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C-PROJECTIVE GEOMETRY

DAVID M.J. CALDERBANK, MICHAEL G. EASTWOOD, VLADIMIR S. MAT VEEV,
AND KATHARINA NEUSSER

Abstract. We develop in detail the theory of c-projective geometry, a natural ana-
logue of projective di�erential geometry adapted to complex manifolds. We realise it
as a type of parabolic geometry and describe the associated Cartan or tractor con-
nection. A Kähler manifold gives rise to a c-projective structure and this is one of
the primary motivations for its study. The existence of two or more Kähler metrics
underlying a given c-projective structure has many rami�cations, which we explore
in depth. As a consequence of this analysis, we prove the Yano�Obata Conjecture
for complete Kähler manifolds: if such a manifold admits a one parameter group of
c-projective transformations that are not a�ne, then it is c omplex projective space,
equipped with a multiple of the Fubini�Study metric.

Introduction

C-projective geometry is a natural analogue of real projective di�erential geometry
for complex manifolds. Like projective geometry, it has many facets, which have been
discovered and explored independently and repeatedly overthe past sixty years. Our
aim in this work is to develop in detail a uni�ed theory of c-projective geometry, which
highlights its relation with real projective geometry as well as its di�erences.

Projective geometry is a classical subject concerned with the behaviour of straight
lines, or more generally, (unparametrised) geodesic curves of a metric or a�ne connec-
tion. It has been known for some time [66, 99] that two non-proportional metrics can
have the same geodesic curves: central projection takes great circles on then-sphere,
namely the geodesics for the round metric, to straight linesin Euclidean n-space,
namely geodesics for the �at metric. The quotient of the round n-sphere under the an-
tipodal identi�cation may be identi�ed with the �at model for n-dimensional projective
geometry: the real projectiven-spaceRPn , viewed as a homogeneous space under the
groupPSL(n+1; R) of projective transformations, which preserve the family of (linearly
embedded) projective linesRP1 ,! RPn . More generally, aprojective structure on a
smoothn-manifold (for n � 2) is an equivalence class of torsion-free a�ne connections
having the same geodesic curves. In this setting, it is a nontrivial and interesting ques-
tion whether these curves are the geodesic curves of a (pseudo-)Riemannian metric,
i.e. whether any connection in the projective equivalence class preserves a nondegen-
erate metric, possibly of inde�nite signature. Such projective structures are called
metrisableand the corresponding metricscompatible. Rather surprisingly, the partial
di�erential equations controlling the metrisability of a given projective structure can
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be set up as alinear system [13, 40, 70, 94]. More precisely, there is a projectively
invariant linear di�erential operator acting on symmetric contravariant 2-tensors such
that the nondegenerate elements of its kernel correspond tocompatible metrics.

In modern language, a projective structure determines a canonical Cartan con-
nection [39] modelled onRPn , and hence projective geometry is aparabolic geome-
try [36, 42]. In these terms, the metrisability operator is a �rst BGG (Bernstein�
Gelfand�Gelfand) operator, which is a di�erential operator of �nite type [43]. Its
solutions correspond to parallel sections of a bundle with connection, which is, up to
curvature corrections, a linear representation of the Cartan connection. The kernel is
thus �nite-dimensional; it is zero for generic projective structures, with the maximal
dimension attained on the �at model RPn . The parabolic viewpoint on projective
geometry has proven to be very useful, for example in understanding projective com-
pacti�cations of Einstein metrics [31, 34], the geometry ofholonomy reductions of
projective structures [6], and (solving problems posed by Sophus Lie in 1882) projec-
tive vector �elds on surfaces [22, 75].

Projective geometry has been linked to the theory of �nite dimensional integrable
systems with great success: the equation for symmetric Killing tensors is projectively
invariant [42], and (consequently) the existence of two projectively equivalent metrics
on a manifold implies the existence of nontrivial integralsfor the geodesic �ows of
both metrics. This method has been e�ectively employed whenthe manifold is closed
or complete (see e.g. [72, 74]). Moreover, the integrability of many classically stud-
ied integrable geodesic �ows (e.g., on ellipsoids) is closely related to the existence of
a projectively compatible metric, and many geometric structures that lead to such
integrable geodesic �ows have been directly related to the existence of a projectively
compatible metric, see e.g. [9, 13].

C-projective geometry arises when one retells this story, mutatis mutandis, for com-
plex or, indeed, almost complex manifolds, i.e. smooth manifolds equipped with an
almost complex structureJ , which is a smooth endomorphism of the tangent bundle
such that J 2 = � Id. On such a manifoldM , the relevant (pseudo-)Riemannian metrics
are Hermitian with respect to J , i.e. J -invariant, and the relevant a�ne connections
are those which preserveJ , called complex connections. Such connections cannot be
torsion-free unless the almost complex structure isintegrable, i.e. its Nijenhuis tensor
vanishes identically [89]. This holds in particular if the Levi-Civita connection of a
Hermitian metric g preservesJ , in which caseg is called a (pseudo-)Kähler metric.

In 1947, Bochner [12, Theorem 2] observed that any two metrics that are Kähler
with respect to the same complex structure cannot be projectively equivalent (i.e. have
the same geodesic curves) unless they are a�nely equivalent(i.e. have the same Levi-
Civita connection). This led Otsuki and Tashiro [90] to introduce a broader class
of curves, which they called �holomorphically �at�, and which depend on both the
connection and the (almost) complex structure. We refer to these curves asJ -planar:
whereas a geodesic curve for an a�ne connectionr is a curve c whose acceleration
r _c _c is proportional to its velocity _c, a J -planar curve is one whose acceleration is in
the linear span of_c and J _c. On a Riemann surface, therefore, all curves areJ -planar.
The other common manifold where it is possible to see allJ -planar curves without
computation is complex projective space with its Fubini�Study connection. The point
here is that the linearly embedded complex linesCP1 ,! CPn are totally geodesic.
Therefore, theJ -planar curves onCPn are precisely the smooth curves lying within
such complex lines. Viewed in a standard a�ne coordinate patch Cn ,! CPn , the
J -planar curves are again the smooth curves lying inside an arbitrary complex line
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f az+ bg � Cn but otherwise unconstrained. Evidently, these are the intrinsic J -planar
curves for the �at connection onCn .

The J -planar curves provide a nontrivial notion of projective equivalence in com-
plex di�erential geometry, due to Otsuki and Tashiro [90] inthe Kähler setting, and
Tashiro [98] for almost complex manifolds in general. Two complex connections on
an almost complex manifold(M; J ) are c-projectively equivalentif they have the same
torsion and the sameJ-planar curves. Analmost c-projective manifoldis a complex
manifold (M; J ) equipped with a c-projective equivalence class of such connections.
If J is integrable, we follow the usual convention and drop the word �almost� to ar-
rive at the notion of a c-projective manifold. We caution the reader that Otsuki and
Tashiro [90], and many later researchers, refer to �holomorphically projective corre-
spondences�, rather than c-projective equivalences, and many authors use the termi-
nology �h-projective� or �holomorphic(ally) projective� instead of �c-projective�. We
avoid their terminology because the connections in a c-projective class are typically
not holomorphic, even if the complex structure is integrable; similarly, we avoid the
term �complex projective structure�, which is often used for the holomorphic analogue
of a real projective structure, or related concepts.

During the decades following Otsuki and Tashiro's 1954 paper, c-projective struc-
tures provided a prominent research direction in Japanese and Soviet di�erential geom-
etry. Many of the researchers involved had some background in projective geometry,
and the dominant line of investigation sought to generalisemethods and results from
projective geometry to the c-projective setting. This was avery productive direc-
tion, with more than 300 publications appearing in the relatively short period from
1960 to 1990. One can compare, for example, the surveys by Mike² [82, 83], or the
papers of Hiramatu [53, 54], to see how successfully c-projective analogues of results
in projective geometry were found. In particular, the linear system for c-projectively
equivalent Kähler metrics was obtained by Domashev and Mike² [41], and its �nite
type prolongation to a connection was given by Mike² [81].

Relatively recently, the linear system for c-projectivelyequivalent Kähler metrics
has been rediscovered, under di�erent names and with di�erent motivations. On a
�xed complex manifold, a compatible (pseudo-)Kähler metric is determined uniquely
by its Kähler form (a compatible symplectic form), and underthis correspondence,
c-projectively equivalent Kähler metrics are essentiallythe same asHamiltonian 2-
forms de�ned and investigated in Apostolov et al. [2, 3, 4, 5]: the de�ning equation [2,
(12)] for a Hamiltonian 2-form is actually algebraically equivalent to the metrisability
equation (125). In dimension� 6, c-projectively equivalent metrics are also essentially
the same as conformal Killing (or twistor)(1; 1)-forms studied in [86, 92, 93], see [2,
Appendix A] or [78, Ÿ1.3] for details.

The work of [2, 3] provides,a postiori, local and global classi�cation results for
c-projectively equivalent Kähler metrics, although the authors were unaware of this
interpretation, nor the pre-existing literature. Instead, as explained in [2, 3] and [26],
the notion and study of Hamiltonian 2-forms was motivated by their natural appear-
ance in many interesting problems in Kähler geometry, and the unifying role they play
in the construction of explicit Kähler metrics on projective bundles. In subsequent
papers, e.g. [4, 5], Hamiltonian2-form methods were used to construct many new
examples of Kähler manifolds and orbifolds with interesting properties.

Another independent line of research closely related to c-projectively equivalent met-
rics (and perhaps underpinning the utility of Hamiltonian 2-forms) appeared within
the theory of �nitely dimensional integrable systems. C-projectively equivalent metrics
are closely related (see e.g. [61]) to the so-called Kähler�Liouville integrable systems
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of type A introduced and studied by Kiyohara in [59]. In fact, Topalov[100] (see
also [60]) shows that generic c-projectively equivalent Kähler metrics have integrable
geodesic �ows, cf. [101] for the analogous result in the projective case. On the one
hand, integrability provides, as in projective geometry, anumber of new methods that
can be used in c-projective geometry. On the other hand, examples from c-projective
geometry turn out to be interesting for the theory of integrable systems, since there
are only a few known examples of Kähler metrics with integrable geodesic �ows.

Despite the many analogies between results in projective and c-projective geometry,
there seem to be very few attempts in the literature to explain why these two subjects
are so similar. In 1978, it was noted by Yoshimatsu [103] thatc-projective manifolds
admit canonical Cartan connections, and this was generalised to almost c-projective
manifolds by Hrdina [55] in 2009. Thus c-projective geometry, like projective geometry,
is a parabolic geometry; its �at model isCPn , viewed as a homogeneous space under
the group PSL(n + 1; C) of projective transformations, which preserve theJ -planar
curves described above. Despite this, c-projective structures have received very little
attention in the parabolic geometry literature: apart from the work of Hrdina, and
some work in dimension4 [28, 80], they have only been studied in [6], where they
appear as holonomy reductions of projective geometries. A possible explanation for
this oversight is that PSL(n+1; C) appears in c-projective geometry as a real Lie group
and, as such, its complexi�cation is semisimple, but not simple. This is related to the
subtle point that most interesting c-projective structures are not holomorphic.

The development of c-projective geometry, as described above, has been rather non-
linear until relatively recently, when a number of independent threads have converged
on a coherent set of ideas. However, a thorough description of almost c-projective
manifolds in the framework of parabolic geometries is lacking in the literature. We
therefore believe it is timely to lay down the fundamentals of such a theory.

The article is organised as follows. In Section 1, we survey the background on almost
complex manifolds and complex connections. As we review in Section 1.2, the torsion
of any complex connection on an almost complex manifold, of real dimension2n � 4,
naturally decomposes into �ve irreducible pieces, one of which is invariantly de�ned
and can be identi�ed as the Nijenhuis tensor. All other pieces can be eliminated by a
suitable choice of complex connection, which we callminimal. In �rst four sections of
the article we carry along the Nijenhuis tensor in almost allcalculations and discussions.

Section 2 begins with the classical viewpoint on almost c-projective structures, based
on J -planar curves and equivalence classes of minimal complex connections [90]. We
then recall the notion of parabolic geometries and establish, in Theorem 2.8, an equiv-
alence of categories between almost c-projective manifolds and parabolic geometries
with a normal Cartan connection, modelled onCPn .

As a consequence of this parabolic viewpoint, we can associate a fundamental local
invariant to an almost c-projective manifold, namely the curvature � of its normal
Cartan connection; furthermore,� � 0 if and only if the almost c-projective manifold is
locally isomorphic toCPn equipped with its standard c-projective structure. Since the
Cartan connection is normal (for this we need the complex connections to be minimal),
its curvature is a 2-cycle for Lie algebra homology, and is uniquely determinedby its
homology class, also known as theharmonic curvature. We construct and discuss this
curvature in section 2.7. For almost c-projective structures there are three irreducible
parts to the harmonic curvature. One of the pieces is the Nijenhuis tensor, which is
precisely the obstruction to the underlying almost complexmanifold actually being
complex. One of the other two parts is precisely the obstruction to there being a
holomorphic connection in the c-projective class. When it vanishes we end up with
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holomorphic projective geometry, i.e. ordinary projective di�erential geometry but in
the holomorphic category. The remaining piece can then be identi�ed with the classical
projective Weyl curvature (for n � 3) or Liouville curvature (for n = 2).

Another consequence of the parabolic perspective is that representation theory is
brought to the fore, both as the appropriate language for discussing natural bundles
on almost c-projective manifolds, and also as the correct tool for understanding invari-
ant di�erential operators on the �at model, and their curved analogues. The various
BGG complexeson CPn and their curved analogues are systematically introduced and
discussed in Section 3.

In particular, there is a BGG operator that controls themetrisability of a c-projective
structure just as happens in the projective setting. A largepart of this article is de-
voted to the metrisability equation, which we introduce in Section 4, where we also
obtain its prolongation to a connection, not only for compatible (pseudo-)Kähler met-
ric, but also in the non-integrable case of quasi-Kähler or (2,1)-symplectic structures.
For the remainder of the article, we suppose that the Nijenhuis tensor vanishes, in
other words that we are starting with a complex manifold. In this case, a compatible
metric is exactly a (pseudo-)Kähler metric (and anormal solution of the metrisability
equation corresponds to a (pseudo-)Kähler�Einstein metric). We shall also restrict
our attention to metric c-projective structures, i.e. to the metrisable case where the
c-projective structure arises from a (pseudo-)Kähler metric. Borrowing terminology
from the projective case, we refer to the dimension of the solution space of the metris-
ability equation as the (degree of) mobility of the metric c-projective structure (or of
any compatible (pseudo-)Kähler metric). We are mainly interested in understanding
when the metric c-projective structure has mobility at least two, and the consequences
this has for the geometry and topology of the manifold.

In Section 5, we develop the consequences of mobility for integrability, by showing
that a pencil (two dimensional family) of solutions to the metrisability equation gen-
erates a family of holomorphic Killing vector �elds and Hermitian symmetric Killing
tensors, which together provide commuting linear and quadratic integrals for the ge-
odesic �ow of any metric in the pencil. In Section 6, we study an important, but
somewhat mysterious, phenomenon in which tractor bundles for metric c-projective
geometries are naturally equipped with congenial connections, which are neither in-
duced by the normal Cartan connection nor equal to the prolongation connection, but
which have the property that their covariant constant sections nevertheless correspond
to solutions of the corresponding �rst BGG operator.

We bring these tools together in Section 7, where we establish the Yano�Obata
Conjecture for complete Kähler manifolds, namely that the identity component of the
group of c-projective transformations of the manifold consists of a�ne transformations
unless the manifold is complex projective space equipped with a multiple of the Fubini�
Study metric. This result is an analogue of thethe Projective Lichnerowicz Conjecture
obtained in [73, 74], but the proof given there does not generalise directly to the c-
projective situation. Our proof also di�ers from the proof for closed manifolds given
in [77], and makes use of many preliminary results obtained by the methods of parabolic
geometry, which also apply in the projective case.

Here, and throughout the article, we see that not only results from projective geom-
etry, but also methods and proofs, can be generalised to the c-projective case, and we
explain why and how. We hope that this article will set the scene for what promises
to be an interesting series of further developments in c-projective geometry. In fact,
several such developments already appeared during our workon this article, which we
discuss in Section 8.
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1. Almost complex manifolds

Recall that an almost complex structureon a smooth manifoldM is a smooth en-
domorphismJ of the tangent bundleT M of M that satis�es J 2 = � Id. Equivalently,
an almost complex structure makesT M into a complex vector bundle in which multi-
plication by i is decreed to be the real endomorphismJ . In particular, the dimension
of M is necessarily even, say2n, and an almost complex structure is yet equivalently
a reduction of structure group toGL(n; C) � GL(2n; R).

1.1. Real and complex viewpoints. If M is a complex manifold in the usual sense
of being equipped with holomorphic transition functions, thenT M is a complex vector
bundle and multiplication by i de�nes a real endomorphismT M ! T M , which we
write as J . This is enough to de�ne the holomorphic structure onM : holomorphic
functions may be characterised amongst all smooth complex-valued functionsf = u+ iv
as satisfyingXu = ( JX )v for all vector �elds X (the Cauchy�Riemann equations).

Thus, complex manifolds may be regarded as a subclass of almost complex manifolds
and the celebrated Newlander�Nirenberg Theorem tells us how to recognise them:

Theorem 1.1 (Newlander�Nirenberg, [89]). An almost complex manifold(M; J ) is a
complex manifold if and only if the tensor

N J (X; Y ) := [ X; Y ] � [JX; JY ] + J ([JX; Y ] + [ X; JY ]) (1)

vanishes for all vector �eldsX and Y on M , where [ ; ] denotes the Lie bracket of
vector �elds.

Note that N J : T M � T M ! T M is a 2-form with values in T M , which satis�es
N J (JX; Y ) = � JN J (X; Y ). It is called the Nijenhuis tensor of J . When N J van-
ishes we say that the almost complex structureJ is integrable. This viewpoint on
complex manifolds, as even-dimensional smooth manifolds equipped with integrable
almost complex structures, turns out to be very useful especially from the di�erential
geometric viewpoint.

It is useful to complexify the tangent bundle ofM and decompose the result into
eigenbundles under the action ofJ . Speci�cally,

CT M = T1;0M � T0;1M = f X s.t. JX = iX g � f X s.t. JX = � iX g: (2)

Notice that T0;1M = T1;0M . There is a corresponding decomposition of the com-
plexi�ed cotangent bundle, which we write aŝ 1M or simply ^ 1 if M is understood.
Speci�cally,

^ 1 = ^ 0;1 � ^ 1;0 = f ! s.t. J! = � i! g � f ! s.t. J! = i! g; (3)

where sections of̂ 1;0 respectively of^ 0;1 are known as1-forms of type (1; 0) respec-
tively (0; 1), see e.g. [62]. Notice that the canonical complex linear pairing between
CT M and ^ 1M induces natural isomorphismŝ 0;1 = ( T0;1)� and ^ 1;0 = ( T1;0)� of
complex vector bundles.

It is convenient to introduce abstract indices [91] for realor complex tensors onM
and also for sections of the bundlesT1;0M , ^ 0;1, and so on. Let us writeX � for real or
complex �elds and! � for real or complex1-forms onM . In local coordinates� would
range over1; 2; : : : ; 2n where2n is the dimension ofM . Let us denote byX a a section
of T1;0M . In any frame, the indexa would then range over1; 2; : : : ; n. Similarly, let us
write X �a for a section ofT0;1M and the conjugate linear isomorphismT0;1M = T1;0M
as X a 7! X a = X �a. Accordingly, sections of^ 1;0 and ^ 0;1 will be denoted by ! a

and ! �a respectively, and the canonical pairings betweenT1;0M and ^ 1;0, respectively
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T0;1M and ^ 0;1, written as X a! a, respectivelyX �a! �a, an abstract index counterpart to
the Einstein summation convention.

We shall need the complex linear homomorphismCT M ! T1;0M de�ned as pro-
jection onto the �rst summand in the decomposition (2) and given explicitly as X 7!
1
2(X � iJX ). It is useful to write it in abstract indices as

X � 7! � a
� X � :

It follows that the dual homomorphism^ 1;0 ,! ^ 1 is given in abstract indices by

! a 7! � a
� ! a

and also that the homomorphismsCT M ! T0;1M and ^ 0;1 ,! ^ 1 are given by

X � 7! � �a
� X � and ! �a 7! � �a

� ! �a;

respectively.
Let us denote byX a 7! � �

a X a, the inclusion T1;0M ,! CT M , paying attention to
the distinction in their indices between� a

� and � �
a . Various identities follow, such

as � �
a � b

� = � a
b; where the Kronecker delta� a

b denotes the identity transformation
on T1;0M . The symbol � �

a also gives us access to the dual and conjugate homomor-
phisms. Thus,

! � 7! � �
�a ! �

extracts the (0; 1)-part of a complex-valued1-form ! � on M . The following identities
are immediate from the de�nitions

� a
� � �

a = 1
2(� �

� � iJ �
� ) � �a

� � �
�a = 1

2(� �
� + iJ �

� )

� �
a J�

� = i � �
a � �

�a J�
� = � i � �

�a (4)

J�
� � a

� = i � a
� J�

� � �a
� = � i � �a

� :

They are indispensable for the calculations in the following sections. Further useful
abstract index conventions are as follows. Quantities endowed with several indices
denote sections of the tensor product of the corresponding vector bundles. Thus,
a section ofT M 
 T M would be denotedX �� whilst � �

� is necessarily a section
of T � M 
 T M or, equivalently, an endomorphism ofT M , namely X � 7! � �

� X � , yet
equivalently an endomorphism ofT � M , namely ! � 7! � �

� ! � . We have already seen
this notation for an almost complex structureJ�

� . But it is unnecessary notationally
to distinguish between real- and complex-valued tensors. Thus, by ! � we can mean a
section ofT � M or of ^ 1M := CT � M and if a distinction is warranted, then it can be
made in words or by context. For example, an almost complex structure J�

� is a real
endomorphism whereas� a

� is necessarily complex.
Symmetry operations can also be written in abstract index notation. For example,

the skew part of a covariant2-tensor � �� is 1
2(� �� � � �� ), which we write as� [�� ].

Similarly, we write � (�� ) = 1
2(� �� + � �� ) for the symmetric part and then � �� =

� (�� ) + � [�� ] realises the decomposition of vector bundleŝ1 
 ^ 1 = S2^ 1 � ^ 2. In
general, round brackets symmetrise over the indices they enclose whilst square brackets
take the skew part, e.g.

R��


� 7! R[��


� ] = 1
6(R��


� + R��


� + R��


� � R��


� � R��


� � R��


� ):

By (3) di�erential forms on almost complex manifolds can be naturally decomposed
according to type (see e.g. [62]). We pause to examine the decomposition of2-forms,
especially from the abstract index point of view. From (3) itfollows that the bundle
^ 2 of complex-valued2-forms decomposes into types according to

^ 2 = ^ 2(^ 0;1 � ^ 1;0) = ^ 0;2 � ^ 1;1 � ^ 2;0 (5)
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and, as we shall make precise in Section 3.3, there is no �ner decomposition available
(it is a decomposition into irreducibles). Using the projectors � a

� and � �
a , we can

explicitly execute this decomposition:

! �� 7!
�
� �

�a � �
�b ! �� ; � �

a � �
�b ! �� ; � �

a � �
b ! ��

�

� �a
� �

�b
� ! �a�b + 2� a

[� �
�b
� ]! a�b + � a

� � b
� ! ab  (! �a�b; ! a�b; ! ab)

in accordance with (4). Notice that we made a choice here, namely to identify ^ 1;1 as
^ 1;0 
 ^ 0;1 in this order and, consequently, write forms of type(1; 1) as! a�b. We could
equally well choose the opposite convention or, indeed, useboth conventions simulta-
neously representing a(1; 1) form as ! a�b and/or ! �ab but now subject to ! a�b = � ! �ba.
Strictly speaking, this goes against the conventions of theabstract index notation [91]
but we shall allow ourselves this extra leeway when it is useful. For example, the
reconstructed form! �� may then be written as

! �� = � a
� �

�b
� ! a�b + � �a

� � b
� ! �ab:

Two-forms of various types may be characterised as

! �� is type (0; 2) () J�
 ! � = i! ��

! � is type (1; 1) () J[�
 ! � ] = 0

! �� is type (2; 0) () J�
 ! � = � i! ��

(6)

but already this is a little awkward and becomes more so for higher forms and ex-
tremely awkward when attempting to decompose more general tensors as we shall
have cause to do when considering torsion and curvature. Notice that forms of type
(1; 1) in (6) are characterised by a real condition. Indeed, the complex bundle ^ 1;1 is
the complexi�cation of a real irreducible bundle whose sections are the real2-forms
satisfying J[�

 ! � ] = 0. As for forms of types(0; 2) and (2; 0), there is a real bundle
whose sections satisfy

J�
 J�

� ! � = � ! ��

(as opposed toJ�
 J�

� ! � = ! �� for sections of^ 1;1) and whose complexi�cation is
^ 0;2 � ^ 2;0. Thus, the real2-forms split irreducibly into just two kinds but the complex
2-forms split into three types (5).

Notice that if E is a complex vector bundle onM , then we can decompose2-forms
with values in E into types by using the same formulae (6). In particular, we can do
this on an almost complex manifold whenE = T M , regarded as a complex bundle via
the action of J . Writing this out explicitly, a real tensor T��

 = T[�� ]
 is said to be

of type (0; 2) () J�
 T�

� = T��
 J

�

of type (1; 1) () J[�
 T� ]

� = 0

of type (2; 0) () J�
 T�

� = � T��
 J

� :

(7)

For example, as the Nijenhuis tensor (1) satis�esN J (Y; JX ) = JN J (X; Y ), it is of
type (0; 2). Further to investigate this decomposition (7), it is useful to apply the
projectors � a

� and � �
a to obtain

T�a�b
�c � � �

�a � �
�b � �c

 T��
 Ta�b

�c � � �
a � �

�b � �c
 T��

 Tab
�c � � �

a � �
b � �c

 T��


T�a�b
c � � �

�a � �
�b � c

 T��
 Ta�b

c � � �
a � �

�b � c
 T��

 Tab
c � � �

a � �
b � c

 T��


satisfying

Tab
c = T[ab]

c T�a�b
c = T[�a�b]

c Tab
�c = T[ab]

�c T�a�b
�c = T[�a�b]

�c

Tab
c = T�a�b

�c Ta�b
c = � Tb�a

�c Tab
�c = T�a�b

c
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and from which we can recoverT��
 according to

T��
 = � �a

� �
�b
� � 

�cT�a�b
�c + 2� a

[� �
�b
� ]�


�cTa�b

�c + � a
� � b

� � 
�c Tab

�c

+ � �a
� �

�b
� � 

c T�a�b
c + 2� a

[� �
�b
� ]�


cTa�b

c + � a
� � b

� � 
c Tab

c:

From (4) and (7), the splitting of T��
 into types corresponds exactly to components

type (0; 2) $ (Tab
�c; T�a�b

c)

type (1; 1) $ (Ta�b
c; Ta�b

�c)

type (2; 0) $ (Tab
c; T�a�b

�c):

(8)

Notice that, for each of types(1; 1) and (2; 0), a complex-valued1-form can be invari-
antly extracted:

type (1; 1) :� � � � a
� Ta�b

�b = 1
2

�
T��

� + iT ��
 J

�
�

type (2; 0) : � � � a
� Tab

b = 1
2

�
T��

� � iT ��
 J

�
�
:

On the other hand, just from the index structure, tensorsT��
 = T[�� ]

 of type (0; 2)
seemingly cannot be further decomposed (and this is con�rmed in Section 3.3). In
any case, it follows easily fromJ�

 T�
� = T��

 J
� that T��

 of type (0; 2) satisfy
T��

� = 0 = T��
 J

� .

1.2. Complex connections. The geometrically useful a�ne connectionsr on an
almost complex manifold(M; J ) are those that preserveJ�

� , i.e. r � J�
 = 0. We call

them complex connections. The space of complex connections is an a�ne space over
the vector space that consists of1-forms with values in the complex endomorphisms
gl(T M; J ) of T M . A complex connectionr naturally extends to a linear connection
on CT M that preserves the decomposition into types (2). Indeed, preservation of type
is also a su�cient condition for an a�ne connection to be complex.

Given a complex connectionr , we denote byT��
 its torsion, which is a 2-form

with values in T M . As suchT��
 naturally splits according to type into a direct sum

of three components as in (7). A straightforward computation shows that the (0; 2)-
component of the torsion of any complex connection equals� 1

4N J . In particular, this
component is an invariant of the almost complex structure and cannot be eliminated
by a suitable choice of complex connection. However, all other components can be
removed. To see this, supposêr is another complex connection. Then there is an
element� 2 T � M 
 gl(T M; J ) such that r̂ = r + � . It follows that their torsions are
related by the formula T̂ = T + @�, where@is the composition

T � M 
 gl(T M; J ) ,! T � M 
 T � M 
 T M ! ^ 2T � M 
 T M

� ��
 7! 2� [�� ]

 :

Notice that the image of@is spanned by2-forms of type(2; 0) and (1; 1). Consequently,
its cokernel can be identi�ed with forms of type(0; 2). Hence, any complex connection
can be deformed in such a way that its torsion is of type(0; 2). We have shown the
following classical result:

Proposition 1.2 ([62, 69]). On any almost complex manifold(M; J ) there is a complex
connection such thatT = � 1

4N J .

Since@is not injective such a complex connection is not unique. Complex connec-
tions r with T = � 1

4N J form an a�ne space over

ker@= ( S2T � M 
 T M ) \ (T � M 
 gl(T M; J )) (9)



C-PROJECTIVE GEOMETRY 11

and are calledminimal connections.
From Proposition 1.2 and the above discussion one also deduces immediately:

Corollary 1.3. There exists a complex torsion-free connection on an almostcomplex
manifold (M; J ) if and only if N J � 0.

Remark 1.1. We have already noted that the cokernel of@can be identi�ed with
tensorsT��

 such that

T(�� )
 = 0 J�

 T�
� = T��

 J
� :

Consequently,T��
� = T��

 J
� = 0. As we shall see in Section 3.3, such tensors are

irreducible. More precisely, the natural vector bundles onan almost complex manifold
(M; J ) correspond to representations ofGL(n; C) and we shall see thatcoker@corre-
sponds to an irreducible representation ofGL(n; C). On the other hand, its kernel (9)
decomposes into two irreducible components, namely a trace-free part and a trace part.
We shall see in the next section that deforming a complex connection by an element
from the latter space exactly corresponds to changing a connection c-projectively.

2. Elements of c-projective geometry

We now introduce almost c-projective structures, �rst fromthe classical perspective
of J -planar curves and equivalence classes of complex a�ne connections [90], then
from the modern viewpoint of parabolic geometries [36, 55, 103]. The (categorical)
equivalence between these approaches is established in Theorem 2.8. This leads us to
study the intrinsic curvature of an almost c-projective manifold, namely the harmonic
curvature of its canonical normal Cartan connection.

2.1. Almost c-projective structures. Recall that a�ne connections r and r̂ on a
manifold M are projectively equivalent if there is a1-form � � on M such that

r̂ � X  = r � X  + � � X  + � �
 � � X � : (10)

Suppose now that(M; J ) is an almost complex manifold. Thenr and r̂ are called
c-projectively equivalent, if there is a (real) 1-form � � on M such that

r̂ � X  = r � X  + � ��
 X � ; (11)

where � ��
 := 1

2(� � � �
 + � �

 � � � J�
� � � J�

 � J�
 � � J�

� ):

Note that � ��
 J

� = � �
� J�

 . In other words � ��
 is a 1-form on M with values in

gl(T M; J ), which implies that if r is a complex connection, then so iŝr . Moreover
� ��

 = � (�� )
 and so c-projectively equivalent connections have the sametorsion. In

particular, if r is minimal, then so isr̂ .
A smooth curvec: (a; b) ! M is called aJ -planar curve with respect to a complex

connection r , if r _c _c lies in the span of _c and J _c. The notion of J -planar curves
gives rise to the following geometric interpretation of a c-projective equivalence class
of complex connections.

Proposition 2.1 ([55, 84, 90, 98]). Suppose(M; J ) is an almost complex manifold and
let r and r̂ be complex connections onM with the same torsion. Thenr and r̂ are
c-projectively equivalent if and only if they have the sameJ-planar curves.

Proof. Supposer and r̂ are complex connections with the same torsion. Ifr and r̂
are c-projectively equivalent, then they clearly have the same J-planar curves. Con-
versely, assume thatr and r̂ share the sameJ-planar curves and consider the di�er-
ence tensorA ��

 Y � = r̂ � Y  � r � Y  . As both connections are complex and have the
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same torsion, the di�erence tensor satis�esA ��
 = A(�� )

 and A ��
 J

� = A �
� J�

 .
The fact that r̂ and r have the sameJ-planar curves and that any tangent vector
can be realised as the derivative of such a curve implies thatat any point x 2 M and
for any nonzero vectorY 2 TxM there exist uniquely de�ned real numbers (Y) and
� (Y) such that

A(Y; Y) =  (Y)Y + � (Y)JY: (12)

Note that  and � give rise to well-de�ned smooth functions onT M n 0. Extending 
and � to functions on all ofT M by setting  (0) = � (0) = 0 , formula (12) becomes valid
for any tangent vector, and by construction and � are then clearly homogeneous of
degree one. FromA(Y; Y) = � A(JY; JY) we deduce that� (X ) = �  (JX ) whence

A(Y; Y) =  (Y)Y �  (JY )JY:

By polarisation we have for any tangent vectorsX and Y

A(X; Y ) = 1
2

�
A(X + Y; X + Y) � A(X; X ) � A(Y; Y)

�
(13)

= 1
2

�
( (X + Y) �  (X ))X + (  (X + Y) �  (Y))Y

�

� 1
2

�
( (JX + JY ) �  (JX ))JX � ( (JX + JY ) �  (JY ))JY

�
:

Suppose thatX and Y are linearly independent and expand the identityA(X; tY ) =
tA (X; Y ) for all t 2 R using (13). Then a comparison of coe�cients shows that

 (X + tY ) � t (Y ) =  (X + Y) �  (Y):

Taking the limit t ! 0, shows that  (X + Y) =  (X ) +  (Y). Hence,  de�nes a
(smooth) 1-form and

A(X; Y ) = 1
2

�
A(X + Y; X + Y) � A(X; X ) � A(Y; Y)

�

= 1
2

�
 (X )Y +  (Y)X �  (JX )(JY ) �  (JY )JX

�
;

for any tangent vectorX and Y as desired. �

De�nition 2.1. Suppose thatM is manifold of real dimension2n � 4.

(1) An almost c-projective structureon M consists of an almost complex structureJ
on M and a c-projective equivalence class[r ] of minimal complex connections.

(2) The torsion of an almost c-projective structure(M; J; [r ]) is the torsion T of
one, hence any, of the connections in[r ], i.e. T = � 1

4N J .
(3) An almost c-projective structure(M; J; [r ]) is called ac-projective structure, if

J is integrable. (This is the case if and only if some and hence all connections
in the c-projective class are torsion-free.)

Remark 2.1. If M is a 2-dimensional manifold, any almost complex structureJ is
integrable and any two torsion free complex connections arec-projectively equivalent.
Therefore, in this case one needs to modify the de�nition of ac-projective structure in
order to have something nontrivial (cf. [23, 24]). We shall not pursue this here.

Remark 2.2. Recall that the geodesics of an a�ne connection can be also realised as
the geodesics of a torsion-free connection; hence the de�nition of a projective structure
as an equivalence class of torsion-free connections does not constrain the considered
families of geodesics. The analogous statement forJ -planar curves does not hold:
the J -planar curves of a complex connection cannot in general be realised as theJ -
planar curves of a minimal connection. We discuss the motivation for the restriction to
minimal connections in the de�nition of almost c-projective manifolds in Remark 2.9.
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De�nition 2.2. Let (M; J M ; [r M ]) and (N; JN ; [r N ]) be almost c-projective manifolds
of dimension2n � 4. A di�eomorphism �: M ! N is calledc-projective transforma-
tion or automorphism, if � is complex (i.e. T� � JM = JN � T� ) and for a (hence any)
connectionr N 2 [r N ] the connection� � r N is a connection in[r M ].

From Proposition 2.1 one deduces straightforwardly that also the following charac-
terisation of c-projective transformations holds:

Proposition 2.2. Let (M; J M ; [r M ]) and (N; JN ; [r N ]) be almost c-projective man-
ifolds of dimension2n � 4. Then a complex di�eomorphism�: M ! N is a c-
projective transformation if and only if � mapsJM -planar curves toJN -planar curves.

Suppose that(M; J; [r ]) is an almost c-projective manifold. Letr̂ and r be con-
nections of the c-projective class[r ] that di�er by � � as in (11). Thenr̂ and r give
rise to linear connections onCT M = T1;0M � T0;1M that preserve the decomposition
into types. Hence, they induce connections on the complex vector bundlesT1;0M and
T0;1M . To deduce the di�erence between the connectionŝr and r on T1;0M (re-
spectively T0;1M ), we just need to apply the splittings� a

� and � �
a (respectively their

conjugates) from the previous section to (11). Using the identities (4), we obtain

� �
a � �

b � ��
 � c

 = 1
2 � �

a � �
b (� � � �

 + � �
 � � � J�

� � � J�
 � J�

 � � J�
� )� c



= 1
2 � �

a � �
b

�
(� � � iJ �

� � � )� c
� + (� � � iJ �

� � � )� c
�

�

= 1
2 � �

a (� � � iJ �
� � � )� b

c + 1
2 � �

b (� � � iJ �
� � � )� a

c

= � a� b
c + � b� a

c; where � a � � �
a � � :

Similarly, we �nd that � �
�a � �

b � ��
 � c

 = 0. These identities are the key to the following:

Proposition 2.3. Suppose(M; J; [r ]) is an almost c-projective manifold of dimension
2n � 4. Assume two connectionŝr and r in [r ] di�er by � � as in (11), and set
� a := � �

a � � and � �a := � �
�a � � . Then we have the following transformation rules for

the induced connections onT1;0M and T0;1M .
(1) r̂ aX c = r aX c + � aX c + � a

c� bX b and r̂ �aX c = r �aX c,
(2) r̂ �aX �c = r �aX �c + � �aX �c + � �a

�c� �bX
�b and r̂ aX �c = r aX �c.

Proof. We compute

r̂ aX c = � �
a r̂ � (� c

 � 
bX b) = � �

a � c
 r̂ � (� 

bX b)

= � �
a � c

 r � (� 
bX b) + � �

a � c
 � ��

 � �
bX b

= � �
a r � (� c

 � 
bX b) + (� �

a � �
b � ��

 � c
 )X b

= r aX c + (� a� b
c + � b� a

c)X b = r aX c + � aX c + � a
c� bX b;

as required. The remaining calculations are similar. �

Remark 2.3. The di�erential operator r �a : T1;0M ! ^ 0;1M 
 T1;0M is c-projectively
invariant, as is its conjugater a : T0;1M ! ^ 1;0M 
 T0;1M . (Here and throughout, the
domain and codomain of a di�erential operator are declared as bundles, although the
operator is a map between corresponding spaces of sections.) This is unsurprising: it
is the usual �@-operator on an almost complex manifold whose kernel (in theintegrable
case) comprises the holomorphic vector �elds.

