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C-PROJECTIVE GEOMETRY

DAVID M.J. CALDERBANK, MICHAEL G. EASTWOOD, VLADIMIR S. MAT VEEV,
AND KATHARINA NEUSSER

Abstract.  We develop in detail the theory of c-projective geometry, a mtural ana-

logue of projective di erential geometry adapted to complex manifolds. We realise it
as a type of parabolic geometry and describe the associateda@an or tractor con-

nection. A Kéahler manifold gives rise to a c-projective structure and this is one of
the primary motivations for its study. The existence of two or more Kéhler metrics
underlying a given c-projective structure has many rami cations, which we explore
in depth. As a consequence of this analysis, we prove the Yar@bata Conjecture

for complete Kéhler manifolds: if such a manifold admits a or parameter group of
c-projective transformations that are not a ne, then it is ¢ omplex projective space,
equipped with a multiple of the Fubini Study metric.

Introduction

C-projective geometry is a natural analogue of real projaee di erential geometry
for complex manifolds. Like projective geometry, it has manfacets, which have been
discovered and explored independently and repeatedly ovtie past sixty years. Our
aim in this work is to develop in detail a uni ed theory of c-pojective geometry, which
highlights its relation with real projective geometry as wi as its di erences.

Projective geometry is a classical subject concerned withd behaviour of straight
lines, or more generally, (unparametrised) geodesic cusvef a metric or a ne connec-
tion. It has been known for some time_[66, 99] that two non-ppmortional metrics can
have the same geodesic curves: central projection takesaireircles on then-sphere,
namely the geodesics for the round metric, to straight linesn Euclidean n-space,
namely geodesics for the at metric. The quotient of the roud n-sphere under the an-
tipodal identi cation may be identi ed with the at model for n-dimensional projective
geometry: the real projectiven-spaceRP", viewed as a homogeneous space under the
groupPSL(n+1;R) of projective transformations, which preserve the familyfdlinearly
embedded) projective lineRP* | RP". More generally, aprojective structure on a
smoothn-manifold (for n  2) is an equivalence class of torsion-free a ne connections
having the same geodesic curves. In this setting, it is a naivial and interesting ques-
tion whether these curves are the geodesic curves of a (psg)Riemannian metric,
i.e. whether any connection in the projective equivalencdass preserves a nondegen-
erate metric, possibly of inde nite signature. Such projecse structures are called
metrisable and the corresponding metriccompatible Rather surprisingly, the partial
di erential equations controlling the metrisability of a given projective structure can
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be set up as dinear system [13/40[ 70, 94]. More precisely, there is a projeetiy
invariant linear di erential operator acting on symmetric contravariant 2-tensors such
that the nondegenerate elements of its kernel correspond ¢compatible metrics.

In modern language, a projective structure determines a canical Cartan con-
nection [39] modelled onRP", and hence projective geometry is garabolic geome-
try [36,[42]. In these terms, the metrisability operator is a rs BGG (Bernstein
Gelfand Gelfand) operator, which is a di erential operator of nite type [43]. Its
solutions correspond to parallel sections of a bundle wittoonection, which is, up to
curvature corrections, a linear representation of the Caan connection. The kernel is
thus nite-dimensional; it is zero for generic projective suctures, with the maximal
dimension attained on the at model RP". The parabolic viewpoint on projective
geometry has proven to be very useful, for example in undeasiding projective com-
pacti cations of Einstein metrics [31,[34], the geometry oholonomy reductions of
projective structures [6], and (solving problems posed byoghus Lie in 1882) projec-
tive vector elds on surfaces|[22, 75].

Projective geometry has been linked to the theory of nite dnensional integrable
systems with great success: the equation for symmetric Kilfy tensors is projectively
invariant [42], and (consequently) the existence of two pjectively equivalent metrics
on a manifold implies the existence of nontrivial integraldor the geodesic ows of
both metrics. This method has been e ectively employed whethe manifold is closed
or complete (see e.gl |72, 74]). Moreover, the integrabyliof many classically stud-
ied integrable geodesic ows (e.g., on ellipsoids) is clbgeelated to the existence of
a projectively compatible metric, and many geometric struares that lead to such
integrable geodesic ows have been directly related to thexistence of a projectively
compatible metric, see e.g[[9, 13].

C-projective geometry arises when one retells this story,utatis mutandis, for com-
plex or, indeed, almost complex manifolds, i.e. smooth mdaids equipped with an
almost complex structureJ, which is a smooth endomorphism of the tangent bundle
suchthatJ? = Id. On such a manifoldV , the relevant (pseudo-)Riemannian metrics
are Hermitian with respect to J, i.e. J-invariant, and the relevant a ne connections
are those which preservd, called complex connections Such connections cannot be
torsion-free unless the almost complex structure igtegrable i.e. its Nijenhuis tensor
vanishes identically ([89]. This holds in particular if the levi-Civita connection of a
Hermitian metric g preserves], in which caseg is called a pseudo}Kahler metric.

In 1947, Bochner(|12, Theorem 2] observed that any two metsichat are Kahler
with respect to the same complex structure cannot be projegely equivalent (i.e. have
the same geodesic curves) unless they are a nely equivalefite. have the same Levi-
Civita connection). This led Otsuki and Tashiro [[90] to intoduce a broader class
of curves, which they called holomorphically at, and whch depend on both the
connection and the (almost) complex structure. We refer tohiese curves ad-planar:
whereas a geodesic curve for an a ne connection is a curve c whose acceleration
r .C is proportional to its velocity ¢, a J-planar curve is one whose acceleration is in
the linear span ofc and Jc. On a Riemann surface, therefore, all curves adeplanar.
The other common manifold where it is possible to see all-planar curves without
computation is complex projective space with its Fubini Sudy connection. The point
here is that the linearly embedded complex line€P* | CP" are totally geodesic.
Therefore, the J-planar curves onCP" are precisely the smooth curves lying within
such complex lines. Viewed in a standard a ne coordinate pah C" | CP", the
J-planar curves are again the smooth curves lying inside anbatrary complex line
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faz+ bg C" but otherwise unconstrained. Evidently, these are the ininsic J-planar
curves for the at connection onC".

The J-planar curves provide a nontrivial notion of projective egivalence in com-
plex di erential geometry, due to Otsuki and Tashiro [90] inthe K&hler setting, and
Tashiro [98] for almost complex manifolds in general. Two nmplex connections on
an almost complex manifoldM; J) are c-projectively equivalentif they have the same
torsion and the samelJ-planar curves. Analmost c-projective manifoldis a complex
manifold (M;J) equipped with a c-projective equivalence class of such cewtions.
If J is integrable, we follow the usual convention and drop the wo almost to ar-
rive at the notion of a c-projective manifold We caution the reader that Otsuki and
Tashiro [90], and many later researchers, refer to holonrically projective corre-
spondences , rather than c-projective equivalences, ancany authors use the termi-
nology h-projective or holomorphic(ally) projective instead of c-projective. We
avoid their terminology because the connections in a c-pegtive class are typically
not holomorphic, even if the complex structure is integralel similarly, we avoid the
term complex projective structure , which is often used fothe holomorphic analogue
of a real projective structure, or related concepts.

During the decades following Otsuki and Tashiro's 1954 papec-projective struc-
tures provided a prominent research direction in Japanes@@Soviet di erential geom-
etry. Many of the researchers involved had some backgroumnal projective geometry,
and the dominant line of investigation sought to generalismmethods and results from
projective geometry to the c-projective setting. This was aery productive direc-
tion, with more than 300 publications appearing in the relavely short period from
1960 to 1990. One can compare, for example, the surveys by 84K82,/83], or the
papers of Hiramatu [53/54], to see how successfully c-pudjee analogues of results
in projective geometry were found. In particular, the lineasystem for c-projectively
equivalent Kéahler metrics was obtained by Domashev and Mikd41], and its nite
type prolongation to a connection was given by Mike? [81].

Relatively recently, the linear system for c-projectivelyequivalent Kéhler metrics
has been rediscovered, under di erent names and with di ent motivations. On a
xed complex manifold, a compatible (pseudo-)Kahler meta is determined uniquely
by its Kéhler form (a compatible symplectic form), and underthis correspondence,
c-projectively equivalent Kéhler metrics are essentiallghe same asHamiltonian 2-
forms de ned and investigated in Apostolov et al.[[2[ B, 4,15]: the €ning equation |2,
(12)] for a Hamiltonian 2-form is actually algebraically equivalent to the metrisahity
equation (IZ5). In dimension 6, c-projectively equivalent metrics are also essentially
the same as conformal Killing (or twistor)(1; 1)-forms studied in [86, 92| 93], se&l[2,
Appendix A] or [78, Y1.3] for details.

The work of [2,[3] provides,a postiori, local and global classi cation results for
c-projectively equivalent Kahler metrics, although the athors were unaware of this
interpretation, nor the pre-existing literature. Instead as explained in[[2| 3] and_[26],
the notion and study of Hamiltonian 2-forms was motivated by their natural appear-
ance in many interesting problems in Kahler geometry, and ghunifying role they play
in the construction of explicit Ké&hler metrics on projective bundles. In subsequent
papers, e.g.[14/15], Hamiltoniam2-form methods were used to construct many new
examples of Kéhler manifolds and orbifolds with interestimp properties.

Another independent line of research closely related to cegectively equivalent met-
rics (and perhaps underpinning the utility of Hamiltonian 2-forms) appeared within
the theory of nitely dimensional integrable systems. C-pojectively equivalent metrics
are closely related (see e.d. [61]) to the so-called Kahleouville integrable systems
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of type A introduced and studied by Kiyohara in [59]. In fact, Topalov[100] (see
also [60]) shows that generic c-projectively equivalent Kéer metrics have integrable
geodesic ows, cf.[[101] for the analogous result in the pegjtive case. On the one
hand, integrability provides, as in projective geometry, aumber of new methods that
can be used in c-projective geometry. On the other hand, exahes from c-projective
geometry turn out to be interesting for the theory of integréle systems, since there
are only a few known examples of K&hler metrics with integrdd geodesic ows.

Despite the many analogies between results in projective do-projective geometry,
there seem to be very few attempts in the literature to explai why these two subjects
are so similar. In 1978, it was noted by Yoshimatsu [103] that-projective manifolds
admit canonical Cartan connections, and this was generaid to almost c-projective
manifolds by Hrdina [55] in 2009. Thus c-projective geomsifrlike projective geometry,
is a parabolic geometry; its at model isCP", viewed as a homogeneous space under
the group PSL(n + 1;C) of projective transformations, which preserve the -planar
curves described above. Despite this, c-projective struces have received very little
attention in the parabolic geometry literature: apart fromthe work of Hrdina, and
some work in dimensiord [28, [80], they have only been studied in[6], where they
appear as holonomy reductions of projective geometries. Aogsible explanation for
this oversight is that PSL(n+1; C) appears in c-projective geometry as a real Lie group
and, as such, its complexi cation is semisimple, but not siple. This is related to the
subtle point that most interesting c-projective structures are not holomorphic.

The development of c-projective geometry, as described alephas been rather non-
linear until relatively recently, when a number of independnt threads have converged
on a coherent set of ideas. However, a thorough descriptiof @imost c-projective
manifolds in the framework of parabolic geometries is laclg in the literature. We
therefore believe it is timely to lay down the fundamentals fosuch a theory.

The article is organised as follows. In Sectidn 1, we surveyet background on almost
complex manifolds and complex connections. As we review iecion[1.2, the torsion
of any complex connection on an almost complex manifold, ofal dimension2n 4,
naturally decomposes into ve irreducible pieces, one of vdh is invariantly de ned
and can be identi ed as the Nijenhuis tensor. All other piececan be eliminated by a
suitable choice of complex connection, which we caflinimal. In rst four sections of
the article we carry along the Nijenhuis tensor in almost atalculations and discussions.

Section2 begins with the classical viewpoint on almost c-qective structures, based
on J-planar curves and equivalence classes of minimal complengections [[90]. We
then recall the notion of parabolic geometries and estaldisin Theorem[2.8, an equiv-
alence of categories between almost c-projective manifeldnd parabolic geometries
with a normal Cartan connection, modelled orCP".

As a consequence of this parabolic viewpoint, we can assteia fundamental local
invariant to an almost c-projective manifold, namely the cwature  of its normal
Cartan connection; furthermore, 0if and only if the almost c-projective manifold is
locally isomorphic toCP" equipped with its standard c-projective structure. Sincehe
Cartan connection is normal (for this we need the complex coactions to be minimal),
its curvature is a 2-cycle for Lie algebra homology, and is uniquely determinda its
homology class, also known as thearmonic curvature We construct and discuss this
curvature in section[Z.¥. For almost c-projective structugs there are three irreducible
parts to the harmonic curvature. One of the pieces is the Nipuis tensor, which is
precisely the obstruction to the underlying almost complexnanifold actually being
complex. One of the other two parts is precisely the obstruicin to there being a
holomorphic connection in the c-projective class. When itanishes we end up with



C-PROJECTIVE GEOMETRY 5

holomorphic projective geometryi.e. ordinary projective di erential geometry but in
the holomorphic category. The remaining piece can then beadti ed with the classical
projective Weyl curvature (forn  3) or Liouville curvature (for n = 2).

Another consequence of the parabolic perspective is thatpresentation theory is
brought to the fore, both as the appropriate language for disissing natural bundles
on almost c-projective manifolds, and also as the correctabfor understanding invari-
ant di erential operators on the at model, and their curved analogues. The various
BGG complexeson CP" and their curved analogues are systematically introducechd
discussed in Sectiofi]3.

In particular, there is a BGG operator that controls themetrisability of a c-projective
structure just as happens in the projective setting. A largeart of this article is de-
voted to the metrisability equation, which we introduce in ®&ction[4, where we also
obtain its prolongation to a connection, not only for compable (pseudo-)K&hler met-
ric, but also in the non-integrable case of quasi-Kahler o2(1)-symplectic structures.
For the remainder of the article, we suppose that the Nijenhs tensor vanishes, in
other words that we are starting with a complex manifold. In his case, a compatible
metric is exactly a (pseudo-)Kéhler metric (and anormal solution of the metrisability
equation corresponds to a (pseudo-)Kahler Einstein meftr). We shall also restrict
our attention to metric c-projective structures i.e. to the metrisable case where the
c-projective structure arises from a (pseudo-)Kahler matr. Borrowing terminology
from the projective case, we refer to the dimension of the sitibn space of the metris-
ability equation as the (degree o) mobility of the metric c-projective structure (or of
any compatible (pseudo-)Kahler metric). We are mainly inteested in understanding
when the metric c-projective structure has mobility at leaistwo, and the consequences
this has for the geometry and topology of the manifold.

In Section[5, we develop the consequences of mobility foregrability, by showing
that a pencil (two dimensional family) of solutions to the méisability equation gen-
erates a family of holomorphic Killing vector elds and Herntian symmetric Killing
tensors, which together provide commuting linear and quadtic integrals for the ge-
odesic ow of any metric in the pencil. In Sectior 6, we study raimportant, but
somewhat mysterious, phenomenon in which tractor bundlesrf metric c-projective
geometries are naturally equipped with congenial conneatis, which are neither in-
duced by the normal Cartan connection nor equal to the prolaation connection, but
which have the property that their covariant constant secons nevertheless correspond
to solutions of the corresponding rst BGG operator.

