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HoloGAN: Unsupervised Learning of 3D Representations From Natural Images
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Figure 1. HoloGAN learns to separate pose from identity (shape and appearance) only from unlabelled 2D images without sacrificing the visual
fidelity of the generated images. All results shown here are sampled from HoloGAN for the same identities in each row but in different poses.

Abstract

We propose a novel generative adversarial network (GAN) for the
task of unsupervised learning of 3D representations from natural
images. Most generative models rely on 2D kernels to generate
images and make few assumptions about the 3D world. These
models therefore tend to create blurry images or artefacts in tasks
that require a strong 3D understanding, such as novel-view synthe-
sis. HoloGAN instead learns a 3D representation of the world, and
to render this representation in a realistic manner. Unlike other
GANs, HoloGAN provides explicit control over the pose of gener-
ated objects through rigid-body transformations of the learnt 3D
features. Our experiments show that using explicit 3D features en-
ables HoloGAN to disentangle 3D pose and identity, which is fur-
ther decomposed into shape and appearance, while still being able
to generate images with similar or higher visual quality than other
generative models. HoloGAN can be trained end-to-end from unla-
belled 2D images only. In particular, we do not require pose labels,
3D shapes, or multiple views of the same objects. This shows that
HoloGAN is the first generative model that learns 3D represen-
tations from natural images in an entirely unsupervised manner.

1. Introduction
Learning to understand the relationship between 3D objects and
2D images is an important topic in computer vision and computer
graphics. In computer vision, it has applications in fields such as
robotics, autonomous vehicles or security. In computer graphics, it
benefits applications in both content generation and manipulation.

This ranges from photorealistic rendering of 3D scenes or
sketch-based 3D modelling, to novel-view synthesis or relighting.

Recent generative image models, in particular, generative adver-
sarial networks (GANs), have achieved impressive results in gener-
ating images of high resolution and visual quality [1, 5, 27, 28, 62],
while their conditional versions have achieved great progress in
image-to-image translation [23, 50], image editing [11, 12, 60] or
motion transfer [6, 30]. However, GANs are still fairly limited in
their applications, since they do not allow explicit control over at-
tributes in the generated images, while conditional GANs need la-
bels during training (Figure 2 left), which are not always available.

Even when endowed with labels like pose information,
current generative image models still struggle in tasks that
require a fundamental understanding of 3D structures, such as
novel-view synthesis from a single image. For example, using 2D
kernels to perform 3D operations, such as out-of-plane rotation
to generate novel views, is very difficult. Current methods
either require a lot of labelled training data, such as multi-view
images or segmentation masks [41, 52], or produce blurry
results [13, 14, 33, 54, 57]. Although recent work has made
efforts to address this problem by using 3D data [40, 64], 3D
ground-truth data are very expensive to capture and reconstruct.
Therefore, there is also a practical motivation to directly learn
3D representations from unlabelled 2D images.

Motivated by these observations, we focus on designing
a novel architecture that allows unsupervised learning of 3D
representations from images, enabling direct manipulation of view,
shape and appearance in generative image models (Figure 1). The
key insight of our network design is the combination of a strong
inductive bias about the 3D world with deep generative models to
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learn better representations for downstream tasks. Conventional
representations in computer graphics, such as voxels and meshes,
are explicit in 3D and easy to manipulate via, for example, rigid-
body transformations. However, they come at the cost of memory
inefficiency or ambiguity in how to discretise complex objects.
As a result, it is non-trivial to build generative models with such
representations directly [43, 46, 49]. Implicit representations, such
as high-dimensional latent vectors or deep features, are favoured
by generative models for being spatially compact and semantically
expressive. However, these features are not designed to work with
explicit 3D transformations [9, 14, 20, 25, 45], which leads to
visual artefacts and blurriness in tasks such as view manipulation.