In contrast, the transformation rules for r a : T1;0M ! ^ 1;0M 
 T1;0M and its
conjugate are analogues of projective equivalence (10) in the (1; 0) and (0; 1) direc-
tions respectively. When(M; J ) is real-analytic and the c-projective class contains
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a real-analytic connectionr , this can be made precise by extendingJ and [r ] to a
complexi�cation M C of M , so that T1;0M and T0;1M extend to distributions on M C.
If J is integrable, these distributions integrate to two foliations ofM C, and [r ] induces
projective structures on the leaves of these foliations.

Taking the trace in equation (11) and in the formulae in Proposition 2.3, we deduce:

Corollary 2.4. On an almost c-projective manifold(M; J; [r ]), the transformation
rules for the induced linear connections on̂ 2nT M , ^ nT1;0M , and ^ nT0;1M are:

(1) r̂ � � = r � � + ( n + 1)� � � , for � 2 �( ^ 2nT M )
(2) r̂ a� = r a� + ( n + 1)� a� and r̂ �a� = r �a� , for � 2 �( ^ nT1;0M )
(3) r̂ �a �� = r �a �� + ( n + 1)� �a �� and r̂ a �� = r a �� , for �� 2 �( ^ nT0;1M ).

For the convenience of the reader, let us also record the transformation rules for the
induced connections onT � M , respectively^ 1;0 and ^ 0;1. If two complex connections
r̂ and r are related via � � as in (11), then the induced connections onT � M are
related by

r̂ � �  = r � �  � 1
2(� � �  + �  � � � J�

� � � J
� � � � J�

� � � J
� � � ): (14)

Therefore, we obtain:

Proposition 2.5. Suppose(M; J; [r ]) is an almost c-projective manifold of dimension
2n � 4. Assume two connectionŝr and r in [r ] di�er by � � as in (11) and set
� a := � �

a � � and � �a := � �
�a � � . Then we have the following transformation rules for

the induced connections on̂ 1;0 and ^ 0;1:
(1) r̂ a� c = r a� c � � a� c � � a� c and r̂ �a� c = r �a� c ,
(2) r̂ �a� �c = r �a� �c � � �a� �c � � �a� �c and r̂ a� �c = r a� �c .

Note that the real line bundle^ 2nT M is oriented and hence admits oriented roots.
We denote(^ 2nT M )

1
n +1 by ER(1; 1) and for any k 2 Z we setER(k; k) := E(1; 1)
 k,

where ER(k; k)� = ER(� k; � k). It follows from Corollary 2.4 that for a section� of
ER(k; k) we have

r̂ � � = r � � + k� � � : (15)
In particular, we immediately deduce the following result.

Proposition 2.6. Suppose(M; J; [r ]) is an almost c-projective manifold of dimension
2n � 4. The map sending an a�ne connection to its induced connection on ER(1; 1)
induces a bijection from connections in[r ] to linear connections onER(1; 1).

Since^ 2nT M and ER(1; 1) are oriented, they can be trivialised by choosing a positive
section. Such a positive section� of ER(1; 1) gives rise to a linear connection onER(1; 1)
by decreeing that � is parallel and therefore, by Proposition 2.6, to a connection in
the c-projective class. We call a connectionr 2 [r ] that arises in this way aspecial
connection. Supposê� and � are two nowhere vanishing sections ofER(1; 1) and denote
by r̂ and r the corresponding connections. Then̂� = e� f � for some smooth function
f on M and any � 2 �( ER(1; 1)) can be written as � = h� = hef �̂ for a smooth
function h on M . Sincer � = dh 
 � , we have

r̂ � = d(hef ) 
 �̂ = dh 
 � + df 
 � = r � + ( r f )�:

Therefore, r̂ and r di�er by an exact 1-form, namely � � � r � f .
In some of the following sections, like for instance in Section 3.1, we shall assume

also that the complex line bundlê nT1;0M admits a (n + 1) st root and that we have
chosen one, which we will denote byE(1; 0) (following a standard notation onCPn ). In
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that case we shall denote its conjugate bundleE(1; 0) by E(0; 1) and the dual bundle
E(1; 0)� by E(� 1; 0). In general, we shall also writeE(k; `) := E(1; 0)
 k 
 E (0; 1)
 ` for
(k; `) 2 Z � Z and refer to its sections asc-projective densities of weight(k; `). By
Corollary 2.4 we see that, for a c-projective density� of weight (k; `), we have

r̂ a� = r a� + k� a� r̂ �a� = r �a� + `� �a�: (16)

Our notion of c-projective density means, in particular, that we may identify ^ n;0 with
E(� n � 1; 0) and it is useful to have a notation for this change of viewpoint. Precisely,
we may regard our identi�cation E(� n � 1; 0) '�! ^ n;0 as a tautological section"ab��� c

of ^ n;0(n + 1; 0), such that a c-projective density� of weight (� n � 1; 0) corresponds
to �" ab��� c, a form of type (n; 0). Note that E(k; k) �= ER(k; k) 
 C.

2.2. Parabolic geometries. For the convenience of the reader we recall here some
basics of parabolic geometries; for a comprehensive introduction see [36].

A parabolic geometryon a manifold M is a Cartan geometry of type(G; P), where
G is a semisimple Lie group andP � G a so-calledparabolic subgroup. Hence, it is
given by the following data:

� a principal P-bundle p: G ! M
� a Cartan connection! 2 
 1(G; g)�that is, a P-equivariant 1-form on G with

values ing de�ning a trivialisation TG �= G � g and reproducing the generators
of the fundamental vector �elds,

whereg denotes the Lie algebra ofG. Note that the projection G ! G=P, equipped
with the (left) Maurer�Cartan form ! G 2 
 1(G; g) of G, de�nes a parabolic geometry
on G=P, which is called thehomogeneousor �at model for parabolic geometries of
type (G; P).

The curvature of a parabolic geometry(G
p

! M; ! ) is a 2-form K on G with values
in g, de�ned by

K (�; � ) = d! (�; � ) + [ ! (� ); ! (� )] for vector �elds � and � on G;

whered denotes the exterior derivative and[ ; ] the Lie bracket ofg.
The curvature of the homogeneous model(G ! G=P; ! G) vanishes identically. Fur-

thermore, the curvatureK of a parabolic geometry of type(G; P) vanishes identically
if and only if it is locally isomorphic to (G ! G=P; ! G). Thus, the curvature K
measures the extent to which the geometry di�ers from its homogeneous model.

Given a parabolic geometry(G
p

! M; ! ) of type (G; P), any representationE of P
gives rise to an associated vector bundleE := G � P E over M . These are the natural
vector bundles on a parabolic geometry. Notice that the Cartan connection! induces
an isomorphism

G � P g=p �= T M

[u; X + p] 7! Tup
�
! � 1(X )

�
;

where p denotes the Lie algebra ofP and the action of P on g=p is induced by the
adjoint action of G. Similarly, ! allows us to identify all tensor bundles onM with
associated vector bundles. The vector bundles corresponding to P-modules obtained
by restricting a representation ofG to P are calledtractor bundles. These bundles play
an important role in the theory of parabolic geometries, since the Cartan connection
induces linear connections, calledtractor connections, on these bundles. An important
example of a tractor bundle is theadjoint tractor bundle AM = G � P g, which has a
canonical projection toT M corresponding to theP-equivariant projection g ! g=p.
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Remark 2.4. The abstract theory of tractor bundles and connections evenprovides
an alternative description of parabolic geometries (see [30]).

By normalising the curvature of a parabolic geometry, the prolongation procedures
of [35, 85, 95] leads to an equivalence of categories betweenso-calledregular normal
parabolic geometries and certain underlying structures, which may be described in
more conventional geometric terms. Among the most prominent of these are conformal
structures, projective structures, and CR-structures of hypersurface type. In the next
section we shall see that almost c-projective manifolds form another class of examples.

From the de�ning properties of a Cartan connection it follows immediately that the
curvature K of a parabolic geometry of type(G; P) is P-equivariant and horizontal.
Hence,K can be identi�ed with a section of the vector bundlê 2T � M 
 A M and
therefore corresponds via! to a section� of the vector bundle

G � P ^ 2(g=p)� 
 g �= G � P ^ 2p+ 
 g;

where p+ is the nilpotent radical of p and the latter isomorphism is induced by the
Killing form of g. Now consider the complex for computing the Lie algebra homology
H � (p+ ; g) of p+ with values in g:

0  g @�

 p+ 
 g @�

 ^ 2p+ 
 g  : : :

Since the linear maps@� are P-equivariant, they induce vector bundle maps between
the corresponding associated vector bundles. Moreover, the homology spacesH i (p+ ; g)
are naturally P-modules and therefore give rise to natural vector bundles.A parabolic
geometry is callednormal, if @� � = 0. In this case, we can project� to a section
� h of G � P H2(p+ ; g), called the harmonic curvature. The spacesH i (p+ ; g) are com-
pletely reducibleP-modules and hence arise as completely reducible representations of
the reductive Levi factor G0 of P via the projection P ! P=exp(p+ ) = G0. In par-
ticular, the harmonic curvature is a section of a completelyreducible vector bundle,
which makes it a much simpler object than the full curvature.Moreover, using the
Bianchi identities of � , it can be shown that the harmonic curvature is still a complete
obstruction to local �atness:

Proposition 2.7 (see e.g. [36]). Suppose that(G ! M; ! ) is a regular normal parabolic
geometry. Then� � 0 if and only if � h � 0.

Remark 2.5. The machinery of BGG sequences shows that the curvature of a regu-
lar normal parabolic geometry can be reconstructed from theharmonic curvature by
applying a BGG splitting operator (see [25]).

2.3. Almost c-projective manifolds as parabolic geometries. It is convenient
for our purposes to realise the Lie algebrag := sl(n + 1; C) of complex trace-free linear
endomorphisms ofCn+1 as block matrices of the form

g =
��

� tr A Z
X A

�
: A 2 gl(n; C); X 2 Cn ; Z 2 (Cn )�

�
; (17)

wheretr : gl(n; C) ! C denotes the trace. The block form equipsg with the structure
of a graded Lie algebra:

g = g� 1 � g0 � g1;

whereg0 is the block diagonal subalgebra isomorphic togl(n; C) and g� 1
�= Cn , respec-

tively g1
�= (Cn )� , as g0-modules. Note that the subspacep := g0 � g1 is a subalgebra

of g (with p �= g0 n g1 as Lie algebra). Furthermore,p is a parabolic subalgebra with
Abelian nilpotent radical p+ := g1 and Levi factor isomorphic tog0. For later purposes
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let us remark here that we may conveniently decompose an element A 2 g0 into its
trace-free part and into its trace part as follows

�
0 0
0 A � tr A

n Idn

�
+

n + 1
n

tr A
�

� n
n+1 0
0 1

n+1 Idn

�
: (18)

Now set G := PSL( n + 1; C) and let P be the stabiliser in G of the complex line
generated by the �rst standard basis vector ofCn+1 . Let G0 be the subgroup ofP that
consists of all elementsg 2 P whose adjoint actionAd(g) : g ! g preserve the grading.
Hence, it consists of equivalence classes of matrices of theform

�
(detC C)� 1 0

0 C

�
whereC 2 GL(n; C);

and the adjoint action of G0 on g induces an isomorphism

G0
�= GL(g� 1; C) �= GL(n; C):

Obviously, the subgroupsG0 and P of G have corresponding Lie algebrasg0 and p,
respectively.

From now on we shall viewG0 � P � G as real Lie groups in accordance with the
identi�cation of GL(n + 1; C) with the real subgroup ofGL(2n + 2; R) that is given by

GL(2n + 2; J2(n+1) ) =
�

A 2 GL(2(n + 1) ; R) : AJ2(n+1) = J2(n+1) A
	

;

whereJ2(n+1) is the following complex structure onR2n+2 :

J2(n+1) =

0

@
J2

. . .
J2

1

A with J2 =
�

0 � 1
1 0

�
:

Suppose now that(M; J; [r ]) is an almost c-projective manifold of real dimension
2n � 4. Then J reduces the frame bundleF M of M to a principal bundle p0 : G0 ! M
with structure group G0 corresponding to the group homomorphism

G0
�= GL(n; C) �= GL(2n; J2n ) ,! GL(2n; R):

The general prolongation procedures of [35, 85, 95] furthershow that G0 ! M can
be canonically extended to a principalP-bundle p: G ! M , equipped with a normal
Cartan connection ! 2 
 1(G; g) of type (G; P). Moreover, (G

p
! M; ! ) is uniquely

de�ned up to isomorphism and these constructions imply:

Theorem 2.8 (see also [55, 103]). There is an equivalence of categories between almost
c-projective manifolds of real dimension2n � 4 and normal parabolic geometries of
type (G; P), where G and P are viewed as real Lie groups. The homogeneous model
(G ! G=P; ! G) corresponds to the c-projective manifold

(CPn ; Jcan; [r gF S ]);

whereJcan denotes the canonical complex structure onCPn and r gF S the Levi-Civita
connection of the Fubini�Study metricgF S .

Let us explain brie�y how the Cartan bundle G and the normal Cartan connection
! of an almost c-projective manifold(M; J; [r ]) of dimension2n � 4 are constructed.
The reduction G0 ! F M is determined by the pullback of the soldering form on
F M and hence can be encoded by a strictly horizontalG0-equivariant 1-form � 2

 1(G0; g� 1). Recall also that any connectionr 2 [r ] can be equivalently viewed as a
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principal connection r 2 
 1(G0; g0) on G0. Then G is de�ned to be the disjoint union
t u2G0 Gu, where

Gu := f � (u) +  r (u) : r 2 [r ]g for any u 2 G0:

The projection p := p0 � q: G ! M , where G
q

! G 0
p0! M , naturally acquires the

structure of a P-principal bundle. Any elementp 2 P can be uniquely written asp =
g0 exp(Z ), whereg0 2 G0 and Z 2 g1. The right action of an elementg0 exp(Z ) 2 P
on an element� (u) +  r (u) 2 Gu is given by

(� (u) +  r (u)) � g0 exp(Z ) := � (u � g0)( �) +  r (u � g0)( �) + [ Z; � (u � g0)( �)]; (19)

where[ ; ] denotes the Lie bracketg1 � g� 1 ! g0.

Remark 2.6. The soldering form� 2 
 1(G0; g� 1) gives rise to isomorphismsT M �=
G0 � G0 g� 1 and T � M �= G0 � G0 g1. For elementsX 2 g� 1 and Z 2 g1, the Lie bracket
[Z; X ] 2 g0

�= gl(g� 1; J2n) evaluated on an elementY 2 g� 1 is given by

[[Z; X ]; Y] = � (ZXY + ZY X � ZJ2nX J2nY � ZJ2nYJ2nX ): (20)

This shows that changing a connection form� +  r by a G0-equivariant function
Z : G0 ! g1 according to (19) corresponds precisely to changing it c-projectively
(cf. formula (11)).

The de�nition of G easily implies that the following holds.

Corollary 2.9. The projection q: G ! G 0 is a trivial principal bundle with structure
group P+ := exp(p+ ) and its globalG0-equivariant sections, called Weyl structures, are
in bijection with principal connections in the c-projective class. Moreover, any Weyl
structure � : G0 ! G induces an vector bundle isomorphism

G0 � G0 E �= G � P E

[u; X ] 7! [� (u); X ];

for any P-moduleE.

Note that there is a tautological1-form � 2 
 1(G; g� 1 � g0) on G given by

� (� (u) +  r (u))( � ) := ( � (u) +  r (u))(( T q)� ): (21)

Extending this form to a normal Cartan connection! 2 
 1(G; g) establishes the equiv-
alence of categories in Theorem 2.8.

Remark 2.7. In Section 2.1 we observed that there are always so-called special connec-
tions in the c-projective class. A Weyl structure corresponding to a special connection
is precisely what in the literature on parabolic geometriesis called anexact Weyl struc-
ture (see [36, 37]). The name is due to the fact that they form an a�ne space over the
space of exact1-forms onM .

Note also that the almost complex structureJ on M induces an almost complex
structure J G0 on the complex frame bundleG0 of M . If J is integrable, so isJ G0 and
G0 is a holomorphic vector bundle overM . Moreover, the complex structure ong
induces, by means of the isomorphism! : TG �= G � g, an almost complex structure
J G on G, satisfying T p� J G = J � T p and T q� J G = J G0 � T q. Note that the de�nition
of the almost complex structure onJ G0 and J G implies that � and ! are of type(1; 0).

Let us also remark that an immediate consequence of Theorem 2.8 and the Liouville
Theorem for Cartan geometries (see e.g. [36, Proposition 1.5.3]) is the following classical
result.
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Proposition 2.10. For n � 2 the c-projective transformations of(CPn ; Jcan; [r gF S ])
(which by Proposition2.2 are the complex di�eomorphisms ofCPn that map complex
lines to complex lines) are precisely given by the left multiplications of elementsin
PSL(n + 1; C). Moreover, any local c-projective transformation of(CPn ; Jcan; [r gF S ])
uniquely extends to a global one.

We �nish this section by introducing some notation. TheP-module g admits an
invariant �ltration g � p � g1 and hence the adjoint tractor bundleAM := G � P g is
naturally �ltered

AM = A � 1M � A 0M � A 1M;

with A 1M �= T � M and AM=A 0M �= T M . Hence, the associated graded vector bundle
to AM is given by

gr(AM ) = gr � 1(AM ) � gr0(AM ) � gr1(AM ) = T M � gl(T M; J ) � T � M; (22)

which can be identi�ed with G0 � G0 g.

2.4. The curvature of the canonical Cartan connection. Suppose� : G0 ! G is a
Weyl structure and let  r be the corresponding principal connection in the c-projective
class. Since the normal Cartan connection! is P-equivariant and � is G0-equivariant,
the pullback � � ! 2 
 1(G0; g) is G0-equivariant and hence decomposes according to the
grading on g into three components. Since! extends the tautological form� on G,
de�ned by (21), we deduce that

� � ! = � +  r � pr ; (23)

where pr 2 
 1(G0; g1) is horizontal and G0-equivariant and hence can be viewed as
a section Pr of T � M 
 T � M , called the Rho tensor of r . Via � , the curvature
� 2 
 2(M; AM ) of ! can be identi�ed with a section� � of

^ 2T � M 
 gr(AM )

= ( ^ 2T � M 
 T M ) � (^ 2T � M 
 gl(T M; J )) � (^ 2T � M 
 T � M );

which decomposes according to this splitting into three components

� � = T + W r � Cr :

One computes straightforwardly thatT 2 �( ^ 2T � M 
 T M ) is the torsion of the almost
c-projective structure and that Cr = dr Pr 2 �( ^ 2T � M 
 T � M ), where dr denotes
the covariant exterior derivative on di�erential forms with values inT � M induced by
r . The tensorCr is called theCotton�York tensor of r . To describe the component
W r 2 �( ^ 2T � M 
 gl(T M; J )), called the (c-projective)Weyl curvature of r , let us
denote byRr 2 
 2(M; gl(T M; J )) the curvature of r . Then one has

W r = Rr � @Pr ;

where
(@Pr )��


� := � [�

 Pr
� ]� � J[�

 Pr
� ]� J�

� � Pr
[�� ]� �

 � J[�
� Pr

� ]� J�
 : (24)

Remark 2.8. The map @: T � M 
 T � M ! ^ 2T � M 
 gl(T M; J ) given by (24) is
related to Lie algebra cohomology. It is easy to see that the Lie algebra di�erentials
in the complex computing the Lie algebra cohomology of the Abelian real Lie algebra
g� 1 with values in the representationg are G0-equivariant and that @is induced by
the restriction to g�

� 1 
 g1
�= g1 
 g1 of half of the second di�erential in this complex.
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The normal Cartan connection! is characterised as the unique extension of� to a
Cartan connection such that@� � � = 0 for all Weyl structures � : G0 ! G . Analysing
ker@� shows that T��

 is in there, since forms of type(0; 2) are, and Cr is, since
^ 2T � M 
 T � M � ker@� . Hence,Pr is uniquely determined by requiring thatW r be
in the kernel of @� .

Remark 2.9. Recall that in De�nition 2.1 we restricted our de�nition of almost c-
projective structures to c-projective equivalence classes of minimal connections. Since
the kernel of

@� : ^ 2T � M 
 T M ! T � M 
 gl(T M; J )

consists precisely of all the2-forms with values inT M of type (0; 2), the discussion of
the construction of the Cartan connection above shows that the minimality condition
is forced by the normalisation condition of the Cartan connection. The requirement
for the almost c-projective structure to be minimal is however not necessary in or-
der to construct a canonical Cartan connection. In fact, starting with any complex
connection, one can show that there is a complex connection with the same J-planar
curves whose torsion has only two components, namely the(0; 2)-component � 1

4NJ

and a component in the subspace of(1; 1)-tensors in^ 2T � M 
 T M that are trace and
J -trace free. Imposing this normalisation condition on an almost c-projective structure
allows then analogously as above to associate a canonical Cartan connection (see [65]).

Proposition 2.11. Suppose(M; J; [r ]) is an almost c-projective manifold of dimen-
sion 2n � 4. Let r 2 [r ] be a connection in the c-projective class. Then the Rho
tensor corresponding tor is given by

Pr
�� = 1

n+1 (Ricr
�� + 1

n� 1(Ricr
(�� ) � J(�

 J� )
� Ricr

� )) ; (25)

where Ricr
�� := Rr

�


� is the Ricci tensor of r . Moreover, if r̂ 2 [r ] is another
connection in the class, related tor according to(11), then

Pr̂
�� = Pr

�� � r � � � + 1
2(� � � � � J�

 J�
� �  � � ): (26)

Proof. The map @� : ^ 2T � M 
 gl(T M; J ) ! T � M 
 T � M is a multiple of a Ricci-type
contraction. Hence, the normality of! implies

Rr
��

�
� = ( @Pr )��

�
� = ( n + 1

2)Pr
�� � 1

2Pr
�� + J(�

 J� )
� Pr

� : (27)

Therefore,Ricr
[�� ] = ( n + 1) Pr

[�� ] and Ricr
(�� ) = nPr

(�� ) + J(�
 J� )

� P� , which implies that

Ricr
(�� ) � J(�

 J� )
� Ricr

� = ( n � 1)(Pr
(�� ) � J(�

 J� )
� Pr

� ):

Using these identities one veri�es immediately that formula (25) holds. The formula
(26) for the change of the Rho tensor can easily be veri�ed directly or follows from the
general theory of Weyl structures for parabolic geometriesestablished in [37] taking
into account that the Rho tensor in [37] is� 1

2 times the Rho tensor given by (25) and
our conventions for the de�nition of � as in (11). �

As an immediate consequence (writing out (26) in terms of itscomponents using the
various projectors� a

� ; : : : and the formulae (4)) we have:

Corollary 2.12.

� Pr
ab = Pr

�a�b and Pr
�ab = Pr

a�b

� Pr̂
ab = Pr

ab � r a� b + � a� b

� Pr̂
�ab = Pr

�ab � r �a� b
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For any connectionr 2 [r ], its Weyl curvature W r is, by construction, a section
of ^ 2T � M 
 gl(T M; J ) that satis�es W r

��
�

 � 0. This implies that also J�
� W r

��
�

� =
W r

��
�

� J�
� � 0. In the sequel we will often simply writeW instead ofW r , and similarly

for other tensors such as the Rho tensor, the dependence ofr being understood.
Viewing W as a2-form with values in the complex bundle vector bundlegl(T M; J ) �=
gl(T1;0M; C), it decomposes according to(p; q)-types into three components:

Wab
c
d Wa�b

c
d W�a�b

c
d:

The vanishing of the trace andJ -trace above, then imply that

Wab
a

d = Wa�b
a

d � 0:

In these conclusions and in Corollary 2.12 we begin to see theutility of writing our
expressions in using the barred and unbarred indices introduced in Section 1. In the
following discussion we pursue this systematically, �rstly by describing exactly how
the curvature of a complex connection decomposes. We analyse these decompositions
from the perspective of c-projective geometry: some piecesare invariant whilst others
transform simply. For the convenience of the reader, we reiterate some of our previous
conclusions in the following theorem (but prove them more easily using barred and
unbarred indices, as just advocated).

Proposition 2.13. Suppose(M; J; [r ]) is an almost c-projective manifold of dimen-
sion 2n � 4. Let T�a�b

c denote its torsion (already observed to be a constant multiple
of the Nijenhuis tensor of(M; J )). Then the curvature R of a connectionr in the
c-projective class decomposes as follows:

Rab
c
d = Wab

c
d + 2� [a

cPb]d + � ab� d
c

Ra�b
c
d = Wa�b

c
d + � a

cP�bd + � d
cP�ba

Wa�b
c
d = Ha�b

c
d � 1

2(n+1)

�
� a

cTdf
�eT�e�b

f + � d
cTaf

�eT�e�b
f
�

� 1
2Tad

�eT�e�b
c

R�a�b
c
d = W�a�b

c
d = r dT�a�b

c

(28)

where

Wab
c
d = W[ab]

c
d W[ab

c
d] = 0 Wab

a
d = 0 � ab = � 2P[ab]

Ha�b
c
d = Hd�b

c
a Ha�b

a
d = 0:

Let r̂ be another connection in the c-projective class, related tor by (11), and denote
its curvature components byŴ, Ĥ , and P̂. Then we have:

(1) Ŵab
c
d = Wab

c
d and Ŵa�b

c
d = Wa�b

c
d and Ĥa�b

c
d = Ha�b

c
d,

(2) Ŵ�a�b
c
d = W�a�b

c
d + T�a�b

e� ed
c and if J is integrable, thenW�a�b

c
d � 0,

(3) Wab
c
c � 0,

(4) Wa�b
c
c = Tfa

�eT�e�b
f ,

whilst we recall thatP̂ab = Pab � r a� b + � a� b; P̂�bd = P�bd � r �b� d.
The tensor � ab = � 2P[ab] satis�es

r [b� ce] = P �f [bTce]
�f � 1

n+1 T[bc
�f Te]a

�dT �d �f
a: (29)

Finally, the Cotton�York tensors Cabc and Ca�bc are de�ned as

Cabc := r aPbc � r bPac + Tab
�dP �dc and Ca�bc := r aP�bc � r �bPac: (30)
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The �rst of these satis�es a Bianchi identity

r aWbc
a

e � (n � 2)Cbce

= 2Ta[b
�f Hc] �f

a
e +

2
n + 1

Tbc
�f Tea

�dT �d �f
a �

n
n + 1

Te[b
�f Tc]a

�dT �d �f
a (31)

and transforms as
Ĉbce = Cbce + � aWbc

a
e (32)

under c-projective change(11). Another part of the Bianchi identity reads

Ca�bc � Cc�ba = 1
n+1

�
T�b �f

dr dTac
�f + R�b �f

d
dTac

�f � 2R�b �f
d

[aTc]d
�f
�
: (33)

Proof. In this proof we also take the opportunity to develop varioususeful formulae
for torsion and curvature and for how these quantities transform under c-projective
change (11). As in the statement of Proposition 2.13, we express all these formulae
in terms of the abstract indices on almost complex manifoldsdeveloped in Section 1.
Firstly, recall that since we are working with minimal connections (cf. De�nition 2.1),
their torsions are restricted to being of type(0; 2) and this means precisely that

(r ar b � r br a)f + Tab
�cr �cf = 0 ( r �ar b � r br �a)f = 0

(r �ar �b � r �br �a)f + T�a�b
cr cf = 0 ( r ar �b � r �br a)f = 0;

(34)

whereTab
�c � � �

a � �
b � 

cT��
 , equivalently its complex conjugateT�a�b

c = Tab
�c, represents

the Nijenhuis tensor as in (8). Notice that the second line of(34) is the complex
conjugate of the �rst. In this proof, we take advantage of this general feature by listing
only one of such conjugate pairs, its partner being implicitly valid. For example, here
are characterisations of su�ciently many components of thegeneral curvature tensor
R��


� .

(r ar b � r br a)X c + Tab
�dr �dX c = Rab

c
dX d

(r ar �b � r �br a)X c = Ra�b
c
dX d

�
or (r �ar b � r br �a)X c = R�ab

c
dX d; if preferred

�

(r ar b � r br a)X �c + Tab
�dr �dX �c = Rab

�c
�dX

�d:

(35)

For convenience, the dual formulae are sometimes preferred: for example,

(r ar b � r br a)� d + Tab
�cr �c� d = � Rab

c
d� c : (36)

The tensor � ��
 employed in a c-projective change of connection (11) was already

broken into irreducible pieces in deriving Proposition 2.3, e.g.

� ab
c = � �

a � �
b � c

 � ��
 = � a� b

c + � b� a
c ) r̂ aX c = r aX c + � aX c + � bX b� a

c (37)

and � �ab
c = � �

�a � �
b � c

 � ��
 = 0 ) r̂ �aX c = r �aX c: (38)

It is an elementary matter, perhaps more conveniently executed in the dual formulation

r̂ a� b = r a� b � � a� b � � b� a r̂ �a� b = r �a� b ; (39)

to compute the e�ect of these changes on curvature, namely

R̂ab
c
d = Rab

c
d � 2� [a

d(r b]� c) + 2 � [a
d� b]� c + 2( r [a� b])� d

c

R̂a�b
c
d = Ra�b

c
d � � a

cr �b� d � � d
cr �b� a

R̂ab
�c

�d = Rab
�c

�d + Tab
�c� �d + � �eTab

�e� �d
�c = Rab

�c
�d + Tab

�e� �e �d
�c:

(40)
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We shall also need the Bianchi symmetries derived from (35) or, more conveniently
in the dual formulation, as follows. Evidently,

r a(r br c � r cr b)f + r b(r cr a � r ar c)f + r c(r ar b � r br a)f

= ( r ar b � r br a)r cf + ( r br c � r cr b)r af + ( r cr a � r ar c)r bf;

which we may expand using (34) and (35) to obtain

(r aTbc
�d + r bTca

�d + r cTab
�d)r �df = ( Rab

d
c + Rbc

d
a + Rbc

d
a)r df

and hence that
r [aTbc]

�d = 0 R[ab
c
d] = 0: (41)

Similarly, by looking at di�erent orderings for the indicesof r ar �br cf , we �nd that

Ra�b
c
d � Rd�b

c
a + Tad

�eT�e�b
c = 0 Rab

�c
�d = r �dTab

�c: (42)

Already, the �nal statement of (28) is evident and ifTab
�c = 0 then both Rab

�c
�d and its

complex conjugateR�a�b
c
d vanish. Notice that @P does not contribute to this piece of

curvature. Speci�cally, from (24)

(@P) �a�b
c
d = � �

�a � �
�b � c

 � �
d(@P)��


� = � P[�a�b]� d

c � P[�b�a]� d
c = 0:

It follows that W�a�b
c
d = R�a�b

c
d in general and thatW�a�b

c
d = R�a�b

c
d = 0 in the integrable

case. The rest of statement (2) also follows, either from thelast line of (40) or, more
easily, from the c-projective invariance ofTab

�c (depending only on the underlying almost
complex structure), the second identity of (42), and the transformation rules (39).

Now let us consider the curvatureRab
c
d. From (24), we compute that

(@P)ab
c
d = � �

a � �
b � c

 � �
d(@P)��


� = 2� [a

cPb]d � 2P[ab]� d
c

and from (25) that

Pab = � �
a � �

bP�� = 1
n+1

�
Ricab + 2

n� 1Ric(ab)

�
= 1

n+1

�
Ricab + 2

n� 1Ric(ab)

�
;

equivalently that Ricab = ( n � 1)Pab + 2P[ab]. Bearing in mind the Bianchi symmetry
(41) for Rab

c
d, this means that we may write

Rab
c
d = Wab

c
d + 2� [a

cPb]d + � ab� d
c; (43)

where
Wab

c
d = W[ab]

c
d W[ab

c
d] = 0 Wab

a
d = 0 � ab = � 2P[ab]:

Comparing this decomposition with the �rst line of (40) implies that Wab
c
d is invariant

and con�rms that Pab transforms according to Corollary 2.12. In summary,

Ŵab
c
d = Wab

c
d P̂ab = Pab � r a� c + � b� c �̂ ab = � ab + 2r [a� b]:

We have shown (3) and the �rst statement of (1).
The remaining statements concern the curvatureRa�b

c
d. From (24), we compute that

(@P)a�b
c
d = � �

a � �
�b � c

 � �
d(@P)��


� = � a

cP�bd + � d
cP�ba

and from (25) that

P�bd = � �
�b � �

dP�� = 1
n+1 Ric�bd = 1

n+1 Ra�b
a

d:

From (42) it now follows that

Ra�b
c
d + 1

2Tad
�eT�e�b

c = Ha�b
c
d � 1

2(n+1)

�
� a

cTdf
�eT�e�b

f + � d
cTaf

�eT�e�b
f
�

+ ( @P)a�b
c
d; (44)

where
Ha�b

c
d = Hd�b

c
a Ha�b

a
d = 0:
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Recall that by de�nition
Wa�b

c
d = Ra�b

c
d � (@P)a�b

c
d:

Therefore

Wa�b
c
d = Ha�b

c
d � 1

2(n+1)

�
� a

cTdf
�eT�e�b

f + � d
cTaf

�eT�e�b
f
�

� 1
2Tad

�eT�e�b
c:

Comparison with the formula forR̂a�b
c
d in (40) immediately shows thatWa�b

c
d and Ha�b

c
d

are c-projectively invariant and also that

Wa�b
c
c = � Taf

�eT�e�b
f ;

as required to complete (1) and (4). Next we demonstrate the behaviour of the Cotton�
York tensor. For this, we need a Bianchi identity with torsion, which may be established
as follows. Evidently,

r a(r br c � r cr b)� e + r b(r cr a � r ar c)� e + r c(r ar b � r br a)� e

= ( r ar b � r br a)r c� e + ( r br c � r cr b)r a� e + ( r cr a � r ar c)r b� e;

the left hand side of which may be expanded by (36) as

r a(� Rbc
d

e� d � Tbc
�dr �d� e) + � � � + � � � ;

where � � � represent similar terms where the indicesabc are cycled around. On the
other hand, the right hand side may be expanded as

� � � � Rbc
d

ar d� e � Rbc
d

er a� d � Tbc
�dr �dr a� e � � � � :

Comparison yields

(r [aRbc]
d

e)� d + ( r [aTbc]
�d)r �d� e � T[bc

�dRa] �d
f

e� f = R[bc
d

a]r d� e

and, from the Bianchi symmetries (41), we conclude that

r [aRbc]
d

e = T[ab
�f Rc] �f

d
e:

Using (28) and tracing overa and d yields

r aWbc
a

e � 2(n � 2)r [bPc]e + 3r [b� ce]

= 2Ta[b
�f Hc] �f

a
e+

1
n + 1

Tbc
�f Tea

�dT �d �f
a�

n + 2
n + 1

Te[b
�f Tc]a

�dT �d �f
a+( n� 2)Tbc

�f P �fe +3P �f [bTce]
�f :

Skewing this identity over bcegives (29) and substituting back gives

r aWbc
a

e � 2(n � 2)r [bPc]e

= 2Ta[b
�f Hc] �f

a
e +

2
n + 1

Tbc
�f Tea

�dT �d �f
a �

n
n + 1

Te[b
�f Tc]a

�dT �d �f
a + ( n � 2)Tbc

�f P �fe :

The contracted Bianchi identity (31) follows from the de�nition (30) of the Cotton�
York tensor. Notice that the right hand side of (31) is c-projectively invariant. Also,
by computing that

r̂ aŴbc
d

e = r̂ aWbc
d

e

= r aWbc
d

e � 2� aWbc
d

e � � bWac
d

e � � cWba
d

e + � a
d� f Wbc

f
e � � eWbc

d
a

and tracing overa and d, we see that

r̂ aŴbc
a

e = r aWbc
a

e + ( n � 2)� aWbc
a

e

and for n > 2 conclude that (32) is valid. The casen = 2 is somewhat degenerate. Al-
though (32) is still valid, as we shall see below in Proposition 2.14, the Weyl curvature
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Wbc
a

d vanishes by symmetry considerations and (32) readŝCbce = Cbce, the straight-
forward veri�cation of which is left to the reader. Similarly, by considering di�erent
orderings for the indices ofr ar �br c� e, we are rapidly led to

r aRc�b
d

e � r cRa�b
d

e + r �bRac
d

e = Tac
�f R�b �f

d
e

as another piece of the Bianchi identity, which may then be further split into irreducible
parts. In particular, tracing over d and e (equivalently, tracing over a and d and then
skewing overc and e) gives (33). �

Proposition 2.14. Suppose thatWab
c
d 2 ^ 1;0 
 ^ 1;0 
 T1;0M 
 ^ 1;0 has the following

symmetries:
Wab

c
d = W[ab]

c
d W[ab

c
d] = 0 Wab

a
d = 0:

If 2n = 4, then Wab
c
d � 0.

Proof. Fix a nonzero skew tensorVab. As Wab
c
d is skew in a and b, it follows that

Wab
c
d = VabSc

d for some unique tensorSc
d. Now Wab

a
d = VabSa

d but Vab is also
nondegenerate soWab

a
d = 0 implies Sc

d = 0: �

Remark 2.10. When n = 2, the identity (31) is vacuous. Proposition 2.14 implies
that the left hand side vanishes. For the right hand side, thevanishing ofTa[b

�f Hc] �f
a

e

follows by tracing the identity T[ab
�f Hc] �f

d
e = 0 over a and d, bearing in mind that Ha �f

d
e

is trace-free ina and d. The remaining terms also evaporate because, whenn = 2, the
tensor Tbc

�f Tea
�d is symmetric in �f �d whereasT �d �f

a is skew.

The torsion Tab
�c (equivalently, its complex conjugateT�a�b

c) is c-projectively invariant.
The same is true, not only of the Weyl curvatureWa�b

c
d, but also of its trace-free

symmetric part Ha�b
c
d (which will be identi�ed as part of the harmonic curvature in

Section 2.7). The Weyl curvatureWab
c
d is c-projectively invariant and forms the �nal

piece of harmonic curvature except when2n = 4, in which caseWab
c
d necessarily

vanishes, its role being taken byCabc, the c-projectively invariant part of the Cotton�
York tensor. In Section 2.7, we place this discussion in the context of general parabolic
geometry but, before that, we collect in the following section some useful formulae for
the various curvature operators on c-projective densities.