We bring these tools together in Sectionl7, where we establishe Yano Obata
Conjecture for complete Kahler manifolds, namely that thedentity component of the
group of c-projective transformations of the manifold comsts of a ne transformations
unless the manifold is complex projective space equippediva multiple of the Fubini
Study metric. This result is an analogue of thehe Projective Lichnerowicz Conjecture
obtained in [73,[74], but the proof given there does not geradise directly to the c-
projective situation. Our proof also di ers from the proof br closed manifolds given
in [77], and makes use of many preliminary results obtained ithe methods of parabolic
geometry, which also apply in the projective case.

Here, and throughout the article, we see that not only resutfrom projective geom-
etry, but also methods and proofs, can be generalised to theomjective case, and we
explain why and how. We hope that this article will set the sage for what promises
to be an interesting series of further developments in c-gextive geometry. In fact,
several such developments already appeared during our wark this article, which we
discuss in Sectionls.
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1. Almost complex manifolds

Recall that an almost complex structureon a smooth manifoldM is a smooth en-
domorphismJ of the tangent bundleTM of M that satises J2= Id. Equivalently,
an almost complex structure make§ M into a complex vector bundle in which multi-
plication by i is decreed to be the real endomorphisid. In particular, the dimension
of M is necessarily even, sagn, and an almost complex structure is yet equivalently
a reduction of structure group toGL(n;C) GL(2n; R).

1.1. Real and complex viewpoints.  If M is a complex manifold in the usual sense
of being equipped with holomorphic transition functions,hen TM is a complex vector
bundle and multiplication by i de nes a real endomorphismITM | TM, which we
write as J. This is enough to de ne the holomorphic structure orM : holomorphic
functions may be characterised amongst all smooth complgatued functionsf = u+iv
as satisfyingXu = (JX)v for all vector elds X (the Cauchy Riemann equations.

Thus, complex manifolds may be regarded as a subclass of attmmplex manifolds
and the celebrated Newlander Nirenberg Theorem tells us foto recognise them:

Theorem 1.1 (Newlander Nirenberg, [89]) An almost complex manifoldM;J) is a
complex manifold if and only if the tensor

NYOGY) =X Y] [PIXIY ]+ I([IXY]+[XIY]) (1)

vanishes for all vector eldsX and Y on M, where[ ; ] denotes the Lie bracket of
vector elds.

Note that N7: TM  TM ! TM is a 2-form with values in TM, which satis es
NY(JX;Y) = JINJY(X;Y). Itis called the Nijenhuis tensor of J. When N” van-
ishes we say that the almost complex structurd is integrable This viewpoint on
complex manifolds, as even-dimensional smooth manifoldgugped with integrable
almost complex structures, turns out to be very useful espadly from the di erential
geometric viewpoint.

It is useful to complexify the tangent bundle ofM and decompose the result into
eigenbundles under the action ad. Speci cally,

CTM=T¥M T%M =fX st.JIX =iXg f X s.t. IX = iXg: (2)

Notice that T%'M = T1OM. There is a corresponding decomposition of the com-
plexi ed cotangent bundle, which we write as* *M or simply ~ ! if M is understood.
Speci cally,

AL=AGL ALO=f) gt 31 = jlgf!std =ig 3

where sections of* 10 respectively of* % are known asl-forms of type (1;0) respec-
tively (0; 1), see e.g.[[62]. Notice that the canonical complex linear pag between
CTM and ~ *M induces natural isomorphismg* % = (T%1) and A 10 = (T19) of
complex vector bundles.

It is convenient to introduce abstract indices[[91] for reabr complex tensors orv
and also for sections of the bundleE*°M , » %1 and so on. Let us writeX for real or
complex elds and! for real or complexl-forms onM. In local coordinates would
range overl; 2;:::;2n where2n is the dimension ofM . Let us denote byX 2 a section
of TE°M . In any frame, the indexa would then range overd; 2;:::;n. Similarly, let us
write X 2 for a section of T%'M and the conjugate linear isomorphisnT %M = TLOoM
as X2 7! Xa = X2 Accordingly, sections of* ° and ~ %! will be denoted by! ,
and ! , respectively, and the canonical pairings betweef'®M and » 10, respectively
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TOIM and~ %1, written as X 2! ,, respectivelyX 2! ,, an abstract index counterpart to
the Einstein summation convention

We shall need the complex linear homomorphis®@TM ! T%°M de ned as pro-
jection onto the rst summand in the decomposition [2) and gien explicitly as X 7!
%(X IJX ). It is useful to write it in abstract indices as

X 7" X :
It follows that the dual homomorphism” 1% | A1 s given in abstract indices by
.70 21,
and also that the homomorphismCTM | T%M and~ %t ] 21 are given by
X 703X and 1,7 %y

respectively.

Let us denote byX? 7! X2, the inclusion TE°M || CTM, paying attention to
the distinction in their indices between 2 and ,. Various identities follow, such
as , P = ,P where the Kronecker delta ,° denotes the identity transformation
on T5M . The symbol also gives us access to the dual and conjugate homomor-
phisms. Thus,

a

L7l
extracts the (0O; 1)-part of a complex-valuedl-form! on M. The following identities

are immediate from the de nitions
.= W) TaE i+
Iy ad = 0, (4)

They are indispensable for the calculations in the followi sections. Further useful
abstract index conventions are as follows. Quantities ended with several indices
denote sections of the tensor product of the correspondingator bundles. Thus,

a section ofTM  TM would be denotedX  whilst is necessarily a section
of T M TM or, equivalently, an endomorphism off M, namely X 7! X , yet
equivalently an endomorphism off M, namely! 7! I . We have already seen

this notation for an almost complex structureJ . But it is unnecessary notationally
to distinguish between real- and complex-valued tensors.hlis, by! we can mean a
section ofT M or of ~ M := CT M and if a distinction is warranted, then it can be
made in words or by context. For example, an almost complexrstcture J is a real
endomorphism whereas 2 is necessarily complex.

Symmetry operations can also be written in abstract index riation. For example,

the skew part of a covariant2-tensor IS %( ), which we write as | ;.
Similarly, we write () = ( + ) for the symmetric part and then =
( )+ [ jrealises the decomposition of vector bundles! 21 = s2A1 A2 p

general, round brackets symmetrise over the indices theyatose whilst square brackets
take the skew part, e.g.

R 7R ;=g +R +R R R R )

By (@) di erential forms on almost complex manifolds can be aturally decomposed
according totype (see e.qg.[162]). We pause to examine the decomposition2ebrms,
especially from the abstract index point of view. From[(3) itfollows that the bundle
~ 2 of complex-valued2-forms decomposes into types according to

A2 - A 2(/\ 0;1 A 1;0) - A 0;2 ALl A 2.0 (5)
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and, as we shall make precise in Sectign .3, there is no nesamposition available
(it is a decomposition into irreducibles). Using the projectors 2 and ,, we can
explicitly execute this decomposition:

L7 N

TPt 2 Pt f P (il )

in accordance with [4). Notice that we made a choice here, naiy to identify ~ 1! as
A L0 A OLin this order and, consequently, write forms of typd1; 1) as! ,,. We could
equally well choose the opposite convention or, indeed, useth conventions simulta-
neously representing g1;1) form as! ., and/or ! 5, but now subject to! ,, = ! .
Strictly speaking, this goes against the conventions of thebstract index notation [91]
but we shall allow ourselves this extra leeway when it is usgf For example, the
reconstructed form!  may then be written as

I = a b

—a b
- fabt !

. ab:
Two-forms of various types may be characterised as

I istype (0;2) ( J ! =1l

I istype(1;1) 0 I !y =0 (6)

I istype (2;0) ( J ! =1
but already this is a little awkward and becomes more so for gier forms and ex-
tremely awkward when attempting to decompose more generatrtsors as we shall
have cause to do when considering torsion and curvature. N that forms of type
(1;1) in (B) are characterised by a real condition. Indeed, the cqutex bundle” 1 is
the complexi cation of a real irreducible bundle whose seicins are the real2-forms
satisfyingJ; ! 1 = 0. As for forms of types(0; 2) and (2;0), there is a real bundle
whose sections satisfy

JJ ! =1
(as opposed toJ J ! = ! for sections of* 1) and whose complexi cation is
A 02 A 20 Thys, the real2-forms split irreducibly into just two kinds but the complex
2-forms split into three types (5).
Notice that if E is a complex vector bundle oM, then we can decompos@-forms

with values in E into types by using the same formula€el{6). In particular, wean do
this on an almost complex manifold wherle = TM, regarded as a complex bundle via

the action of J. Writing this out explicitly, a real tensor T = T; ; is said to be
of type (0;2) ( J T =T J
of type (1;1) ( Jy Ty, =0 (7
of type (2;0) () J T =T J

For example, as the Nijenhuis tensor{1) satis eN7(Y;JX) = IN(X;Y), it is of
type (0;2). Further to investigate this decomposition [(¥), it is usefuto apply the
projectors # and , to obtain

TabC a p °T TabC a p o ° T Tabc a b o ° T
TabC a_b °T TabC a _b °T Tap® a b °T
satisfying

Tan® = T[ab]C Tap® = T[ab]C Tan® = T[ab]C Tap = T[ab]C

T = Ta' Twr= Tl Tars T
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and from which we can recovel  according to

— —a"b— —b— b—
T = cTabc+2 <[51 ] cTabC+ 2 cTabC

+ R T+ 2 ‘[a_b] Tt &P (T
From () and (), the splitting of T  into types corresponds exactly to components
type (0;2) $ (Tap; Tan')
type (1;1)$ (Tap'; Tan) (8)
type (2,0)$ (Tap'; Tap):

Notice that, for each of types(1;1) and (2;0), a complex-valuedl-form can be invari-
antly extracted:

T +iT J
T iT J

type (1;1): T’ =
type (2; O) : 2 abb =
On the other hand, just from the index structure, tensorsT = T; ; of type (0;2)
seemingly cannot be further decomposed (and this is con rrdein Section[3.8). In

any case, it follows easily from] T =T J that T of type (0;2) satisfy
T =0=T J

NI~ NI

1.2. Complex connections. The geometrically useful a ne connectionsr on an
almost complex manifold(M; J) are those that preservel ,ie.r J =0. We call
them complex connections The space of complex connections is an a ne space over
the vector space that consists of-forms with values in the complex endomorphisms
gl(TM;J) of TM. A complex connectionr naturally extends to a linear connection
on CTM that preserves the decomposition into typeg§1{2). Indeed, pservation of type
is also a su cient condition for an a ne connection to be comgex.

Given a complex connectiorr , we denote byT  its torsion, which is a 2-form
with values in TM. As suchT  naturally splits according to type into a direct sum
of three components as in{7). A straightforward computatio shows that the (0; 2)-
component of the torsion of any complex connection equals}lNJ. In particular, this
component is an invariant of the almost complex structure ahcannot be eliminated
by a suitable choice of complex connection. However, all @hcomponents can be
removed. To see this, supposé is another complex connection. Then there is an
element 2T M gl(TM;J) such that? = r + . It follows that their torsions are
related by the formulat = T + @, where @is the composition

TM gl(TM;J)!] TM TM TM! ~?TM TM
7! 2 [ ] .
Notice that the image of@s spanned by2-forms of type(2; 0) and (1; 1). Consequently,
its cokernel can be identi ed with forms of type(0; 2). Hence, any complex connection

can be deformed in such a way that its torsion is of typ€0;2). We have shown the
following classical result:

Proposition 1.2 ([62,(69]) On any almost complex manifoldM; J ) there is a complex
connection such thaflf = 2N,

Since @is not injective such a complex connection is not unique. C@tex connec-
tionsr with T = %NJ form an a ne space over

ker@ (S’TM TM)\ (TM gl(TM;J)) (9)
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and are calledminimal connections
From Proposition[1.2 and the above discussion one also dedsémmediately:

Corollary 1.3. There exists a complex torsion-free connection on an almagimplex
manifold (M;J) if and only if N7 0.

Remark 1.1. We have already noted that the cokernel of@can be identi ed with
tensorsT  such that

T():O J T =T J

Consequently, T =T J =0. As we shall see in Section_3.3, such tensors are
irreducible. More precisely, the natural vector bundles oan almost complex manifold
(M; J) correspond to representations d&L(n; C) and we shall see thatoker@corre-
sponds to an irreducible representation d&L(n; C). On the other hand, its kernel [(9)
decomposes into two irreducible components, namely a trafree part and a trace part.
We shall see in the next section that deforming a complex coection by an element
from the latter space exactly corresponds to changing a cogetion c-projectively.

2. Elements of c-projective geometry

We now introduce almost c-projective structures, rst fromthe classical perspective
of J-planar curves and equivalence classes of complex a ne caations [90], then
from the modern viewpoint of parabolic geometries |36, 5503]. The (categorical)
equivalence between these approaches is established indreen[2.8. This leads us to
study the intrinsic curvature of an almost c-projective maifold, namely the harmonic
curvature of its canonical normal Cartan connection.

2.1. Almost c-projective structures. Recall that a ne connectionsr and (" on a
manifold M are projectively equivalent if there is al-form on M such that
X =r X + X + X (10)

Suppose now that(M;J) is an almost complex manifold. Therr and " are called
c-projectively equivalentif there is a (real) 1-form on M such that

rX =r X + X ; (11)
where = + J J J )

Note that J = J . In other words is a 1-form on M with values in

gl(TM;J), which implies that if r is a complex connection, then so i§. Moreover
= () and so c-projectively equivalent connections have the sart@sion. In

particular, if r is minimal, then so isf" .

A smooth curvec: (a;b ! M is called aJ-planar curve with respect to a complex
connectionr , if r cc lies in the span ofc and Jc. The notion of J-planar curves
gives rise to the following geometric interpretation of a projective equivalence class
of complex connections.

Proposition 2.1 ([55,/84,90/ 98]) SupposgM; J) is an almost complex manifold and

letr andf" be complex connections oM with the same torsion. Therr and (" are
c-projectively equivalent if and only if they have the sandeplanar curves.