We propose HoloGAN, an unsupervised generative image
model that learns representations of 3D objects that are not only
explicit in 3D but also semantically expressive. Such representa-
tions can be learnt directly from unlabelled natural images. Unlike
other GAN models, HoloGAN employs both 3D and 2D features
for generating images. HoloGAN first learns a 3D representation,
which is then transformed to a target pose, projected to 2D
features, and rendered to generate the final images (Figure 2
right). Different from recent work that employs hand-crafted
differentiable renderers [18, 22, 29, 34, 36, 51, 64], HoloGAN
learns perspective projection and rendering of 3D features from
scratch using a projection unit [40]. This novel architecture en-
ables HoloGAN to learn 3D representations directly from natural
images for which there are no good hand-crafted differentiable
renderers. To generate new views of the same scene, we directly
apply 3D rigid-body transformations to the learnt 3D features, and
visualise the results using the neural renderer that is jointly trained.
This has been shown to produce sharper results than performing
3D transformations in high-dimensional latent vector space [40].

HoloGAN can be trained end-to-end in an unsupervised
manner using only unlabelled 2D images, without any supervision
of poses, 3D shapes, multiple views of objects, or geometry priors
such as symmetry and smoothness over the 3D representation
that are common in this line of work [3, 26, 45]. To the best
of our knowledge, HoloGAN is the first generative model that
can learn 3D representations directly from natural images in a
purely unsupervised manner. In summary, our main technical
contributions are:
• A novel architecture that combines a strong inductive bias

about the 3D world with deep generative models to learn
disentangled representations (pose, shape, and appearance) of
3D objects from images. The representation is explicit in 3D
and expressive in semantics.

• An unconditional GAN that, for the first time, allows native
support for view manipulation without sacrificing visual image
fidelity.

• An unsupervised training approach that enables disentangled
representation learning without using labels.

2. Related work
HoloGAN is at the intersection of GANs, structure-aware image
synthesis and disentangled representation learning. In this section,
we review related work in these areas.
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Figure 2. Comparison of generative image models. Data given to the
discriminator are coloured purple. Left: In conditional GANs, the pose
is observed and the discriminator is given access to this information.
Right: HoloGAN does not require pose labels during training and the
discriminator is not given access to pose information.

2.1. Generative adversarial networks
GANs learn to map samples from an arbitrary latent distribution
to data that fool a discriminator network into categorising them
as real data [16]. Most recent work on GAN architectures has
focused on improving training stability or visual fidelity of
the generated images, such as multi-resolution GANs [27, 61],
or self-attention generators [1, 62]. However, there is far less
work on designing GAN architectures that enable unsupervised
disentangled representation learning which allows control over
attributes of the generated images. By injecting random noise and
adjusting the “style” of the image at each convolution, StyleGAN
[28] can separate fine-grained variation (e.g., hair, freckles) from
high-level features (e.g., pose, identity), but does not provide
explicit control over these elements. A similar approach proposed
by Chen et al. [8] shows that this network design also achieves
more training stability. The success of these approaches indicates
that network architecture can be more important for training
stability and image fidelity than the specific choice of GAN loss.
Therefore, we also focus on architecture design for HoloGAN, but
with the goal of learning to separate pose, shape and appearance,
and to enable direct manipulation of these elements.

2.2. 3D-aware neural image synthesis
Recent work in neural image synthesis and novel-view synthesis
has found success in improving the fidelity of the generated im-
ages with 3D-aware networks. Work that uses geometry templates
achieves great improvements in image fidelity [15, 32], but does
not generalise well to complex datasets that cannot be described
by a template. RenderNet [40] introduces a differentiable renderer
using a convolutional neural network (CNN) that learns to ren-
der 2D images directly from 3D shapes. However, RenderNet
requires 3D shapes and their corresponding rendered images dur-
ing training. Other approaches learn 3D embeddings that can be
used to generate new views of the same scene without any 3D
supervision [48, 51]. However, while Sitzmann et al. [51] require
multiple views and pose information as input, Rhodin et al. [48]
require supervision from paired images, background segmentation
and pose information. Aiming to separate geometry from texture,
visual object networks (VONs) [64] first sample 3D objects from
a 3D generative model, render these objects using a hand-crafted
differentiable layer to normal, depth and silhouette maps, and
finally apply a trained image-to-image translation network. How-
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Figure 3. HoloGAN’s generator network: we employ 3D convolutions, a 3D rigid-body transformation, the projection unit and 2D convolutions.
We also remove the traditional input layer from z, and start from a learnt constant 4D tensor. The latent vector z is instead fed through multilayer
perceptrons (MLPs) to map to the affine transformation parameters for adaptive instance normalisation (AdaIN). Inputs are coloured gray.