2.5. Curvature operators on c-projective densities. SupposeX cd���e = X [cd���e] is
a section ofE(n + 1; 0) = ^ nT1;0M and Y �c �d��� �e a section ofE(0; n + 1) = ^ nT0;1M .
Then it follows from (35) that

(r �ar b � r br �a)X cd���e = R�ab
c
f X fd ��� e + R�ab

d
f X cf ���e + � � � + R�ab

e
f X cd��� f

= R�ab
f

f X cd���e:

(r �ar b � r br �a)Y �c �d��� �e = R�ab
�c

�f Y
�f �d��� �e + R�ab

�d
�f Y �c �f ��� �e + � � � + R�ab

�e
�f Y �c �d��� �f

= R�ab
�f

�f Y cd���e:

However, from Proposition 2.13 part (4), we �nd that

R�ab
f

f = � Rb�a
f

f = � Wb�a
f

f � (@P)b�a
f

f = � Tfb
�eT�e�a

f � (n + 1) P�ab

R�ab
�f

�f = W�ab
�f

�f + ( @P) �ab
�f

�f = Tfb
�eT�e�a

f + ( n + 1) Pb�a:

We conclude immediately that for a section� of E(k; `) we have

(r �ar b � r br �a)� = ` � k
n+1 Tfb

�eT�e�a
f � + `Pb�a� � kP�ab�: (45)
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Similarly, from (35) it also follows that

r ar b � r br a)X cd���e + Tab
�f r �f X cd���e = Rab

f
f X cd���e

(r ar b � r br a)Y �c �d��� �e + Tab
�f r �f Y �c �d��� �e = Rab

�f
�f Y �c �d��� �e:

From Proposition 2.13 we conclude that

Rab
f

f = 2P[ba] + n� ab = ( n + 1) � ab

Rab
�f

�f = r �f Tab
�f :

Therefore, if � is c-projective density of weight(k; `), then

(r ar b � r br a)� + Tab
�f r �f � = k� ab� + `

n+1 (r �f Tab
�f )� (46)

and, accordingly,

(r �ar �b � r �br �a)� + T�a�b
f r f � = `� �a�b + k

n+1 (r f T�a�b
f )�: (47)

Recall that for any connectionr 2 [r ] its Rho tensor, by de�nition, satis�es P�ab =
1

n+1 Ric�ab and P[ab] = 1
n+1 Ric[ab]. Hence, the identities (45) and (46) imply that the

Ricci tensor of a special connectionr 2 [r ] satis�es
� Ric�ab = Ric b�a

� Ric[ab] = 1
2r �cTab

�c.
If r �cTab

�c vanishes, the special connection has symmetric Ricci tensor. In particular, if
J is integrable all special connections have symmetric Riccitensor.

2.6. The curvature of complex projective space. In Section 2.4, and especially in
Proposition 2.13, the curvature of a complex connection on ageneral almost complex
manifold was decomposed into various irreducible pieces (irreducibility to be further
discussed in Section 3.3). Here, we pause to examine this decomposition on complex
projective spaceCPn with its standard Fubini�Study metric.

Lemma 2.15. The Riemannian curvature tensor for the Fubini�Study metric g�� on
CPn is given by

R��� = g� g�� � g� g�� + 
 � 
 �� � 
 � 
 �� + 2
 �� 
 � (48)

whereJ�
� is the complex structure and
 � � J�

� g� (the Kähler form).

Proof. A direct calculation from the de�nition of the Fubini�Study metric (e.g. [27])
or by invariant theory noting that (up to scale) the right hand side of (48) is the only
covariant expression ing�� and 
 �� such that

R��� = R[�� ][� ] R[�� ]� = 0 R�� [� J� ]
 = 0

where the last condition is a consequence of the Kähler condition d
 = 0 (or, more
precisely, a consequence ofr � 
 � = 0 as one can check, by direct computation in case
the almost complex structureJ�

� is orthogonal (i.e.J�
� g� is skew), that

2r � 
 � = 3r [� 
 � ] � 3J�
� J�

� r [� 
 �� ] � 
 �� N ��
� ;

where recall that N ��
 is the Nijenhuis tensor (1), which vanishes when the complex

structure is integrable, as it is onCPn ). �

To apply the decompositions of Proposition 2.13 to (48) we should raise an index

R��


� = � �
 g�� � � �

 g�� + J�
 
 �� � J�

 
 �� � 2
 �� J�


and then apply the various projectors such as� �
a � �

b � c
 � �

d. However, �rstly note that
applying � �

a � 
c to J�

� g� + J
� g�� = 0 implies that gac = 0 (consequently
 ac = 0)
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whilst applying � �
a � 

�c to 
 � = J�
� g� shows that 
 a�c = iga�c. We conclude that

Rab
c
d = 0 and

Ra�b
c
d � � �

a � �
�b � c

 � �
dR��


� = � a

cgd�b � i� a
c
 d�b � 2i 
 a�b� d

c = 2� a
cgd�b + 2� d

cga�b:

Thus, with reference to Proposition 2.13, we see that all irreducible pieces of curvature
vanish save forP�bd = 2gd�b. In particular, all invariant pieces

T�a�b
c Ha�b

c
d Wab

c
d

of harmonic curvature (as identi�ed the following section) vanish. This is, of course,
consistent with CPn , equipped with its standard complex structure and Fubini�Study
connection, being the �at model of c-projective geometry, as discussed in Section 2.3
and especially Theorem 2.8.

Finally, observe that if we regardCPn as

SL(n + 1; C)
�

8
>><

>>:

0

B
B
@

� � � � � �
0 � � � � �
...

...
. . .

...
0 � � � � �

1

C
C
A

9
>>=

>>;
;

rather than as a homogeneousPSL(n+1; C)-space as in Section 2.3, then the character
� 7! � � k � � ` induces a homogeneous line bundleE(k; `) on CPn as we were supposing
earlier and as we shall soon suppose in Section 3.1. This observation also explains our
copacetic choice of notation: onCPn it is standard to write O(k) for the holomorphic
bundle that is E(k; 0) just as a complex bundle (and thenE(k; 0) = E(0; k)).

2.7. The harmonic curvature. A normal Cartan connection gives rise to a simpler
local invariant than the Cartan curvature � , called theharmonic curvature � h, which
still provides a full obstruction to local �atness, as discussed in Section 2.2 (cf. espe-
cially Proposition 2.7). The harmonic curvature� h of an almost c-projective manifold
is the projection of � 2 ker@� to its homology class in

G � P H2(g1; g) �= G0 � G0 H2(g1; g):

By Kostant's version of the Bott�Borel�Weil Theorem [64] th e G0-module H2(g1; g)
can be naturally identi�ed with a G0-submodule in ^ 2g1 
 R g �= ^ 2g�

� 1 
 R g that
decomposes into three irreducible components as follows:

� for n = 2

(^ 0;2g�
� 1 
 C g� 1) � (^ 1;1g�

� 1 } C sl(g� 1; C)) � (^ 2;0g�
� 1 
 C g1)

� for n > 2

(^ 0;2g�
� 1 
 C g� 1) � (^ 1;1g�

� 1 } C sl(g� 1; C)) � (^ 2;0g�
� 1 } C sl(g� 1; C));

where these are complex vector spaces but regarded as real, and where} denotes the
Cartan product. Correspondingly, we decompose the harmonic curvature as

� h = � +  + �

in casen = 2 and
� h = � +  1 +  2

in casen > 3.
Note that @� preserves homogeneities, i.e.@� (^ i g1 
 gj ) � ^ i � 1g1 
 gj +1 . In par-

ticular, the induced vector bundle map@� maps ^ 3T � M 
 A M to ^ 2T � M 
 A 0M .
Hence, we conclude that� must equal the torsionT��

 . If n = 2, then  is the com-
ponent Ha�b

c
d in (^ 1;1 } C sl(T1;0M )) of the Weyl curvature of any connection in the

c-projective class, and� is the (2; 0)-part of the Cotton�York tensor. If n > 2, then
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 1, respectively  2, is the totally trace-free (1; 1)-part, respectively (2; 0)-part, of the
Weyl curvature of any connection in the class.

We now give a geometric interpretation of the three harmoniccurvature components.

Theorem 2.16. Suppose(M; J; [r ]) is an almost c-projective manifold of dimension
2n � 4 and denote by� h the harmonic curvature of its normal Cartan connection.
Then the following statements hold.

(1) � h � 0 if and only if the almost c-projective manifold(M; J; [r ]) is locally
isomorphic to (CPn ; Jcan; [r gF S ]).

(2) � is the torsion of(M; J; [r ]). In particular, � � 0 if and only if J is integrable,
i.e. (M; J; [r ]) is a c-projective manifold. Moreover, in this case,J G is inte-
grable and the Cartan bundlep: G ! M is a holomorphic principalP-bundle.

(3) Suppose� � 0. Then  1 � 0 (resp.  � 0) if and only if ! is a holomorphic
Cartan connection on the holomorphic principal bundlep: G ! M . This is
the case if and only if[r ] locally admits a holomorphic connection, i.e. for any
connectionr 2 [r ] and any pointx 2 M there is an open neighbourhoodU 3 x
such thatrj U is c-projectively equivalent to a holomorphic connection on U.

Proof. We have already observed (1) and the �rst two assertions of (2). To prove the
last statement of (2) and (3), assume that� � 0, which says, in particular, that the
Cartan geometry is torsion-free. SinceP acts on the complex vector spacê2g1 
 R g by
complex linear maps,P preserves the decomposition of this vector space into the three
(p; q)-types. Therefore [28, Corollary 3.2] applies and hence� h has components of type
(p; q) if and only if � has components of type(p; q). Therefore, � � 0 implies that �
has no(0; 2)-part, which by the proof of [28, Theorem 3.4] (cf. [36, Proposition 3.1.17])
implies that J G is integrable andp: G ! M a holomorphic principal bundle. This
�nishes the proof of (2). We know that the component 1 (respectively  ) vanishes
identically if and only if � is of type (2; 0), which by [28, Theorem 3.4] is the case
if and only if ! 2 
 1;0(G; g) is holomorphic, i.e.d! is of type (2; 0). Hence, it just
remains to prove the last assertion of (3). Assume �rstly that  1 (respectively  )
vanishes identically and hence that(p: G ! M; ! ) is a holomorphic Cartan geometry.
Then we can �nd around each point ofM an open neighbourhoodU � M such
that G and G0 trivialise as holomorphic principal bundles overU. Having chosen
such trivialisations, the holomorphic inclusionG0 ,! P induces a holomorphicG0-
equivariant section� : p� 1

0 (U) ! p� 1(U). Sinced! is of type(2; 0) and � is holomorphic

� � d! = d� � ! = d� + d r � dpr

is also of type(2; 0). In particular, d r is of type (2; 0) and it follows that  r 2

 1;0(p� 1

0 (U); g0) is a holomorphic principal connection in the c-projective class. Con-
versely, assume thatU � M is an open set and that r 2 
 1;0(p� 1

0 (U); g0) is a
holomorphic principal connection that belongs to the c-projective class. Since the Lie
bracket on g is complex linear, the holomorphicity of r implies that its curvature
d r + [  r ;  r ] is of type (2; 0). By de�nition of the Weyl curvature this implies that
also its Weyl curvature is of type(2; 0) and hence so is� h jU . By assumption there
exists locally around any point a holomorphic connection and hence� h is of type (2; 0)
on all of M . �

3. Tractor bundles and BGG sequences

The normal Cartan connection of an almost c-projective manifold induces a canonical
linear connection on all associated vector bundles corresponding to representations of
PSL(n + 1; C) (cf. Section 2.2). These, in the theory of parabolic geometries, so-called
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tractor connections, provide an e�cient calculus, especially well suited for explicit
constructions of local invariants and invariant di�erential operators. We develop in this
section the basics of the theory of tractor connections for almost c-projective manifolds,
and explain their relation to geometrically signi�cant overdetermined systems of PDE
and sequences of invariant di�erential operators.

3.1. Standard complex tractors. Suppose that(M; J; [r ]) is an almost c-projective
manifold of dimension2n � 4. Further, assume that the complex line bundlê nT1;0M
admits an (n + 1) st root and choose one, denotedE(1; 0), with conjugate E(0; 1). More
generally, we writeE(k; `) = E(1; 0)
 k 
E (0; 1)` for any (k; `) 2 Z � Z (cf. Section 2.1).
Note that such a choice of a rootE(1; 0) is at least locally always possible and the
assumption that such roots exists globally is a relatively minor constraint. The choice
of E(1; 0) canonically extends the Cartan bundle of(M; J; [r ]) to a ~P-principal bundle
~p: ~G ! M , where ~P is the stabiliser inSL(n+1; C) of the complex line generated by the
�rst basis vector in Cn+1 , and the normal Cartan connection of(M; J; [r ]) naturally
extends to a normal Cartan connection on~G of type (SL(n + 1; C); ~P), which we also
denote by! . The groupsSL(n + 1; C) and ~P are here viewed as real Lie groups as in
Section 2.3, and we obtains in this way, analogously to Theorem 2.8, an equivalence
of categories between almost c-projective manifolds equipped with an (n + 1) st root
E(1; 0) of ^ nT1;0M and normal Cartan geometries of type(SL(n + 1; C); ~P). The
homogeneous model of such structures is againCPn , but now viewed as a homogeneous
spaceSL(n + 1; C)=~P with E(1; 0) being dual to the tautological line bundleO(� 1),
cf. Section 2.6.

The extended normal Cartan geometry of type(SL(n + 1; C); ~P) allows us to form
the standard complex tractor bundle

T := ~G � ~P V

of (M; J; [r ]; E(1; 0)), where V = R2n+2 is the de�ning representation of the real Lie
group SL(2(n + 1) ; J2(n+1) ) �= SL(n + 1; C). Note that the complex structure J2(n+1)

on V induces a complex structureJ T on T . Analogously to the discussion of the
tangent bundle of an almost complex manifold in Section 1,(T ; J T ) can be identi�ed
with the (1; 0)-part of its complexi�cation TC, on which J T acts by multiplication by
i . We will implement this identi�cation in the sequel without further comment, and
similarly for all the other tractor bundles with complex structures in the following
Sections 3.1, 3.3 and 3.4. Since~P stabilises the complex line generated by the �rst
basis vector inCn+1 , this line de�nes a complex1-dimensional submodule ofCn+1 .
Correspondingly, the standard complex tractor bundle (identi�ed with the (1; 0)-part
of its complexi�cation TC) is �ltered as

T = T 0 � T 1 (49)

whereT 1 �= E(� 1; 0) and T 0=T 1 �= T1;0M (� 1; 0). SinceT is induced by a representa-
tion of SL(n+1; C), the Cartan connection induces a linear connectionr T on T , called
the tractor connection (see Section 2.2). Any choice of a linear connectionr 2 [r ],
splits the �ltration of the tractor bundle T and the splitting changes by

\� X b

�

�
=

�
X b

� � � cX c

�
; where

�
X b 2 T1;0M (� 1; 0)
� 2 E(� 1; 0); (50)
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if one changes the connection according to (11). In terms of aconnectionr 2 [r ], the
tractor connection is given by

r T
�

�
X b

�

�
=

�
r � X b + � � b

�
r � � � P�b X b

�
: (51)

Applying � �
a and � �

�a to (51), we can write the tractor connection as

r T
a

�
X b

�

�
=

�
r aX b + �� a

b

r a� � PabX b

�
(52)

and

r T
�a

�
X b

�

�
=

�
r �aX b

r �a� � P�abX b

�
: (53)

By (49) the dual (or �co-standard�) complex tractor bundleT � admits a natural sub-
bundle isomorphic to^ 1;0(1; 0) and the quotient T � =̂ 1;0(1; 0) is isomorphic toE(1; 0).
One immediately deduces from (52) and (53) that in terms of a connection r 2 [r ],
the tractor connection onT � is given by

r T �

a

�
�
� b

�
=

�
r a� � � a

r a� b + Pab�

�

r T �

�a

�
�
� b

�
=

�
r �a�

r �a� b + P�ab�

�
:

For a choice of connectionr 2 [r ] consider now the following overdetermined system
of PDE on sections� of E(1; 0):

(i) r �a� = 0 (ii) r (ar b) � + P(ab) � = 0: (54)

Supposer̂ 2 [r ] is another connection in the c-projective class. Then the formulae
(16) imply that r̂ �a� = r �a� . Moreover, we deduce from Proposition 2.5 and the
formulae (16) that

r̂ a r̂ b� = r ar b� + ( r a� b)� � � a� b�;

which together with Corollary 2.12 implies that

r̂ a r̂ b� + P̂ab� = r ar b� + Pab�:

This shows that the overdetermined system (54) is c-projectively invariant. Note also
that by equation (46) we have

r [ar b]� + P[ab]� = � 1
2Tab

�cr �c�: (55)

Thereforer ar b� + Pab� is symmetric provided that J is integrable or that � satis�es
equation (i) of (54). The following proposition shows that,if J is integrable, the tractor
connection onT � can be viewed as the prolongation of (54):

Proposition 3.1. Suppose(M; J; [r ]; E(1; 0)) is a c-projective manifold of dimension
2n � 4. The projection � : T � ! T � =̂ 1;0(1; 0) �= E(1; 0) induces a bijection between
sections ofT � parallel for r T �

and sections� of E(1; 0) that satisfy (54) for some
(and hence any) connectionr 2 [r ]. Moreover, suppose that� 2 E(1; 0) is a nowhere
vanishing section, then for any connectionr 2 [r ] the connection

r̂ a� 0 = r a� 0 � (r a� )� � 1� 0 (56)

is induced from a connection in the c-projective class, and� with r �a� = 0 is a solution
of (54) if and only if (56) is Ricci-�at.
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Proof. Supposes is a parallel section ofT � and set � := � (s) 2 �( E(1; 0)). It follows
from (50) that changing from connection to another in[r ] changes the splitting ofT �

by \(�; � b) = ( �; � b + � b� ). Hence, for any connectionr 2 [r ] we can identifys with a
section of the form(�; � b) for some� b 2 �( ^ 1;0(1; 0)) and by de�nition of the tractor
connection � 2 �( E(1; 0)) satis�es (54) for any connectionr 2 [r ]. So � induces a
map from parallel sections ofT � to solutions of (54).

Conversely, let us contemplate the di�erential operatorL : E(1; 0) ! T � , which, for
a choice of connection in[r ], is given byL� = ( �; r b� ). Suppose now� is a solution
of (54). Then obviouslyr T �

a L� = 0, since (55) vanishes. By (45) we have

r �ar b� + P�ab� = ( r �ar b � r br �a)� + P�ab� (57)

= 1
n+1 Tbf

�eT�e�a
f � � P�ab� + P�ab�

= 1
n+1 Tbf

�eT�e�a
f � ;

which vanishes, sinceJ is integrable. Hence, we also haver T �

�a L� = 0. Therefore L
maps solutions� 2 �( E(1; 0)) of (54) to parallel sections ofT � and de�nes an inverse
to the restriction of � to parallel section. For the second statement, assume now that
� is a section ofE(1; 0) that is nowhere vanishing and letr 2 [r ] be a connection
in the c-projective class. If we changer according to (11) by� a = � (r a� )� � 1 to a
connection r̂ 2 [r ], then we deduce from Corollary 2.4 that the induced connection
on E(1; 0) is given by (56). Moreover,r̂ a� = 0. Therefore, using that (57) vanishes,
we deduce that� with r̂ �a� = 0 satis�es (54) if and only if P̂ab� = 0 and P̂�ab� = 0,
and hence if and only ifr̂ is Ricci-�at. �

More generally, we immediately conclude from equation (57)that, in the case of
an almost c-projective manifold, i.e.J is not necessarily integrable, the corresponding
proposition reads as follows:

Proposition 3.2. Let (M; J; [r ]; E(1; 0)) be an almost c-projective manifold of dimen-
sion 2n � 4. Then sections� of E(1; 0) that satisfy (54) are in bijection with sections
of T � that are parallel for the connection given by

r T �

a and r T �

�a

�
�
� b

�
�

1
n + 1

�
0

Tbf
�eT�e�a

f �

�
: (58)

Moreover, suppose� 2 E(1; 0) is a nowhere vanishing section withr �a� = 0. Then
� is a solution of (54) if and only if r̂ , de�ned as in (56), satis�es P̂ab = 0 and
P̂�ab = 1

n+1 Tbf
�eT�e�a

f .

Remark 3.1. Recall that a parallel section of a linear connection of a vector bundle
over a connected manifold, is already determined by its value at one point. The
correspondences established in Propositions 3.1 and 3.2 between solutions of (54) and
parallel sections of a linear connection onT � therefore implies, that on a connected
almost c-projective manifold

U := f x 2 M : � (x) 6= 0g � M

is a dense open subset for any nontrivial solution� 2 �( E(1; 0)) of (54). In particular,
the second statement of Proposition 3.1, respectively of Proposition 3.2, holds always
on the dense open subsetU.

The equations (54) de�ne an invariant di�erential operator of order two

D T �
: E(1; 0) ! ^ 0;1(1; 0) � S2^ 1;0(1; 0);
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whose kernel are the solutions of (54). The di�erential operator D T �
is the �rst oper-

ator in the BGG sequence corresponding to the co-standard complex tractor bundle;
see [25, 38]. The proof of Proposition 3.2 implies that in order for a (nonzero) parallel
section of the tractor connection onT � to exist, it is necessary that Nijenhuis tensor
of J satisfy N J

bf
�eN J

�e�a
f � 0 and, in this case, parallel sections of the tractor connection

are in bijection with sections in the kernel ofD T �
.

Similarly, one may consider the �rst BGG operator in the sequence corresponding
to the standard complex tractor bundleT , which is a �rst order invariant di�erential
operator, de�ned, for a choice of connectionr 2 [r ], by

D T : T1;0M (� 1; 0) ! (^ 0;1 
 T1;0M (� 1; 0)) � (^ 1;0 
 � T1;0M (� 1; 0));

X b 7! (r �aX b; r aX b � 1
n r cX c� a

b); (59)

where the subscript� denotes the trace-free part.

Proposition 3.3. Suppose(M; J; [r ]; E(1; 0)) is an almost c-projective manifold of
dimension 2n � 4. The projection � : T ! T =E(� 1; 0) �= T1;0M (� 1; 0) induces a
bijection between sections ofT that are parallel for the connection given by

r T
a and r T

�a

�
X b

�

�
�

1
n(n + 1)

�
0

Tbf
�eT�e�a

f X b

�
(60)

and sectionsX b 2 �( T1;0M (� 1; 0)) that are in the kernel ofD T . In particular, ele-
ments X b 2 kerD T with N J

bf
�eN J

�e�a
f X b = 0 are in bijection with parallel sections of the

tractor connection r T .

Proof. Suppose �rstly that s 2 �( T ) is parallel for the connection (60) and setX b :=
� (s). For a choice of connectionr 2 [r ] we can identify s with an element of the
form (X b; � ), where � 2 �( E(� 1; 0)). By assumption r �aX b = 0 and r aX b = � �� a

b.
Taking the trace of the latter equation shows that� = � 1

n r cX c. Hence,X b is in the
kernel ofD T .

Conversely, supposeX b 2 kerD T and pick a connectionr 2 [r ]. Then we deduce
from Proposition 2.13 and equation (46) that

(r ar b � r br a)X c = ( r ar b � r br a)X c + Tab
�dr �dX c (61)

= Rab
c
dX d + 2P[ab]X c = Wab

c
dX d + 2� [a

cPb]dX d:

By assumptionr aX b = 1
n r cX c� a

b and therefore (61) implies
1
n (r ar dX d� b

c � r br dX d� a
c) = Wab

c
dX d + 2� [a

cPb]dX d: (62)

Taking the trace in (62) over a and c shows that � 1
n r br dX d = PbdX d. Hence,

(X b; � 1
n r cX c) de�nes a section s of T that satis�es r T

a s = 0. Similarly, since
r �aX b = 0, Proposition 2.13 and equation (45) imply

r �ar bX c = ( r �ar b � r br �a)X c (63)

= R�ab
c
dX d � 1

n+1 Tbf
�eT�e�a

f X c + P�abX c

= W�ab
c
dX d � 2P�a(b� d)

cX d + P�abX c � 1
n+1 Tbf

�eT�e�a
f X c:

Taking the trace in (63) overb and c implies that

� 1
n r �ar cX c � P�acX c = 1

n(n+1) Tcf
�eT�e�a

f X c:

Hence,s is parallel for the connection (60) and it follows immediately that the dif-
ferential operator X b 7! (X b; � 1

n r cX c) de�nes an inverse to the restriction of� to
parallel sections of (60). �
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3.2. Cone description of almost c-projective structures. For (real) projective
structures there is an alternative description of the tractor connection as an a�ne con-
nection on a cone manifold over the projective manifold [36,46]. This point of view,
which (at least in spirit) goes back to work of Tracy Thomas, is often convenient�it
has for instance been used in [6] to classify holonomy reductions of projective struc-
tures. An analogue holds for almost c-projective manifolds, which we will now sketch,
following the presentation in [36] of the projective case. This canonical cone connection
was used in [6] to realise c-projective structures as holonomy reductions of projective
structures. It also underlies metric cone constructions [78, 83] which we discuss later.

Let (M; J; [r ]; E(1; 0)) be an almost c-projective manifold and, as in Section 3.1, let
~P � ~G = SL(n + 1; C) be the stabiliser of the complex lineV1 through the �rst basis
vector e1 of V = Cn+1 . Denote by ~Q � ~P the stabiliser of e1, which is the derived
group of ~P, hence a normal complex Lie subgroup. Now set

C := ~G=~Q = ~G � ~P
~P=~Q:

The natural projection pC: ~G ! C de�nes a (real) principal bundle with structure
group ~Q. Since the canonical Cartan connection! of (M; J; [r ]; E(1; 0)) can also be
viewed as a Cartan connection of type( ~G; ~Q) for pC, it induces an isomorphism

TC �= ~G � ~Q g=~q:

Note that Cinherits an almost complex structureJ C from the almost complex structure
on ~G characterised byT pC � J G = J C � T pC. Furthermore, the projection � C: C !
M de�nes a principal bundle with structure group ~P =~Q �= C� . Since ~P =~Q can be
identi�ed with the nonzero elements in the complex~P-submoduleV1 � V, we see that
C can be identi�ed with the space of nonzero elements inE(� 1; 0) or with the complex
frame bundle ofE(� 1; 0). Note that, by construction (recall that T p � J G = J � T p),
we haveT � C � J C = J � T � C. By the compatibility of the almost complex structures
J G, J C and J with the various projections, it follows immediately that vanishing of the
Nijenhuis tensorN J G

of J G implies vanishing of the Nijenhuis tensorsN J C
, which in

turn implies vanishing of N J . Conversely, Theorem 2.16 shows thatN J � 0 implies
N J G

� 0. This shows in particular that

N J � 0 () N J C
� 0; (64)

in which case� C: C ! M is a holomorphic principal bundle with structure groupC� .

Lemma 3.4. There are canonical isomorphismsTC�= ~G � ~Q V �= � �
CT .

Proof. From the block decomposition (17) ofg it follows that g=~q = ( V1)� 
 V and
henceg=~q �= V as ~Q-modules, i.e.

TC �= ~G � ~Q g=~q �= ~G � ~Q V �= � �
C( ~G � ~P V) = � �

C T : �

Hence the standard tractor connection induces an a�ne connection r C on C which
preservesJ C and the complex volume form volC 2 ^ n;0T � C that is induced by the
standard complex volume onV = Cn+1 . Alternatively, note that ! can be extended
to a principal connection on the principalG-bundle ~G � ~Q G, and sinceV = Cn+1 is a
G-module, we obtain an induced connection onTC �= ~G � ~Q G � G V.

If we identify a vector �eld Y 2 X(C) with a ~Q-equivariant function f : ~G ! V via
Lemma 3.4, then by [36, Theorem 1.5.8], the equivariant function corresponding to
r C

X Y for a vector �eld X 2 X(C) is given by

~X � f + ! ( ~X )f (65)
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where ~X 2 X( ~G) is an arbitrary lift of X . Moreover [36, Corollary 1.5.7] shows that
the curvature RC 2 ^ 2T � C 
 AC of r C is given by

RC(X; Y )(Z ) = � (X; Y ) � Z; (66)

whereAC = ~G� ~Q g �= sl(TC; J C) and � : AC� TC ! TCdenotes the vector bundle map
induced by the action ofg on V. Let us write TC 2 ^ 2T � C 
 TC for the torsion of r C.
It follows straightforwardly from (65) that TC is the projection of� 2 �( ^ 2T � C 
 AC )
to ^ 2T � C 
 TC, i.e. it is the torsion of ! viewed as a Cartan connection of type( ~Q; ~G).
In particular, like � , the 2-forms TC and RC vanish upon insertion of sections of the
vertical bundle of � C, which is canonically trivialised by the fundamental vector �elds
E and J CE generated by1 and i respectively.

Proposition 3.5. Suppose(M; J; [r ]; E(1; 0)) is an almost c-projective manifold. Then
there is a unique a�ne connection r C on the total space of the principal bundle
� C: C ! M with the following properties:

(1) r CJ C = 0 and r CvolC = 0;
(2) r C

X E = X for all X 2 X(C);
(3) L E r C = 0 and L J CE r C = 0;
(4) iE TC = 0 and i J CE TC = 0;
(5) T � � TC is of type (0; 2) and the(2; 0)-part of TC vanishes;
(6) r C is Ricci-�at ;
(7) for any (local) section s of � C the connections� r C lies in [r ].

Moreover, if J is integrable,� C : C ! M is a holomorphic principal bundle andTC � 0.

Proof. We already observed that (1) and (4) hold and (2) is an immediate consequence
of (65). Since we have in additioniE RC = 0 and i J CE RC = 0 by (66), statement (3)
follows from (78). The statements (5) and (6) are consequences of@� � = 0. More
explicitly, note that (5) can be simply read o� Proposition 2.13, which also shows
that if J is integrable, TC � 0. In this caseN J C

, which is up to a constant multiple
the (0; 2)-part of TC, vanishes and� C is a holomorphic principal bundle as calimed.
Statement (6) follows becauseT � � TC, viewed as a section of̂ 0;2T � M 
 T M , has
vanishing trace and@� : ^ 2T � M 
 gl(T M; J ) ! T � M 
 T � M is a multiple of a Ricci-
type contraction. The proof of statement (7) and the uniqueness ofr C we leave to the
reader, but note that (1)�(6) imply that r C descends to the normal Cartan connection
on TC=C� �= T . �

3.3. BGG sequences. For a general parabolic geometry, it was shown in [25, 38] that
there are natural sequences of invariant linear di�erential operators generalising the
corresponding complexes on the �at model. These are the Bernstein�Gelfand�Gelfand
(BGG) sequences, named after the constructors [10] of complexes of Verma modules,
roughly dual to the current circumstances.

Here is not the place to say much about the general theory. Instead, we would like
to like to present something of the theory as it applies in thec-projective case. The
point is that the invariant operators that we have already encountered and are about
to encounter, all can be seen as curved analogues of operators from the BGG complex
on CPn (as the �at model of c-projective geometry).

In fact, the main hurdle in presenting the BGG complex and sequences is in having a
suitable notation for the vector bundles involved. Furthermore, this notation is already
of independent utility since, as foretold in Remark 1.1, it neatly captures the natural
irreducible bundles on an almost complex manifold.
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Recall from Section 1 that the complexi�ed tangent bundle onan almost complex
manifold decomposes

CT M = T1;0M � T0;1M

as does its dual. An alternative viewpoint on these decompositions is that the tangent
bundle T M on any 2n-dimensional manifold is tautologically induced from its frame-
bundle by the de�ning representation ofGL(2n; R), that an almost complex structure
is a reduction of structure group for the frame bundle toGL(n; C) � GL(2n; R),
that the de�ning representation of GL(2n; R) on R2n complexi�es asGL(2n; R) acting
on C2n (as real matrices acting on complex vectors), and �nally that this complex
representation when restricted toGL(n; C) decomposes into two irreducibles inducing
the bundlesT1;0M and T0;1M , respectively. Of course, the dual decomposition comes
from the dual representation, namelyGL(n; C) acting on (C2n )� . Our notation arises
by systematically using the representation theory ofGL(n; C) as a real Lie group but
adapted to its embedding

GL(n; C) �= G0 � P � G = PSL( n + 1; C)

as described in Section 2.3.
For relatively simple bundles, there is no need for any more advanced notation. In

several complex variables, for example, it is essential to break up the complex-valued
di�erential forms into types but that's about it. Recall already with 2-forms

^ 2 = ^ 0;2 � ^ 1;1 � ^ 2;0

that this complex decomposition is �ner that the real decomposition

^ 2T � M =
�
^ 0;2 � ^ 2;0

�
R

� ^ 1;1
R (67)

already discussed in Section 1 following (6). Of course, as soon as one speaks of
holomorphic functions on a complex manifold one is obliged to work with complex-
valued di�erential forms. However, even if one is concernedonly with real-valued forms
and tensors, it is convenient �rstly to decompose the complex versions and then impose
reality as, for example, in (67). In fact, this is already a feature of representation theory
in general.

For more complicated bundles, we shall use Dynkin diagrams from [36] decorated in
the style of [8]. The formal de�nitions will not be given herebut the upshot is that the
general complex irreducible bundle on an almost complex manifold will be denoted as

� � � � �
l l l l l
� � � � �
p a b c d

q e f g h

(in the 10-dimensional case (2n nodes in general)) (68)

where a; b; c; d; e; f; g; hare nonnegative integers whilst, in the �rst instance,p; q are
real numbers restricted by the requirement that

p + 2a + 3b+ 4c + 5d = q+ 2e+ 3f + 4g + 5h mod 6 (69)

(again, in the 10-dimensional case). For example,

T1;0M =
� � � � �
l l l l l
� � � � �
1 0 0 0 1

0 0 0 0 0

^ 1;0 =
� � � � �
l l l l l
� � � � �
� 2 1 0 0 0

0 0 0 0 0

^ 0;2 =
� � � � �
l l l l l
� � � � �
0 0 0 0 0

� 3 0 1 0 0

but the point is that this notation covers all bases and, in particular, the various
awkward bundles that have already arisen and will now arise in this article. In general,
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the integrality condition (69) is needed, as typi�ed by

det ^ 1;0 = ^ 5;0 =
� � � � �
l l l l l
� � � � �
� 6 0 0 0 0

0 0 0 0 0

E(p; p) =
� � � � �
l l l l l
� � � � �
p 0 0 0 0

p 0 0 0 0

but, as already discussed at the end of Section 2.1, on an almost c-projective manifold
we shall suppose that there is a bundleE(1; 0) and an identi�cation E(n + 1; 0) :=
E(1; 0)n+1 = ^ nT1;0M , in which case we shall add

E(1; 0) =
� � � � �
l l l l l
� � � � �
1 0 0 0 0

0 0 0 0 0

to our notation and relax (69) to requiring merely that p � q be integral. In fact, all
of p; q; a; b; c; d; e; f; g; hwill be integral for the rest of this article.

Our Dynkin diagram notation is well suited to the barred and unbarred indices that
we have already been using. Speci�cally, a section of

� � � � �
l l l l l
� � � � �
p a b c d

0 0 0 0 0

may be realised as tensors witha + 2b+ 3c + 4d unbarred covariant indices, having
symmetries speci�ed by the Young diagram

� � �� � �� � �� � �
� � �� � �� � � � � �� � � � � �

d� - c� - b� - a� -

and of c-projective weight(p + 2a + 3b+ 4c + 5d;0). Indeed, for those reluctant to
trace through the conventions in [8], this su�ces as a de�nition and then

� � � � �
l l l l l
� � � � �
0 0 0 0 0

q e f g h

is the complex conjugate of
� � � � �
l l l l l
� � � � �
q e f g h

0 0 0 0 0

corresponding to tensors with barred indices in the obviousfashion and

� � � � �
l l l l l
� � � � �
p a b c d

q e f g h

=
� � � � �
l l l l l
� � � � �
p a b c d

0 0 0 0 0



� � � � �
l l l l l
� � � � �
0 0 0 0 0

q e f g h

.

Already, these bundles provide locations for the tensors weencountered earlier. For
example,

Tab
�c 2 �

�

� � � � �
l l l l l
� � � � �
� 3 0 1 0 0

1 0 0 0 1

�
and Ha�b

c
d 2 �

�

� � � � �
l l l l l
� � � � �
� 3 2 0 0 1

� 2 1 0 0 0

�
.

Although the Dynkin diagram notation may at �rst seem arcane, it comes into its own
when discussing invariant linear di�erential operators. The complex-valued de Rham
complex

^ 0;0 !
^ 1;0

�
^ 0;1

!

^ 2;0

�
^ 1;1

�
^ 0;2

! � � � (70)
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becomes

� � � � �
l l l l l
� � � � �
� 3 0 1 0 0

0 0 0 0 0

� � � � �
l l l l l
� � � � �
� 2 1 0 0 0

0 0 0 0 0

� � � � �
l l l l l
� � � � �
0 0 0 0 0

0 0 0 0 0

! !
� � � � �
l l l l l
� � � � �
� 2 1 0 0 0

� 2 1 0 0 0

! � � �

� � � � �
l l l l l
� � � � �
0 0 0 0 0

� 2 1 0 0 0

� � � � �
l l l l l
� � � � �
0 0 0 0 0

� 3 0 1 0 0

and in either of them one sees the torsionTab
�c : ^ 0;1 ! ^ 2;0 and its complex conjugate

T�a�b
c : ^ 1;0 ! ^ 0;2 as the restriction of the exterior derivatived: ^ 1 ! ^ 2 to the

relevant bundles (note that

Hom(^ 0;1; ^ 2;0) = T0;1 
 ^ 2;0 =
� � � � �
l l l l l
� � � � �
� 3 0 1 0 0

1 0 0 0 1

,

as expected). In the torsion-free case, the de Rham complex takes the form

^ 2;0

^ 1;0 %
&

^ 0;0 %
& ^ 1;1

^ 0;1 %
& ^ 0;2

(71)

familiar from complex analysis and the remarkable fact about c-projectively invariant
linear di�erential operators is �rstly that this pattern is repeated on the �at model
starting with any bundle (68) with p; q2 Z � 0, for example

� � � � �
l l l l l
� � � � �
� 4 1 1 0 1

0 0 0 0 0

� � � � �
l l l l l
� � � � �
� 3 2 0 0 1

2 0 0 0 0

%
&

� � � � �
l l l l l
� � � � �
1 0 0 0 1

0 0 0 0 0

%
& � � � � �

l l l l l
� � � � �
� 3 2 0 0 1

� 2 1 0 0 0

� � � � �
l l l l l
� � � � �
1 0 0 0 1

� 2 1 0 0 0

%
&

� � � � �
l l l l l
� � � � �
1 0 0 0 1

� 3 0 1 0 0
.