Proof. Supposer and " are complex connections with the same torsion. K and ("
are c-projectively equivalent, then they clearly have theasme J-planar curves. Con-
versely, assume that and (" share the samel-planar curves and consider the di er-

encetensoA Y =¢ Y r Y .Asboth connections are complex and have the
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same torsion, the dierence tensor satisesA = A, andA J = A J

The fact that * and r have the sameJ-planar curves and that any tangent vector

can be realised as the derivative of such a curve implies that any point x 2 M and

for any nonzero vectorY 2 T,M there exist uniquely de ned real numbers (Y) and
(Y) such that

AY;Y)= (Y)Y + (Y)IY: (12)

Note that and give rise to well-de ned smooth functions oimT M n 0. Extending
and to functions on all of TM by setting (0) = (0) =0, formula (I2) becomes valid
for any tangent vector, and by construction and are then clearly homogeneous of
degree one. FromA(Y;Y)= A(JY;JY) we deduce that (X) = (JX) whence

AY;Y)= (Y)Y  @QY)JIY:
By polarisation we have for any tangent vectorX and Y
A(X;Y) AX +Y; X+Y) AXX) AY) (13)
((X+Y) (X)PX+( (X+Y) (Y)Y
T(EX+IY)  (@XNIX  (E@X+IY)  @QY)IY :

Suppose thatX and Y are linearly independent and expand the identityA(X;tY ) =
tA(X;Y ) forall t 2 R using (I3). Then a comparison of coe cients shows that

(X +tY) t(Y)= (X+Y) (Y)

Taking the limit t ! O, shows that (X + Y) = (X)+ (Y). Hence, denes a
(smooth) 1-form and

AX;Y)= 2 AX +Y;X+Y) AXX)  A(YY)
=2 X)Y+ (Y)X (IX)JIY) @AY)IX ;

|
NI= NI

for any tangent vectorX andY as desired.

De nition 2.1. Suppose thatM is manifold of real dimensior2n 4.

(1) An almost c-projective structureon M consists of an almost complex structuré@
on M and a c-projective equivalence clags ] of minimal complex connections.

(2) The torsion of an almost c-projective structure(M; J; [r ]) is the torsion T of
one, hence any, of the connections in ], i.e. T = N7,

(3) An almost c-projective structure(M; J; [r ]) is called ac-projective structure if
J is integrable. (This is the case if and only if some and hencé eonnections
in the c-projective class are torsion-free.)

Remark 2.1. If M is a 2-dimensional manifold, any almost complex structure is
integrable and any two torsion free complex connections aceprojectively equivalent.
Therefore, in this case one needs to modify the de nition of eprojective structure in
order to have something nontrivial (cf.[[2B[24]). We shallat pursue this here.

Remark 2.2. Recall that the geodesics of an a ne connection can be alsoalesed as
the geodesics of a torsion-free connection; hence the déiom of a projective structure
as an equivalence class of torsion-free connections doet ammstrain the considered
families of geodesics. The analogous statement fdtplanar curves does not hold:
the J-planar curves of a complex connection cannot in general beatised as thel-
planar curves of a minimal connection. We discuss the motitian for the restriction to
minimal connections in the de nition of almost c-projectiv manifolds in Remark2.D.
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De nition 2.2.  Let (M;Jyw;[r M]) and(N;Jy;[r N]) be almost c-projective manifolds
of dimension2n 4. A dieomorphism : M ! N is calledc-projective transforma-
tion or automorphism if iscomplex (i.,e. T Jy =Jy T ) and for a (hence any)
connectionr N 2 [r N] the connection r N is a connection in[r M].

From Proposition[2.1 one deduces straightforwardly that ab the following charac-
terisation of c-projective transformations holds:

Proposition 2.2. Let (M;Jwy;[r M]) and (N;Jn;[r N]) be almost c-projective man-
ifolds of dimension2n 4. Then a complex dieomorphism: M ! N is a c-
projective transformation if and only if mapsJy -planar curves toJy -planar curves.

Suppose that(M; J; [r ]) is an almost c-projective manifold. Let” andr be con-
nections of the c-projective clasf ] that di er by as in (I1). Thenf" andr give
rise to linear connections olCTM = TYM  TO9%M that preserve the decomposition
into types. Hence, they induce connections on the complexcter bundles T1°M and
To%M . To deduce the dierence between the connection§ and r on TX°M (re-
spectively T%'M), we just need to apply the splittings 2 and , (respectively their
conjugates) from the previous section td_(11). Using the idéties (4), we obtain

a b =2 4 o + J J J J ) ¢

=3 a b ( iJ )+ ( iJ ) °

=3 al i3 )"+ 3 i) a°

= ab+ pa5 Where
Similarly, we nd that —, | ¢ =0. These identities are the key to the following:
Proposition 2.3.  SupposgM; J; [r ]) is an almost c-projective manifold of dimension
2n 4. Assume two connections” andr in [r ] dier by as in (1), and set

= , and ,:= , . Then we have the following transformation rules for

a
the induced connections o 1°M and T%M .
(1) FaXC=1 XS+ X+ & XPandrl.X°=r .X¢,
(2) r/\a C=raXC+ aXC+ ac bxbandr/\a C=raXC.

Proof. We compute
FaX= (¢ XP= , °F (XD
— a Cr ( bxb)_l_ c bxb

a
= L (° XD (L )X ®

:raxc+( abc+ bac)xb:raxc+ axc+ ac bxb;
as required. The remaining calculations are similar.

Remark 2.3. The di erential operator r 5: T¥M | A 0IM  TL0M is c-projectively
invariant, as is its conjugater ,: T%M ! ~10M  TOIM . (Here and throughout, the
domain and codomain of a di erential operator are declaredsabundles, although the
operator is a map between corresponding spaces of sectipriis is unsurprising: it
is the usual@operator on an almost complex manifold whose kernel (in thetegrable
case) comprises the holomorphic vector elds.

In contrast, the transformation rules forr ,: T¥M | ~1OM  TIOM and its
conjugate are analogues of projective equivalende(10) inhet(1;0) and (0O;1) direc-
tions respectively. When(M; J) is real-analytic and the c-projective class contains
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a real-analytic connectionr , this can be made precise by extending and [r ] to a
complexi cation M€ of M, so that T*°M and T%M extend to distributions on M €.
If J is integrable, these distributions integrate to two foliatons ofM €, and[r ] induces
projective structures on the leaves of these foliations.

Taking the trace in equation [11) and in the formulae in Propsition 2.3, we deduce:

Corollary 2.4. On an almost c-projective manifold(M; J; [r ]), the transformation
rules for the induced linear connections ot 2TM, A"TXOM, and * "T%!M are:
(1)['/\ = r +( n+1) , for 2 (/\ZnTM)
(2) I'Aa =T 5 +(n+1) a andr/\a =r, , for 2 (/\nTl;OM)
3) I'Aa =r, +(n+1) , andr/\a =r,, for 2 (/\nTO;lM)_

For the convenience of the reader, let us also record the tisformation rules for the
induced connections o™ M, respectively” 1% and ~ %, If two complex connections
 andr are related via as in (11), then the induced connections o M are
related by

N
r =T

N[

—~
+
[
(&
[
[

): (14)

Therefore, we obtain:

Proposition 2.5. SupposgM; J; [r ]) is an almost c-projective manifold of dimension
2n 4. Assume two connectiong” andr in [r ] dier by as in (I1) and set
a’= , and ,:= , . Then we have the following transformation rules for
the induced connections ot 1% and » %*:
(1)r/\ac:rac ac acandr/\ac:rac,
(Z)r/\a c=Tlac ac acandr/\ac

rac.

Note that the real Ii[le bundle” 2T M is oriented and hence admits oriented roots.
We denote (* 2"TM)»T by Ex(1;1) and for anyk 2 Z we setEg(k;k) := E(1;1) ¥,
where Egr(k; k) = Er( k; k). It follows from Corollary 2.4 that for a section of
Er(k; k) we have

o= r o+ ko (15)
In particular, we immediately deduce the following result.

Proposition 2.6. SupposgM; J; [r ]) is an almost c-projective manifold of dimension
2n 4. The map sending an a ne connection to its induced connectio on Exg(1; 1)
induces a bijection from connections ifjr ] to linear connections onEg(1;1).

Since™ 2"TM and Ex(1; 1) are oriented, they can be trivialised by choosing a positive
section. Such a positive section of Ex(1; 1) gives rise to a linear connection oBg(1; 1)
by decreeing that is parallel and therefore, by Propositioi 216, to a connectn in
the c-projective class. We call a connection2 [r ] that arises in this way aspecial
connection Suppose® and are two nowhere vanishing sections &g(1; 1) and denote

by i andr the corresponding connections. Theh = e f  for some smooth function

f onM and any 2 ( Ex(1;1)) can be written as = h = hef ~ for a smooth
function hon M. Sincer = dh , we have

¢ =dhe') ~=dh +d =r +(rf):
Therefore,* andr dier by an exact 1-form, namely rf.

In some of the following sections, like for instance in Seoti[3.1, we shall assume
also that the complex line bundle* "T1°M admits a (n + 1)t root and that we have
chosen one, which we will denote bi(1; 0) (following a standard notation onCP"). In
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that case we shall denote its conjugate bundIg(1;0) by E(0; 1) and the dual bundle
E(1;0) by E( 1;0). In general, we shall also writeE(k; ") := E(1;0) ¥ E (0;1) for
(k;7) 2 z Z and refer to its sections ag-projective densities of weigh(k; ). By
Corollary [2.4 we see that, for a c-projective density of weight (k; "), we have

r/\a:ra"'ka r/\a:ra""a: (16)

Our notion of c-projective density means, in particular, tlat we may identify 2 ™© with
E( n 1;0) and it is useful to have a notation for this change of viewpoin Precisely,
we may regard our identi cationE( n  1;0)! 2 "0 as a tautological sectior' . ¢
of A "™9%(n + 1;0), such that a c-projective density of weight( n 1;0) corresponds
to " 4 ¢ aform of type (n; 0). Note that E(k; k) = Er(k; k) C.

2.2. Parabolic geometries. For the convenience of the reader we recall here some
basics of parabolic geometries; for a comprehensive inttation see([35].

A parabolic geometryon a manifoldM is a Cartan geometry of type(G; P), where
G is a semisimple Lie group and® G a so-calledparabolic subgroup Hence, it is
given by the following data:

a principal P-bundlep: G! M

a Cartan connection! 2 (G, g) thatis, a P-equivariant 1-form on G with
values ing de ning a trivialisation TG= G g and reproducing the generators
of the fundamental vector elds,

where g denotes the Lie algebra o6. Note that the projection G! G=P, equipped
with the (left) Maurer Cartan form !¢ 2 %(G;g) of G, de nes a parabolic geometry
on G=P, which is called thehomogeneousr at model for parabolic geometries of
type (G; P).

The curvature of a parabolic geometry(G ® M; ! ) is a2-form K on G with values
in g, de ned by

K(; )=d(; )+[!'();!' ()] forvector elds and onG

whered denotes the exterior derivative and ; ] the Lie bracket ofg.

The curvature of the homogeneous modéG ! G=P;!s) vanishes identically. Fur-
thermore, the curvatureK of a parabolic geometry of typgG; P) vanishes identically
if and only if it is locally isomorphic to (G ! G=P;!g). Thus, the curvature K
measures the extent to which the geometry di ers from its howgeneous model.

Given a parabolic geometry(G 1®Mm;! ) of type (G; P), any representationE of P
gives rise to an associated vector bundlEe := G p E over M. These are the natural
vector bundles on a parabolic geometry. Notice that the Caan connection! induces
an isomorphism

G pgp=TM
;X +p] 7! Tup ! H(X) ;

where p denotes the Lie algebra oP and the action of P on g=p is induced by the
adjoint action of G. Similarly, ! allows us to identify all tensor bundles orM with
associated vector bundles. The vector bundles correspamglito P-modules obtained
by restricting a representation ofG to P are calledtractor bundles These bundles play
an important role in the theory of parabolic geometries, ste the Cartan connection
induces linear connections, callettactor connections on these bundles. An important
example of a tractor bundle is theadjoint tractor bundle AM = G 5 g, which has a
canonical projection toT M corresponding to theP -equivariant projectiong! g=p.
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Remark 2.4. The abstract theory of tractor bundles and connections eveprovides
an alternative description of parabolic geometries (see0p3.

By normalising the curvature of a parabolic geometry, the mlongation procedures
of |35,[85,95] leads to an equivalence of categories betwsercalledregular normal
parabolic geometries and certain underlying structures, hich may be described in
more conventional geometric terms. Among the most promineaf these are conformal
structures, projective structures, and CR-structures of ypersurface type. In the next
section we shall see that almost c-projective manifolds faranother class of examples.

From the de ning properties of a Cartan connection it follove immediately that the
curvature K of a parabolic geometry of typg(G; P) is P-equivariant and horizontal.
Hence,K can be identi ed with a section of the vector bundle* 2T M A M and
therefore corresponds vid to a section of the vector bundle

G p"%gP 9=G »"’p. G
where p; is the nilpotent radical of p and the latter isomorphism is induced by the

Killing form of g. Now consider the complex for computing the Lie algebra horogy
H (p.;0) of p. with values in g:

0 g9 p. 9% g

Since the linear maps@ are P-equivariant, they induce vector bundle maps between
the corresponding associated vector bundles. Moreovergthomology spaceH;(p- ; 9)
are naturally P-modules and therefore give rise to natural vector bundle#\ parabolic
geometry is callednormal, if @ = 0. In this case, we can project to a section

h of G p Hy(ps;Q), called the harmonic curvature The spacesH;(p;g) are com-
pletely reducible P-modules and hence arise as completely reducible represg¢ions of
the reductive Levi factor Go of P via the projection P ! P=exp(p:) = Go. In par-
ticular, the harmonic curvature is a section of a completelyeducible vector bundle,
which makes it a much simpler object than the full curvature. Moreover, using the
Bianchi identities of , it can be shown that the harmonic curvature is still a comple
obstruction to local atness:

Proposition 2.7 (see e.g/136])Suppose tha{G ! M;! ) is a regular normal parabolic
geometry. Then Oifand only if , O.

Remark 2.5. The machinery of BGG sequences shows that the curvature of egu-
lar normal parabolic geometry can be reconstructed from thiearmonic curvature by
applying a BGG splitting operator (seel[25]).

2.3. Almost c-projective manifolds as parabolic geometries. It is convenient
for our purposes to realise the Lie algebrg:= sl(n+1; C) of complex trace-free linear
endomorphisms ofC"*! as block matrices of the form

_ trA Z
9= X A

wheretr: gl(n;C) ! C denotes the trace. The block form equipg with the structure
of a graded Lie algebra:

A2gl(n;C);Xx2Cz2(C) (17)

g=91 G O,
wheregq is the block diagonal subalgebra isomorphic tgl(n; C) andg ; = C", respec-
tively g; = (C") , asgo-modules. Note that the subspace := gy g is a subalgebra
of g (with p= gon g; as Lie algebra). Furthermorep is a parabolic subalgebra with
Abelian nilpotent radical p. := g; and Levi factor isomorphic togy. For later purposes
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let us remark here that we may conveniently decompose an elemh A 2 o into its
trace-free part and into its trace part as follows
0 0 n+1 . 0

n+1
+ tr A L\g,

0 A Ay, n 0 (18)

n+1

Now setG := PSL(n +1;C) and let P be the stabiliser inG of the complex line
generated by the rst standard basis vector o€"*!. Let Gy be the subgroup of that
consists of all elementg 2 P whose adjoint actionAd(g): g! g preserve the grading.
Hence, it consists of equivalence classes of matrices of tien

(detcC) * 0

0 C whereC 2 GL(n; C);

and the adjoint action of G, on g induces an isomorphism
Go = GL(g 1;C) = GL(n; C):

Obviously, the subgroupsG, and P of G have corresponding Lie algebragy and p,
respectively.

