Brood desertion in a polyandrous shorebird: A role of prolactin and corticosterone?

András Kosztolányia, Clemens Küpperb, Olivier Chastelc, Charline Parenteauc, K. Tuluhan Yılmazd, Ádám Miklósia, Tamás Székelye, Ádám Z. Lendvaif

a Department of Ethology, Eötvös Loránd University, Budapest 1117, Pázmány Péter sétány 1/c, Hungary

b Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge MA 02138, USA

c Centre d’Études Biologiques de Chizé, Centre National de la Recherche Scientifique, Villiers-en-Bois 79360, France

d Department of Landscape Architecture, Çukurova University, Mithat Özhan Blvd, 01330 Adana, Turkey

e Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK

f Institute of Biology, College of Nyíregyháza, Sóstói út 31/b, Nyíregyháza 4400, Hungary

Correspondence: András Kosztolányi
tel.: +36 1 381 2179;
fax: +36 1 381 2180;
email: andras.kosztolanyi@gmail.com
ABSTRACT

One of the fundamental principles in life-history theory is that parents have to balance their resources carefully between current and future offspring. Deserting the dependent young is a dramatic life-history decision that saves resources for future reproduction, however, may cause failure of the current brood. Despite its importance for sexual conflict theory and breeding system evolution, the underlying mechanisms of brood desertion are largely unknown. We investigated two candidate hormones that may influence brood desertion: prolactin (‘parental hormone’) and corticosterone (‘stress hormone’) in the Kentish plover Charadrius alexandrinus. In this small polyandrous shorebird brood desertion occurs naturally; after hatching of the precocial chicks either sex (more often the female) may desert the brood and mate with a new partner shortly after desertion. We measured hormone levels of parents at hatching using the standard capture and restraint protocol, and subsequently followed the broods to determine whether a parent deserted the chicks. We investigated whether hormone levels were different between adult males and females, and between deserting and caring parents. We found no evidence that either baseline or stress-induced prolactin levels predicted brood desertion. Stress-induced corticosterone levels were generally higher in females, however, the individual hormone levels did not explain the probability of brood desertion. We propose that in species where frequent brood desertion is part of the natural breeding system, desertion is a rapid dynamic process that is mediated not only by hormone levels, but also by swiftly changing social environment, i.e. by number and quality of available mates for remating.

Keywords: social behavior, neuroendocrine system, parental care, brood desertion, corticosterone, prolactin, capture and restraint, shorebird, Kentish plover
INTRODUCTION

Brood desertion, i.e. when a parent stops caring and abandons its dependent young, is a dramatic resolution of the life-history trade-off between current and future reproduction. Desertion may entail both costs (e.g. reduced offspring survival) and benefits (e.g. increased survival or remating and successive reproduction of the parent, Houston et al., 2005; Székely et al., 1996). Understanding brood desertion is important because it has implications on population parameters (such as the operational sex ratio, OSR) and life-history evolution, and because it is a key idea in sexual conflict resolution in a parental care context (Clutton-Brock, 1991; Lessels, 1999; Székely et al., 2000; Székely et al., 2007). However, the physiological mechanisms that trigger brood desertion remain poorly understood.

Circulating hormones are thought to be the primary physiological mediators of life-history trade-offs (Flatt and Heyland, 2011; Ketterson and Nolan Jr, 1999; Sinervo and Svensson, 1998). For example, when individual survival prospects are compromised due to threats by predators, pathogens, food shortage, inclement weather etc. (commonly referred to as stressors), vertebrates respond by the activation of the hypothalamus-pituitary-adrenal cortex (HPA) axis, which elevates the circulating levels of glucocorticoids (reviewed by Wingfield and Sapolsky, 2003). The glucocorticoids in turn promote behaviours that help the immediate survival and concurrently repress those that do not, most notably reproduction. Because of these antagonistic effects, it has been hypothesised that corticosterone, the avian glucocorticoid mediates the survival-reproduction trade-off in birds (Ricklefs and Wikelski, 2002). Recent studies have supported the predictions of this hypothesis by showing that corticosterone levels are modulated according to the relative importance of the current reproduction compared with survival (Bókony et al., 2009; Heidinger et al., 2006; Lendvai and Chastel, 2008; Lendvai et al., 2007).
However, corticosterone may not be the only hormonal modifier of survival-reproduction trade-offs. The vertebrate stress response is complex and involves several physiological agents. The circulating levels of prolactin also change during the stress response; for example, standard handling stress induces a significant decrease in its plasma concentrations in several species (Angelier et al., 2007; Angelier et al., 2009a; Heidinger et al., 2010; Riou et al., 2010). Since prolactin is actively involved in the regulation of parental behaviour in birds and facilitates incubation and brooding behaviours (Adkins-Regan, 2005; Adkins-Regan et al., 2010), it has been recently suggested to play a key role as the physiological mediator of the trade-off between current parental care vs. future reproduction (Angelier and Chastel, 2009; Chastel et al., 2005). Specifically, it has been proposed that the magnitude of prolactin decrease in response to a standardised stress protocol may reflect the willingness and/or ability to maintain parental care. Therefore the prolactin stress response may be interpreted as a proximate signal of parental investment (Angelier and Chastel, 2009).