(72)

The algorithm for determining the bundles in these patternsis detailed in [8] (it is
the a�ne action � 7! w(� + � ) � � of the Weyl group for G along the Hasse diagram
corresponding to the parabolic subgroupP). On G=P in general, these are complexes of
di�erential operators referred to asBernstein�Gelfand�Gelfand (BGG) complexes. In
our case, i.e. onCPn , they provide resolutions of the �nite-dimensional representations

� � � � �
l l l l l
� � � � �
p a b c d

q e f g h

(in casen = 5 (2n nodes in general))

of the group G = PSL( n + 1; C) as a real Lie group. More precisely, any �nite-
dimensional representationE of G gives rise to a constant sheafG=P � E, which may
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in turn be identi�ed with the corresponding homogeneous bundle induced onG=P by
means of

G=P � P E 3 [g; e] 7! ([g]; ge) 2 G=P � E: (73)

Since the �rst bundle in the BGG complex is a quotient of this bundle, we obtain a
mapping of E to the sections of this �rst bundle and to say that the complexis a
resolution of E is to say that these sections are locally precisely the kernel of the �rst
BGG operator (just as the locally constant functions are precisely the kernel of the
�rst exterior derivative d: ^ 0 ! ^ 1). In our example (72), this means that

� � � � �
l l l l l
� � � � �
� 3 2 0 0 1

0 0 0 0 0
0 ! � � � � �

l l l l l
� � � � �
1 0 0 0 1

0 0 0 0 0

�!
� � � � �
l l l l l
� � � � �
1 0 0 0 1

0 0 0 0 0

%
&

� � � � �
l l l l l
� � � � �
1 0 0 0 1

� 2 1 0 0 0

is exact, theG-moduleE in this case being the adjoint representation ofPSL(n+1; C) as
a complex Lie algebra. More generally, the BGG resolutions on CPn as a homogeneous
space forPSL(n + 1; C) begin

� � � � �
l l l l l
� � � � �

� p� 2 p+ a+1 b c d

q e f g h
0 ! � � � � �

l l l l l
� � � � �
p a b c d

q e f g h

�!
� � � � �
l l l l l
� � � � �
p a b c d

q e f g h

%
&

� � � � �
l l l l l
� � � � �
p a b c d

� q� 2 q+ e+1 f g h

(74)

for nonnegative integersp; a; b; c; d; q; e; f; g; hconstrained by (69). We may drop the
constraint (69) by consideringCPn instead as a homogeneous space forSL(n+1; C), as
is perhaps more usual. Having done that, the standard representation of SL(n + 1; C)
on Cn+1 gives rise to the BGG resolution

� � � � �
l l l l l
� � � � �
� 2 1 0 0 1

0 0 0 0 0

0 ! � � � � �
l l l l l
� � � � �
0 0 0 0 1

0 0 0 0 0

�!
� � � � �
l l l l l
� � � � �
0 0 0 0 1

0 0 0 0 0

r a

%
&
r �a

� � � � �
l l l l l
� � � � �
0 0 0 0 1

� 2 1 0 0 0

(75)

where the operatorsr a and r �a are, more explicitly and as noted in (59),

X b 7! (r aX b)� and X b 7! r �aX b (76)

whereX b is a vector �eld of type (1; 0) and of c-projective weight(� 1; 0) and the sub-
script � means to take the trace-free part. Notice that these are exactly the operators
implicitly encoded in the standard tractor connection (52)and (53). More precisely,
the �ltration (49) is equivalent to the short exact sequenceof vector bundles

0 !
� � � � �
l l l l l
� � � � �
� 1 0 0 0 0

0 0 0 0 0

�! � � � � �
l l l l l
� � � � �
0 0 0 0 1

0 0 0 0 0

�!
� � � � �
l l l l l
� � � � �
0 0 0 0 1

0 0 0 0 0

! 0

k k k

E(� 1; 0) T T1;0M (� 1; 0)
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and on the �at model, namelyCPn as a homogeneous space forSL(n+1; C), the tractor
connection is the exactly the �at connection induced by (73). In the c-projectively �at
case, the remaining entries in (52) and (53), namely

r a� � PabX b and r �a� � P�abX b

may be regarded as quantities whose vanishing are di�erential consequences of setting

r aX b + �� a
b = 0 and r �aX b = 0:

Hence, they add no further conditions to being in the kernel of the �rst BGG operator
(76) and the exactness of (75) follows. The same reasoning pertains in the curved
but torsion-free setting and leads to the standard tractor connection being obtained
by prolongation of the �rst BGG operator. This is detailed in Proposition 3.3. For
more complicated representations, the tractor connectionmay not be obtained by
prolongation in the curved setting, even if torsion-free. This phenomenon will soon
be seen in two key examples, speci�cally in the connection (85) and Proposition 3.9
concerned with in�nitesimal automorphisms and in Proposition 4.5, Theorem 4.6, and
Corollary 4.7 dealing with the metrisability of c-projective structures. With reference
to the general �rst BGG operators (74), the following cases occur prominently in this
article.

� � � � �
l l l l l
� � � � �
0 0 0 0 1

0 0 0 0 0

��!
� � � � �
l l l l l
� � � � �
0 0 0 0 1

0 0 0 0 0 This is the standard complex tractor bundleT
and its canonical projection toT1;0M (� 1; 0).

� � � � �
l l l l l
� � � � �
1 0 0 0 1

0 0 0 0 0

��!
� � � � �
l l l l l
� � � � �
1 0 0 0 1

0 0 0 0 0 This is the adjoint tractor bundle AM to be con-
sidered in Section 3.4 and its canonical projection toT1;0M . A �rst BGG operator
acting on T1;0M is given in Remark 3.3.

� � � � �
l l l l l
� � � � �
0 0 0 0 1

0 0 0 0 1

��!
� � � � �
l l l l l
� � � � �
0 0 0 0 1

0 0 0 0 1 This is the tractor bundle arising in the metris-
ability of c-projective structures to be discussed in Section 4 and a �rst BGG operator
is given in (121).

� � � � �
l l l l l
� � � � �
1 0 0 0 0

1 0 0 0 0

��!
� � � � �
l l l l l
� � � � �
1 0 0 0 0

1 0 0 0 0 This is the dual of the previous case and arises in
Section 4.6, which is concerned with the �rst BGG operatorDW de�ned in (167) and
acting on c-projective densities of weight(1; 1). It is a second order and c-projectively
invariant operator.

In fact, there is quite a bit of �exibility in what one might al low as BGG operators,
already for the �rst ones (74). For example, the operatorDA in Remark 3.3 is rather
di�erent from the c-projectively invariant operators occurring as the left hand sides of
(1) and (2) in Proposition 3.7. Even for the bundleT1;0M (� 1; 0) in (75) corresponding
to standard complex tractors, there is the option of replacing the second operator in
(76) by

X c 7! r �aX c + T�a�b
cX �a

in line with equation (1) in Proposition 3.7. Only in the torsion-free case do these
operators agree (with each other and the usual�@-operator).
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On the �at model, however, there is no choice. The operators occurring in the BGG
complexes are unique up to scale. Moreover, there are no other c-projectively invari-
ant linear di�erential operators: every such operator is determined by its symbol and
the BGG operators comprise a classi�cation. In the curved setting it is necessary to
add curvature correction terms and there is almost always some choice. Regarding
existence, it is shown in [25] and [38] that such curved analogues always exist. How-
ever, even for the BGG sequence associated to the trivial representation, the resulting
operators are di�erent if there is torsion. Speci�cally, the construction in [38] follows
the Hasse diagram beginning as in (71). In particular, thereis no place for the torsion
as an operator̂ 0;1 ! ^ 2;0 whereas, in [25], the �rst BGG sequence associated to the
trivial representation for the case ofj1j-graded geometry such as c-projective geometry,
is just the de Rham complex (70).

In summary, the BGG operators onCPn provide models for what one should expect
in the curved setting. In the �at case, there is no choice. In the curved case, there
is a certain degree of �exibility, more so when there is torsion. Finally, the general
theory of parabolic geometry [36] provides a location forharmonic curvature, as already
discussed in Sections 2.2 and 2.7 and Kostant's Theorem [64]on Lie algebra cohomology
provides the location for this curvature, namely the three bundles appearing in the
second step of the BGG sequence (72) for the adjoint representation whilst the two
bundles at the �rst step locate the in�nitesimal deformations of an almost c-projective
structure, in line with the general theory [29].

3.4. Adjoint tractors and in�nitesimal automorphisms. For a vector �eld X on
a manifold M we write L X for the Lie derivative alongX of tensor �elds onM . Recall
that there is also a notion of aLie derivative of an a�ne connection r along a vector
�eld X 2 �( T M ). It is given by the tensor �eld

L X r : T M ! T � M 
 T M

characterised by
(L X r )(Y) � L X (r Y) � rL X Y

for any vector �eld Y 2 �( T M ). In abstract index notation we adopt the convention
that (L X r )��

 Y � = L X (r � Y  ).

De�nition 3.1. A c-projective vector �eld or in�nitesimal automorphism of an almost
c-projective manifold (M; J; [r ]) of dimension2n � 4 is a vector �eld X on M that
satis�es

� L X J � 0 (i.e. [X; JY ] = J [X; Y ] for all vector �elds Y 2 �( T M ))
� (L X r )��

 = � ��
 , where� ��

 2 �( S2T � M 
 T M ) is a tensor of the form (11).

Note that X 2 �( T M ) is an in�nitesimal automorphism of an almost c-projective
manifold precisely if its �ow acts by local automorphisms thereof.

Let us rewrite the two conditions de�ning a c-projective vector �eld as a system of
di�erential equations on a vector �eld X of M . Expressing the Lie bracket in terms of
a connectionr 2 [r ] and its torsion shows thatL X J = 0 is equivalent to

T��
 X � = � 1

2(r � X  + J�
 J�

� r � X � ): (77)

for one (and hence any) connectionr 2 [r ]. Moreover, one deduces straightforwardly
from the de�nition of the Lie derivative of a connection thatfor any connectionr 2 [r ]
we have

(L X r )��
 = R��


� X � + r � r � X  + r � (T��

 X � ): (78)



C-PROJECTIVE GEOMETRY 41

Via the isomorphismT M �= T1;0M we may write the result as a di�erential equation
on X a: equation (77) then becomes

r �bX
c + T�a�b

cX �a = 0: (79)

Since a tensor� ��
 of the form (11) satis�es� �bd

c = 0 = � �b�d
c, the equation(L X r )�


� =

� ��
 can be equivalently encoded by the three equations

(L X r )bd
c = � bd

c (L X r )�bd
c � 0 (L X r )�b�d

c � 0; (80)

or, alternatively, their complex conjugates.

Lemma 3.6. If X a 2 �( T1;0M ) satis�es the invariant di�erential equation (79), then

(L X r )�bd
c � 0 (L X r )�b�d

c � 0;

for any connectionr 2 [r ].

Proof. Equation (78) and the formulae of Proposition 2.13 imply

(L X r )�bd
c = Ra�b

c
dX a + R�a�b

c
dX �a + r �br dX c

= � R�ba
c
dX a + R�bd

c
aX a + r dr �bX

c + R�a�b
c
dX �a

= 2R�b[d
c
a]X a + r dr �bX

c � (r dT�b�a
c)X �a:

Hence, the Bianchi symmetry (42) shows that

(L X r )�bd
c = Tda

�eT�e�b
cX a + r dr �bX

c � (r dT�b�a
c)X �a;

which evidently vanishes ifr �bX c = T�b�a
cX �a, and consequently alsor dX �e = Tda

�eX a.
As (L X r )�b�d

c = r �br �dX c + r �b(T�a �d
cX �a), the second assertion is obvious. �

According to Lemma 3.6, it remains to rewrite(L X r )b
c
d = � bd

c as a di�erential
equation onX a. Note that we have

(L X r )b
c
d = r br dX c + Rab

c
dX a + R�ab

c
dX �a: (81)

The Bianchi symmetry (41) R[bd
c
a] � 0 implies Rbd

c
a = � 2Ra[b

c
d]. Moreover,

r br dX c = r (br d)X c + r [br d]X c = r (br d)X c + 1
2(Rbd

c
aX a � Tbd

�er �eX c):

Therefore, we may rewrite (81) as

(L X r )b
c
d = r (br d)X c + Ra(b

c
d)X a + R�a(b

c
d)X �a

� 1
2Tbd

�er �eX c + 1
2Tbd

�eT�e�a
cX �a; (82)

where we used the Bianchi symmetry (42) given byR�a[b
c
d] = 1

2Tbd
�eT�e�a

cX �a. The torsion
terms of (82) evidently cancel ifX a satis�es (79).

Suppose now that2n � 6. Then we deduce from Proposition 2.13 that

Ra(b
c
d)X a = Wa(b

c
d)X a + P(bd)X c + � (b

cPd)aX a � � b
cPadX a � � d

cPabX a; (83)

where the third term and the two last terms already de�ne two tensors of the form (11).
Moreover, we obtain by Proposition 2.13 that

R�a(b
c
d)X �a = H �ab

c
dX �a + 1

n+1 � (b
cTd)f

�eT�e�a
f X �a � 2P�a(b� d)

cX �a; (84)

where the last two terms are again already of the form (11). Therefore, we conclude:

Proposition 3.7. Suppose(M; J; [r ]) is an almost c-projective manifold of dimension
2n � 6. A vector �eld X a 2 �( T1;0M ) is c-projective if and only if it satis�es the
following equations

(1) r �bX c + T�a�b
cX �a = 0

(2) (r (br d)X c + P(bd)X c + Wa(b
c
d)X a + H �ab

c
dX �a)� = 0;
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where the subscript� denotes the trace-free part.

Due to Proposition 2.14 for2n = 4 the equations take a simpler form:

Proposition 3.8. Suppose(M; J; [r ]) is an almost c-projective manifold of dimension
2n = 4. A vector �eld X a 2 �( T1;0M ) is c-projective if and only if it satis�es the
following equations

(1) r �bX
c + T�a�b

cX �a = 0
(2) (r (br d)X c + P(bd)X c + H �ab

c
dX �a)� = 0;

where the subscript� denotes the trace-free part.

The equations in Propositions 3.7 and 3.8 de�ne an invariantdi�erential operator

D aut : T1;0M ! (^ 1;0 
 T0;1M ) � (S2^ 1;0 
 T1;0M )� ;

whose kernel comprises the in�nitesimal automorphisms of(M; J; [r ]).
Let us recall some facts about in�nitesimal automorphisms of Cartan geometries.

De�nition 3.2. Suppose(p: G ! M; ! ) is a Cartan geometry. A vector �eld ~X 2
�( TG) is called anin�nitesimal automorphism of (p: G ! M; ! ), if ~X is right-invariant
for the principal right action on G and L ~X ! = 0.

A Cartan connection! on p: G ! M induces a bijection between right-invariant vec-
tor �elds ~X 2 �( TG) and equivariant functions! ( ~X ) : G ! g. Hence, right-invariant
vector �elds on G are in bijection with sections of the adjoint tractor bundleAM . A
sections of AM corresponds to an in�nitesimal automorphism of the Cartan geometry
if and only if s is parallel for the linear connection

r A s + � (�( s); �); (85)

where r A is the adjoint tractor connection, � : AM ! T M the natural projection,
and � 2 
 2(M; AM ) the curvature of the Cartan geometry; see [29, 36].

The equivalence of categories established in Theorem 2.8 implies that any in�ni-
tesimal automorphismX 2 �( T M ) of an almost c-projective manifold can be lifted
uniquely to an in�nitesimal automorphism of its normal Cartan geometry and con-
versely, any in�nitesimal automorphism of the Cartan geometry projects to an in�n-
itesimal automorphism of the underlying almost c-projective manifold. This implies,
in particular, that � induces a bijection between sections of the adjoint tractorbun-
dle of the almost c-projective manifold that are parallel for the connection (85) and
in�nitesimal automorphisms of the almost c-projective manifold.

For the convenience of the reader let us explicitly compute the modi�ed adjoint
tractor connection (85). For these purposes let us identifythe adjoint tractor bundle
with the (1; 0)-part of its complexi�cation. As such it is �ltered as

AM = A � 1M � A 0M � A 1M;

where A � 1M=A 0M �= T1;0M , A 0M=A 1M �= gl(T1;0M; C) and A 1M �= ^ 1;0. Hence,
for any choice of connectionr 2 [r ], we can identify an element ofAM with a triple

0

@
X b

� b
c

� b

1

A ; where

8
<

:

X b 2 T1;0M
� b

c 2 gl(T1;0M; C)
� b 2 ^ 1;0:

Note that � b
c may be decomposed further into its trace-free and trace parts according

to the decomposition (18)gl(T1;0M; C) �= sl(T1;0M; C) � E (0; 0). However, we shall
not make use of this decomposition. From the formulae (52) and (53) de�ning the
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tractor connection on the standard complex tractor bundleT one easily deduces that
tractor connection onAM = sl(T ) is given by

r A
a

0

@
X b

� b
c

� b

1

A =

0

@
r aX b � � a

b

r a� b
c + � a

c� b + PabX c + ( � a + PadX d)� b
c

r a� b � Pac� b
c

1

A (86)

r A
�a

0

@
X b

� b
c

� b

1

A =

0

@
r �aX b

r �a� b
c + P�abX c + P�adX d� b

c

r �a� b � P�ac� b
c

1

A : (87)

From (85) we deduce that:

Proposition 3.9. Suppose(M; J; [r ]) is an almost c-projective manifold of dimension
2n � 6. Then the projection � : AM ! A M=A 0M �= T1;0M induces a bijection
between sections ofAM that are parallel for

r A
a

0

@
X b

� b
c

� b

1

A +

0

@
0

Wda
c
bX d + W �da

c
bX

�d + Taf
�eT�e �d

f X �d� b
c

CcabX c + C�cabX �c

1

A

r A
�a

0

@
X b

� b
c

� b

1

A +

0

@
T�c�a

bX �c

Wd�a
c
bX d + W �d�a

c
bX

�d + ( r eT �d�a
eX �d � Tdf

�eT�e�a
f X d)� b

c

Cc�abX c + C�c�abX �c

1

A

and in�nitesimal automorphisms of the almost c-projectivemanifold.

Proposition 3.9 can, of course, also be obtained directly byprolonging cleverly the
equations of Proposition 3.7. Note that the form of the equations in Proposition 3.7
immediately shows that � maps parallel sections for the connection in Proposition
3.9 to c-projective vector �elds. To see the converse, one may verify that that for a
c-projective vector �eld X b and for any choice ofr 2 [r ] the section

0

@
X b

� b
c

� b

1

A =

0

@
X b

r bX c

� 1
n+1 (r ar bX a + 2P(ab)X b)

1

A

is parallel for the connection given in Proposition 3.9 and observe that this di�erential
operator indeed de�nes the inverse to the claimed bijection.

Remark 3.2. If the dimension of the almost c-projective manifold is2n = 4, then
Proposition 3.9 still holds taking into account thatWab

c
d � 0.

Remark 3.3. Note that the di�erential operator

D A : T1;0M ! (^ 1;0 
 T0;1M ) � (S2^ 1;0 
 T1;0M )�

X c 7! (r �bX
c; (r (br d)X c + X cP(bd) )� )

is also invariant. It is the �rst operator in the BGG sequenceof the adjoint tractor
bundle. As for projective structures, this operator di�ersfrom Daut , the operator that
controls the in�nitesimal automorphisms of the almost c-projective manifold. For a
discussion of this phenomena in the context of general parabolic geometries see [29].

4. Metrisability of almost c-projective structures

On any (pseudo-)Kähler manifold(M; J; g) one may consider the c-projective struc-
ture that is induced by the Levi-Civita connection ofg. The c-projective manifolds
that arise in this way from a (pseudo-)Kähler metric are the most extensively studied c-
projective manifolds; see [41, 56, 81, 90] and, more recently, [44, 77, 80]. A natural but
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di�cult problem in this context is to characterise the c-projective structures that arise
from (pseudo-)Kähler metrics or, more generally, the almost c-projective structures
that arise from (2; 1)-symplectic (also called quasi-Kähler) metrics. In the following
sections we shall show that, suitably interpreted, this problem is controlled by an invari-
ant linear overdetermined system of PDE and we shall explicitly prolong this system.
Under the assumptions thatJ is integrable and the c-projective manifold(M; J; [r g])
arose via the Levi-Civita connectionr g of a Kähler metric g, a prolongation of the
system of PDE governing the Kähler metrics that are c-projectively equivalent to g
was �rst given in [41, 81] and rediscovered in the setting of Hamiltonian 2-forms on
Kähler manifolds in [2].

4.1. Almost Hermitian manifolds. We begin by recalling some basic facts.

De�nition 4.1. Suppose(M; J ) is an almost complex manifold of dimension2n � 4.
A Hermitian metric on (M; J ) is a (pseudo-)Riemannian metricg�� 2 �( S2T � M ) that
is J -invariant:

J�
 J�

� g� = g�� :

We call such a triple(M; J; g) an almost Hermitian manifold, or, if J is integrable, a
Hermitian manifold. Note that we drop the awkward (pseudo-) pre�x.

To an almost Hermitian manifold (M; J; g) one can associate a nondegenerateJ -
invariant 2-form 
 2 �( ^ 2T � M ) given by


 �� := J�
 g� : (88)

It is called the fundamental2-form or Kähler form of (M; J; g). If 
 is closed (d
 =
0), we say (M; J; g) is almost Kähler or almost pseudo-Kähleraccordingly asg is
Riemannian or pseudo-Riemannian; the �almost� pre�x is dropped if J is integrable.

We write g�� for the inverse of the metricg�� :

g� g� = � �
� :

We raise and lower indices of tensors on an almost Hermitian manifold (M; J; g) with
the metric and its inverse. ThePoisson tensoron M is 
 �� = J

� g� , with


 �� 
 � = � � �
 : (89)

Viewing ^ 1;0 
 ^ 0;1 as a complex vector bundle equipped with the real structure given
by swapping its factors, a Hermitian metric can, by de�nition, also be seen as a real
nondegenerate sectionga�b of ^ 1;0 
 ^ 0;1. We denote byg�ab 2 �( T0;1M 
 T1;0M ) its
inverse, characterised by

ga�bg
�bc = � a

c and ga�bg
�ca = � �b

�c:

Let us denote byr g the Levi-Civita connection of a Hermitian metricg. Di�eren-
tiating the identity J�

 J
� = � � �

� shows that

(r g
� J�

� )J�
 + J�

� r g
� J�

 = 0: (90)

Sincer g
� 
 � = g� r g

� J�
� , it follows immediately from (90) that

r g
� 
 � + J�

� J
� r g

� 
 �� = 0: (91)

Viewing r g
� 
 � as2-form with values in T � M , equation (91) says that the part of type

(1; 1) vanishes identically. On the other hand, the vector bundle map

^ 2T � M 
 T � M ! ^ 3T � M

	 �� 7! 	 [�� ]
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induces an isomorphism between2-forms with values inT � M of type (0; 2) and 3-forms
on M of type (2; 1) + (1 ; 2), i.e. real sections of̂ 2;1 � ^ 1;2. Since

r g
[� 
 � ] = 1

3(d
) �� ; (92)

the identity
2r g

� 
 � = ( d
) �� � J�
� J

� (d
) ��� � N J
�

� 
 �� (93)

shows that type (0; 2) component ofr g
� 
 � is identi�ed with the (2; 1) + (1 ; 2) com-

ponent of d
 [48]. The type (3; 0) + (0 ; 3) component ofd
 is determined by the
Nijenhuis tensorN J , hence so is the type(2; 0) part of r g

� 
 � (which has type (0; 2)
when viewed as a2-form with values in T M using g).

If M has dimension2n � 6, r g
� 
 � can be decomposed into4 components, which

correspond to4 real irreducibleU(p; q)-submodules in̂ 2Cn 
 Cn , whereU(p; q) denotes
the (pseudo-)unitary group of signature(p; q) with p + q = n, the signature ofg�� .
If 2n = 4, then r g

� 
 � has only two components. The di�erent possibilities of a
subset of these invariants vanishing leads to the Gray�Hervella classi�cation of almost
Hermitian manifolds into 16, respectively 4, classes in dimension2n � 6, respectively
2n = 4, see [51]. In the following we shall be interested in the class of almost Hermitian
manifolds which in the literature (at least in the case of metrics of de�nite signature) are
referred to asquasi-Kähleror (2; 1)-symplectic, see [48, 51]. We extend this terminology
to inde�nite signature, as we have done for Hermitian metrics in general.

De�nition 4.2. Suppose(M; J; g) is an almost Hermitian manifold of dimension
2n � 4. Then (M; J; g) is called aquasi-Kähler or (2; 1)-symplecticmanifold, if

r g
� 
 � + J�

� J�
� r g

� 
 �  = 0; (94)

which is the case if and only if

r g
� J�

 = � J�
� J�

� r g
� J�

 : (95)

Sincer � 
 � , as a2-form with values in T � M , has no component of type(1; 1), (94)
means, equivalently, thatr � 
 � has type (2; 0), i.e. has no(0; 2) part; equivalently
d
 has no component of type(2; 1) + (1 ; 2), i.e. it has type (3; 0) + (0 ; 3), which
explains the �(2; 1)-symplectic� terminology. The class of(2; 1)-symplectic manifolds of
dimension2n � 6 contains as a subclass thealmost (pseudo-)Kähler manifolds, which
are symplectic, and the subclass ofnearly Kähler manifolds, i.e. those almost Hermitian
manifolds that satisfy r g

� 
 � = �r g
� 
 � , which is manifestly equivalent to3r g

� 
 � =
(d
) �� . Since in dimension2n = 4 any 3-form has type(2; 1)+(1 ; 2), the condition for
an almost Hermitian manifold of dimension4 to be (2; 1)-symplectic is equivalent to the
condition to be almost (pseudo-)Kähler. IfJ is integrable, i.e.(M; J; g) a Hermitian
manifold, then (M; J; g) is (2; 1)-symplectic if and only if d
 = 0 , i.e. (M; J; g) is
(pseudo-)Kähler.

De�nition 4.3. Let (M; J; g) be an almost Hermitian manifold of dimension2n � 4.
Then aHermitian connection on M is an a�ne connection r with r J = 0 and r g = 0.

Such Hermitian connections exist and are uniquely determined by their torsion. A
discussion of Hermitian connections and of the freedom in prescribing their torsion
can for instance be found in [48] (see also [69]). The following proposition shows that
(2; 1)-symplectic manifolds can be characterised as those almostHermitian manifolds
which admit a minimal Hermitian connection; for a proof see [48].

Proposition 4.1. Suppose(M; J; g) is an almost Hermitian manifold of dimension
2n � 4. Then (M; J; g) admits a (unique) Hermitian connection whose torsionT is of
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type (0; 2) as 2-form with values in T M , equivalentlyT = � 1
4N J , if and only if it is

(2; 1)-symplectic.

For a a (2; 1)-symplectic manifold (M; J; g) we refer to the unique Hermitian con-
nection r of Proposition 4.1 as thecanonical connectionof (M; J; g). In terms of the
Levi-Civita connection r g of g it is given by

r � X � = r g
� X � + 1

2(r g
� J

� )J�
 X � : (96)

For the convenience of the reader let us check that this connection has the desired
properties. For an arbitrary almost Hermitian manifold (M; J; g) the formula (96) is
obviously a complex connection, since

r � (J
� X  ) = 1

2(r g
� (J

� X  ) + J
� r g

� X  )

J
� r � X  = 1

2(r g
� (J

� X  ) + J
� r g

� X  );

which implies(r � J�
 )X � = r � (J

� X  ) � J
� r � X  = 0 for all vector �elds X � . Since

r g is a metric connection, the connection given by (96) is a metric connection if and
only if (r g

� J�
� )J�

� g� = ( r g
� 
 �  )J�

� is skew in  and � , which follows immediately
from (93). Hence, on any almost Hermitian manifold formula (96) de�nes a Hermitian
connection. Moreover, sincer g is torsion free, the torsionT of (96) satis�es

T��
 = 1

2((r g
� J�

 )J�
� � (r g

� J�
 )J�

� ): (97)

Recall that the Nijenhuis tensor can be expressed in terms ofr g (actually in terms of
any torsion free connection) as

N J
��

 = � (r g
� J�

 )J�
� + ( r g

� J�
 )J�

� � J�
� r � J�

 + J�
� r � J�

 ; (98)

which by (95) reduces in the case of a(2; 1)-symplectic manifold to the equation

N J
��

 = � 2((r g
� J�

 )J�
� � (r g

� J�
 )J�

� ): (99)

Comparing (97) with (99) shows that on a(2; 1)-symplectic manifold the torsionT of
(96) satis�es T = � 1

4N J as required. Note that, if the Levi-Civita connectionr g of
(M; J; g) is a complex connection, then alsor g

� 
 � = 0, which by (92) implies that 
 ��

is closed. Moreover, the identity (93) shows thatJ is necessarily integrable in this case.
Conversely, the same identity shows that, ifJ is integrable and the fundamental2-
form closed, then the Levi-Civita connection is a complex connection, cf. Corollary 1.3.
Hence, the connection in (96) coincides with the Levi-Civita connection of on an almost
Hermitian manifold if and only if (M; J; g) is (pseudo-)Kähler.

Remark 4.1. We have already observed that formula (96) de�nes a Hermitian con-
nection on any almost Hermitian manifold, which is usually referred to as the�rst
canonical connectionfollowing [69]. In the case of a(2; 1)-symplectic manifold the �rst
canonical connection coincides also withthe second canonical connectionof [69], which
is also calledChern connection; see [48].

Let (M; J; g) be a (2; 1)-symplectic manifold and denote byR the curvature of its
canonical connectionr . Sincer is Hermitian, we haveR 2 
 2(M; u(T M )), where
u(T M ) � T � M 
 T M denotes the subbundle of unitary bundle endomorphisms of
(T M; J; g). Setting R��� � Rab

�
� g� , the property R 2 
 2(M; u(T M )) of the curvature

of a (2; 1)-symplectic manifold can be expressed as

R��� = R[�� ][� ] and R�� [� J� ]
 = 0: (100)

Moreover, recall that for any linear connection the Bianchisymmetry holds. Hence,R
satis�es

R[��


� ] = r [� T�� ]
 + T� [�

 T�� ]
� ; (101)
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whereT��
 = � 1

4N J
��

 is the torsion ofr . Note that (101) for a minimal connection is
of course precisely equivalent to the already established identities (41) and (42). Since
r is a complex connection,R decomposes as a2-form with values in the complex endo-
morphism ofT M into three components according to type as explained in Section 2.4.
In barred and unbarred indicesR can therefore be encoded by the three tensors

Rab
c
d Ra�b

c
d R�a�b

c
d;

or equivalently by their complex conjugates, whereRab
c
d � � �

a � �
b � c

 � �
dR��


� and so on.

Sincer preserves in addition a (pseudo-)Riemannian metric, the additional symmetry
R��� = � R��� implies

Rab�cd � Rab
e

dge�c = � Rab
�e
�cg�ed � � Rabd�c R�a�b�cd � R�a�b

e
dge�c = � R�a�b

�e
�cg�ed � � R�a�bd�c

Ra�b�cd � Ra�b
e

dge�c = � Ra�b
�e
�cg�ed � � Ra�bd�c R�ab�cd � R�ab

e
dge�c = � R�ab

�e
�cg�ed � � R�abd�c:

Note that the �rst two identities (which are conjugates of each other) show that for
the canonical connection of a(2; 1)-symplectic manifold (in contrast to a general min-
imal complex connection) the curvature componentsRab

c
d and Rab

�c
�d = R�a�b

c
d are not

independent of each other, since they are related byg. Hence, the curvatureR of the
canonical connection of a(2; 1)-symplectic manifold can be encoded by the two tensors

Rab�cd = R[ab]�cd and Ra�b�cd

(or their complex conjugates). By (101), (100) and the fact that the torsion of r
has type (0; 2) one deduces straightforwardly that the curvature and the torsion of a
(2; 1)-symplectic manifold satisfy the symmetries

Rab�cd = �r �cTabd Rab�cd + Rbd�ca + Rda�cb = 0 (102)

r [aTbc]d = 0 (103)

Ra�b�cd � Rd�b�ca = � Tad
�eT�e�b�c Ra�b�cd � Ra�c�bd = � T�b�c

eTead (104)

Ra�b�cd � R�c �da�b = T�a�b�cTda
�e + Tfda T�c�b

f ; (105)

where Tabc = Tab
�dgc �d and T�a�b�c = T�a�b

dgd�c (cf. also (41) and (42)). Now let us consider
the Ricci tensor Ric of the canonical connection of a(2; 1)-symplectic manifold. By
de�nition we have

Ricab = Rca
c
b Ric�a�b = R�c�a

�c
�b Rica�b = R�ca

�c
�b Ric�ab = Rc�a

c
b:

From the identities (102) we we conclude that

Ricab = �r �cT �c
ab Ric[ab] = 1

2r �cTab
�c

Ric�a�b = �r cT c
�a�b Ric[�a�b] = 1

2r cT�a�b
c:

(106)

Moreover, taking a Ricci type contraction in (105) shows immediately that the J -
invariant part of the Ricci tensor of the canonical connection of a (2; 1)-symplectic
manifold is symmetric:

Rica�b = Ric �ba: (107)
The canonical connection of a(2; 1)-symplectic manifold is special in the sense of
Section 2.5, since it preserves the volume form ofg; hence (106) and (107) con�rm in
particular what we deduced there for the Ricci curvature of special connections.

We already observed that(2; 1)-symplectic is equivalent to (pseudo-)Kähler whenJ
is integrable. Hence, in this case, the canonical connection simply coincides with the
Levi-Civita connection. Suppose(M; J; g) is now a (pseudo-)Kähler manifold. Then
the identities (102)�(105) imply that R is determined by any of the following tensors

Ra�bc�d R�abc�d Ra�b�cd R�ab�cd
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which are now subject to the following symmetries

Ra�bc�d = � R�bac�d Ra�bc�d = � Ra�b�dc Ra�bc�d = Rc�ba�d Ra�bc�d = Ra �dc�b (108)

as well as
R �abcd � Ra�bc�d = Rb�ad�c:

Remark 4.2. Let us remark that for the curvature R of a (pseudo-)Kähler manifold,
we haveR[��


� ] = 0 which, together with the symmetries (100), implies

R��� = R��� and J�
� J�

� R��


� = R��


� : (109)

The symmetries of (100) and (109) are precisely the ones in (108) expressed in real
indices. Note also that (109) shows immediately that the Ricci tensor Ric�� = R��

�
�

is symmetric andJ -invariant, which is consistent with (107).

Moreover, note that it is immediate that the rank of the bundle of (pseudo-)Kähler
curvatures is(n(n + 1) =2)2 and that this bundle further decomposes underU(n) as

S2^ 1;0 
 S2^ 0;1 = ( S2^ 1;0 
 � S2^ 0;1) � (^ 1;0 
 � ^ 0;1) � R;

where the subscript� means trace-free part andR stands for the trivial bundle. Under
this decomposition, the (pseudo-)Kähler curvature splitsas

Ra�bc�d = Ua�bc�d � 2(� a�bgc �d + � c �dga�b + � a �dgc�b + � c�bga �d) � 2�( ga�bgc �d + ga �dgc�b); (110)

where
Ua�bc�d = Uc�ba�d = Ua �dc�b g

�bcUa�bc�d = 0 g
�ba� a�b = 0:

This is a Kähler analogue of the usual decomposition of Riemannian curvature into the
conformal Weyl tensor, the trace-free Ricci tensor, and thescalar curvature. The tensor
Ua�bc�d is called theBochner curvature (or tensor) and is the orthogonal projection of
the conformal Weyl curvature onto the intersection of the space of Kähler curvatures
with the space of conformal Weyl tensors [2]. The analogue ofconstant curvature in
(pseudo-)Kähler geometry is to insist thatRa�b�dc = �( ga�bgc �d + gc�bga �d), where the (a
priori) smooth function � is constant by the Bianchi identity. This is calledconstant
holomorphic sectional curvatureand (for � > 0) locally characterisesCPn and its
Fubini�Study metric as in Section 2.6 (where the normalisation is such that � = 1 ).

4.2. Other curvature decompositions. It will be useful, both in this article and
elsewhere, to decompose the (pseudo-)Kähler curvature tensor from various di�erent
viewpoints, some of which ignore the complex structure. Without a complex structure,
barred and unbarred indices are unavailable so �rstly we should rewrite the irreducible
decomposition (110) using only real indices. We recall that

R��� = R[�� ][� ] R[�� ]� = 0 R�� [� J� ]
 = 0 (111)

and the real version of (110) will apply to any tensor satisfying these identities. Re-
calling that 
 �� = J�� = J�

 g� , we obtain

R��� = U���

+ g� � �� � g� � �� � g�� � � + g�� � �

+ 
 � � �� � 
 � � �� � 
 �� � � + 
 �� � � + 2
 �� � � + 2
 � � ��

+ �( g� g�� � g� g�� + 
 � 
 �� � 
 � 
 �� + 2
 �� 
 � );

(112)

where
� U��� is totally trace-free with respect tog�� and 
 ��

� � �� � J�
 � � whilst � �� is symmetric, trace-free, and of type(1; 1):

� �� = � (�� ) � �
� = 0 � �� = � [�� ]:
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A simple way to see this is to check that all parts of this decomposition satisfy (111) as
they should and then apply� �

a � �
�b � 

c � �
�d, using the various identities from Section 1.1

including (4), to recover (110). One can also read o� from (112) the corresponding
decomposition of the Ricci tensor in (pseudo-)Kähler geometry. Speci�cally,

Ric�� = 2( n + 2)� �� + 2( n + 1)� g�� Scal = 4n(n + 1)�

and, conversely,

� = 1
4n(n+1) Scal � �� = 1

2(n+2)

�
Ric�� � 1

2n Scalg��

�
:

Other natural realms in which one may view (pseudo-)Kähler geometry are
� projective
� conformal
� c-projective
� symplectic

and in each case decompose the curvature accordingly. The projective Weyl curvature
tensor [42] on a Riemannian manifold of dimensionm is given by

R��� � 1
m� 1g� Ric�� + 1

m� 1g� Ric�� :

If this vanishes, then, in conjunction with the interchangesymmetry R��� = R��� ,
we deduce thatR��� = � (g� g�� � g� g�� ) where, if m � 3, the (a priori) smooth
function � is constant by the Bianchi identity. This is Beltrami's Theorem that the
only projectively �at (pseudo-)Riemannian geometries areconstant curvature (when
m = 2 one instead uses that the projective Cotton�York tensor vanishes). In any case,
comparison with (112) shows that forn � 2 the only projectively �at (pseudo-)Kähler
manifolds are �at. The conformal Weyl curvature is given by

R��� � g� Q�� + g� Q�� � g�� Q� + g�� Q� ;

whereQ�� is the Riemannian Schouten tensor

Q�� =
1

m � 2

�
Ric�� �

1
2(m � 1)

Scalg��

�
:

Thus, if the conformal Weyl curvature vanishes on a (pseudo-)Kähler manifold, then

2R�
�

 [� J� ]
 = J�� Q�

� + 2( n � 2)J�
 Q� :

From (111), we see that forn � 3 the only conformally �at (pseudo-)Kähler manifolds
are �at. For n = 2 it follows only that the geometry is scalar �at and, in fact, Tanno [96]
showed that 4-dimensional conformally �at Kähler manifolds are locallyof the form
CP1 � � whereCP1 has the Fubini�Study metric up to constant scale and the complex
surface� has a constant negative scalar curvature of equal magnitudebut opposite
sign to that on CP1.