From now on we shall viewG, P G as real Lie groups in accordance with the
identi cation of GL(n+ 1;C) with the real subgroup ofGL(2n+2;R) that is given by

GL2N+2;Jd5me1)) = A2 GLER(N+1);R): Adynsy = Jonsn A

where Jyn.1) is the following complex structure onR?"*2:
0 1

Jo
. 0 1
Jz(n+1) = @ A with Jo = 1 0

J2

Suppose now that(M; J; [r ]) is an almost c-projective manifold of real dimension
2n 4. ThenJ reduces the frame bundl& M of M to a principal bundlepy: G! M
with structure group Go corresponding to the group homomorphism

Go = GL(n;C) = GL(2n;J2,) | GL(2n; R):

The general prolongation procedures of |85, 185,195] furthehow that G ! M can
be canonically extended to a principaP-bundlep: G! M, equipped with a normal
Cartan connection! 2 (G;g) of type (G;P). Moreover, (G !* M;! ) is uniquely
de ned up to isomorphism and these constructions imply:

Theorem 2.8 (see also |55, 103])There is an equivalence of categories between almost
c-projective manifolds of real dimensio2n 4 and normal parabolic geometries of
type (G;P), where G and P are viewed as real Lie groups. The homogeneous model
(G! G=P;!g) corresponds to the c-projective manifold

(CP"; Jcan; [r ¥F51);

where J.,, denotes the canonical complex structure d@P" and r %s the Levi-Civita
connection of the Fubini Study metricgrs.

Let us explain brie y how the Cartan bundle G and the normal Cartan connection
I of an almost c-projective manifold(M; J; [r ]) of dimension2n 4 are constructed.
The reduction & ! F M is determined by the pullback of the soldering form on
FM and hence can be encoded by a strictly horizont&b,-equivariant 1-form 2

1(&;g 1). Recall also that any connectiorr 2 [r ] can be equivalently viewed as a
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principal connection " 2 1(G&;go) on &. Then Gis de ned to be the disjoint union
t u2c,Qu, Where

G=f (u+ "(W:r2 [r]g foranyu?2G:

The projectionp == po q: G ! M, where G "G o ° M, naturally acquires the
structure of a P-principal bundle. Any elementp 2 P can be uniquely written asp =
Joexp(Z), wheregy 2 Gg and Z 2 g;. The right action of an elementgyexp(Z) 2 P
on an element (u) + ' (u) 2 Gy is given by

((U+ "(u) gexp@):= (u gw()+ "(u g()+[Z (U g 19
where[ ; ] denotes the Lie bracketg; g 1! do.

Remark 2.6. The soldering form 2 (G g 1) gives rise to isomorphism§ M =
& g, gi1andT M =& ¢, 0. ForelementsX 2 g ; andZ 2 g,, the Lie bracket
[Z;X]2 go = gl(g 1;J2) evaluated on an element 2 g ; is given by

[Z:XLY]= (ZXY +ZY X ZInXJIonY  ZJIonY I X): (20)

This shows that changing a connection form + ' by a Gg-equivariant function
Z: & ! g, according to [19) corresponds precisely to changing it cgiectively
(cf. formula (11)).

The de nition of G easily implies that the following holds.

Corollary 2.9. The projectionq: G ! G ¢ is a trivial principal bundle with structure
group P: = exp(p:) and its globalGy-equivariant sections, called Weyl structures, are
in bijection with principal connections in the c-projectie class. Moreover, any Weyl
structure : G ! G induces an vector bundle isomorphism

GU Go E=G P E
[u; XT70 [ (u); XT;
for any P-moduleE.

Note that there is a tautologicall-form 2 (G,g 1 o) on Ggiven by
(+ "W))=0 W+ "u(Tag ): (21)

Extending this form to a normal Cartan connectionl 2 (G, g) establishes the equiv-
alence of categories in Theorefn 2.8.

Remark 2.7. In SectionZ.1 we observed that there are always so-callegs@l connec-
tions in the c-projective class. A Weyl structure correspathing to a special connection
is precisely what in the literature on parabolic geometrieis called anexact Weyl struc-
ture (seel(|36, 37]). The name is due to the fact that they form an a B space over the
space of exactl-forms onM.

Note also that the almost complex structureJ on M induces an almost complex
structure J® on the complex frame bundlex of M. If J is integrable, so isI® and
& is a holomorphic vector bundle oveM . Moreover, the complex structure ong
induces, by means of the isomorphisth: TG= G g, an almost complex structure
JCongG, satisfyingTp J6=J TpandTq J¢=J% Tqg Note that the de nition
of the almost complex structure onJ® and J€ implies that and! are of type(1;0).

Let us also remark that an immediate consequence of Theorém@2nd the Liouville
Theorem for Cartan geometries (see e.q.[36, Propositio® B]) is the following classical
result.
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Proposition 2.10. For n 2 the c-projective transformations of(CP"; Jean; [r 95 ])
(which by Proposition[Z2 are the complex di eomorphisms ofZP" that map complex
lines to complex line} are precisely given by the left multiplications of elements
PSL(n + 1;C). Moreover, any local c-projective transformation of CP"; Jcan; [r %S ])
uniquely extends to a global one.

We nish this section by introducing some notation. TheP-module g admits an
invariant Itration g p g; and hence the adjoint tractor bundleAM = G p gis
naturally Itered

AM =AM A°M A M
with A'M = T M and AM=A°M = TM. Hence, the associated graded vector bundle
to AM is given by

gr(AM) =gr (AM) gro(AM) gr(AM)=TM gl(TM;J) T M; (22)
which can be identi ed with & g, 0.

2.4. The curvature of the canonical Cartan connection. Suppose : G!G isa
Weyl structure and let " be the corresponding principal connection in the c-projeiet
class. Since the normal Cartan connectioh is P-equivariant and is Gg-equivariant,
the pullback ! 2 (& q) is Go-equivariant and hence decomposes according to the
grading ong into three components. Sincé extends the tautological form on G,
de ned by (21), we deduce that

= + " p; (23)

wherep” 2 1(&;gy) is horizontal and Gy-equivariant and hence can be viewed as
a sectionP” of TM T M, called the Rho tensor of r . Via , the curvature
2 2(M; AM) of ! can be identi ed with a section  of

A2T M gr(AM)
=("2TM TM) ("?TM gi(TM;J)) (**TM T M),
which decomposes according to this splitting into three cgnonents
=T+W" C":
One computes straightforwardly thatT 2 (22T M TM) is the torsion of the almost
c-projective structure and thatC" = d" P 2 (~?2T M T M), whered" denotes
the covariant exterior derivative on di erential forms with values inT M induced by
r . The tensorC'" is called theCotton York tensor of r . To describe the component

W' 2 (22T M gl(TM;J)), called the (c-projective) Weyl curvature of r , let us
denote byR" 2 2(M; gl(TM;J)) the curvature ofr . Then one has

Wr — RI’ @I’ .
where
(@) =Py J PyJ P, J P (24)
Remark 2.8. Themap@TM TM ! 22T M gl(TM;J) given by (Z3) is
related to Lie algebra cohomology. It is easy to see that theid algebra di erentials
in the complex computing the Lie algebra cohomology of the Adtian real Lie algebra

g 1 with values in the representationg are Go-equivariant and that @is induced by
the restrictionto g ;, g1 = 01 0, of half of the second di erential in this complex.
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The normal Cartan connection! is characterised as the unigue extension ofto a
Cartan connection such that@ = 0 for all Weyl structures : G ! G . Analysing
ker@ shows that T is in there, since forms of typeg(0;2) are, andC" is, since
A2T M T M ker@. Hence,P" is uniquely determined by requiring thatW' be
in the kernel of @.

Remark 2.9. Recall that in De nition Z.1]we restricted our de nition of almost c-
projective structures to c-projective equivalence class®f minimal connections. Since
the kernel of

@:"*TM TM! TM gl(TM;J)

consists precisely of all th&-forms with values inTM of type (0; 2), the discussion of
the construction of the Cartan connection above shows thahe minimality condition
is forced by the normalisation condition of the Cartan conraion. The requirement
for the almost c-projective structure to be minimal is howesr not necessary in or-
der to construct a canonical Cartan connection. In fact, sting with any complex
connection, one can show that there is a complex connectiontiwthe same J-planar
curves whose torsion has only two components, namely tfi@; 2)-component N,
and a component in the subspace @¢1; 1)-tensors in* 2T M TM that are trace and
J-trace free. Imposing this normalisation condition on an alost c-projective structure
allows then analogously as above to associate a canonicaft&a connection (see([65]).

Proposition 2.11. SupposeM; J; [r ]) is an almost c-projective manifold of dimen-
sion2n 4. Letr 2 [r ] be a connection in the c-projective class. Then the Rho
tensor corresponding tar is given by

P = ——(Ric" + n—ll(Ric[ y J¢ Jy Ric")); (25)
whereRic" = R’ is the Ricci tensor ofr . Moreover, if 2 [r ] is another
connection in the class, related t@ according to (L), then

Pl =P 1 + JJ ): (26)

Proof. The map@: *?T M gl(TM;J)! T M T M is a multiple of a Ricci-type
contraction. Hence, the normality of! implies

RO =(@) =(n+HP P +J3 J,P: (27)
Therefore,Ric; ;=(n+1)P ;andRic; , =nP ,+Jc J) P , which implies that
RICE ) J( J ) Ric" = (n 1)(PE ) J( J ) P ):

Using these identities one veri es immediately that formwd (25) holds. The formula
(28) for the change of the Rho tensor can easily be veri ed dictly or follows from the
general theory of Weyl structures for parabolic geometriesstablished in [[37] taking
into account that the Rho tensor in [37] is % times the Rho tensor given by[(25) and
our conventions for the de nition of as in (11).

As an immediate consequence (writing ouf(26) in terms of itsomponents using the
various projectors 2;::: and the formulae [4)) we have:

Corollary 2.12.
Dr — pr pr — pr
Pakb =P, and P, = P,
Po=Pw I a bt a b
Pbo=Pw ' a b
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For any connectionr 2 [r ], its Weyl curvature W' is, by construction, a section
of A2T M gl(TM;J) that satis es W' 0. This implies that alsoJ W' =
w" o J 0. In the sequel we will often simply writeW instead ofW' , and similarly
for other tensors such as the Rho tensor, the dependencerofbeing understood.
Viewing W as a2-form with values in the complex bundle vector bundlgl(TM;J) =
gl(T%M; C), it decomposes according t¢p; g)-types into three components:

Wap’s  Wap'a  Wap'dl
The vanishing of the trace and]-trace above, then imply that
Wabad = Wabad 0)

In these conclusions and in CorollaryZ.12 we begin to see thidity of writing our
expressions in using the barred and unbarred indices intraded in Sectior1l. In the
following discussion we pursue this systematically, rsyl by describing exactly how
the curvature of a complex connection decomposes. We analyhese decompositions
from the perspective of c-projective geometry: some pieca® invariant whilst others
transform simply. For the convenience of the reader, we reitate some of our previous
conclusions in the following theorem (but prove them more sdy using barred and
unbarred indices, as just advocated).

Proposition 2.13. SupposeM; J; [r ]) is an almost c-projective manifold of dimen-
sion 2n 4. Let T,° denote its torsion (already observed to be a constant multiple
of the Nijenhuis tensor of(M;J)). Then the curvature R of a connectionr in the
c-projective class decomposes as follaws

Rab’d = Wan'a +2 2°Pha+  ab o

Rav'd = Wap'd + a"Pogt d“Poa

Wabcd = Habcd ﬁ aCTCf eTebf + dCTaf eTebf %-I-f’lde-rebC

c — c  — c
Rabd_\Nabd - rdTab

(28)

where

Wab'd = Wiap d Wiab'q = O Wap?q = 0 ab=  2Ppay
Hap'da = Hap'a Hap'a = 0:
Let /' be another connection in the c-projective class, related to by (I1), and denote
its curvature components by, ¥, and P. Then we have

(1) Wabcd = Wap°y and Wabcd = Wabcd and Iqabcd = Habcd’

(2) Wota = Wala + Ta® oc© @and if J is integrable, thenW, ¢y O,
(3) Wabcc O,

(4) Wabcc = Tfa eTebf )

whilst we recall thatPay = Pas T a b+ a b, Pod= Pog T b a
The tensor ., = 2Py Satis es

Mo og= Prpled =2 Tibe Teja" Tar (29)
Finally, the Cotton York tensors Cy,. and C,;,; are de ned as

Cabc = anc r bPac+ Tabdpdc and Cabc =T anc r bPaC: (30)
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The rst of these satis es a Bianchi identity
r aWbcae (I’] 2)Cbce
2 n

= 2Ta[bf H cf ae + mecf Teadef a mTe[bf Tc]adef a (31)

and transforms as
ébce: Cocet aWhce (32)

under c-projective changdlll). Another part of the Bianchi identity reads

Cabc cha= - be dr dTacf + Rbf ddTacf 2Rbf d[aTc]df : (33)

n+1l

Proof. In this proof we also take the opportunity to develop variousiseful formulae
for torsion and curvature and for how these quantities trarferm under c-projective
change [I1). As in the statement of Proposition 2.13, we exgss all these formulae
in terms of the abstract indices on almost complex manifolddeveloped in Sectioill.
Firstly, recall that since we are working with minimal connetions (cf. De nition £2.T),
their torsions are restricted to being of typeg(0; 2) and this means precisely that

(rarpr pra)f +Tprf=0 (rarpr pra)f =0

34
(rarpyr ora)f +Tyrf=0  (rarpr o o)f =0; (34)

where Tg,° a b °T ,equivalently its complex conjugatel,° = Ta’, represents
the Nijenhuis tensor as in [(B). Notice that the second line of34) is the complex
conjugate of the rst. In this proof, we take advantage of the general feature by listing
only one of such conjugate pairs, its partner being implidyt valid. For example, here
are characterisations of su ciently many components of thegeneral curvature tensor
R

(Fal b I oo )X+ Taplr (X = RgSeX®
(rarp r of )X¢= RgtyX®

or (ral b ' of )X®= RapteX® if preferred (35)
(Fal b T oof a)X+ Tt ¢X°= Rap®yX ™

For convenience, the dual formulae are sometimes preferrédr example,
(Farb I ora) drTal c d= Rapd c: (36)
The tensor employed in a c-projective change of connectioin {11) was eddy

broken into irreducible pieces in deriving Proposition 213:.g.

ab = a4 p © = a4t ba® ) FaXO=r X+ XO+ XP 0 (37)
and ,°= ., , °© =0 ) FaXC=r1 X (38)

It is an elementary matter, perhaps more conveniently exetad in the dual formulation
Ma b=Ta b a b b a "2 b=T a b; (39)
to compute the e ect of these changes on curvature, namely
Ra’a= Rav’a 2%y o+2 2% b ¢+2(r @@ 1) o
IQade =Rap'd aTphd dlyp a (40)

c — c c e ¢ _— c e c.
IQabd—Rabd‘l'Tab d+ eTab d —Rabd+Tab ed -
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We shall also need the Bianchi symmetries derived from {35},anore conveniently
in the dual formulation, as follows. Evidently,