Our aim in this study was to investigate the underlying proximate mechanisms of natural brood desertion. We investigated a small shorebird, the Kentish plover Charadrius alexandrinus with well-known brood care behaviour including brood desertion (Amat et al., 1999; Kosztolányi et al., 2006; Lessells, 1984). After hatching of the precocial chicks, either the male or the female parent may desert the brood, although the frequency of brood desertion differs between sexes and populations (Araceli Arguelles Tico et al. unpubl data). This high flexibility of parental behaviour and the amenability of this species for experimental manipulations make the Kentish plover an ideal species to investigate the hormonal background of brood desertion.

We investigated four hypotheses regarding the role of prolactin and corticosterone in the regulation of brood desertion behaviour. In our study population brood desertion by females is 11 times more frequent than desertion by males (Kosztolányi et al., 2006).
Therefore we asked first, whether this sex difference in desertion may be a consequence of lower prolactin levels in females than in males. In precocial species, concentrations of circulating levels of prolactin either drops sharply after hatching of the chicks (Dittami, 1981; Goldsmith, 1982; Goldsmith and Williams, 1980; Hall and Goldsmith, 1983; Wentworth et al., 1983), or remains elevated after hatching and may decrease slowly until the chicks become thermally independent (Boos et al., 2007; Gratto-Trevor et al., 1990; Oring et al., 1986; Oring et al., 1988). Since Kentish plovers spend a significant amount of time on brooding their downy chicks (Székely and Cuthill, 1999), we expected that in this species the prolactin levels remain high after hatching and decline gradually as chicks grow and need less brooding. If females have already lower baseline prolactin levels at hatching of their chicks than males do, gradual decrease in their circulating prolactin after hatching may reach a threshold where the motivation for tending the chicks becomes insufficient and desertion occurs. Therefore, we predicted that baseline prolactin levels are lower in females than in males. Second, we tested whether individual desertion decisions can be predicted by the prolactin stress response. If the magnitude of decrease in prolactin in response to a standardised stressor can be regarded as a surrogate measure of parental investment (Angelier and Chastel, 2009), we predicted that females deserting their brood would have a stronger prolactin stress response (i.e. lower stress-induced prolactin levels) than females that do not desert. Third, since the hormone corticosterone has been proposed as a mediator of life-history trade-off between reproduction and survival, we tested whether the corticosterone levels differ between sexes. Finally, we asked whether stress-induced corticosterone levels predict desertion decision in females. We predicted that females have higher baseline corticosterone levels than males, and deserting females have higher stress-induced corticosterone levels than non-deserting females.

METHODS

Study area and field methods

Fieldwork was carried out at Lake Tuzla (36°43’ N, 35°03’ E), southern Turkey in two years
(2009: 24 April – 25 June, 2010: 29 April – 24 June; see details about the study site and field
methodology in Kosztolányi et al., 2006; Lendvai et al., 2004). Both parents were captured by
funnel traps either at the nest at hatching or with the chicks after hatching, whereas chicks
were captured either in the nest scrape immediately after hatching, or at the first encounter
(capture date of adults relative to hatching date of their clutch; 0.5 ± 0.21 days (mean ± SE),
range: -2 – 6 days, n = 82 adults). Adults were ringed with a metal ring and an individual
combination of three colour rings. Chicks were ringed by two rings, one metal ring and a
colour ring (the same colour within a family). We measured the body mass, the left and right
tarsus length of each captured bird. From adults blood samples were taken for hormone assays
using the standard capture and restraint protocol (Wingfield, 1994): 1.4 ± 0.06 minutes (mean
± SE, range: 0.8 – 3.4, n = 82 adults) after capture about 150 μl (in 2009) or 210 μl (in 2010)
blood was collected from the brachial vein and the bird was then placed in a cloth bag.