From the c-projective viewpoint, if we compare the decomposition (112) with (24),
then we conclude, �rstly that W��


� = H ��


� (see the proof of Proposition 4.4 for a

barred/unbarred index proof of this), and then that

H ��� = U��� � g�� � � + g�� � � + 1
n+1 (g� � �� � g� � �� )

+ 2
 �� � � � 
 �� � � + 
 �� � � � 1
n+1 (2
 � � �� � 
 � � �� + 
 � � �� ):

(113)

Notice, in particular, that
H ��

� = 2 n(n+1)
n+1 � � (114)

from which we can deduce the following c-projective counterpart to Beltrami's Theo-
rem.
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Theorem 4.2. Suppose a(pseudo-)Kähler metric is c-projectively �at. Then it has
constant holomorphic sectional curvature.

Proof. To be c-projectively �at, the harmonic curvature tensor H ��


� must vanish.
Then from (114) we �nd that � �� = 0 and from (113) that alsoU��� = 0. According
to (112) we �nd that R��� is of the required form. �

Finally, we may view (pseudo-)Kähler geometry from the purely symplectic view-
point as follows. For any torsion-free connection preserving 
 �� , the tensor R��

�
� 
 �

is symmetric in � and may be decomposed into irreducible pieces underSp(2n; R):

R��
�
� 
 � = V��� + 
 � � �� � 
 � � �� + 
 �� � � � 
 �� � � + 2
 �� � � ; (115)

where

V��� = V[�� ]( � ) V[�� ]� = 0 
 �� V��� = 0 � �� = � (�� ) :

Proposition 4.3. On a (pseudo-)Kähler manifold, if the tensorV��� vanishes, then
the metric has constant holomorphic sectional curvature.

Proof. From (115), we �nd that


 �� R��
�
� 
 � = 
 �� [
 � � �� � 
 � � �� + 
 �� � � � 
 �� � � + 2
 �� � � ] = 4( n + 1)� �

whereas computing according to (112) leads to
 �� R��
�
� 
 � = 4� � . We conclude that

� �� = ( n + 1)� �� at which point we may compare (115) with (112) whenV��� = 0
to conclude that U��� = 0 and � �� = 0, as required. �

4.3. Metrisability of almost c-projective manifolds. Suppose(M; J; [r ]) is an
almost c-projective manifold. It is natural to ask whether[r ] contains the canonical
connection of a(2; 1)-symplectic metric on(M; J ).

De�nition 4.4. On an almost c-projective manifold(M; J; [r ]) a (2; 1)-symplectic
metric g 2 �( S2T � M ) on (M; J ) is compatiblewith the c-projective class[r ] if and only
if its canonical connection is contained in[r ]. The almost c-projective structure onM
is said to bemetrisableor (2; 1)-symplecticor quasi-Kähler(or Kähler or pseudo-Kähler
when J is integrable) if it admits a compatible(2; 1)-symplectic metricg (respectively
a Kähler or pseudo-Kähler metricg, if J is integrable).

The volume form vol(g) of g is a positive section of̂ 2nT � M , which we view as a
c-projective density of weight(� (n + 1) ; � (n + 1)) under the identi�cation of oriented
real line bundles^ 2nT � M = ER(� (n + 1) ; � (n + 1)) determined by

"ab��� c �" �d�e��� �f 2 �( ^ 2nT � (n + 1; n + 1)) ;

where"ab��� c 2 �( ^ n;0(n+1; 0)) is the tautological form from Section 2.1. We now write
vol(g) = � � (n+1)

g uniquely to determine a positive section� g of ER(1; 1). The canonical
connectionr of g is a special connection in the c-projective class, and for all ` 2 Z,
� `

g = vol( g)� `=(n+1) 2 �( ER(`; ` )) is a r -parallel trivialisation of ER(`; ` ).
In the integrable case, the metrisability of a c-projectivestructure gives easily the

following constraints on the harmonic curvature.

Proposition 4.4. Let (M; J; [r ]) be a c-projective manifold of dimension2n � 4.
If [r ] is induced by the Levi-Civita of a(pseudo-)Kähler metric on (M; J ), then the
harmonic curvature only consists of the(1; 1)-part

Wa�b
c
d = Ha�b

c
d

of the (c-projective) Weyl curvature.
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Proof. Suppose �rst that 2n � 6. Then we have to show thatWab
c
d vanishes. Recall

that, by construction, Wab
c
d is the connection-independent part of the(2; 0)-component

of the curvature of any connection in the c-projective class. Hence, if [r ] is induced
from the Levi-Civita connection of a (pseudo-)Kähler metric on (M; J ), then Wab

c
d

vanishes identically, since the curvature of a (pseudo-)Kähler metric is J -invariant. If
2n = 4, then Wab

c
d is always identically zero and the(2; 0)-part Cabc of the Cotton�

York tensor is independent of the choice of connection in thec-projective class. Since
the Ricci tensor Ric�� of a (pseudo-)Kähler metricg is J -invariant (109), we have
Pa�b = 1

n+1 Rica�b and Ricab = Pab = 0. Hence, if2n = 4 and the c-projective structure is
metrisable, thenCabc = r aPbc�r bPac vanishes identically, which proves the claim. �

We now link compatible metrics to solutions of the �rst BGG operator associated to
a real analogueV of the standard complex tractor bundleT . Any almost c-projective
manifold (M; J; [r ]) admits a complex vector bundle

VC = T 
 T :

Although the construction of T and T requires the existence and choice of an(n + 1) st

root E(1; 0) of ^ nT1;0M , the vector bundle T 
 T is de�ned independently of such
a choice. Moreover, swapping the two factors de�nes a real structure on T 
 T and
henceVC is the complexi�cation of a real vector bundleV over M corresponding to
that real structure. The �ltration (49) of T induces �ltrations on V and VC given by

VC = V� 1
C � V 0

C � V 1
C ;

where

V� 1
C =V0

C
�= T0;1M 
 T1;0M (� 1; � 1)

V0
C=V1

C
�= (T1;0M � T0;1M )(� 1; � 1)

V1
C

�= E(� 1; � 1):

For any choice of connectionr 2 [r ] we can therefore identify an element ofVC with
a quadruple

0

@
� �bc

X b j Y �b

�

1

A ; where

8
<

:

� �bc 2 T0;1M 
 T1;0M (� 1; � 1);
X b 2 T1;0M (� 1; � 1); Y �b 2 T0;1M (� 1; � 1);
� 2 E(� 1; � 1);

and elements ofV can be identi�ed with the real elements ofVC:

� �cb = �
�bc; X b = Y

�b and �� = �: (116)

The formulae (52) and (53) for the tractor connection onT immediately imply that
the tractor connection onVC = T 
 T is given by

r VC
a

0

@
� �bc

X b j Y �b

�

1

A =

0

@
r a� �bc + � a

cY �b

r aX b + �� a
b � Pa�c� �cb j r aY �b � Pac�

�bc

r a� � Pa�bY
�b � PabX b

1

A (117)

r VC
�a

0

@
� �bc

X b j Y �b

�

1

A =

0

@
r �a� �bc + � �a

�bX c

r �aX b � P�a�c� �cb j r �aY �b + �� �a
�b � P�ac�

�bc

r �a� � P�a�bY
�b � P�abX b

1

A : (118)

Note that the real structure onVC is parallel for this connection and that, consequently,
the tractor connection onV is the restriction of (117) and (118) to real sections (116).

Now consider, for a section� �bc of T0;1M 
 T1;0M (� 1; � 1), the system of equations

r a�
�bc + � a

cY
�b = 0; r �a�

�bc + � �a
�bX c = 0 (119)
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for some sectionsX c of T1;0M (� 1; � 1) and Y �b of T0;1M (� 1; � 1). It follows immedi-
ately from the invariance of (59) that the system (119) is c-projectively invariant. In
fact, if � �bc 2 �( T0;1M 
 T1;0M (� 1; � 1)) satis�es (119) for some connectionr 2 [r ],
for someX c 2 �( T1;0M (� 1; � 1)), and for someY �b 2 �( T1;0M (� 1; � 1)), then � �bc

satis�es (119) for r̂ 2 [r ] with

X̂ c = X c � � �b�
�bc and Ŷ

�b = Y
�b � � c�

�bc: (120)

Moreover, if (119) is satis�ed, one must haveY �b = � 1
n r a� �ba and X c = � 1

n r �a� �ac. If
� �bc is a real section, then the �rst equation in (119) is satis�edif and only if the second
equation of (119) holds, in which caseX b = Y �b. We can reformulate these observations
as follows. There is an invariant di�erential operator

D V
C : T0;1M 
 T1;0M (� 1; � 1) !

(^ 1;0 
 T0;1M 
 T1;0M (� 1; � 1))�

�
(^ 0;1 
 T0;1M 
 T1;0M (� 1; � 1))�

(121)

given by � �bc 7! (r a� �bc� 1
n � a

cr d� �bd; r �a� �bc� 1
n � �a

�br �d� �dc). Restricting D VC to real sections
� �bc = � �cb gives an invariant di�erential operator D V . It is the �rst operator in the BGG
sequence corresponding to the tractor bundleV and D VC is its complexi�cation.

Proposition 4.5. Let (M; J; [r ]) be an almost c-projective manifold of dimension
2n � 4. Then, whenn is even, the map sending a Hermitian metricgb�c to the real
section � �ab = g�ab� � 1

g of T0;1M 
 T1;0M (� 1; � 1) restricts to a bijection between com-
patible (2; 1)-symplectic Hermitian metrics on(M; J; [r ]) and nondegenerate sections
in the kernel of D V . The inverse map sends� �ab to the Hermitian metric gb�c with
g�ab = (det � )� �ab, where

det � := 1
n! �" �a�c��� �e "bd��� f � �ab� �cd � � � � �ef 2 �( ER(1; 1)) (122)

and "ab��� c denotes the tautological section of̂ n;0(n+1; 0). When n is odd, the mapping
� �ab 7! g�ab := (det � )� �ab is 2� 1 and, conversely, the mappingg�ab 7! � �ab := � � 1

g g�ab picks
a preferred sign for� �ab but, otherwise, the same conclusions hold.

Proof. Assume �rst that gb�c is a compatible(2; 1)-symplectic Hermitian metric, i.e. its
canonical connectionr is contained in [r ]. Then � �ab = g�ab� � 1

g is a real section of
T0;1M 
 T1;0M (� 1; � 1), which satis�es (119) for r with X c = 0 and Y �c = X c = 0.
Hence,� �bc is in the kernel ofD V , and det � = � n+1

g � � n
g = � g.

Conversely, suppose that� �bc 2 �( T0;1M 
 T1;0M (� 1; � 1)) is a real nondegenerate
section satisfying (119) for some connectionr 2 [r ] with X b 2 �( T1;0M (� 1; � 1)) and
Y �b = X �b 2 �( T0;1M (� 1; � 1)). Since� �ab is nondegenerate, there is a unique1-form
� b such that � �ab� b = X �a. Let us denote byr̂ 2 [r ] the connection obtained by c-
projectively changingr via � b. Then we deduce form (120) thatr̂ a� �bc = r̂ �a� �bc = 0.
Since"ab��� c is parallel for any connection in the c-projective class,det � is parallel for
r̂ . Hence,g�bc = � �bcdet � is a real nondegenerate section ofT0;1M 
 T1;0M that is
parallel for r̂ , i.e. its inversegb�c is a(2; 1)-symplectic Hermitian metric whose canonical
connection isr̂ 2 [r ]. �

The real vector bundleV can be realised naturally in two alternative ways as follows.
First, let us view T as a real vector bundleTR equipped with a complex structureJ T

(thus, equivalently, TR 
 C �= T � T ). Then we can identify V as the J T -invariant
elements inS2TR. However, sinceJ T induces an isomorphism betweenJ T -invariant
elements inS2TR and such elements in̂ 2TR, cf. (88), we may, secondly, realiseV as
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the latter. Realised as the bundle ofJ T -invariant elements in S2TR we can, for any
choice of connection in the c-projective class, identify anelement ofV with a triple

0

@
� �

X �

�

1

A ; where

8
<

:

� � 2 S2T M 
 E R(� 1; � 1) with J�
� J�

 � �� = � �

X � 2 T M 
 E R(� 1; � 1)
� 2 ER(� 1; � 1):

In this picture the tractor connection becomes

r V
�

0

@
� �

X �

�

1

A =

0

@
r � � � + � �

(� X  ) + J�
(� J�

 )X �

r � X � + �� �
� � P� � �

r � � � P�� X �

1

A : (123)

The formulae (117) and (118) may be recovered from (123) by natural projection:

r VC
a = � �

a r V
� ; r VC

�a = � �
�a r V

� ; �
�bc = �

�b
� � c

 � � ; X b = � b
� X � ; Y

�b = �
�b
� X � ;

so that, for example,

� �
a � �

b (r � X � + �� �
� � P� � � ) = r aX b + �� a

b � Pa � b

= r aX b + �� a
b � Pa�c� �cb;

as in (117). To pass explicitly to the second (skew) viewpoint on V described above,
one can write� � = J�

 � �� and Y � = J�
� X � . Then, for any choice of connection in

the c-projective class, an element ofV may alternatively be identi�ed with a triple
0

@
� �

Y �

�

1

A ; where

8
<

:

� � 2 ^ 2T M 
 E R(� 1; � 1) with J�
� J�

 � �� = � �

Y � 2 T M 
 E R(� 1; � 1)
� 2 ER(� 1; � 1):

The tractor connection becomes

r V
�

0

@
� �

Y �

�

1

A =

0

@
r � � � + � �

[� Y  ] + J�
[� J�

 ]Y �

r � Y � + �J �
� + P� � �

r � � + P�� J
� Y 

1

A : (124)

The formulae (117) and (118) are again projections of (124):

�
�bc = i �

�b
� � c

 � � X b = � i � b
� Y � Y

�b = i �
�b
� Y � :

4.4. The metrisability equation and mobility. Let (M; J; [r ]) be an almost c-
projective manifold. By Proposition 4.5, solutions to the metrisability problem on
M , i.e. compatible(2; 1)-symplectic metrics up to sign, correspond bijectively to non-
degenerate solutions� of the equation D V � = 0. We refer to this equation as the
metrisability equation on (M; J; [r ]). It may be written explicitly in several ways.

First, viewing V as the real part ofVC, � �bc satis�es, by (119), the conjugate equations:

r a�
�bc + � a

cX
�b = 0 and r �a�

�bc + � �a
�bX c = 0 (125)

for some (and hence any) connectionr 2 [r ] and some sectionX a of T1;0M 

ER(� 1; � 1) with conjugate X �a. In the alternative realisation (123) ofV, the metris-
ability equation for J -invariant sections� �� of S2T M 
 E R(� 1; � 1) is

r � � � + � �
(� X  ) + J�

(� J�
 )X � = 0 (126)

for some sectionX � of T M 
 E R(� 1; � 1). Similarly, using the realisation (124) ofV,
the metrisability equation for J -invariant sections� �� of ^ 2T M 
 E R(� 1; � 1) is

r � � � + � �
[� Y  ] + J�

[� J�
 ]Y � = 0 (127)

for some sectionY � of T M 
 E R(� 1; � 1).
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De�nition 4.5. The (degree of) mobility of an almost c-projective manifold, is the
dimension of the space

mc[r ] := ker D V =
�

� ��

�
�
�
�

J
� J�

� � � = � ��

r � � � + � �
(� X  ) + J�

(� J�
 )X � = 0 for someX �

�

of solutions to the metrisability equation.

In the sequel, the notion of mobility will only be of interestto us when the metris-
ability equation has a nondegenerate solution. Then(M; J; [r ]) has mobility � 1, and
the mobility is the dimension of the space of compatible(2; 1)-symplectic metrics. For
any (2; 1)-symplectic Hermitian metric g on a complex manifold(M; J ), the mobility
of the c-projective class[r ] of its canonical connectionr is � 1, and will be called the
mobility of g. If such a metric g has mobility one, i.e. the constant multiples ofg are
the only metrics compatible with c-projective class[r ], then most natural questions
about the geometry of the c-projective manifold(M; J; [r ]) can be reformulated as
questions about the Hermitian manifold(M; J; g). For example the c-projective vector
�elds of (M; J; [r ]) are Killing or homothetic vector �elds for g. Hence, roughly speak-
ing, there is essentially no di�erence between the geometryof the Hermitian manifold
(M; J; g) and the geometry of the c-projective manifold(M; J; [r ]).

We will therefore typically assume in the sequel that(M; J; g), or rather, its c-
projective class(M; J; [r ]), has mobility � 2, and hence admits compatible metrics
~g that are not proportional to g; we then sayg and ~g are c-projectively equivalent.
Although all metrics in a given c-projective class are on thesame footing, it will often
be convenient to �x a background metricg, corresponding to a nondegenerate solution
� of (125). Then any section~� of T0;1M 
 T1;0M (� 1; � 1) may be written

~� �ac = � �abAb
c

for uniquely determinedAb
c�explicitly, we have:

A �ab = (det � )~� �ab and Aa
b = ga�cA �cb:

Since� and ~� are real,Ab
c is g-Hermitian (i.e. the isomorphismT0;1M ! 
 1;0 induced

by g intertwines the transpose ofAa
b with its conjugate):

Aa
b = A

�b
�a := g

�bdAd
cgc�a:

Using the canonical connectionr of g, the metrisability equation (125) for ~� may be
rewritten as an equation forAa

b, which we call themobility equation:

r aAb
c = � � a

c� b; or (equivalently) r �cAa
b = � ga�c� b; (128)

where� b = � b
� � � with � � real, and � b = � �

b � � = � �
bg�� � � = gb�a� �a with � �a = � �a

� � � .
Taking a trace gives� c = r c� and � �c = r �c� , with � = � Aa

a = � A �a
�a real. The

metric g itself corresponds to the solutionAa
b = � a

b of (128), with � c = 0.
Since the background metricg trivialises the bundlesE(`; ` ) by r -parallel sections

� `
g = (det � )` , we shall often assume these bundles are trivial. We may alsoraise and

lower indices usingg to obtain further equivalent forms of the mobility equations:

r aA
�bc = � � a

c�
�b or r �aA

�bc = � � �a
�b� c; (129)

r aAb�c = � ga�c� b or r �aAb�c = � gb�a� �c: (130)

Like the metrisability equation, the mobility equation canbe rewritten in explicitly
real terms. If we let ~� � = � �� A �

 and raise indices usingg, then the metrisability
equation (126) maybe rewritten as a mobility equation for the unweighted tensorA �� 2
�( S2

J (T M )):
r � A � = � � �

(� �  ) � J�
(� J�

 ) � � : (131)
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We thus have that

� � = r � � where � = � 1
2A �

� : (132)

Tracing back through the identi�cations, note that

A �� =
� vol(~g)

vol(g)

� 1=(n+1)
~g�� ; (133)

where ~g�� = (det ~� )~� �� is the inverse metric induced by~� �� .
We may, of course, also lower indices to obtain:

r � A � = � g� (� �  ) + 
 � (� J )
� � � : (134)

This is the form of the mobility equation used in [41, 94] and [44, Equation (3)] to study
c-projectively equivalent Kähler metrics. This is a special case of Proposition 4.5, in
which we suppose that there is a (pseudo-)Kähler metric in our c-projective class and
we ask about other (pseudo-)Kähler metrics in the same c-projective class.

Finally, we may rewrite (127) as a mobility equation with respect to a background
(2; 1)-symplectic metric g with fundamental 2-form 
 and canonical connectionr .
Trivialising E(1; 1) and lowering indices usingg, we obtain

r � � � + g� [� Y ] � 
 � [� J ]
� Y� = 0

for a 2-form � �� . In the integrable case (i.e. wheng is (pseudo-)Kähler) this is the
equation forHamiltonian 2-forms in the terminology of [2]. We extend this terminology
to the (2; 1)-symplectic setting and refer to its c-projectively invariant version (127) as
the equation forHamiltonian 2-vectors � �� on an almost c-projective manifold.

Remark 4.3. If g is a Kähler metric, then applying the contracted di�erential Bianchi
identity ge�br [eRa]�bc�d = 0 to the Bochner curvature decomposition (110), we deduce that
if the Bochner curvature is coclosed, i.e.ge�br eUa�bc�d = 0, then Ac �d := ( n + 2)� c �d + � gc �d
satis�es the mobility equation in the form (130). Equivalently, the correspondingJ -
invariant 2-form, which is a modi�cation of the Ricci form, is a Hamiltonian 2-form.
This was one of the motivations for the introduction of Hamiltonian 2-forms in [2], and
is explored further in [5].

Remark 4.4. Many concepts and results in c-projective geometry have analogues
in real projective di�erential geometry. We recall that on a smooth manifold M of
dimensionm � 2, a (real) projective structure is a class[r ] of projectively equivalent
a�ne connections, cf. (10). It is shown in [43] that the operator

�( M; S2T M (� 2)) 3 � � 7! (r � � � )� ; (135)

whereS2T M (� 2) denotes the bundle of contravariant symmetric tensors of projective
weight � 2 and � denotes the trace-free part, is projectively invariant (itis a �rst BGG
operator) and that, whenn is even and otherwise up to sign, nondegenerate solutions
are in bijection with compatible (pseudo-)Riemannian metrics, i.e. metrics whose Levi-
Civita connection is in the projective class[r ]. We de�ne the mobility of [r ], or of
any compatible (pseudo-)Riemannian metric, to be the dimension of this space

m[r ] := f � � 2 �( M; S2T M ) j r � � � = � �
� �  + � a

 � � for some� � g

of solutions to this projectivemetrisability or mobility equation, where we reserve the
latter term for the case that the projective structure admits a compatible metric.
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4.5. Prolongation of the metrisability equation. Suppose(M; J; [r ]) is an almost
c-projective manifold and let us prolong the invariant system of di�erential equations
on sections� �bc of T0;1M 
 T1;0M (� 1; � 1) given by (119). We have already observed
that (119) implies that

X b = � 1
n r �a� �ab and Y

�b = � 1
n r a�

�ba: (136)

Moreover, we immediately deduce from (119) that

(r ar b � r br a)� �cd + Tab
�er �e� �cd = 2� [a

dr b]Y �c � Tab
�cX d (137)

(r �ar �b � r �br �a)� �cd + T�a�b
er e� �cd = 2� [�a

�cr �b]X
d � T�a�b

dY �c: (138)

The left hand sides of equations (137) and (138) equal

Rab
d

e� �ce + Rab
�c
�e� �ed + 2P[ab]� �cd � 1

n+1 (r �eTab
�e)� �cd

= Wab
d

e� �ce + 2� [a
dPb]e� �ce + ( r �eTab

�c)� �ed � 1
n+1 (r �eTab

�e)� �cd (139)

R�a�b
�c
�e� �ed + R�a�b

d
e� �ce + 2P[�a�b]�

�cd � 1
n+1 (r eT�a�b

e)� �cd

= W�a�b
�c
�e� �ed + 2� [�a

�cP�b]�e�
�ed + ( r eT�a�b

d)� �ce � 1
n+1 (r eT�a�b

e)� �cd; (140)

where we have used Theorem 2.13 to rewrite the curvature tensors Rab
c
d, R�a�b

�c
�d, R�a�b

c
d,

and Rab
�c

�d. We conclude from (137) and (139), taking a trace with respect to a and d,
and from (138) and (140), taking a trace with respect to�a and �c, that

r bY �c = Pbe� �ce + 1
n Ub

�c r �bX
d = P�b�e�

�ed + 1
n V�b

d; (141)

where

Ub
�c := n

n� 1Tab
�cX a + n

n� 1(r �eTab
�c)� �ea � n

(n+1)( n� 1) (r �eTab
�e)� �ca (142)

V�b
d := n

n� 1T�a�b
dY �a + n

n� 1(r eT�a�b
d)� �ae � n

(n+1)( n� 1) (r eT�a�b
e)� �ad; (143)

depend linearly on� �bc and on X a respectivelyY �a.

Remark 4.5. SupposeJ is integrable. Then the equations (141) implyr bY �c = Pbe� �ce

and r �bX
d = P�b�e�

�ed. Hence, in this case, the equalities between (137) and (139)and
between (138) and (140) show that

Wab
d

e� �ce � 0 W�a�b
�c
�e� �ed � 0: (144)

If � �ab is a nondegenerate solution of (119), then (144) implies that Wab
c
d and its

conjugate are identically zero, which con�rms again Proposition 4.4 for 2n � 6.

Now consider

(r ar �b � r �br a)� �cd = Ra�b
d

e� �ce + Ra�b
�c
�e� �ed + Pa�b�

�cd � P�ba�
�cd: (145)

By Equation (119) and Theorem 2.13 we may rewrite (145) as

� � �b
�cr aX d + � a

dr �bY
�c = Wa�b

d
e� �ce + Wa�b

�c
�e� �ed + � a

dP�be�
�ce � � �b

�cPa�e� �ed: (146)

Taking the trace in (146) with respect to�b and �c shows that

r aX d = Pa�e� �ed � 1
n � a

d(P�be�
�be � r �bY

�b) � 1
n Wa�b

d
e�

�be (147)

and with respecta and d that

r �bY
�c = P�be�

�ce � 1
n � �b

�c(Pa�e� �ea � r aX d) + 1
n Wa�b

�c
�e� �ea: (148)

As the contraction of (147) with respect toa and d and the contraction of (148) with
respect�b and �c must lead to the same result, we see that

1
n (P�be�

�be � r �bY
�b) = 1

n (Pa�e� �ea � r aX a); (149)
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which we denote by� 2 �( E(� 1; � 1)). Inserting (136) into (149) therefore implies
that

� = 1
n2 (r �ar b� �ab + nP�ab� �ab) = 1

n2 (r br �a� �ab + nPa�b�
�ba): (150)

By Theorem 2.13 we have

(r ar �b � r �br a)X c = Ra�b
c
dX d + Pa�bX

c � P�baX
c (151)

= Wa�b
c
dX d + � a

cP�bdX
d + Pa�bX

c:

Inserting the second equation of (141) and (147) into the left hand side of (151) one
computes that

(r ar �b � r �br a)X a = nr �b� + Pa�bX
a � nP�b�eY

�e + Ca�b�e�
�ea + Z�b; (152)

with

Z�b := n
(n+1)( n� 1) (r aT�e�b

a)Y �e + 1
n� 1T�e�b

aPad� �ed + 1
n(n� 1) T�e�b

aUa
�e

� 1
(n+1)( n� 1) (r ar dT�e�b

d)� �ea + 1
(n� 1) (r ar dT�e�b

a)� �ed; (153)

where we have used (119), (142) and thatWa�b
a

d is zero. Note again thatZ�b depends
linearly on � �ab, X a andY �a. From (151), the expression (152) must be equal tonP�bdX d+
Pa�bX

a, which implies that

r �b� = P�baX
a + P�b�eY

�e � 1
n Ca�b�e�

�ea � 1
n Z�b: (154)

Rewriting (r ar �b � r �br a)Y �c analogously shows immediately that

r a� = PadX d + Pa�eY �e + 1
n Ca�bd�

�bd + 1
n Qa; (155)

where

Qa := n
(n+1)( n� 1) (r �eTda

�e)X d + 1
n� 1Tda

�bP�b�e�
�ed + 1

n(n� 1) Tda
�bV�b

d

� 1
(n+1)( n� 1) (r �br �eTda

�e)�
�bd + 1

(n� 1) (r �br �eTda
�b)� �ed; (156)

depends linearly on� �ab, X a and Y �a. In summary, we have proved the following.

Theorem 4.6. Suppose(M; J; [r ]) is an almost c-projective manifold. The canonical
projection � : VC := T 
 T ! T0;1M 
 T1;0M (� 1; � 1) induces a bijection between
sections ofVC that are parallel for the linear connection

r VC
a

0

@
� �bc

X b j Y �b

�

1

A +
1
n

0

@
0

Wa �d
b
c�

�dc j � Ua
�b

� Ca�bc�
�bc � Qa

1

A (157)

and

r VC
�a

0

@
� �bc

X b j Y �b

�

1

A +
1
n

0

@
0

� V�a
b j W�ac

�b
�d� �dc

� C�ac�b�
�bc � Za

1

A (158)

and elements in the kernel ofD VC, whereUa
�b, V�a

b, Qa and Za are de�ned as in (142),
(143), (153) and (156). The inverse of this bijection is induced by a di�erential operator
L : T0;1M 
 T1;0M (� 1; � 1) ! V C, which for a choice of connectionr 2 [r ] can be
written as

L : �
�bc 7!

0

@
� �bc

� 1
n r �a� �ab j � 1

n r a� �ba

1
n2 (r �ar b� �ab + nP�ab� �ab)

1

A :

If J is integrable,Wa�b
c
d = Ha�b

c
d and W�ab

�c
�d = H �ab

�c
�d (by Theorem 2.13) and Ua

�b, V�a
b,

Qa and Z �a are identically zero.
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Let now V be the real form of the vector bundleVC, as de�ned in the previous section.
Obviously, the connection in Theorem 4.6 preservesV and therefore Proposition 4.5
and Theorem 4.6 imply that:

Corollary 4.7. Suppose(M; J; [r ]) is an almost c-projective manifold of dimension
2n � 4. Then, up to sign, there exists a bijection between compatible (2; 1)-symplectic
Hermitian metrics and sectionss of V that satisfy

� � (s) � � �bc is nondegenerate
� s is parallel for the connection given by(157) and (158).

Note, that sinces is a real section, it is covariant constant for(157) if and only if it
is covariant constant for (158).

Supposes is a section ofV that is parallel for the tractor connection. Then� (s) � � �bc

is still in the kernel of D V and hence Theorem 4.6 implies thats is also parallel for
the connection given by (157) and (158), i.e.� (s) � � �ab must satisfy Wa �d

b
c�

�dc = 0,
W�ac

�b
�d� �dc = 0, Ua

�b = 0, V�a
b = 0, Ca�bc�

�bc + Qa = 0 and C�ab�c� �cb + Z �a = 0. The
following proposition gives a geometric interpretation ofparallel sections of the tractor
connection and hence of so-callednormal solutions of the �rst BGG operator D V in
the terminology of [33].

Proposition 4.8. Suppose(M; J; [r ]) is an almost c-projective manifold of dimension
2n � 4. Then, if n is even, there is a bijection between sectionss of V such that

� � (s) � � �bc is nondegenerate
� s is parallel for the tractor connectionr V on V

and compatible(2; 1)-symplectic metricsg satisfying the generalised Einstein condition:

Ricab = 0 and Rica�b = kga�b for some constantk 2 R; (159)

whereRic is the Ricci tensor of the canonical connection ofg. If J is integrable, then
(159) simply characterises(pseudo-)Kähler�Einstein metrics. If n is odd, the same
conclusions are valid up to sign.

Proof. Supposes 2 �( V) is parallel for the tractor connectionr V and that � (s) �
� �bc 2 kerD V is nondegenerate. Then Proposition 4.5 implies that the inverse ofg�ab �
� �ab det � is a compatible(2; 1)-symplectic Hermitian metric. Now let r 2 [r ] be the
canonical connection ofga�b. With respect to the splitting of V determined by r the
sections corresponds to the section

0

@
� �bc

X b j X �b

�

1

A =

0

@
� �bc

0 j 0
1
n Pa�b�

�ba

1

A : (160)

From r Vs = 0 it therefore follows on the one hand thatPac�
�bc = 0, which implies

Pac = 0 by the nondegeneracy of� �bc. SinceRicab = ( n � 1)Pab + 2P[ab], we see that the
�rst condition of (159) holds for g. On the other hand, we deduce fromr Vs = 0 that
Pa�c� �cb = �� a

b and r a� = r �a� = 0. SincePa�c = 1
n+1 Rica�b, we conclude that

Rica�cg�cb = ( n + 1) � (det � )� a
b:

Hencega�b satis�es also the second condition of (159).
Conversely, supposega�b is a compatible(2; 1)-symplectic Hermitian metric satisfying

(159). Let us write s 2 �( V) for the corresponding parallel section of the prolongation
connection given by (157) and (158). With respect to the splitting of V determined
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by the canonical connectionr of ga�b, the section s is again given by (160), where
� �ab det(� ) = g�ab. By assumption we have

Ricab = 0; (161)

which is equivalent toPab = 0, and also that

Pa�b = 1
n+1 Rica�b = k

n+1 ga�b (162)

for some constantk. Moreover, (161) yields

0 = Ricab = � g�cdr �cTda
�f gb �f 0 = Ric [ab] = 1

2r �cTab
�c (163)

which shows immediately that (with respect tor ) in (157) and (158) we have

Ua
�b = 0 V�a

b = Ua
�b = 0 Qa = 0 Z �a = Q�a = 0:

Hence, to prove thats is parallel for r V it remains to show that Wa �d
b
cg

�dc and Ca�bcg
�bc

(or equivalently their conjugates) are identically zero. From Theorem 2.13 and (162)
we obtain

Wa �d
b
cg

�dc = Ra �d
b
cg

�dc � � a
bP �dcg

�dc � P �dag
�db = Ra �d

b
cg

�dc � k� a
b: (164)

Therefore, if we lower theb index in (164) with the metric, we obtain

Wa �d�bcg
�dc = Ra �d�bcg

�dc � kga�b:

Sincer preservesg, the tensorsRa �d�bc = � R �da�bc and � Ra �dc�b coincide. Hence,Ra �d�bcg
�dc =

R �dac�bg
�dc = Ric a�b = kga�b, which shows that (164) vanishes identically. From (161) and

(162) it follows immediately that Ca�bc = r aP�bc � r �bPac vanishes identically, which
completes the proof. �

Remark 4.6. As observed in Section 4.3,VC = T 
 �T , and sections ofV may be viewed
as Hermitian forms onT � . This has an interpretation in terms of the construction of the
complex a�ne cone � C: C ! M described in Section 3.2: by Lemma 3.4, a Hermitian
form on T � pulls back to a Hermitian form onT � C. If this form is nondegenerate, its
inverse de�nes a Hermitian metric onC. Further, if the section of V is parallel with
respect to a connection onV induced by a connection onT , then the latter connection
induces a metric connection onC.

In particular, if we have a compatible metric satisfying thegeneralised Einstein
condition of Proposition 4.8, then it generically induces ametric on C which is parallel
for the connectionr C induced by the tractor connection onT .

4.6. The c-projective Hessian. Let us consider the dualW of the tractor bundle
V of an almost c-projective manifold. Its complexi�cation isgiven by WC = T � 
 T � ,
which admits a �ltration

WC = W � 1
C � W 0

C � W 1
C;

such that for any connectionr 2 [r ] we can write an element ofWC as
0

@
�

� b j � �b
� b�c

1

A ; where

8
<

:

� 2 E(1; 1);
� b 2 ^ 1;0M (1; 1); � �b 2 ^ 0;1M (1; 1);
� b�c 2 ^ 1;1M (1; 1);

and the tractor connection as

r WC
a

0

@
�

� b j � �b
� b�c

1

A =

0

@
r a� � � a

r a� b + Pab� j r a� �b + Pa�b� � � a�b
r a� b�c + Pa�c� b + Pab� �c

1

A (165)



60 D.M.J. CALDERBANK, M.G. EASTWOOD, V.S. MATVEEV, AND K. NE USSER

and

r WC
�a

0

@
�

� b j � �b
� b�c

1

A =

0

@
r �a� � � �a

r �a� b + P�ab� � � b�a j r �a� �b + P�a�b�
r �a� b�c + P�a�c� b + P�ab� �c

1

A : (166)

The �rst BGG operator associated toWC or W is a c-projectively invariant operator
of order two, which we call thec-projective Hessian. It can be written as

D W : E(1; 1) ! S2^ 1;0M (1; 1) � S2^ 0;1M (1; 1) (167)

D W � = ( r (ar b) � + P(ab) � ; r (�ar �b) � + P(�a�b) � );

or alternatively as

D W � = r (� r � ) � + P(�� ) � � J(�
 J� )

� (r  r � � + P� � ); (168)

for any connectionr 2 [r ]. The reader might easily verify the c-projective invariance
of D W directly using Proposition 2.5, the identities (16), and the formulae for the
change of Rho tensor in Corollary 2.12. The following Proposition gives a geomet-
ric interpretation of nonvanishing real solutions� = �� 2 �( E(1; 1)) of the invariant
overdetermined systemD W � = 0.

Proposition 4.9. Let (M; J; [r ]) be an almost c-projective manifold and� 2 �( E(1; 1))
a real nowhere vanishing section. ThenD W � = 0 if and only if the Ricci tensor of the
special connectionr � 2 [r ] associated to� satis�es Ric(ab) = 0. In particular, if J
is integrable, thenD W � = 0 if and only if the Ricci tensor of r � satis�es Ricab = 0,
i.e. the Ricci tensor is symmetric andJ -invariant.

Proof. Let � = �� 2 �( E(1; 1)) be nowhere vanishing. Recall that the Ricci tensor of
the special connectionr � associated to� satis�es

Ric�ab = Ric b�a Ric[ab] = 1
2r �

�c Tab
�c:

With respect to r � the equationD WC � = 0 reduces to

P(ab) � = 0 P(�a�b) � = 0;

i.e. to Ric(ab) = 1
n� 1P(ab) = 0 and Ric(�a�b) = 1

n� 1P(�a�b) = 0, since� is nonvanishing. �

It follows immediately that if a c-projective manifold (M; J; [r ]) admits a compati-
ble (pseudo-)Kähler metricg, then � g = vol( g)� 1=(n+1) 2 �( E(1; 1)) satis�es D W � g = 0.
By Proposition 4.5, � g = det � , where � is the nondegenerate solution of the metris-
ability equation corresponding tog. This observation continues to hold without the
nondegeneracy assumption.

Proposition 4.10. Let (M; J; [r ]) be a c-projective manifold and suppose that� �bc 2
�( T0;1M 
 T1;0M (� 1; � 1)) is a real section satisfying(125). Then � � det � 2
�( E(1; 1)) is a real section in the kernel of the c-projective Hessian(which might be
identically zero).

Proof. Let U � M be the open subset (possibly empty), where� is nowhere vanishing
or equivalently where � �bc is invertible. By Proposition 4.5 the section� �bc(det � ) 2
�( T0;1M 
 T1;0M ) de�nes the inverse of a compatible (pseudo-)Kähler metric on U
and its Levi-Civita connection onU is r � . Since the Ricci tensor of a (pseudo-)Kähler
metric is J -invariant (109), i.e. Ricab = Ric �a�b = 0, we deduce from Proposition 4.9 that
� satis�es D W � = 0 on U whence, by continuity, onU. Since� vanishes identically
on the open setM n U, we obtain that D W � is identically zero on all ofM . �
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Remark 4.7. For an almost c-projective manifold admitting a compatible(2; 1)-
symplectic metric g, the section � g 2 �( E(1; 1)) is in the kernel of the c-projective
Hessian, if the Ricci tensor of the canonical connectionr of g satis�es

Ric(ab) = �r �cT �c
(ab) = 1

4r �cN �c
(ab) = 0;

where we useg to raise and lower indices. It is well known that nearly Kähler manifolds
can be characterised as(2; 1)-symplectic manifolds such thatTabc is totally skew (see
e.g. [63]). It then follows straightforwardly from the identities (102)�(103) that the
canonical connection of a nearly Kähler manifold preservesits torsion, i.e. r T =
� 1

4r N = 0 (see [58, 87]), andRab�cd vanishes identically. Hence, Proposition 4.10
extends to the nearly Kähler setting.