Fa(prcr crp)f+rp(rerar ardf+rc(rarp r pra)f
=(rarpr pra)rcf +(rprcr orpraf +(rcrar aroryf
which we may expand using[{34) and(35) to obtain
(r aTbcd +r chad +r c-l-abd)r df :(Rabdc+ Rbcda+ Rbcda)r df

and hence that

r [aqud =0 R[abcd] =0: (41)
Similarly, by looking at di erent orderings for the indicesof r ,r ,r f, we nd that
Rabcd Rdbca + TadeTebC =0 Rabcd =T dTabC: (42)

Already, the nal statement of (28) is evident and if T,,° = 0 then both R %4 and its
complex conjugateR,.,°4 vanish. Notice that @ does not contribute to this piece of
curvature. Speci cally, from (23)

(@)apd = b ¢ (@) = Puy d° Py a =0:
It follows that W, %4 = R,.% in general and thatW,,°s = R,,°q = 0 in the integrable
case. The rest of statement (2) also follows, either from tHast line of (40) or, more
easily, from the c-projective invariance of 4,° (depending only on the underlying almost
complex structure), the second identity of[(42), and the trasformation rules [(39).
Now let us consider the curvatureR,,°q. From ([24), we compute that

(@P)ar’a= a2 p © (@ =2 °Pga 2Py d°
and from (Z5) that
I:)ab =

equivalently that Rica, = (N 1)Pa, + 2P, Bearing in mind the Bianchi symmetry
@7T) for Rap°q, this means that we may write

Rap’d = Wap'a +2 a“Pga +  ab o5 (43)

- 1 ; 2 H — 1 ; 2 H .
a bP - m R|Cab+ ﬁRIC(ab) - m R|Cab+ ﬁRlC(ab) ’

where
Wap’d = Wiap“d Wiap'g) = O Wap?g =0 ab=  2P[ay:
Comparing this decomposition with the rst line of (40) implies that W4 is invariant

and con rms that P, transforms according to Corollarny2.T2. In summary,

cC — c - N .
Wiaps = WanSy Pb=Pa T a c* b ¢ ab= abt 2l [a -

We have shown (3) and the rst statement of (1).
The remaining statements concern the curvatur®,,°4. From (24), we compute that

(@)abcd = a_b ¢ d(@) = aCPbd+ dCPba
and from (Z5) that

Poa = _b P = ﬁRide = ﬁRabadi
From (@2) it now follows that
Rap’a + 5Tad ey’ = Hap'd ﬁ aTa Tep + o Tar Tepy + (@) an'a (44)

where
Han'd = Hap'a Hap'a = 0:
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Recall that by de nition
Wabcd = Rabcd (@)abcd:
Therefore
Wabcd = Habcd

1 [ er f c e f 1 eT C.
2+ 2 Te Tep + o Tar Tep 5Tad Tep -

Comparison with the formula forR . in (80) immediately shows thatW,.%q and H %4
are c-projectively invariant and also that

c — e f.
Wabc— Taf Teb ’

as required to complete (1) and (4). Next we demonstrate theshaviour of the Cotton
York tensor. For this, we need a Bianchi identity with torsia, which may be established
as follows. Evidently,

Fa(forcr cofp) etrpFcrarl alrc) etlc(Falpr ofa)e
:(rarb r bra)rce+(rbrc r crb)ra e+(rcra r arc)rbe;
the left hand side of which may be expanded by (86) as
ra( Rbcde d Tbcdr d e)+ + ;

where represent similar terms where the indiceabc are cycled around. On the
other hand, the right hand side may be expanded as

Rbcdar d e Rbcder a d Tbcdr dl a e

Comparison yields

(r aRbg%) a+(r @TogDr ¢ ¢ Tic'Rad e = Rpal o e
and, from the Bianchi symmetries[(411), we conclude that

r [aRbc]de = T[abf Rc]f de:
Using (28) and tracing overa and d yields
r aWhe 2(n 2)r bPge + 31 [b cq

n+2

n+1
Skewing this identity over bcegives [29) and substituting back gives

1
= 2Tap Hgs 2ot mecf Tea Ty 2 Teo T Ter 2+(N 2)Toe Pre +3PspTeq' -

r aWbcae 2(n Z)r [ch]e
2 n
= 2Ta[bf H of ae + mecf Teadef a mTe[bf Tc]adef a4 ( n 2)Tbcf Pfe .

The contracted Bianchi identity (31) follows from the de nition (8Q) of the Cotton
York tensor. Notice that the right hand side of [31) is c-progctively invariant. Also,
by computing that

N d - A d
r awbc e=1T aWbc e
d d d d d f d
r aWbc e 2 aWbc e bWac e cha et a bec e eWbc a
and tracing overa and d, we see that
A
r awbcae =1 Wpete + ( n 2) aWhce

and forn > 2 conclude that (32) is valid. The casen = 2 is somewhat degenerate. Al-
though (32) is still valid, as we shall see below in Proposin[2.14, the Weyl curvature



C-PROJECTIVE GEOMETRY 25

W24 vanishes by symmetry considerations and(B32) readd.e = Cpee the straight-
forward veri cation of which is left to the reader. Similarly, by considering di erent
orderings for the indices of ,r ,r . ., We are rapidly led to

d d d — f d
raRcbe r cRab et I bRac e—Tac Rbf e

as another piece of the Bianchi identity, which may then be fther split into irreducible
parts. In particular, tracing over d and e (equivalently, tracing overa and d and then
skewing overc and e) gives (33).

Proposition 2.14. Suppose thatW,tq 2 A 50 A L0 TLO\M A L0 has the following
symmetries

Wab®a = Wiag q Wiap'qy = 0 Wap?g = 0:
If 2n =4, then W%y O.

Proof. Fix a nonzero skew tensoV,, ASs Wy,ty IS skew ina and b, it follows that
Wa'y = VapS% for some unique tensorS¢y. Now Wya?q = VapS?y but Vg, is also
nondegenerate s,,23 = 0 implies S% = 0:

Remark 2.10. When n = 2, the identity (BI) is vacuous. PropositionCZ. 14 implies
that the left hand side vanishes. For the right hand side, theanishing of Ty’ Hr %e

follows by tracing the identity Tja' Hy % = 0 overaandd, bearing in mind that H ;¢ ¢
is trace-free ina and d. The remaining terms also evaporate because, wherr 2, the
tensor Tyl Tea® is symmetric inf d whereasT 2 is skew.

The torsion T,,¢ (equivalently, its complex conjugater,,®) is c-projectively invariant.
The same is true, not only of the Weyl curvatureW,;, but also of its trace-free
symmetric part H,.°s (which will be identi ed as part of the harmonic curvature in
Section[Z.T). The Weyl curvatureW,%y is c-projectively invariant and forms the nal
piece of harmonic curvature except when = 4, in which caseW,,°q necessarily
vanishes, its role being taken byC,u., the c-projectively invariant part of the Cotton
York tensor. In Section 2.7, we place this discussion in themtext of general parabolic
geometry but, before that, we collect in the following sean some useful formulae for
the various curvature operators on c-projective densities

2.5. Curvature operators on c-projective densities. Supposex ¢ e = xlcd € jg
a section ofE(n +1;0) = ""TLE'M and Y% © a section ofE(O;n + 1) = A""TOIM.
Then it follows from (35) that

(Falb T oof )X ®= RS X™ ®+ Ry X 4 + Rp% X
= Ry X e
(Fal o T oof )Y °= Ra Y™ e+ R YT €+ + Ry Y
= Ry Y e
However, from Proposition’ 2. 1B part (4), we nd that
Raf= Rm't= Wit (@'t = TnTe (N+1)Pgp
Rap't = Wap t +(@)an 1 = T1pTea + (N + 1) Pra:

We conclude immediately that for a section of E(k; ") we have

(Fal b r o a) = = TTea + Pm  KPap: (45)

n+1
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Similarly, from (B5) it also follows that
Falp Tl Q)X S+ Ty'r (X ©= Ry X ©
(Falp I oof a)Y® S+ To'r (Y &= Ry Y™
From Proposition[2.13 we conclude that
Rab t =2Ppg + N ap=(N+1) o
Rap' ¢ = 1 ¢ Tap':

Therefore, if is c-projective density of weight(k; *), then

(Faf b r bfa) +Tar ¢ =Kap + (" 1 Tap) (46)
and, accordingly,
(Fal p I pra) Tl g = gt ﬁ(r 1 Tap ) : (47)

Recall that for any connectionr 2 [r ] its Rho tensor, by de nition, satis es Py, =
—-Ricap and Py = —7Ricy. Hence, the identities [4b) and [(46) imply that the
Ricci tensor of a special connection2 [r ] satis es

RiCab = RiCba

RiC[ab] = %I’ CTabC.
If r .Ta® vanishes, the special connection has symmetric Ricci tensdén particular, if
J is integrable all special connections have symmetric Ric&nsor.

2.6. The curvature of complex projective space. In Section[Z.4, and especially in
Proposition[Z.I3, the curvature of a complex connection ongeneral almost complex
manifold was decomposed into various irreducible piecesréducibility to be further
discussed in Section 3.3). Here, we pause to examine thisalaposition on complex
projective spaceCP" with its standard Fubini Study metric.

Lemma 2.15. The Riemannian curvature tensor for the Fubini Study metc g on
CP" is given by

R =g ¢ g g + +2 (48)
whereJ is the complex structure and J g (the Kahler form).

Proof. A direct calculation from the de nition of the Fubini Study metric (e.g. [27])
or by invariant theory noting that (up to scale) the right hand side of [48) is the only

covariant expression ing and such that

R =R y; R ;=0 R (J; =0
where the last condition is a consequence of the Kéahler cotidn d = 0 (or, more
precisely, a consequence of =0 as one can check, by direct computation in case
the almost complex structureJ is orthogonal (i.e.J g is skew), that

2r = 3r [ ] 3 Jr [ ] N ;

where recall thatN is the Nijenhuis tensor [1), which vanishes when the complex
structure is integrable, as it is onCP").

To apply the decompositions of Proposition 2,13 td(48) we shld raise an index
R = g g +J J 2 J

and then apply the various projectors such as, , ¢ 4 However, rstly note that
applying , toJ g +J g =0 implies that g, = 0 (consequently .. = 0)



C-PROJECTIVE GEOMETRY 27

whilst applying , . to = J g shows that 5 = igs.. We conclude that
Rabcd =0 and
Rap'd a_b ¢ R = 2% ia b 2 apd =2 aOap+2 oG’

Thus, with reference to Propositiori 2. 13, we see that all educible pieces of curvature
vanish save forP,q = 2gy,. In particular, all invariant pieces

Taw  Hap'a  Wap'g
of harmonic curvature (as identi ed the following section) vanish. This is, of cotse,
consistent with CP", equipped with its standard complex structure and Fubini Sudy
connection, being the at model of c-projective geometry, adiscussed in Section 2.3

and especially Theorenl 218.

Finally, observe that if we regardCP" as
80 19

300 2

SL(n+1;C) % § ;

3= 3

" :

rather than as a homogeneouBSL(n+1; C)-space as in Section 2.3, then the character
7! X " induces a homogeneous line bundiEk; ) on CP" as we were supposing

earlier and as we shall soon suppose in Sectionl3.1. This otagon also explains our

copacetic choice of notation: orf€P" it is standard to write O(k) for the holomorphic

bundle that is E(k; 0) just as a complex bundle (and therE(k; 0) = E(O; k)).

2.7. The harmonic curvature. A normal Cartan connection gives rise to a simpler
local invariant than the Cartan curvature , called the harmonic curvature , which
still provides a full obstruction to local atness, as discased in Section Z]2 (cf. espe-
cially Proposition[2.7). The harmonic curvature , of an almost c-projective manifold
is the projection of 2 ker@ to its homology class in

G pH2UMOY =G g, H2(01;0):

By Kostant's version of the Bott Borel Weil Theorem [64] the Go-module H»(g:; 9)
can be naturally identi ed with a Go-submodule in*2g; rg = ~2g, rgthat
decomposes into three irreducible components as follows:

forn=2

("°%g; cg1) (“FgileslguC) (“*°g; co)
forn> 2

@ 0;29 1 cg1) *® l;lg 1} csl(g ;C) * 2;09 1} csl(g 1;C));

where these are complex vector spaces but regarded as reatl where} denotes the
Cartan product. Correspondingly, we decompose the harmanturvature as

h= + +
in casen =2 and
h= +* 1%t 2
in casen > 3.
Note that @ preserves homogeneities, i.@("'g; ¢) "' g1 G+. In par-
ticular, the induced vector bundle map@ maps”*3T M A M to 2T M A °M.
Hence, we conclude that must equal the torsionT . If n =2, then is the com-

ponent H, %y in (M 11} ¢ sl(TY°M)) of the Weyl curvature of any connection in the
c-projective class, and is the (2;0)-part of the Cotton York tensor. If n > 2, then
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1, respectively »,, is the totally trace-free (1; 1)-part, respectively (2; 0)-part, of the
Weyl curvature of any connection in the class.
We now give a geometric interpretation of the three harmonicurvature components.

Theorem 2.16. Suppose(M; J; [r ]) is an almost c-projective manifold of dimension
2n 4 and denote by j the harmonic curvature of its normal Cartan connection.
Then the following statements hold.

Q) =« 0 if and only if the almost c-projective manifold(M; J; [r ]) is locally
isomorphic to (CP"; Jcan; [r %S]).

(2) s the torsion of (M;J; [r ]). In particular, 0 if and only if J is integrable,
i.e. (M;J;[r]) is a c-projective manifold. Moreover, in this case]€ is inte-
grable and the Cartan bundl@: G! M is a holomorphic principalP -bundle.

(3) Suppose 0. Then ; O (resp. 0) if and only if ! is a holomorphic
Cartan connection on the holomorphic principal bundle: G! M. This is
the case if and only ifir ] locally admits a holomorphic connection, i.e. for any
connectionr 2 [r ] and any pointx 2 M there is an open neighbourhodd 3 x
such thatrj y is c-projectively equivalent to a holomorphic connectiormaJ.

Proof. We have already observed (1) and the rst two assertions of Y2To prove the
last statement of (2) and (3), assume that 0, which says, in particular, that the
Cartan geometry is torsion-free. SincP acts on the complex vector spack?g; rg by
complex linear mapsP preserves the decomposition of this vector space into therde
(p; 9)-types. Thereforel]2B, Corollary 3.2] applies and hencg has components of type
(p; g if and only if has components of typgp; . Therefore, 0 implies that
has no(0; 2)-part, which by the proof of [28, Theorem 3.4] (cf[[36, Progsition 3.1.17])
implies that J€ is integrable andp: G ! M a holomorphic principal bundle. This
nishes the proof of (2). We know that the component ; (respectively ) vanishes
identically if and only if is of type (2;0), which by [28, Theorem 3.4] is the case
if and only if ! 2 109(G;g) is holomorphic, i.e.d! is of type (2;0). Hence, it just
remains to prove the last assertion of (3). Assume rstly the ; (respectively )
vanishes identically and hence thaf{p: G! M;! ) is a holomorphic Cartan geometry.
Then we can nd around each point ofM an open neighbourhoodJ M such
that G and & trivialise as holomorphic principal bundles overlJ. Having chosen
such trivialisations, the holomorphic inclusionGy | P induces a holomorphicG,-
equivariant section : p,*(U) ! p *(U). Sinced! is of type(2;0)and is holomorphic

d=d t=d+d" dp

is also of type(2;0). In particular, d " is of type (2;0) and it follows that " 2

10(p, 1(U); go) is a holomorphic principal connection in the c-projectivelass. Con-
versely, assume thatU M is an open set and that © 2 1%(p,(U);qo) is a
holomorphic principal connection that belongs to the c-priective class. Since the Lie
bracket on g is complex linear, the holomorphicity of " implies that its curvature
d" +[ "; "]is of type (2;0). By de nition of the Weyl curvature this implies that
also its Weyl curvature is of type(2;0) and hence so is yjy. By assumption there
exists locally around any point a holomorphic connection @hhence 4, is of type (2;0)
on all of M.