Neither corticosterone nor prolactin levels at the first blood sampling were related to the time
elapsed from installation of the trap to blood sampling (Pearson correlations, corticosterone: r
= -0.07, n = 39, p = 0.676; prolactin: r = 0.03, n = 82, p = 0.785) or from capture to blood
sampling (corticosterone: r = 0.15, n = 39, p = 0.367; prolactin: r = 0.04, n = 82, p = 0.739),
therefore these samples are referred to as baseline. A second blood sample was collected 30.7
± 0.10 minutes (range: 29.7 – 35.8) after the first blood sample. Blood samples were
centrifuged and the plasma was stored at -20 °C until analysis. One female was sampled in
both years. For this female only the brood from 2010 was retained in the dataset. After
hatching, the broods were visited regularly and the sex and number of attending parents and
the number of chicks were recorded. We attempted to follow broods until the chicks perished
or were 25 days old when they were considered as fledged. If a parent was not present at the
brood at two consecutive visits we considered the parent as deserted. As desertion by males
was rare (see results), we analysed desertion decision only in females. Ten broods fledged at
least one chick, whereas all chicks died in four broods at 0.8 ± 0.48 (mean ± SE) days of age.
Twenty-six broods of which five had been deserted by the female were followed only until
12.4 ± 1.25 days either because the fieldwork ended or because we were not able to locate the
family.

Hormone assays

Hormone concentrations were determined in duplicate aliquots from 50 μl plasma sample by
radioimmunoassay at Centre d’Études Biologiques de Chizé (CEBC), France. Prolactin
measurements were available for n = 41 pairs (in 2009: 21 pairs, in 2010: 20 pairs). Plasma
concentrations of prolactin were determined by a heterologous radioimmunoassay at the
CEBC as detailed in Cherel et al. (1994). Pooled plasma samples of Kentish plovers produced
a dose–response curve that paralleled chicken prolactin standard curves (‘AFP 4444B’,
source: Dr Parlow, NHPP Harbor-UCLA Medical Center, Torrance, CA, USA). Therefore,
the cross-reactivity of the chicken prolactin antibody with prolactin was equivalent in both
species and this heterologous assay could be used to assess relative concentrations of Kentish
plover prolactin. The detection limit of the assay was 19.26 ng/ml and the lowest
measurement was 194.142 ng/ml. The samples were run in two assays (intra-assay
coefficient: 13%, inter-assay coefficient: 24%).

Blood for corticosterone assay was collected from n = 20 pairs in 2010, however, the
plasma was not enough to run the assay in case of one male. Total corticosterone
concentrations were measured in one assay as described in Lendvai et al. (2011). The intra-
assay coefficient of variation was 7.07% for 10 duplicates. The minimum detectable level of corticosterone was 0.28 ng/ml (lowest measurement: 7.78 ng/ml).

Statistical analyses

All data processing and statistical analyses were performed in the R computing environment (version: 2.1.4.0, R Development Core Team, 2011). First we checked the possible effect of potential confounding variables: season (measured as days since 1 March), brood age, parental sex and size and time of the day. Second, we used mixed-effects models including stress (first/second bleeding) and sex as factors, the confounding variables having a significant effect in the preliminary analyses and all second order interactions as fixed effects. The repeated measurements of an individual were controlled for by including ring ID as random structure in the models (Pinheiro and Bates, 2000). We carried out model selection using AIC values (Venables and Ripley, 2002). As several broods were not followed until fledging (see above), the effect of hormone levels on desertion was analysed using Cox regression. In these models desertion was the terminal event and non-deserted broods were censored cases. Neither baseline, nor stress-induced prolactin levels differed between years (t-tests, baseline: $t_{80} = 0.997, p = 0.322$, stress-induced: $t_{80} = 0.527, p = 0.600$), therefore we pooled and analysed prolactin data from both years. One male showed an unusual response on capture stress in corticosterone levels (see white symbol on Fig. 3), therefore we repeated all analyses excluding the hormone measurements of this male from the dataset. However, removal did not change our conclusions and we only present the results of the analysis of the full data set.
RESULTS