4.7. Prolongation of the c-projective Hessian. The c-projective Hessian will play
a crucial role in the sequel. We therefore prolong the associated equation. Suppose
� 2 �( E(1; 1)) is in the kernel of the c-projective Hessian:

r (ar b) � + P(ab) � = 0 r (�ar �b) � + P(�a�b) � = 0; (169)

Then we deduce from (46) that (169) is equivalent to

r ar b� + Pab� = r [ar b]� + P[ab]� = 1
2(n+1) (r �cTab

�c)� � 1
2Tab

�cr �c� (170)

r �ar �b� + P�a�b� = r [�ar �b]� + P[�a�b]� = 1
2(n+1) (r cT�a�b

c)� � 1
2T�a�b

cr c�; (171)

where we abbreviate the left-hand sides by� ab respectively	 �a�b, which depend linearly
on � and on � �a := r �a� respectively� a := r a� . From (45) we moreover deduce that

r a� �b + Pa�b� = r ar �b� + Pa�b� = r �br a� + P�ba� = r �b� a + P�ba�;

which we shall denote by� a�b 2 ^ 1;1M (1; 1). Consequently, we have

r ar �c� b � r �cr a� b = (172)

r a� b�c � (r aP�cb)� � P�cb� a + ( r �cPab)� + Pab� �c + � ab�c;

where

� ab�c := � 1
2(n+1) ((r �cr �dTab

�d)� + ( r �dTab
�d)� �c) (173)

+ 1
2((r �cTab

�d)� �d � Tab
�dP�c �d + Tab

�d	 �c �d)

depends linearly on� , � a and � �a. From Proposition 2.13 and the identity (45) we
obtain that the expression (172) must be also equal to

r ar �c� b � r �cr a� b = � Wa�c
d

b� d � P�cb� a � Pa�c� b; (174)

which shows that

r a� b�c = � Pab� �c � Pa�c� b � Wa�c
d

b� d + Ca�cb� � � ab�c: (175)

Similarly, one shows that

r �a� b�c = � P�ab� �c � P�a�c� b � W�ab
�d
�c� �d + C�ab�c� � � �ab�c; (176)

where

� �ab�c := � 1
2(n+1) ((r br dT�a�c

d)� + ( r dT�a�c
d)� b) (177)

+ 1
2((r bT�a�c

d)� d � T�a�c
dPbd� + T�a�c

d� bd)

depends linearly on� , � a and � �a. In summary, we have shown the following theorem:
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Theorem 4.11. Suppose(M; J; [r ]) is a c-projective manifold. Then the canonical
projection � : WC ! E (1; 1) induces a bijection between sections ofWC that are parallel
for the linear connection

r WC
a

0

@
�

� b j � �b
� b�c

1

A +

0

@
0

� � ab j 0
Wa�c

d
b� d � Ca�cb� + � ab�c

1

A (178)

r WC
�a

0

@
�

� b j � �b
� b�c

1

A +

0

@
0

0 j � 	 �a�b

W�ab
�d
�c� �d � C�ab�c� + � �ab�c

1

A : (179)

and sections� 2 �( E(1; 1)) in the kernel of the c-projective Hessian, where� ab, 	 �a�b,
� ab�c and � �ab�c are de�ned as in (170), (171), (173) and (177). The inverse of this
bijection is induced by a linear di�erential operatorL, which, for a choice of connection
r 2 [r ], can be written as

L : E(1; 1) ! W C

L(� ) =

0

@
�

r a� j r �a�
r ar �b� + Pa�b�

1

A :

The following Proposition characterises normal solutionsof D W (� ) = 0 , i.e. real
sections� = �� 2 �( E(1; 1)) in the kernel of the c-projective Hessian that in addition
satisfy:

� ab = 0 	 �a�b = 0 (180)

Wa�c
d

br d� � Ca�cb� + � ab�c = 0 W�ab
�d
�cr �d� � C�ab�c� + � �ab�c = 0; (181)

where� , 	 , � and � depend linearly on� and r � .

Proposition 4.12. Let (M; J; [r ]) be an almost c-projective manifold and suppose
that � 2 �( E(1; 1)) is a real nowhere vanishing section in the kernel of the c-projective
Hessian. Then� satis�es (180) if and only if the Ricci tensor Ric�� of the special
connectionr � 2 [r ] corresponding to� satis�es

Ricab = 0 and r �
aRicb�c = 0 = r �

�aRicb�c:

If the Ricci tensor Ricb�c = Ric �cb is, in addition, nondegenerate, then it de�nes a(2; 1)-
symplectic Hermitian metric satisfying the generalised Einstein condition (159) with
canonical connectionr � .

Proof. Let � = �� 2 �( E(1; 1)) be a real nowhere vanishing section in the kernel of (167).
With respect to the special connectionr � 2 [r ] corresponding to� , the equations
(180) reduce to

0 = 1
2(n+1) r �

�c Tab
�c = 1

n+1 Ric[ab] = P[ab]

0 = 1
2(n+1) r �

c T�a�b
c = 1

n+1 Ric[�a�b] = P[�a�b];

which, since� is in the kernel of the c-projective Hessian, is equivalent to Ricab = 0 =
Ric�a�b. If these equations are satis�ed, is follows immediately that also � ab�c and � �ab�c

are identically zero (with respect tor � ) and that the equations (181) reduces to

Ca�cb� = ( r �
aP�cb)� = ( r �

aPb�c)� = 1
n+1 (r �

aRicb�c)� = 0

C�ab�c� = ( r �
�aPb�c)� = 1

n+1 (r �
�aRicb�c)� = 0

which proves the claim, since� is nowhere vanishing. �
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5. Metrisability, conserved quantities and integrability

In this section we investigate the implications of mobility� 2 for the geodesic �ow of
a (pseudo-)Kähler manifold(M; J; g): we show that any metric~g c-projectively equiv-
alent, but not homothetic, to g gives rise to families of commuting linear and quadratic
integrals for the geodesic �ow ofg, and characterise when this implies integrability of
the �ow.

5.1. Conserved quantities for the geodesic �ow. For any smooth manifoldM ,
the total space of its cotangent bundlep: T � M ! M has a canonical exact symplectic
structure d� , where � : T T � M ! R is the tautological 1-form de�ned by � � (X ) =
� (T p(X )). The Poisson bracket of smooth functions onT � M preserves the subalgebra

C1
pol(T

� M; R) �=
M

k� 0

C1 (M; S kT M )

of functions which are polynomial on the �bres ofp, where a symmetric tensorQ of
valence(k; 0), i.e. a section ofSkT M , is identi�ed with the function � 7! Q(�; : : : ; � )
on T � M (which is homogeneous of degreek on each �bre of p). The induced bracket

f� ; �g: C1 (M; S j T M ) � C1 (M; S kT M ) ! C1 (Sj + k� 1T M )

on symmetric multivectors is sometimes called the (symmetric) Schouten�Nijenhuis
bracket. It may be computed using any torsion-free connection r on T M as

f Q; Rg� ��� � = j Q � (� ��� � r � R� ��� � ) � k R� (� ��� � r � Q� ��� � ) : (182)

When j = 1 and Q is a vector �eld, f Q; Rg is just the Lie derivative L QR.
Now supposeg is a (pseudo-)Riemannian metric onM . Then the inverse metric

g�� induces a function onT � M which is quadratic on each �bre. The �ow of the
corresponding Hamiltonian vector �eld onT � M is the image of the geodesic �ow on
T M under the vector bundle isomorphismT M ! T � M de�ned by g.

De�nition 5.1. A smooth function I : T M ! R on a (pseudo-)Riemannian manifold
(M; g) is called anintegral of the geodesic �ow(or an integral) of g, if for any a�nely
parametrised geodesic , the function s 7! I ( _ (s)) is constant.

The interpretation of the geodesic �ow as a Hamiltonian �ow on T � M allows us to
describe integrals as functions onT � M .

Proposition 5.1. Q: T � M ! R de�nes an integral I of the geodesic �ow ofg if and
only if it is a conserved quantity forg�� i.e. has vanishing Poisson bracket withg�� .

We shall only consider integrals de�ned byQ 2 C1
pol(T

� M; R). Without loss of
generality, we may assume such an integral is homogeneous, hence given by a symmetric
tensor Q� ���  2 C1 (M; S kT M ). Using the Levi-Civita connection ofg to compute the
Schouten�Nijenhuis bracket, we obtain

f g; Qg� ��� � = 2 g� (� r � Q ��� � ) ;

which is obtained fromr (� Q ��� � ) by raising all indices (usingg) and multiplying by 2.
When k = 1, f g; Qg = 0 if and only if Q� is a Killing vector �eld. Thus we recover
Clairaut's Theorem, that Killing vector �elds de�ne integr als of the geodesic �ow.
More generally, asymmetric Killing tensor of valence(0; `) on a (pseudo-)Riemannian
manifold (M; g) is a tensorH �� ��� � 2 S`T � M that satis�es

r (� H � ��� � ) = 0; (183)

where` � 1 can be any integer andr is the Levi-Civita connection ofg.
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Corollary 5.2. Q� ���  2 C1 (M; S kT M ) de�nes an integral of the geodesic �ow ofg if
and only if Q� ���  is a symmetric Killing tensor ofg.

5.2. Holomorphic Killing �elds. Let (M; J; g) be a (pseudo-)Kähler manifold with
Levi-Civita connection r and Kähler form 
 �� = J�

 g� .

De�nition 5.2. A vector �eld X on (M; J; g) is called aholomorphic Killing �eld if
it preserves the complex structureJ and the metric g, i.e. L X J = 0 and L X g = 0.

In terms of the Levi-Civita connection r the de�ning properties of a holomorphic
Killing �eld can be rewritten as:

r � X � = � J�
 J�

� r  X � and r � X � + r � X � = 0: (184)

It follows immediately from the de�nition of a holomorphic Killing �eld X that X also
preserves the Kähler form, which means thatL X 
 = d(iX 
) = 0 or equivalently

r � (
 � X  ) � r � (
 � X  ) = 0 : (185)

In particular, this equation is satis�ed if there exists a smooth function f : M ! R
such that � iX 
 = df , i.e. 
 � X  = r � f , or, using the Poisson structure
 �� ,

X � = 
 �� r � f = J�
� r � f; (186)

in which caseX is said to be thesymplectic gradientof f .

Proposition 5.3. If X and Y are symplectic gradients of functionsf and h, then
L X h = 0 if and only if L Y f = 0 if and only if 
 �� (r � f )(r � h) = 0 if and only if

 �� X � Y � = 0. These equivalent conditions imply thatX and Y commute: [X; Y ] = 0.

Proof. iX dh = � iX (iY 
) = iY (iX 
) = � iY df and so the equivalences are trivial.
Now L X h = 0 implies 0 = L X dh = �L X (iY 
) = � i [X;Y ]
 , since L X 
 = 0 . Hence
[X; Y ] = 0, since
 is nondegenerate. �

In this situation, X and Y have isotropic span with respect to
 , and they are said
to Poisson commute, sincef and h have vanishing Poisson bracket.

We now return to holomorphic Killing �elds.

Proposition 5.4. Let f : M ! R be a smooth function. Then the symplectic gradient
X � = 
 �� r � f is a holomorphic Killing �eld if and only if the Hessianr 2f is J -
invariant, i.e.

r ar bf = 0 = r �ar �bf: (187)

Proof. Since any two equations of (184) and (185) imply the third, wededuce that a
vector �eld of the form X � = 
 �� r � f is a holomorphic Killing �eld if and only if

r � J�
 r  f + r � J�

 r  f = 0 (188)

or equivalently
r � r � f = J�

 J�
� r  r � f; (189)

which is equivalent to (187). �

We call f in this case aKilling potential or a Hamiltonian for the holomorphic
Killing �eld X . Note that a holomorphic Killing �eld always admits such a potential
locally (and on any open subsetU with H 1(U;R) = 0 ).

Suppose now thatg is a compatible (pseudo-)Kähler metric on a c-projective man-
ifold (M; J; [r ]). Then we may write any real section� 2 �( E(1; 1)) as � = h� g for
some functionh: M ! R, where� g is the trivialisation of E(1; 1) determined byg.

Proposition 5.5. Let (M; J; [r ]) be a c-projective manifold andh 2 C1 (M; R).
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(1) If � g is the (real) trivialisation of E(1; 1) corresponding to a compatible metricg,
then � = h� g is in the kernel of the c-projective HessianD W � = 0 if and only
if h is a Killing potential with respect to(g; J).

(2) If g and ~g are compatible metrics whose corresponding trivialisations of E(1; 1)
are related by� ~g = e� f � g, then h is a Killing potential with respect to(g; J) if
and only if ef h is a Killing potential with respect to(~g; J).

Proof. For the �rst part, compute D W � using the Levi-Civita connectionr g. Since
� g is parallel, and the Ricci tensor ofg is J -invariant, D W � = 0 if and only if the
J -invariant part of the Hessian ofh is zero, and Proposition 5.4 applies. The second
part follows from the �rst. �

These observations may be generalised to (possible degenerate) solutions � of the
metrisability equation. Given any J -invariant section � �� of S2T M 
 E R(� 1; � 1) and
any section� of ER(1; 1), we de�ne vector �elds � (�; � ) and K (�; � ) by

�  (�; � ) = � � r � � � 1
n � r � � � (190)

K � (�; � ) = J
� �  (�; � ) = � �� r � � � 1

n � r � � �� ; (191)

where � �� = J
� � � .

Proposition 5.6. � (�; � ) and K (�; � ) are c-projectively invariant, and if � is a
nondegenerate solution of the metrisability equation corresponding to a metricg and
� = h det � is in the kernel of the c-projective Hessian, then� (�; � ) is holomorphic,
and K (�; � ) is the holomorphic Killing �eld of g with Killing potential h.

Proof. For a c-projectively equivalent connectionr̂ 2 [r ], we have

� � r̂ � � � 1
n � r̂ � � � = � � r � � + � � � � � � 1

n � r � � � � � � � � �

and the � terms cancel, showing that� (�; � )�and hence also K (�; � )�is independent
of the choice ofr 2 [r ].

Now if � is nondegenerate, corresponding to a compatible metricg with � g = det � ,
we user g to compute

K � (�; � ) = � �� r g
� (h� g) = 
 �� r � h;

which is the holomorphic Killing �eld associated toh. �

Remark 5.1. Suppose that(M; J; [r ]) is an almost c-projective manifold and consider
the tensor product

VC 
 W C = T � 
 T
�


 T 
 T :

SinceT � 
 T = AM � E (0; 0), there is a natural projection

� : VC 
 W C !
AM � E (0; 0)L

AM � E (0; 0)
(192)

or equivalently a natural projection

� : V 
 W ! A M � E (0; 0): (193)

Hence, the results in [25] imply that there are two invariantbilinear di�erential oper-
ators

� : T0;1M 
 T1;0M (� 1; � 1) � E (1; 1) ! T1;0M � T0;1M (194)

c: T0;1M 
 T1;0M (� 1; � 1) � E (1; 1) ! E (0; 0) � E (0; 0); (195)
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which are constructed as follows. Consider the two di�erential operatorsL : T0;1M 

T1;0M (� 1; � 1)) ! V C and L : E(1; 1)) ! W C from Theorem 4.6 respectively 4.11.
Recall that in terms of a connectionr 2 [r ] they can be written as

L(�
�bc) =

0

@
� �bc

� 1
n r �a� �ab j � 1

n r a� �ba

1
n (r �ar b� �ab + P�ab� �ab)

1

A L(� ) =

0

@
�

r a� j r �a�
r ar �b� + Pa�b�

1

A :

Then � and c are de�ned as the projections toTCM = A CM=A 0
CM respectively to

E(0; 0) � E (0; 0) of �( L(� �bc) 
 L(� )) .
In particular, for a choice of connectionr 2 [r ], the invariant di�erential operator

� is given by

� (�; � ) =
�
�

�bcr �b� � 1
n � r �b�

�bc j �
�bcr c� � 1

n � r c�
�bc

�
: (196)

Note that if � �bc and � are real sections, the two components of (196) are conjugateto
each other. In this case we may identify� �bc with a J -invariant section � � of S2T M .

5.3. Hermitian symmetric Killing tensors. Suppose(M; J ) is an almost complex
manifold andk � 1. Then we call a symmetric tensorH �� ��� � 2 �( S2kT � M ) Hermitian,
if it satis�es

J(�
� H � ��� � ) = 0: (197)

Since, by de�nition, H � ��� � = H (� ��� � ) , equation (197) is equivalent to

J�
� H � ��� � + J �

 H �� ��� � + � � � + J �
� H � ��� � = 0: (198)

Viewing a symmetric tensorH of valence(0; 2k) as an element inS2kT � M 
 C = S2k^ 1

via complexi�cation, we can use the projectors from Section1 to decomposeH into
components according to the decomposition ofS2k^ 1 into irreducible vector bundles:

S2k^ 1 =
2kM

j =0

S2k� j ^ 1;0 
 Sj ^ 0;1: (199)

Since this decomposition is in particular invariant under the action ofJ , all the compo-
nents of a tensorH �� ��� � 2 S2k^ 1 that satis�es (198) must independently satisfy (198).
If Hab���d �e �f ��� �h is a section ofS2k� j ^ 1;0 
 Sj ^ 0;1 that satis�es (198), then this equation
says that 2(k � j )iH = 0, which implies that H � 0 unlessj = k. We conclude that
Hermitian symmetric tensors of valence(0; 2k) can be viewed as real sections of the
vector bundle

Sk^ 1;0 
 Sk^ 0;1;

which is the complexi�cation of the vector bundle that consists of those elements in
S2kT � M that satisfy (197).

Remark 5.2. Note that, if H is a symmetric tensor of valence(0; 2k + 1) satisfying
(197), then the above reasoning immediately implies thatH � 0. The same argu-
ments apply, mutatis mutandis, to symmetric tensorsQ�� ��� � of valence(2k; 0), and to
weighted tensors of valence(0; 2k) and (2k; 0).

Suppose now(M; J; g) is a (pseudo-)Kähler manifold and̀ = 2k is even, then we can
restrict equation (183) for symmetric Killing tensors of valence (0; 2k) to Hermitian
tensors. If we complexify (183), we obtain the following system of di�erential equations
on tensorsH 2 �( Sk^ 1;0 
 Sk^ 0;1):

r (aHbc���d)�e �f ��� �h = 0 and r (�aH jbc���dj �e �f ��� �g) = 0; (200)
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where j � � � j means that one does not symmetrise over these indices. Real solutions of
(200) thereby correspond to Hermitian symmetric Killing tensors of valence(0; 2k) and
obviously for real solutions the two equations of (200) are conjugates of each other.
The following proposition shows that (suitably interpreted) the Killing equation for
Hermitian symmetric tensors of valence(0; 2k) is c-projectively invariant.

Proposition 5.7. Suppose(M; J; [r ]) is an almost c-projective manifold of dimension
2n � 4. If Hab���d �e �f ��� �h 2 �( Sk^ 1;0 
 Sk^ 0;1(2k; 2k)) satis�es

r (aHbc���d)�e �f ��� �h = 0 r (�aH jbc���dj �e �f ��� �h) = 0; (201)

for some connection inr 2 [r ], then it does so for any other connection in the c-
projective class.

Proof. SupposeH 2 �( Sk^ 1;0 
 Sk^ 0;1(2k; 2k)) satis�es (201) for some connection
r 2 [r ] and let r̂ 2 [r ] be another connection in the c-projective class. Then it
follows from Proposition 2.5 and Corollary 2.4 that

r̂ aHb���d�e��� �h = r aHb���d�e��� �h � k� aHb���d�e��� �h � � bHa���d�e��� �h � � � � � � dHb���a�e��� �h

+ 2k� aHb���d�e��� �h

= r aHb���d�e��� �h + k� aHb���d�e��� �h � � bHa���d�e��� �h � � � � � � dHb���a�e��� �h:

Sincer (aHb���d)�e��� �h = 0 by assumption and

� (aHb���d)�e��� �h = 1
k+1 (� aHb���d�e��� �h + � bHa���d�e��� �h + � � � + � dHb���a�e��� �h);

we conclude that the symmetrisation over the unbarred indices on the right hand side
is zero, which proves that the �rst equation of (201) is independent of the connection.
Analogous reasoning shows that this is also true for the second equation of (201). �

We refer to solutions of the c-projectively invariant equation (201) asc-projective
Hermitian symmetric Killing tensors of valence(0; 2k).

Corollary 5.8. Suppose(M; J; [r ]) is a metrisable c-projective manifold with com-
patible (pseudo-)Kähler metric g. Then a real sectionH 2 �( Sk^ 1;0 
 Sk^ 0;1) is a
Hermitian symmetric Killing tensor of g (i.e. a solution of (200) with respect tor g)
if and only if � 2k

g H is a c-projective Hermitian symmetric Killing tensor. In partic-
ular, in this case, if ~g is another compatible(pseudo-)Kähler metric, then e2kf H is a
Hermitian symmetric Killing tensor of ~g, wheref is given by� ~g = e� f � g.

The di�erential equation (201) gives rise to a c-projectively invariant operator, which
is the �rst BGG operator

� � � � �
l l l l l
� � � � �
� 2 k+1 0 0 0

0 k 0 0 0

� � � � �
l l l l l
� � � � �
0 k 0 0 0

0 k 0 0 0

%
&

� � � � �
l l l l l
� � � � �
0 k 0 0 0

� 2 k+1 0 0 0

(202)

corresponding to the tractor bundleW, whereW is the Cartan product of k copies of
^ 2T � and k copies of̂ 2T � . As for the BGG operators discussed in previous sections,
this implies (see [20, 52, 88]), that there is a linear connection on W whose parallel
sections are in bijection to solution of (201). Hence, the dimension of the solution
space is bounded by the rank ofW.
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Proposition 5.9. Suppose(M; J; g) is a (pseudo-)Kähler manifold of dimension2n �
4 and let k � 1 be an integer. Then the space of Hermitian symmetric Killingtensors
of valence(0; 2k) of (M; J; g) has dimension at most

�
(k + 1)( k + 2) 2 � � � (k + ( n � 1))2(k + n)

(n � 1)!n!

� 2

: (203)

In the sequel, we shall be interested in the casek = 1, where any compatible metricg
de�nes a c-projective Hermitian symmetric Killing tensorHb�a = � 2

g gb�a by Corollary 5.8.
This has the following c-projectively invariant formulation.

Proposition 5.10. Let (M; J; [r ]) be an almost c-projective manifold and let� �ab be a
real section ofT0;1M 
 T1;0M (� 1; � 1). Then

Hb�a := 1
(n� 1)! �" �a�c��� �e "bd��� f � �cd � � � � �ef (204)

is a real section of^ 1;0 
 ^ 0;1(2; 2) with Hb�a� �ac = �� b
c, where � = det � . If � �ab

satis�es (119) for someX d; Y �c (depending onr ) then Hb�a is a c-projective Hermitian
symmetric Killing tensor and

� �cdr dHb�a = Y �eHb�e� �a
�c � Y �cHb�a; � �cdr �cHb�a = X eHe�a� b

d � X dHb�a: (205)

Proof. The �rst statement is straightforward. For the rest, suppose �rst that � �ab is
nondegenerate, hence parallel with respect to some connection r̂ in [r ], related to r
by � with � b = Hb�aY �a and � �a = Hb�aX b. Then Hb�a is parallel with respect to r̂ ,
hence a Hermitian symmetric Killing tensor, and equation (205) follows by rewriting
this condition in terms of r . At each point, these are statements about the1-jet of
H , which depends polynomially on the1-jet of � . They hold when the 0-jet of � is
invertible (at a given point, hence in a neighbourhood of that point), hence in general
by continuity. �

5.4. Metrisability pencils, Killing �elds and Killing tensors. Suppose we have
two (real) linearly independent solutions� �ab and ~� �ab of the metrisability equation (125).
Since the metrisability equation is linear, the one parameter family

~� �ab(t) := ~� �ab � t� �ab (206)

also satis�es (125), and we refer to such a family as apencil of solutions of the metris-
ability equation, or metrisability pencil for short.

By Proposition 4.10, the determinant

~� (t) := det ~� (t) (207)

of the pencil (206) lies in the kernel of the c-projective Hessian for all t 2 R (as does
� := det � ). If ~� (t) is degenerate for allt, then ~� (t) is identically zero. Otherwise, we
may assume, at least locally:

Condition 5.1. � is nondegenerate, i.e.� = det � is nonvanishing, and henceg�� =
(det � )� �� is inverse to a compatible metricg.

Assuming Condition 5.1, we may write~� �ac = � �abAb
c as in Section 4.4, where the

(g; J)-Hermitian metric A satis�es (128). SettingAa
b(t) := Aa

b � t� a
b, we have

~� �ac(t) = � �abAb
c(t) and ~� (t) = (det � )(det A(t)) :

Thus ~� (t) is essentially the characteristic polynomialdet A(t) of Aa
b, regarded as a

complex linear endomorphism of the complex bundleT1;0M .
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Remark 5.3. A pencil is another name for a projective line: if we make a projective
changes = ( at + b)=(ct + d) of parameter (with ad � bc6= 0) then the pencil may be
rewritten, up to overall scale, asa~� + b� � s(c~� + d� ) = (~� � t� )(ad � bc)=(ct + d).
Assuming that c~� + d� is nondegenerate, the rescaled and reparameterized pencilis
thus (c~� + d� )( ~A � s Id) , where ~A = ( cA + dId) � 1(aA + bId) .

We next setHb�a := 1
(n� 1)! �" �a�c��� �e "bd��� f � �cd � � � � �ef as in (204) and introduce

eHb�a(t) := 1
(n� 1)! �" �a�c��� �e "bd��� f ~� �cd(t) � � � ~� �ef (t) = (adj A(t))b

cHc�a; (208)

whereadj B denotes the endomorphism adjugate toB, with B adj B = (det B)I .
Proposition 5.10 implies that for all t 2 R, eHb�a(t) is a c-projective Hermitian sym-

metric Killing tensor of (M; J; [r ]). Hence for anys 2 R with ~� (s) nondegenerate,
~� (s)� 2 eHb�a(t) de�nes a family of Hermitian symmetric Killing tensors for the corre-
sponding metric.

Similarly, Proposition 5.6 implies that if ~� (s) is nondegenerate (fors 2 R), then for
all t 2 R, K (~� (s); ~� (t)) is a holomorphic Killing �eld with respect to the corresponding
metric (hence aninessential c-projective vector �eld). Now observe that

K (~� (s); ~� (t)) = K (~� (t) + ( t � s)�; ~� (t)) = ( t � s)K (�; ~� (t)) ;

sinceK is bilinear and K (~� (t); ~� (t)) = 0 . By continuity, the vector �elds

eK (t) := K (�; ~� (t)) ; i.e. eK � (t) = 
 �� r � det A(t); (209)

which are holomorphic Killing �elds with respect to g, preserve~� (s) for all s; t 2 R,
i.e. L eK (t) ~� (s) = 0 , and hence alsoL eK (t)

eH (s) = 0 = L eK (t) ~� (s). Thus eK (t) preserves the

Killing potential det A(s) of eK (s) with respect to g, so Proposition 5.3 implies that
eK (s) and eK (t) Poisson-commute. We summarise what we have proven as follows.

Theorem 5.11. Let (M; J; [r ]) be a c-projective manifold with metrisability solutions
� and ~� corresponding to compatible(pseudo-)Kähler metric metrics g and ~g that are
not homothetic. Let ~� (t) be the corresponding metrisability pencil(206).

(1) The vector �elds eK (t) : t 2 R de�ned by (207)� (209) are Poisson-commuting
holomorphic Killing �elds with respect tog and ~g.

(2) The tensors eH (t) : t 2 R de�ned by (207)� (208) are c-projective Hermitian
symmetric Killing tensors, invariant with respect to eK (s) for any s 2 R. In
particular, by Corollary 5.8, they induce Hermitian symmetric Killing tensors
of g respectively~g (by tensoring with � � 2

g respectively� � 2
~g ).

We call the vector �elds eK (t) and tensor densitieseH (t) the canonical Killing �elds
and canonical Killing tensors (respectively) for the pair (g;~g); the former are Killing
vector �elds with respect to any nondegenerate metric in thefamily (206), and the
latter give rise to symmetric Killing tensor �elds for any such metric by tensoring with
the corresponding trivialisation ofE(� 2; � 2).

Since the canonical Killing �elds eK (t) are holomorphic with [ eK (t); eK (s)] = 0 for
all s; t 2 R, we also have[ eK (t); J eK (s)] = 0 . Since J is integrable, J eK (t) are also
holomorphic vector �elds, and[J eK (t); J eK (s)] = 0 for all s; t 2 R.

The fact that for all t 2 R, eK (t) is a holomorphic Killing �eld means equivalently
(by linearity) that the coe�cients of eK (t) are holomorphic Killing �elds, whose Killing
potentials with respectg are the coe�cients of the characteristic polynomialdet A(t).
Up to scale, the nontrivial coe�cients of det A(t) can be written

~� 1 := Ab
b; ~� 2 := Ab

[bAc
c]; : : : ~� n := Ab

[bAc
c � � � Ad

d]; (210)
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which are real-valued becauseA is Hermitian with respect to g. Raising an index
in (128), we have

r �cAa
b = � g�cb� a; or equivalently, r cAa

b = � � a
c� b: (211)

Hence, applying the(1; 0)-gradient operatorr a = � a
� g�� r � to the canonical potentials

in (210), we obtain (up to sign) holomorphic vector �elds

� a
(1) := � a; � a

(2) := 2� [aAb
b]; : : : � a

(n) := n� [aAb
bAc

c � � � Ad
d] (212)

whose imaginary parts are (up to scale) the coe�cients ofeK (t). In particular, � �
a � a =

1
2(� � � iK � ), where the holomorphic Killing �eld K � = J�

� � � is the leading coe�cient
of eK (t). In general, the coe�cients satisfy the recursive relation

� a
(k+1) = Ab

a� b
(k) + ~� 1� a: (213)

Proposition 5.12. Let g and ~g be compatible metrics on(M; J; [r ]) related by a(real)
solution A of (128). Then there is an integer̀ , with 0 � ` � n, such that� a

(1) ; : : : ; � a
(`)

are linearly independent on a dense open subset ofM , and dim span eK (t) � ` on M .

Proof. Suppose for somep 2 M and 1 � k � n, � a
(k) is a linear combination of

� a
(1) ; : : : ; � a

(k� 1) at p. Then Ab
a� b

(k) is a linear combination ofAb
a� b

(1) ; : : : ; Ab
a� a

(k� 1),
hence of� a

(1) ; : : : ; � a
(k) by (213). Applying (213) once more, we see that� a

(k+1) is a
linear combination of � a

(1) ; : : : ; � a
(k) . Hence at eachp 2 M , dim spanf � a

(1) ; : : : ; � a
(n)g =

dim span eK (t) is the largest integer` such that � a
(1) ; : : : ; � a

(`) are linearly independent
at p. However, for any integerk, � a

(1) ; : : : ; � a
(k) are linearly dependent if and only if the

holomorphic k-vector � [a
(1) �

b
(2) � � � � e]

(k) is zero. Hence the set where� a
(1) ; : : : ; � a

(k) are
linearly independent is empty (fork > ` ) or dense (fork � `). The result follows. �

Following [2], the integer` of this Proposition will be called theorder of the pencil.

Proposition 5.13. Let g and ~g be compatible metrics on(M; J; [r ]) related by a(real)
solution A of (128). Then the endomorphismsr � and A commute, i.e.

Aa
cr c� b � Ac

br a� c = 0: (214)

Proof. We �rst give a proof using Theorem 5.11, which implies thatK � is a holomor-
phic Killing �eld with respect to both g and ~g. It follows that L K A = 0. However,
r K A = 0 (since � �cr �cAa

b = � � a� b = � cr cAa
b) and so[r K; A ] = 0. Equation (214)

is obtained by taking (1; 0)-parts.
We now give a more direct proof of (214), starting from the observation that

r a� �b = �r ar �bAc
c = �r �br a

�A �c
�c = r �b

�� a;

(i.e. r a� �b is real). Now expand(r ar �b�r �br a)A �cd by curvature and also by using (129)
to obtain

Ra�b
�c
�eA �ed + Ra�b

d
eA �ce = � a

dr �b
�� �c � � �b

�cr a� d: (215)

Transvect with A�b
�c to conclude that

A
�bcRa�bc�eA

�e
�d + A

�b
�cA �ceRa�b�de = ga �dA

�b
�cr �b

�� �c � A
�b
�br a� �d

and hence that
A

�bcRa�bc�eA
�e

�d � A �cbRb�de�cAa
e = 0 (216)

(i.e. A�bcRa�bc�eA
�e

�d is real). Now transvect (215) withA f
a� �c

�b to conclude that

� A f
aRica�eA �e

�d + A f
aRa�c �deA

�ce = A f �dr �c
�� �c � nA f

ar a� �d
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and hence that

Aa
bRb�c �deA

�ce � A
�b

�dR�bca�eA
�ec = n(A

�b
�dr �b

�� a � Aa
br b� �d):

But from (216) the left hand side vanishes whence

Aa
br b� d = A

�bdr �b
�� a = A

�bdr a� �b = Ab
dr a� b;

as required. �

Note that (214) can be used to provide an alternative proof that the holomorphic
vector �elds (212) commute. IfV a and W b are two such �elds, we must show that

0 = [V; W]b = V ar aW b � W ar aV b: (217)

Let us take V a = � a and W b = 2� [bAc
c]. Then (128) yields

r aW b = ( r a� b)Ac
c + � br aAc

c � (r a� c)Ac
b � � cr aAc

b

= ( r a� b)Ac
c � � b�� a � (r a� c)Ac

b + � a
b� c �� c

whenceV ar aW b = � a(r a� b)Ac
c � � a(r a� c)Ac

b and

V ar aW b � W ar aV b = � a(Aa
cr c� b � Ac

br a� c):

Similar computations show that all the �elds in (212) commute.

Remark 5.4. It is interesting to compare Proposition 5.13 with what happens in the
real projective setting. The mobility equations (128) are replaced by

r � A �
 = � � �

� �  � g� � �

and the development runs in parallel. These equations control the existence of another
metric in the projective class other than the assumed background metric and, from the
coe�cients of the characteristic polynomial ofA �

� , a solution gives rise ton canonically
de�ned potentials for n canonically de�ned vector �elds. These are counterparts tothe
�elds (212) and, as such, need not be Killing. Nevertheless,they commute and to see
this it is necessary to employ the alternative reasoning that we encountered near the
end of the proof just given. The key observation, like (214),is that the endomorphisms
A �

� and r � � � commute and its proof follows exactly the course just given.

5.5. Conserved quantities on c-projective manifolds. On a c-projective mani-
fold (M; J; [r ]), the construction of an integral from a compatible metric and Killing
tensor has a c-projectively invariant formulation: in particular, given a nondegenerate
solution � �� of the metrisability equation, and a c-projective Hermitian symmetric
Killing tensor H � of valence(0; 2), the Hermitian (2; 0)-tensor � � � �� H � de�nes an
integral of the geodesic �ow of the metric corresponding to� ; if H � is associated to
� �� by Proposition 5.10, then this integral is the Hamiltonian associated to the inverse
metric g�� = (det � ) � �� .

De�nition 5.3. Let (M; J; [r ]) be a c-projective manifold, and let~� �� (t) := ~� �� � t� ��

be a metrisability pencil satisfying Condition 5.1, so thatg�� = (det � )� �� is inverse to
a (nondegenerate) compatible metricg, and we may write~� �ac(t) = � �abAb

c(t). Then the
linear and quadratic integralsL t ; I t : T M ! R of (the geodesic �ow of)g are de�ned by
L t (X ) := g( eK (t); X ) = g��

eK � (t)X � and I t (X ) := � � 2
g

eH (t)(X; X ) = � � 2
g

eH �� (t)X � X � ,
where eK (t) and eH (t) are the holomorphic Killing �elds and c-projective Hermitian
symmetric Killing tensors associated tog by Theorem 5.11.

Proposition 5.14. The integrals I t ; L t of g (for all t 2 R) mutually commute under
the Poisson bracket onT M induced byg.
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Proof. Since, by Theorem 5.11, the canonical Killing �elds commuteand Lie preserve
the canonical Killing tensors, it remains only to show that for any s; t 2 R the qua-
dratic integrals I s and I t commute. The Hermitian symmetric tensors of valence(2; 0)
corresponding toI t areQ�ab

(t) := � �ad� �cbH (t )
d�c , where we writeH (t )

d�c instead of eHd�c(t). It thus
su�ces to show that for all s 6= t 2 R, Q�ab

(s) and Q�ab
(t) have vanishing Schouten�Nijenhuis

bracket, which (in barred and unbarred indices) means
�

r bQ
d(�a
(t)

�
Q�c)b

(s) �
�

r bQ
d(�a
(s)

�
Q�c)b

(t) = 0;
�

r �aQ�c(b
(t)

�
Qd)�a

(s) �
�

r �aQ�c(b
(s)

�
Qd)�a

(t) = 0:

We prove the �rst equation (the second is analogous); takingfor r the Levi-Civita
connection ofg (so r � = 0), this reduces to:

� �cf
�

r f H (t )
�a(b

�
H (s)

d)�c � � �cf
�

r f H (s)
�a(b

�
H (t )

d)�c = 0:

The key trick is to multiply the left hand side by s � t and observe that(s � t)� �cf =
~� �cf (t) � ~� �cf (s). Now using equation (205) for~� �ab(t) and H (t )

d�c , we obtain

~� �cf (t)
�

r f H (t )
�a(b

�
H (s)

d)�c = Y �e� �a
�cH (t )

�e(bH
(s)
d)�c � Y �cH (t )

�a(bH
(s)
d)�c = Y �cH (t )

�c(bH
(s)
d)�a � Y �cH (t )

�a(bH
(s)
d)�c

for someY �a. The same reasoning applies to~� �ab(s) and H (s)
d�c with the same vector �eld

Y �a to obtain the same expression withs and t interchanged. These two expressions
sum to zero and hence
�
~� �cf (t) � ~� �cf (s)

� ��
r f H (t )

�a(b

�
H (s)

d)�c �
�

r f H (s)
�a(b

�
H (t )

d)�c

�
= � ~� (s)r (dH (s)

b)�a � ~� (t)r (dH (t )
b)�a

which vanishes becauseeH (s) and eH (t) are c-projective Hermitian symmetric Killing
tensors. �

We now discuss the question how many of the functionsL t and I t (t 2 R) are
functionally independenton T M , i.e. have linearly independent di�erentials. Since
T M has dimension4n, and the functionsL t and I t mutually commute (i.e. they span
an Abelian subalgebra under the Poisson bracket induced byg), at most 2n of these
functions can be functionally dependent at each point ofT M . If equality holds on
the �bres of T M over a dense open subset ofM , the geodesic �ow ofg is said to be
integrable.