3. Tractor bundles and BGG sequences

The normal Cartan connection of an almost c-projective mafald induces a canonical
linear connection on all associated vector bundles corresuling to representations of
PSL(n+1;C) (cf. Section[2.2). These, in the theory of parabolic geométs, so-called
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tractor connections provide an e cient calculus, especially well suited for eplicit
constructions of local invariants and invariant di erential operators. We develop in this
section the basics of the theory of tractor connections fotraost c-projective manifolds,
and explain their relation to geometrically signi cant ovedetermined systems of PDE
and sequences of invariant di erential operators.

3.1. Standard complex tractors. Suppose that(M; J; [r ]) is an almost c-projective
manifold of dimension2n 4. Further, assume that the complex line bundlé "T1°M
admits an (n+ 1) root and choose one, denotel(1; 0), with conjugate E(0; 1). More
generally, we writeE(k; ") = E(1;0) X E (0;1) forany (k;") 2 Z Z (cf. Section[Z.1).
Note that such a choice of a root(1;0) is at least locally always possible and the
assumption that such roots exists globally is a relatively mor constraint. The choice
of E(1; 0) canonically extends the Cartan bundle ofM; J; [r ]) to a P-principal bundle
p: G! M, whereP is the stabiliser inSL(n+1; C) of the complex line generated by the
rst basis vector in C"*1, and the normal Cartan connection ofM; J; [r ]) naturally
extends to a normal Cartan connection or& of type (SL(n + 1; C); P), which we also
denote by! . The groupsSL(n +1;C) and P are here viewed as real Lie groups as in
Section[Z2.8, and we obtains in this way, analogously to Theem[2.8, an equivalence
of categories between almost c-projective manifolds eqpgd with an (n + 1) st root
E(1;0) of ~"T¥°M and normal Cartan geometries of typgSL(n + 1;C);P). The
homogeneous model of such structures is ag&®", but now viewed as a homogeneous
spaceSL(n + 1; C)=P with E(1;0) being dual to the tautological line bundleO( 1),
cf. Section(2.6.

The extended normal Cartan geometry of typéSL(n + 1;C); P) allows us to form
the standard complex tractor bundle

T=G .V

of (M; J; [r ];E(1;0)), whereV = R?*2 is the de ning representation of the real Lie
group SL(2(n + 1);Jym+1y) = SL(n +1;C). Note that the complex structure Jo,+1)
on V induces a complex structureJ™ on T. Analogously to the discussion of the
tangent bundle of an almost complex manifold in Section 1;T;J") can be identi ed
with the (1;0)-part of its complexi cation T, on which JT acts by multiplication by
i. We will implement this identi cation in the sequel without further comment, and
similarly for all the other tractor bundles with complex stuctures in the following
Sections[311[3]3 and3.4. Sind® stabilises the complex line generated by the rst
basis vector inC"*1, this line de nes a complex1-dimensional submodule ofc"*!.
Correspondingly, the standard complex tractor bundle (id&i ed with the (1;0)-part
of its complexi cation T¢) is ltered as

T=T1° 17! (49)

whereT! = E( 1;0)andT%=T!= TXOM( 1;0). SinceT is induced by a representa-
tion of SL(n+1; C), the Cartan connection induces a linear connection™ on T, called
the tractor connection (see Sectiori 2]2). Any choice of a linear connectior2 [r ],
splits the lItration of the tractor bundle T and the splitting changes by

\xb X b Xb2 THOM( 1;0)

= ; Where 2E( 1.0)

X (50)
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if one changes the connection according to(11). In terms ofcannectionr 2 [r ], the
tractor connection is given by

Xb r xXb+ b
T —
' T r PyX® (1)
Applying . and  to (E1), we can write the tractor connection as
XP rXP+ b
T —_ a a
r a - ra Pabxb (52)
and
Xb raXP
T — a
r a - la Pabxb (53)

By (49) the dual (or co-standard ) complex tractor bundleT admits a natural sub-
bundle isomorphic to” %°(1; 0) and the quotient T =" 9(1; 0) is isomorphic toE(1; 0).
One immediately deduces from(52) and_(53) that in terms of aoanectionr 2 [r ],
the tractor connection onT is given by

P T - lNa a
a b lNa pt+ Pa

P T — I'a
a b Na pt+ Pa

For a choice of connectiom2 [r ] consider now the following overdetermined system
of PDE on sections of E(1;0):

(I) rq4 = 0 (II) r (ar b) + P(ab) =0: (54)

Supposef'2 [r ] is another connection in the c-projective class. Then the rimulae
(@8) imply that ', = r, . Moreover, we deduce from Propositioil 2.5 and the
formulae (I6) that

NN

Fal'b =Talb *(ra b a b
which together with Corollary[Z12 implies that

r/\ar/\b +ﬁab =ralyp +Pab:

This shows that the overdetermined systeni(54) is c-projagely invariant. Note also
that by equation (48) we have

Il [al o + P[ab] = %Tabcr c- (55)

Thereforer ,r , + Py, is symmetric provided thatJ is integrable or that satis es
equation (i) of (54). The following proposition shows thatif J is integrable, the tractor
connection onT can be viewed as the prolongation of (b4):

Proposition 3.1. SupposgM; J; [r ]; E(1;0)) is a c-projective manifold of dimension
2n 4. The projection : T !'T =19(1;0) = E(1;0) induces a bijection between
sections of T parallel forr T and sections of E(1;0) that satisfy (54) for some

(and hence any connectionr 2 [r ]. Moreover, suppose that 2 E(1;0) is a nowhere

vanishing section, then for any connection2 [r ] the connection

r/\aO:raO(ra) Lo (56)

is induced from a connection in the c-projective class, andwithr ; =0 is a solution
of (&4) if and only if (&8) is Ricci- at.
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Proof. Supposes is a parallel section off and set = (s) 2 ( E(1;0)). It follows
from (B0) that changing from connection to another irffr ] changes the splitting ofT

by (\; b=(; bt 1 ). Hence, for any connectiom2 [r ] we can identifys with a
section of the form(; ) for some 2 ( ~¥9(1;0)) and by de nition of the tractor
connection 2 ( E(1;0)) satis es (54) for any connectionr 2 [r ]. So induces a
map from parallel sections off to solutions of (54).

Conversely, let us contemplate the di erential operatol: E(1;0)! T , which, for
a choice of connection ifr ], is given byL =(; r , ). Suppose now is a solution
of (584). Then obviouslyr I L =0, since [55) vanishes. By[(45) we have

Fal b +Pa =(rarp r pfa) +Pa (57)
- 1 f
- mef eTea Pan + Pap
- 1 fo.
- mefeTea )

which vanishes, sincel is integrable. Hence, we also have! L = 0. ThereforeL
maps solutions 2 ( E(1;0)) of (54) to parallel sections off and de nes an inverse
to the restriction of to parallel section. For the second statement, assume nowath

is a section ofE(1;0) that is nowhere vanishing and letr 2 [r ] be a connection
in the c-projective class. If we change accordingto (I1)by .= (r.) !toa
connection'2 [r ], then we deduce from Corollary_2]4 that the induced connecti
on E(1;0) is given by (58). Moreover,/", = 0. Therefore, using that [57) vanishes,
we deduce that with ', =0 satises (53) if and only if Py, =0 and Py, =0,
and hence if and only iff" is Ricci- at.

More generally, we immediately conclude from equatioi (5%hat, in the case of
an almost c-projective manifold, i.eJ is not necessarily integrable, the corresponding
proposition reads as follows:

Proposition 3.2. Let (M;J; [r ]; E(1; 0)) be an almost c-projective manifold of dimen-
sion 2n 4. Then sections of E(1;0) that satisfy (54) are in bijection with sections
of T that are parallel for the connection given by

: 1 0
a b n+1 be eTeaf

T

a and r

r (58)
Moreover, suppose 2 E(1;0) is a nowhere vanishing section with , = 0. Then
is a solution of (&4) if and only if ', de ned as in (&6), satis es Py, = 0 and

- 1 f
ﬁab - —be eTea .

n+l

Remark 3.1. Recall that a parallel section of a linear connection of a vexr bundle
over a connected manifold, is already determined by its vaduat one point. The
correspondences established in Propositionsi3.1 3.2men solutions of [B4) and
parallel sections of a linear connection o therefore implies, that on a connected
almost c-projective manifold

U=fx2M: (x)60g M

is a dense open subset for any nontrivial solution2 ( E(1;0)) of (84). In particular,
the second statement of Proposition 31, respectively of &osition[3.2, holds always
on the dense open subséi.

The equations [54) de ne an invariant di erential operator of order two
DT :E(1;0)! ~%(1:0) S2~191;0);
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whose kernel are the solutions of {(54). The di erential opator DT is the rst oper-
ator in the BGG sequence corresponding to the co-standardmaplex tractor bundle;
seel([25, 38]. The proof of Propositidn_3.2 implies that in oed for a (nonzero) parallel
section of the tractor connection onl to exist, it is necessary that Nijenhuis tensor
of J satisfy N ®N 2" 0and, in this case, parallel sections of the tractor conneoti
are in bijection with sections in the kernel oD T .

Similarly, one may consider the rst BGG operator in the segence corresponding
to the standard complex tractor bundleT , which is a rst order invariant di erential
operator, de ned, for a choice of connection2 |[r ], by

DT:T¥M( ;00! (% T¥M( 1;0) (¥ T¥M( 1,0));
XP 70 (r o X1 oXP Ir X P, (59)
where the subscript denotes the trace-free part.
Proposition 3.3. Suppose(M; J; [r ]; E(1;0)) is an almost c-projective manifold of

dimension2n 4. The projection : T !' T =E( 1;0) = T*°M( 1;0) induces a
bijection between sections of that are parallel for the connection given by
T+ XP 1 0

a m be eTeaf X b

and sectionsX? 2 ( TY®M ( 1;0)) that are in the kernel ofDT. In particular, ele-

mentsX° 2 kerDT with N®N2."XP =0 are in bijection with parallel sections of the
tractor connectionr 7.

T

a and r

r (60)

Proof. Suppose rstly that s2 ( T) is parallel for the connection [ED) and seX P :=
(s). For a choice of connectior 2 [r ] we can identify s with an element of the

form (X® ), where 2 ( E( 1;0)). By assumptionr aXb =0 andr XP= 2l
Taking the trace of the latter equation shows that = —r X ¢ Hence, X" is in the
kernel of DT.

Conversely, suppos&X ® 2 kerDT and pick a connectionr 2 [r ]. Then we deduce
from Proposition[Z.13 and equation[(46) that

(Fal b © oof )XS=(ralp r oo Q)Xo+ Tapr ¢X© (61)
= Rap’aX ¢+ 2P X € = Wap%gX @+ 2 [;°PygX &
By assumptionr ;X°= Ir ;X¢ ,° and therefore {61) implies
Lrar oX® 1 pr gX 2% = WaplaX 42 (3°PyeX (62)
Taking the trace in (62) over a and c¢ shows that ir ,r X = P,X 9 Hence,

(X" %r X °) denes a sections of T that satises r Is = 0. Similarly, since
r .X° =0, Proposition[ZI3 and equation[{45) imply

Far pX°=(rarp r br a)X* (63)
= Rap’aX @ LT ®Tea! X+ PypX
= Wap’aX? 2Pap g)°X @+ PapX © LT ®Tea' X
Taking the trace in (63) overb and c implies that

%I’ al X PacX®= T eTea X

n(n+1)
Hence, s is parallel for the connection [[6D) and it follows immediatyg that the dif-
ferential operator X® 7! (X", ﬁlr X de nes an inverse to the restriction of to
parallel sections of [(60).
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3.2. Cone description of almost c-projective structures. For (real) projective
structures there is an alternative description of the traair connection as an a ne con-
nection on a cone manifold over the projective manifold [3&€]. This point of view,
which (at least in spirit) goes back to work of Tracy Thomas,d often convenient it
has for instance been used inl[6] to classify holonomy redwcts of projective struc-
tures. An analogue holds for almost c-projective manifolgdsvhich we will now sketch,
following the presentation in[36] of the projective case. his canonical cone connection
was used in[[B] to realise c-projective structures as holang reductions of projective
structures. It also underlies metric cone constructions 87(83] which we discuss later.

Let (M; J; [r ]; E(1;0)) be an almost c-projective manifold and, as in Sectidn 3.1t le
P G = SL(n+1;C) be the stabiliser of the complex line/* through the rst basis
vector e, of V = C"*1. Denote byQ P the stabiliser of e;, which is the derived
group of P, hence a normal complex Lie subgroup. Now set

C=GQ=G P=Q:
The natural projection pc: G ! C denes a (real) principal bundle with structure

group Q. Since the canonical Cartan connectioh of (M;J; [r ]; E(1;0)) can also be
viewed as a Cartan connection of typ€G; Q) for pc, it induces an isomorphism

TC=G 40

Note that Cinherits an almost complex structurel © from the almost complex structure
on G characterised byTpe: J® = JC¢ Tpe. Furthermore, the projection ¢: C !
M de nes a principal bundle with structure groupP=Q = C . Since P=Q can be
identi ed with the nonzero elements in the complex®-submoduleV! V, we see that
C can be identi ed with the space of nonzero elements B( 1;0) or with the complex
frame bundle ofE( 1;0). Note that, by construction (recall that Tp J¢=J Tp),
we haveT ¢ J¢=J T (. By the compatibility of the almost complex structures
JC, J€ and J with the various projections, it follows immediately that vanishing of the
Nijenhuis tensorN7° of J© implies vanishing of the Nijenhuis tensord?“, which in
turn implies vanishing of N7. Conversely, Theoreni 2.16 shows that’ 0 implies
N?° 0. This shows in particular that

N 00 N o (64)
in which case ¢: C! M is a holomorphic principal bundle with structure groupC .

Lemma 3.4. There are canonical isomorphism§C=G 5V = T,

Proof. From the block decomposition [1I7) ofg it follows that g=¢¢ = (V!) V and
henceg=g¢ = V as@-modules, i.e.

TC=G 4099=GCG 4V= (G V)= T:

Hence the standard tractor connection induces an a ne conmion r © on C which
preservesJ© and the complex volume form vdl 2 ~™°T C that is induced by the
standard complex volume oV = C"*1. Alternatively, note that ! can be extended
to a principal connection on the principalG-bundle G G, and sinceV = C'lisa

G-module, we obtain an induced connection oiC=G 4G V.