Parental care and prolactin

We observed 12 desertions in 41 broods. In 11 cases, the female deserted the family, and in one case the male. Median time of female desertion was day 9 post hatching (range: 2 – 24 days). Large females deserted the brood more often than small ones (Cox regressions, \(n = 40 \), tarsus length: \(b = 1.079, p = 0.009 \)), and the probability of desertion tended to decrease over the breeding season (hatching date: \(b = -0.063, p = 0.071 \)).

Baseline prolactin levels did not differ between the sexes (t-test, \(t_{80} = 0.029, p = 0.977 \)), and was not influenced by size of parents (Pearson correlations, sexes combined, \(n = 82 \), tarsus length: \(r = -0.12, p = 0.289 \); body mass: \(r = -0.01, p = 0.954 \)). Baseline prolactin levels decreased with the age of the chicks, however, neither hatching date nor time of the day influenced baseline prolactin levels (Pearson correlations, sexes combined, \(n = 82 \), brood age: \(r = -0.28, p = 0.012 \); hatching date: \(r = 0.17, p = 0.122 \); time of the day: \(r = 0.16, p = 0.159 \)).

As expected, circulating prolactin levels decreased in response to the capture restraint stress in both sexes, however, the sexes did not differ in their stress-induced prolactin level (Fig. 1, t-tests, stress: \(t_{162} = 14.605, p < 0.001 \); sex : \(t_{80} = 0.616, p = 0.540 \)). The mixed-effects model analysis gave consistent results with t-tests (Table 1).

The stress-induced prolactin levels of caring females were higher than those of deserting females (Fig. 1, \(t_{38} = 2.064, p = 0.046 \)), however, the caring females group also included females of broods where the chicks died or where the brood was not followed until fledging of the chicks. Survival analyses showed that stress-induced prolactin levels did not influence the probability of desertion in females (Cox regression controlling for female size, \(n = 40 \), tarsus: \(b = 1.117, p = 0.009 \); stress-induced prolactin: \(b = 0.001, p = 0.712 \)). The plot of observed caring history of broods against female stress-induced prolactin levels revealed that although we did not observe desertion among females with the highest stress-induced
prolactin levels, several long-caring females had relatively low stress-induced prolactin levels (Fig. 2).

Corticosterone
Baseline corticosterone levels did not differ between adult males and females (t-test, \(t_{37} = 1.147, p = 0.259 \)). Corticosterone levels did not change with parental size, age of the brood, hatching date or capture time (Pearson correlations, sexes combined, \(n = 39 \), all \(p \geq 0.173 \)). Capture stress induced a significant increase in corticosterone levels (Fig. 3, Table 1, t-test, \(t_{76} = 11.758, p < 0.001 \)), and females had higher stress-induced corticosterone levels than males \((t_{37} = 2.239, p = 0.031) \).

Stress-induced corticosterone levels did not predict desertion behaviour (Cox regression controlling for female size, \(n = 19 \), tarsus: \(b = 1.320, p = 0.036 \); stress-induced corticosterone: \(b = -0.003, p = 0.892 \)).

DISCUSSION
Prolactin levels are associated with parental care in many species including birds, mammals and fish (reviewed by Adkins-Regan et al., 2010; Angelier and Chastel, 2009; Rall et al., 2004; Ziegler et al., 2009), although in our study, prolactin levels at (or near) hatching of the eggs did not predict brood desertion in Kentish plovers. Prolactin may be unrelated to the deserting decision, and this behaviour could be regulated by alternative pathways. Conversely, it is possible that prolactin does influence the probability of desertion behaviour, although we failed to find this relationship because the decrease in prolactin levels does not take place at hatching but happens only shortly before desertion which occurs at varying chick ages.
Brood desertion is an adaptive strategy if the benefits associated with desertion outweigh the costs (Clutton-Brock, 1991; McGraw et al., 2010; Székely et al., 1996). Such benefits may be either the increased survival or the possibility to rapidly remate and increase reproductive success. Although prolactin has been documented to play a role in clutch abandonment or brood desertion (Chastel and Lormée, 2002; Groscolas et al., 2008; Spee et al., 2010), and in temporary egg neglect (Angelier et al., 2007), desertion in these species occurs exclusively at severe energy deficit, so probably operates as part of an emergency reaction and serves increased survival. In one study, clutch desertion was related to reduced prolactin levels in response to partial clutch loss, however, here desertion decision was also triggered by cues of nest predation (Hall, 1987). In contrast, brood desertion in the Kentish plover (and in its close relative, the snowy plover Charadrius nivosus) is part of the natural breeding system, and deserting parents often remate and lay new clutches (Székely and Williams, 1995; Warriner et al., 1986). Therefore, it is possible that these two types of desertion are controlled by different hormonal pathways, and that the decision of desertion is made independently of prolactin levels in plover.