ever, VONs need explicit 3D data for training, and only work for
single-object images with a simple white background. Our Holo-
GAN also learns a 3D representation and renders it to produce a
2D image but without seeing any 3D shapes, and works with real
images containing complex backgrounds and multi-object scenes.

The work closest to ours is Pix2Scene [45], which learns an
implicit 3D scene representation from images, also in an unsuper-
vised manner. However, this method maps the implicit represen-
tation to a surfel representation for rendering, while HoloGAN
uses an explicit 3D representation with deep voxels. Additionally,
using a hand-crafted differentiable renderer, Pix2Scene can only
deal with simple synthetic images (uniform material and lighting
conditions). HoloGAN, on the other hand, learns to render from
scratch, and thus works for more complex natural images.

2.3. Disentangled representation learning

The aim of disentangled representation learning is to learn a fac-
torised representation, in which changes in one factor only affect
the corresponding elements in the generated images, while being
invariant to other factors. Most work in disentangled learning lever-
ages labels provided by the dataset [2, 47, 55] or benefits from
set supervision (e.g., videos or multiple images of the same scene;
more than two domains with the same attributes) [10, 14, 33].

Recent efforts in unsupervised disentangled representation
learning, such as �-VAE [20] or InfoGAN [9, 24], have focused
mostly on designing loss functions. However, these models
are sensitive to the choice of priors, provide no control over
what factors are learned, and do not guarantee that the learnt
disentangled factors are semantically meaningful. Moreover,
�-VAE comes with a trade-off between the quality of the
generated images and the level of disentanglement. Finally, these
two methods struggle with more complicated datasets (natural
images with complex backgrounds and lighting). In contrast, by
redesigning the architecture of the generator network, HoloGAN
learns to successfully separate pose, shape and appearance, as well
as providing explicit pose control and enables shape/appearance
editing even for more complex natural image datasets.

3. Method
To learn 3D representations from 2D images without labels,
HoloGAN extends traditional unconditional GANs by introducing
a strong inductive bias about the 3D world into the generator

network. Specifically, HoloGAN generates images by learning
a 3D representation of the world and to render it realistically such
that it fools the discriminator. View manipulation therefore can
be achieved by directly applying 3D rigid-body transformations
to the learnt 3D features. In other words, the images created
by the generator are a view-dependent mapping from a learnt
3D representation to the 2D image space. This is different from
other GANs which learn to map a noise vector z directly to 2D
features to generate images.

Figure 3 illustrates the generator architecture of HoloGAN:
HoloGAN first learns a 3D representation (assumed to be in a
canonical pose) using 3D convolutions (Section 3.1), transforms
this representation to a certain pose, projects and computes visibil-
ity using the projection unit (Section 3.2), and computes shaded
colour values for each pixel in the final images with 2D convolu-
tions. HoloGAN shares many rendering insights with RenderNet
[40], but works with natural images, and needs neither pre-training
of the neural renderer nor paired 3D shape–2D image training data.

During training, we sample random poses from a uniform
distribution and transform the 3D features using these poses be-
fore rendering them to images. We assume every image has a
corresponding single global pose, and show that this assumption
still works with images of multiple objects. This random pose
perturbation pushes the generator network to learn a disentangled
representation that is suitable for both 3D transformation and gen-
erating images that can fool the discriminator. While pose transfor-
mation could be learnt from data, we provide this operation, which
is differentiable and straightforward to implement, explicitly to
HoloGAN. Using explicit rigid-body transformations for novel-
view synthesis has been shown to produce sharper images with
fewer artefacts [40]. More importantly, this provides an inductive
bias towards representations that are compatible with explicit 3D
rigid-body transformations. As a result, the learnt representations
are explicit in 3D and disentangled between pose and identity.