SinceAa
b(t) = Aa

b � t� a
b, integrability turns out to be related to the spectral theory

of the �eld Aa
b of endomorphisms ofT1;0M . In particular, using the trivialisation of

E(1; 1) determined by g, the determinant ~� (t) := det ~� (t) becomes the characteristic
polynomial � A (t) := det A(t) of Aa

b. SinceA is Hermitian, the coe�cients of � A (t)
are smooth real-valued functions onM . Any complex-valued function� on an open
subsetU � M has an associatedalgebraic multiplicity m� : U ! N, where m� (p) is
the multiplicity of � (p) as a root of � A (t) at p 2 U, or equivalently the rank of the
generalised� (p)-eigenspace ofAa

b in T1;0
p M ; additionally, its geometric multiplicity

d� (p) is the dimension of the� (p)-eigenspace ofAa
b in T1;0

p M , and its index h� (p) is
the multiplicity of � (p) in the minimal polynomial of Aa

b at p.

Remark 5.5. If � : U ! C is smooth with m� constant on U, then the restriction
of Aa

b � �� a
b to the generalised� -eigendistribution, de�nes, using an arbitrary local

frame of this distribution, a family of nilpotent m� � m� matrices N . There are only
�nitely many conjugacy classes of such matrices, parametrised by partitions of m� :
we can either use theSegre characteristics, which are the sizes of the Jordan blocks
of N , or the dual partition by the Weyr characteristics dim ker N k � dim kerN k� 1,
k 2 Z+ . The index h� is the �rst Segre characteristic (i.e. the size of the largest Jordan
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block), while the geometric multiplicity is the �rst Weyr ch aracteristic dim kerN (so
maxf d� ; h� g � m� with equality if and only if d� = 1 or h� = 1). The unique (hence
dense) open orbit consists of nilpotent matrices of degreem� , whose Jordan normal
forms have a single Jordan block, and in general, the orbit closures stratify the nilpotent
matrices (with the partial ordering of strata corresponding to the dominance ordering
of partitions). Thus N maps a su�ciently small neighbourhood of a pointp 2 U into
a unique minimal stratum, and for genericp 2 U, this stratum is the orbit closure of
N (p). In other words, the type ofN may be assumed constant in neighbourhood of
any point in a dense open subset ofU.

The general theory of families of matrices is considerably simpli�ed here by Propo-
sition 5.12 and the following two lemmas.

Lemma 5.15. SupposeU is an open subset ofM and T1;0U = E � F whereE and
F are smoothA-invariant subbundles overU such that the restriction ofA to E has
a single Jordan block with smooth eigenvalue� : U ! C. Then the gradient of� is a
section overU of E � F ? � T1;0U � T0;1U = T U 
 C, whereF ? denotes the subspace
of T0;1U orthogonal toF with respect tog.

Proof. In a neighbourhood of any point inU, we may choose a frameZ a(1); : : : ; Za(m)
of E such that A is in Jordan normal form onE. We identify E � with the annihilator
of F in 
 1;0 and let Za(1); : : : ; Za(m) be the dual frame (withZa(i )Z a(j ) = � ij ). Then
the transpose ofA is in Jordan normal form with respect to this dual frame in reverse
order: for k = 1; : : : m we thus have

(Aa
b � � � a

b)Z a(k) = Z b(k � 1); (218)

(Aa
b � � � a

b)Zb(k) = Zb(k + 1) ; (219)

whereZ b(� 1) = 0 = Zb(m + 1) . By (128), the (0; 1)-derivative of (218) yields

(ga�c� b + � a
br �c� )Z a(k) = ( Aa

b � � � a
b)r �cZ a(k) � r �cZ b(k � 1); (220)

which we may contract with Zb(k), using (219), to obtain

� � bZb(k)ga�cZ a(k) + r �c� = Zb(k + 1) r �cZ b(k) � Zb(k)r �cZ b(k � 1):

Summing fromk = 1 to m, the right hand side sums to zero, and hence

mr a� =
mX

k=1

� bZb(k)Z a(k)

so the(1; 0)-gradient of � is a linear combination ofZ a(1); : : : ; Za(m), hence a section
of E. SinceA is Hermitian, its restriction to F

?
also has a single Jordan block, with

eigenvalue�� , and sor �a� = r a �� belongs toF ? by the same argument. �

It follows that if there is more than one Jordan block with eigenvalue� , then � is
constant�equivalently, all nonconstant eigenvalues of A have geometric multiplicity
one. In fact, a stronger result holds.

Lemma 5.16. Let � be a smooth function onM and let U � M be a nonempty open
subset on which� has constant algebraic multiplicitym. If � is constant andM is
connected, then� has algebraic multiplicitym� � m on M . Conversely, ifm � 2 then
� is locally constant onU.

Proof. SinceA is Hermitian, � A (t) has real coe�cients, �� is an eigenvalue ofA with the
same algebraic multiplicity as� , and r �a� = r a �� . By assumption� A (t) = ( t � � )m q(t)
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on U, whereq is smooth with q(� ) nonvanishing. Since� A (t) is a Killing potential for
g, its gradient r a� A (t) is a holomorphic vector �eld onM for all t.

Suppose �rst that � is constant: we shall show by induction onk that if m � k then
m� � k on M , which is trivially true for k = 0. So suppose thatm � k+1 and m� � k,
so that p(t) = � A (t)=(t � � )k is a polynomial in t. Sincer ap(� ) is holomorphic onM
and vanishing onU, it vanishes onM , since M is connected. Similarly forp(� ), so
that p(� ) is locally constant onM , hence zero, sinceM is connected andp(� ) vanishes
on U. Thus m� � k + 1 as required.

For the second part, the(m � 2)nd derivative in t of � a(t) is also a Killing potential,
which may be written

r a� (m� 2)
A (t) = m!(t � � )q(t)r a� + ( t � � )2X a(t)

for some polynomial of vector �eldsX a(t). Applying r b = gb�cr �c and evaluating at
t = � yields r a� r b� = 0, i.e. r a� = 0. Replacing� by �� , we deduce that� is locally
constant onU. �

In contrast, in the analogous real projective theory of geodesically equivalent pseudo-
Riemannian metrics, Jordan blocks with nonconstant eigenvalues can occur: see [15].

In order to apply the above lemmas at a pointp 2 M , we needp to be stable forA in
the following sense. First, we need to suppose that the number of distinct eigenvalues
of Aa

b is constant on some neighbourhood ofp. This condition on p is clearly open,
and it is also dense: if the number of distinct eigenvalues isnot constant near p,
then there are points arbitrarily close top where the number of distinct eigenvalues
is larger; repeating this argument, there are points arbitrarily close to p where the
number of distinct eigenvalues is locally maximal, hence locally constant. Now, on the
dense open set where this condition holds, the eigenvalues of Aa

b are smoothly de�ned,
and their algebraic multiplicities are locally constant (since they are all upper semi-
continuous). Now a pointp in this dense open set isstable if in addition the Jordan
type (Segre or Weyr characteristics) of each generalised eigenspace ofAa

b is constant
on a neighbourhood ofp. The stable points are open and dense by Remark 5.5.

De�nition 5.4. We sayp 2 M is a regular point for the pencil ~� (t) = � �ab(Aa
b � t� a

b)
if it is stable for Aa

b, and for each smooth eigenvalue� on an open neighbourhood of
p, either d� p 6= 0 or � is constant on an open neighbourhood ofp.

Equivalently, the regular points are the open subset of the stable points where the
rank of the span of the canonical Killing �elds associated tothe pencil is maximal,
i.e. equal to the order`. Consequently, by Proposition 5.12, the regular points form a
dense open subset ofM .

Corollary 5.17. Let � be a smooth eigenvalue ofA over the set of stable points. Then

Aa
br b� = � r a� and A �a

�br �b� = � r �a�: (221)

If � is constant, its algebraic multiplicity is constant on the set of regular points.

Indeed, where� has algebraic multiplicity m� = 1, Lemma 5.15 implies thatr a�
generates the eigenspace of� , whereas wherem� � 2, Lemma 5.16 implies that�
is locally constant, and hence equations (221) are trivially satis�ed. Furthermore, it
implies that the algebraic multiplicities of the constant eigenvalues are upper semi-
continuous onM , hence constant on the connected set of regular points.

Theorem 5.18. Let (M; J; [r ]) be a c-projective manifold that admits(pseudo-)Kähler
metrics ga�b and ~ga�b associated to linearly independent solutions� �ac and ~� �ac = � �abAb

c

of the metrisability equation(125).
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(1) The number of functionally independent linear integralsL s is equal to the num-
ber of nonconstant eigenvalues ofA at any regular point ofM .

(2) The number of functionally independent quadratic integrals I t is equal to the
degree of the minimal polynomial ofA at any stable point ofM .

(3) The integrals I t are functionally independent from the integralsL s.

Proof. Integrals of the form L s or I t are functionally independent nearX 2 TpM if
their derivatives are linearly independent atX . SinceL s is linear along the �bres of
T M ! M , the restriction of dLs to TX (TpM ) �= TpM is g( eK (s); �) (at p). Similarly, I t

is quadratic along �bres, and the restriction ofdI t to TX (TpM ) �= TpM is � g
� 2 eH (t)(X; �)

with � g = det � . Hence, for genericX 2 TpM , the quadratic integralsI t are functionally
independent from the linear integralsL s, and the number of functionally independent
linear, respectively quadratic, integrals is at least the dimension of the span ofeK (s)
at p, respectively the dimension of the span ofeH (t) at p.

The geodesic �ow preserves the integrals and therefore the property of the integrals
to be functionally independent. Since any two points ofM can be connected by a
piecewise geodesic curve, it su�ces to compute the dimensions of these spaces at a
regular point of p, where the dimensions of the spans ofeK (s) and eH (t) are maximal.

At such a point, the number of linearly independent Killing vector �elds eK (s) is the
number of nonconstant eigenvalues ofA, so it remains to compute the number of lin-
early independent Killing tensors eH (t). For this, recall that eHb�a(t) = (adj A(t))b

cHc�a,
with adj A(t) = A(t)� 1 det A(t). Now write A(t) in Jordan canonical form: on an
h � h Jordan block with eigenvalue� , (t � � )hA(t)� 1 is a polynomial of degreeh � 1
in t with h linearly independent coe�cients. Hence on the generalised� -eigenspace,
(t � � )m � A(t)� 1 is a polynomial in t with h� linearly independent coe�cients, where
m� is the geometric multiplicity of � , and h� the index (the multiplicity of � in the
minimal polynomial, i.e. the size of the largest Jordan block). It follows readily that
the dimension of the span ofadj A(t) is the degree of the minimal polynomial ofA. �

5.6. The local complex torus action. For a c-projective manifoldM 2n admitting a
metrisability pencil with no constant eigenvalues, Theorem 5.18 shows that any metric
in the pencil is integrable, i.e. its geodesic �ow admits2n functionally independent
integrals. Furthermoren of the independent integrals are linear, inducing Hamiltonian
Killing vector �elds. Hence if M is compact, it is toric (i.e. has an isometric Hamil-
tonian n-torus action).

When the pencil has constant eigenvalues, there are only` independent linear in-
tegrals, where` is the order of the pencil (the number of nonconstant eigenvalues),
and at most n independent quadratic integrals. In this case the �ows of the Hamil-
tonian Killing vector �elds eK (t) generate a foliation ofM whose generic leaves are
`-dimensional. IfM is compact, one can prove (see [2]) that these leaves are the orbits
of an isometric Hamiltonian action of aǹ -torus U(1)` , and it is convenient to assume
this locally. The complexi�ed action, generated by the commuting holomorphic vector
�elds eK (t) and J eK (t), is then a local holomorphic action of(C� )` , and the leaves of
the foliation, which are locally J -invariant submanifolds with generic dimension2`,
will be called complex orbits.

Lemma 5.19. The complex orbits through regular points are totally geodesic and their
tangent spaces areA-invariant. The c-projectively equivalent metricsg and ~g restrict
to nondegenerate c-projectively equivalent metrics(with respect to the induced complex
structure) on any regular complex orbitOc. The metrisability pencil ~� (t) restricts to a
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metrisability pencil of order ` on Oc, using g and its restriction to trivialise ER(1; 1),
and then ~g is a constant multiple of the metric induced by~� .

Proof. Since the complex orbit of any regular point contains only regular points and
the tangent space to the orbit is spanned by holomorphic vector �elds, it su�ces to
prove that the (1; 0)-tangent spaces to regular points are closed under the Levi-Civita
connectionr of g. These tangent spaces are spanned by eigenvectorsZ a of Aa

b with
nonconstant eigenvalues� , and by di�erentiating the eigenvector equation using (128),
as in the proof of Lemma 5.15, we obtain

(Aa
b � � � a

b)r cZ a = ( � � a� c
b+ ; � a

br c� )Z a = � (� aZ a)� c
b + ( r c� )Z b:

Clearly if we contract the right hand side with a(1; 0)-vector X c tangent to a complex
orbit, we obtain another such vector. Hencer X Z is a (1; 0)-vector tangent to the
complex orbit as required: the complex orbits are thus totally geodesic.

The tangent spaces to a regular complex orbitOc are clearly J -invariant and A-
invariant, so that g induces a Kähler metricOc, with a metrisability pencil spanned
by the restrictions of � and ~� , where we useg and its restriction to trivialise ER(1; 1).
Since~� = � � A, and the generalised eigenspaces ofA which are not tangent toOc have
constant eigenvalues, the metric induced by the restriction of ~� is a constant multiple
of the restriction of ~g. �

Also of interest is the local(R+ )` action whose local orbits are the leaves of the
foliation generated by the vector �eldsJ eK (t), which will be calledreal orbits.

Lemma 5.20. The real orbits through regular points are totally geodesic, and their
tangent spaces areA-invariant and generated by the gradients of the nonconstant eigen-
values ofA. The c-projectively equivalent metricsg and ~g restrict to nondegenerate
projectively equivalent metrics on any regular real orbitO, and the restriction of A is
a constant multiple of the(1; 1)-tensor

� vol(~gjO )
vol(~gjO )

� 1=(`+1)
(~gjO )� 1gjO .

Proof. At a regular point p, X 2 TpM is tangent to the real orbit through p if and only
if it is tangent to the complex orbit through p and orthogonal to the Killing vector
�elds eK (t) at p. Since both properties are preserved along geodesics, the real orbits
are totally geodesic with respect tog (hence also~g).

Let Oc be the complex orbit through the regular real orbitO, so that g and ~g restrict
to c-projectively equivalent Kähler metrics onOc. Furthermore (vol(~gjOc ))1=2(`+1) ~g� 1jOc

is a constant multiple of(vol(gjOc ))1=2(`+1) g� 1 � AjOc . The tangent spaces toO are gen-
erated by the vector �elds r a� , for nonconstant eigenvalues� , which are mutually
orthogonal and non-null. HenceTpOc is the orthogonal direct sum ofTpO and JTpO
(with respect to both g and ~g). Henceg and ~g restrict to nondegenerate metrics on
O and A restricts to a constant multiple of

� vol(~gjO )
vol(~gjO )

� 1=(`+1)
(~gjO)� 1gjO . The Levi-Civita

connections ofg and ~g on Oc are related by (11) for some1-form � � . If we now
restrict to O (which is totally geodesic inOc), it follows that the induced Levi-Civita
connectionsr and er are related by

er � X  � r � X  = 1
2(� � � �

 + � �
 � � );

i.e. the metrics onO are projectively equivalent. �

5.7. Local classi�cation. Let (M; J; [r ]) be a c-projective2n-manifold admitting
two compatible non-homothetic (pseudo-)Kähler metrics, and hence a pencil of so-
lutions of the metrisability equation of order 0 � ` � n. Lemma 5.20 shows that
the real orbits yield a foliation of the setM 0 of regular points which is transverse
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and orthogonal to the common level sets of the nonconstant eigenvalues� 1; : : : � `

of A; these are also the levels of the elementary symmetric functions � 1; : : : � ` of
� 1; : : : � ` , which are Hamiltonians for Killing vector �elds generating the local isomet-
ric Hamiltonian `-torus action on M 0. Indeed, onM 0, � A (t) = � c(t)� nc(t), where
� nc(t) =

Q `
i =1 (t � � i ) =

P `
r =0 (� 1)r � r t ` � r , � c(t) has constant coe�cients, and� 0 = 1.

The leaf spaceS of the foliation of M 0 by the complex orbits may then be identi�ed
with the Kähler quotient of M 0 by this local `-torus action.

It is convenient to write � c(t) =
Q

u � u(t)mu , where� u(t) are the distinct irreducible
real factors (with deg� u = 1 or 2) and mu their multiplicities. Then if S is a manifold,
its universal cover is a product of complex manifoldsSu of (real) dimension2mu deg� u.

These observations lead to a local classi�cation of (pseudo-)Kähler metrics which
belong to a metrisability pencil (i.e. admit a c-projectively equivalent metric, or equiv-
alently, a Hamiltonian 2-form), which was obtained in [2] in the Kähler case, and in [16]
for general (pseudo-)Kähler metrics. We state the result asfollows.

Theorem 5.21. Let (M; J; [r ]) be a c-projective2n-manifold, and suppose thatg is
a (pseudo-)Kähler metric in a metrisability pencil of order `, which we may write as
~� �ab(t) = � �ab(Aa

b � t� a
b), where � �ab corresponds tog. Then on any open subset ofM 0

for which the leaf space of the complex orbits is a manifoldS, we may write:

g =
X

u

gu(� nc(AS)�; �) +
`X

i =1

� j

� j (� j )
d� 2

j +
`X

j =1

� j (� j )
� j

� `X

r =1

� r � 1(�̂ j )� r

� 2
; (222)

! =
X

u

! u(� nc(AS)�; �) +
`X

r =1

d� r ^ � r ; with d� r =
X

u

(� 1)r ! u(A` � r
S �; �); (223)

Jd� j =
� j (� j )

� j

`X

r =1

� r � 1(�̂ j ) � r ; J� r = ( � 1)r
`X

j =1

� ` � r
j

� j (� j )
d� j : (224)

The ingredients appearing here are as follows, where we liftobjects onS to M by
identifying the horizontal distributionker(d� 1; : : : d� ` ; � 1; : : : � ` ) with the pullback ofT S.

� � 1; : : : � ` are the nonconstant roots ofA, which are smooth complex-valued func-
tions on M 0, functionally independent overR, such that for anyj 2 f 1; : : : `g,
� j = � k for some (necessarily unique) k.

� � nc(t) =
Q `

i =1 (t � � i ) =
P `

r =0 (� 1)r � r t ` � r , � r � 1(�̂ j ) is the (r � 1)st elementary
symmetric function of f � k : k 6= j g, and � j =

Q
k6= j (� j � � k).

� For j 2 f 1; : : : `g, � j is a smooth nonvanishing complex function on the image
of � j such that if � j = � k then � j = � k .

� For each distinct irreducible real factor� u of � c, the metric gu is induced by a
(pseudo-)Kähler metric on the factorSu of the universal cover ofS.

� AS is a parallel Hermitian endomorphism with respect to the local product met-
ric

P
u gu on S, preserving the distributions induced byT Su, on which it has

characteristic polynomial� u(t)mu .
Any such (pseudo-)Kähler metric admits a metrisability pencil of order`, with

A = AS +
`X

i =1

� i

�
d� i 


@
@�i

+ Jd� i 
 J
@

@�i

�
:

In other words (M; g; J; ! ) is locally a bundle over a productS of (pseudo-)Kähler
whose �bres (the complex orbits) are totally geodesic toric(pseudo-)Kähler manifolds
of a special kind, called �orthotoric�. The proof in [2] proceeds by establishing the
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orthotoric property of the �bres and the special structure of the baseS. In contrast,
the proof in [16] relies upon the observation (generalisingLemma 5.20) that the local
quotient of (M; g) by the real isometric`-torus action admits a projectively equivalent
metric: the �rst two sums in (222) are the general form of sucha metric when the
nonconstant eigenvalues of the projective pencil have algebraic multiplicity one.

In the Riemannian case, the expression (222) provides a complete local descrip-
tion of the metric: locally, we may assumeS =

Q
u Su is product of open subsets

Su � R2mu , and then AS is a constant multiple of the identity on each factor. In
the pseudo-Riemannian, it remains only to describe explicitly the parallel Hermitian
endomorphismAS on S =

Q
u Su, for which we refer to [18].

Remark 5.6. In order to understand the compatible metrics corresponding to the
general element~� � t� of the metrisability pencil, it is convenient to make a projective
changes = ( at + b)=(ct+ d) of parameter, as in Remark 5.3. The metric corresponding
to c~� + d� (assuming this is nondegenerate) must have the same form (222) as g,
with respect to the coordinates~� j = ( a� j + b)=(c� j + d), and with A replaced by
~A = ( cA + d)� 1(aA + b). We �nd in particular that the new functions ~� j are related
to the old functions by ~� j (s)(ct + d)`+1 = ( ad � bc)`+1 � j (t)�in other words they
transform like polynomials of degreè + 1 (sections ofO(` + 1) over the projective
parameter line).

Remark 5.7. It is straightforward to show that the restriction of the metric (222) to
any complex orbit (a totally geodesic integral submanifoldof @� j ; J@� j : j 2 f 1; : : : `g)
has constant holomorphic sectional curvature if and only ifeach� j (t) is a polynomial
independent ofj , of degree at most̀ + 1: the curvature computations in [2] extend
readily to the (pseudo-)Kähler case. If we write� j (t) = �( t) :=

P `
r = � 1 ar t ` � r , then

the complex orbits have constant holomorphic sectional curvature B = 1
4a� 1.

Following [2], we may introduce holomorphic coordinatesur + it r on the complex
orbits by writing � r = dtr + � r and Jdur = dtr for r 2 f 1; : : : `g, where� r are pullbacks
of 1-forms onS. Thus

Jdur = � � r � (� 1)r
`X

j =1

� ` � r
j

� j (� j )
Jd� j

whered� r =
P

u(� 1)r ! u(A` � r
S �; �), and these formulae extend to anyr � `. For r � 1,

dJdur = 0, whereasdJdu0 = � ! and dJdu� 1 = � + � 1! , where� = g(JA�; �).
In particular, if � j (t) = �( t), then

`X

r = � 1

(� 1)r ar (Jdur + � r ) = � Jd� 1

and hence

dJd� 1 = a� 1(� + � 1! ) + a0! �
X

u

! u(�( A)�; �):

However, � 1 di�ers from traceA = Aa
a by an additive constant, sod� 1 = � � and

hencedJd� 1 = � 2r J � , i.e.

2r � = ( a� 1 + a0� 1)g + a� 1g(A�; �) �
X

u

gu(�( A)�; �): (225)
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6. Metric c-projective structures and nullity

Henceforth, we assume that(M; J ) is a complex manifold (i.e. withJ integrable)
of real dimension2n � 4, equipped with a metric c-projective structure, i.e. a c-
projective structure [r ] containing the Levi-Civita connection of a (pseudo-)Kähler
metric g, which we denote byr g, or r if g is understood. We may also consider a
metric c-projective structure as an equivalence class[g] of (pseudo-)Kähler metrics on
(M; J ) having the sameJ-planar curves.

By Proposition 4.5, the map sending a metricg 2 [g] to � = � � 1
g g� 1 embeds[g]

into mc = mc[r ] as an open subset of the nondegenerate solutions to the metrisability
equation (126). We refer todim mc as the mobility of g for any g 2 [g], cf. Section 4.4,
and we are interested in the case thatdim mc � 2. In Section 5, we obtained some
consequences of this assumption for the geodesic �ow ofg on M . We now turn to the
relationship between mobility and curvature.

As explained in Section 4.5,mc may be identi�ed with the space of parallel sections
of the real tractor bundle V with respect to the prolongation connection(157)�(158).
However, in [44, Theorem 5], it was shown that ifdim mc � 3, then mc may also be
identi�ed with the space of parallel sections ofV with respect to the connection

r �

0

@
A �

� �

�

1

A =

0

@
r � A � + � �

(� �  ) + J�
(� J�

 ) � �

r � � � + �� �
� � 2Bg� A �

r � � � 2Bg�� � �

1

A

for some uniquely determined constantB . In this section we explore this phenomenon,
and its implications for the curvature of M . First, as a warm-up, we consider the
analogous situation in real projective geometry.

6.1. Metric projective geometry and projective nullity. A metric projective
structure on a smooth manifoldM of dimensionn � 2 is a projective structure [r ]
containing the Levi-Civita connection of a (pseudo-)Riemannian metric, or (which
amounts to the same thing) an equivalence class[g] of (pseudo-)Riemannian metrics
with the same geodesic curves. As in the c-projective case (see Section 4.3 and Re-
mark 4.4), up to sign,[g] embeds into the spacem = m[r ] of solutions to the projective
metrisability equation (135) as the open subset of nondegenerate solutions.

A metric projective structure has mobility dim m � 1, and we are interested in the
case that dim m � 2. However, it is shown in [57] that, on a connected projective
manifold (M; [r ]) with mobility dim m � 3, there is a constantB such that solutions
A � of the mobility equations may be identi�ed with parallel sections for the connection

r �

0

@
A �

� �

�

1

A =

0

@
r � A � + 2� �

(� �  )

r � � � + �� �
� � Bg� A �

r � � � 2Bg�� � �

1

A (226)

on the tractor bundle associated to the metrisability equation. This connection is
the main tool used in [45] to determine all possible values ofthe mobility of an n-
dimensional simply-connected Lorentzian manifold.

This result is an example of a general phenomenon: in metric projective geome-
try, solutions to �rst BGG equations are often in bijection with parallel sections of
tractor bundles for a much simpler (albeit somewhat mysterious) connection than the
prolongation connection. We illustrate this with a toy example. The operator

�( T M (� 1)) 3 � � 7! (r � � � )� = r � � � � 1
n � �

� r  � 
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is projectively invariant, whereT M (� 1) denotes the bundle of vector �elds of projec-
tive weight � 1; its kernel consists of solutions to theconcircularity equation

(r � � � )� = 0; (227)

called concircular vector �elds. This equation is especially congenial in that its pro-
longation connection coincides with the Cartan connection. Indeed, following [7], for
any solution � � of (227) there is a unique function� (of projective weight � 1) such
that r � � � = � � �

� � , namely � = � 1
n r  �  . We then have

R��


� � � = ( r � r � � r � r � )�  = � �
 r � � � � �

 r � �; (228)

and tracing over � yields Ric�� � � = ( n � 1)r � � . We conclude that � � lifts uniquely
to parallel section of the standard tractor bundle for the connection

r �

�
� �

�

�
=

�
r � � � + � �

� �
r � � � P�� � �

�
(229)

induced by the (normal) Cartan connection, whereP�� � 1
n� 1Ric�� .

The simpler connection arising in the metric projective case is described as follows.

Theorem 6.1. Let (M; [r ]) be a metric projective manifold, and for anyp 2 M , let
Np be the dimension of the span atp of the local solutions of (227). Then for any
metric g with Levi-Civita connection r g 2 [r ], there is a function B on M , which is
uniquely determined and smooth whereNp � 1, such that every concircular vector �eld
lifts uniquely to a parallel section of the standard tractorbundle for the connection

r �

�
� �

�

�
=

�
r g

� � � + � �
� �

r g
� � � Bg�� � �

�
: (230)

Moreover B is locally constant on the open set whereNp � 2, which is empty or dense
in each connected component ofM . If M is connected andB is locally constant on a
dense open set, it may be assumed constant onM .

Proof. We take r = r g and useg to raise and lower indices. Suppose that

r � � � + � �
� � = 0 and r � e� � + � �

� e� = 0

for solutions � � ; e� � of (227). Then (228) implies that

Rg
��� � � = g� r � � � g� r � � and Rg

��� e� � = g� r � e� � g� r � e�;

and so 2e� [� r � ]� = Rg
��� e�  � � = � Rg

��� �  e� � = 2� [� r � ]e�:
(231)

In particular, � [� r � ]� = 0 and so there is a unique smooth functionB on the open set
where� � 6= 0 such that

r � � � Bg�� � � = 0 (232)
on M for any extension ofB over the zero-set of� � (since r � � also vanishes there).
Equation (231) now implies that any two concircular vector �elds have the same func-
tion B where both functions are determined. ThusB is uniquely determined and
smooth whereNp � 1. Di�erentiating (232) on the open set whereB is smooth gives

r � r � � � � � r � B + Bg�� � = 0;

and so� [� r � ]B = 0. Hencer � B = 0 on the open set whereNp � 2. This subset is
empty or dense in each component ofM , since two solutions of (227) that are pointwise
linearly dependent on an open set are linearly dependent on that open set.

It remains to show that if M is connected andB is locally constant on a dense open
subsetU (which could be disconnected), then it may be assumed constant. To see this,
we use only that

P� �  = B� � and r � B = 0



C-PROJECTIVE GEOMETRY 81

on U, for then we may di�erentiate once more to conclude that

(r � P� )�  + P� r � �  = Br � � �

and hence that
(r � P� )�  � P�� � = � Bg�� �

on U. Tracing over �� yields

(r � P�
 )�  � P�

� � = � nB�

and hence that �
P�

� 0
� 1

n r � P�
�

1
n P�

�

� �
� �

�

�
= B

�
� �

�

�
(233)

on U. Although this equation was derived onU, it is a valid stipulation everywhere
on M . Moreover, the tractor �

� �

�

�

is nowhere vanishing onM (else in (229), the vector �eld� � would vanish identically).
From this point of view, we see thatB extends as a smooth function onM . Finally,
sinceB is locally constant onU, it is locally constant and hence constant onM . �

The connection (230) of Theorem 6.1 di�ers from the tractor connection (229) by
the endomorphism-valued1-form

�
0 0

P�� � Bg�� 0

�
: X � 


�
� �

�

�
7!

�
0

(P�� � Bg�� )X � � �

�

The connections agree on the �at model. Speci�cally, on the unit sphere we have

R��� = g� g�� � g� g�� whence P�� = g�� ;

so that the connections coincide withB = 1.
The proof of Theorem 6.1 may be broken down into two steps. First, one shows that

the connection (230) has the required lifting property for some functionB, which may
only be uniquely determined and smooth on an open set. Secondly, one establishes
su�cient regularity to determine the connection globally on M (in this case, with B
constant). In the literature, the second step has often beencarried out by probing M
with geodesics. In the above proof we advocate an alternative line of argument that
we believe to be simpler and more generally applicable.

Remark 6.1. For example, we may apply the same technique to the mobility equa-
tions (226), where the replacement for (233) has the form

0

@
R 0 0

r R R 0
rr R + R ./ R r R R

1

A

0

@
A �

� �

�

1

A = B

2

4

0

@
A �

� �

�

1

A �
A �

�

n

0

@
g�

0
1
n P



1

A

3

5 :

As above, this is su�cient to show that B is constant if it is locally constant on a
dense open set. One striking di�erence between this case andTheorem 6.1, however,
is that the connection (230) actually has the same covariantconstant sections as does
the standard Cartan or prolongation connection (229). For the mobility equations,
however, not only is the resulting connection (226) di�erent from the prolongation
connection [43] but also their covariant constant sectionsare generally di�erent. Nev-
ertheless, all solutions of the mobility equations lift uniquely as covariant constant
sections with respect to either of these connections (and this is their crucial property).
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We next seek to elucidate the �rst step in the proof of Theorem6.1. Here we observe
that the key equations (231) used to establish the uniqueness of B may be viewed as
a characterisation ofB in terms of the curvatureRg of g, namely that

Rg
��� � � = B(g� � � � g� � � ):

This motivates the introduction of some terminology, following Gray [50].

De�nition 6.1. Let (M; g) be a (pseudo-)Riemannian manifold and suppose that the
tensor R��� has the symmetries of the Riemannian curvature ofg. Then a nullity
vector of R at p 2 M is a tangent vectorv� 2 TpM with R��� v� = 0, and the nullity
spaceof R at p is the set of such nullity vectors. We sayR has nullity at p if the nullity
space is nonzero, i.e. the nullity index is positive.

In particular, if Rg is the Riemannian curvature ofg, then at eachp 2 M , there is
at most one scalarB 2 R such that RB

��� := Rg
��� � B (g� g�� � g� g�� ) has nullity

at p. Indeed if v� and ev� are nullity vectors for RB and R eB respectively then

0 = ( B � eB)(g� g�� � g� g�� )ev� v� = ( B � eB)(v� ev� g� � v� ev );

which implies that B = eB unlessv� or ev� are zero.

De�nition 6.2. Let (M; g) be a (pseudo-)Riemannian manifold. Then the (projective)
nullity distribution of g is the union of the nullity spaces ofRB

��� over B 2 R and
p 2 M . We say that g has (projective) nullity at p 2 M if there is a nonzerov� 2 TpM
in the nullity distribution of g, i.e.

�
Rg

��� � B (g� g�� � g� g�� )
�
v� = 0; (234)

for someB 2 R, uniquely determined byp.

The de�nition of B is reminiscent of an eigenvalue; indeed, the� trace of (234) is

P�
� v� = Bv � ;

soB is an eigenvalue of the endomorphismP�
� . On the other hand the trace-free part

of (234) provides a projectively invariant characterisation, using the projective Weyl
tensor P��


� := R��


� � � �

 P�� + � �
 P�� , as follows (cf. [49]).

Proposition 6.2. Let (M; g) be a(pseudo-)Riemannian manifold of dimensionn � 2,
and let v� 2 TpM be nonzero. Then the following statements are equivalent:

(1) v� is a projective nullity vector atp
(2) there existsB 2 R such thatP��


� v� = ( P�� � Bg�� )v

(3) P��


� v� = 0.

Proof. (1)) (2). SinceP�� v� = Bg�� v� , R��� = R��� and P�� = P�� , we have

P��� v� = R��� v� � g� P�� v� + g� P�� v�

= B(g� g�� � g� g�� )v� � Bg� g�� v� + g� P�� v� = ( P�� � Bg�� )g� v� ;

and (2) follows by raising the index .
(2)) (3). SinceP[��


� ] = 0, which follows easily fromR[��


� ] = 0,

P��


� v� = ( P��


� � P��


� )v� ;

which vanishes by (2), sinceP�� � Bg�� is symmetric in �� .
(3)) (1). Observe that 0 = R��� v v� = ( g� P�� � g� P�� )v v� = v[� P� ]� v� . Hence

there existsB 2 R such that P�� v� = Bg�� v� , and hence

R��� v� = ( g� P�� � g� P�� )v� = B(g� g�� � g� g�� )v� ;

i.e. v� is in the projective nullity at p. �
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In particular, this shows that the projective nullity distr ibution is a metric projective
invariant, as is the expressionP�� � Bg�� wherever there is projective nullity, hence
so is the special tractor connection (230). The above argument for this fact is given
in [49], where the special connection on the standard tractor bundle is also discussed.

Remark 6.2. In the 2-dimensional case, all metrics have nullity at all points and B
is the Gauÿian curvature. On the unitn-sphere the nullity distribution is the tangent
bundle andB � 1. Condition (234) may be written as

C��� v� =
�

1
(n� 1)(n� 2) Scal� 1

n� 2B
�
(g� v� � g� v� ) � 1

n� 2(Ric� v� � Ric� v� )

where C��� is conformal Weyl curvature tensor. For a Riemannian metric, we may
orthogonally diagonalise the Ricci tensor to see that ifC��� = 0 (as it is in three
dimensions or in the conformally �at case in higher dimensions) then R��� has nullity
if and only if all but possibly one of the eigenvalues ofP�

� coalesce withB being the
possible exception. So in the three-dimensional Riemannian caseR��� has nullity if
and only if the discriminant of the characteristic polynomial of P�

� vanishes:

(P�
� )6 � 9(P�

� )4(P�
 P

� ) + 21(P�
� )2(P�

 P
� )2 � 3(P�

 P
� )3

+ 8( P�
� )3(P�

� P�
 P

� ) � 36(P�
� )(P�

 P
� )(P�

� P�
� P�

� ) + 18(P�
� P�

 P
� )2 = 0:

Indeed, in three dimensions (whereR��� is determined byP�� ) it is also the case in
Lorentzian signature that R��� has nullity if and only if P�

� is diagonalisable with
eigenvalues distributed in this manner. In any case, in three dimensions it follows that
B is a continuous function and is smooth except perhaps at points where P�� is a
multiple of g�� . In the four-dimensional Riemannian case, one can check that if R���

has nullity and the eigenvalues ofP�
� are B; � 2; � 3; � 4, then

I � C��� C ��� = 6
�
(� 2 � � 3)2 + ( � 3 � � 4)2 + ( � 4 � � 2)2

�

and if this expression is nonzero, then

B = 1
4P�

� + 1
4I

�
C��

� C�
�� C��

�� � 18C��
� P

� P�
�
�
:

It follows that B is smooth onf I 6= 0g whilst on f I = 0g three of the four eigenvalues
of P�

� merge as above andB is the odd one out unlessP�� / g�� . Therefore, as in
three dimensions, it follows thatB extends as a continuous function that is smooth
except whereP�� is a multiple of g�� . We anticipate similar behaviour in general but,
for the moment, the regularity ofB remains unknown.

6.2. C-projective nullity. We return now to metric c-projective geometry, where
we seek to develop analogous interconnections between curvature and special tractor
connections to those in the metric projective case. In orderto do this, we �rst de-
velop a notion of c-projective nullity for (pseudo-)Kählermetrics, modelled on the
curvature of complex projective space (48) in the same way that projective nullity for
(pseudo-)Riemannian metrics is modelled on the curvature of the unit sphere.

We suppose therefore that(M; J; g) is a (pseudo-)Kähler manifold withr the Levi-
Civita connection of g�� and 
 �� = J�

 g� the Kähler form. Further let us write

S��� � g� g�� � g� g�� + 
 � 
 �� � 
 � 
 �� + 2
 �� 
 � (235)

for the Kähler curvature tensor of constant sectional holomorphic curvature 4. As in
the (pseudo-)Riemannian case, at eachp 2 M , there is at most one scalarB 2 R such
that GB

��� := R��� � BS��� has nullity at p. Indeed, if v� and ev� are nullity vectors
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for GB
��� and G eB

��� respectively then

0 = ( B � eB)S��� ev� v�

= ( B � eB)(v� ev� g� � v� ev + J�
� v� ev� 
 � + J�

� v� J
� ev� + 2J

� v� J�
� ev� )

which implies that B = eB unlessv� or ev� are zero. By analogy with De�nition 6.2, and
again following Gray [50] (who used the term �holomorphic constancy�), we therefore
de�ne c-projective nullity as follows.

De�nition 6.3. The (c-projective) nullity distribution N of a (pseudo-)Kähler mani-
fold (M; J; g) is the union of the nullity spaces ofGB

��� over B 2 R and p 2 M , and
for eachp 2 M , we write Np for the (c-projective) nullity spaceN \ TpM . We say that
(J; g) has (c-projective) nullity at p 2 M if Np is nonzero, i.e.

�
R��� � BS���

�
v� = 0; (236)

for someB 2 R, uniquely determined byp, and some nonzerov� 2 TpM .