Elevated prolactin levels are known to induce parental behaviours, especially for persistent incubation and brooding (Adkins-Regan et al., 2010; Angelier and Chastel, 2009; Buntin, 1996); therefore it would require specific adaptations if birds were to leave their brood and initiate a new clutch with elevated prolactin levels, especially, as prolactin have also antagonist effects on luteinizing hormone (LH) and gonadal steroids, which are necessary for rebreeding (Sharp et al., 1998).

If, on the other hand, prolactin plays a role in the regulation of brood desertion, it must be temporarily decoupled from the hormone levels we measured close to hatching. Consistently with the idea that prolactin reflects the amount of active parental care, we found that baseline prolactin decreased after the hatching and as the chicks became more
independent, similarly to other polygamous shorebirds (e.g. Wilson’s phalaropes *Phalaropus tricolor*, Oring et al., 1988; red-necked phalaropes *Phalaropus lobatus*, Gratto-Trevor et al., 1990). Nevertheless, female Kentish plovers did not have lower baseline prolactin levels than males, therefore the different desertion patterns between the sexes cannot be the consequence of females having already lower prolactin levels at hatching. Furthermore, the slope of the decrease in prolactin after hatching was similar in males and in females (results not shown), which suggests that if plummeting prolactin levels are responsible for the sex-biased desertion pattern, than the fall of prolactin levels should happen later, potentially only shortly before desertion.

For example, in Eurasian penduline tits *Remiz pendulinus*, another bird species where desertion by either sex is part of the natural breeding system, desertion is a rapid process, and the behaviour of the parents shortly before they leave does not predict their decision (van Dijk et al., 2007). It is plausible that in species such as the penduline tit or the Kentish plover, where there is an intensive sexual conflict over parental care and both sexes may potentially desert (Székely et al., 2006), selection should favour physiological mechanisms that allow for rapid shifts in behaviour. On the contrary, in species, where desertion occurs as a response to an energetic crisis, clutch or brood abandonment seems to be slow. For instance, an association of low prolactin levels, progressive decrease in nest attendance and transitory neglecting of the eggs preceding definitive desertion or clutch failure have been observed in king penguins *Aptenodytes patagonicus* (Groscolas et al., 2008), red-footed boobies *Sula sula* (Chastel and Lormée, 2002), snow petrels (Angelier et al., 2007) and black-legged kitiwakes (Angelier et al., 2009b).

The rapid transition between care and desertion may explain why the results did not support our second prediction, namely that deserting females will respond more strongly to a standardised stress than females that continue to provide care. By measuring the prolactin
stress response, we may have measured the parental investment of the parents at the day of sampling (i.e. the end of the incubation or the beginning of chick rearing) which may not have been different for females that later decided to desert or to care.