Kulkarni et al. [33] categorize the learnt disentangled repre-
sentation into intrinsic and extrinsic elements. While intrinsic
elements describe shape, appearance, etc., extrinsic elements de-
scribe pose (elevation, azimuth) and lighting (location, intensity).
The design of HoloGAN naturally lends itself to this separation
by using more inductive biases about the 3D world: the adoption
of a native 3D transformation, which controls the pose (shown as
� in Figure 3) directly, to the learnt 3D features, which control the
identity (shown as z in Figure 3).



3.1. Learning 3D representations
HoloGAN generates 3D representations from a learnt constant
tensor (see Figure 3). The random noise vector z instead is treated
as a “style” controller, and mapped to affine parameters for adap-
tive instance normalization (AdaIN) [21] after each convolution
using a multilayer perceptron (MLP) f :z!(z); �(z).

Given some features �l at layer l of an image x and the noise
“style” vector z, AdaIN is defined as:

AdaIN(�l(x); z)=�(z)

�
�l(x)��(�l(x))

�(�l(x))

�
+(z). (1)

This can be viewed as generating images by transformation of
a template (the learnt constant tensor) using AdaIN to match
the mean and standard deviation of the features at different
levels l (which are believed to describe the image “style”) of the
training images. Empirically, we find this network architecture
can disentangle pose and identity much better than those that
feed the noise vector z directly to the first layer of the generator.

HoloGAN inherits this style-based strategy from StyleGAN
[28] but is different in two important aspects. Firstly, Holo-
GAN learns 3D features from a learnt 4D constant tensor (size
4�4�4�512, where the last dimension is the feature channel)
before projecting them to 2D features to generate images, while
StyleGAN only learns 2D features. Secondly, HoloGAN learns a
disentangled representation by combining 3D features with rigid-
body transformations during training, while StyleGAN injects
independent random noise into each convolution. StyleGAN, as a
result, learns to separate 2D features into different levels of detail,
depending on the feature resolution, from coarse (e.g., pose, iden-
tity) to more fine-grained details (e.g., hair, freckles). We observe a
similar separation in HoloGAN. However, HoloGAN further sepa-
rates pose (controlled by the 3D transformation), shape (controlled
by 3D features), and appearance (controlled by 2D features).

It is worth highlighting that to generate images at 128�128
(same as VON), we used a deep 3D representation of size up
to 16�16�16�64. Even with such limited resolution, HoloGAN
can still generate images with competitive quality and more com-
plex backgrounds than other methods that use full 3D geometry
such as VON’s voxel grid of resolution 128�128�128�1 [64].

3.2. Learning with view-dependent mappings
In addition to adopting 3D convolutions to learn 3D features,
during training, we introduce more bias about the 3D world
by transforming these learnt features to random poses before
projecting them to 2D images. This random pose transformation
is crucial to guarantee that HoloGAN learns a 3D representation
that is disentangled and can be rendered from all possible views,
as also observed by Tran et al. [55] in DR-GAN. However,
HoloGAN performs explicit 3D rigid-body transformation, while
DR-GAN performs this using an implicit vector representation.

Rigid-body transformation We assume a virtual pinhole
camera that is in the canonical pose (axis-aligned and placed along
the negative z-axis) relative to the 3D features being rendered.
We parameterise the rigid-body transformation by 3D rotation,
scaling followed by trilinear resampling. Although translation is

inherently supported by our framework, we did not use it in this
work. Assuming the up-vector of the object coordinate system
is the global y-axis, rotation comprises rotation around the y-axis
(azimuth) and the x-axis (elevation). Details on ranges for pose
sampling are included in the supplemental document.

