion, Figure 4-8a) and four external nodes on that surface were restricted in the other direc-
tions to constrain rotation and translation movements of the sample (Figure 4-8b). The point
of application of the load was identified at the plate’s top surface using the measurements
acquired in the experimental tests. The closest node to the experimental point of load applic-
ation was constrained in x and y directions to represent the contact restriction caused by the
ball bearing (Figure 4-8c), and a ramped compressive load from 0 kN to 10 kN in a pseudo-
time of 1 s was applied to that node. The analysis type was set as quasi-static and implicit.
No contact was applied.

4.3.5 Model’s material calibration

Equation 4.2 was created based on elderly human samples, with an average age of 70 (SD=17)
years old and a density range up to 0.25 g mm�3 [67]. The samples used in this project, how-
ever, were harvested from young porcine specimens, which, although similar in terms of
geometry to human VBs, are characterised by a much higher density. Moreover, as seen in
previous chapters, porcine samples are slightly different in terms of geometry than humans
and the loading distribution changes for different levels of the spine. Therefore, a calibration
factor, kGSStatic , was used to re-scale and calibrate the material properties and to adapt Equa-
tion 4.2 for porcine specimens and the loading scenario, Equation 4.5. This calibration is
also taking into account any experimental variability in terms of potting, dissecting, sample
positioning, etc.

Ezz = kGSStatic � (�0.00347 + 0.323 � rapp) (4.5)
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Figure 4-8: Boundary conditions applied into vertebral body FE models. (a) Perspective
view of a typical VB FE model and its BCs; (b) Caudal view depicting the constrains in

movement; (c) Cranial view illustrating the loading point and its constraints.

where Ezz is the Young’s modulus in the caudal-cranial direction, in MPa, rapp is the appar-
ent density from Equation 4.1, in kg m�3 and kGSStatic is a calibration factor for quasi-static
loading. An iterative process was carried out for each model to identify the values of kGSStatic

which would minimise the difference between experimental and numerical stiffness. Hav-
ing identified an individual factor, kGSStatic , for each model, an average factor, KGSStatic , was
calculated.

After calibration of each kGSStatic , a sensitivity analysis was conducted to evaluate how re-
sponsive the average value for this coefficient, KGSStatic , was to changes in the sample size.
The one-in-one-out methodology was applied by removing one of the 14 kGSStatic factors from
the dataset, one at a time, and checking the difference in the resulting KGSStatic average.

4.3.6 Validation of the numerical model

The remaining thirteen (n=13) of the original 35 tested vertebral body samples (Table 4.1)
were modelled using the procedures adopted previously. However, this time, the material
properties were assigned to the model using the average value, KGSStatic , obtained from the
calibration procedures.

All other model parameters, such as boundary conditions and material properties for bone
cement, steel plate and cartilage were kept the same as those of the calibration experiments.
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4.3.7 Presentation and analysis of experimental and numerical data

Experimental and numerical results were analysed and compared. DIC was acquired for the
majority of the samples’ anterior surfaces, Figure 4-9a. Firstly, in order to improve the con-
fidence in DIC, Instron crosshead vertical displacement was acquired and plotted against
Instron load. A point on the cranial side of the DIC data was selected, close to Instron
crosshead, Figure 4-9a - white dot, and vertical displacement data were also acquired and
plotted against Instron load. Stiffness values were obtained from the most linear part of such
curves, between 3 kN and 5 kN, and compared to evaluate the accuracy of DIC.

In order to ascertain the true stiffness of the VB, a region of interest (ROI) was defined on the
anterior surface of the vertebral body, the white rectangular area shown in Figure 4-9a. VB
Stiffness was calculated by acquiring the average displacement of that ROI for a given load
step and evaluating the slope of the resulting load-displacement curve. When one camera
set-up and Ncorr software were used, a custom Matlab code extracted the DIC data. When
two high-speed cameras were deployed, VIC-3D software extracted and averaged the data.

(a) (b)

Figure 4-9: Comparison between experimental and numerical data. (a) Experimental-DIC
data: DIC was acquired from the majority of the anterior surface of the sample but only the

defined ROI (white square) was used to calculate vertebral stiffness. A dot in the cranial
side of the DIC data was also used to acquire data for comparison with Instron data; (b)
Numerical data: only the data from the ROI (white square) drawn in similar position to

experimental was used to calculate stiffness.

A similar process was adopted to analyse results from the models. An analogous ROI was
set on the anterior surface of the VB models. Displacements or strains of the surface nodes
on that ROI were recorded and then averaged for a given load, Figure 4-9b. Numerical
load, however, was acquired via the reaction forces at the bottom constraints by adding the
reaction of each node.
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Load-displacement curves were produced for both numerical and experimental data, and
stiffness values were obtained from the most linear part of such curves, between 3 kN and
5 kN. If the simulations failed to solve up to 5 kN, due to element distortion or other reason,
the load-displacement curves were linearly extrapolated up to that loading point. A differ-
ence of less than 5 % between experimental and numerical results was deemed acceptable
and represented the threshold for model calibration.

Experimental and numerical results will be presented in the same figure in the results section.
Unless otherwise specified, both DIC and numerical contour plots are displayed for the 5 kN
load step. Quantitative numerical values are presented as mean � standard deviation.

4.4 Results

A small representative sample of results is presented and discussed in the main body of this
thesis. The full set of results is presented in Appendix A for completeness. The samples were
chosen to illustrate the most significant features identified in the dataset.

4.4.1 Calibration of the numerical models

All fourteen (n=14) calibration geometrical models, Table 4.1, developed previously were
converted into numerical FE models and solved using ANSYS Mechanical APDL software
(v18.2, ANSYS Inc, USA) installed in a Xeon 32 cores, 120Gb ram PC. The average quantity
of elements for the bone cement specimen holder caps, cartilages and vertebral bodies are
shown in Table 4.4. The solving time varied from 15 min to 60 min, depending on how far
the model was solved.

Table 4.4: Average quantity of elements in the calibration models.

Component Average No of
Hexahedrons

Average No of
Tetrahedrons

Bone Cement caps 50729 181000
Cartilage 85 20639

Vertebral body 13027 60593

Before comparing and calibrating the modelling methodology, the accuracy of DIC was as-
sessed. Data from Instron crosshead was compared to DIC one acquired from a cranial point
on DIC data, in terms of load-displacement. Stiffness was then acquired from these curves,
Table 4.4, and the correlation between Instron and DIC stiffness was evaluated, Figure 4-10.
The differences between Instron and DIC stiffness varied from�18 % to 19 %, with a average
difference of �1.46 %. A correlation (R2) of 0.76 for a relationship of 1.11 was found.

After DIC accuracy was evaluated, experimental/DIC data was acquired from the afore-
described ROI and plotted in terms of load-displacement data. Some of the experimental
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Table 4.5: Stiffness data measured from Instron corsshead data and from DIC cranial point.

Spine
N Body

Instron
Crosshead
Stiffness
[N mm�1]

Experimental
DIC Top Point

Stiffness
[N mm�1]

Difference
[%]

01 C4 4687 4654 +0.7
01 C6 4703 4890 -4.0
02 C2 2731 2293 16.0
02 C3 2777 2700 3.0
02 C4 4020 3732 7.0
02 C5 2427 1965 19.0
03 C2 4026 3988 1.0
03 C5 3302 2775 16.0
03 C6 4154 4788 -15.0
04 C2 4647 4298 7.5
04 C4 3331 3800 -14.0
12 C2 4946 4880 1.0
12 C3 4114 4877 -18.0
12 C4 4516 3945 13.0

Average
(SD)

3885
(828)

3828
(1016) 1.46

Figure 4-10: Correlation between Instron crosshead and DIC cranial point stiffness.

curves (such as Figure 4-11a) presented inconsistent behaviour, mostly after 5 kN. This was
mainly caused by blood leaking through the VB surface during loading. At high load levels,
blood disrupted the paint speckle pattern, which caused the DIC algorithm to output non-
physical displacements and strains. For better clarity, the inconsistent behaviour was not
shown in the main data, Figure 4-12). Numerical models were assessed in a similar way, as
described. Some of the models, however, could not be solved up to the maximum load of
10 kN (Figure 4-12). High distortion, mainly of cartilage elements, was the main reason for
this. Nevertheless, most models achieved load values closer to or higher than 5 kN, which al-
lowed stiffness calculations. All load-displacement curves were linear and, after calibration,
presented similar gradient to experimental data, Table 4.6, with maximum displacement val-
ues up to 1 mm, as the toe region was not present in the model results (Figure 4-12 - black
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curves). Experimentally, all VBs exhibited linear behaviour from 2 kN to 6 kN, with a toe re-
gion from 0 kN to 2 kN, and a yielding point around 5 kN to 6 kN (Figure 4-12 - red curves).
Some experimental curves presented broader toe regions, as seen for spine 04, sample C2
(Figure 4-12c). Maximum displacements, without the toe region, were around 1 mm and
compared well with numerical findings. Strain magnitudes varied from 0 to 0.250 #. The
maximum numerical surface strain was observed for spine 02, sample C2 at 0.300 # (Figure
A-2, Appendix A).

(a) (b)

Figure 4-11: Load - Displacement (left side) and Load - Strain (right side) curves from the
calibration models. Red curves are DIC/experimental results. Black curves are numerical results. (a)

and (b) Spine 01, sample C4. Some of the experimental curves presented inconsistent behaviour,
mostly after 5 kN. This was mainly caused by blood leaking through the VB surface during loading.

The blood disrupted the paint speckle pattern which caused the DIC algorithm to output
non-physical displacements and strains.

Table 4.6: Experimental and numerical results for the calibration models.

Spine
N Body

Calibration
Factor

(kGSStatic )

Density
[kg m�3]

Young’s
Modulus

[MPa]

Numerical
Stiffness
[N mm�1]

Experimental
Stiffness
[N mm�1]

Difference
[%]

01 C4 0.032 1350 139 8567 8547 +0.23
01 C6 0.044 1380 194 9152 9288 -1.46
02 C2 0.040 1240 153 6398 6442 -0.70
02 C3 0.040 1220 156 7269 7441 -2.30
02 C4 0.022 1230 87 6896 6995 -1.40
02 C5 0.020 1240 80 5950 5928 +0.36
03 C2 0.034 1230 134 9305 9319 -0.15
03 C5 0.021 1210 81 7825 7869 -0.60
03 C6 0.022 1210 85 8062 8100 -0.50
04 C2 0.043 1260 173 8656 8693 -0.42
04 C4 0.036 1250 144 10017 9922 +1.00
12 C2 0.048 1470 226 12443 12157 +2.40
12 C3 0.030 1410 136 11011 11150 -1.25
12 C4 0.039 1430 178 13177 13256 -0.60

Average
(SD)

KGSStatic = 0.033
(0.009)

1300
(90)

140
(45)

8909
(2156)

8936
(2121)

-0.94
(0.72)

The individual calibration factor, kGSStatic , ranged from 0.021 to 0.048, with an average KGSStatic

of 0.033�0.009. With these factors, the difference between experimental and numerical av-
erage stiffness values was almost 1 %. The sensitivity analysis indicated that the average
factor KGSStatic = 0.033 is not sensitive to sample size and composition (Figure 4-13). Using
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(a) (b)

(c) (d)

(e) (f)

Figure 4-12: Load - Displacement (left side) and Load - Strain (right side) curves from the
calibration models. Red curves are DIC/experimental results. Black curves are numerical results. (a)

and (b) Spine 03, sample C2; (c) and (d) Spine 04, sample C2; (e) and (f) Spine 12, sample C3.
Stiffness was calculated from 3 kN to 5 kN.

one-in-one-out methodology, i.e. excluding one sample at a time and checking how much
the average changed, the average factor variation was less than 5 %. The minimum average
value for KGSStatic was 0.032, representing a difference of 3 % to the original value of 0.033, cal-
culated when sample C2 from spine 12 was excluded. The maximum average value (KGSStatic )
was 0.034, representing a difference of 3.12 % to the original value of 0.033, calculated when
spine 02 sample C5 was excluded from the average.

Average density and Young’s modulus per VB model were calculated through the weighted
average technique. Each value of density and modulus were weighted according to the num-
ber of elements which had that value within the model. Density ranged from 1210 kg m�3

to 1470 kg m�3, with an average of 1300�90 kg m�3. The average Young’s modulus was
140�45 MPa, ranging from 81 MPa to 226 MPa (Table 4.6).

Experimental and calibrated numerical stiffness ranged from 5900 N mm�1 to 13 256 N mm�1,

80



Figure 4-13: Sensitivity analysis of the average factor, KGS, to sample size using
one-in-one-out methodology. The red line represents the average factor, 0.033. Each blue

bar represents a new average factor without a sample, following Table 4.1. For example, the
first bar is the average without sample C4, from spine 01. The yellow line is the standard

deviation for each new average calibration factor.

with an average of 8909�2156 N mm�1 and 8936�2121 N mm�1, respectively (Table 4.6).
Experimental and numerical VB stiffness value distributions were compared using a non-
parametric Mann Whitney U Test. No statistical significant difference between the sets was
found (p > 0.05), with both having a median value of about 8600 N mm�1.

In order to facilitate the comparison between experimental and numerical data, the width of
the toe region was calculated from experimental load-displacement data. An offset equival-
ent to the width of the toe region was then applied to the numerical load-displacement curve
for each model, as shown in Figure 4-12 by the dashed black lines. The toe region width was
calculated on a sample by sample basis and was then subtracted from the DIC contour plots
to allow a direct comparison with FE contours (Figures 4-14, 4-15, 4-16 and 4-17).

The majority of the models presented displacement contour patterns similar to those seen ex-
perimentally (Figures 4-14, 4-15, 4-16 and 4-17, items c and d). The experimental results for
sample C2, spine 04, Figure 4-16, were processed using VIC-3D software, while the remain-
ing contour plots presented in this section were obtained via NCorr software. The majority
of the models displayed maximum displacement values located at the junction between the
cranial bone cement cap and the vertebral body; the same pattern is shown by DIC data. In
general, FE and DIC displacement patterns were, in terms of magnitude and distribution,
comparable. FE models also presented similar results when compared to DIC for maximum
strain location and range, but not for strain patterns (Figures 4-14, 4-15, 4-16 and 4-17, items
e and f).
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(a) (b)

(c) (d)

(e) (f)

Figure 4-14: Spine 01, Sample C4 calibration results. The load magnitude is 4.8 kN. (a) DIC
ROI; (b) FE ROI; (c) DIC vertical displacement contour plot, in mm, adjusted to toe region

width; (d) FE vertical displacement contour plot, in mm; (e) DIC vertical strain contour plot,
in # (strain); (f) FE vertical strain contour plot, in # (strain).
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(a) (b)

(c) (d)

(e) (f)

Figure 4-15: Spine 03, Sample C2 calibration results. The load magnitude is 5 kN. (a) DIC
ROI; (b) FE ROI; (c) DIC vertical displacement contour plot, in mm, adjusted to toe region

width; (d) FE vertical displacement contour plot, in mm; (e) DIC vertical strain contour plot,
in # (strain); (f) FE vertical strain contour plot, in # (strain).
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(a) (b)

(c) (d)

(e) (f)

Figure 4-16: Spine 04, Sample C2 calibration results. DIC acquired with high-speed
cameras and analysed via VIC-3D software. The load magnitude is 5 kN. (a) DIC ROI; (b)

FE ROI; (c) DIC vertical displacement contour plot, in mm, adjusted to toe region width; (d)
FE vertical displacement contour plot, in mm; (e) DIC vertical strain contour plot, in #

(strain); (f) FE vertical strain contour plot, in # (strain).
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(a) (b)

(c) (d)

(e) (f)

Figure 4-17: Spine 12, Sample C3 calibration results. The load magnitude is 5 kN. (a) DIC
ROI; (b) FE ROI; (c) DIC vertical displacement contour plot, in mm, adjusted to toe region

width; (d) FE vertical displacement contour plot, in mm; (e) DIC vertical strain contour plot,
in # (strain); (f) FE vertical strain contour plot, in # (strain).
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4.4.2 Validation of the numerical models

The remaining thirteen (n=13) geometrical models (validation group, Table 4.1) were con-
verted into numerical FE models and solved using ANSYS software installed in a Xeon 32
cores, 120 Gb ram PC. The average number of elements for the bone cement caps, cartilage
and vertebral bodies are shown in Table 4.7. The solving time varied from 15 min to 60 min,
depending on how far the model was solved.

Table 4.7: Average quantity of elements in the validation models.

Component Average No of
Hexahedrons

Average No of
Tetrahedrons

Bone Cement caps 50395 158375
Cartilage 756 55379

Vertebral body 19703 87045

Similarly to previous experiments, vertebral bodies behaved mostly linearly from 2 kN to
6 kN, with a toe region extending from 0 kN to 2 kN, and yielding from 5 kN and 6 kN (Fig-
ure 4-18). All numerical models presented linear behaviour, but most of them did not solve
further than the 4 kN load step due to high element distortion, mainly confined to the car-
tilage elements. Load-displacement curves were linearly extrapolated to 5 kN for stiffness
calculations.

Density and Young’s modulus were calculated for each sample using weighed average tech-
nique, as previously described. Using the average calibration factor KGSStatic = 0.033 in Equa-
tion 4.5 resulted in an average density of 1390�100 kg m�3, close to the average seen in the
calibration phase, 1300�90 kg m�3. Average numerical Young’s modulus was 146�12 MPa,
ranging from 126 MPa to 161 MPa. This average was similar to that obtained previously in
the calibration phase, 140�45 MPa (Table 4.6).

Table 4.8: Experimental and numerical results for the validation models.

Spine No Body
Average

Calibration
Factor

Density
[kg m�3]

Young’s
Modulus

[MPa]

Numerical
Stiffness
[N mm�1]

Experimental
Stiffness
[N mm�1]

Difference
[%]

04 C5

0.033

1200 125 6731 8081 -16.7
04 C6 1200 126 5901 6679 -11.7
04 C7 1300 134 8250 7242 +14.0
05 C7 1350 141 8003 6241 +28.0
06 C7 1400 151 7858 12592 -37.6
12 C5 1400 147 11762 10943 +7.5
12 C6 1400 150 15916 12110 +31.5
12 C7 1400 149 9468 11439 -17.0
13 C2 1500 161 7345 8351 -12.0
13 C3 1500 155 11606 6710 +73.0
13 C4 1400 150 19697 20067 -1.8
13 C5 1450 152 20124 20507 +1.9
13 C7 1500 158 23435 19537 +20.0

Average
(SD) 0.033 1390

(100)
146
(12)

12007
(5858)

11577
(5280) +3.7%

Average numerical stiffness value was 12007�5858 N mm�1, 3.7 % greater than the average
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4-18: Load - Displacement (left side) and Load - Strain (right side) curves from the
validation models. Red curves are DIC/experimental results. Black curves are the numerical results.
(a) and (b) Spine 04, sample C5; (c) and (d) Spine 06, sample C7; (e) and (f) Spine 12, sample C6; (g)

and (h) Spine 13, sample C2. Stiffness was calculated from 3 kN to 5 kN.

for experimental, 11577�5280 N mm�1 (Table 4.8). Numerical stiffness values ranged from
5901 N mm�1, for spine 04, sample C5, to 23 435 N mm�1, for spine 13, sample C7. Exper-
imental values ranged from 6241 N mm�1, for spine 05, sample C7, to 20 507 N mm�1, for
spine 13, sample C5.

The maximum difference between experimental and numerical stiffness occurred for spine
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13, sample C3, with a difference of 73 %. The smallest, for spine 13, sample C4, was 1.8 %.
However, the differences for the majority of the samples ranged from 1.8 % to 37.6 %. From
the data on Table 4.8, a Bland-Altman plot was produced (Figure 4-19). This plot is ob-
tained through the differences and averages between experimental and numerical data. On
the x-axis is the average between the experimental data point and its numerical equival-
ent. On the y-axis is the difference between the experimental data point and its numerical
equivalent. This plot quantifies the difference between experimental and numerical data. A
correlation between experimental and numerical stiffness results presented a R2 = 0.74 and
a Lin‘s Concordance Correlation Coefficient (CCC) of 0.88, for a relationship of 0.95, Figure
4-20. A non-parametric Mann Whitney U Test indicated no statistically significant difference
between the numerical and experimental stiffness sets (p > 0.05) (Figure 4-21).

In comparison to the calibration phase, the average experimental stiffness rose from 8936�
2121 N mm�1 to 11577�5280 N mm�1, Figure 4-21. The average numerical stiffness, fol-
lowing the behaviour of the experimental data, was also higher than in the calibration set,
12007�5858 N mm�1 compared to 8909�2156 N mm�1.

Figure 4-19: Bland-Altman plot comparing experimental and numerical stiffness. D is the
difference between experimental and numerical stiffness. Average is the average between

experimental and numerical stiffness.

Figure 4-20: Correlation between experimental and numerical stiffness. R2 = 0.74 for a
relationship of 0.95. Dashed red line is the unit line for comparison.
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Figure 4-21: Comparison between experimental and numerical stiffness variability in the
calibration and validation phases.

Experimental load-displacement curves and DIC contour plots were adjusted to eliminate
the bias introduced by the toe region, as explained in Section 4.4.1. The majority of the
models presented similar range of values on the contour plots as obtained via DIC (Figures
4-22, 4-23, 4-24 and 4-25). The same observations made for the contour plots of the calibration
group also applied to this validation dataset, both for displacements and strain plots.

4.5 Discussion

This chapter aimed to develop a validated methodology for specimen-specific FE models of
VBs subject to quasi-static loading. Knowing the biomechanical behaviour of VBs for quasi-
static loading gives an insight into the correct material properties values and paves the way
to the calibration of the model for dynamic conditions. This step is essential for the later
development of a full cervical spine FE model for dynamic loading.

As seen in Chapter 2, Section 2.5, there are several ways to acquire material properties for
FE specimen-specific models, either by direct conversion of GS values from CT images to
mechanical properties [81, 88] or by adjusting a density-Young’s modulus equation and us-
ing phantoms [51, 72, 82, 190, 213]. The latter approach was chosen for this study. The
use of phantoms makes the calibration factor independent of the CT scanner settings as the
phantoms have constant density and a change in the GS intensity due to different scanning
parameters can be easily adjusted.

A large number of specimen-specific quasi-static FE spine models available in the literature
[68, 88, 94, 250] do not assess if the equations used to assign the material properties are
accurate, calibrated and suit the model and loading conditions.

Several equations relating density to Young’s modulus have been proposed [57, 74]. How-
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(a) (b)

(c) (d)

(e) (f)

Figure 4-22: Spine 04, Sample C5 calibration results. DIC acquired with high-speed
cameras and analysed via VIC-3D software. The load magnitude is 5 kN. (a) DIC ROI; (b)

FE ROI; (c) DIC vertical displacement contour plot, in mm, adjusted to toe region width; (d)
FE vertical displacement contour plot, in mm; (e) DIC vertical strain contour plot, in #

(strain); (f) FE vertical strain contour plot, in # (strain).
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(a) (b)

(c) (d)

(e) (f)

Figure 4-23: Spine 06, Sample C7 calibration results. DIC acquired with high-speed
cameras and analysed via VIC-3D software. The load magnitude is 4 kN. (a) DIC ROI; (b)

FE ROI; (c) DIC vertical displacement contour plot, in mm, adjusted to toe region width; (d)
FE vertical displacement contour plot, in mm; (e) DIC vertical strain contour plot, in #

(strain); (f) FE vertical strain contour plot, in # (strain).
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(a) (b)

(c) (d)

(e) (f)

Figure 4-24: Spine 12, Sample C6 calibration results. The load magnitude is 5 kN. (a) DIC
ROI; (b) FE ROI; (c) DIC vertical displacement contour plot, in mm, adjusted to toe region

width; (d) FE vertical displacement contour plot, in mm; (e) DIC vertical strain contour plot,
in # (strain); (f) FE vertical strain contour plot, in # (strain).

92



(a) (b)

(c) (d)

(e) (f)

Figure 4-25: Spine 13, Sample C2 calibration results. The load magnitude is 2 kN. (a) DIC
ROI; (b) FE ROI; (c) DIC vertical displacement contour plot, in mm, adjusted to toe region

width; (d) FE vertical displacement contour plot, in mm; (e) DIC vertical strain contour plot,
in # (strain); (f) FE vertical strain contour plot, in # (strain).
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ever, each equation was developed using different testing techniques, sample sizes, sample
ages and input variables (e.g. apparent density, ash density, etc.). Consequently, the choice
of which equation to use is not trivial. Gustafson et al. [72] used lumbar specimen-specific
FE vertebral body models to evaluate the effects of five different equations relating density
to Young’s modulus on the prediction of vertebral stiffness. Using DIC to evaluate VB sur-
face displacements, stiffness was acquired from load-displacement curves generated from a
compressive loading experiment in which human vertebral bodies were loaded up to 1 kN.
Although a high correlation between numerical and experimental results was found for all
equations (R2 ranging from 0.75 to 0.93), only two had Lin’s concordance correlation coef-
ficient (CCC) close to 1, indicating a good agreement between experimental and numer-
ical data. Therefore, the remaining three equations were not as precise as these two. This
study reinforces the necessity of material properties calibration and validation for specimen-
specific models in order to increase the confidence in the modelling procedure.

In the present study, a linear equation developed by Kopperdahl et al. [67] (Equation 4.2),
was chosen as the basis from which to set specimen-specific material properties to the ver-
tebral body models. This was selected due to the reported high correlation between density
and Young’s modulus and its recurrent use in the literature [16, 50, 68, 69]. An additional ad-
vantage of these equations is that Young’s modulus value is only dependent on the density
of the voxel, which can be acquired by the average pixel grey-scale value, avoiding problems
associated with thresholding [16, 50, 68–71, 173].

As most of the equations of this kind, however, it was derived using samples harvested
from elderly human cadavers of an average age of 70 years [67]. This posed a problem
in the present study as the density range in which this equation has been validated, up to
0.25 g cm�3, is significantly lower than the range of the porcine samples used in this study
(1.2 g cm�3 to 1.5 g cm�3). If this equation had been used without any calibration, it would
have lead to an incorrect estimation of the material properties, resulting in different strain
and displacement levels and mechanical responses.

An adjustment to Equation 4.2 was proposed (Equation 4.5), and its effectiveness in extend-
ing the density validity range was investigated. A set of experiments were then performed
so that the extra parameter included in Equation 4.2, KGSStatic , could be calibrated and valid-
ated. Twenty-seven VBs (n=27) were harvested from eight juvenile porcine cervical spines,
prepared, mCT scanned and quasi-static compressively loaded. Displacement was acquired
from the cleaned anterior surface of each VB using DIC. This data was then correlated to
load to create load-displacement curves from which stiffness was calculated for each VB.
The curves were similar to those presented in the literature [52, 79, 80, 239, 251]: displaying
a toe region for loads up to 2 kN, a linear behaviour from 2 kN to 6 kN, and yielding around
5 kN and 8 kN. This certainly adds confidence on the experimental results and indirectly
validated the use of DIC to acquire displacement data as accurate as that of conventional
methods (i.e. testing machine crosshead displacements).
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From those tested samples, fourteen VBs (n=14) were initially selected to calibrate the aver-
age KGSStatic factor (Table 4.1). Specimen-specific FE models were created for this group, based
on the mCT images, and subjected to the same experimental loading and boundary condi-
tions. Stiffness was acquired from the anterior surface nodes in similar ROIs to experimental.
An optimal individual kGSStatic factor, which minimised the difference between experimental
and numerical stiffness, was calculated for each sample (Table 4.6). Subsequently, an average
factor, KGSStatic , was calculated from the fourteen calibrated samples, and a value of 0.033 was
obtained for this parameter.