If we identify a vector eld Y 2 X(C) with a Q-equivariant functionf : G ! V via
Lemmal3.4, then by [[36, Theorem 1.5.8], the equivariant fution corresponding to
r $Y for a vector eld X 2 X(C) is given by

X f+ 1 (X)f (65)
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where X' 2 X(G) is an arbitrary lift of X. Moreover [36, Corollary 1.5.7] shows that
the curvature R2 22T C AC ofr Cis given by

REXY)Z)= (XY) Z; (66)

whereAC= G 5g= s(TCJ%and : AC TC'! TCdenotes the vector bundle map
induced by the action ofg on V. Let us write T¢2 ~ 2T C TCfor the torsion of r €.
It follows straightforwardly from (B5) that TC is the projection of 2 (2T C AC)
to 2T C TC, i.e. itis the torsion of! viewed as a Cartan connection of typ€Q; G).
In particular, like , the 2-forms TC and R vanish upon insertion of sections of the
vertical bundle of ¢, which is canonically trivialised by the fundamental vecto elds
E and J°E generated byl and i respectively.

Proposition 3.5.  Suppos€M; J; [r ]; E(1;0)) is an almost c-projective manifold. Then
there is a unique ane connection r © on the total space of the principal bundle
c: C! M with the following properties

(1) r ©3¢=0 andr “vol°=0;

(2) r SE = X for all X 2 X(O);

(3) Ler © =0 andL;cer ©=0;

(4) igT¢=0 andi e T¢=0;

(5) T TCis of type (0; 2) and the(2; 0)-part of TC vanishes
(6) r s Ricci- at ;

(7) for any (local) sections of ¢ the connections r € lies in [r ].

Moreover, if J is integrable, ¢: C! M is a holomorphic principal bundle and@ ¢ 0.

Proof. We already observed that (1) and (4) hold and (2) is an immedia consequence
of (88). Since we have in additioric R® = 0 and i;ce R® = 0 by (B6), statement (3)
follows from (78). The statements (5) and (6) are consequax of@ = 0. More
explicitly, note that (5) can be simply read o Proposition 213, which also shows
that if J is integrable, TS 0. In this caseN’°, which is up to a constant multiple
the (0; 2)-part of TC, vanishes and ¢ is a holomorphic principal bundle as calimed.
Statement (6) follows becausd  TC, viewed as a section of 2T M TM, has
vanishing trace and@: *?T M gl(TM;J)! T M T M is a multiple of a Ricci-
type contraction. The proof of statement (7) and the uniqueess ofr © we leave to the
reader, but note that (1) (6) imply that r © descends to the normal Cartan connection
onTCC =T.

3.3. BGG sequences. For a general parabolic geometry, it was shown in[25,138] tha
there are natural sequences of invariant linear di erentiaoperators generalising the
corresponding complexes on the at model. These are the Batrin Gelfand Gelfand
(BGG) sequences, named after the constructors |10] of cormpés of Verma modules,
roughly dual to the current circumstances.

Here is not the place to say much about the general theory. lesad, we would like
to like to present something of the theory as it applies in the-projective case. The
point is that the invariant operators that we have already enountered and are about
to encounter, all can be seen as curved analogues of operativom the BGG complex
on CP" (as the at model of c-projective geometry).

In fact, the main hurdle in presenting the BGG complex and semnces is in having a
suitable notation for the vector bundles involved. Furthemore, this notation is already
of independent utility since, as foretold in Remark-1l1, it eatly captures the natural
irreducible bundles on an almost complex manifold.
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Recall from Section Il that the complexi ed tangent bundle oran almost complex
manifold decomposes

CTM =T T9%mMm

as does its dual. An alternative viewpoint on these decompbens is that the tangent
bundle TM on any 2n-dimensional manifold is tautologically induced from itsrame-
bundle by the de ning representation ofGL(2n; R), that an almost complex structure
is a reduction of structure group for the frame bundle toGL(n;C) GL(2n; R),
that the de ning representation of GL(2n; R) on R?" complexi es asGL(2n; R) acting
on C?" (as real matrices acting on complex vectors), and nally thathis complex
representation when restricted taGL(n; C) decomposes into two irreducibles inducing
the bundlesT*°M and T%IM, respectively. Of course, the dual decomposition comes
from the dual representation, namelyGL(n; C) acting on (C?") . Our notation arises
by systematically using the representation theory oGL(n; C) as a real Lie group but
adapted to its embedding

GL(n;C)= Gy, P G=PSL(n+1;C)

as described in Sectioh2.3.

For relatively simple bundles, there is no need for any moredganced notation. In
several complex variables, for example, it is essential todak up the complex-valued
di erential forms into types but that's about it. Recall already with 2-forms

/\2=/\0;2 ALl A 20

that this complex decomposition is ner that the real decompsition

N 2-|- M= A 0;2 A 20 o A ;;l (67)

already discussed in Sectionl 1 followingl(6). Of course, agos as one speaks of
holomorphic functions on a complex manifold one is obligea twork with complex-
valued di erential forms. However, even if one is concernemhly with real-valued forms
and tensors, it is convenient rstly to decompose the compteversions and then impose
reality as, for example, in[(6F). In fact, this is already a fature of representation theory
in general.

For more complicated bundles, we shall use Dynkin diagram®m |36] decorated in
the style of [8]. The formal de nitions will not be given herebut the upshot is that the
general complex irreducible bundle on an almost complex miéoid will be denoted as

p a b ¢ d
I (in the 10-dimensional caseZn nodes in general)) (68)
qg e f g h

where a; b; c; d; e; f; g; hare nonnegative integers whilst, in the rst instancep;qare
real numbers restricted by the requirement that

p+2a+3b+4c+5d=q+2e+3f +4g+5hmod 6 (69)

(again, in the 10-dimensional case). For example,

10 0 0 1 21 0 0 0 0 0 0 0 O
TOM = 1 1 1 1 ALO= ANO2Z =
0 00 0 O 0 00 0 O 30 1 0 0

but the point is that this notation covers all bases and, in pdicular, the various
awkward bundles that have already arisen and will now arise this article. In general,
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the integrality condition (89) is needed, as typi ed by

6 0 0 0 O p 0 0 0 O
detr 10 =AS50= | | | | E(p’ p= 11111
0 0 0 0 O p 0 0 O O

but, as already discussed at the end of Section 2.1, on an abho-projective manifold
we shall suppose that there is a bundl&(1;0) and an identi cation E(n + 1;0) :=
E(1;0)"*1 = A"TLOM , in which case we shall add

1 00 0 O
E(L;0)= 1 1 1 1 1
0 00 0O

to our notation and relax (89) to requiring merely thatp g be integral. In fact, all
of p;q; a; b; c; d; e; f; g; hwill be integral for the rest of this article.

Our Dynkin diagram notation is well suited to the barred and mbarred indices that
we have already been using. Speci cally, a section of

may be realised as tensors witla + 2b+ 3¢+ 4d unbarred covariant indices, having
symmetries speci ed by the Young diagram

— C—

_d;
and of c-projective weight(p+2a+ 3b+4c+ 5d;0). Indeed, for those reluctant to
trace through the conventions in[[8], this su ces as a de niton and then

0O 0 0 0 O g e f g h

1T T 1 1 isthe complex conjugate of I I I 1 1
q e f g h 0O 0 O 0O o

corresponding to tensors with barred indices in the obviodashion and

p a b ¢ d p a b ¢ d 0 0 0 0 O
[ T B B | = [ T N [ I |
g e f g h 0 0 0 0 O g e f g h

Already, these bundles provide locations for the tensors vemcountered earlier. For
example,

30 1 00 32 0 0 1
Tap® 2 Lo and H, %2 N

Although the Dynkin diagram notation may at rst seem arcane it comes into its own
when discussing invariant linear di erential operators. he complex-valued de Rham
complex

n o0 IoAnh (70)
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becomes
301 0 0
Cr 1T
21 0 0 0 S o o o o
Cr
00000 S o 0 o o 21 0 0 0
C 1 I I Cr 1T I
0 0 0 0 O 0 00 00O 21 0 0 0

30 1 0 O

and in either of them one sees the torsion,,°: %11 720 and its complex conjugate
Tl: A0 1 A02 a5 the restriction of the exterior derivatived: 1 ! 22 to the
relevant bundles (note that
30 1 0 O
Hom(A 0;1. A 2;0) = TO1 A20= |
1 0 0 0 1

as expected). In the torsion-free case, the de Rham complekées the form
N 2,0
A 1,0 %
&
A 00 % ALl (71)
& A 01 %
& N 0;2

familiar from complex analysis and the remarkable fact abaw-projectively invariant
linear di erential operators is rstly that this pattern is repeated on the at model
starting with any bundle (€8) with p;q2 Z o, for example

T B (72)

The algorithm for determining the bundles in these patternss detailed in [8] (it is
the ane action 7! w( + ) of the Weyl group for G along the Hasse diagram
corresponding to the parabolic subgroup). On G=P in general, these are complexes of
di erential operators referred to asBernstein Gelfand Gelfand (BGG) complexes. In
our case, i.e. orCP", they provide resolutions of the nite-dimensional represntations

p a b ¢ d

I (in casen =5 (2n nodes in general))

qg e f g h
of the group G = PSL(n + 1;C) as a real Lie group. More precisely, any nite-
dimensional representatiorE of G gives rise to a constant sheab=P E, which may
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in turn be identi ed with the corresponding homogeneous butie induced onG=P by
means of

G=P pE3[g;47! ([0;09 2 G=P E: (73)
Since the rst bundle in the BGG complex is a quotient of this indle, we obtain a
mapping of E to the sections of this rst bundle and to say that the complexis a
resolution of E is to say that these sections are locally precisely the ketrna the rst
BGG operator (just as the locally constant functions are prasely the kernel of the
rst exterior derivative d: %! 2 1), In our example (72), this means that

32 0 0 1
[ T N
0% 0 0 0 0 O

21 0 0 O

is exact, theG-moduleE in this case being the adjoint representation ®#SL(n+1; C) as
a complex Lie algebra. More generally, the BGG resolutionw&P" as a homogeneous
space forPSL(n + 1;C) begin

p 2ptatl b ¢ d

hab c° ha b ¢ | g
(o) I R T T R A R 74
q q & c d )

q 2 gtetl f g h

for nonnegative integery; a; b; c; d; g; e; f; g; hconstrained by [69). We may drop the
constraint (€9) by consideringCP" instead as a homogeneous space &lt(n+1;C), as
is perhaps more usual. Having done that, the standard repesgation of SL(n +1;C)

on C"*1 gives rise to the BGG resolution

oy 1+ 1 v b (75)
0 0 0 0 O 0 0 0 0 O 00 0 0 1

21 0 0 0
where the operators , andr , are, more explicitly and as noted in[(59),
XP7U(r o X and XP7ir XxP (76)

whereX ? is a vector eld of type (1;0) and of c-projective weight( 1;0) and the sub-
script means to take the trace-free part. Notice that these are exhcthe operators
implicitly encoded in the standard tractor connection [(5R)and (53). More precisely,
the ltration (49)is equivalent to the short exact sequenceof vector bundles

100 0 0 000 0 1 000 0 1
o' 11 Cr ol I ¢
000 00 00000 00000
k k k

E( 1,0) T TLOM( 1;0)
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and on the at model, namelyCP" as a homogeneous space L (n+1; C), the tractor
connection is the exactly the at connection induced by[{73)In the c-projectively at
case, the remaining entries in(52) and_(53), namely

r a PabX b and r a PabX b
may be regarded as quantities whose vanishing are di ereaticonsequences of setting
r . X°+ ,P=0 and r ,XP=0:

Hence, they add no further conditions to being in the kernelfdhe rst BGG operator
(78) and the exactness of({75) follows. The same reasoningtpms in the curved
but torsion-free setting and leads to the standard tractor @annection being obtained
by prolongation of the rst BGG operator. This is detailed in Proposition[3.3. For
more complicated representations, the tractor connectiomay not be obtained by
prolongation in the curved setting, even if torsion-free. fis phenomenon will soon
be seen in two key examples, speci cally in the connectiongBand Proposition[3.9
concerned with in nitesimal automorphisms and in Proposion [4.5, Theoreni{ 4.5, and
Corollary 4.7 dealing with the metrisability of c-projectve structures. With reference
to the general rst BGG operators (74), the following casesazur prominently in this
article.

0O 0 0 0 1 0O 0 0 0 1

[ O R B | | I I B

0 00 00O 0 0 0 o ofThis is the standard complex tractor bundleT
and its canonical projection toTY°M ( 1;0).

1 0 0 0 1 1 0 0 0 1

[ O B | | I I E

0 00 0O 0 o o o o|Thisisthe adjoint tractor bundle AM to be con-

sidered in Sectior 314 and its canonical projection t61°M. A rst BGG operator
acting on TY°M is given in Remark3.B.

0O 0 0 0 1 0O 0 0 0 1

[ I ! [ R B B |

000 0 1 0o o o o 1|This is the tractor bundle arising in the metris-
ability of c-projective structures to be discussed in Secin[4 and a rst BGG operator
is given in (I21).

1 0 0 0 O 1 0 0 0 O

[ I ! [ T B B |

1 00 0 O 1 0 0 o o|Thisis the dual of the previous case and arises in

Section[4.®, which is concerned with the rst BGG operatoD"V de ned in (I67) and
acting on c-projective densities of weigh{l;1). It is a second order and c-projectively
invariant operator.

In fact, there is quite a bit of exibility in what one might al low as BGG operators,
already for the rst ones (74). For example, the operatoD” in Remark[3.3 is rather
di erent from the c-projectively invariant operators occuring as the left hand sides of
(1) and (2) in Proposition[3.7. Even for the bundleT ¥°M ( 1;0) in (Z5) corresponding
to standard complex tractors, there is the option of replaog the second operator in
(8) by

XETIr o XO+ T,°X?

in line with equation (1) in Proposition [3.7. Only in the tordon-free case do these
operators agree (with each other and the usu@operator).
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On the at model, however, there is no choice. The operatorscourring in the BGG
complexes are unique up to scale. Moreover, there are no atleeprojectively invari-
ant linear di erential operators: every such operator is dermined by its symbol and
the BGG operators comprise a classi cation. In the curved #ng it is necessary to
add curvature correction terms and there is almost always 8@ choice. Regarding
existence, it is shown in[|25] and [38] that such curved anglees always exist. How-
ever, even for the BGG sequence associated to the trivial regentation, the resulting
operators are di erent if there is torsion. Speci cally, the construction in [38] follows
the Hasse diagram beginning as i (¥1). In particular, thers no place for the torsion
as an operator® %t I A 20 whereas, in[[25], the rst BGG sequence associated to the
trivial representation for the case oflj-graded geometry such as c-projective geometry,
is just the de Rham complex[(70).