Projection unit In order to learn meaningful 3D representa-
tions from just 2D images, HoloGAN learns a differentiable
projection unit [40] that reasons over occlusion. In particular, the
projection unit receives a 4D tensor (3D features), and returns
a 3D tensor (2D features).

Since the training images are captured with different
perspectives, HoloGAN needs to learn perspective projection.
However, as we have no knowledge of the camera intrinsics, we
employ two layers of 3D convolutions (without AdaIN) to morph
the 3D representation into a perspective frustum (see Figure 3)
before their projection to 2D features.

The projection unit is composed of a reshaping layer that
concatenates the channel dimension with the depth dimension,
thus reducing the tensor dimension from 4D (W�H�D�C) to
3D (W�H�(D�C)), and an MLP with a non-linear activation
function (leakyReLU [37] in our experiments) to learn occlusion.

3.3. Loss functions

Identity regulariser To generate images at higher resolution
(128�128 pixels), we find it beneficial to add an identity regu-
lariserLidentity that ensures a vector reconstructed from a generated
image matches the latent vector z used in the generator G. We find
that this encourages HoloGAN to only use z for the identity to
maintain the object’s identity when poses are varied, helping the
model learn the full variation of poses in the dataset. We introduce
an encoder network F that shares the majority of the convolution
layers of the discriminator, but uses an additional fully-connected
layer to predict the reconstructed latent vector. The identity loss is:

Lidentity(G)=Ezkz�F(G(z))k2. (2)

Style discriminator Our generator is designed to match the
“style” of the training images at different levels, which effectively
controls image attributes at different scales. Therefore, in addi-
tion to the image discriminator that classifies images as real or
fake, we propose multi-scale style discriminators that perform
the same task but at the feature level. In particular, the style
discriminator tries to classify the mean �(�l) and standard devi-
ation �(�l), which describe the image “style” [21]. Empirically,
the multi-scale style discriminator helps prevent mode collapse
and enables longer training. Given a style discriminator Dl(x)=eDl(�(�l(x));�(�l(x))) for layer l, the style loss is defined as:

Ll
style(G)=Ez[�logDl(G(z))]. (3)

The total loss can be written as:

Ltotal(G)=LGAN(G)+�i �Lidentity(G)+�s �
X

l

Ll
style(G). (4)

We use �i =�s =1:0 for all experiments. We use the GAN loss
from DC-GAN [44] for LGAN.



4. Experiment settings
Data We train HoloGAN using a variety of datasets: Basel Face
[42], CelebA [35], Cats [63], Chairs [7], Cars [58], and LSUN
bedroom [59]. We train HoloGAN on resolutions of 64�64 pixels
for Cats and Chairs, and 128�128 pixels for Basel Face, CelebA,
Cars and LSUN bedroom. More details on the datasets and
network architecture can be found in the supplemental document.

Note that only the Chairs dataset contains multiple views of the
same object; all other datasets only contain unique single views.
For this dataset, because of the limited number of ShapeNet [7]
3D chair models (6778 shapes), we render images from 60 ran-
domly sampled views for each chair. During training, we ensure
that each batch contains completely different types of chairs to
prevent the network from using set supervision, i.e., looking at the
same chair from different viewpoints in the same batch, to cheat.

Implementation details We use adaptive instance normal-
ization [21] for the generator, and a combination of instance
normalization [56] and spectral normalization [39] for the
discriminator. See our supplemental document for details.

We train HoloGAN from scratch using the Adam solver [31].
To generate images during training, we sample z�U(�1;1), and
also sample random poses from a uniform distribution (more
details on pose sampling can be found in the supplemental
document). We use jzj= 128 for all datasets, except for Cars
at 128�128, where we use jzj=200. Our code is available at
https://github.com/thunguyenphuoc/HoloGAN.