A similar process was carried out for the remaining thirteen tested VBs (n=13) in order to
validate the modelling procedures and the calibration factor. Models were created and sub-
jected to the same loading and boundary conditions. However, at this time, the average
factor, KGSStatic = 0.033, was applied to all samples to set their material properties. Numer-
ical stiffness was acquired and compared to experimental following the same procedures as
before.

The average experimental stiffness values presented in the calibration and validation phases
were 8936 N mm�1 and 11 576 N mm�1, respectively. In comparison with studies which used
human lumbar VBs (the largest dataset in the literature), the values of stiffness obtained here
were either close [52, 77, 78, 82, 87] or smaller [68, 72, 79, 80]. Such differences can be justified
in terms of the experimental set-up, data acquisition method and sample type.

The first difference lies in the experimental set-up. It is widely known that experimental
boundary conditions can have a large influence on the results, with higher values of experi-
mental stiffness being obtained in samples with more constraints [124, 186, 212, 233–235]. In
this present study, VB samples were positioned in a testing machine without being rigidly
constrained, and a ramped load up to 10 kN was applied via a ball bearing and a plate. This
only constrained the samples in the axial DOF, allowing the vertebral body to move slightly
and to distribute the load. With a similar experimental set-up, except for the use of DIC,
Wijayathunga et al. [88] and Robson Brown et al. [81] measured VB stiffness, from human
lumbar samples. They obtained values ranging from 1000 N mm�1 to 3000 N mm�1, smaller
than the porcine values acquired in this study. In the literature, the VB samples are often
constrained inside a testing machine, with both cranial and caudal sections either being fully
constrained, allowing only vertical movements of the cranial side [52, 72, 78], or partially
constrained, having a ball bearing coupled with compression platens and allowing some
rotation [68, 77, 79, 80, 82], which still results in larger values of stiffness. Sometimes, com-
pressive displacements are applied instead of load, which it is not physiological as it forces
a uniform deformation over the VB, which also might increase the measured stiffness [116].

A second difference between this study and those in literature is regarding the data acquisi-
tion. The data, usually displacement, is acquired from the crosshead of the testing machine,
i.e. at the top surface of the specimen holder. The displacement captured by the device is, as
a result, the sum of each component’s movement, i.e. machine compliance, PMMA cement
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specimen holder caps, VB, any other remaining soft tissue, etc. Any uncertainty or vari-
ation in the properties of these components may affect the overall acquired displacement.
For example, the literature usually assigns to PMMA bone cement Young’s modulus ran-
ging from 2500 MPa to 3000 MPa [81, 88, 92, 93, 250]. A custom materials testing experiment
was performed (Appendix C) to characterise similar PMMA bone cement housings used in
this study. A Young’s Modulus value of 1177 MPa was found, approximately 50 % smaller
than the values obtained from the literature. Based on these considerations, DIC was used in
this present study to assess displacement directly from the anterior surface of the vertebral
bodies, avoiding the interference of the cement caps and machine compliance.

A further difference is in the sample type. In the majority of studies in the literature, VBs
were harvested from lumbar sections, which are generally bigger, denser and stiffer than
cervical ones [1, 121]. Additionally, some of the studies removed the end-plates completely
by sectioning top and bottom surfaces of the vertebral body, which resulted in a small sample
thickness and higher stiffness [79, 80]. Another variable relating to the sample type is sample
age. In the study conducted by Robson Brown et al. [81], porcine VB stiffness were also
assessed and the values ranged from 2500 N mm�1 to 5000 N mm�1. In this case, the porcine
samples were relatively younger (6 months old) than the samples of this present study (8 to
12 months old), which might explain their lower values of stiffness when compared to the
present study. A similar concept can be applied to Sahli et al. [87], which obtained average
stiffness values of 8430 N mm�1. The samples used by Sahli et al. [87] were 6-month old,
which, although they were harvested from the thoracic region and thus would have higher
density and stiffness, are also younger than the samples used in this study, which might
result as well in lower density and stiffness values.

Once the in vitro tests were concluded, VB FE models were generated based on the samples
mCT images. One of the goals of this study is to improve the segmentation and modelling
procedures, making them faster and simpler but keeping the essential features for accurate
predictions. The downscaling of the image resolution and then returning the final geometry
to the original resolution increased the segmentation speed as fewer slices had to be pro-
cessed. Tyndyk et al. [152] reported 100 h to build a geometrical model of a vertebral body,
against 30 min taken in this study. This value was also lower than that reported by Kalle-
meyn et al. [20], which was able to model a VB in 1.25 h. Another advantage of the current
segmentation method is that the high-resolution background was retained and this could be
used for other purposes in the future, such as for trabecular modelling or fracture analysis.

The geometrical models were then converted into FE using a mixed element type with tetra-
hedrons and hexahedrons, as described in the literature (Chapter 2, Section 2.5). Internally,
hexahedron elements were defined, mimicking the trabecular orientation and allowing the
set-up of transversally isotropic material properties. Externally, tetrahedrons smoothed the
surface, keeping the element continuity and allowing surface displacement and strain ac-
quisition. This approach is similar to that adopted by others [88, 252].
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Calibration factors were then calculated to convert GS and density values to material prop-
erties (Equation 4.5) for each model so to minimise the difference between experimental and
numerical stiffness results. All the models used in the calibration phase presented similar
values of stiffness to those seen experimentally, Table 4.6. An average factor (KGSStatic ) was
obtained, with a value of 0.033. This value was one order of magnitude lower than that used
by Wijayathunga et al. [88], which used human VBs and calibrated directly from GS values.

Predicted Young’s modulus ranged from 81 MPa to 194 MPa, with averages of 140 MPa and
146 MPa for calibration and validation samples, respectively. These values were similar to
those presented by Robson Brown et al. [81], ranging from 120 MPa to 250 MPa, and within
one standard deviation from the average value found by Teo et al. [253] (229�138 MPa);
both studies used porcine lumbar VBs. The differences seen in Young’s modulus between
the present study and the others in the literature is directly related to the sample type, as
cervical VBs are naturally smaller and less stiff than other sections of the spine, such as the
lumbar, due to their physiological nature and mechanical function [1, 33, 253].

A sensitivity study was carried out to analyse the dependence of the calibration factor to the
sample used for calibration (Figure 4-13). Using the one-in-one-out test, i.e. removing one
sample at a time and then re-calculating the average, the factor was shown to be insensitive
to sample constitution, as it oscillated less than 5 % for all cases.

Once the models were calibrated, a further 13 VB models from five different spines were de-
veloped using the same approach adopted during the calibration phase. This time, the previ-
ously identified average calibration factor, 0.033, was applied to all models. Although some
differences between numerical and experimental stiffness were around 30 %, with one out-
lier being up to 73 %, Bland-Altman plot presented distributions of the differences between
experimental and numerical around and close to zero (Figure 4-19). Moreover, the relation-
ship between experimental and numerical data was 0.95, and a high correlation was found,
R2=0.74, generally greater than other studies, typically presenting values on the range from
0.50 to 0.72 [52, 78–80]. A box and Whiskers plot further highlighted the similarities in the
validation and calibration of samples, Figure 4-21.

In comparison to the calibration phase, the average experimental stiffness increased, from
around 8936 N mm�1 to 11 570 N mm�1. This was also seen in the FE models, Figure 4-21.
The average numerical stiffness for the calibration dataset was 8909 N mm�1 and increased
to 12 007 N mm�1 for the validation set. In other words, the FE models were able to represent
what seen experimentally, as the increase in the experimental stiffness from one phase to
another was also reflected in the numerical results.

In order to measure how much agreement there is between two data sets, e.g. between
experimental and numerical data, some studies are making the use of the Lin’s Concordance
Correlation Coefficient (CCC) [254]. It essentially measures how much the data fits into one
to one relationship (x = y). The concordance coefficient is a better measure of agreement
between datasets compared to the correlation coefficient. The latter measures how linear the
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regression line is, not if the relationship is one to one [181]. The concordance coefficient, on
the other hand, measures how close to one to one relationship the regression line is. The CCC
of the fitting line between experimental and numerical data (Figure 4-20), 0.89, was similar
or greater than other studies [72, 83, 153, 212, 255].

Displacements and strains contour plots of the VB surface were also assessed in this study,
from both experimental and numerical data. In terms of displacement, both experimental
and numerical data presented similarities, mainly in the areas of maximum displacement,
which they were mostly located at the junctions with the bone cement cap. Similar location
was observed by other studies using FE models [72, 92, 94, 96]. Agreement was better in
the calibration compared to the validation set. Maximum strain regions were also observed
next to VB-cement junction, on both DIC and FE models contour plots. This is similar to
what reported by other studies, from FE models [51, 68, 82, 96, 175]. In terms of magnitudes,
maximum numerical strain values, up to 0.2#, were higher in this study when compared
to other studies, such as Gustafson and Cripton [96], 0.01# and Crawford et al. [68], 0.005#.
However, Gustafson and Cripton [96] used pure tetrahedrons elements, which can lead to a
different load distribution due to the element cross-section variation, whilst Crawford et al.
[68] used a pure hexahedron mesh, which, according to the author, may have caused some
continuity problems due to the lack of smoothness at the VB surface.

The main limitation of the present study is the use of linear elastic models for material prop-
erties. This characteristic caused some models to have excessively distorted elements, which
prevented the models from solving up to 10 kN. As the materials stiffen up after the yield-
ing point, the introduction of elastoplastic models could have avoided some of the element
distortions and allowed the models to solve to higher levels of loading.

Nevertheless, the use of linear elastic materials can be justified in this study: while yield-
ing or plasticity have been incorporated in some models to predict bone failure sites and
fracture mechanisms [52, 78, 175, 192, 256], this requires the introduction of additional para-
meters, which also require calibration, adding, therefore, another variable to the modelling
process. Additionally, the viscoelastic behaviour of the bone makes its stiffness increase with
the loading rate. As the loading rate seen in rugby collisions is relatively high, it is expec-
ted that the stiffness of the bone will increase drastically. As a consequence, the bone might
not achieve the yielding point when subjected to that loading condition, making the use of
yielding properties unnecessary. Finally, had the yield point been achieved and a fracture oc-
curred, such regions would exhibit high strain levels, even when modelled as a linear elastic
material. Therefore, the use of yielding in this study is not strictly necessary and would add
additional numerical variables to be calibrated using the same experimental data, increasing
the uncertainties in the modelling process. Despite this limitation in the material definition,
the models generated in this study predicted regions of maximum displacement, which were
comparable in terms of magnitude and location to experimental data obtained by DIC.

A second limitation of this study is represented by the way in which the DIC pattern was
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produced. The speckled pattern was generated by flicking a toothbrush soaked in black
matte paint over a white painted background. Although DIC pictured consistent results
for displacements and strains and the parameters for the analysis were optimised for this
style of pattern [95], irregular and thick dots sizes were generated in some curved areas.
Furthermore, the background (white) paint exhibited brittle behaviour for high load levels
and fractured and detached from some of the specimens; this created noise and inconsistent
strain behaviour at high loading levels for some specimens.

One possible solution for these problems would be the use of an airbrush to spray the back-
ground paint and to create the speckled pattern. This would generate a thinner background
layer and a more controlled speckle size [72, 96, 257, 258]. Alternative ways of generat-
ing contrasting colour patterns should also be investigated, in particular, the use of a dark
background which, in biological samples, can be achieved by staining with methylene blue,
which shows some promising results in the literature [95, 97, 258, 259].

4.6 Conclusion

Quasi-static compressive mechanical properties of vertebral bodies in terms of load- dis-
placement were acquired through experimental tests. A calibrated, validated, and robust
methodology for finite element modelling of vertebral bodies for quasi-static loading was
developed based on this experimental data. This methodology created accurate specimen-
specific finite element models of vertebral bodies harvested from porcine samples, allow-
ing the prediction of compressive vertebral stiffness, regions of maximum displacement and
strain. Material properties were assigned based on the sample density. This step added con-
fidence in the material properties setting methodology and paved the way to the creation of
specimen specific VB FE models for dynamic conditions.
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Chapter 5

Development of efficient
specimen-specific finite element
models of vertebral bodies subjected
to impact loading

This chapter describes the calibration of a finite element modelling methodology of vertebral
bodies for dynamic loading, including the experimental procedures. Micro-CT images of
the VBs were acquired using the Nikon CT Scanning Unit available in the Department of
Mechanical Engineering at the University of Bath. The remaining procedures described in
this chapter were conducted by the author.

5.1 Introduction

The second step towards the development of finite element (FE) modelling methodology for
dynamic cervical spine models is to calibrate the previous procedures for dynamic loading
of VBs. Many biological materials, such as bone, exhibit viscoelastic behaviour, i.e. their
properties depend upon the loading rate. As the loading rate increases, the stiffer the mater-
ial becomes. However, most of the dynamic FE spine models available in the literature do
not apply material properties corrected for the specific loading rate.

A further problem is the lack of studies evaluating the dynamic behaviour of a vertebral
body under impact loading. The ones available uses high compressive displacement rates
instead of impact loads, which is different in terms of energy. The understanding of bone
behaviour in such extreme situations, in terms of strain and stress, can give an insight into
crack initiation and propagation and how the load is distributed, which in vitro studies can-
not provide.
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Finally, static and dynamic loading scenarios are often treated separately, i.e. one model to
study static and another different model to evaluate dynamic loading. A single modelling
methodology, which suits both loading cases, would allow an evaluation of both scenarios
using the same model, saving time and improving the understanding of VB mechanical be-
haviour under different loading conditions.

In this chapter, the quasi-static loading specimen-specific finite element (FE) modelling meth-
odology previously developed will be specifically calibrated to allow the dynamic impact
scenario to be investigated.

5.2 Experimental procedures

Ten (n=10) vertebrae originating from five spines, acquired from local butchers, were used in
this part of the study. Permissions for the use of animal samples in this study was obtained
from the local Animal Welfare and Ethics Review Body (AWERB) - none of the experiments
carried out as part of this research are subject to Home Office approval. They had all process,
pedicles and anterior soft tissues removed so to isolate the VBs. They were potted into poly-
oxymethylene specimen holders using PMMA bone cement as a grouting agent (Simplex,
Stryker Corporation, USA), Figure 5-1a. All samples were labelled, wrapped in 0.2 % saline
solution moistened tissue paper, double bagged and kept frozen until the day of testing.

(a) (b)

Figure 5-1: Specimens preparation. (a) Dissected, cleaned, and potted vertebral bodies; (b)
DIC prepared sample with white background and black speckled dots, Spine 07, Sample C2.

Prior to testing, specimens were mCT scanned using the same parameters reported in Section
4.2, Chapter 4. The samples were prepared for Digital Image Correlation (DIC), Figure 5-1b,
also following the same procedures described in Section 4.2.

During testing, samples were mounted in an impact cage, constructed from aluminium ex-
trusion frames, a baseplate and an impact plate, Figure 5-2. The impact plate was free to
move vertically, and it was connected to the base of the cage via two linear bearing unit
(LTDR25, AB SKF, SE-415 50 Göteborg, Sweden) [137]. Caudal and cranial ends of each spe-
cimen were rigidly attached via 12 mm screws to two 22 kN compression-extension load cells
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(Model SLC41/005000, RDP Electronics Ltd., Wolverhampton, UK). Load data was acquired
from the load cells via a TiePie Handyscope HS5 and TiePie Multi-Channel software (TiePie
Engineering, Netherlands).

A custom-made impact device was designed and built to apply an impact load to the VBs,
Figure 5-3. Briefly, this consists of an aluminium extrusion frame, a steel base plate, two
bearing housings to support a 500 mm long beam, which acts as an impact hammer, and
impact masses attached to the beam’s free end.

Figure 5-2: Impact cage design (adapted from Holsgrove et al. [137]).

In order to mimic the load and energy experienced during a rugby tackle, a total impact
mass of 12.4 kg was used. This mass included the impact hammer and the impact plate
weights, 7.4 kg and 5 kg, respectively. Falling from a height of 0.5 m, the mass generated
an impact velocity of 3.1 m s�1 and delivered a blow of 35.5 J. The energy generated with
such set up is similar to values reported in the literature for collisions arising from rugby
[134, 137, 140, 239, 260].

These impact experiments were classified as inelastic collisions. When the impact mass drops
and collides against the plate, the set moves downwards altogether until the maximum load
is achieved. Therefore, there is a change in kinetic energy due to the increase of mass after
the collision. As the momentum is conserved, the following equation can be written:

mmass � vi
mass + mPlate � vi

Plate + mVB � vi
VB = (mmass + mPlate + mVB) � v f (5.1)

where mmass is the impact mass, 7.4 kg, vi
mass is the initial velocity of the impact mass just

before the collision, mPlate is the impact plate mass, 5 kg, vi
Plate is the initial velocity of the

impact plate just before the impact, mVB is the vertebral body mass, usually around 0.04 kg,
vi

VB is the initial velocity of the vertebral body just before the impact and v f is the final
velocity of the moving mass just after collision, i.e. mmass + mPlate + mVB. Re-arranging and
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(a)

(b)

Figure 5-3: Impact machine and its main parts; (a) Detail on the bearing housing; (b) impact
mass and light gate.

substituting gives:

7.4 � 3.1 + 5 � 0 + 0.05 � 0 = (7.4 + 5.0 + 0.05) � v f (5.2)

from which v f is calculated as:

v f = 1.84m/s (5.3)

Therefore, just after the impact, all masses/bodies are moving downwards with a velocity
of 1.8 m s�1. This value will be used as a loading condition into the FE models. In order
to ascertain that this is the impact velocity seen experimentally, a preliminary analysis was
conducted. Spine 07, sample C2 was randomly chosen, and the cranial specimen holder
velocity was assessed using DIC. The maximum velocity at the cranial specimen holder was
measured as 1.6 m s�1 (Figure 5-4), close to the calculated value of 1.8 m s�1. The calculated
velocity v f is that of the impact plate, which is located above the cranial specimen holder and
likely to lose energy due to its high inertia, and the connections with the frame. Therefore,
it is expected that the velocity at the impact plate would be higher than that of the cranial
specimen holder and close to 1.8 m s�1.
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Figure 5-4: Cranial specimen holder velocity for spine 07, sample C2, measured via DIC.

Two high-speed cameras (Photron Europe Ltd, UK) were used to acquire DIC data. With the
exception of the image acquisition rate, set at 4000 frames per second, all the settings were
similar to those described in Section 4.2, Chapter 4. A sensitivity analysis using the Taguchi
method was also conducted (Appendix B) in order to obtain the optimum parameters for
DIC analysis, in terms of radius and node spacing, as suggested in literature [98].

Once the samples were secured inside the cage, lights adjusted and DIC calibrated, the test
was conducted by releasing the hammer from a vertical position. Load cells and DIC acquis-
ition were triggered via a light gate assembled at the end course of the impactor head when
the impact hammer was about to impact the cage. Measures were taken to ensure that the
final position of the impact hammer was horizontal.

5.3 Finite element modelling

Two of the ten initially tested samples had to be discarded as DIC failed to either correctly
capture or to process the data, leaving a total of eight (n=8) samples from five spines for this
study (Table 5.1).

Table 5.1: Specimens used for the modelling on the dynamic phase.

Spine No Specimens
07 C2, C3, C5 and C7
08 C7
09 C7
10 C7
11 C7

Total 5 Spines 08 bodies
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5.3.1 Segmentation and meshing

The mCT images obtained from the remaining eight samples were then segmented using
Simpleware ScanIP software (v2017-18, Simpleware Synopsys, California, USA). Similar pro-
cedures to those described in Section 4.3, Chapter 4, were used. Geometrical models were
converted into numerical models; linear hexahedron elements were applied internally while
linear tetrahedron elements on the VB external surface. Each element had the exact same
size of the background voxel size as those used in the quasi-static study, i.e. 1 mm3.

5.3.2 Material properties

Similarly to Section 4.3, Chapter 4, vertebral body material properties were defined based
on the pixel grey-scale (GS) number. Density values obtained using phantoms were then
converted into Young’s modulus via the previous quasi-static calibrated equation:

Ezz = KGSStatic � (�34.7 + 0.323 � rapp) (5.4)

where Ezz is the Young’s Modulus in the caudal-cranial direction, rapp is the apparent dens-
ity in kg m�3 and KGSStatic = 0.033 is the average calibration factor for quasi-static loading
obtained in Chapter 4. Again, transversally linear isotropic material model was applied to
the VBs (Section 4.3.3).

After vertebral body material properties were set, the models were exported to ANSYS
Mechanical APDL software (v18.2, ANSYS Inc, Pennsylvania, USA) for boundary conditions
settings. The solution was run using ANSYS inbuilt LS-DYNA solver (v4.2, Livermore Soft-
ware Technology Corporation (LSTC), California, USA). No contact was used. An explicit
analysis was defined.

5.3.3 Boundary conditions and load application

After a video analysis of the experimental results, a vertical movement of the impact cage
while being impacted was observed. Taking the centre of the screw of the caudal specimen
holder as reference (Figure 5-5a - red line), it can be seen that this moves downwards, up
to 2 mm, under the effect of the maximum load (Figure 5-5b - green line). When the load
decreases to zero, Figure 5-5c, the screw returns to its original position (red line). This move-
ment might be caused by the deflection of the baseplate, and consequent translation of the
caudal load cell mounted onto it. As a result, the total displacement acquired by DIC for the
surface of the vertebral body is the sum of the baseplate and vertebral body displacements.

As the vertebral bodies maximum displacements measured by DIC were between 2 mm and
4 mm, this deflection movement could not be ignored as it would have an effect on the cal-
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ibration of the material properties. Based on this observation, two different approaches for
setting the model’s boundary conditions were proposed and evaluated.

Figure 5-5: DIC results for spine 07, sample C6. Taking the centre of the screw of the caudal
specimen holder as reference (Figure 5-5a - red line), it can be seen that it moves

downwards, up to 2 mm, for the maximum load (Figure 5-5b - green line). When the load
decreases to zero (Figure 5-5c - red line), the screw returns to its original position. (a) Before

the impact; (b) During the impact - maximum load; (c) After the impact.

Fully constrained boundary condition and load application

The first option was to set a fully constrained boundary condition, aiming to replicate the
initial condition of the experiment: a fully constrained, rigid and secured sample inside an
impact cage. The caudal specimen holder was fully constrained while the cranial speci-
men holder was constrained to only move vertically, Figure 5-6a. A rigid plate was created
above the cranial specimen holder to ensure a uniform and vertical load was applied to the
specimen holder, thus simulating the presence of the experimental impact plate. The experi-
mental load acquired from the cranial load cell (cranial load) was applied vertically via this
rigid plate.

Partially constrained boundary condition and load application

In order to account for the movement of the baseplate, a boundary condition taking into
account this motion was set, Figure 5-6b. Firstly, experimental load-displacement curves
from the caudal and cranial specimen holders were acquired. Displacements, via DIC, were
acquired at the junction between specimen holder and cement for both cranial and caudal
sides (Figure 5-7a - red dots). Load data was acquired from both cranial and caudal load
cells. The two datasets were synchronised, and two load-displacement curves, one for the
cranial and one for the caudal specimen holders movements were obtained, Figure 5-7b.

Two rigid plates were created, one at the bottom and one at the top of the specimen holders,
and two vertical non-linear springs were attached to such plates, one on each. The end of
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(a) (b)

Figure 5-6: Boundary Conditions. (a) Fully constrained; (b) Partially Constrained.

(a) (b)

Figure 5-7: DIC displacement data from cranial and caudal specimen holders; (a) Definition
of spring stiffness, red circle dots; (b) Load-displacement curves from the caudal and cranial

specimen holders for spine 07, sample C2.

each spring was fully constrained and positioned 5 mm away from the surface of the plates.
The stiffness of the springs was set according to the load-displacement curves acquired from
the margins of the specimen holders, Figure 5-7b.

The cranial plate was set with an initial velocity of 1.8 m s�1 and a concentrated mass of
12.4 kg in order to mimic the weight of the impact mass at the moment of impact. All bodies,
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except the VBs, were constrained to only move vertically.

5.3.4 Components material properties

Bone cement and polyoxymethylene specimen holders were initially defined as homogen-
eous and isotropic, with the first being characterised in a custom test, due to its high porosity
(Appendix C), and the latter according to the manufacturer’s datasheet, Table 5.2. After some
preliminary tests, the solving time per model was estimated as 13 h. In order to reduce this
time and improve the model’s efficiency, both sets of specimen holders and cement were
defined as rigid bodies, as suggested by another study [100].

Table 5.2: Materials properties for bone cement, cartilage and specimen holders.

Structure Material Model
Elastic

Parameter
[MPa]

Poisson
Density
[kg m�3]

Reference

Cartilage Cartilage
Hyperelastic

Mooney-Rivlin
C10 = 11.80
C01 = -2.90 - 1100 [61]

Specimen holders Polyoxymethylene Isotropic E =700 0.3 3000
Manufacturer’s

Data sheet
Cement PMMA Isotropic E =1177 0.35 1200 Appendix C

Using the rigid body definition for these parts reduced the solving time, on average, to only
40 min, for both BC settings. With regards to the fully constrained BC models, they predicted
similar displacement results independently of the material characterisation of bone cement
and specimen holders, i.e. whether homogeneous and isotropic properties were used or
whether these elements were defined as rigid (Figures 5-8a and 5-8c, blue and black curves).
However, it is important to notice that as the rigid body constraints are set at the centre of
mass of the object, the reaction forces from the caudal constraints are not available. Pre-
viously, with non-rigid material properties for the specimen holders and bone cement, the
reaction forces measured at the bottom constraints of the caudal specimen holder were sim-
ilar to the input/experimental load (Figure 5-8e - blue and red curves). As the displacement
results for both rigid and non-rigid bodies material definitions were similar to each other, it
was inferred that the reaction forces from the rigid body case would be similar to the input/-
experimental load. Therefore, experimental load data was used in load-displacement curves
for the fully constrained BC models results.

For the partially constrained BC, the change to rigid materials slightly modified the predicted
behaviour, both in terms of displacement and strain, mainly at high loading levels (Figures 5-
8b and 5-8d). This inconsistent behaviour at high loading is mostly due to the small inflexion
at 6 kN on the load-time curve (Figure 5-8f), and the reaction of lower spring, as it will be
explained later in this chapter. However, stiffness values measured between 3 kN and 5 kN
(same interval used in Chapter 4) were close, 83 124 N mm�1 and 85 490 N mm�1, for non-
rigid and rigid material properties, respectively. Therefore, as only a small difference of
less than 3 % was found between the models with rigid and non-rigid material properties,
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and the solving time improved significantly, these parts were set as rigid and used in all
simulations.

(a) (b)

(c) (d)

(e) (f)

Figure 5-8: Comparison between rigid and non-rigid body material properties for the
specimen holders and bone cement caps for both BCs. Blue curves are the results for the

models with deformable, homogeneous and isotropic properties for cements and specimen
holders. Black curves are the results for the models with rigid body material properties

definitions for cements and specimen holders. Red curve is the input/experimental caudal
load, which was applied to the fully constrained BC models. (a) Load-Displacement curves

for fully constrained BC; (b) Load-Displacement curves for partially constrained BC; (c)
Load-Strain curves for fully constrained BC; (d) Load-Strain curves for partially constrained
BC; (e) Load-Time curves for fully constrained BC with deformable material properties and

experimental/input load; (f) Load-Time curves for partially constrained BC.
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5.3.5 Model’s material calibration

In Chapter 4, Equation 4.5 was calibrated and extensively validated for porcine VB samples
under compressive quasi-static loading using an average calibration factor, KGSStatic . The dy-
namic nature of the events to be modelled in the present study requires re-calibration of this
parameter for the case under consideration.