Corticosterone is considered as an important mediator of the life-history between reproduction and survival, and therefore the levels of this hormone may affect fitness (Blas et al., 2007; Bonier et al., 2009; Ricklefs and Wikelski, 2002; Wingfield et al., 1995). The biological effect of baseline and stress-induced levels are different, with baseline levels having essentially metabolic effects, whereas at the higher stress-induced levels corticosterone may trigger significant shifts in behaviour in concert with other hormones (Angelier et al., 2009b; Hau et al., 2010; Wingfield and Sapolsky, 2003). Here, we found that baseline corticosterone levels did not differ between the sexes but stress-induced corticosterone levels were higher in females than males. The fact that baseline levels were similar in the two sexes corroborates that female desertion in Kentish plovers is not driven by an energy deficit but reflects a reproductive strategy. On the other hand, higher stress-induced corticosterone levels in females compared with males indicate that the value of a given reproduction is lower for the potentially multibrooded polyandrous females than for the males. However, individual corticosterone levels in females were not related to desertion probability. Recent studies have shown that natural variation in corticosterone levels are negatively related to post-stress parental care (Lendvai and Chastel, 2010; Miller et al., 2009). Here we found an eightfold variation in baseline and a threefold variation in stress-induced corticosterone levels, but this extensive variation had very little power explaining the probability of desertion in individual females.

Taken together, we found that sex differences in stress-induced corticosterone, but not prolactin levels, were consistent with the higher frequency of brood desertion in females. However, individual variation in either the ‘stress hormone’ corticosterone, or the ‘parental
hormone’ prolactin measured near hatching of the young was not related to brood desertion probability. These results show that brood desertion by female Kentish plovers is not the consequence of their low overall parental commitment. We propose that desertion is a rapid process in this species which may be triggered by sudden increase in mating opportunities rather than a general reduction in commitment to care. Desertion may then be orchestrated by corresponding changes in hormone levels. The decisive test for this hypothesis would require manipulating prolactin secretion or its binding to receptors, or inducing desertion behaviour by manipulating mating opportunities in natural habitats of plovers.

ACKNOWLEDGMENTS

The study was supported by the Hungarian Scientific Research Fund (OTKA, K81953, PD76862). Fieldwork was supported by a grant from the Hungarian – Turkish Intergovernmental S&T Cooperation Programme (OMFB-00581/2009, TUBITAK-108Y329). CK was supported by a DAAD fellowship. At the CEBC, we thank Colette Trouvé for her technical assistance in prolactin and corticosterone assays. We are grateful to Peter Sharp for discussions and useful advices on the methods.
REFERENCES

Spee, M., Beaulieu, M., Dervaux, A., Chastel, O., Le Maho, Y., Raclot, T., 2010. Should I stay or should I go? Hormonal control of nest abandonment in a long-lived bird, the adélie penguin. Horm. Behav. 58, 762–768.

FIGURE LEGENDS

Fig. 1. Individual baseline and stress-induced prolactin levels and boxplots of hormone levels in the Kentish plover. For each box, the central line represents the median, and the bottom and the top of the box are the lower and upper quartiles, respectively. The whiskers extend to the lowest and highest observations, respectively. The open circles denote a male with unusual change in corticosterone levels (see Methods).

Fig. 2. Stress-induced prolactin levels in females of Kentish plover broods and the observed caring history of these broods (40 biparental or female deserted broods). Each brood is represented by a horizontal line (or dot if observed only on one day); solid line indicates biparental, whereas broken line indicates male-only care.

Fig. 3. Individual baseline and stress-induced corticosterone levels and boxplots of hormone levels in the Kentish plover. Boxplots as in Fig. 1. The open circles denote a male with unusual corticosterone levels (see Methods).
Table 1. Parameter estimates from the minimal mixed-effects models for prolactin (ng/ml) and corticosterone (ng/ml) plasma levels in the Kentish plover after AIC-based model selection.

<table>
<thead>
<tr>
<th></th>
<th>Prolactin</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>value</td>
<td>se</td>
<td>df</td>
<td>t</td>
<td>p</td>
<td>value</td>
<td>se</td>
<td>df</td>
</tr>
<tr>
<td>Brood age</td>
<td>-32.53</td>
<td>9.81</td>
<td>80</td>
<td>3.32</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>-8.96</td>
<td>4.05</td>
<td>37</td>
<td>2.21</td>
<td>0.033</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stress</td>
<td>-438.84</td>
<td>17.80</td>
<td>81</td>
<td>24.65</td>
<td><0.001</td>
<td>44.72</td>
<td>3.29</td>
<td>38</td>
</tr>
</tbody>
</table>

The initial model for prolactin contained brood age, sex and stress and all second order interactions, and for corticosterone sex, stress and sex × stress interaction.
Fig. 1
Stress-induced prolactin levels in females (ng/ml)

Brood age (days)

Fig. 2

Female desertion
Fig. 3