Thus Np is the kernel of the linear map

v� 7! GB
��� v� ;

for someB 2 R depending onp. Let us remark that, sinceG = GB has the symmetries
of the curvature tensor of a Kähler metric,Np is aJ -invariant subspace ofTpM (i.e. v� 2
Np implies J�

� v� 2 N p), hence is even dimensional.
Bearing in mind the discussion of Section 4.1, we may write (236) in barred and

unbarred indices. We �nd that
�
Ra�bc�d + 2B(ga�bgc �d + gc�bga �d)

�
v

�d = 0
�
Ra�b�cd � 2B(ga�cgd�b + ga�bgd�c)

�
vd = 0:

(237)

As in the projective case, tracing (236) over� yields an eigenvalue equation

Ric�
� v� = 2( n + 1) Bv � ; equivalently P�

� v� = 2Bv � ; (238)

sinceP�� = 1
n+1 Ric�� by (25) and (109). This can equivalently be expressed in barred

and unbarred indices as

Pb
dvd = 2Bvb; or as P

�b
�dv

�d = 2Bv
�b: (239)

Of course, we may derive (239) also directly by tracing the second equation of (237),
respectively its conjugate, with respect toa�c, respectively �ac. Further, note that the
symmetries of the Ricci tensor of a (pseudo-)Kähler metric show that (239) can be also
equivalently written as Pd

bvd = 2Bvb, respectivelyP �d
�bv �d = 2Bv �b:

Now assume that (237) is satis�ed and decomposeRa�b
c
d according to (28) as

Ra�b
c
d = Ha�b

c
d + � a

cP�bd + � d
cP�ba:

Then equation (239) implies

Ha�b
c
dv

�b = ( Ra�b
c
d � � a

cP�bd � � d
cP�ba)v

�b = 2B(� a
cvd + � d

cva) � (� a
cP�bd + � d

cP�ba)v
�b = 0:

Furthermore,

Ha�b
c
dvd = ( Ra�b

c
d � � a

cP�bd � � d
cP�ba)v

d

= (2 B(ga�bv
c + � a

cv�b) � 2B� a
cv�b � P�bav

c)

= (2 Bga�b � P�ba)v
c;

which implies Ha�b
c
dvavd = 0. It fact these two conditions are also su�cient for nullity.
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Proposition 6.3. Let (M; J; g) be a (pseudo-)Kähler manifold of dimension2n � 4,
and let vd 2 T1;0

p M �= TpM be a nonzero tangent vector. Then the following statements
are equivalent:

(1) vd 2 N p

(2) there existsB 2 R such thatHa�b
c
dvd = (2 Bga�b � Pa�b)v

c

(3) Ha�b
c
dvavd = 0 and Ha�b

c
dv�b = 0,

where, as in(28), Ha�b
c
d is the trace-free part ofRa�b

c
d � � g�ecRa�bd�e.

Proof. We have just observed that (1) implies (2) and (3). Note, moreover that taking
the trace with respect toa and c in (2) gives (239), which shows immediately that (2)
implies (1). Hence, it remains to show that (3) implies (1). If (3) holds, then

Ra�b
c
dvavd = ( � a

cP�bd + � d
cP�ba)v

avd ) Ra�b�cdv
avd = 2v�cP�bdv

d

so0 = v[�cP�b]dvd and we conclude thatP�cdvd = 2 �Bv �c, for some constant�B . Substituting
the conjugate conclusionP �dcv

�d = 2Bvc into Ra�b
c
dv�b gives

Ra�b
c
dv

�b = ( Ha�b
c
d + � a

cP�bd + � d
cP�ba)v

�b = 2B� a
cvd + 2B� d

cva

which, after lowering the indexc is equivalent to (237), as required. (Note thatB is
necessarily real, sinceRa�b

c
d and Sa�b

c
d are real tensors.) �

Corollary 6.4. At any p 2 M , the nullity distribution of Np is a metric c-projective
invariant, i.e. the same for c-projectively equivalent(pseudo-)Kähler metrics ga�b and
~ga�b. Furthermore, if Np is nonzero, andB; eB 2 R are the corresponding scalars in the
de�nition of Np with respect tog;~g respectively, thenePa�b � 2eB ~ga�b = Pa�b � 2Bga�b.

Proof. By Proposition 2.13, criterion (3) of Proposition 6.3 is c-projectively invariant.
In fact, by Proposition 4.4,Ha�b

c
d is precisely the harmonic curvature of the underlying

c-projective structure. The last part follows immediatelyfrom criterion (2). �

Remark 6.3. For later use, we apply the projectors of Section 1 to reformulate the
equivalent conditions of Proposition 6.3 directly in termsof v� 2 TpM as follows:

(1) v� 2 N p

(2) there exists a constantB 2 R such that H ��


� v� = ( J�
� P�� � 2B 
 �� )J�

 v�

(3) H ��


� v� v� = 0 and (H ��


� + J�
� J�

 H ��
�

� )v� = 0,

whereH ��


� � R��


� � � [�
 P� ]� + J[�

 P� ]� J�
� + J�

� P�� J�
 and P�� � 1

n+1 R��
�

� .

Proposition 6.5. Let (M; J; g) be a (pseudo-)Kähler manifold of dimension2n � 4,
and B a smooth function on an open subsetU. Then for any (real) vector �eld v in
the nullity of G = GB on U, if v is non-null at p 2 U, then dB = 0 there.

Proof. The di�erential Bianchi identity r [aRb]�cd
e = 0 on U implies that

r [aGb]�cd
e = 2( r [aB)gb]�c� d

e + 2( r [aB)� b]
egd�c:

Sinceva and v�a belong to the nullity of G, we may contract with v�cvd to obtain

0 = 2(r [aB)gb]�cv�cve + 2( r [aB)� b]
egd�cvdv�c:

A further contraction with ve = ge �f v �f yields (r [aB)vb]gd�cvdv�c = 0, so if v is non-null at
p, (r [aB)vb] = 0 there; hence(r [aB)� b]

e = 0, which implies r aB = 0, i.e. dB = 0. �
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6.3. Mobility, nullity, and the special tractor connection. Our aim in this sec-
tion is to show that, under certain conditions, the solutions of the mobility equa-
tion (129) on a (pseudo-)Kähler manifold(M; J; g) lift uniquely to parallel sections of
V � V C for the special tractor connection:

r VC
a

0

@
A�bc

� b j � �b

�

1

A =

0

@
r aA�bc + � a

c� �b

r a� b + �� a
b � 2BA a

b j r a� �b

r a� � 2B � a

1

A

r VC
�a

0

@
A�bc

� b j � �b

�

1

A =

0

@
r �aA�bc + � �a

�b� c

r �a� b j r �a� �b + �� �a
�b � 2BA �b

�a

r �a� � 2B � �a

1

A ;

(240)

wherer is the Levi-Civita connection forga�b and B is a smooth function onM . Here
VC is identi�ed via ga�b with a direct sum of unweighted tensor bundles, and we write
the connection in barred and unbarred indices, so that for sections of V � V C, the two
lines of (240) are conjugate.

Remark 6.4. By Theorem 4.6, we know already that any solutionA �ab of the mobility
equation (129) lifts uniquely to a parallel section ofV for the more complicated pro-
longation connection (157)�(158). If it also lifts to a parallel section for (240), then
(cf. Remark 6.1) the two lifts may di�er, albeit only in the last component. More
precisely the last component� of the parallel lift for the special tractor connection is
given by � = � 0 � 1

n (Pa�b � 2Bga�b)A �ab, where � 0 is the last component of the parallel
lift for the prolongation connection. Note that if the metric g�ab itself lifts to a parallel
section for (240), thenB must be locally constant.

In [44, Theorem 5], it is shown that if the mobility of(M; g; J ) is at least three, then
there is a constantB such that all solutions of the mobility equation lift uniquely to
parallel sections ofV for (240). Before developing this, and related results, it will be
useful to establish some basic properties of special tractor connections (240) and their
parallel sections. Throughout this section we set, for a given function B,

Ga�bc�d := Ra�bc�d + 2B(ga�bgc �d + gc�bga �d): (241)

The equations satis�ed by parallel sections of (240) are

r aAb
c = � � a

c� b (242a)

r a� �c = � �g a�c + 2BA a�c and r a� b = 0; (242b)

r a� = 2B � a (242c)

and their complex conjugates. Of course, the �rst line is simply the mobility equation.
In particular, from (145)�(146) (and the symmetry of Pb�c) we have

gd�br a� �c � ga�cr �b� d = Ra�be�cAd
e � Ra�bd�eA

�e
�c

= Wa�be�cAd
e � Wa�bd�eA

�e
�c � ga�cPe�bAd

e + gd�bPa�eA �e
�c;

(243)

whereWa�be�c = Ha�be�c, sinceJ is integrable.

Lemma 6.6. If Ab
c and � b satisfy (242a)� (242b) for smooth functionsB; � , then

Ga�bc
eAe

d = Ga�be
dAc

e (244)

Ga�bc
d� d = � gc�b(r a� � 2B � a) + 2( r aB)Ac�b: (245)
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Proof. We substitute (242b) into (243) to obtain

Ra�be�cAd
e � Ra�bd�eA

�e
�c = ga�c(�g d�b � 2BA d�b) � gd�b(�g a�c � 2BA a�c)

= 2B(gd�bga�eA �e
�c � ga�cge�bAd

e);

and (244) follows from (241). To obtain (245), we apply (241)instead to the identity

Ra�bc
d� d = ( r ar �b � r �br a)� c = r a(� �g c�b + 2BA c�b)

= 2( r aB)Ac�b � 2Bga�b� c � gc�b(r a� ): �

In Theorem 6.11, we will show that if(M; g; J ) of mobility � 2 has c-projective
nullity, then all solutions of the mobility equation lift un iquely to parallel sections ofV
for (240), whereB is characterised by nullity. First we establish the following converse
and regularity result.

Theorem 6.7. Let (M; J; g) be a connected(pseudo-)Kähler manifold with a non-
parallel solution A �ab of the mobility equation, which lifts, over a dense open subset U
of M , to a real parallel section(A �ab; � a; � ) for (240) with B locally constant. Then:

(1) B is constant and(A �ab; � a; � ) extends to a parallel section overM ;
(2) Ga�bc

d� d = 0, and hence(J; g) has c-projective nullity on the dense open subset
where� a is nonzero.

Proof. As noted in Remark 6.4, Theorem 4.6 provides a real section(A �ab; � a; � 0) of V
(de�ned on all of M ) which is parallel for the connection given by (157) and (158). On
U we compute, using (242b) and (243), that

Ra�b
d

f A �cf + Ra�b
�c
�eA �ed = 2B(� a

dA �c
�b � � �b

�cAa
d); (246)

which implies
1
n (Ric�bf A

�cf + Ra�b
�c
�eA �ea) = 2 B(A �c

�b � 1
n � �b

�cAa
a): (247)

Applying r �d to (247) and taking the trace with respect to �d and �c shows that
1

(1� n)( n+1)

�
(r �dRic�bf )A

�df + ( r �dRa�b
�d
�e)A �ea + (1 � n)Ric�bf �

f
�

= 2B � �b: (248)

Recall that

� �� a
b + 2BA a

b = r a� b = � � 0� a
b + Pa�cA �cb � 1

n Ha�c
b
dA �cd

and that Pa�b = 1
n+1 Rica�b. Hence, applyingr h to (248) and taking trace shows, together

with the identities (247) and (248), that we have an identityof the form
0

@
R 0 0

r R R 0
rr R + R ./ R r R R

1

A

0

@
A �ab

� a

� 0

1

A = 2B

2

4

0

@
A �ab

� a

� 0

1

A �
Ac

c

n

0

@
g�ab

0
1
n Pd

d

1

A

3

5 : (249)

Since the left-hand side of (249) is de�ned on all ofM and (A �ab; � a; � 0) is a nowhere
vanishing section onM , the identity (249) can be used to extendB smoothly as
a function to all of M . Since B is locally constant on U and M is connected,B
is actually a constant and(A �ab; � a; � ) extends smoothly to a parallel section of the
connection (240) on all ofM .

The second part is immediate from (245) withr aB = 0 and r a� = 2B � a. �

Remark 6.5. When (J; g) has c-projective nullity, Pa�b� 2Bga�b (with B given by (236))
is a metric c-projective invariant by Corollary 6.4, and hence the connection (240) is
metric c-projectively invariant. In particular, by Theorem 6.7, the connection is metric
c-projectively invariant if B is constant and it admits a parallel section with� a nonzero.

On the other hand, if the connection (240) admits a parallel section with � a = 0,
then (242b) shows thatB = 0 unless the corresponding solutionAa�b of the mobility
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equation is a (necessarily locally constant) multiple ofga�b. Thus a parallel solution of
the mobility equation which is not a multiple of g lifts to a parallel section for (240) if
and only if B = 0.

Theorem 6.8. Let (M; J; [r ]) be a connected metric c-projective manifold of dimen-
sion 2n � 4 arising from a (pseudo-)Kähler metric g with mobility � 3. Then either
(J; g) has c-projective nullity on a dense open subsetU � M , with B constant in (236),
or 2n � 6 and all metrics c-projectively equivalent tog are a�nely equivalent to g
(i.e. have the same Levi-Civita connection).

To prove this theorem, we use a couple of lemmas, the �rst of which is a purely
algebraic (pointwise) result.

Lemma 6.9. Suppose thatRa�bc�d is a tensor which has Kähler symmetries(108) with
respect toga�b. Let Aa�b, eAa�b, � a�b and e� a�b be (real) tensors that satisfy

Ra�b�ceAd
e + Ra�bd�f A

�f
�c = ga�c� d�b � gd�b� a�c (250)

Ra�b�ce
eAd

e + Ra�bd�f
eA

�f
�c = ga�c

e� d�b � gd�b
e� a�c: (251)

If Aa�b, eAa�b and ga�b are linearly independent, then� a�b, respectively e� a�b, are linear
combinations ofga�b and Aa�b, respectivelyga�b and eAa�b, with the same second coe�cient.

Proof. Note �rst that these equations remain unchanged if we add scalar multiplies
of ga�b to the tensors Aa�b, eAa�b, � a�b and e� a�b. Hence, we can assume without loss of
generality that the trace of these tensors vanishes. We thenhave to show that� a�b and
e� a�b are a common scalar multiple ofAa�b and eAa�b respectively.

From equation (250) it follows immediately that

eAa
h(Rh�b�ceAd

e + Rh�bd�f A
�f
�c) � eA�i

�b(Ra�i �ceAd
e + Ra�id �f A

�f
�c)

= eAa�c� d�b + eAd�b� a�c � ga�c
eA�i

�b� d�i � gd�b
eAa

h � h�c: (252)

By the symmetries (108) ofRa�bc�d, the left-hand side of identity (252) equals

( eAa
hRh�b�ce � eA�i

�bRa�i �ce)Ad
e + ( eAa

hRh�bd�f � eA�i
�bRa�id �f )A

�f
�c

= ( eAa
hRh�b�ce + eA�i

�bRe�ca�i )Ad
e � ( eAa

hRd �f �bh + eA�i
�bRd �fa �i )A

�f
�c

= Aa�c
e� d�b + Ad�b

e� a�c � ga�cA
�i
�b
e� d�i � gd�bAa

h e� h�c (253)

where the last equality follows from (252). From (252) and (253) we therefore obtain

ga�c� d�b + gd�b� a�c = Ad�b
e� a�c + Aa�c

e� d�b � eAd�b� a�c � eAa�c� d�b; (254)

where� a�b = Aa
ee� e�b � eA �f

�b� a �f . Taking the trace with respect toa and c yields

n� d�b + gd�b� a
a = 0; (255)

which shows that� a�b = 0. Therefore, we conclude from (254) that

Ad�b
e� a�c + Aa�c

e� d�b = eAd�b� a�c + eAa�c� d�b:

Since any nonzero tensor of this form determines its factorsup to scale, andAa�b and
eAa�b are linearly independent, we conclude that� a�b and e� a�b are the same multiple of
Aa�b and eAa�b respectively. �

We next relate linear dependence to pointwise linear dependence.
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Lemma 6.10. Let (M; J; g) be a connected(pseudo-)Kähler 2n-manifold (n � 2) and
let Aa

b be a solution of (128) such that eAa
b := p� a

b + qAa
b is also a solution for real

functions p and q. Then p and q are constant orAa
b = �� a

b for constant � .

Proof. By assumption, we haver aAb
c = � � a

c� b and r a
eAb

c = � � a
ce� b, hence

r ap � b
c + r aq Ab

c = � (e� b � q� b)� a
c

If r aq = 0, it follows easily that p andqare locally constant hence constant. Otherwise,
contracting this expression with a nonzero tangent vectorX a in the kernel of r aq, we
deduce thate� b = q� b and r ap = � � r aq for some function� . Thus r aq(Ab

c � �� b
c) =

0. If Ab
c = �� b

c, it follows from what we have already proven that� is constant.
Otherwise, we deduce thatp and q are constant. �

Proof of Theorem 6.8. Suppose thatAa�b and eAa�b are nondegenerate solutions of the
mobility equation such that ga�b; Aa�b and eAa�b are linearly independent. At each point
of M , (243) implies that Aa�b and eAa�b satisfy (250)�(251), with � a�c = r a� �c and e� a�c =
r a

e� �c. By Lemma 6.10,ga�b; Aa�b and eAa�b are pointwise linearly independent on a dense
open setU0, and hence, onU0, Lemma 6.9 implies thatAa�b and eAa�b lift to smooth
solutions (Aa�b; � a; � ) and ( eAa�b; e� a; ~� ) of (242a)�(242b) for the same smooth function
B. Thus we may apply Lemma 6.6.

The trace-free parts ofAa
b and eAa

b are pointwise linearly independent onU0, hence
if n = 2, their common centraliser at eachp 2 U0 consists only of multiples of the
identity. By (244), Ga�bc

d is a multiple � a�b of � a
d, hence zero, sinceGa�bc

d = Gc�ba
d. Thus

g has constant holomorphic sectional curvature, which proves the theorem for2n = 4.
To prove the theorem for2n � 6, we substitute (245) intoGa�bc

d = Gc�ba
d to obtain

gc�b(r a� � 2B � a) � 2(r aB)Ac�b = ga�b(r c� � 2B � c) � 2(r cB)Aa�b:

If we contract this equation with a vectorY c in the kernel of r cB, then sincen � 3,
we obtain a degenerate Hermitian form on the left hand side, equal to a multiple of
ga�b. Hence both sides vanish, i.e.Y c is in the kernel ofr c� � 2B � c and we have

Ac�bY
c = �gc�bY

c and r a� � 2B � a = 2� (r aB)

for some function� on U0. Hence (245) now reads

Ga�bc
d� d = 2( r aB)(Ac�b � �gc�b) = 2( r cB)(Aa�b � �ga�b):

If r cB is nonzero on an open subset ofU0, it follows that Aa
b � �� a

b has (complex)
rank at most one there, with image spanned byr aB and kernel containing the kernel
of r aB. Since the same holds foreAa

b � ~�� a
b for some function~� , we have that� a

b; Aa
b

and eAa
b are linearly dependent, a contradiction. Hencer cB is identically zero onU0,

i.e. B is locally constant. The result now follows from Theorem 6.7. �

Remark 6.6. The above proof shows (for mobility� 3) that any solution of the
mobility equation (129) lifts to a parallel section for (240), where B is given by (236),
unless all solutions are parallel (i.e. a�ne equivalent tog). However, in the latter case,
any solution of (129) lifts to a parallel section for (240) with B = 0 (cf. Remark 6.5).
This establishes [44, Theorem 5]; the next result may be seenas a strengthening of this
theorem in which c-projective nullity is brought to the fore, cf. also [26, Theorem 2].

Theorem 6.11. Let (M; J; g) be a connected(pseudo-)Kähler manifold admitting a
solution of the mobility equation that is not a constant multiple of g. Assume that there
is a dense open subsetU � M on which (J; g) has c-projective nullity and denote by
B the function in (236). Then the following hold:
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� B is constant
� any solution A �ab of the mobility equation lifts uniquely to a section ofV which

is parallel for the special tractor connection(240).

We divide the proof of Theorem 6.11 into several propositions.

Proposition 6.12. Under the assumptions of Theorem6.11, there is a dense open
subsetU0 � U on whichB is smooth, and for any solutionAb�c of the mobility equation:

(1) there is a smooth real-valued function� on U0 such that (242b) holds, and ifB
is locally constant then(242c) also holds onU0;

(2) for any vector va in the nullity distribution of (J; g),

2(r aB)Ac�bv
c + v�b(2B � a � r a� ) = 0 : (256)

In particular, if va is not in any eigenspace ofAa
b then B is locally constant.

Proof. To see that (1) holds forAb�c, �rst recall that � a, given by (242a), is holomorphic.
Next, by assumption, at anyp 2 U there is a nonzero tangent vectorv�b such that
v�bGa�bc�d = 0. Hence, by equation (243), onU we have

� vcr a� �d + ga �dv
�br �b� c = v

�bRa�bc�eA
�e

�d � v
�bRa�be�dAc

e

= � 2B(ga�evc + gc�eva)A �e
�d + 2B(ga �dve + ge�dva)Ac

e

= 2B(ga �dv
�bAc�b � vcAa �d)

(257)

and so
vcVa �d � ga �dv

�bV �bc = 0;

whereVa�b � r a� �b � 2BA a�b. As v�b 6= 0 on U, it follows that Va�b is pure trace, i.e. the
second equation of (242b) holds pointwise. By assumption, there is a dense open subset
U0 � U on which ga�b and Aa�b are pointwise linearly independent for some solutionAa�b,
from which it follows that B is a smooth real-valued function onU0. Hence (242a)�
(242b) hold onU0 for any solution, with � smooth onU0.

By Lemma 6.6, any solution satis�es (245), which implies (256). Now if r aB = 0 it
follows immediately from the existence of nullity that (242c) holds onU0. �

Proposition 6.12 and Theorem 6.7 have the following immediate consequence.

Corollary 6.13. Theorem 6.11holds unless the nullity distribution is contained in an
eigendistribution of every solution of the mobility equations.

It remains to show that Theorem 6.11 also holds when the nullity distribution is
contained in an eigendistribution of every solution of the mobility equations, and for
this it su�ces to show that r aB = 0 on a dense open set. Suppose then thatvb is
a nonzero nullity vector such thatAa

bva = �v b for some smooth function� , so that
r a� � 2B � a = 2� r aB by (256) and hence (245) reads

Ga�bc
d� d = 2( r aB)(Ac�b � �gc�b) = 2( r cB)(Aa�b � �ga�b) (258)

as in the proof of Theorem 6.8. Sinceva is an eigenvector ofAa
b with eigenvalue� ,

v�b is an eigenvector ofA �a
�b with eigenvalue �� . However v�b is in the nullity of G, so

the contraction of (258) with v�b yields (r cB)(Aa�b � �ga�b)v
�b = 0. If we now combine

these observations with Proposition 6.5, we obtain that either r aB = 0 on a dense
open set (and we are done) or there is an open set on whicheAa

b := Aa
b � �� a

b has
(complex) rank at most one,va is a null vector in its kernel, and� is real. Hence the
generalised� -eigenspace ofAa

b is nondegenerate, and so has (complex) dimension at
least two, which implies that � is locally constant by Lemma 5.16. NoweAa

b is a rank
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one solution of the mobility equation with a nonzero (but null) nullity vector in its
kernel, and so Theorem 6.11 is a consequence of the followingproposition.

Proposition 6.14. Suppose(M; J; g) is a connected(pseudo-)Kähler manifold of di-
mension 2n � 4 admitting a non-parallel solution of the mobility equationAa�b such
that Aa

b is a complex endomorphism of rank1. Assume thatg has nullity on some
dense open setU � M and that there is a nonzero vector in the nullity distribution
that is in the kernel ofAa

b. Then the function B de�ned as in (236) is a constant and
the conclusions of Theorem6.11hold.

Before we give a proof of Proposition 6.14 we collect some crucial information about
solutions of the mobility equation of rank1:

Lemma 6.15. Suppose(M; J; g) is a connected(pseudo-)Kähler manifold of dimension
2n � 4 admitting a non-parallel solution of the mobility equationAa�b such thatAa

b is
a complex endomorphism of rank1. Assume thatg has nullity on some dense open
set U � M and that there is a nonzero vector in the nullity distribution that is in the
kernel of Aa

b. Denote byB the function de�ned as in (236) and let � a = r a� with
� = � Aa

a. Then the following holds on a dense open subsetU0 � U:

(1) the triple (Aa
b; � a; � ) satis�es system(242) (and its conjugate) for some smooth

nonvanishing real-valued function� ;
(2) Aa�b = � � 1� a� �b and � �� = � a� a;
(3) r aB is proportional to � a, and at any x 2 U0 either r aB = 0 or the nullity

space ofg at x lies in the kernel ofAa
b.

Proof. Statement (1) follows immediately from (132), Proposition6.12 and the ex-
istence of a nullity vector in the kernel ofAa

b. Since Aa
b has rank 1, its nonzero

eigenvalue is� � , and � a is a nonzero section of the corresponding eigenspace by
Corollary 5.17. Thus on the dense open subsetU0 � U where � a 6= 0, Aa

b = � � a� b,
with � = � �= (� a� a), and di�erentiating this identity using (242) yields

(r a� + 2B� 2� a)� �c = ( �� � 1)ga�c:

Since the left hand side is simple andga�b nondegenerate both sides must vanish, which
shows that � = � � 1, and hence (2) holds. The identity (245) may now be written

Ga�bc
d� d = 2( r aB)Ac�b = 2� � 1(r aB)� c� �b

This immediately implies the second statement of (3), whilethe �rst statement follows
from the symmetry of Ga�bc

d in a and c. �

Proof of Proposition 6.14. We have already noted that to prove Proposition 6.14 it
su�ces to show that B is locally constant. By Lemma 6.15,A �

� is of the form

A �
� = 1

2� (� � � � + 
 � �  J�
� � � ): (259)

Let us write D � T M for the distribution de�ned by the kernel of A �
� and

P�
� = � �

� � 1
�  �  (� � � � + 
 �� � � J�

� � � ) = � �
� + 1

2�� (� � � � + 
 �� � � J�
� � � )

for the orthogonal projectionP : T M ! D, where we use Lemma 6.15(2) to rewrite
�  �  = 2� c� c = � 2�� . Note that (J; g) induces by restriction a complex structure
J D and a J D -invariant metric gD on D. The projection P also determines a linear
connection onD by

r D
� X � = P

� r � X  ; for X 2 �( D)
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which preserves this Hermitian structure onD. Since� and J � commute and preserve
D, L � P = 0 and �( D) is generated by sections commuting with� and J � , which are
called basic. For any basicX 2 �( D), Lemma 6.15(1) implies

r � X = r X � = � �X (260)

and hence for any other basic elementY 2 �( D) we compute

(L � gD )(X; Y ) = L � (gD (X; Y )) = r � (gD (X; Y )) = � 2�g D (X; Y ):

Since L � � = r � � = g(� ; � ) = � 2�� , it follows that L � (� � 1gD ) = 0 . Let us now
regard r D as a partial connection on D, i.e. an operatorr D : �( D) ! �( D � 
 D).
Sincer D

X � = r X � = 0 for any X 2 �( D), the partial connectionr D preserves� � 1gD .
Furthermore, its partial torsion, given by

r D
X Y � r D

Y X � P([X; Y ]) for X; Y 2 �( D);

vanishes. It follows thatL � r D is a section ofD � 
 D � 
 D �= D � 
 D � 
 D � , which
is symmetric in the �rst two entries and skew in the last two entries, which implies it
vanishes identically. We conclude thatL � RD = 0, where thehorizontal curvature RD

of r D is de�ned, for X; Y; Z 2 �( D), by

RD (X; Y )(Z ) = r D
X r D

Y Z � r D
Y r D

X Z � r D
P ([X;Y ])Z:

For basic X; Y; Z 2 �( D) we compute via (260) that

r D
X r D

Y Z = P(r X r Y Z) � 1
2� g(r Y Z; � )X � 1

2� g(r Y Z; J � )JX

r D
r D

X Y Z = P(r r Y
X

Z) � 1
2� g(r X Y;� )Z � 1

2� g(r X Y; J� )JZ:

Using g(Y;� ) = 0 = g(Y; J� ) for Y 2 �( D), we also obtain, forX 2 �( D), that

g(r X Y;� ) = �g (X; Y ) and g(r X Y; J� ) = �g (Y; JX );

from which we deduce, for (basic)X; Y; Z 2 �( D), that

RD (X; Y )Z = P(R(X; Y )Z ) � �
2� S(X; Y )Z; (261)

whereS is the constant holomorphic sectional curvature tensor de�ned as in (235).
Let us write RicD (Y; Z) = trace( X 7! RD (X; Y )Z ) and RicP (Y; Z) = trace( X 7!

P(R(X; Y )Z )) for the Ricci-type contractions ofRD andP(R(X; Y )Z ). Via the inverse
g� 1

D of gD , we view RicD and RicP as endomorphism ofD, from which viewpoint
equation (261) implies that they are related as follows:

RicD = Ric P � n�
� IdD : (262)

By assumption, at each point of a dense open subset, there is avector V in D that
lies in the nullity distribution of g. Inserting V into equation (261) yields

RD (X; V )Z =
�
B � �

2�

�
S(X; V )Z; (263)

which implies that
� RicD (V) = 2 n

�
B� � �

2

�
V: (264)

SetC := B� � �
2 . By (1) and (3) of Lemma 6.15 we see thatr X C = 0 for all X 2 �( D)

and that r J � C = 0. Equation (264) shows thatV is an eigenvector of� RicD with
eigenvalue2C. SinceL � RD = 0 and L � (�g � 1

D ) = 0 , it follows that L � (� RicD ) = 0 ,
and hencer � C = L � C = 0 as well. ThusC is locally constant, which implies thatB
is locally constant by Lemma 6.15(1), and this completes theproof. �
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Remark 6.7. Proposition 6.14 may alternatively be proved as follows. Starting with
the usual equations

r � � � = � �g �� + 2BA ��

r � � = 2B � �

r � � = � �

where
A �� =

� � � � + K � K �

2�
K � = J�

� � �

� � � � + 2�� = 0

(265)

we may consider the new metric

~g�� � �g �� + (1 + 2 � )A �� (266)

and verify from (265) that
� L � ~g�� = 0,
� for any v� such that A �� v� = 0, we have

fRic�� v� = Ric �� v� �
�
2B +

n�
�

+
1

2�

�
v� ; (267)

where fRic�� is the Ricci tensor of~g�� .
Hence, ifv� is a nullity vector for g�� so that in addition Ric�� v� = 2( n + 1) Bv� , then

~g� fRic� v� =
�
n(2B� � � ) � 1

2

�
v� : (268)

Now, sinceL � (~g� fRic� ) = 0 , it follows that any eigenvalue of this endomorphism is
preserved by the �ow of� � . Therefore,

0 = L �

�
n(2B� � � ) � 1

2

�
= n

�
2� L � B + � � (2Br � � � r � � )

�
= 2n� L � B:

But from (265) we see that0 = r [� r � ]� = 2( r [� B)� � ] whencer � B = 0, as required.
The only drawback with this proof is that verifying (267), though straightforward,

is computationally severe, whereas the corresponding identity (264) in the previous
proof is more easily established. The previous proof may be seen as a limiting case of
the reasoning just given. Speci�cally, for any constantc 6= 0, consider the metric

~g�� �
1
�

g�� +
1
� 2

�
1 +

c
�

�
A �� with inverse ~g�� � �g �� + (1 +

�
c

)A �� (269)

to arrive at
fRic�� v� = Ric �� v� �

�
2B +

n�
�

+
c
�

�
v� (270)

instead of (267), an equation in which one can take a sensiblelimit as c ! 0 essentially
to arrive at (264) instead of (268). The metrics (269) and their invariance L � ~g�� = 0
can also be recognised in the previous proof. More precisely, the �rst equation from
(265) can be expressed asL � g�� = � 2�g �� + 4BA �� or, more compactly, as

L � (� � 1g�� ) = 4 � � 1BA �� ;

which implies, using our earlier terminology, that the metric � � 1g�� restricted to D is
invariant under the �ow of � � . We also observed in the previous proof that orthogonal
projection P�

� = � �
� + � � 1A �

� onto D is invariant under this �ow. We are therefore
led to invariance of the covariant quadratic form

P�
 P�

� � � 1g� = � � 1(g�� + � � 1A �� );

which is the limit of (269) asc ! 0 whilst the nondegenerate metric~g�� is obtained by
decreeing that the remaining vectors� � and K � at each point be orthogonal toD and
each other and satisfy~g�� � � � � = ~g�� K � K � = 2c. The metric (266) is the case that
� � and K � are taken to be orthonormal. In any case, it follows thatL � ~g�� = 0. �
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6.4. The standard tractor bundle for metric c-projective struct ures. The met-
ric theory of the standard tractor bundleT turns out to be rather degenerate. For a
metric c-projective structure (M; J; [r ]) induced by the Levi-Civita connectionr of a
Kähler metric g, we havePab = 0 and so the standard tractor connection (52)�(53) is
given by

r T
a

�
X b

�

�
=

�
r aX b + �� a

b

r a�

�
r T

�a

�
X b

�

�
=

�
r �aX b

r �a� � P�abX b

�
: (271)

The kernel kerD T of the �rst BGG operator (59) consists of vector �elds X b with
c-projective weight (� 1; 0) which satisfy

r aX b + �� a
b = 0 r �aX b = 0 (272)

for some section� of E(� 1; 0); then � = � 1
n r aX a, and, setting the torsion to zero in

Proposition 3.3,(X a; � ) de�nes a parallel section for the tractor connection (271).This
is similar to the projective case, with the following distinction: although the tensor� �

in Theorem 6.1 is projectively weighted, the bundleE(1) is canonically trivialised by
a choice of metric; here, in contrast, it is the real line bundle E(1; 1) that enjoys such
a trivialisation, and not the complex line bundleE(1; 0).

However, taking care to use (45) (see also Proposition 2.13), it follows that any
solution of (272) satis�es

� � b
cr �a� = ( r �ar b � r br �a)X c = R�ab

c
dX d + P�abX c

= H �ab
c
dX d � � b

cP�adX d;
(273)

whereH �ab
c
d = H �ad

c
b and H �ab

b
d = 0. We may rearrange this as

� b
cr �a� = � b

cP�adX d � H �ab
c
dX d; (274)

then the trace overb and c shows thatr �a� = P�abX b (as in Proposition 3.3) and hence
that H �ab

c
dX d = 0. Following the projective case (Theorem 6.1), we lower an index

in (273) and (274) to obtain

R�ab�cdX d = � gb�cr �a� � P�abX �c: (275)

It follows that for any solutions (X a; � ) and ( eX a; ~� ) of (272),

R�ab�cd
eX bX d = � eX �cr �a� � P�ab

eX bX �c = � eX �cr �a� � X �cr �a ~�

and hence, by symmetry,

X [�ar �c] ~� = eX [�cr �a]�:

As in Theorem 6.1, by �rst taking eX = X , we conclude that there is a real functionB,
uniquely determined and smooth on the union of the open sets where some solution
X a of (272) is nonzero, such that for any solution(X a; � ) of (272),

r �a� = P�abX b = 2BX �a: (276)

Theorem 6.16. Let (M; J; [r ]) be a connected c-projective manifold, wherer pre-
serves a(pseudo-)Kähler metric ga�b. Suppose thatdim kerD T � 2. Then there is a
unique constantB such that any element of the kernel ofD T lifts to a parallel section
of T for the connection

r a

�
X b

�

�
=

�
r aX b + �� a

b

r a�

�
r �a

�
X b

�

�
=

�
r �aX b

r �a� � 2Bg�abX b

�
: (277)
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Proof. By Proposition 3.3 and (276), it remains only to show that thesmooth function
B is actually a constant. Di�erentiating the equation 2Bg�cbX b = r �c� and using (272)
gives

2(r aB)X �c � 2Bg�ca� = r ar �c� and 2(r �aB)X �c = r �ar �c�: (278)
With (46), the second equation of (278) implies thatX [�cr �a]B = 0. Where there are
two nonzero solutionsX a and eX a, it follows from (272) that the sectionsX a; eX b 2
�( M; T 1;0(� 1; 0)) and thereforeX [a eX b] 2 �( M; T 2;0(� 2; 0)) are holomorphic. Conse-
quently, U = f X [a eX b] 6= 0g is the complement of an analytic subvariety and is thus
connected. OnU we also haveeX [�cr �a]B = 0 whencer �aB = 0, i.e. B is locally constant
on U, hence constant. �

By analogy with the projective case, one might now expect c-projective nullity to
appear. However, when we combine (275) and (276), we obtain

�
R�ab�cd + P�abg�cd + 2Bg�cbg�ad

�
X d = 0;

which is a halfway house on the way to (237). Underlying this degeneracy is the fact
that T is associated to a holomorphic representation ofSL(n + 1; C).

Nevertheless the constantB in Theorem 6.16 is generically characterised by c-
projective nullity in the following degenerate sense.

Theorem 6.17. Let (M; J; g) be a connected(pseudo-)Kähler manifold admitting a
non-parallel solutionX a of (272). For any function B, the following are equivalent:

(1) B is characterised by c-projective nullity(237) on a dense open subset;
(2) B is constant andX b lifts to a section ofT parallel for (277);
(3) P�ab = 2Bg�ab.

In particular, g is an Einstein metric, and the connections(271) and (277) coincide.

Proof. (1)) (2). This follows from Theorem 6.11 becauseX �a 
 X b is a solution of the
mobility equation which is not a constant multiple ofg�ab, and by contracting (273) by
a nullity vector vb.
(2)) (3). The identity (45) implies

P�ab� = ( r �ar b � r br �a)� = � 2Bg�acr bX c = 2Bg�ab�;

which establishes (3) on the dense open subsetf � 6= 0g, hence everywhere.
(3)) (1). Sincer �a� = P�adX d = 2Bg�adX d, equation (273) implies

� 2Bg�adX d� b
c = R�ab

c
dX d + P�abX c = R�ab

c
dX d + 2Bg�abX c; (279)

and we deduce thatG�ab
c
dX d = 0. Hence,X d=� is a nullity vector for g on the dense

open subsetf � 6= 0g. �

6.5. Special tractor connections and the complex cone. Let (M; J; [r ]) be a
metric c-projective structure. Then for any compatible metric g and any function B,
there is a special tractor connection onT de�ned by (277). We �rst observe that
the induced connection onVC = T 
 T is the special tractor connection (240) (for
the given g and B). This can be seen easily by takingA�bc = X bX c, � a = ��X a and
� = ��� in (240). Consequently, parallel sections for the special tractor connection onV
de�ne parallel Hermitian forms onT � . This was used in [26] to characterise, for Kähler
manifolds (M; J; g), the presence of nontrivial parallel sections for (240) in terms of
the local classi�cation of [2] (see Section 5.7). Using the extension of this classi�cation
(pseudo-)Kähler manifolds [16], together with Remark 5.7,and Theorems 6.7 and 6.11,
we have the following more general characterisation.
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