The calibration of KGSStatic for the likely increase in stiffness experienced by the bone tissue
subjected to impact loading could follow the same work-flow adopted in Chapter 4 and lead
to the quantification of a new KGSDynamic . A number of samples would be subjected to impact
loading with some being assigned to a calibration group (leading to the quantification of
KGSDynamic ) and some to a validation group (to assess the model predictivity).

However, due to the similarities between samples in the quasi-static and dynamic experi-
ments, an alternative and more expedite process might be possible. This is based on the
assumption that bone response to impact loading will increase its stiffness, and this stiff-
ness is related to the density of the bone sample. In other words, the relationship between
KGSDynamic and KGSStatic is mediated by a constant of proportionality a:

KGSDynamic = a � KGSStatic with a > 1 (5.5)

An iterative approach was carried out to quantify the constant a to relate KGSDynamic and
KGSStatic . The use of a coefficient to relate dynamic and static grey-scale calibration factors
greatly simplifies the modelling methodology, reducing the number of experimental trials
required for this phase and providing a clear pathway in relating quasi-static and dynamic
modelling approaches. Stiffness was measured between 3 kN and 5 kN in load-displacement
curves. This is the same interval used in Chapter 4, and it was chosen again as reference. In
this current chapter, it is expected that the measured vertebral stiffness will increase with the
loading rate, i.e. the slope of the load-displacement curve will increase. Therefore, as the
samples are the same (porcine vertebral bodies) and to keep consistency, this interval was
find also be suitable for the measurement of stiffness.

The magnitude of the constant a was decided based on three criteria:

� The differences between average experimental and predicted stiffness should be less
than 5 %;

� The Bland-Altman plot should be centred around (or close to) zero;

� The non-parametric Mann-Whitney U Test would return no significant differences;
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5.4 Presentation and analysis of experimental and numerical data

Ten different output parameters were evaluated. In addition to the reaction load and ver-
tebral body anterior surface strain and displacements, for both experimental and numerical
data, caudal specimen holder displacements and resultant vertebral displacements were also
acquired as a consequence of the vertical movement of the cage during impact.

DIC images were analysed using VIC-3D software (Correlated Solutions, South Carolina,
USA); for a given time-step, average displacement and strain data were obtained for a Region
of Interest (ROI), defined on each VB anterior’s surface, Figure 5-9a. Figure 5-10 presents a
typical plot for experimental displacement-time (green curve), and strain-time (red curve),
for the VBs.

The displacement of the caudal specimen holder was also acquired via DIC; a point at the
junction between caudal specimen holder and bone cement was chosen (Figure 5-9a - white
dot), and displacements were acquired for a given time step (Figure 5-10 - magenta curve).
The VB resultant displacement was calculated by subtracting the displacements of the spe-
cimen holder from that of the VB (Figure 5-10a - red curve).

(a) (b)

Figure 5-9: Regions where experimental and numerical data were extracted. White circle
indicates were data for the caudal specimen holder was acquired. (a) DIC/Experimental

ROI; (b) Numerical data ROI.

An ROI of dimensions and position analogous to that defined for DIC was set in each model
(Figure 5-9b); displacements and strains of the anterior surface nodes contained within this
ROI were recorded and averaged for a given load or time step (Figure 5-11). For the fully
constrained BC, only VB displacements were acquired, and no further mathematical manip-
ulation was required (Figure 5-11a - black curve). For the partially constrained BC case, VB
and caudal specimen holder displacements (Figure 5-11 - green and blue curves) were ac-
quired. The true VB surface displacement was obtained by subtracting the displacement of
the caudal specimen holder from the VB surface displacements (Figure 5-11c - black curve).
Strains were acquired for all models.
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(a) (b)

Figure 5-10: Typical experimental/DIC results. (a) Displacement-time curves (Green curve
is the DIC displacement from the ROI on the anterior surface of the VB. Magenta is the

displacement from the caudal specimen holder and red is the difference between VB and
specimen holder displacements); (b) Strain-time curve.

(a) (b)

(c) (d)

Figure 5-11: Typical numerical results. Displacement and Strain-Time curves. (a) and (b)
Numerical results from the fully constrained BC models - acquired from similar ROI to DIC
on the anterior VB surface; (c) and (d) Numerical results from the partially constrained BC
models - Green curve is the numerical displacement acquired from similar ROI to DIC on

the anterior VB surface. Blue is the numerical displacement from the caudal specimen
holder and black is the difference between numerical VB and specimen holder

displacements.

As explained previously, reaction forces from the fully constrained BC models were not avail-
able. Instead, the experimental/input load was used to create load-displacement curves for
this case. For the partially constrained models, reaction loads were available at the bottom
node of the bottom spring (Figure 5-12b).
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(a) (b)

Figure 5-12: Load-Time curves. (a) Experimental/DIC - Magenta curve is the caudal load
cell data. Red curve is the cranial load cell data. (b) Numerical reaction load from the

partially constrained BC models.

In order to simplify the understanding and for ease of visualisation of the results, load-VB
resultant displacement curves were generated and will be displayed instead of displacement-
time and strain-time curves, Figure 5-13. This way of presenting the results allows for easy
comparison between specimens in terms of their stiffness. Quantitative numerical values are
presented as mean � standard deviation.

(a) (b)

Figure 5-13: Example of the presented results format, from spine 07, sample C2. Red curve
is the experimental/DIC resultant displacement from the VB anterior surface. Blue curve is
from VB anterior surface for partially constrained boundary condition models. Black curve

is from VB anterior surface for fully constrained boundary condition models. (a) Load-
displacement curves. (b) Load-Strain curves.

5.5 Results

A small representative sample of results is presented and discussed in the main body of
this thesis. The full set of results is presented in Appendix A for completeness. The samples
presented here were chosen to illustrate the most significant features identified in the dataset.

The geometrical models were converted into FE models and exported to ANSYS software.
The average number of elements for the specimen holders, bone cement, cartilage and ver-
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tebral bodies are summarised in Table 5.3. The solving time for each model, with bone ce-
ment and polyoxymethylene specimen holders defined as rigid bodies and using a Xeon 32
cores 120 Gb ram PC, was around 40 minutes, for both boundary conditions (BCs).

Table 5.3: Average quantity of elements.

Component Average No of
Hexahedrons

Average No of
Tetrahedrons

Specimen holders 108892 305663
Bone Cement 57579 162620

Cartilage 42 20302
Vertebral body 14304 60274

Average density and Young’s modulus were calculated for each model using the weighted
average approach previously described. The average model density was 1330�70 kg m�3,
ranging from 1240 kg m�3 to 1480 kg m�3 (Tables 5.4 and 5.5).

For the fully constrained BC models, the a factor from Equation 5.5 was 4.3, resulting in
KGSDynamicFC = 0.14. This value fulfilled all three requirements outlined in Section 5.3.5. Using
this factor, the average Young’s modulus of all models was 599�34 MPa (Table 5.4). For
the partially constrained boundary condition, the a factor was 3.4, a reduction of 20.5 %
compared to the fully constrained BC, resulting in a calibration coefficient of KGSDynamicPC =
0.11. In this case, the average modulus was 475�28 MPa (Table 5.5).

Table 5.4: Results comparison for the fully constrained boundary conditions models.

Spine No Body
Calibration

Factor
KGSDynamicFC

Density
[kg m�3]

Young’s
Modulus

[MPa]

Numerical
Stiffness
[N mm�1]

Experimental
Stiffness
[N mm�1]

Difference
[%]

07 C2

0.14

1350 606 48869 48140 +1.5
07 C3 1480 667 58185 75236 -22.7
07 C5 1360 613 76622 68102 +12.5
07 C7 1360 609 49272 60870 -19.0
08 C7 1300 582 36864 26035 +41.6
09 C7 1310 587 43393 37573 +15.5
10 C7 1260 567 58894 41603 +41.6
11 C7 1240 556 34254 39853 -14.0

Average
(SD) 0.14 1330

(70)
599
(34)

50794
(13710)

49677
(16850) +2.3%

Experimental load-displacement curves presented similar features to those obtained from
quasi-static experiments, displaying a toe region, followed by a linear section and a yield
point, with maximum displacements ranging from 0.2 mm to 0.9 mm (Figure 5-14). Predicted
load-displacement curves were almost completely linear for the fully constrained BC cases,
while non-linear behaviour with an inflexion point at 6 kN was evident for those obtained
for the partially constrained BC models (Figure 5-14).

Experimental stiffness values, measured in the region between 3 kN and 5 kN, ranged from
26 035 N mm�1 to 75 236 N mm�1 (Tables 5.4 and 5.5), with an average of 49677 � 16850
N mm�1. Stiffness calculated from numerical predictions ranged from 33 847 N mm�1 to
95 591 N mm�1, with averages of 50794�13710 N mm�1 and 52171�23713 N mm�1, for the
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fully and partially constrained BC models, respectively.

The differences between average experimental and numerical stiffness (Tables 5.4 and 5.5)
were 2.3 % and 5 % for fully and partially constrained BC models, respectively. For the fully
constrained BC models, the minimum and the maximum differences were 1.5 % and 41.6 %,
respectively. For the partially constrained BC models, the minimum and maximum stiffness
differences were 10.5 % and 40.4 %, respectively.

Table 5.5: Results comparison for the partially constrained boundary conditions models.

Spine No Body
Calibration

Factor
KGSDynamicPC

Density
[kg m�3]

Young’s
Modulus

[MPa]

Numerical
Stiffness
[N mm�1]

Experimental
Stiffness
[N mm�1]

Difference
[%]

07 C2

0.11

1350 481 40440 48140 -16.0
07 C3 1480 530 83124 75236 +10.5
07 C5 1360 487 95591 68102 +40.4
07 C7 1360 484 47702 60870 -21.6
08 C7 1300 462 36304 26035 +39.4
09 C7 1310 466 45662 37573 +21.5
10 C7 1260 450 33847 41603 -18.6
11 C7 1240 442 34697 39853 -13.0

Average
(SD) 0.11 1330

(70)
475
(28)

52170
(23713)

49676
(16850) +5.0%

The mean differences between experimental and numerical stiffness were 1100 N mm�1 and
2500 N mm�1, for fully and partially constrained BC models, respectively (Figure 5-15). The
non-parametric Mann-Whitney U Test highlighted no statistically significant difference bet-
ween the numerical and experimental stiffness (p > 0.05) for both BC cases (Figure 5-16).

The linear regression between experimental and numerical stiffness for the fully constrained
BC models was characterised by a slope of 0.59, R2 = 0.42, and a Lin’s concordance correla-
tion coefficient (CCC) of 0.70 (Figure 5-17a). For the partially constrained BC the slope was
1.18, R2 = 0.58 and CCC of 0.78 (Figure 5-17b).

Experimental load-time curves were characterised by a toe region, followed by a linear sec-
tion and a small rebound at the peak load, around 10 kN (Figure 5-18). Load-time curves
were not available for the fully constrained BC models; for the partially constrained BC mod-
els, the curves presented a bell shape, without a toe region (Figure 5-18 - black curves). An
inflexion point was observed around 6 kN, after which it returned to the original gradient.
The maximum numerical load values were around 10 kN, similar to those obtained experi-
mentally for the majority of the samples, although the gradients were different. FE models
for C7 VB for spines 08 and 09 were characterised by a maximum predicted load higher than
the experimental one, at 20 kN and 18 kN, respectively.

Similarly to Chapter 4, the toe region presented in the load-displacement plots and the move-
ment of the baseplate were subtracted from the DIC data to allow easier visual comparison
between experimental and predicted behaviour contour plots. Therefore, the contour plots
show the results without the influence of the toe region and the baseplate movement. The
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5-14: Load-Displacement and Load-Strain curves. Red curve is the
experimental/DIC from the VB anterior surface. Blue curve is from the VB anterior surface
for partially constrained boundary condition models. Black curve is from the VB anterior
surface for fully constrained boundary condition models. (a) and (b) Spine 07, sample C2;

(c) and (d) Spine 08, sample C7; (e) and (f) Spine 10, sample C7; (g) and (h) Spine 11, sample
C7.
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(a) (b)

Figure 5-15: Bland-Altman plot comparing experimental and numerical stiffness for both
BC models. D is the difference between experimental and numerical stiffness. Average is

the average between experimental and numerical stiffness. (a) Fully constrained BC
models; (b) Partially constrained BC models.

Figure 5-16: Box and Whiskers plots comparison between experimental and numerical
stiffness for both BCs.

numerical FE contour plots for the partially constrained BC models take into account the
movement of the baseplate and thus present larger values of displacement when compared
to fully constrained BC model results.

The majority of the models, for both BCs, presented similar displacement and strains distri-
butions contours to those obtained with DIC (Figures 5-19 to 5-22). Maximum experimental
displacement values ranged from 0.3 mm to 0.8 mm, while numerical displacement results
ranged between 0.1 mm and 0.5 mm for both cases with a tendency for the partially con-
strained BC models to be closer to experimental data compared to fully constrained ones.
Both BC cases had maximum displacement regions located in the same areas as shown by
DIC: at the cranial junction between cement and vertebral body.

Both boundary condition models presented similar contour strain distributions to experi-
mental but partially constrained BC had relatively higher strain levels when compared to
fully constrained cases, as confirmed in the load-strain curves (Figure 5-14). High strain
regions were also observed in the same areas highlighted by DIC, and maximum values
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(a)

(b)

Figure 5-17: Correlation plot comparing experimental and numerical stiffness values. (a)
Fully constrained BC models. R2 = 0.42 for a relationship of 0.57; (b) Partially constrained

BC models. R2 = 0.58, for a relationship of 1.13.

fluctuated from 0.02 to 0.04 #, for numerical and experimental data, respectively.

Impact energy was also measured, Figure 5-23. The peak internal energy, i.e. deformation
energy, in the fully constrained BC models varied from 2 J to 4 J; the kinetic energy was
almost zero. For the partially constrained BC models, kinetic and internal energy ranged
between 0 J and 28 J.

5.6 Discussion

In Chapter 4, a Finite Element (FE) specimen-specific modelling methodology was developed,
calibrated and validated for vertebral bodies (VBs) subject to a quasi-static loading regime.
This step was necessary to choose correctly a density to Young’s modulus equation and to
verify its capability of representing the material properties of a VB. Moreover, improvements
had to be conducted into the modelling process as it was reported to be very time-consuming
[17].

A second and logical step towards a complete FE modelling framework of the cervical spine

119



(a) (b)

(c) (d)

Figure 5-18: Load-Time curves. Magenta curves are the caudal load cell data. Red curves
are the cranial load cell data. Black curves are the numerical reaction load from the partially

constrained BC. (a) Spine 07, sample C2; (b) Spine 08, sample C7; (c) Spine 10, sample C7;
(d) Spine 11, sample C7.

for the study of rugby collisions is, therefore, to adapt such procedures, in terms of material
definitions, to the dynamic loading scenario. This step is important as very few studies have
characterised vertebral body bone properties for dynamic loading [61, 191]. The majority of
the studies which use FE spine models to evaluate dynamic scenarios typically do not cal-
ibrate/validate mechanical properties at the vertebral level but favour the use of the Range
of Motion (ROM) of the whole spine, which can cast doubts as to whether each individual
component is exhibiting the expected mechanical behaviour.

Instead of using an elastic-plastic material law, with a hardening parameter, as proposed by
some studies [61, 162, 175] - which would add more complexity to the modelling process -
the simpler approach of adjusting only Young’s modulus according to the loading rate was
chosen [154, 168, 198]. This approach is based on the idea that if stiffness increases with
the loading rate, the apparent Young’s modulus would also increase but would maintain a
relationship with the density of the specimen.

Eight VB samples (n=8) were prepared and tested; an impact load was applied via a falling
mass, and surface displacements from the anterior surface of the bone were measured using
DIC. The load was acquired via two load cells positioned at the cranial and caudal ends of
the sample.

Geometrical and numerical models were then created following the methodology developed
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(a) (b)

(c) (d)

(e) (f)

Figure 5-19: Spine 07, Sample C2. The load magnitude is 5 kN. (a) DIC Vertical displacements, in
m; (b) DIC vertical strains, in # (strain); (c) FE fully constrained BC vertical displacements, in m; (d)

FE fully constrained BC vertical strains, in # (strain); (e) FE partially constrained BC vertical
displacements, in m; (f) FE partially constrained BC vertical strains, in # (strain).
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(a) (b)

(c) (d)

(e) (f)

Figure 5-20: Spine 08, Sample C7. The load magnitude is 5 kN. (a) DIC Vertical displacements, in
m; (b) DIC vertical strains, in # (strain); (c) FE fully constrained BC vertical displacements, in m; (d)

FE fully constrained BC vertical strains, in # (strain); (e) FE partially constrained BC vertical
displacements, in m; (f) FE partially constrained BC vertical strains, in # (strain).
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(a) (b)

(c) (d)

(e) (f)

Figure 5-21: Spine 10, Sample C7. The load magnitude is 5 kN. (a) DIC Vertical displacements, in
m; (b) DIC vertical strains, in # (strain); (c) FE fully constrained BC vertical displacements, in m; (d)

FE fully constrained BC vertical strains, in # (strain); (e) FE partially constrained BC vertical
displacements, in m; (f) FE partially constrained BC vertical strains, in # (strain).
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(a) (b)

(c) (d)

(e) (f)

Figure 5-22: Spine 11, Sample C7. The load magnitude is 5 kN. (a) DIC Vertical displacements, in
m; (b) DIC vertical strains, in # (strain); (c) FE fully constrained BC vertical displacements, in m; (d)

FE fully constrained BC vertical strains, in # (strain); (e) FE partially constrained BC vertical
displacements, in m; (f) FE partially constrained BC vertical strains, in # (strain).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5-23: Energy-Time. Black curves are the potential energy from the fully constrained
models. Blue curves are the potential and kinetic energies from the partially constrained

models. (a) Fully Constrained BC, Spine 07, sample C2; (b) Partially Constrained BC, Spine
07, sample C2; (c) Fully Constrained BC, Spine 08, sample C7; (d) Partially Constrained BC,

Spine 08, sample C7; (e) Fully Constrained BC, Spine 10, sample C7; (f) Partially
Constrained BC, Spine 10, sample C7; (g) Fully Constrained BC, Spine 11, sample C7; (h)

Partially Constrained BC, Spine 11, sample C7.
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in Chapter 4: hexahedron elements were used for the core, while tetrahedrons for the sur-
face of the VBs. Specimen holders, bone cement and vertebral bodies were modelled. The
density of each VB was calculated from the models with the use of phantoms, as explained
in Chapter 4. The average density value for this set of samples (1330 kg mm�3) compared
well to that found in Chapter 4, for the calibration and validation sample sets (1300 kg mm�3

and 1330 kg mm�3, respectively).

After a video investigation and a preliminary DIC analysis, it was noticed that the base plate,
made of steel, and the load cells, made of an aluminium shell, elastically deflected during
the impact, up to 2 mm. This magnitude of displacements is comparable to the deformations
undergone by VB in similar studies. For example, Kazarian [115] measured the compressive
strength of the human vertebral centrum and reported an average deformation of 1.5 mm at
0.9 m s�1 displacement rate. As the current experiment is characterised by a more extreme
loading condition, with an impact velocity of 3.1 m s�1, it was expected that the magnitude
of VB deformation would be even smaller. As a consequence, the flexion of the baseplate
would affect the accuracy of the results obtained for the VB.

Bearing this in mind, two boundary condition (BC) set-ups were investigated. The first, fully
constrained BC, simulated the idealised experimental boundary conditions. With this BC,
the deformation of the VB is the actual deformation. The second BCs, partially constrained,
attempted to capture the deflection of the base plate within the model. In this case, the true
VB deformation is the difference between the total VB deformation and the movement of the
baseplate.

Two new and different factors, one for each BC, were then calculated to recalibrate the ma-
terials equation. Both were based on the previous KGSStatic as it was assumed that this a factor
already takes into account specimen variability and, therefore, this approach would simplify
the process of calibration and validation. Due to its higher level of constraints, the fully con-
strained BC had a larger conversion factor, KGSDynamicFC = 0.14, than the partially constrained
BC, KGSDynamicPC = 0.11. This BC was created to represent an idealised situation in which the
testing frame had not been deformed during the impact. A larger value was then expec-
ted, when compared to the other BC, as several studies have shown the direct influence of
BCs on numerical results: models with more constraints generally presented higher rigidity
modulus [90, 124, 186, 212, 233–235]. Additionally, the difference between those two factors,
around 20 %, was similar to those found by Yeni et al. [186], 15 %, and Ladd and Kinney
[90], 40 %, when the effects of fixed and not fixed BCs were analysed using FE models of
trabecular bone.

These numerical results were reflected in the experimental study by Keaveny et al. [89]. Tra-
becular bone samples were compressively loaded using two clamping techniques, end-cap
and platens; the latter BC presented 30 % smaller Young’s modulus than the specimens tested
with end-caps. A set-up similar to Keaveny et al. [89]’s end-caps was adopted in the current
experiment and it most likely would have affected the results; however, no other feasible
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way was found to suitably contain VBs at the time of impact. Furthermore, the chosen set-
up allowed a direct comparison with similar published studies [109, 137].

There is still a lack of studies and data about VB behaviour under such extreme loading
conditions. As a result, very few moduli values are available for comparison. For example,
Kazarian [115] conducted a study about the compressive strength of vertebral body centrums
across loading rates. There, an average modulus of 172 MPa was calculated for a displace-
ment rate of 0.9 m s�1; nevertheless, controlled displacements were applied in their study,
which is different in terms of energy and sample reactions to a high-speed impact, as per-
formed in this study.

The choice to define specimen holders and bone cement as rigid bodies in the model consid-
erably decreased the solving time, from 13 h to only 40 min. However, this resulted in the
unavailability of the reaction forces for the fully constrained BC. In this case, the restraints ap-
plied to the caudal specimen holder were transferred to its centre of mass. When restraint is
applied to a rigid body, it is applied to the centre of mass of that body. As a result, there were
no restrained nodes to generate reaction forces. Thus, in order to create load-displacement
curves, the experimental/input load data was used instead. This partially explains the lin-
earity presented by the load-displacement curves for this BC case models, as the majority of
the load curves were linear between 3 kN and 5 kN.

For the other BC models, reaction force data was available as the restraints were applied at
the caudal spring node, not at the rigid specimen holders, and therefore reaction forces could
be acquired from the models. The majority of load-displacement curves presented maximum
values similar to those seen experimentally. However, there was an inflexion point around
6 kN, which was translated to load-displacement curves; the origin of that was attributed to
the BCs. As seen in Figure 5-7, the caudal spring is stiffer than the cranial one. Just after
the impact, the caudal spring holds the displacement while the cranial spring continues to
elongate, deforming the VB. This extends until all parts are fully compressed and, with the
remaining energy, pushing downwards starts again. This effect was obvious on Spine 08,
sample C7 (Figure 5-18b).

Regardless of this limitation, the FE models were able to replicate the experimental tests.
In summary, the reaction loads were similar to those measured experimentally. In terms of
stiffness variability, the results for both BCs presented no statistically significant difference
to experimental data (p > 0.05); the large majority of the differences between numerical and
experimental data ranged from 1 % to 20 % and the average differences were 2.3 % and 5 %,
for fully and partially constrained BC modes, respectively. These differences were similar
to the quasi-static results, where the average difference was 3.7 %, varying between 2 % and
40 %.

The R2 values for both cases were relatively small, less than 0.60, with fully constrained
BC models being characterised by the lowest value. This is primarily caused by the small
sample size and does not reflect the accuracy of the modelling approach, as box and Whisker
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and Bland-Altman plots, combined with statistical tests, showed no significant difference
between experimental and numerical results and good agreement was achieved.

The majority of the numerical contour plots were in agreement with experimental findings.
Some plots, however, differed. For example, maximum areas of displacement were generally
similar and located at the junction between the VB and cranial specimen holder, as expected.
On the other hand, some plots, such as seen in Figure 5-20, presented different displacement
and strain contour distributions. Strains levels were higher for the partially constrained BC,
mostly due to the lower Young’s modulus and a less restricted BC, which allowed a more
free VB movement. The load-strain curves from the numerical results behaved similarly to
experimental for the majority of cases. As the majority of the models presented similarities to
experimental data, it could be inferred and reinforced the assumption that, for the purposes
of FE modelling, cortical bone might be a compact and denser version of cancellous and that
the grey-scale methodology is, to some extent, able to capture this variation and to translate it
into mechanical properties. In terms of magnitude, the strain levels were at least one-tenth of
the values acquired for the quasi-static case, around 0.025# against 0.05-0.1# from previously,
but they were in line to those shown by Garo et al. [191], which obtained strain levels around
0.1# in their dynamic compressive experiment of vertebral bodies at 2.5 m s�1 loading rate.

The energy was also measured in this step. The main energy for the fully constrained BC
case was the internal energy, as kinetic energy was close to zero. The maximum values ob-
served for this case, between 2 J and 4 J, were close to the values calculated by Kazarian [115].
At 0.9 m s�1 loading rate, their experimental maximum internal energy oscillated between
4.5 J and 6 J. This difference was expected as the current study used a higher loading rate,
and therefore, the specimens were stiffer, which decreases the amount of deformation en-
ergy absorbed by them during loading. For the partially constrained BC, kinetic energy was
available as well as an initial velocity was set. Kinetic and internal energies alternated due
to the linear elastic material properties set for bone and the lack of structural damping. The
maximum value was around 28 J, close to analytical value of 35.6 J calculated on Section 5.2.
This also increases the confidence in the modelling methodology and on the GS-density ap-
proach. As energy is directly related to mass, a correct set for density would reflect into the
initial energy state.

5.7 Conclusions

The modelling methodology of Chapter 4 was updated to allow the study of dynamic events
arising from rugby collisions. Experimental tests were conducted to define the mechanical
behaviour of the VB under impact loading, which has not been explored in literature. The
material properties definition of the quasi-static FE models developed in Chapter 4 was ad-
justed to include the stiffening of the bone due to a specific loading rate scenario, which was
also not fully assessed in the literature. Finally, after this calibration, the modelling frame-
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work was able to create predictive specimen-specific FE models of VBs for both static and
dynamic loading scenarios. Therefore, the next step is to apply such methodology to create
whole cervical spine models in order to evaluate impact conditions arising from rugby.

129



130



Chapter 6

Development and validation of
efficient specimen-specific finite
element models of the cervical spine
subject to impact loading

This chapter describes the calibration and validation of a finite element modelling meth-
odology for cervical spines under impact loading, including the experimental procedures.
Micro-CT images of the spines were acquired using the Nikon CT Scanning Unit available in
the Department of Mechanical Engineering at the University of Bath. Spinal kinematic data
were acquired and made available by the Department of Health, University of Bath, which
also used this data to calculate intervertebral disc stiffness [109]. The author conducted the
remaining procedures described in this chapter.