5. Results
We first show qualitative results of HoloGAN on datasets with
increasing complexity (Section 5.1). Secondly, we provide
quantitative evidence that shows HoloGAN can generate images
with comparable or higher visual fidelity than other 2D-based
GAN models (Section 5.2). We also show the effectiveness
of using our learnt 3D representation compared to explicit 3D
geometries (binary voxel grids) for image generation (Section
5.3). We then show how HoloGAN learns to disentangle shape
and appearance (Section 5.4). Finally, we perform an ablation
study to demonstrate the effectiveness of our network design and
training approach (Section 5.5).

5.1. Qualitative evaluation
Figures 1, 4, 6 and 7b show that HoloGAN can smoothly
vary the pose along azimuth and elevation while keeping the
same identities for multiple different datasets. Note that the
LSUN dataset contains a variety of complex layouts of multiple
objects. This makes it a very challenging dataset for learning to
disentangle pose from object identity.

In the supplemental document, we show results for the Basel
Face dataset. We also perform linear interpolation with the
noise vectors while keeping the poses the same, and show that
HoloGAN can smoothly interpolate the identities between two
samples. This demonstrates that HoloGAN correctly learns an ex-
plicit deep 3D representation that disentangles pose from identity,
despite not seeing any pose labels or 3D shapes during training.

Azimuth

Elevation
Figure 4. For the Chairs dataset with high intra-class variation, HoloGAN
can still disentangle pose (360° azimuth, 160° elevation) and identity.
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Figure 5. We compare HoloGAN to InfoGAN (images adapted from
Chen et al. [9]) on CelebA (64�64) in the task of separating identity and
azimuth. Note that we cannot control what can be learnt by InfoGAN.

Comparison to InfoGAN [9] We compare our approach to
InfoGAN on the task of learning to disentangle identity from
pose on the CelebA dataset [35] at a resolution of 64�64 pixels.
Due to the lack of publicly available code and hyper-parameters
for this dataset1, we use the CelebA figure from the published
paper. We also tried the official InfoGAN implementation with
the Cars dataset, but were unable to train the model successfully
as InfoGAN appears to be highly sensitive to the choice of prior
distributions and the number of latent variables to recover.

Figure 5 shows that HoloGAN successfully recovers and
provides much better control over the azimuth while still
maintaining the identity of objects in the generated images.
HoloGAN can also recover elevation (Figure 6b, right) despite
the limited variation in elevation in the CelebA dataset, while
InfoGAN cannot. Most importantly, there is no guarantee that
InfoGAN always recovers factors that control object pose, while
HoloGAN explicitly controls this via rigid-body transformation.

5.2. Quantitative results
To evaluate the visual fidelity of generated images, we use the
Kernel Inception Distance (KID) by Bińkowski et al. [4]2. KID
computes the squared maximum mean discrepancy between
feature representations (computed from the Inception model [53])
of the real and generated images. In contrast to FID [19], KID

1The official code repository at https://github.com/openai/InfoGAN only
works with the MNIST dataset.

2https://github.com/mbinkowski/MMD-GAN

https://github.com/thunguyenphuoc/HoloGAN
https://github.com/openai/InfoGAN
https://github.com/mbinkowski/MMD-GAN
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Figure 6. HoloGAN supports changes in both azimuth (range: 100°) and elevation (range: 35°). However, the available range depends on the dataset.
For CelebA, for example, few photos in the dataset were taken from above or below.

has an unbiased estimator. The lower the KID score, the better
the visual quality of generated images. We compare HoloGAN
with other recent GAN models: DCGAN [44], LSGAN [38],
and WGAN-GP [17], on 3 datasets in Table 1. Note that KID
does not take into account feature disentanglement, which is one
of the main contributions of HoloGAN.

We use a publicly available implementation3 and use the same
hyper-parameters (that were tuned for CelebA) provided with this
implementation for all three datasets. Similarly, for HoloGAN,
we use the same network architecture and hyper-parameters4 for
all three datasets. We sample 20,000 images from each model
to calculate the KID scores shown below.