6.1 Introduction

In previous chapters, a simple methodology was developed to create specimen-specific finite
element (FE) models of vertebral bodies (VBs). It was calibrated and validated to be used for
both static and dynamic loading regimes. In the latter case, the material properties were
calibrated for a specific loading rate seen to match that of experimental data.

A third phase of the modelling process is, therefore, to integrate the previous steps into the
modelling of the whole cervical spine. The previously developed modelling methodology
will be applied and adapted to create VBs models within a cervical segment spine model.

Subsequently, a methodology to assign specimen-specific properties to the intervertebral
disc (IVD) will be developed. This step is essential as the IVD plays a significant role in
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the response of the spine to loading and the majority of disc FE models available in the lit-
erature cannot be directly translated into the present study due to the high rate of loading
used in this investigation.

The experimental tests described in this chapter aimed to simulate a sub-catastrophic impact
to a cervical spine arising from rugby tackles. The data acquired during this phase was used
to calibrate and to validate the finite element modelling methodology for the whole cervical
spine.

6.2 Experimental procedures

Three porcine spine segments, containing from C1 to T1 and aged between 8 and 12 months,
were acquired from local butchers, Figure 6-1a. Permissions for the use of animal samples in
this study was obtained from the local Animal Welfare, and Ethics Review Body (AWERB)
- none of the experiments carried out as part of this research are subject to Home Office
approval.

From these spine segments, C2 to C6 sections were dissected (Figure 6-1b); all soft tissues
were removed from the anterior aspect of each segment, but all other ligaments and muscles
were kept intact, following the recommendations from a previous study [137]. Wood screws
were added at the C6 caudal and C2 cranial end-plates to increase cement purchase and
cranial and caudal VBs were potted in polyoxymethylene specimen holders using PMMA
bone cement (Simplex, Stryker Corporation, USA) (Figures 6-1c and d). Care was taken to
keep C4-C5 levels aligned to the horizontal (transverse) plane [137]. After potting, samples
were labelled, wrapped in 0.2 % saline solution moistened tissue paper, double sealed and
kept frozen until the day of testing.

(a) (b) (c) (d)

Figure 6-1: Specimens preparation (from Boyd [261]). (a) Porcine cervical spine section; (b)
Dissected spine; (c) Screws inserted at the cranial end-plate to enhance fixation; (d) Potted

sample.
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In order to acquire data for the IVD under dynamic conditions, a kinematic study was con-
ducted in collaboration with colleagues from the Department of Health, University of Bath.
Data from this study was used to infer the global mechanical properties of the IVD in terms
of stiffness and damping coefficients [109]. This dataset of mechanical properties will be
used in the present study to assign material properties to the FE model of the IVD.

Briefly, kinematic impact data were acquired using a 3D motion capture system (Oqus,
Qualisys, Sweden). Motion capture markers (9.5 mm in diameter - Qualisys AB, Göteborg,
Sweden) were attached in a non-collinear arrangement to the anterior surface of the vertebral
bodies using epoxy adhesive (Figure 6-2a). Bespoke 3D printed motion capture clusters were
attached to C3, C4 and C5 VBs using a 4 mm x 50 mm self-tapping wood screw (RS Compon-
ents, United Kingdom) inserted on the posterior side of the VBs. Each cluster contained four
sphere motion capture markers. The samples were mCT scanned using the parameters de-
scribed in Section 4.2, Chapter 4, and the exact position of each marker was measured using
Simpleware ScanIP (v2017-18, Simpleware Synopsys, California, USA). After scanning, the
markers attached to the anterior aspects of the VBs were removed to allow DIC prepara-
tion (Figure 6-2b). A speckle pattern was applied to the samples following the procedures
described in Section 4.2, Chapter 4.

(a) (b)

Figure 6-2: Specimen preparation for motion capture and DIC. (a) Qualisys clusters and
spheres from 3D motion capture were attached to the dissected and potted porcine spines
(from Boyd [261] and Silvestros et al. [109]); (b) DIC pattern together with motion capture

markers (from Boyd [261]).

The experimental tests were conducted in the same impact device described in Section 5.2,
Chapter 5. The samples were mounted in the impact cage, Figure 6-3, and the caudal and
cranial specimen holders were rigidly attached to the base plate and the impact plate, re-
spectively. The baseplate of the impact cage was fixed to the base of the impact device, while
the impact plate was free to move vertically. A follower load of 100 N was applied to the
samples via two Bowden cables (CFS5.2; MISUMI Europa GMBH, Schwalbach, Germany),
one on each side of the specimen. With the addition of 5 kg from the impact plate, a total
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of 150 N was applied as a pre-load to the spine segment, mimicking the head’s weight due
to the passive muscle activity stiffening [137]. The load was measured in the same way
as presented in Section 5.2, Chapter 5: using two 22 kN compression-extension load cells
(Model SLC41/005000, RDP Electronics Ltd., Wolverhampton, UK), and TiePie Handyscope
HS5 and TiePie Multi-Channel software (TiePie Engineering, Netherlands). The acquisition
of data was triggered when the impact hammer was about to impact the cage via a light gate
assembled at the end course of the movement.

(a) (b)

Figure 6-3: Impact cage. (a) Schematic design of the impact cage (from Holsgrove et al.
[137]); (b) Spine assembled into the cage (from Boyd [261]).

The total impact mass used in previous experiments, 12.4 kg, was set to mimic the load and
energy experienced during a sub-catastrophic rugby tackle collision. This mass would gener-
ate an impact velocity, just before impact, of 3.1 m s�1 and total energy of 35.5 J when released
from a 0.5 m height.

Similarly to Section 5.2, Chapter 5, the impact was classified as inelastic, allowing v f to be
calculated. In this case, v f = 1.8 m s�1. Therefore, just after the impact, all bodies are moving
downwards at this speed. In order to verify this value, a preliminary analysis was conducted.
Spine 01 was arbitrarily chosen and the velocity of the cranial specimen holder was assessed
using DIC. The maximum velocity for this component was measured as 1.6 m s�1 (Figure
6-4). The theoretical velocity (v f ) was calculated for the impact plate, which is positioned
above the specimen holder and likely to lose energy due to its 5 kg mass. Therefore, it was
expected that the velocity at the impact plate would be higher than that of the specimen
holder and closer to the predicted value of 1.8 m s�1.

A five cameras motion capture system (Oqus, Qualisys, Sweden) was used to record kin-
ematic data from the impact, while two high-speed cameras (Photron Europe Ltd, UK) were
used to acquire DIC images. A rate of 4000 frames per second was used to capture the move-
ment using Photron FASTCAM Viewer (PFV) software (Photron Europe Ltd, UK); post-test
analysis was carried out using Vic-3D software (Correlated Solutions, South Carolina, USA).
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Figure 6-4: Cranial specimen holder velocity for spine 01 measure via DIC.

Standardised patterns were used before each test to calibrate DIC images, and optimal post-
test DIC parameter settings were obtained via a Taguchi sensitivity analysis (Appendix B).

Using the 3D motion capture system, kinematic data from five different spines subject to
impact loading was acquired; two of these samples were spines 01 and 02 used in this study.
The kinematic data, alongside the cranial load cell output, were used in an MBS simulation
to calibrate Kelvin-Voight bushing elements representing the behaviour of the intervertebral
disc and facets (Figure 6-5) [109].

(a) (b)

Figure 6-5: Experiment conducted by Silvestros et al. [109]. (a) Spine 01 musculoskeletal
model with kinematic markers; (b) Kelvin-Voight bushing elements used to represent the

biomechanical behaviour of the intervertebral discs under impact.

Four sets of four parameters, one set for each IVD, were obtained; each set comprised axial
and shear stiffness and axial and shear damping coefficients (Figure 6-5b). A joint, a com-
bination of facets and discs structural behaviour, was then composed on these four different
parameters.

Each test was conducted by releasing the 7.4 kg weight hammer from a vertical position. As
soon as the hammer crossed the light gate, DIC, 3D motion capture and load cells started
acquiring data. Care was taken to ensure that the final position of the impact hammer was
horizontal. The final experimental set-up is pictured on Figure 6-6.
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Figure 6-6: Experimental Procedures: impact rig, five cameras motion capture system, two
high-speed cameras.

6.3 Finite element modelling

6.3.1 Segmentation

Three tested spine samples were geometrically modelled using Simpleware ScanIP software
(v2017-18, Simpleware Synopsys, California, USA). In Chapters 4 and 5, single and isolated
VBs were modelled via a sequence of file manipulations, background image downscaling
and the application of modelling tools from Simpleware ScanIP software.

Aiming also to enhance the development of FE whole spine models, the previously de-
veloped modelling methodology was adapted to the modelling of spinal segments. The mCT
images of the whole spine were cropped in five different segments: C2 and cranial specimen
holder, C3, C4, C5 and C6 and caudal specimen holder and saved in separate files with a
resolution of 0.12 mm (Figure 6-7). Therefore, each file contained a different vertebra. Global
coordinate origins were preserved and not updated.

Each vertebra was individually modelled using the same procedures outlined in Chapters 4
and 5. Boolean tools were used to obtain a perfect contact interface between the parts for the
files containing the specimen holders and bone cement housings.

Once the geometrical model of each VB was ready, it was then imported back to the main
mCT file containing the whole spine segment. As the global origin was not changed after
cropping the segments, the models were imported and automatically placed in their original
position (Figure 6-8a).

The procedure followed for the segmentation of the IVD was similar to that adopted for the
VBs: whole spine mCT images were cropped into four different sections, each containing a
disc. Each cropped section was saved, keeping the original global origins and the vertebral
body models in order to apply boolean operations at a later stage. Each file was downscaled
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Figure 6-7: The division of the multiple vertebral bodies within the spine into individual
and independent files.

to 0.4 mm, and a single threshold filter was applied to create the geometry. The geometry was
imported back into the high-resolution file, where boolean operations and small adjustments
were conducted. Finally, the final IVD models were imported back into the spine segment
mCT file (Figure 6-8b).

Facet joints were modelled as frictionless contact surfaces [16, 148, 163, 200, 262, 263]. No
other soft tissues were included in the model.

(a) (b)

Figure 6-8: Geometrical modelling of the spine. (a) Vertebral body and specimen holder
models; (b) Intervertebral discs models.

6.3.2 Meshing

Vertebral bodies and intervertebral discs were modelled with two elements types: linear
hexahedrons, distributed internally, and linear tetrahedrons to create a smooth surface.
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6.3.3 Material properties

Material properties were assigned to bone segments based on the grey-scale value and fol-
lowing the procedures outlined in Section 5.2, Chapter 5. Bone segments were defined
as transversally isotropic (Section 4.3.3, Equation 4.4) and Equations 5.4 and 5.5 (Section
5.2, Chapter 5) were used to quantify values for the required moduli and Poisson’s ratio.
Between 40 and 60 different material properties were generated per VB model, as recom-
mended by Giambini et al. [94]. The material properties for the IVD were evaluated from the
kinematic analysis of the cervical spinal segment during the impact.

As the main experimental loading direction is axial, and the spine models developed in the
study aim to investigate axial impact loading, only the values of axial stiffness and axial
damping coefficients calculated by Silvestros et al. [109] were used in the model. The discs
were considered homogeneous and isotropic.

The axial stiffness values obtained by Silvestros et al. [109] were converted into material
properties for the disc using geometry considerations. Young’s modulus of an axially loaded
beam, E (MPa), can be expressed as:

E = kaxial �
L
A

(6.1)

where kaxial is the axial stiffness of the beam in N mm�1, L is beam length in mm, and A
is the cross-sectional area of the beam perpendicular to the loading axis, in mm2 (Figure 6-
9a). Considering that each spine segment was approximately under axial loading during the
experiment, the elasticity modulus of the IVD (EIVD) was approximated as, Equation 6.1:

EIVDaxial = k IVDaxial �
tDisc

ADisc
(6.2)

where k IVDaxial is the disc axial stiffness in N mm�1, tDisc (z) is the caudal to cranial thickness
of the IVD in mm and ADisc is the IVD cross-sectional area in mm2 (Figure 6-9b). Due to
the irregular geometry of the IVD, its cross-section was approximated to an ellipse, with the
dimensions of the axes (a and b in Figure 6-9b) being acquired directly from the models.
The ellipse small axis, denoted a in Figure 6-9b, represents the disc depth in the anterior-
posterior direction; the long axis, b in Figure 6-9b, is the mediolateral width of the disc. The
cross-sectional area of the IVD between C5 and C6 was calculated using the same technique,
although this disc forms an angle with respect to the caudal-cranial direction (Figure 6-8). In
this case, the elliptical area was perpendicular to the local caudal-cranial axis of the IVD. This
allowed the correct material properties to be assigned to the IVD as the stiffness coefficients
calculated by Silvestros et al. [109] are aligned with the local caudal-cranial axis of each disc
(Figure 6-5b).
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The Young’s modulus of each disc was calculated via Equation 6.2 using the stiffness data
obtained by Silvestros et al. [109] (Table 6.1) and the geometric characteristic of each disc.
Spines 01 and 02 in Table 6.1 are the same as spines 01 and 02 in this study. Spine 03 is
this study was not included in the dataset studied by Silvestros et al. [109]. The material
properties for the discs of this specimen were derived from the average properties on the
Silvestros et al. [109] dataset. Poisson’s ratio was set as 0.45 for the whole disc; this value
is the average between the most common Poisson parameter for nucleus pulposus, 0.40 [61,
148, 193, 202], and annulus fibrosus, 0.50 [50, 61, 148, 193, 264] found in the literature.

(a) (b)

Figure 6-9: Diagram of an axially loaded beam and comparison with the intervertebral
disc. (a) Diagram of a loaded beam and its dimensions; (b) The equivalence of an
intervertebral disc to a beam and the geometrical description of the disc: a is the

anterior-posterior width, b is the medio-lateral length and tDisc is the hight of the disc.

Table 6.1: Optimised axial stiffness calculated using a 3D motion capture system, from
Silvestros et al. [109]. Spines 01 and 02 are the same as spines 01 and 02 in this present
study. Spine 03 is this study was not included in the dataset studied by Silvestros et al.

[109]. The material properties for the discs of this specimen were derived from the average
properties on the Silvestros et al. [109] dataset.

Level C2-C3 C3-C4 C4-C5 C5-C6 C2-C3 C3-C4 C4-C5 C5-C6

Sample
Stiffness
[N mm�1]

Damping
[N s mm�1]

Spine 01 22x103 25x103 15x103 2.7x103 3.0 6.0 2.0 2.0
Spine 02 29x103 19x103 24x103 2.0x103 1.8 5.5 2.2 1.8
Spine A 25x103 38x103 20x103 1.2x103 3.9 7.3 3.6 4.0
Spine B 26x103 26x103 33x103 3.0x103 5.7 3.0 2.4 2.6
Spine C 22x103 35x103 14x103 2.0x103 1.4 8.9 7.7 3.0
Average

(SD)
25x103

(3x103)
29x103

(7x103)
22x103

(8x103)
2x103

(1x103)
3.0
(2)

6.0
(2)

3.6
(2)

2.7
(1)

6.4 Validation of the intervertebral disc material properties

6.4.1 Boundary conditions, material properties and load application

The FE models developed in previous sections were adapted so that the same BCs used
by Silvestros et al. [109] could be applied. Polyoxymethylene specimen holders and bone
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cement were omitted from these models, and the vertebral bodies were set as rigid bodies.
The caudal VB was fully restrained, and the cranial vertebra was only laterally constrained.
The same load profiles used by Silvestros et al. [109] were applied to the FE models.

6.4.2 Presentation and analysis of experimental and numerical data

Vertebral displacements obtained from DIC were compared to those calculated from the 3D
motion capture and FE models. VIC-3D software (Correlated Solutions, South Carolina,
USA) was used, in the case of DIC, to extract an average displacement from an ROI de-
limited by a rectangular area on each VB level (Figure 6-10a), similarly to Chapter 5. The
average displacement of each VB was measured on the lateral marker clusters and from the
markers attached to the cranial and caudal specimen holders (Figure 6-10b). Finally, as VBs
were set as rigid bodies, numerical displacements from the FE models were acquired from a
single node at the centre of each VB (Figure 6-10c).

(a) (b) (c)

Figure 6-10: Data acquisition. (a) From DIC, averages from the Region of Interest (ROI)
areas on each VB level; (b) From 3D markers, average from the lateral clusters on each VB

level, in red; (c) From FE models, node displacements on each VB level, in red.

After a preliminary DIC analysis, it was noticed that the caudal pot, impact cage and load
cell, translated as a consequence of the impact. Therefore, the same procedures for data
analysis and presentation adopted in Chapter 5, Section 5.4. The baseplate movement was
inferred from the bottom-most ROI in Figure 6-10a, and from the bottom-most marker on
the 3D motion data, Figure 6-10b. For the FE models, as the caudal VB was constrained to
mimic the boundary conditions used by Silvestros et al. [109], the data was not modified in
these simulations (Figure 6-11a).

The load was acquired via caudal and cranial load cells (Figure 6-11b). Stiffness values were
obtained for each VB level from the slope of the load-displacement curves (Figure 6-11c). The
impact loads applied during this phase of the study were sub-catastrophic and exhibited a
peak load around 4 kN. Due to the lower peak load magnitude measured here compared
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to those in Chapters 4 and 5, stiffness calculation had to be performed over a lower loading
range: 1 kN and 3 kN as opposed to 3 kN and 5 kN used in previous chapters. In addition to
caudal-cranial, anterior-posterior displacements were also assessed. As the VBs were set as
rigid bodies, no VB strain output was possible from these models. Quantitative numerical
values are presented as mean � standard deviation. An explicit analysis was defined, and
frictionless contact was defined between the vertebral bodies and facets.

(a) (b)

(c)

Figure 6-11: Experimental and numerical data. (a) Example of data Displacement-time for cranial
specimen holder from spine 01. The blue curve is the 3D marker data, the red curve is the DIC data
and the black curve is the FE data; (b) Example of a load-time plot from spine 01. Red curve is the

caudal load and the magenta curve is the cranial load; (c) Load-displacement plots.

6.4.3 Results

A total of time of 2 h and 20 min was spent on average on the creation of the geometries
for each model (Figure 6-12a). The time required to model each vertebral component was
around 20 min (Figure 6-12b), while each intervertebral disc (IVD) took around 10 min (Fig-
ure 6-12c).

Once all geometrical models were created, they were meshed using Simpleware ScanIP soft-
ware. The average quantity of elements for the specimen holders, bone cement, cartilage
and vertebral bodies are summarised in Table 6.2. The spine models were then exported
to ANSYS Mechanical APDL software (ANSYS Inc, Pennsylvania, USA) and the inbuilt LS-
DYNA solver (Livermore Software Technology Corporation (LSTC), California, USA) was
used to solve the models using Xeon 32 cores 120 Gb Ram PC. The solving time per model
was around 2 h. The model of Spine 02 did not fully solve due to high levels of distortion in
the elements of the disc between C5 and C6.
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(a) (b) (c)

Figure 6-12: Spine 01 geometrical models. (a) The whole model; (b) Vertebral bodies; (c)
intervertebral discs.

Table 6.2: Average quantity of elements per spine.

Component Average No of
Hexahedrons

Average No of
Tetrahedrons

Specimen holders 108892 305663
Bone Cement 57579 162620

Vertebral body 13618 93585
Intervertebral disc 434 28330

The intervertebral disc Young’s moduli were calculated based on the stiffness values from
Silvestros et al. [109] and the IVD geometrical dimensions, Table 6.3. The smallest values for
E were found for the IVD between the C5 and C6 levels for all samples and ranged between
15 MPa to 22 MPa. The largest value was found for discs on C3-C4 level, ranging between
176 and 227 MPa.

Table 6.3: Intervertebral disc geometrical dimensions for the spine samples: a is the
anterior-posterior length, b is the medial-lateral length and tDisc is the caudal-cranial length.

Spine 01 Spine 02 Spine 03
Disc
Level

a
[mm]

b
[mm]

tDisc
[mm]

E
[MPa]

a
[mm]

b
[mm]

tDisc
[mm]

E
[MPa]

a
[mm]

b
[mm]

tDisc
[mm]

Area
[mm2]

C2-C3 21 33 5.5 225 26 35 5 206 25 37 4 142
C3-C4 21 34 5 227 24 32 5.5 176 27 35 5.5 199
C4-C5 23 33 4.5 113 22 35 5 190 28 37 6.5 187
C5-C6 23 33 5 22 23 32 5 19 27 37 5 15

Cranial experimental loads (Figure 6-13) were correlated to VB vertical displacements, from
DIC, markers and FE, and plotted in load-displacement curves (Figure 6-14). As the VBs
were defined as rigid bodies, stiffness was not assessed as a way of comparison. Instead,
Bland-Altman plots and Lin’s Concordance Correlation Coefficient (CCC) were used to eval-
uate the agreement between experimental and numerical displacement results for a given
load step (Figure 6-15 and Table 6.4). The results not shown in this section are in Appendix
A.
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Figure 6-13: Load-time plots. Red curve is the caudal load and the magenta curve is the
cranial load. Solid line is from spine 01, dashed line is from spine 02 and dotted line is from

spine 03.

Figure 6-14: Load-vertical displacement plots. Top left are the C2 level results. Top right are
the C3 level results. Bottom left are the C4 level results. Bottom right are the C5 level

results. Blue curves are the 3D marker data, red curves are the DIC data and black curves
are the FE data. Solid lines are from spine 01, dashed lines are from spine 02 and dotted

lines are from spine 03.

Figures 6-14 and 6-15 show better agreements between DIC and FE models than 3D mo-
tion markers and FE models. The Bland-Altman plots indicate that the average difference
between DIC and predicted displacements varied between 0.05 mm and 0.64 mm for spine
01, between 0.05 mm and 0.46 mm for spine 02 and between 0.08 mm and 0.55 mm for spine
03. The relationship for the regression line varied between 0.62 and 1.10 for spine 01, between
0.61 and 1.64 for spine 02 and between 0.87 and 0.94 for spine 03. Vertebrae C2 presented the
largest average difference and the lowest relationship for the regression line for all spines.

The average difference between markers and numerical displacements varied between 0.16
mm and 1.2 mm for spine 01, between 0.06 mm and 0.91 mm for spine 02 and between
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6-15: Bland-Altman plots comparing experimental and FE displacements for spine
01. On the left hand side is the comparison between DIC and FE displacements. On the

right hand side is the comparison between markers and FE displacements. D is the
difference between experimental and numerical displacements. Average is the average

between experimental and numerical displacements. (a) and (b) C2 vertebrae; (c) and (d) C3
vertebrae; (e) and (f) C4 vertebrae; (g) and (h) C5 vertebrae.

0.17 mm and 0.92 mm for spine 03. The relationship for the regression line varied between
0.72 and 1.06 for spine 01, between 0.81 and 15.6 for spine 02 and between 0.56 and 2.26 for
spine 03.

Average Lin’s concordance correlation coefficient for DIC was higher than 0.80, varying
between 0.64 to 0.98, and with standard deviations lower than 0.15, Table 6.4. Vertebrae
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C2 presented the lowest levels. The concordance coefficients between markers and numer-
ical displacements were smaller than DIC, varying between -0.04 and 0.95, with averages of
0.64�0.24, 0.55�0.48 and 0.60�0.28 for spines 01, 02, and 03, respectively. Spine 02 obtained
the lowest CCC averages for both DIC and markers, 0.80�0.14 and 0.55�0.48, respectively.

Table 6.4: Lin’s Concordance Correlation Coefficient (CCC) between numerical and
experimental displacements, for both DIC and markers.

Numerical and DIC Numerical and Markers
Spine
Level

Spine 01 Spine 02 Spine 03 Spine 01 Spine 02 Spine 03

C2 0.64 0.69 0.72 0.32 0.37 0.55
C3 0.98 0.94 0.94 0.70 0.95 0.89
C4 0.91 0.67 0.90 0.64 -0.04 0.74
C5 0.94 0.89 0.85 0.91 0.93 0.23

Average
(SD)

0.87
0.15

0.80
0.14

0.85
0.10

0.64
0.24

0.55
0.48

0.60
0.28

In addition to vertical, anterior-posterior displacements were also measured, but only for
C3, C4 and C5 levels, as C2 and C6 were laterally constrained (Figure 6-17). Experimentally,
spine 01 maximum displacements were at C3 and C4 levels, around 4 mm, for both DIC
and markers data. For spine 02, it was at C4, around 2.5 mm, for both DIC and markers.
Finally, spine 03 had also the maximum displacements at C4 level, with DIC and markers
having close results, 2 mm and 1.4 mm, respectively. The lowest levels of anterior-posterior
displacements were seen at C5 levels, with the exception of spine 02, for which it was on
C3 level. Numerically, the largest anterior-posterior displacements occurred for level C5,
average of 2 mm, followed by C4, 1.5 mm, and C3, 0.5 mm, for all the specimens.

As the anterior aspects of the discs are relatively small, not allowing a full view capture by
DIC, the disc contour plots for both vertical and anterior-posterior strain were only numer-
ically accessed (Figure 6-16). High and compressive caudal-cranial strain levels were seen
mostly at the IVD between C5 and C6 VBs, around -0.10 # for spine 01, -0.078 # for spine
02 and -0.062 # for spine 03. High caudal-cranial strains levels were mostly located at the
posterior side of the discs. Anterior-posterior strains were maximum also at lower vertebral
levels, 0.037 # for spine 01, 0.095 # for spine 02 and 0.022 # for spine 03.

6.5 Evaluation of the cervical spine FE models

Once the material properties of the disc were evaluated and compared, VBs were set as
deformable objects, and specimen holder and bone cement housings were included in the FE
model. Similarly to the boundary condition investigation carried out for the VBs in Chapter
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(a) (b)

(c) (d)

(e) (f)

Figure 6-16: Vertical and Shear strains, in # (strain). (a) Spine 01 - Vertical strains; (b) Spine
01 - Shear strains; (c) Spine 02 - Vertical strains; (d) Spine 02 - Shear strains; (e) Spine 03 -

Vertical strains; (f) Spine 03 - Shear strains.
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5, two distinct BCs were investigated as a translation of the impact cage, and load cell had
been observed during the experiments.

Figure 6-17: Anterior-posterior displacement-time plots. Top left is the C3 level results. Top
right is the C4 level results. Bottom centre is the C5 level results. Blue curves are the 3D

marker data, red curves are the DIC data and black curves are the FE data. Solid lines are
from spine 01, dashed lines are from spine 02, and dotted lines are from spine 03.

Boundary conditions, load application and mechanical properties

Similarly to the approach adopted in Chapter 5, two boundary conditions were applied:
fully and partially constrained. In the first case, the caudal pot was fully constrained while
the cranial pot was free to move vertically (Figure 6-18a). The experimental load-time profile
acquired from the cranial load cell was applied vertically via a rigid plate created at the
cranial end of the sample.

The partially constrained BC took into consideration the baseplate movement (Figure 6-18b).
The experimental load-displacement curves from the caudal and cranial specimen holders
were acquired, via DIC and load cells. The two datasets were synchronised, and two load-
displacement curves, one for the cranial and one for the caudal specimen holders movements
were obtained. Two rigid plates were created, one at the bottom and one at the top of the
specimen holders, and two vertical non-linear springs were attached, one on each plate. The
end of each spring was fully constrained and positioned 5 mm away from the surface of
the plates. The stiffness of the springs was set according to the load-displacement curves
experimentally acquired from DIC for the margins of the specimen holders. The top plate
was set with an initial velocity of 1.8 m s�1 and a concentrated mass of 12.4 kg was placed in
its centre.

The material properties for the VBs were assigned following the same approach described in
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Chapter 5. Bone was defined as a transversally isotropic material and Equations 4.4, 5.4 and
5.5 were used to relate grey-scale value to Young’s modulus, taking care to use the corres-
pondent factor for each of the BCs, i.e. KGSDynamicFC = 0.14 for fully constrained and KGSDynamicPC

= 0.11 for partially constrained. Specimen holder, bone cement and plates were set as rigid
bodies in order to improve the solving time. Cartilage was not present in these models. The
IVD was defined as isotropic material with the properties of Table 6.3.

(a) (b)

Figure 6-18: Spine Boundary Conditions. (a) Fully constrained; (b) Partially constrained.

6.5.1 Presentation and analysis of experimental and numerical data

Regions of interest (ROIs) were defined by a rectangular area on the anterior surface of each
vertebral body (Figure 6-19a). Caudal and cranial displacements were acquired from a point
next to the junction between specimen holders and bone cement. Average displacements
of each ROI was obtained via VIC-3D software. The caudal specimen holder displacements
were subtracted from the DIC data in order to evaluate the true VB displacements. Kinemat-
ics markers data were not used in this part of the study; Numerical displacements from the
surface nodes within each ROI were obtained and averaged for a given load step (Figure
6-19b). For the partially constrained BC models only, the caudal specimen holder displace-
ments were subtracted from the FE data in order to evaluate the true VB displacements.

148



(a) (b)

Figure 6-19: Regions of interest (ROIs) were defined by a rectangular area on the anterior
surface of each vertebral body. Average displacements of each ROI was obtained via

VIC-3D software for DIC (Correlated Solutions, South Carolina, USA). Caudal and cranial
displacements were acquired next to the junction between specimen holders and bone
cement. In a similar way, numerical displacements were acquired by setting identical

experimental ROIs to the numerical models. Displacements from the surface nodes within
each ROI were acquired and averaged for a given load step.(a) From DIC; (b) From FE

models.

The numerical load was acquired via the reaction forces at the caudal constraints, except
for the fully constrained BC models, as explained in Chapter 5, Section 5.4. Contour plots
for vertical and anterior-posterior displacement and strain, from both DIC and FE, were
compared to each other at the time of maximum load. Due to the small anterior dimension
of the IVDs, it was not possible to identify a reasonable sized ROI for these structures and,
therefore, IVD data is not available. Quantitative numerical values are presented as mean �
standard deviation.

6.5.2 Results

As these models were identical in terms of geometry and mesh to those presented in Section
6.4.3, they were described by Table 6.2. The solving time was around 7 h hours per model
using a Xeon 32 cores 120 Gb ram PC.

Density values varied between 1220 kg m�3 and 1340 kg m�3, with averages of 1240 kg m�3,
1270 kg m�3 and 1300 kg m�3 for spines 01, 02 and 03, respectively, Tables 6.5 and 6.6. For
the fully constrained BC models, with KGSDynamicFC = 0.14, the average moduli were 559�15
MPa, 568�29 MPa and 584�7 MPa for spines 01, 02 and 03, respectively. For the partially
constrained BC models, KGSDynamicPC = 0.11, the average Young’s moduli were 444�12 MPa,
451�23 MPa and 463�5 MPa, respectively. The lowest values were observed for spine 01,
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while the greatest for spine 03, for both BCs.

(a) (b)

Figure 6-20: Numerical model for spine 01. (a) Fully constrained BC model; (b) Partially
constrained BC model.

Table 6.5: Results comparison for the fully constrained boundary conditions models.
Young’s modulus and density were not available for rigid bodies.

Spine
No Body Calibration

Factor
Density
[kg m�3]

Young’s
Modulus

[MPa]

Numerical
Stiffness
[N mm�1]

Experimental
Stiffness
[N mm�1]

Difference
[%]

01

Top Pot

0.14

- - 875 1523 -43
C3 1280 576 1415 3529 -60
C4 1220 550 1360 3645 -63
C5 1220 550 1380 3504 -19

02

Top Pot

0.14

- - 1542 2295 -33
C3 1340 601 2018 6129 -67
C4 1240 559 2126 9535 -78
C5 1210 545 2262 3242 -30

03

Top Pot

0.14

- - 1618 1523 +6
C3 1310 587 2354 3683 -36
C4 1310 588 2723 3451 -21
C5 1280 576 2840 2904 -2

Numerical load-time curves were acquired, but only for the partially constrained BC mod-
els (Figure 6-21). The load profiles presented a bell shape similar to experimental, with a
maximum load around 3.5 kN. However, the load was unstable and oscillated, a behaviour
particularly evident for spine 02; as a consequence of this, numerical load-displacement
curves for the partially constrained BC models also presented this oscillation behaviour, es-
pecially for loads higher than 2 kN (Figure 6-22, blue curves). Fully constrained BC load-
displacement curves, on the other hand, presented a typical behaviour, characterised by a
toe region followed by a linear part and a final smooth inflexion point (Figure 6-22, black
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curves). The predicted numerical displacement for the maximum load was around 2.5 mm
for all vertebral levels, while it was measured between 1 mm and 2 mm using DIC.

Table 6.6: Results comparison for the partially constrained boundary conditions models.
Young’s modulus and density were not available for rigid bodies.

Spine
No Body Calibration

Factor
Density
[kg m�3]

Young’s
Modulus

[MPa]

Numerical
Stiffness
[N mm�1]

Experimental
Stiffness
[N mm�1]

Difference
[%]

01

Top Pot

0.11

- - 790 1523 -48
C3 1280 458 1266 3529 -64
C4 1220 437 1319 3645 -64
C5 1220 444 1294 3504 -63

02

Top Pot

0.11

- - 479 2295 -79
C3 980 442 2561 6129 -58
C4 1340 478 2371 9535 -75
C5 1240 444 2392 3242 -26

03

Top Pot

0.11

- - 2034 1523 +34
C3 1310 466 2662 3683 -28
C4 1310 467 3131 3451 -9
C5 1280 457 2729 2904 -6

Figure 6-21: Load-time plots. Red curve is the experimental caudal load, the magenta curve
is the experimental cranial load and black curve is the numerical load from partially

constrained BC models. Solid line is from spine 01, dashed line is from spine 02 and dotted
line is from spine 03.

Vertebral stiffness was calculated between 1 kN and 3 kN from load-displacement curves
(Tables 6.5 and 6.6). Average experimental VB stiffness calculated from DIC for spines 01, 02
and 03, were 3050�1020 N mm�1, 5300�3260 N mm�1 and 2890�968 N mm�1, respectively.

The average VB stiffness for fully constrained BC models were 1257�256 N mm�1, 1987�313
N mm�1 and 2384�551 N mm�1, for spines 01, 02 and 03, respectively, while the averages
for the partially constrained BC models were 1167�252 N mm�1, 1951�985 N mm�1 and
2639�453 N mm�1, for spines 01, 02 and 03, respectively.
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Figure 6-22: Load-vertical displacement plots. Top left is the C2 level results. Top right is
the C3 level results. Bottom left is the C4 level results. Bottom right is the C5 level results.
The red curves are the DIC data, the black curves are the FE data for the fully constrained
BC models, and the blue curves are the FE data for the partially constrained BC models.

Solid lines are from spine 01, dashed lines are from spine 02, and dotted lines are from spine
03.

The numerical models generally underestimated VB stiffness when compared with the ex-
perimental values. This remained true independently of the boundary condition set-up in
the models (Figure 6-23). For spine 01, the average difference was 59 % and 62 %, for fully
and partially constrained BC models, respectively. For spine 02, such difference was 63 %
for both BC models. For spine 03, the differences between experimental and numerical res-
ults were smaller, 18 % and 9 %, for fully and partially constrained BC models, respectively.
Non-parametric Mann Whitney U Tests indicated statistically significant differences between
numerical and experimental (DIC) stiffness for spine 01, for fully and partially BCs models,
and spine 02, for fully BC models only (p < 0.05). Bland-Altman plots presented average
difference between experimental and numerical data around �1900 N mm�1, for both BC
models (Figure 6-24).

The outliers of spine 02, VB samples C3 and C4 were not included in the calculation of the
best fit line between numerical and experimental data. A correlation between DIC and FE
stiffness found a R2 = 0.15, for a relationship of 0.30, for the fully constrained BC models
(Figure 6-25). For the partially constrained BC models, R2 = 0.13, for a relationship of 0.38
was found. Lin’s Concordance Correlation Coefficient (CCC) were 0.18 and 0.19, for fully
and partially constrained BC models, respectively.

Caudal-cranial strains were assessed on the anterior surface of the VBs from both DIC and
numerical data (Figure 6-26). Maximum experimental strains were the highest at the C3 level
for all samples, around -0.02# (compressive). The maximum strains of C4 vertebrae ranged
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Figure 6-23: Box and Whiskers plots comparison between experimental and numerical
stiffness for both BCs for each spine.

(a) (b)

Figure 6-24: Bland-Altman plot comparing experimental and numerical stiffness for both
BC models. D is the difference between experimental and numerical stiffness. Average is

the average between experimental and numerical stiffness. (a) Fully constrained BC
models; (b) Partially constrained BC models.

between 0.005# and 0.01#, while the C5 level was characterised by strains close to zero, with
the exception of spine 02, which exhibited strains up to 0.015#. Numerically predicted strains
were similar in magnitude to experimental ones at the C4 level for these segments. The C3
level exhibited compressive strain values up to 0.004#. Finally, numerically predicted values
for level C5 of spine 03 were also around zero.

A small representative sample of the contour plots is presented and discussed within the
main body of this chapter. The full set of results is presented in Appendix A. Experimentally,
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Figure 6-25: Correlation plot comparing experimental and numerical stiffness values. Top
plot is for fully constrained models. Bottom plot is for partially constrained models.

Figure 6-26: Load-vertical strain plots. Top left is the C3 level results. Top right is the C4
level results. The bottom is the C5 level results. The red curves are the DIC data, the black
curves are the FE data for the fully constrained BC models, and the blue curves are the FE

data for the partially constrained BC models. Solid lines are from spine 01, dashed lines are
from spine 02, and dotted lines are from spine 03.

maximum and minimum vertical displacement regions were located at the junction between
C2 and the cranial specimen holder and between C6 and the caudal specimen holder, for all
samples, respectively (Figure 6-27, left-hand side). Similar contour plot patterns to those ob-
tained experimentally were observed for the majority numerically predicted displacements.
However, in all cases, some differences were found, as expected, and displacement mag-
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nitudes were greater than experimental ones and partially constrained BC models presented
the most significant displacement levels. Strains plots (Figure 6-27, right-hand side) indic-
ated surface tension arising on VBs between C3 and C5, while compression was noticed
between C2 and C3 and between C5 and C6. This was true for all samples and was reflected
both on experimental and FE contour plots. Strain magnitudes were comparable between
experimental and FE datasets. Areas of high strain were observed both by DIC and FE mod-
els on the surface of C2 and on the IVD between C2 and C3. FE models also predicted high
strain levels on the IVD between C5 and C6 in all models, but this finding was not confirmed
experimentally.

Good agreements between experimental and numerical anterior-posterior displacements we-
re achieved for the majority of the models. The fully constrained FE models predicted dis-
placements ranging from 3 mm for spine 01 at the C4 level and 2 mm at C3 and C5. For spine
02, the maximum was at C4, 2 mm, and the minimum at C3, around 1.5 mm; while for spine
03, the maximum values were 2 mm at C3 and C4. Similar trends were seen for the partially
constrained BC models.

DIC contour plots of the anterior-posterior displacements (Figure 6-29, left-hand side) high-
lighted similar behaviour for displacement as presented by the load-displacement plots on
Figure 6-28, i.e. the maximum displacement regions were around C4 and C5 VBs and the
minimum on C2, C3 and C6 VBs. The numerical contour plots were similar to experimental,
for both BC models, and maximum and minimum values were located at the same regions
as pictured by DIC. In terms of shear strains (Figure 6-29, right-hand side), high levels were
observed for all samples on the pedicles and the intervertebral discs between C2 and C3 and
between C5 and C6, for both DIC and FE models (both BC models).

The intervertebral discs between C5 and C6 presented higher levels of strain when compared
to other discs (Figure 6-29). Numerical axial strains levels for the intervertebral discs (Fig-
ure 6-30, left-hand side) were slightly higher for the fully constrained than for the partially
constrained BC models for spine 01, but lower for spines 02 and 03; and they were located
towards the posterior half of the IVD. High shear strains were observed in the disc between
C5 and C6, mostly in the posterior region.

6.6 Discussion

This study aimed to create specimen-specific Finite Element (FE) models to predict the bio-
mechanical behaviour of the cervical spine under axial impact loading. To achieve this aim,
an incremental approach was adopted.

Firstly, specimen-specific vertebral body models were created and validated for quasi-static
loading condition. This step was necessary as segmentation and modelling were reported
as time-consuming processes in the literature [17]; a large variety of modelling options was

155



(a) (b)

(c) (d)

(e) (f)

Figure 6-27: Vertical displacements and strains for spine 01. (a) DIC Vertical displacements,
in m; (b) DIC vertical strains, in # (strain); (c) FE fully constrained BC vertical displacements,

in m; (d) FE fully constrained BC vertical strains, in # (strain); (e) FE partially constrained
BC vertical displacements, in m; (f) FE partially constrained BC vertical strains, in # (strain).
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Figure 6-28: Anterior-posterior displacement-time plots. Top left are C3 level results. Top
right are C4 level results. Bottom centre are C5 level results. Red curves are DIC data, black
curves are the FE data for the fully constrained BC models, and blue curves are FE data for

the partially constrained BC models. Solid lines are from spine 01, dashed lines are from
spine 02, and dotted lines are from spine 03.

available in the literature, and several equations which link specimen density to material
properties are also available [57]. A single, calibrated and validated methodology to create
geometrical and FE models of vertebral bodies was needed; this was achieved with the work
presented in Chapter 4.

The next step was to calibrate the modelling methodology of single VBs for the dynamic
loading. This was conducted to take into account the viscoelastic properties of the bone for
a specific loading rate, a step neglected by many authors [61, 191]. This work was presented
in Chapter 5.

Finally, the framework was applied for the modelling of the whole porcine cervical spine. In
this case, however, the mCT image files were considerably larger, around 20 Gb, compared to
the VB ones. As a result, it became difficult and time-consuming the use of the segmentation
tools from ScanIP at all levels and at the same time. The solution adopted was to split the
VBs into different files and to apply the modelling tools individually.

The time spent in the geometrical modelling for each VB was around 10 min, shorter than
that required to segment VBs reported in Chapters 4 and 5. This improvement is due to the
lack of bone cement around the VB, which considerably slowed the segmentation process
as PMMA has a density similar to that of many bone segments, thus necessitating frequent
manual intervention in the borders between VB and cement. Once the VB geometries were
finalised, they were imported back to the original whole spine and larger file.
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(a) (b)

(c) (d)

(e) (f)

Figure 6-29: Anterior-posterior displacements and shear strains for spine 01. (a) DIC
Vertical displacements, in m; (b) DIC strains, in # (strain); (c) FE fully constrained BC
displacements, in m; (d) FE fully constrained BC strains, in # (strain); (e) FE partially

constrained BC displacements, in m; (f) FE partially constrained BC strains, in # (strain).
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(a) (b)

(c) (d)

Figure 6-30: Vertical and shear strains for the intervertebral discs from spine 01, in #
(strain). (a) Vertical strains for numerical fully constrain BC; (b) Anterior-posterior strains

for numerical fully constrain BC; (c) Vertical strains for numerical partially constrain BC; (d)
Anterior-posterior strains for numerical partially constrain BC.

6.6.1 IVD validation

The next step focused on modelling the IVD. There is a debate in the literature on how the
load is shared by this structure and on relative contribution among the annulus and nucleus
for the disc stiffness, especially at high loading rates [100, 118, 118, 232, 265]. As seen in
Chapter 1, many studies have highlighted the nucleus as being responsible for keeping the
annulus and its fibres in tension when the IVD is under quasi-static loading. Newell et al.
[118] investigated whether this remained true for dynamic loading. They found that the lack
of the nucleus internal pressure did not affect the loading transfer mechanisms and that the
annulus plays a more important role in IVD stiffness and biomechanical behaviour under
dynamic loading than previously anticipated. They hypothesised that, at high loading rates,

159



time is not sufficient to allow fluid exudation from the nucleus, therefore being constrained
by the annulus; the nucleus main effect is to restore disc height. They also suggested that the
acquisition of more accurate material properties for the annulus and its constituents should
be prioritised over the nucleus to improve IVD FE models responses under dynamic loading.
However, care must be taken to interpret these results, as pointed previously.

Several other studies analysed the influence of the various parameters on IVD FE mech-
anical behaviour. Marini and Ferguson [176] investigated whether the number of annulus
layers and collagen fibres affect IVD model’s accuracy under impact loading; these struc-
tures tend to be simplified in numerical models to around 5 or 6 layers only. They found
that the number of layers and the lack of fibres do not have a significant influence on IVD
response. Earlier, Fagan et al. [232] conducted a material sensitivity study using lumbar
IVD FE models. They found that the geometrical non-linearity and Young’s modulus of the
ground substance of the annulus significantly affected the IVD response while the opposite
happened of the annulus fibres and nucleus properties. Cappetti et al. [119] and Meijer et al.
[228], analysed the effect of the geometrical parameters on the model’s stiffness response.
Both studies found that disc height is the most sensitive factor for vertical displacements
and stiffness, followed by cross-section dimensions.

The question remains as to how an FE model of the IVD can be simplified, but still retain
reasonable accuracy. The present study also aimed at addressing this gap in the literature.

Initially, specimen-specific geometrical models of each IVD were created. As it is reported
that the annulus might play a more critical role into disc biomechanics than the nucleus and
that the number of lamellae and fibres does not significantly contribute to loading response,
single structure discs were segmented using the mCT images. As soft tissues are not clearly
differentiated in such images, a single threshold tool application was necessary. Care was
taken to ensure the IVD dimensions, especially disc height, were in agreement with the im-
ages, and that the boundary between VBS and IVD were well connected.

The properties of the IVD in the present study were inferred from the results of Silvestros
et al. [109] multi-body system (MBS) simulations. MBS models have been used to evaluate
the kinematics of the spine [110]. This method, which is regularly applied in rugby union
[109, 114, 146], set the bones as rigid bodies and allows muscles forces to be inferred along-
side with the joint response. It is a very useful method to acquire general kinematics and
joints loading and has a small number of Degree of Freedom (DOF) compared to FE, which
make it easy to use. It has become a trend in recent years to combine FE and MBS models
[110, 131]. In particular, outputs from MBS are used as inputs to FE.

In this context, the global IVD properties calculated by Silvestros et al. [109] were inputted
into the dynamic FE model of the cervical spine in the present study. Kelvin-Voight bushing
elements were created and calibrated to represent the biomechanical behaviour of the IVD
under impact conditions. This data was converted into material properties which were then
inputted to the FE models of the disc. The spring stiffness was converted into Young’s mod-
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ulus given the geometry of the disc is known. The load at the disc was mostly axial and,
therefore, the disc behaviour could be idealised to that of a beam under axial loading, and
the stiffness was then translated into rigidity.

The dimensions of the IVD, height, width and length, were acquired from the mCT (Table
6.3) and Equation 6.2 was used to convert IVD stiffness into Young’s modulus. The meas-
ured dimensions were in agreement with Sheng et al. [266] and Busscher et al. [121], whose
studies focused on the anatomical dimensions of human and porcine VBs. This IVD model-
ling approach was validated using the FE models to match the boundary conditions used by
Silvestros et al. [109].

The Young’s modulus obtained for the discs (Table 6.3) were significantly higher than the
values found by Nikkhoo et al. [267], who evaluated the biomechanical response of intact,
degenerate and repaired IVDs to impact loading using FE models. A finite element model
comprising nucleus pulposus, annulus fibrosus, end-plates, cancellous bone and cortical
bone was used. Material properties were defined using a poroelastic material model; flu-
ids were free to flow only inside a material, not across different materials. They found a
Young’s modulus for the annulus of 2.5 MPa. Nevertheless, their impact loading, 1.2 kN in
20 ms, was smaller than in the current study, around 4 kN in 5 ms and the fluid inside the
nucleus was constrained, which might have generated high levels of stiffness for the disc,
although small values of Young’s modulus were used for the other structures of the disc.

Figure 6-13 highlighted that the experimental cranial load was slightly higher than the caudal
one. This was probably caused by the dissipation of energy by the discs, VB deformation,
and the small decoupling between VBs and the pots at the moment of impact, which was also
reported by other researches [136]. The peak force, between 3.5 kN and 4.5 kN, was within
the range of head-first impact loading registered by athletes with severe CSI, between 3.6 kN
and 8 kN, for an impact velocity ranging from 3.4 m s�1 to 6.6 m s�1, as cited by Ivancic [136].
Nevertheless, those peak forces were larger than the loading experienced by a rugby player
during a simulated tackle, peak of 1.8 kN, but measured on the shoulders [268].

The experimental peak load was closer to that of Holsgrove et al. [137], who impacted por-
cine cervical spines at 2.2 m s�1 and obtained average peak cranial and caudal loads of 5.8 kN
and 6 kN, respectively. In the work of Nightingale et al. [134], the neck peak load was, on
average, 2.5 kN, for an impact velocity between 2.5 m s�1 and 3 m s�1. Nevertheless, Night-
ingale et al. [134] experiment used full neck-head specimens, which might have contributed
to lower levels of peak load as coupling motions between the head and neck might have been
present [239]. Similar figures to Nightingale et al. [134] were presented by Saari et al. [239],
who drop-impacted human cervical spine-heads at 3 m s�1 and obtained peak neck forces
between 1.8 kN and 3 kN, also reporting coupling movements between neck and head. An-
other study conducted by Ivancic [136] impacted cadaveric human cervical spine samples at
4 m s�1. The peak compression force was, as expected, higher, around 7.5 kN at cranial, but
the loading profile was similar to this study, i.e. a bell-shaped curve.
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The time for the peak load in this study was around 5 ms, in agreement with Nightingale
et al. [134], Saari et al. [239] and Holsgrove et al. [137], but shorter than Ivancic [136, 141],
who reported peak loads at 20 ms. All times for peak load reported are shorter than the time
required for full muscular activation of the neck, which requires an average of 60 ms [130].
These results might advocate in favour of the theory that deformation by buckling might be
more likely than hyperflexion or hyperextension, as there would not be sufficient time for
the muscles to activate and react against the impact fully.

In the present study, maximum vertical displacements oscillated between 2 mm and 3 mm
for the cranial VB (Figure 6-14). These values are smaller than those reported by Ivancic
[136] (which used a neck-head specimen and impact velocities at 4 m s�1), between 5 mm
and 8 mm, for an impact velocity of 4 m s�1, and by Holsgrove et al. [137], average of 5.5 mm,
for an impact velocity of 2.2 m s�1. Holsgrove et al. [137] used the same impact cage set-up
to this study but a different way of delivering the impact. In comparison to Nightingale et al.
[134] study, the displacement variation for C2-C3 was around 2 mm, for an impact velocity
varying between 2.4 m s�1 and 3.5 m s�1. Although applying a slightly higher impact velo-
city, their displacement values were similar to this current study mostly because of the use
of neck-head specimens, which might have absorbed some of the load, resulting in lower
displacement levels.

The agreement between numerical models and experimental results in the present study was
measured through the comparison of vertical displacements between experimental, from
both DIC and markers, and numerical, from FE, using Bland-Altman plots and Lin’s Con-
cordance Correlation Coefficient (CCC) (Figure 6-15 and Table 6.4). Stiffness was not used at
this stage as VBs were defined as rigid bodies. The predicted numerical displacements were
more similar to DIC than to the markers data. The average difference for the first case varied
up to 0.60 mm, while for the second, it went up to 1.2 mm. This higher difference between
markers and FE displacements might be explained by the movements of the individual seg-
ments. After a video analysis, it was found that the lateral clusters moved upwards and
twisted during the impact, resulting in virtual small-displacement magnitudes. This could
be caused due to the loosening of the screw which holds the clusters into the VB or the inertia
of the clusters.

Larger average displacement differences for C2 levels were observed (Figure 6-15). Although
DIC also presented lower levels of correlation and larger average differences for that level,
markers data results were even less comparable than DIC. When an impact occurs, the im-
age data shows that the cranial pot moves forward, allowing the spine to deform anteriorly
(Figure 6-17). On the numerical models, C2 is laterally constrained, which limits any lateral
movement, resulting in lower levels of predicted vertical displacements. On DIC, the data
is acquired in an ROI next to the numerical ROI at the C2 level, while markers data were
captured at the far cranial side. This might explain why DIC data is closer to numerical than
markers data at that level.
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As a result of this limitation, the concordance coefficients were smaller for C2 (Figure 6.4).
Nevertheless, except for the CCC between numerical and markers data for spine 02, level
C4, and spine 03, level C5, the CCC for the other levels were higher at around 0.7. This gives
confidence that the approach of modelling a single structure for the disc suits the purpose of
this study, i.e. to create specimen-specific FE spine models.

The experimental anterior-posterior displacements were greater at C4 (Figure 6-17), between
2 mm and 3 mm, and smaller at C3 and C5 levels for all three spines, which is indicative of
deformation by buckling, as suggested by the literature [134, 135]. Moreover, these values
were similar to those presented by Nightingale et al. [134] and Ivancic [136] studies, and
close to Holsgrove et al. [137].

Numerically, maximum displacements were seen at C5 levels, for all spines, and with the
curves having a steeper gradient. This higher gradient is a result of the boundary conditions
and leads to element distortion on the disc between C5 and C6 VBs, preventing the models
from completing the solution.

In the study by Silvestros et al. [109], the dashpots were positioned parallel to the VB surface,
including the one at the C6 level. As a result, the main deformation axis for the disc between
C5 and C6 was set at an angle, not vertically; because of this inclination, the vertical axial
load resulted into a small axial and larger shear force on the local coordinate system on the
disc. As the spring and dashpot elements in Silvestros et al. [109] models are oriented in the
local vertebral caudal-cranial directions and not on the global coordinate system, this lead to
an underestimation of the IVD axial stiffness, as pointed out by Silvestros et al. [109].

In the FE models, Young’s modulus of the IVD between C5 and C6 was, consequently, small,
resulting in large displacement magnitudes. As the rigid VB surface was at an angle, the
increase in load might have led to an increase in shear, leading to a high element distortion
in the disc between C5 and C6. This can be visualised on the axial and shear strain contour
plots of the IVDs (Figure 6-16). In comparison to other IVDs, such disc sustained high levels
of vertical (axial) strain, six to ten times more, as well as shear.

After analysing all the results, it was concluded that the technique of modelling the IVD as
a single structure, without the differentiation between nucleus, annulus and lamellae, and
with a conversion from stiffness to Young’s modulus using the beam theory, was sufficiently
accurate to represent the mechanical behaviour of the IVD under axial impact loading as it
replicated the model used by Silvestros et al. [109]. Bland-Altman plots and Lin’s coefficient
indicated that the numerical results were similar to experimental for both DIC and markers
data, although the agreement between numerical and markers displacement data was lower
than DIC.
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6.6.2 Cervical spine FE models

The next step was to set the VBs as deformable and, using the previous technique, to re-
define the material properties and experimental boundary conditions. As the deformation
of the baseplate section of impact cage was evident, two boundary conditions were assessed,
fully and partially constrained, and therefore the two previous calibration factors obtained
in Chapter 5 were used (Figures 6-18 and 6-20).