Table 1 shows that HoloGAN can generate images with compet-
itive (for CelebA) or even better KID scores on more challenging
datasets: Chairs, which has high intra-class variability, and Cars,
which has complex backgrounds and lighting conditions. This
also shows that the HoloGAN architecture is more robust and can
consistently produce images with high visual fidelity across dif-
ferent datasets with the same set of hyper-parameters (except for
azimuth ranges). We include visual samples for these models in
the supplemental document. More importantly, HoloGAN learns
a disentangled representation that allows manipulation of the
generated images. This is a great advantage compared to methods
such as �-VAE [20], which has to compromise between the image

3https://github.com/LynnHo/DCGAN-LSGAN-WGAN-WGAN-GP-
Tensorflow

4Except for ranges for sampling the azimuth: 100° for CelebA since face
images are only taken from frontal views, and 360° for Chairs and Cars.

Method CelebA 64�64 Chairs 64�64 Cars 64�64

DCGAN [44] 1.81� 0.09 6.36� 0.16 4.78� 0.11
LSGAN [38] 1.77� 0.06 6.72� 0.19 4.99� 0.13
WGAN-GP [17] 1.63� 0.09 9.43� 0.24 15.57� 0.29
HoloGAN (ours) 2.87� 0.09 1.54� 0.07 2.16� 0.09

Table 1. KID [19] between real images and images generated by Holo-
GAN and other 2D-based GANs (lower is better). We report KID
mean�100 � std.�100. The table shows that HoloGAN can achieve
competitive or higher KID score with other methods, while providing
explicit control of objects in the generated images (not measured by KID).

quality and the level of disentanglement of the learnt features.

5.3. Deep 3D representation vs. 3D geometry
Here we compare our method to the state-of-the-art visual object
networks (VON) [64] on the task of generating car images. We
use the trained model and code provided by the authors. Although
VON also takes a disentangling approach to generating images,
it relies on 3D shapes and silhouette masks during training, while
HoloGAN does not. Figure 7b shows that our approach can
generate images of cars with complex backgrounds, realistic
shadows and competitive visual fidelity. Note that to generate
images at 128�128, VON uses the full binary voxel geometry at
128�128�128�1 resolution, while HoloGAN uses a deep voxel
representation of up to 16�16�16�64 resolution, which is more
spatially compact and expressive since HoloGAN also generates
complex backgrounds and shadows. As highlighted in Figure

https://github.com/LynnHo/DCGAN-LSGAN-WGAN-WGAN-GP-Tensorflow
https://github.com/LynnHo/DCGAN-LSGAN-WGAN-WGAN-GP-Tensorflow
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Figure 7. a) Car images generated by VON for an azimuth range of 360°. Despite using 3D shapes and silhouette masks during training, VON can
only generate images with a simple white background, and struggles for certain frontal views (highlighted in red) and rear views (highlighted in blue).
b) HoloGAN generates car images with complex backgrounds and varying azimuth (range: 360°) and elevation (range: 35°) from unlabelled images.

7a, VON also tends to change the identity of the car such as
changing colours or shapes at certain views (highlighted), while
HoloGAN maintains the identity of the car in all views. Moreover,
HoloGAN can generate car images in full 360° views (Figure 7),
while VON struggles to generate images from the back views.

Traditional voxel grids can be very memory intensive.
HoloGAN hints at the great potential of using explicit deep voxel
representations for image generation, as opposed to using the full
3D geometry in the traditional rendering pipeline. For example,
in Figure 6c, we generate images of the entire bedroom scene
using a 3D representation of only 16�16�16�64 resolution.