Young’s modulus was calculated for each VB. Similarly to findings from Chapter 5, models
with KGSDynamicFC = 0.14 had the largest values of Young’s modulus, and the difference in the
average moduli between the two calibration factors was also around 20 % (Tables 6.5 and
6.6). The load-time curves acquired from the caudal spring for the partially constrained BC
models (Figure 6-21), presented a similar bell shape to experimental caudal load for all three
samples. The peak load was close to 4 kN, similar to experimental.

This similarity between numerical and experimental load adds confidence in the modelling
methodology. The reaction load in a dynamic scenario is a combination of the BCs, impact
mass, initial velocity, and inertia properties. The latter, inertia, was shown to be the most im-
portant parameter on numerical models simulating impact conditions. According to Night-
ingale et al. [139], the correct mass distribution dictates how the spine deforms to release the
energy absorbed during impact. The similarity between numerical and experimental loads,
therefore, indicates that the density, BCs and impact velocity were appropriate.

One of the limitations of modelling the partially constrained boundary condition was that
the behaviour found in Chapter 5, which caused an inflexion point in the load-time curves,
was also observed for the spine segment models. However, this time, the response curves
oscillated instead of only having a small inflexion. This was obvious mainly for spine 01 and
02 (Figure 6-21). As discussed, this might be caused by the difference in stiffness between
cranial and caudal springs. Nevertheless, the presence of several vertebral bodies and the
intervertebral discs may have intensified this phenomenon. In other words, after the impact,
the whole structure moves downwards, as expected. When it reaches 2 kN, a further increase
of load causes the spine to deform anteriorly, mostly at C4, instead of vertically, giving rise to
buckling deformation and not increasing the vertical loads. Moreover, the IVD between C5
and C6 levels starts to deform anteriorly, i.e. in shear, magnifying the buckling deformation,
and also contributing to the decrease of the load. This continues until the whole structure is
compacted enough to start pushing downwards again, increasing the reaction load. This un-
stable behaviour could have been improved had the soft tissue that was left in the posterior
section been modelled as well. This would have added more damping (mass) to the whole
structure, making the deformation smoother. However, several other calibrations would
have had to be conducted, increasing the complexity of the models.

The oscillations were transferred to the load-displacement curves of the partially constrained
BC models (Figure 6-22). As a consequence of this limitation, the numerical stiffness meas-
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urement was drastically affected and differed widely, with values from 17 % to 62 % lower
than experimental (Table 6.6). For the fully constrained BC case, differences were also found,
but mostly due to the underestimation of the IVD modulus and the high constrain BC (Table
6.5). In comparison, only spine 03 had similar stiffness distribution to DIC for both BCs, al-
though still lower than experimental, (Figure 6-23). These small stiffness values presented by
the models might be explained by the differences between the kinematics and FE boundary
conditions and the mechanics of impact on cervical spines.

During the calibration of disc stiffness parameters by Silvestros et al. [109], VBs were set as
rigid. All the deformation, from the adjacent VB and disc, were therefore credited only to
the disc, resulting in smaller rigidity. When the VBs were set back to deformable, the disc
was not sufficiently stiff to compress and to deform the VB. Thus, due to the kinematics BC,
the material properties of the disc might have been underestimated. An increase in the disc
modulus would generate higher compression forces at the VB, which would increase the
vertebral stiffness.

The Bland-Altman plots (Figure 6-24) presented average difference of �1900 N mm�1 for
both BC models, with the majority of the data plotted around zero. This might indicate that
the mechanical responses of the models were close to what was seen in the experiments, and
a re-calibration of the IVD material properties might improve these results. Moreover, sim-
ilarly to Chapter 5, the correlation plots were affected by the outliers and the small number
of data points (Figure 6-25), but the majority of the data points were located next to the unit
line. The C3 and C4 VBs from spine 02 were excluded from the correlation plot as they were
clearly outliers, as also shown by the Bland-Altman plots.

Regarding vertical strains, both experimental and numerical results presented compression
at C3, and tension on C4 and C5 (Figures 6-26 and 6-27). This pattern reinforces the idea that
the main deformation mode is by buckling as the spine presents a ”C” or ”S” shape, with
tensile strains at the centre and compressive strains at the cranial and caudal ends. Had the
deformation been by hyperextension, all the anterior surface strains would be positive, i.e.
traction. On the other hand, if the spine were deformed by hyperflexion, the whole anterior
surface would present compressive strains.

As highlighted previously, the maximum experimental strain of -0.02# was observed at C2.
Similar levels were acquired by Holsgrove et al. [137], -0.03#, also at C2. No other study
with similar loading conditions and access to strain was available in the literature for further
comparison. Numerical models presented similar strain levels to experimental at C4 and C5
levels but different at C3, Figures 6-26. This might be due to the small modulus of the IVDs.
As shown in the contour plots from the FE models (Figure 6-27), high compressive strain
levels were located at the IVD disc between C2 and C3. When the load was first applied,
the majority of the deformation on that region was taken by the disc, resulting in lower
compressive forces at C3. An increase in the IVD modulus might improve the rigidity of the
spine, increasing the compressive forces, and strains. Nevertheless, the contour plots still
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presented good agreement in terms of the range of values and maximum strain regions, as
both BC models and DIC showed similar contour patterns and regions of maximum strain,
mostly on the IVDs between C2 and C3, and between C5 and C6.

The numerical anterior-posterior displacements presented similar trends to experimental in
almost all samples, except for spine 03, C5. This similarity might indicate that the combina-
tion of a single IVD structure, but using specimen-specific material properties, is sufficiently
accurate to describe the anterior-posterior movement of the spine under axial impact load-
ing. High anterior-posterior strains were observed in the contour plots at the top and bottom
IVDs, indicating a deformation by buckling might be present.

6.7 Conclusion

Following a comparison with literature results, in terms of density values, displacement
levels, Young’s modulus, reaction loads, stiffness and strains, the finite element modelling
methodology described in this chapter showed to be capable of creating cervical spine mod-
els to simulate axial impact conditions, similar to those seen in rugby union. The strategy
adopted in this study of using calibrated specimen-specific material properties for the ver-
tebral body and a simplified structure for the intervertebral disc, produced results, in some
extent, similar to experimental data, on predicting peak load, vertebral displacements and
strains and three-dimensional spine movements. However, intervertebral discs still require
further calibration so that their stiffness could be improved, enhancing model responses.
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Chapter 7

Discussion, limitations, conclusions
and further work

7.1 Discussion and conclusions

Throughout this study, a framework to create finite element (FE) models of the cervical spine
was developed, calibrated and validated. The models aimed to simulate impact conditions
arising from rugby tackle collisions. After an extensive literature review, it was found that
the FE method, although widely used and accepted in studies about the spine, had yet not
been applied to investigate the biomechanical behaviour of the cervical spine during a rugby
collision.

Rugby Union has one of the highest overall rates of injury; however, the risk of a catastrophic
or debilitating Cervical Spine Injury (CSI) is low [27, 28]. That said, the consequences of a CSI
can be devastating, as it can lead to tetraplegia and in extreme cases, death. Research into
spine biomechanical behaviour and injury mechanisms can not only improve treatments but
also enhance training and inform game rule makers as to which strategy could be beneficial
to reduce the likelihood of injury and safeguard players [22, 29].

The debate in the literature about the real injury mechanisms, i.e. buckling, hyperflexion or
hyperextension, is vast, but still lacking in consensus [4, 11–15]. Therefore this study aimed
to contribute with more understanding on the topic and to improve the use of numerical
models for biomechanical analysis. Furthermore, noting the lack of FE models in this field,
the study is also focused on developing simpler yet effective FE models of the spine.

Several different ways to create FE spine models were identified. They varied widely in
terms of element formulation, material properties, boundary conditions and solution type,
rendering a direct comparison between similar studies difficult. As a result, this study aimed
to develop a strong, calibrated and validated methodology for FE modelling of the cervical
spine. If this technique was to be followed by other researchers, a potential framework could
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be set, standardising modelling procedures and enabling direct comparison between studies
and clinical/training applications. Moreover, with a validated modelling method, fewer
experiments would have to be required for model validation, reducing experimental costs.

The first step towards a modelling methodology was to define an effective way of acquiring
specimen-specific geometries of the vertebral bodies (VBs). Several studies noted that the
geometrical features of a spine have a direct effect on its biomechanical behaviour [83, 228,
229]. Moreover, the reported long time spent on creating models was also a motivation to en-
hance the current approaches [229]. One of the first objectives of this study was to develop a
method of sequentially applying specimen-specific material properties on VB models. It was
seen that the use of the density to Young’s modulus equations and element-based material
properties presented more reliable results than other options available. In order to calibrate
and validate this approach, experiments were conducted to obtain quasi-static compressive
mechanical properties of vertebral bodies in terms of load-displacement. The final results in-
dicated that the method was able to create models which predicted the compressive stiffness
and regions of maximum displacement and strain on vertebral bodies. Material properties
were based on the specimen density acquired from CT images. An average factor KGSStatic

of 0.033 was calculated to calibrate the density to Young’s modulus equation developed
by Kopperdahl et al. [67], which can be used to set material properties to VBs under axial
compression and quasi-static loading. In conclusion, significant evidence was given that a
calibrated, validated, and robust methodology for finite element (FE) modelling of vertebral
bodies (VBs) for quasi-static loading was developed based on the experimental data. This
methodology was used to create specimen-specific finite element models of vertebral bodies
harvested from porcine samples, allowing the prediction of compressive vertebral stiffness,
regions of maximum displacement and strain.

Following on from this, an experiment was conducted to calibrate the modelling methodo-
logy for the specific dynamic loading of rugby collisions, something that is absent in the liter-
ature. Vertebral bodies were impacted with the same loading levels seen in rugby collisions.
This was necessary to assess the viscoelastic effect of the bone for the specific loading. The
results have indicated that the new calibrated methodology can reproduce the mechanical
behaviour of vertebral bodies under impact loading. A new factor, KGSDynamic , approximately
four times higher than the static one, KGSStatic , was calculated to recalibrate Kopperdahl et al.
[67]’s equation. With this factor, loading-rate specific material properties could be set into
VBs to account for their viscoelastic behaviour. More experiments could also be executed to
find similar parameters for other loading rate levels. In conclusion, the updated modelling
framework was able to create predictive specimen-specific FE models of VBs for both static
and dynamic loading scenarios. The next step was to apply such methodology to create
whole cervical spine models to evaluate impact conditions arising from rugby.

This framework was then applied to the modelling of the VBs for the whole cervical spine.
Three spines were prepared and tested using the same loading protocol, i.e., impacted with
loading rate levels similar to rugby collisions. Vertebral body models were created following
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the modelling approach as previously described. Kinematics data from Silvestros et al. [109]
was used to create and calibrate the intervertebral disc models. It was assumed that the disc
was subject purely to axial loading, and based on studies regarding disc mechanical beha-
viour, and it was modelled as a single, solid structure. Specimen-specific material properties
were set using the data from Silvestros et al. [109] through a structural modelling approach.
The strategy adopted in this study of using calibrated specimen-specific material properties
for the vertebral body and a simplified structure for the intervertebral disc produced results
in agreement with experimental data, on predicting peak load, vertebral displacements and
strains and three-dimensional spine movements. However, intervertebral discs still require
further calibration so that their stiffness could be improved, enhancing model responses.

In conclusion, the modelling methodology presented in this study is able, with limitations in
mind, to create specimen-specific finite element models of cervical spines to evaluate impact
conditions arising from rugby. Such methodology was extensively calibrated and validated.
Each decision was based on a careful and critical analysis of both the literature and exper-
imental data so that accurate and reliable results, in terms of VB stiffness prediction and
regions likely to sustain high levels of strain, could be achieved. Specimen-specific material
properties for the IVD and two calibration factors for the VB material properties, one for
static and one specifically for a dynamic loading condition, and a single modelling method-
ology were created.

7.2 Limitations

The first limitation of this work, as pointed previously, was the use of linear material models
for the vertebral body. However, as explained, the aim of this study was to model cervical
spines under dynamic conditions, i.e. under high loading rate. As a result, it was expected
that the increase of stiffness would minimise the use of non-linear material properties, as
the yield point would not be achieved. Another limitation is the use of linear instead of
quadratic elements. The accuracy of the latter was showed to be higher in comparison to
the first. The use of quadratic elements, although feasible in single VB models, would not
be efficient in the whole spine models, as the number of nodes would increase exponentially
and thus the solving time.

In terms of experimental tests, DIC was used to acquire vertebral stiffness from the anterior
aspect of the VBs. It was assumed that the deformation seen via DIC on the surface would
be representative of the whole VB deformation. Moreover, single-camera DIC was used for
almost all the samples tested in Chapter 4. The use of single DIC cameras infers that only
plane strains are acquired. Vertebral bodies, especially from porcine, have curved anterior
surfaces, which could add error to DIC as some of the surface would be out of the main view
plane. On the other hand, as only the very central part of the VB was desired to calculate
stiffness, it was assumed that the curvature would not affect the results drastically and thus
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the error would be minimised.

A further limitation of this work was the small sample size used to calibrate the material
properties for the dynamic loading on Chapter 5. Due to time constraints and equipment
availability, only eight samples could be tested and modelled, which resulted only on the
calibration of the material properties and on a low value of the correlation between pre-
dicted and experimental stiffness. Larger sample size would have allowed a more precise
estimation of the dynamic factor, KGSDynamic , and, possibly, a higher correlation. Moreover,
validation was lacking at this stage, which could have added more confidence in the results.

In terms of experimental performance, the application of a high load rate resulted in the
deformation of the impact cage. This lead to the creation of a further boundary condi-
tion, which was simplified through the use of a single, unidirectional and non-linear spring.
Nevertheless, DIC data have shown that, due to the impact load, the sample moved three-
dimensionally, which was not represented or captured by the spring.

The modelling of a whole spine is more complex than a single vertebral body. As a result,
it was necessary to perform an additional number of simplifications. Firstly, the disc was
assumed as a single structure, homogeneous and isotropic. This simplification was based
on the results from several studies which pointed out that some IVD structures could be
simplified. Obviously, if the disc behaviour has to be studied in more detail, further char-
acterisation of such loading condition has to be conducted. However, this study aimed to
study the biomechanical behaviour of the spine as a whole, which could justify the assump-
tion of a homogeneous disc. Besides, specimen-specific loading rate material property was
assigned to the disc based on its kinematic data.

Another limitation of this study was also the use of the spring to mimic the impact cage
deformation, as did for the impact of single VBs. DIC data pictured lateral movements
of the caudal and cranial specimen holders of the spine, which were not represented by
the spring. This lead to an underestimation of strains on higher vertebral body levels and
anterior-posterior displacements.

The lower number of specimens also resulted in a small correlation (R2) between predicted
and experimental vertebral stiffness. Only three specimens were tested. More specimens
would have added more insights about the biomechanical behaviour of the cervical spine
and would have contributed for further evaluation of the efficiency, precision and accuracy
of the spine models.

7.3 Further work

There is still a great deal to learn about the cervical spine under impact loading. This study,
therefore, suggests the following items to be assessed:
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1. Increase the number of samples tested: Throughout this study, many difficulties arose
during the experimental stage, resulting in a number of samples being discarded. It is
therefore recommended to increase the number of testing samples, primarily on the
impact of vertebral bodies and spine segments, so that more confidence can be added
to the FE modelling methodology. Additionally, different head positions of the spinal
segments should be tested to evaluate the capabilities of the modelling approach on
producing accurate results for these kinds of conditions.

2. Improvement of impact jig: The impact jig used in this study was custom made us-
ing aluminium profiles. In order to improve the rigidity of the jig and to avoid the
deformations seen during impact, it would be advantageous to increase the rigidity of
the main beams.

3. Development of the density-to-Young’s modulus equation from animal samples:
This study had to recalibrate the density to Young’s modulus equation created by Kop-
perdahl et al. [67] from human specimens. As animal samples are nowadays part of
biomechanical testing and an equation suitable for such specimens would simplify the
modelling process.

4. Direct comparison between model and fracture location: The loading scenario used
in this study was sub-catastrophic, and all the tested samples did not sustain visible
injuries. However, if the impact load is increased under the same modelling methodo-
logy, the model’s capability of indicating regions of injury could be assessed.

5. Exploring more options with kinematic and FE models: This study combined both
numerical methodologies, which contributed to a better representation of the impact
conditions and the mechanical behaviour of the cervical spine. Therefore, a further ex-
ploration and collaboration of both methodologies is advised, such as in the calculation
of joint reactions, which could be added into FE models through the use of muscle and
ligament activation forces, which can be estimated by kinematic models.

171



172



Bibliography

[1] S. Standring and H. Gray, Gray’s Anatomy: The Anatomical Basis of Clinical Practice., 39th ed., S. Standring, Ed. Elsevier,
2005.

[2] M. Panzer, “Numerical Modelling of the Human Cervical Spine in Frontal Impact,” Ph.D. dissertation, 2006.

[3] S. Kurtz, “Total Disc Arthroplasty,” in Spine Technology Handbook, 2006, ch. 11, pp. 303–370.

[4] T. Oxland, “Fundamental Biomechanics of the Spine-What we have learned in the past 25 years and future directions,”
Journal of Biomechanics, pp. 1–16, 2015.

[5] J. Bickenbach, “International Perspectives on Spinal Cord Injury,” p. 250, 2013.
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S. Boonen, “Do quantitative ultrasound measurements reflect structure independently of density in human vertebral
cancellous bone?” Bone, vol. 23, no. 5, pp. 425–431, 1998.

[59] X. Banse, J. P. Devogelaer, E. Munting, C. Delloye, O. Cornu, and M. Grynpas, “Inhomogeneity of human vertebral
cancellous bone: Systematic density and structure patterns inside the vertebral body,” Bone, vol. 28, no. 5, pp. 563–571,
2001.

[60] E. F. Morgan, H. H. Bayraktar, and T. M. Keaveny, “Trabecular bone modulus-density relationships depend on anatomic
site,” Journal of Biomechanics, vol. 36, no. 7, pp. 897–904, 2003.

[61] E. Wagnac, P.-J. Arnoux, A. Garo, and C.-E. Aubin, “Finite element analysis of the influence of loading rate on a model
of the full lumbar spine under dynamic loading conditions,” Medical & Biological Engineering & Computing, vol. 50, no. 9,
pp. 903–915, 2012.

[62] H. K. Kim, O. Kum, and N. L. Max, “Computer-Aided CT Image Analysis Based on Clustered Hounsfield Values,”
Journal of the Korean Physical Society, vol. 51, no. 1, p. 235, 2007.

[63] E. Schileo, E. Dall’Ara, F. Taddei, A. Malandrino, T. Schotkamp, M. Baleani, and M. Viceconti, “An accurate estimation
of bone density improves the accuracy of subject-specific finite element models,” Journal of Biomechanics, vol. 41, no. 11,
pp. 2483–2491, 2008.

[64] T. M. Keaveny, E. F. Morgan, G. L. Niebur, and O. C. Yeh, “Biomechanics of trabecular bone,” Annu. Rev. Biomed., vol. 3,
pp. 307–333, 2001.

[65] T. Keller and D. Spengler, “Predicting the mechanical behavior of bone,” Journal of Biomechanics, vol. 24, no. 9, p. 453,
1994.

175



[66] T. M. Keaveny and W. C. Hayes, “A 20-Year Perspective on the Mechanical Properties of Trabecular Bone,” Journal of
Biomechanical Engineering, vol. 115, no. 4B, p. 534, 1993.

[67] D. Kopperdahl, E. Morgan, and T. Keaveny, “Quantitative computed tomography estimates of the mechanical properties
of human vertebral trabecular bone,” J Orthop Res, vol. 20, pp. 801–805, 2002.

[68] R. P. Crawford, W. S. Rosenberg, and T. M. Keaveny, “Quantitative Computed Tomography-Based Finite Element Models
of the Human Lumbar Vertebral Body: Effect of Element Size on Stiffness, Damage, and Fracture Strength Predictions,”
Journal of Biomechanical Engineering, vol. 125, no. 4, p. 434, 2003.

[69] R. P. Crawford, C. E. Cann, and T. M. Keaveny, “Finite element models predict in vitro vertebral body compressive
strength better than quantitative computed tomography,” Bone, vol. 33, no. 4, pp. 744–750, 2003.

[70] R. P. Crawford and T. M. Keaveny, “Relationship between axial and bending behaviors of the human thoracolumbar
vertebra,” Spine, vol. 29, no. 20, pp. 2248–2255, 2004.

[71] A. Zeinali, B. Hashemi, and S. Akhlaghpoor, “Noninvasive prediction of vertebral body compressive strength using
nonlinear finite element method and an image based technique,” Physica Medica, vol. 26, no. 2, pp. 88–97, 2010.

[72] H. M. Gustafson, P. A. Cripton, S. J. Ferguson, and B. Helgason, “Comparison of specimen-specific vertebral body
finite element models with experimental digital image correlation measurements,” Journal of the Mechanical Behavior of
Biomedical Materials, vol. 65, no. October 2016, pp. 801–807, 2017.

[73] J. C. Lotz, T. N. Gerhart, and W. Hayes, “Mechanical properties of trabecular bone from the proximal femur: a quantit-
ative CT study,” Journal of computer assisted tomography, no. 1, pp. 107–114, 1990.

[74] J. H. Keyak, I. Y. Lee, and H. B. Skinner, “Correlations between orthogonal mechanical properties and density of trabecu-
lar bone: Use of different densitometric measures,” Journal of Biomedical Materials Research, vol. 28, no. 11, pp. 1329–1336,
1994.

[75] A. Sharir, M. M. Barak, and R. Shahar, “Whole bone mechanics and mechanical testing,” Veterinary Journal, vol. 177,
no. 1, pp. 8–17, 2008.

[76] F. J. Hou, S. M. Lang, S. J. Hoshaw, D. A. Reimann, and D. P. Fyhrie, “Human vertebral body apparent and hard tissue
stiffness,” Journal of Biomechanics, vol. 31, no. 11, pp. 1009–1015, 1998.

[77] M. A. K. Liebschner, D. L. Kopperdahl, W. S. Rosenberg, and T. M. Keaveny, “Finite Element Modeling of the Human
Thoracolumbar Spine,” Spine, vol. 28, no. 6, pp. 559–565, 2003.

[78] Y. Chevalier, M. Charlebois, D. Pahra, P. Varga, P. Heini, E. Schneider, and P. Zysset, “A patient-specific finite element
methodology to predict damage accumulation in vertebral bodies under axial compression, sagittal flexion and com-
bined loads.” Computer methods in biomechanics and biomedical engineering, vol. 11, no. 5, pp. 477–487, 2008.

[79] E. Dall’Ara, R. Schmidt, D. Pahr, P. Varga, Y. Chevalier, J. Patsch, F. Kainberger, and P. Zysset, “A nonlinear finite element
model validation study based on a novel experimental technique for inducing anterior wedge-shape fractures in human
vertebral bodies in vitro,” Journal of Biomechanics, vol. 43, no. 12, pp. 2374–2380, 2010.

[80] D. H. Pahr, J. Schwiedrzik, E. Dall’Ara, and P. K. Zysset, “Clinical versus pre-clinical FE models for vertebral body
strength predictions,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 33, no. 1, pp. 76–83, 2014.

[81] K. Robson Brown, S. Tarsuslugil, V. N. Wijayathunga, and R. K. Wilcox, “Comparative finite-element analysis: a single
computational modelling method can estimate the mechanical properties of porcine and human vertebrae.” Journal of
the Royal Society, Interface / the Royal Society, vol. 11, no. 95, p. 20140186, 2014.

[82] A. I. Hussein, D. T. Louzeiro, G. U. Unnikrishnan, and E. F. Morgan, “Differences in Trabecular Microarchitecture and
Simplified Boundary Conditions Limit the Accuracy of Quantitative Computed Tomography-Based Finite Element Mod-
els of Vertebral Failure,” Journal of Biomechanical Engineering, vol. 140, no. 2, p. 021004, 2018.

[83] R. K. Wilcox, “The influence of material property and morphological parameters on specimen-specific finite element
models of porcine vertebral bodies,” Journal of Biomechanics, vol. 40, no. 3, pp. 669–673, 2007.

[84] N. Brandolini, L. Cristofolini, and M. Viceconti, “Experimental methods for the biomechanical inestigation of the human
spine: A reiew,” Journal of Mechanics in Medicine and Biology, vol. 14, no. 1, pp. 1–33, 2014.

[85] N. Ozkaya, Fundamentals of Biomechanics, 2000, vol. 86, no. 3.

[86] D. L. Kopperdahl, J. L. Pearlman, and T. M. Keaveny, “Biomechanical consequences of an isolated overload on the
human vertebral body,” Journal of Orthopaedic Research, vol. 18, no. 5, pp. 685–690, 2000.
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[110] N. Karajan, O. Rohrle, W. Ehlers, S. Schmitt, O. Röhrle, W. Ehlers, and S. Schmitt, “Linking continuous and discrete
intervertebral disc models through homogenisation,” Biomechanics and Modeling in Mechanobiology, vol. 12, no. 3, pp.
453–466, 2013.

177



[111] M. D. Gilchrist, Impact Biomechanics: From Fundamental Insights to Applications, 2005.

[112] B. Weisse, A. K. Aiyangar, C. Affolter, R. Gander, G. P. Terrasi, and H. Ploeg, “Determination of the translational and
rotational stiffnesses of an L4-L5 functional spinal unit using a specimen-specific finite element model,” Journal of the
Mechanical Behavior of Biomedical Materials, vol. 13, pp. 45–61, 2012.

[113] M. Freutel, H. Schmidt, L. Drselen, A. Ignatius, and F. Galbusera, “Finite element modeling of soft tissues: Material
models, tissue interaction and challenges,” Clinical Biomechanics, vol. 29, no. 4, pp. 363–372, 2014.

[114] D. Cazzola, T. P. Holsgrove, E. Preatoni, H. S. Gill, and G. Trewartha, “Cervical Spine Injuries: A Whole-Body Musculo-
skeletal Model for the Analysis of Spinal Loading,” PLoS One, vol. 12, no. 1, p. e0169329, 2017.

[115] L. E. Kazarian, “Compressive strength characteristics of the human vertebral centrum,” Spine, vol. 2, no. 1, 1977.

[116] V. R. Yingling, J. P. Callaghan, and S. M. McGill, “Dynamic loading affects the mechanical properties and failure site of
porcine spines,” Clinical Biomechanics, vol. 12, no. 5, pp. 301–305, 1997.

[117] J. J. Costi, A. I. Stokes, G. M. Gardner-Morse, and C. J. Iatridis, “Frequency-Dependent Behavior of the Intervertebral
Disc in Response to Each of Six Degree of Freedom Dynamic Loading: Solid Phase and Fluid Phase Contributions,”
Spine, vol. 33, no. 16, pp. 1731–1738, 2008.

[118] N. Newell, D. Carpanen, J. H. Evans, M. J. Pearcy, and S. D. Masouros, “Mechanical Function of the Nucleus Pulposus
of the Intervertebral Disc Under High Rates of Loading,” Spine, vol. 44, no. 15, p. 1, 2019.

[119] N. Cappetti, A. Naddeo, F. Naddeo, and G. F. Solitro, “Finite elements/Taguchi method based procedure for the iden-
tification of the geometrical parameters significantly affecting the biomechanical behavior of a lumbar disc,” Computer
Methods in Biomechanics and Biomedical Engineering, vol. 19, no. 12, pp. 1278–1285, 2016.

[120] T. H. Smit, “The use of a quadruped as an in vivo model for the study of the spine - Biomechanical considerations,”
European Spine Journal, vol. 11, no. 2, pp. 137–144, 2002.

[121] I. Busscher, J. J. W. Ploegmakers, G. J. Verkerke, and A. G. Veldhuizen, “Comparative anatomical dimensions of the
complete human and porcine spine,” European Spine Journal, vol. 19, no. 7, pp. 1104–1114, 2010.

[122] H.-J. Wilke, J. Geppert, and A. Kienle, “Biomechanical in vitro evaluation of the complete porcine spine in comparison
with data of the human spine,” European Spine Journal, vol. 20, no. 11, pp. 1859–1868, 2011.

[123] R. Schmidt, M. Richter, L. Claes, W. Puhl, and H. J. Wilke, “Limitations of the cervical porcine spine in evaluating spinal
implants in comparison with human cervical spinal segments: A biomechanical in vitro comparison of porcine and
human cervical spine specimens with different instrumentation techniques,” Spine, vol. 30, no. 11, pp. 1275–1282, 2005.

[124] M. Mengoni, S. Sikora, V. Otreppe, R. K. Wilcox, and A. C. Jones, “In-Silico Models of Trabecular Bone: A Sensitivity
Analysis Perspective,” in Uncertainty in Biology, 17th ed., L. Geris and D. Gomez-Cabrero, Eds. Springer, 2015, vol. 17,
ch. 15, pp. 393–423.

[125] K.-U. Schmitt, P. F. Niederer, and F. Walz, Trauma biomechanics: introduction to accidental injury, 4th ed. Springer, 2014.

[126] A. H. Milby, C. H. Halpern, W. Guo, and S. C. Stein, “Prevalence of cervical spinal injury in trauma.” Neurosurgical Focus,
vol. 25, no. 5, p. E10, 2008.

[127] N. A. Yoganandan, M. W. J. Arun, B. D. Stemper, F. A. Pintar, and D. J. Maiman, “Biomechanics of human thoracolumbar
spinal column trauma from vertical impact loading.” Annals of advances in automotive medicine / Annual Scientific Confer-
ence ... Association for the Advancement of Automotive Medicine. Association for the Advancement of Automotive Medicine.
Scientific Conference, vol. 57, pp. 155–66, 2013.

[128] M. M. Panjab, J. Cholewicki, K. Nibu, L. B. Babatl, and J. Dvorak, “Critical load of the human cervical in vitro experi-
mental study spine : an in vitro experimental study,” Science, vol. 13, no. 1, pp. 11–17, 1998.

[129] E. C. Teo and H. W. Ng, “Evaluation of the role of ligaments, facets and disc nucleus in lower cervical spine under
compression and sagittal moments using finite element method,” Medical Engineering and Physics, vol. 23, no. 3, pp.
155–164, 2001.

[130] D. R. Foust, D. B. Chaffin, R. G. Snyder, and J. K. Baum, “Cervical Range of Motion and Dynamic Response and Strength
of Cervical Muscles,” SAE Technical Paper Series, vol. 1, 1973.

[131] A. P. Del Palomar, B. Calvo, and M. Doblare, “An accurate finite element model of the cervical spine under quasi-static
loading,” Journal of Biomechanics, vol. 41, no. 3, pp. 523–531, 2008.

[132] M. Dreischarf, A. Rohlmann, G. Bergmann, and T. Zander, “Optimised loads for the simulation of axial rotation in the
lumbar spine,” Journal of Biomechanics, vol. 44, no. 12, pp. 2323–2327, 2011.

[133] J. A. DeWit and D. S. Cronin, “Cervical spine segment finite element model for traumatic injury prediction,” Journal of
the Mechanical Behavior of Biomedical Materials, vol. 10, pp. 138–150, 2012.

178



[134] R. W. Nightingale, J. H. McElhaney, W. J. Richardson, T. M. Best, and B. S. Myers, “Experimental impact injury to the
cervical spine: relating motion of the head and the mechanism of injury.” The Journal of bone and joint surgery. American
volume, vol. 78, no. 3, pp. 412–21, 1996.

[135] D. F. Huelke and G. S. Nusholtz, “Cervical spine biomechanics: a review of the literature.” Journal of orthopaedic research
: official publication of the Orthopaedic Research Society, vol. 4, pp. 232–245, 1986.

[136] P. C. Ivancic, “Biomechanics of sports-induced axial-compression injuries of the neck,” Journal of Athletic Training, vol. 47,
no. 5, pp. 489–497, 2012.

[137] T. P. Holsgrove, D. Cazzola PhD, E. Preatoni, G. Trewartha, A. W. Miles, H. S. Gill, and S. Gheduzzi, “An investigation
into axial impacts of the cervical spine using digital image correlation.” The spine journal : official journal of the North
American Spine Society, vol. 15, no. 8, pp. 1856–1863, 2015.

[138] J. Akin, “Buckling Analysis,” pp. 182–188, 2009.

[139] R. W. Nightingale, D. L. Camacho, A. J. Armstrong, J. J. Robinette, and B. S. Myers, “Inertial properties and loading rates
affect buckling modes and injury mechanisms in the cervical spine,” Journal of Biomechanics, vol. 33, no. 2, pp. 191–197,
2000.

[140] R. W. Nightingale, J. H. McElhaney, W. J. Richardson, and B. S. Myers, “Dynamic responses of the head and cervical
spine to axial impact loading,” Journal of Biomechanics, vol. 29, no. 3, pp. 307–318, 1996.

[141] P. C. Ivancic, “Atlas injury mechanisms during head-first impact,” Spine, vol. 37, no. 12, pp. 1022–1029, 2012.

[142] J. S. Patricios, “Rugby Contact and Collisions - Clinical Challenges of a Global Game,” Curr Sports Med Rep, vol. 13, no. 5,
pp. 326–33, 2014.

[143] S. P. Roberts, G. Trewartha, R. J. Higgitt, J. El-Abd, and K. A. Stokes, “The physical demands of elite English rugby
union.” Journal of sports sciences, vol. 26, no. 8, pp. 825–33, 2008.

[144] J. Berge, B. Marque, J. M. Vital, J. Sénégas, and J. M. Caillé, “Age-related changes in the cervical spines of front-line rugby
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Appendix A

Remaining results

This Appendix brings the remaining results not shown in the bulk of this study.

A.1 Chapter 04

This section presents the remaining results for the calibration and validation from Chapter 4.

A.1.1 Calibration Results - Load-Displacement and Load-Strain curves

(a) (b)

Figure A-1: Load-Displacement (left side) and Load-Strain (right side) curves from the calibration
models. Red curves are DIC/experimental results. Black curves are numerical results. (a) and (b)
Spine 01, sample C6. Stiffness was calculated from 3 kN to 5 kN. Some of the experimental curves

presented inconsistent behaviour, mostly after 5 kN. This was mainly caused by blood leaking
through the VB surface during loading. The blood disrupted the paint speckle pattern which caused

the DIC algorithm to output non-physical displacements and strains.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A-2: Load-Displacement (left side) and Load-Strain (right side) curves from the calibration
models. Red curves are DIC/experimental results. Black curves are numerical results. (a) and (b)
Spine 02, sample C2; (c) and (d) Spine 02, sample C3; (e) and (f) Spine 02, sample C4; (g) and (h)

Spine 02, sample C5. Stiffness was calculated from 3 kN to 5 kN. Some of the experimental curves
presented inconsistent behaviour, mostly after 5 kN. This was mainly caused by blood leaking

through the VB surface during loading. The blood disrupted the paint speckle pattern which caused
the DIC algorithm to output non-physical displacements and strains.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A-3: Load-Displacement (left side) and Load-Strain (right side) curves from the calibration
models. Red curves are DIC/experimental results. Black curves are numerical results. (a) and (b)
Spine 03, sample C4; (c) and (d) Spine 03, sample C6; (e) and (f) Spine 04, sample C4; (g) and (h)

Spine 12, sample C2. Stiffness was calculated from 3 kN to 5 kN. Some of the experimental curves
presented inconsistent behaviour, mostly after 5 kN. This was mainly caused by blood leaking

through the VB surface during loading. The blood disrupted the paint speckle pattern which caused
the DIC algorithm to output non-physical displacements and strains.
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(a) (b)

Figure A-4: Load-Displacement (left side) and Load-Strain (right side) curves from the calibration
models. Red curves are DIC/experimental results. Black curves are numerical results. (a) and (b)
Spine 12, sample C4. Stiffness was calculated from 3 kN to 5 kN. Some of the experimental curves

presented inconsistent behaviour, mostly after 5 kN. This was mainly caused by blood leaking
through the VB surface during loading. The blood disrupted the paint speckle pattern which caused

the DIC algorithm to output non-physical displacements and strains.

A.1.2 Calibration Results - Contour plots

(a) (b)

(c) (d)

Figure A-5: Spine 01, sample C6 calibration results. The load magnitude is 5 kN. (a) DIC
vertical displacement contour plot, in mm, adjusted to toe region width; (b) FE vertical

displacement contour plot, in mm; (c) DIC vertical strain contour plot, in # (strain); (d) FE
vertical strain contour plot, in # (strain).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A-6: Spine 02, samples C2 and C3 calibration results. The load magnitude is 5 kN. (a) C2 DIC vertical
displacement contour plot adjusted to toe region width, in mm; (b) C2 FE vertical displacement contour plot, in
mm; (c) C2 DIC vertical strain contour plot, in # (strain); (d) C2 FE vertical strain contour plot, in # (strain); (e)

C3 DIC vertical displacement contour plot adjusted to toe region width, in mm; (f) C3 FE vertical displacement
contour plot, in mm; (g) C3 DIC vertical strain contour plot, in # (strain); (h) C3 FE vertical strain contour plot,

in # (strain).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A-7: Spine 02, samples C4 and C5 calibration results with the load magnitudes of 2 kN and 5 kN,
respectively. (a) C4 DIC vertical displacement contour plot adjusted to toe region width, in mm; (b) C4 FE

vertical displacement contour plot, in mm; (c) C4 DIC vertical strain contour plot, in # (strain); (d) C4 FE vertical
strain contour plot, in # (strain); (e) C5 DIC vertical displacement contour plot adjusted to toe region width, in

mm; (f) C5 FE vertical displacement contour plot, in mm; (g) C5 DIC vertical strain contour plot, in # (strain); (h)
C5 FE vertical strain contour plot, in # (strain).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A-8: Spine 03, samples C5 and C6 calibration results. The load magnitude is 5 kN. (a) C5 DIC vertical
displacement contour plot adjusted to toe region width, in mm; (b) C5 FE vertical displacement contour plot, in
mm; (c) C5 DIC vertical strain contour plot, in # (strain); (d) C5 FE vertical strain contour plot, in # (strain); (e)

C6 DIC vertical displacement contour plot adjusted to toe region width, in mm; (f) C6 FE vertical displacement
contour plot, in mm; (g) C6 DIC vertical strain contour plot, in # (strain); (h) C6 FE vertical strain contour plot,

in # (strain).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A-9: Spine 04, sample C4 and spine 12, sample C2 calibration results with the load magnitudes of
2 kN and 5 kN, respectively. DIC for spine 04, sample C4 was acquired with high-speed cameras and analysed
via VIC-3D software. (a) C4 DIC vertical displacement contour plot adjusted to toe region width, in mm; (b) C4

FE vertical displacement contour plot, in mm; (c) C4 DIC vertical strain contour plot, in # (strain); (d) C4 FE
vertical strain contour plot, in # (strain); (e) C2 DIC vertical displacement contour plot adjusted to toe region

width, in mm; (f) C2 FE vertical displacement contour plot, in mm; (g) C2 DIC vertical strain contour plot, in #
(strain); (h) C2 FE vertical strain contour plot, in # (strain).
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(a) (b)

(c) (d)

Figure A-10: Spine 12, Sample C4 calibration results. The load magnitude is 5 kN. (a) DIC
vertical displacement contour plot, in mm, adjusted to toe region width; (b) FE vertical

displacement contour plot, in mm; (c) DIC vertical strain contour plot, in # (strain); (d) FE
vertical strain contour plot, in # (strain).

A.1.3 Validation Results - Load-Displacement and Load-Strain curves

(a) (b)

Figure A-11: Load-Displacement (left side) and Load-Strain (right side) curves from the validation
models. Red curves are DIC/experimental results. Black curves are numerical results. (a) and (b)

Spine 04, sample C6. Stiffness was calculated from 3 kN to 5 kN.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A-12: Load-Displacement (left side) and Load-Strain (right side) curves from the validation
models. Red curves are DIC/experimental results. Black curves are numerical results. (a) and (b)
Spine 04, sample C7; (c) and (d) Spine 05, sample C7; (e) and (f) Spine 12, sample C5; (g) and (h)

Spine 12, sample C7. Stiffness was calculated from 3 kN to 5 kN. Some of the experimental curves
presented inconsistent behaviour, mostly after 5 kN. This was mainly caused by blood leaking

through the VB surface during loading. The blood disrupted the paint speckle pattern which caused
the DIC algorithm to output non-physical displacements and strains.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A-13: Load-Displacement (left side) and Load-Strain (right side) curves from the validation
models. Red curves are DIC/experimental results. Black curves are numerical results. (a) and (b)

Spine 13, sample C3 (c) and (d) Spine 13, sample C4; (e) and (f) Spine 13, sample C5; (g) and h) Spine
13, sample C7. Stiffness was calculated from 3 kN to 5 kN. Some of the experimental curves

presented inconsistent behaviour, mostly after 5 kN. This was mainly caused by blood leaking
through the VB surface during loading. The blood disrupted the paint speckle pattern which caused

the DIC algorithm to output non-physical displacements and strains.
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A.1.4 Validation Results - Contour plots

(a) (b)

(c) (d)

Figure A-14: Spine 04, Sample C6 validation results. The load magnitude is 3 kN. (a) DIC
vertical displacement contour plot, in mm, adjusted to toe region width; (b) FE vertical

displacement contour plot, in mm; (c) DIC vertical strain contour plot, in # (strain); (d) FE
vertical strain contour plot, in # (strain).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A-15: Spine 04, sample C7 and spine 05, sample C7 validation results. The load magnitude is 4 kN.
DIC for spine 04, sample C7 was acquired with high-speed cameras and analysed via VIC-3D software. (a) S04

C7 DIC vertical displacement contour plot adjusted to toe region width, in mm; (b) S04 C7 FE vertical
displacement contour plot, in mm; (c) S04 C7 DIC vertical strain contour plot, in # (strain); (d) S04 C7 FE vertical
strain contour plot, in # (strain); (e) S05 C7 DIC vertical displacement contour plot adjusted to toe region width,
in mm; (f) S05 C7 FE vertical displacement contour plot, in mm; (g) S05 C7 DIC vertical strain contour plot, in #

(strain); (h) S05 C7 FE vertical strain contour plot, in # (strain).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A-16: Spine 12, samples C5 and C7 validation results. The load magnitude is 5 kN. (a) C5 DIC
vertical displacement contour plot adjusted to toe region width, in mm; (b) C5 FE vertical displacement contour

plot, in mm; (c) C5 DIC vertical strain contour plot, in # (strain); (d) C5 FE vertical strain contour plot, in #
(strain); (e) C7 DIC vertical displacement contour plot adjusted to toe region width, in mm; (f) C7 FE vertical

displacement contour plot, in mm; (g) C7 DIC vertical strain contour plot, in # (strain); (h) C7 FE vertical strain
contour plot, in # (strain).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A-17: Spine 13, samples C3 and C4 validation results. The load magnitude is 4 kN. (a) C3 DIC
vertical displacement contour plot adjusted to toe region width, in mm; (b) C3 FE vertical displacement contour

plot, in mm; (c) C3 DIC vertical strain contour plot, in # (strain); (d) C3 FE vertical strain contour plot, in #
(strain); (e) C4 DIC vertical displacement contour plot adjusted to toe region width, in mm; (f) C4 FE vertical

displacement contour plot, in mm; (g) C4 DIC vertical strain contour plot, in # (strain); (h) C4 FE vertical strain
contour plot, in # (strain).

200



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A-18: Spine 13, samples C5 and C7 validation results. The load magnitude is 5 kN. (a) C5 DIC
vertical displacement contour plot adjusted to toe region width, in mm; (b) C5 FE vertical displacement contour

plot, in mm; (c) C5 DIC vertical strain contour plot, in # (strain); (d) C5 FE vertical strain contour plot, in #
(strain); (e) C7 DIC vertical displacement contour plot adjusted to toe region width, in mm; (f) C7 FE vertical

displacement contour plot, in mm; (g) C7 DIC vertical strain contour plot, in # (strain); (h) C7 FE vertical strain
contour plot, in # (strain).
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A.2 Chapter 05

This section presents the remaining results from Chapter 5.

A.2.1 Load-Displacement and Load-Strain curves

(a) (b)

(c) (d)

(e) (f)

Figure A-19: Load-Displacement and Load-Strain curves - Red curve is the experimental/DIC
from the VB anterior surface. Blue curve is from the VB anterior surface for partially constrained

boundary condition models. Black curve is from the VB anterior surface for fully constrained
boundary condition models. (a) and (b) Spine 07, sample C3; (c) and (d) Spine 07, sample C5; (e) and

(f) Spine 07, sample C7.
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(a) (b)

Figure A-20: Load-Displacement and Load-Strain curves - Red curve is the
experimental/DIC from the VB anterior surface. Blue curve is from the VB anterior surface
for partially constrained boundary condition models. Black curve is from the VB anterior
surface for fully constrained boundary condition models. (a) and (b) Spine 09, sample C7.

A.2.2 Load-Time curves

(a) (b)

(c) (d)

Figure A-21: Load-Time curves - Magenta curves are the caudal load cell data. Red curve
are the cranial load cell data. Black curves are the reaction load from the partially

constrained models. (a) Spine 07, sample C3; (b) Spine 07, sample C5; (c) Spine 07, sample
C7; (d) Spine 09, sample C7.
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A.2.3 Energy-Time curves

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A-22: Energy-Time. Black curves are the potential energy from the fully constrained
models. Blue curves are the potential and kinetic energies from the partially constrained models. (a)
and (b) Spine 07, sample C3; (c) and (d) Spine 07, sample C5; (e) and (f) Spine 07, sample C7; (g) and

(h) Spine 09, sample C7.
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A.2.4 Contour plots

(a) (b)

(c) (d)

(e) (f)

Figure A-23: Spine 07, Sample C3. The load magnitude is 5 kN. (a) DIC vertical displacement
contour plot adjusted to toe region width, in m; (b) DIC vertical strain contour plot, in # (strain); (c)
FE vertical displacement contour plot for fully constrained BC, in m; (d) FE vertical strain contour

plot for fully constrained BC, in # (strain); (e) FE vertical displacement contour plot for partially
constrained BC, in m; (f) FE vertical strain contour plot for partially constrained BC, in # (strain).
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(a) (b)

(c) (d)

(e) (f)

Figure A-24: Spine 07, Sample C5. The load magnitude is 5 kN. (a) DIC vertical displacement
contour plot adjusted to toe region width, in m; (b) DIC vertical strain contour plot, in # (strain); (c)
FE vertical displacement contour plot for fully constrained BC, in m; (d) FE vertical strain contour

plot for fully constrained BC, in # (strain); (e) FE vertical displacement contour plot for partially
constrained BC, in m; (f) FE vertical strain contour plot for partially constrained BC, in # (strain).
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(a) (b)

(c) (d)

(e) (f)

Figure A-25: Spine 07, Sample C7. The load magnitude is 5 kN. a) DIC vertical displacement
contour plot adjusted to toe region width, in m; (b) DIC vertical strain contour plot, in # (strain); (c)
FE vertical displacement contour plot for fully constrained BC, in m; (d) FE vertical strain contour

plot for fully constrained BC, in # (strain); (e) FE vertical displacement contour plot for partially
constrained BC, in m; (f) FE vertical strain contour plot for partially constrained BC, in # (strain).
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(a) (b)

(c) (d)

(e) (f)

Figure A-26: Spine 09, Sample C7. The load magnitude is 5 kN. (a) DIC vertical displacement
contour plot adjusted to toe region width, in m; (b) DIC vertical strain contour plot, in # (strain); (c)
FE vertical displacement contour plot for fully constrained BC, in m; (d) FE vertical strain contour

plot for fully constrained BC, in # (strain); (e) FE vertical displacement contour plot for partially
constrained BC, in m; (f) FE vertical strain contour plot for partially constrained BC, in # (strain).
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A.3 Chapter 06

A.3.1 Bland-Altman Plots

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A-27: Bland-Altman plots comparing experimental and FE displacements for spine
02. On the left side is the comparison between DIC and FE displacements. On the right side

is the comparison between markers and FE displacements. D is the difference between
experimental and numerical displacements. Average is the average between experimental
and numerical displacements. (a) and (b) C2 vertebrae; (c) and (d) C3 vertebrae; (e) and (f)

C4 vertebrae; (g) and (h) C5 vertebrae.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A-28: Bland-Altman plots comparing experimental and FE displacements for spine
03. On the left side is the comparison between DIC and FE displacements. On the right side

is the comparison between markers and FE displacements. D is the difference between
experimental and numerical displacements. Average is the average between experimental
and numerical displacements. (a) and (b) C2 vertebrae; (c) and (d) C3 vertebrae; (e) and (f)

C4 vertebrae; (g) and (h) C5 vertebrae.
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A.3.2 Contour plots of vertical displacements and strains

(a) (b)

(c) (d)

(e) (f)

Figure A-29: Vertical displacements and strains for spine 02. (a) DIC Vertical displacements,
in m; (b) DIC vertical strains, in # (strain); (c) FE fully constrained BC vertical displacements,

in m; (d) FE fully constrained BC vertical strains, in # (strain); (e) FE partially constrained
BC vertical displacements, in m; (f) FE partially constrained BC vertical strains, in # (strain).
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(a) (b)

(c) (d)

(e) (f)

Figure A-30: Vertical displacements and strains for spine 03. (a) DIC Vertical displacements,
in m; (b) DIC vertical strains, in # (strain); (c) FE fully constrained BC vertical displacements,

in m; (d) FE fully constrained BC vertical strains, in # (strain); (e) FE partially constrained
BC vertical displacements, in m; (f) FE partially constrained BC vertical strains, in # (strain).
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A.3.3 Contour plots of anterior-posterior displacements and strains

(a) (b)

(c) (d)

(e) (f)

Figure A-31: Anterior-posterior displacements and shear strains for spine 02. (a) DIC
Vertical displacements, in m; (b) DIC vertical strains, in # (strain); (c) FE fully constrained

BC vertical displacements, in m; (d) FE fully constrained BC vertical strains, in # (strain); (e)
FE partially constrained BC vertical displacements, in m; (f) FE partially constrained BC

vertical strains, in # (strain).
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(a) (b)

(c) (d)

(e) (f)

Figure A-32: Anterior-posterior displacements and shear strains for spine 03. (a) DIC
Vertical displacements, in m; (b) DIC vertical strains, in # (strain); (c) FE fully constrained

BC vertical displacements, in m; (d) FE fully constrained BC vertical strains, in # (strain); (e)
FE partially constrained BC vertical displacements, in m; (f) FE partially constrained BC

vertical strains, in # (strain).
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A.3.4 Contour plots of axial and anterior-posterior strains for the intervertebral
discs

(a) (b)

(c) (d)

Figure A-33: Vertical and shear strains for the intervertebral discs from spine 02, in #
(strain). (a) Axial strains for numerical fully constrain BC; (b) Shear strains for numerical
fully constrain BC; (c) Axial strains for numerical partially constrain BC; (d) Shear strains

for numerical partially constrain BC.
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(a) (b)

(c) (d)

Figure A-34: Vertical and shear strains for the intervertebral discs from spine 03, in #
(strain). (a) Axial strains for numerical fully constrain BC; (b) Shear strains for numerical
fully constrain BC; (c) Axial strains for numerical partially constrain BC; (d) Shear strains

for numerical partially constrain BC.
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Appendix B

Verification and Sensitivity Analysis

The following chapter describes the sensitivity analysis conducted in this study.

B.1 Mesh Verification

A mesh sensitivity analysis was carried out for the vertebral body models. Among the avail-
able geometrical models, one was randomly chosen for the tests: Spine 02, C2 vertebral body
(VB). It was composed by an steel plate, bone cement housings, cartilages and the vertebral
body.

Eight (n=8) different meshes were created at Simpleware ScanIP software (Simpleware Syn-
opsys, California, USA) and exported to Ansys (Ansys Inc, Pennsylvania, USA). All models
had the same boundary conditions: the bottom surface nodes of the cement were constrained
vertically (z direction), with 4 nodes being constrained horizontally (x and y directions), Fig-
ure B-1.

(a) (b)

Figure B-1: Mesh sensitivity test. (a) 2 mm mesh (b) 0.6 mm mesh.

A ramped load up to 10 kN was applied at the same position as measured experimentally.
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The load node was also constrained horizontally to avoid any numerical instability. Ma-
terial properties were applied following the orthotropic approach and the specimen-specific
material properties defined previously.

Displacement was measured from the surface nodes of the vertebral body. A squared re-
gion was set at the VB surface and the node values extracted and averaged for a given load
step. They were then correlated to load and stiffness was calculated between 3 kN and 5 kN.
Results are shown at Table B.1.

Table B.1: Mesh sensitivity data. Difference to previous is the difference in stiffness from the
previous mesh size.

Mesh
Element size

[mm]
Element
Quantity

Mesh Density
[Elem/mm3]

Stiffness
[N mm�2]

Difference to
Previous [%]

1 2 89422 0.6 3105 0.0
2 1.8 127553 0.8 2811 9.5
3 1.5 176949 1.2 2849 1.4
4 1.3 274312 1.9 2690 5.6
5 1.0 456162 3.0 2582 4.0
6 0.9 610775 4.1 2582 0.0
7 0.8 916785 6.1 2453 5.0
8 0.6 1443311 9.5 2342 4.5

Figure B-2: Mesh sensitivity test plot.

Element size from and greater than 1 mm3 was found as the best option for the FE VB models.
Stiffness variation was less than 5 % for this case, Table B.1 and Figure B-2. For this study, in
order to be comparable to clinical CT images, a mesh size of 1 mm3 was chosen.

B.2 DIC software paramerters Sensitivity

A sensitivity test on DIC correlation analysis parameters was conducted for both pieces of
software: NCorr [248] and VIC-3D (Correlated Solutions, South Carolina, USA).
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B.2.1 NCorr software

An experiment was conducted so that the analysis parameters could be evaluated. Two ac-
rylic plates where wrapped in white paper and a speckle pattern was created following the
same procedures used for the spine samples. Sequentially, they were positioned parallel to
each other inside an Instron materials testing machine (Instron, High Wycombe, UK): one at
the actuator and another one at the base plate, Figure B-3a. A GigE DFK 23GP01 Camera
(The Imaging Source Europe GmbH, Germany) was positioned in front of the testing ma-
chine, Figure B-3b. Brightness and focus were adjusted similarly to previous experiments. A
displacement control loading was applied: a ramped displacement at 5 mm s�1 up to 10 mm,
staying on that level for 30 seconds, followed again by another ramped displacement at
5 mm s�1 up to 20 mm, Figure B-4. Displacements were averaged from whole surface of the
top plate, at 10 mm and 20 mm, and compared to Instron’s output.