5.4. Disentangling shape and appearance

Here we show that in addition to pose, HoloGAN also learns to fur-
ther divide identity into shape and appearance. We sample two la-
tent codes, z1 and z2, and feed them through HoloGAN. While z1

controls the 3D features (before perspective morphing and projec-
tion), z2 controls the 2D features (after projection). Figure 8 shows
the generated images with the same pose, same z1, but with a dif-
ferent z2 at each row. As can be seen, while the 3D features control
objects’ shapes, the 2D features control appearance (texture and
lighting). This shows that by using 3D convolutions to learn 3D
representations and 2D convolutions to learn shading, HoloGAN
learns to separate shape from appearance directly from unlabelled

images, allowing separate manipulation of these factors. In the
supplemental document, we provide further results, in which we
use different latent codes for 3D features at different resolutions,
and show the separation between features that control the overall
shapes and more fine-grained details such as gender or makeup.

5.5. Ablation studies
We now conduct a series of studies to demonstrate the
effectiveness of our network design and training approach.

Training without random 3D transformations Randomly
rotating the 3D features during training is crucial for HoloGAN, as
it encourages the generator to learn a disentangled representation
between pose and identity. In Figure 9, we show results with and
without 3D transformation during training. For the model trained
without 3D transformation, we generate images of rotated objects
by manually rotating the learnt 3D features after the model is
trained. As can be seen, this model can still generate images with
good visual fidelity, but when the pose is changed, it completely
fails to generate meaningful images, while HoloGAN can easily
generate images of the same objects in different poses. We believe
that the random transformation during training forces the generator
to learn features that meaningfully undergo geometric transforma-
tions, while still being able to generate images that can fool the
discriminator. As a result, our training strategy encourages Holo-
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Figure 8. Combinations of different latent vectors z1 (for 3D features)
and z2 (for 2D features). While z1 influences objects’ shapes, z2
determines appearance (texture and lighting). Best viewed in colour.

GAN to learn a disentangled representation of identity and pose.

Training with traditional z input By starting from a learnt
constant tensor and using the noise vector z as a “style” controller
at different levels, HoloGAN can better disentangle pose from
identity. Here we perform another experiment, in which we feed z
to the first layer of the generator network, like other GAN models.
Figure 9 shows that the model trained with this traditional input
is confused between pose and identity. As a result, the model
also changes the object’s identity when it is being rotated, while
HoloGAN can smoothly vary the pose along the azimuth and
keep the identity unchanged.

An additional ablation study showing the effectiveness of the
identity regulariser is included in the supplemental document.

6. Discussion and conclusion
While HoloGAN can successfully learn to separate pose from
identity, its performance depends on the variety and distribution of
poses included in the training dataset. For example, for the CelebA
and Cats dataset, the model cannot recover elevation as well as
azimuth (see Figure 6a,b), since most face images are taken at
eye level and thus contain limited variation in elevation. Using the
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Figure 9. Ablation study showing images with changing azimuths (from
left to right). Top: Our approach. Middle: Our approach without using
random 3D transformations during training fails to rotate objects. Bot-
tom: Our approach with a traditional input layer mapped from z instead
of a learnt constant tensor fails to disentangle object pose and identity.

wrong pose distribution might also lead to angles being mapped
incorrectly. Currently, during training, we sample random poses
from a uniform distribution. Future work therefore can explore
learning the distribution of poses from the training data in an un-
supervised manner to account for uneven pose distributions. Other
directions to explore include further disentanglement of objects’
appearances, such as texture and illumination. Finally, it will be
interesting to combine HoloGAN with training techniques such
as progressive GANs [27] to generate higher-resolution images.

In this work, we presented HoloGAN, a generative image
model that learns 3D representation from natural images in an
unsupervised manner by adopting strong inductive biases about
the 3D world. HoloGAN can be trained end-to-end with only un-
labelled 2D images, and learns to disentangle challenging factors
such as 3D pose, shape and appearance. This disentanglement
provides control over these factors, while being able to generate
images with similar or higher visual quality than 2D-based GANs.
Our experiments show that HoloGAN successfully learns mean-
ingful 3D representations across multiple datasets with varying
complexity. We are therefore convinced that explicit deep 3D rep-
resentations are a crucial step forward for both the interpretability
and controllability of GAN models, compared to existing explicit
(meshes, voxels) or implicit [14, 45] 3D representations.
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