(a) (b)

Figure B-3: NCorr parameters sensitivity testing set-up. (a) Acrylic plates with DIC speckle
pattern; (b) GigE DFK 23GP01 Camera.

(a) (b)

Figure B-4: NCorr parameters sensitivity testing set-up. (a) Ramped displacement up to
10 mm; (b) Following ramped displacement up to 20 mm.

Two main parameters were assessed: radius and spacing [95, 98]. Radius is the size of the
subdivisions of the image. Spacing is the distance between seeds used to run the analysis.
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Maximum and minimum software’s sizes of each parameter were chosen, Table B.2. An ar-
ray L4 (23) was selected, Tables B.3 and B.4. A smaller-the-better for the differences between
applied (Instron) and measured (DIC) for 10 mm and 20 mm were defined. A response table
and ANOVA analysis were conducted, Tables B.5 and B.6, respectively, and Figure B-6.

Table B.2: NCorr parameters sensitivity.

Factor Levels
Radius A 60 20
Spacing B 9 1

1 2

Figure B-5

Figure B-6: NCorr parameters sensitivity testing set-up. Response table.

It was found similar results to the literature: radius is the most important parameter and
has to be set as smaller as possible [95, 98]. Spacing did not affect the results but smaller,
the better. Therefore, it was set the preference for smaller radius and spacing during DIC
analysis using Ncorr camera and software. However, due to computational constraints, it
was not possible to use that set-up. Instead, tests were made until it was feasible to run the
analysis, and radius of 30 and spacing of 5 were chosen.

Table B.3: Taguchi orthogonal array L4 (23) for 10 mm.

Trial
No

1 2 3 Try 01 Try 02 Try 03 Try 04 Average STD SN-RatioA B AxB
1 1 1 1 0.6 0.7 0.5 0.5 0.6 0.08 4.5
2 1 2 2 0.6 0.7 0.5 0.5 0.6 0.08 4.5
3 2 1 2 0.6 0.7 0.6 0.6 0.6 0.06 3.9
4 2 2 1 0.6 0.7 0.6 0.6 0.6 0.05 3.9
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Table B.4: Taguchi orthogonal array L4 (23) for 20 mm.

Trial
No

1 2 3 Try 01 Try 02 Try 03 Try 04 Average STD SN-RatioA B AxB
1 1 1 1 1.0 1.0 0.8 0.8 0.9 0.1 0.5
2 1 2 2 1.0 1.0 0.8 0.8 0.9 0.1 0.4
3 2 1 2 1.0 1.1 0.9 1.0 1.0 0.09 -0.3
4 2 2 1 1.0 1.1 0.9 1.0 1.0 0.09 -0.4

Table B.5: Response table.

10 mm 20 mm
A B AxB A B AxB

Level 1 4.5 4.2 4.2 0.4 0.08 0.05
Level 2 3.9 4.2 4.2 -0.3 0.03 0.07

Difference 0.6 0.03 0.01 0.8 0.06 0.02
Rank 1 2 3 1 2 3

Table B.6: Analysis of Variance (ANOVA) of the main contributors for numerical stiffness,
where Sq is the Sum of Squares, n is DoF of the variable, ST is the total sum, Mq is the Mean

Sum of Squares, F-Ratio is a hypothesis test, and r is the contribution percentage.

10 mm 20 mm
Source Sq n Mq r (%) Sq n Mq r (%)

A 0.4 1.0 0.4 99.6 0.6 1.0 0.6 99.4
B 0.001 1.0 0.001 0.3 0.003 1.0 0.003 0.5

AxB 0.0002 1.0 0.0002 0.045 0.0003 1.0 0.0003 0.05
Error -1.4x10�14 0 0 0 -6x10�17 0 0 0
Mean
(Sm) 70.5 1 - - 0.01 1 - -

ST 70.9 4.0 - - 0.6 4.0 - -

B.2.2 VIC-3D software

Exactly same experiment was conducted, but using two high speed cameras (Photron Europe
Ltd, UK) and VIC-3D DIC analysis software (Correlated Solutions, South Carolina, USA),
Figure B-7. Brightness and focus were adjusted similarly to the real experiment. Exactly
same displacement control loading was applied. Displacements were averaged from whole
surface of the top plate, at 10 mm and 20 mm, and compared to Instron’s output, Figure B-
8. Differently from Ncorr, VIC-3D software does not have radius, only spacing. Therefore,
instead of using Taguchi, only a simple comparison was made: analysis with maximum, 69,
or minimum, 21, spacings. The test was also repeated four times.

Results are shown on Figure B-9. As it can be seen, there is almost no difference (less than
1 %) between the minimum and maximum options for spacing. Therefore, no preference for
spacing was set.
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(a)

Figure B-7: Vic-3D software parameters sensitivity testing set-up. (a) Acrylic plates with
DIC speckle pattern; (b) High Speed Cameras.

(a) (b)

Figure B-8: Vic-3D software parameters sensitivity testing set-up. (a) 10 mm; (b) 20 mm.
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Figure B-9: Average displacement using spacing 21 and 69 on VIC-3D software.
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Appendix C

Bone cement material caracterization

C.1 Introduction

Polymethyl methacrylate (PMMA) bone cement is extensively used in orthopaedic surgery
for fixation of prostheses and to enhance screw stability [269, 270]. It is also widely used in
experimental biomechanical tests as it is readily available and simple to mould into speci-
men specific fixtures [30, 200, 212]. As a consequence, bone cement is usually included in
specimen specific Finite Element (FE) models, particularly in spine studies, to increase the
geometrical and boundary condition accuracy [16, 80, 175, 200, 212, 271].

The Young’s Modulus of bone cement is usually reported ranging from 2.1 GPa to 3.1 GPa,
depending on the mixing procedure and type of bone cement [68, 92, 155, 270]. The determ-
ination of bone cement compressive mechanical properties is usually made using short and
thin cylindrical samples, therefore assuring an uniform cooling as well as homogeneous and
continuous properties [270]. However, the majority of the cement fixtures made in experi-
mental practices, particularly for spine studies, are relatively large often different in shape
compared to a cylinder. This change in size and in shape could potentially generate differ-
ences in the final mechanical properties, such as in structural strength, as there would be a
cooling gradient and air could be readily trapped inside the mould giving rise to porosity
and influencing the mechanical properties [269, 270, 272, 273].

Variation in bone cement properties might not affect the experimental results drastically,
but would have a significant influence on the numerical results of FE models. Moreover,
assuring that the mechanical properties of a well described material are correctly defined
will improve the accuracy of numerical models and their related parameters, such as the
trabecullae structure definition and material [55, 213]. The aim of this study was to present
a case study of the variability of the compressive mechanical properties of the bone cement
for large size samples.
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C.2 Materials and Methods

C.2.1 Experimental Procedure

Fifteen cylinder were made using PMMA bone cement (Simplex, Stryker Ltd, Newbury,
United Kingdom). The cement dough was prepared by hand mixing in open air at a room
temperature of 15o: the polymerer powder with methyl methacrylate liquid was mixed using
a spatula at 1 Hz to 2 Hz for a period of time between 45 s and 120 s [270]. The mixture was
them poured into a cylindrical PTFE mould 50 mm diameter and 15 mm length - these mould
dimensions are often used to fit vertebral bodies). After 20 min, the cement was removed
from the pot, machined to assure that both top and bottom sides were flat and parallel, and
sequentially numbered (Figure C-1). The samples were micro-CT scanned at voxel size of
0.03 mm to assess the internal structure (Nikon XTH225ST CT Scanner - Nikon Metrology
Inc, Michigan, USA).

Figure C-1: Cement samples.

The dimensions of each disc, length and diameter, were measured five times using a digital
calliper (resolution of 0.01 mm). The weight of each body was also acquired in a high preci-
sion scale (resolution of 0.01 g). Disc volume and virtual density were calculated as well.

All fifteen cement samples were tested in a materials testing machine (Instron, High Wycombe,
UK). The samples were positioned in the centre of the machine and, in order to avoid local
deformations on the cement and to ensure that a uniform load would be applied, a steel
plate was placed between the cement and the actuator on the test machine (Figure C-2). A
compressive-ramped load up to 10 kN was applied at 1000 N min�1. The results were eval-
uated in terms of the stiffness of the cement samples. The experimental stiffness was meas-
ured in the most linear part of a load-displacement curve generated by the material testing
machine using Matlab (MathWorks, Massachusetts, USA). The fifteen samples curves were
averaged using procedure described elsewhere [274]. Sequentially, each load-displacement
curve was turned into stress-strain curve using the measured dimensions. These curves were
also averaged to determine the average Young’s modulus for the disc.
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(a) (b)

Figure C-2: Experimental set-up. (a) Experimental devices; (b) Experimental procedure.

C.3 Results

C.3.1 Experimental Results

Each bone cement sample generated a load-displacement curve, Figure C-3. The first set of
each curve, from 0 kN to 7 kN, was discarded as the region of interest is the most linear part
and that curved section is due to relative motions inside the testing machine, Figure C-3. The
gradient of the linear section of the curves were averaged following the procedures described
elsewhere [274], generating an averaged curve with stiffness of 14833�4x10�7 N mm�1

Figure C-3: Load-Displacement curves for all samples, linear sections and weighted
averaged curve.

Based on each load-displacement curves and on geometric data, stress-strain curves were
built, Figure C-4. The first section of the curves was discarded as well as the region of interest
to calculate Young’s Modulus is the most linear part. The average value of Young’s modulus
was 1177�2x10�7 MPa
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Figure C-4: Stress-Strain curves for all samples, linear sections and weighted averaged
curve.

The micro-CT images taken from two randomly chosen specimens, samples 1 and 5, showed
a high concentration of porosity, mainly in the centre and near the open surface of the the
pot, Figure C-5a.

(a) (b)

Figure C-5: Porosity of bone cement. (a) Micro-CT images from samples 1 (top) and 5
(bottom) - cross section views; (b) Micro-CT images from C2 - cross-section views.
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Appendix D

Taguchi analysis of the FE modelling
parameters

D.1 Introduction

Finite element (FE) models have been widely applied into orthopaedics research to evaluate
spine injuries and to characterise the mechanical behaviour of vertebral bodies [49, 88, 243].
However, their accuracy is highly dependant on several factors, such as material properties,
boundary conditions, load application and mesh resolution [67, 88, 212]. As a consequence,
several studies have explored the influence of these modelling factors and how they indi-
vidually affect model’s prediction capabilities [68, 212, 221, 243, 275].

The most frequent analysed factor is the mesh resolution [68, 186, 212, 221, 222]. According to
Jones and Wilcox [212], an ideal mesh size is a compromise between accuracy, in the descrip-
tion of geometrical and material features, and computational costs. Nevertheless, there is
still uncertainty to what ideal the mesh size is. For example, a study conducted by Crawford
et al. [68] evaluated how the mesh size and image resolution affects the prediction of verteb-
ral stiffness. They found that mesh resolution does not affect the model stiffness, and it has a
similar influence as specimens anatomy variability. Another study, on the other hand, high-
lighted that there is a significant difference in predicted vertebral stiffness for larger element
sizes (more than 3 mm), especially for specimen-specific models [212].

Another factor that has not been fully evaluated is the relationship between material proper-
ties and density. The use of specimen-specific properties based on grey-scale (GS) to Young’s
Modulus equations have increased the accuracy of the models and allowed an element-based
material definition [83]. In other words, a body would have several groups (or bins) of mater-
ial according to its density distribution. However, the precise number of different materials
required to describe the trabecullar structure is still unknown. In one of the few studies
covering this issue, Giambini et al. [94] evaluated the influence of the number of different
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materials on the predicted stiffness using QCT/FE models of vertebral bodies. They found
that for 8, 18 and 50 different materials, the difference relative to the experimental results
were 21 %, 6 % and 1 %, respectively.

An additional problem that has risen with specimen-specific FE models, and it still has not
been addressed, is the influence of the calibration factor of grey-scale (GS) to Young’s Modu-
lus equations. The literature is populated with several different equations, and they widely
vary in terms of density range, experimental technique and formulation type (i.e. linear or
power laws) [57]. In order to overcome these issues, some studies make the use of a coef-
ficient, which re-calibrates these equations for their sample density and testing conditions
[88, 200].

Finally, the majority of studies available in the literature only compared the results from a
relatively small set of simulations, without using any specific statistical tool to quantify their
influence, and used the simplistic approach of testing one factor at time. Also, the interac-
tions between factors, i.e. if one factor affects the other, have remained unexplored. The
Taguchi Method has been successfully used in engineering to estimate the effect of factors
and their interactions on a desired outcome [227, 276, 277]. Instead of investigating all pos-
sible combinations to analyse the influence of a specific set of parameters, which can be
time-consuming, Taguchi uses orthogonal arrays and a relatively small and specific combin-
ation of parameters to achieve the same results, reducing experimental costs (and time) and
increasing productivity. The aim of this study was, therefore, to quantify the influence of
the main well-defined modelling factors, mesh size, calibration factor and number of bands
(bins) of materials, on the prediction of the stiffness of a vertebral body FE model using the
Taguchi method.

D.2 Materials and Methods

D.2.1 Taguchi Experiments

In order to set a Taguchi analysis, it is firstly necessary to understand the basic concepts
of it. Any studied parameter is called factor and any value assigned to it is named level
[227, 276]. For example, if a factor has two levels, it means that the parameter has two
possible values. For this study, three factors were initially chosen based on literature: grey-
scale calibration factor, mesh size and number of grey-scale bins (or materials). In order to
explore the full potential of the method, three extra factors were added to account for the
interactions between the three primary factors, i.e. if the change in one affects the other. A
total of six factors were then analysed, and there were labelled as A, B and C for grey-scale
factor, mesh size and number of grey-scale bins, respectively, and as AxB, AxC and BxC for
the interactions. Each level was assumed to be linear and it was labelled as one or two, Table
D.1.
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After setting the factors and their levels, it is necessary to select an orthogonal array with
enough iteration spaces. An orthogonal array is a table that contains all necessary combin-
ations of the factors. Its size varies according to the number of factors and levels, and they
are available elsewhere [227, 276]. Each combination of factors is labelled as an experiment.
For example, if four experiments are run, it means that four different combinations of factors
were tested. For the current study, it was selected an orthogonal array L8(27), which con-
sists of eight experiments (or combinations), and it can analyse up to seven factors, with two
levels each, Table D.2 [276]. The results were evaluated in terms of the stiffness of the ver-
tebral body, i.e. how much the factors changed the predicted stiffness of the finite element
model compared to the experimental stiffness. In order to complement Taguchi analyses, an
Analysis of Variance (ANOVA) were also conducted.

Table D.1: Analysed factors and their levels.

Factor Levels
FactGS A 0.1 0.03
Mesh B 1.25 0.75
Bins C 50 20

1 2

Table D.2: L8(27) Orthogonal Array for Taguchi Experiments.

Factors L8(27)

Experiment 1 2 3 4 5 6 7
A B AxB C AxC BxC e

1 1 1 1 1 1 1 1
2 1 1 1 2 2 2 2
3 1 2 2 1 1 2 2
4 1 2 2 2 2 1 1
5 2 1 2 1 2 1 2
6 2 1 2 2 1 2 1
7 2 2 1 1 2 2 1
8 2 2 1 2 1 1 2

D.2.2 Experimental Procedure for comparison

A compression-load experiment was performed in order to acquire data for comparison. A
juvenile porcine cervical spine was acquired from a local abattoir, dissected and a C2 verteb-
ral body was potted separately in polymethyl methacrylate (PMMA) bone cement (Simplex,
Stryker Corporation, USA), Figure D-1a. This specimen was mCT scanned (Nikon XTH225ST
CT Scanner - Nikon Metrology UK, Hertfordshire, UK) and an image file with a voxel size of
0.10 mm was obtained.

The sample was then positioned on a material testing machine (Instron, High Wycombe,
UK), and a compressive vertical load up to 10 kN at 1000 N min�1 was applied to the sample’s
top surface. In order to avoid any local deformation on the cement and to certify that a uni-
form load would be applied, an aluminium plate was placed between the cement and the
actuator of the test machine, Figure D-1b. The experimental stiffness was measured in the
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most linear part of the load versus displacement curve generated from the materials testing
machine data and processed by Matlab (v.R2016b, MathWorks Inc, MA, USA).

Figure D-1: (a) Potted C2 vertebral body. (b) Testing set-up.

D.2.3 Numerical Model

A numerical model was created from the mCT images (v.2017, Simpleware ScanIP, Synopsys
Inc, California, USA), Figure D-2. This model comprises the cranial and caudal cement pots,
the C2 vertebral body, cartilage (remaining from dissection) and the aluminium plate. The
element types chosen for this study were a mixture of hexahedrons, to represent the internal
trabecular structure, and tetrahedrons, to represent the external surface [78, 80, 81, 88, 212].

In order to simulate two different mesh sizes, element lengths of 1.25 mm and 0.75 mm were
used. The first value is commonly found in literature as default mesh size [68, 71, 81, 212,
212, 213]. The latter number was the minimum mesh size for which simulations could be
generated within an acceptable time frame. The original model, with a resolution of 0.10 mm,
was then resampled to the required sizes. A total of eight models were created, according to
the required combination of parameters, Table D.2.

Figure D-2: Numerical model of C2 vertebral body in Simpleware ScanIP.

The material properties for the bone cement and the aluminium plate were set as isotropic
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and linear. The cartilage was set as hyper-elastic [210]. The properties for the cartilage and
plate were based on literature data and the cement on a custom materials test, Table D.3.

Table D.3: Material properties applied to the FE model.

Body Type Elastic Parameter [MPa] Poisson Reference

Cartilage
Hyperelastic

Neo-Hookean
C10 = 0.3448, D1 = 0.3 - [210]

Cement Isotropic E = 1177 0.3 Custom testing
Aluminum Plate Isotropic E = 70000 0.35 [278]

The number of bins (or the number of different materials) for the vertebral body was based
on the common values found in literature: 50 or 20 groups of different materials [94, 212].
These material properties were based on the grey-scale information acquired using calibra-
tion phantoms and on the equation provided elsewhere [67]:

Ezz = 2980.r1.05
App (D.1)

where rApp is the apparent density, in g cm�3, and E is Young’s Modulus, in MPa. The
above equation was formulated based on elderly and human cervical vertebral bodies and,
therefore, it needed to be adapted, i.e. rescaled, for juvenile porcine specimens using a mul-
tiplying grey-scale factor previously mentioned. The values for the factor, Table D.1, were
0.1 (10 % of the original value) and 0.03 (the lowest limit which the mean Young’s modulus
was in the range of the acceptable values [253]). The material properties for the vertebral
body were considered to be orthotropic, Equations D.2 [50, 68, 69, 71, 213, 216].

Exx = 0.333 � Ezz (D.2)
Eyy = 0.333 � Ezz

Gxy = 0.121 � Ezz

Gxz = 0.157 � Ezz

Gyz = 0.157 � Ezz

nxy = 0.381
nxz = 0.104
nyz = 0.104

The models were then exported from ScanIP to Ansys Mechanical APDL 18.1 (Ansys Inc.,
Pennsylvania, USA), where the boundary conditions, constraints and load application point
were applied to replicate the in vitro test, Figure D-3. The predicted stiffness of each model
was estimated from the calculated load versus displacement curve. The load was acquired
from the reaction forces, and the displacement was obtained from a node at the top surface
of the top cement housing, directly below the load application point; a similar location to
that which the testing machine applied the load.

232



Figure D-3: Numerical model of C2 with boundary conditions in ANSYS Mechanical
APDL v18.1.

D.3 Results

D.3.1 Experimental Results

The data acquired from the material testing machine were plotted in a load versus displace-
ment curve and the stiffness was measured based on the most linear part. In this case, it was
between 2 kN and 4 kN of the load values, giving a stiffness value of 2854 N mm�1, Figure
D-4.

Figure D-4: Experimental results of C2 vertebral body.

D.3.2 Numerical and Taguchi Results

Each model generated a load versus displacement curve from which stiffness also was es-
timated between load values of 2 kN and 4 kN, Figure D-5 and Table D.4. The models with
the greater GS factor presented the highest stiffness values, with the model with a mesh size
of 1.25 mm and 50 bins of materials, Experiment 2, having the highest value, 6726 N mm�1.
In contrast, the models with a GS factor of 0.03 had the lowest values of stiffness, with the
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model with a mesh size of 0.75 mm and 20 material bins, Experiment 7, having the lowest,
2521 N mm�1. The closest values of predicted stiffness to the experimental were from mod-
els 5 and 6, 2751 N mm�1 and 2823 N mm�1, respectively, with both having GS factor of 0.03
and mesh size of 1.25 mm, but 50 and 20 material bins, respectively.

Table D.4: Results for the Taguchi Experiments

Factors L8(27)

Experiment 1 2 3 4 5 6 7 Calculated
StiffnessA B AxB C AxC BxC e

1 1 1 1 1 1 1 1 6607
2 1 1 1 2 2 2 2 6726
3 1 2 2 1 1 2 2 5849
4 1 2 2 2 2 1 1 5962
5 2 1 2 1 2 1 2 2751
6 2 1 2 2 1 2 1 2823
7 2 2 1 1 2 2 1 2521
8 2 2 1 2 1 1 2 2561

Average 4475

Figure D-5: Stiffness predictions from the eight numerical models.

The Analyse of Variance (ANOVA), Table D.5, confirmed what was indicated in the Taguchi
Experiments. GS factor is the main contributor of the predicted stiffness, accounting for 97 %
of it, with the value of 0.03 most closely aligning numerical and experimental results. Mesh
size accounted for 2 % of the predicted stiffness. Due to the low influence on the prediction
of stiffness, factors C, AxC and BxC were excluded from the analysis after a preliminary
analysis with ANOVA.

The response graph, Figure D-6, indicates that the GS factor is the main variable, as the gradi-
ent of the curve between levels one and two was the highest among the variables, followed
by mesh size. The results also showed that these three factors are independent. In other
words, one factor does not have an affect on the other, as the interaction between them were
excluded from ANOVA, and the contribution of the interaction between A and B was only
0.5 %. This is also confirmed by the response graph, as the curves AxB did not cross each
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other [276].

Table D.5: Analysis of Variance (ANOVA) of the main contributors for numerical stiffness,
where Sq is the Sum of Squares, n is DoF of the variable, Mq is the Mean Sum of Squares,
F-Ratio is a hypothesis test, Sq’ is the Corrected Sum of Squares after pooling, and r is the

contribution percentage.

.

Source Pool Sq n Mq F-Ratio Sq’ r %
A 26231248 1 26231248 6236 26227043 97
B 507427 1 507427 121 503222 1.9

AxB 132716 1 132716 32 128510 0.5
C Y 14740 1 14740 3.50 10535 0.039

AxC Y 1818.04 1 1818 0.43 -2388 -0.009
BxC Y 180.50 1 180.50 0.04 -4025 -0.015

e 84.50 0 - - - -
Error Y 84.50 1 84.50 1 84.50 0.0003

Pooled Error 16823.49 4 4205.87 1 29441.10 0.11
St 26888215.20 7 3841173.60 26888215.20 100

Figure D-6: Response graph from ANOVA. As the gradient of the curve between levels one
and two was the highest among the variables, GS factor is the main variable, followed by

mesh size. The results also showed that these three factors are independent.

D.4 Discussion

Finite element modelling of biomechanical structures is a challenging process due to the
many factors that can affect the results [16]. This study aimed to evaluate the main variables
commonly presented in FE modelling of vertebral bodies - GS factor, mesh size and number
of material bands, and how they would affect the predicted stiffness. A better understanding
of the modelling process and its variables would save time and reduce overall computational
costs as fewer simulations would be necessary to build and to calibrate a model. However,
differently from other studies, this work did not focus solely on a direct comparison between
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results, but on to quantify the influence of variables using a statistical tool.

Taguchi’s Method is a powerful statistical tool that, combined with ANOVA, allows the
quantification of a parameter’s influence in an outcome. Traditional methods use the dir-
ect comparison approach, in which one variable is changed at a time, resulting in a large
number of experiments or simulations [224]. Taguchi, on the other hand, uses an orthogonal
array approach to decrease the number of possible combinations and speeding up the ana-
lysis process [227]. This method was already used to analyse geometrical features of dental
implants [277], on monolimb design [224] and on intervertebral disc modelling parameters
analysis [119], but was not previously applied on vertebral body FE models.

The first variable, GS factor, showed to be the main contributor for vertebral stiffness. Recent
FE models have used grey-scale to set the material properties according to the local density
[152, 171, 200, 256]. This approach accountsfor differences in density, trabecular structure
and orientation inside a vertebral body. Several relationships between Young’s Modulus
and density are available elsewhere [57, 60, 253]. Such equations were developed based on
elderly human vertebral bodies, which usually are characterised by low-density trabecular
bone. Some studies, on the other hand, tried to adapt these equations using a downgrading
factor, as they used porcine as testing samples (which are denser than humans vertebral
bodies) [83, 88, 212]. A high dependency of stiffness on the rescaling factor was expected,
and it suggests that the calibration has to be done based on a large number of samples, to
ensure that no other external factor is affecting the results.

In contrast to the GS factor, differences in mesh size and the number of material bins (or
bands), combined, just changed by 3% the overall stiffness. Mesh size effect has been widely
studied in recent years and highlighted as one of the main parameters in a FE model [175,
186, 212, 221]. The majority of the studies reported good convergence for models with mesh
size up to 1.5 mm, with 1.0 mm being the most common option [212]. The current study used
mesh sizes of 1.25 mm and 0.75 mm, within, therefore, the reported range. This could explain
the low effect of mesh resolution in the stiffness as this study already used optimum values.

The influence of the number of material bands, differently from mesh size, was not well
explored [94]. Gefen [171] conducted a study to understand the influence of the number of
Young’s Modulus values required to represent the vertebral bone. They found that a change
in the number of different materials, from two to five bands, did not affected the stiffness
significantly. However, another study found that between 42 and 50 different material bands
would be necessary to completely describe the cancellous bone structure [94]. In this study,
20 and 50 bands were chosen in order to explore a wider range and to include the optimum
value found by Giambini et al. [94]. The changing on the number of material bands showed
no influence on the stiffness, and it was excluded from the analysis by the ANOVA. This can
be also confirmed by analysing Table D.4. A change of bands, from Experiment 1 to 2, did
not altered significantly the stiffness, from 6607 N mm�1 to 6726 N mm�1.

In addition to mesh resolution, another limitation of this study was the adoption of only two
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levels and three parameters. It is widely known that several parameters can affect the numer-
ical results. Also, two levels should be used when the variable behaves linearly [227], which
might not be true for finite modelling of vertebral bodies. However, the introduction of more
levels and variables would increase the size and complexity of the orthogonal array and this
study aimed to illustrate how a statistical tool could be used to optimise the modelling pro-
cess of vertebral body models. Further studies are still necessary to explore the combination
of more factors and multiple levels in order to set a clear picture of the modelling variables.

D.5 Conclusion

This study applied the Taguchi method to evaluate the influence of the main modelling para-
meters on the accuracy of finite element models of vertebral bodies. GS factor, mesh size and
number of material bands were assessed. GS factor was the main contributor to the predicted
vertebral stiffness, and Taguchi method showed to be an efficient statistical tool to quantify
the influence of each parameter.
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