In summary, the BGG operators onCP" provide models for what one should expect
in the curved setting. In the at case, there is no choice. Inhe curved case, there
is a certain degree of exibility, more so when there is torsn. Finally, the general
theory of parabolic geometry[[36] provides a location fédvarmonic curvature as already
discussed in Sectioris 2.2 aind2.7 and Kostant's Theorem|[64]Lie algebra cohomology
provides the location for this curvature, namely the three bndles appearing in the
second step of the BGG sequencg {72) for the adjoint repretsdion whilst the two
bundles at the rst step locate the in nitesimal deformations of an almost c-projective
structure, in line with the general theory [29].

3.4. Adjoint tractors and in nitesimal automorphisms. For a vector eld X on
a manifold M we write Ly for the Lie derivative along X of tensor elds onM . Recall
that there is also a notion of alLie derivative of an a ne connection r along a vector
eld X 2 ( TM). Itis given by the tensor eld

Lxr :TM!I' TM TM

characterised by
(Lxr)(Y) L x(rY) L xY

for any vector eld Y 2 ( TM). In abstract index notation we adopt the convention
that (Lxr) Y = Lx(r Y )

De nition 3.1. A c-projective vector eld or in nitesimal automorphism of an almost
c-projective manifold (M; J; [r ]) of dimension2n 4 is a vector eld X on M that
satis es

LxJ Of.e. [X;JY]=J[X;Y]forall vector elds Y 2 ( TM))
(Lxr) = , where 2 (S’T M TM) is atensor of the form [(11).

Note that X 2 ( TM) is an in nitesimal automorphism of an almost c-projective
manifold precisely if its ow acts by local automorphisms tlereof.

Let us rewrite the two conditions de ning a c-projective vetor eld as a system of
di erential equations on a vector eld X of M. Expressing the Lie bracket in terms of
a connectionr 2 [r ] and its torsion shows thatL x J = 0 is equivalent to

T X = 3r X +3 3 r X): (77)

for one (and hence any) connection2 [r ]. Moreover, one deduces straightforwardly
from the de nition of the Lie derivative of a connection thatfor any connectionr 2 [r ]
we have

(Lxr) =R X +r r X +r (T X): (78)
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Via the isomorphismTM = T1°M we may write the result as a di erential equation
on X 2: equation (77) then becomes
r bXC+ TabCXaZOZ (79)

Since atensor  of the form (I1) satises ,=0= ¢ the equation(Lxr ) =
can be equivalently encoded by the three equations

(Lxrod®= bd”  (LxT ) O (Lxr)wu® O (80)
or, alternatively, their complex conjugates.
Lemma 3.6. If X22 ( T1M) satis es the invariant di erential equation (79), then

(Lxr)ss® O Lxr)m” O
for any connectionr 2 [r ].
Proof. Equation (78) and the formulae of Propositiori 2,13 imply
(LxT )pg = RapaX @+ RyptaX 2+ 1 (r gX©
Rpa’aX ® + Rpg'aX @+ 1 gr X+ Ryp’aX?
= 2Ry aX @+ 1 gr pX© (1 ¢T)X™:
Hence, the Bianchi symmetry [(4R) shows that
(Lxr g = Taa"Tep X2+ 1 ar X (r ¢Ti)X?

which evidently vanishes ifr X ¢ = T,,°X?, and consequently alsag X € = Tg®X?2.
AS (Lxr )" =1 of gX+ 1 (TgX?), the second assertion is obvious.

According to Lemmal3.6, it remains to rewrite(Lxr )u°s = bds° as a dierential
equation onX 2. Note that we have
(Lxr )oa=7r o aX+ Rap’aX®+ Rap’aX ™ (81)

The Bianchi symmetry (41) Rp®a O implies Rp¢®a = 2Rapp°q;- Moreover,
Fol aX= 1 of X+ 1 pr gX®= 71 of X+ 3(Rpd®aX®  Tpgr eX©):
Therefore, we may rewrite [(8I1) as
(Lxr )oa=r of X+ Rap'gX?+ Rap'yX ?
SToar X+ 2T TeaX ?; (82)
where we used the Bianchi symmetry (42) given bR g = %deeTeaCX . The torsion

terms of (82) evidently cancel ifX 2 satis es (79).
Suppose now that2n 6. Then we deduce from Propositiofh 2,13 that

Rap" )X & = Wap g X2+ P X+ p°PgaX?®  p'PagX?  ¢“PapX ¥ (83)

where the third term and the two last terms already de ne two ensors of the form[(111).
Moreover, we obtain by Propositioi 213 that

Rap’))X 2 = Hap®aX 2+ 2o Ty ®Tea X2 2Pap )°X % (84)
where the last two terms are again already of the forni.(IL1). Trefore, we conclude:
Proposition 3.7. SupposgM; J; [r ]) is an almost c-projective manifold of dimension

2n 6. A vector eld X2 2 ( TY°M) is c-projective if and only if it satis es the
following equations

(1) r bX°+ TabCXaZO
(2) (r o X+ PpgX 4+ Wty X2+ Hap®aX?) =0;
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where the subscript denotes the trace-free part.
Due to Proposition[Z.14 for2n = 4 the equations take a simpler form:

Proposition 3.8. Suppos€gM; J; [r ]) is an almost c-projective manifold of dimension
2n = 4. A vector eld X2 2 ( THM) is c-projective if and only if it satis es the
following equations

Q) r X+ T,X2=0

(2) (r @ X+ PpgX°®+ HapaX?) =0;
where the subscript denotes the trace-free part.

The equations in Propositions 3]7 an@ 3.8 de ne an invariandi erential operator
Daut . Tl;OM | (/\ 1,0 TO;lM ) (82/\ 1,0 Tl;OM ) .

whose kernel comprises the in nitesimal automorphisms ¢M; J; [r ]).
Let us recall some facts about in nitesimal automorphismsfocCartan geometries.

De nition 3.2.  Suppose(p: G ! M;! ) is a Cartan geometry. A vector eld X 2
( TQ) is called anin nitesimal automorphism of (p: G ! M;! ), if X is right-invariant
for the principal right action on Gand L,! =0.

A Cartan connection! onp: G! M induces a bijection between right-invariant vec-
tor elds X 2 ( TG) and equivariant functions! (X): G ! g. Hence, right-invariant
vector elds on G are in bijection with sections of the adjoint tractor bundleAM. A
sections of AM corresponds to an in nitesimal automorphism of the Cartan gometry
if and only if s is parallel for the linear connection

rAs+ ((s);); (85)

wherer # is the adjoint tractor connection, : AM ! TM the natural projection,
and 2 ?(M; AM) the curvature of the Cartan geometry; seé [29, B6].

The equivalence of categories established in Theorém]2.8pimas that any in ni-
tesimal automorphismX 2 ( TM) of an almost c-projective manifold can be lifted
uniquely to an in nitesimal automorphism of its normal Cartan geometry and con-
versely, any in nitesimal automorphism of the Cartan geonmtey projects to an in n-
itesimal automorphism of the underlying almost c-projectie manifold. This implies,
in particular, that  induces a bijection between sections of the adjoint tractdoun-
dle of the almost c-projective manifold that are parallel fothe connection [85) and
in nitesimal automorphisms of the almost c-projective maifold.

For the convenience of the reader let us explicitly computehé modi ed adjoint
tractor connection (85%). For these purposes let us identifthe adjoint tractor bundle
with the (1;0)-part of its complexi cation. As such it is ltered as

AM =AM A M A M;

where A 'M=A°M = T¥M, A°M=AIM = gl(T*°M; C) and A'M = ~ 19 Hence,
for any choice of connectiom 2 [r ], wg can identify an element oAM with a triple

1
Xb < XP2 TLOM
@ A ; where  °2 gl(T¥OM; C)
b . b 2N 1;0:

Note that ,° may be decomposed further into its trace-free and trace paraccording
to the decomposition [I8)gl(T°M; C) = sl(T1°M; C) E (0;0). However, we shall
not make use of this decomposition. From the formulaé_(62) dn(53) de ning the
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tractor connection on the standard complex tractor bundlél' one easily deduces that
tractor connectiog onf\M C:) sl(T) is given by

Xb raxb ab 1
r 2@ bCA = @r a bc+ aC bt Pabxc+( at Padxd) bCA (86)
0 bl 0 Na o I:)ac b]C-
Xb r o XP
ra@ oA = @ , o+ PypX S+ PygXd (fA : (87)
b Na b Pac bC

From (85) we deduce that:

Proposition 3.9. SupposgM; J; [r ]) is an almost c-projective manifold of dimension
2n 6. Then the projection : AM ! A M=A°M = T¥°M induces a bijection
between sections 061\M {hat 81re parallel for

1
X b 0
ra @ A + @WgtX T+ WX @ + Ty eTeg X9 oA
0 1 Ob Ccabx “+ Ccabx ¢ 1
X P T2X €
ra@ A + @WgeX 9+ WX G+ (1 oTga®X Ty oTeal X 9) (A
b CeapX ¢+ CeapX ©

and in nitesimal automorphisms of the almost c-projectivenanifold.

Proposition[3.9 can, of course, also be obtained directly lprolonging cleverly the
equations of Propositior3.]J7. Note that the form of the equains in Proposition[3.7
immediately shows that maps parallel sections for the connection in Proposition
[3.9 to c-projective vector elds. To see the converse, one ynaerify that that for a
C-projective vector elg X bland ef)or any choice off 2 [r ] thelsection

XP XD
@ bCA = @ r bXC A
b —(r af pX 2+ 2P X )

is parallel for the connection given in Proposition 319 anduserve that this di erential
operator indeed de nes the inverse to the claimed bijection

Remark 3.2. If the dimension of the almost c-projective manifold i2n = 4, then
Proposition[3.9 still holds taking into account thatW,,°y 0.

Remark 3.3. Note that the di erential operator
DA : Tl;OM | (/\ 1.0 TO;lM) (SZ/\ 1.0 Tl;OM)
XETV(r X (r of X+ XPpg) )
is also invariant. It is the rst operator in the BGG sequenceof the adjoint tractor
bundle. As for projective structures, this operator di ersfrom D", the operator that

controls the in nitesimal automorphisms of the almost c-pojective manifold. For a
discussion of this phenomena in the context of general pam@iz geometries see [29].

4. Metrisability of almost c-projective structures

On any (pseudo-)Kahler manifold(M; J; g) one may consider the c-projective struc-
ture that is induced by the Levi-Civita connection ofg. The c-projective manifolds
that arise in this way from a (pseudo-)Kahler metric are the rost extensively studied c-
projective manifolds; see [41, 56, 81,190] and, more recgnj#4,[77,/80]. A natural but



44 D.M.J. CALDERBANK, M.G. EASTWOOD, V.S. MATVEEV, AND K. NE USSER

di cult problem in this context is to characterise the c-projective structures that arise
from (pseudo-)Kahler metrics or, more generally, the almbg-projective structures
that arise from (2; 1)-symplectic (also called quasi-Kahler) metrics. In the ftdwing
sections we shall show that, suitably interpreted, this praem is controlled by an invari-
ant linear overdetermined system of PDE and we shall explii prolong this system.
Under the assumptions thatJ is integrable and the c-projective manifoldM; J; [r 9])
arose via the Levi-Civita connectionr ¢ of a K&hler metric g, a prolongation of the
system of PDE governing the Kéhler metrics that are c-projé¢iwely equivalent to g
was rst given in [41,[81] and rediscovered in the setting of &miltonian 2-forms on
Kahler manifolds in [2].

4.1. Almost Hermitian manifolds. We begin by recalling some basic facts.

De nition 4.1.  Suppose(M; J) is an almost complex manifold of dimensio@n 4.
A Hermitian metric on (M;J) is a (pseudo-)Riemannian metrig 2 ( S?T M) that
is J-invariant:

J J g =g
We call such a triple(M;J;g) an almost Hermitian manifold or, if J is integrable, a
Hermitian manifold. Note that we drop the awkward (pseudo-) pre x.

To an almost Hermitian manifold (M;J;g) one can associate a nondegenerafe
invariant 2-form 2 ( 2T M) given by

=J g : (88)

It is called the fundamental2-form or Kahler form of (M; J;g). If is closed ¢ =

0), we say (M;J;g) is almost Kahler or almost pseudo-Kahleraccordingly asg is

Riemannian or pseudo-Riemannian; the almost pre x is drpped if J is integrable.
We write g  for the inverse of the metricg

g9 =
We raise and lower indices of tensors on an almost Hermitianamifold (M; J; g) with
the metric and its inverse. ThePoisson tensoron M is =J g ,with

= : (89)

Viewing A 10~ %1 a5 a complex vector bundle equipped with the real structureivgn
by swapping its factors, a Hermitian metric can, by de nitim, also be seen as a real
nondegenerate sectiom,, of # 10 A%l \We denote byg® 2 (T®M TIOM) its
inverse, characterised by

0.0 = o and gug@= &

Let us denote byr 9 the Levi-Civita connection of a Hermitian metricg. Di eren-

tiating the identity J J = shows that

(r?J ) +J r9) =0: (90)
Sincer 9 =g r 93 , it follows immediately from (90) that

r9 +J J r? =0: (91)

Viewingr 9 as2-form with values inT M, equation (91) says that the part of type
(1; 1) vanishes identically. On the other hand, the vector bundle ap

ATM TM! AT M
A
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induces an isomorphism betwee®forms with values inT M of type (0; 2) and 3-forms
onM of type (2;1) + (1;2), i.e. real sections of* 1 212 Since

9 =id) (92)

the identity

2r9  =(d) JJ (d) N’ (93)
shows that type (0; 2) component ofr © is identi ed with the (2;1) + (1;2) com-
ponent ofd [48]. The type (3;0) + (0;3) component ofd is determined by the
Nijenhuis tensorN“, hence so is the typg2; 0) part of r ¢ (which has type (0; 2)
when viewed as &-form with values in TM using g).

If M has dimension2n 6, r ¢ can be decomposed intd components, which
correspond to4 real irreducible U(p; d-submodules in* 2C"  C", whereU(p; g) denotes
the (pseudo-)unitary group of signature(p; g with p+ g = n, the signature ofg
If 2n = 4, then r 9 has only two components. The di erent possibilities of a
subset of these invariants vanishing leads to the Gray Heella classi cation of almost
Hermitian manifolds into 16, respectively 4, classes in dension2n 6, respectively
2n =4, seel|51]. In the following we shall be interested in the ctasf almost Hermitian
manifolds which in the literature (at least in the case of meics of de nite signature) are
referred to asquasi-Kahleror (2; 1)-symplectic seel[48, 51]. We extend this terminology
to inde nite signature, as we have done for Hermitian metrig in general.

De nition 4.2. Suppose(M;J;g) is an almost Hermitian manifold of dimension
2n 4. Then (M; J; g) is called aquasi-Kahler or (2; 1)-symplectic manifold, if

rd +J J r9 =0; (94)
which is the case if and only if
reJ = J J r9 : (95)

Sincer , as a2-form with values inT M, has no component of typd1; 1), (©4)
means, equivalently, thatr has type (2;0), i.e. has no(0;2) part; equivalently
d has no component of type(2;1) + (1;2), i.e. it has type (3;0) + (0;3), which
explains the (2;1)-symplectic terminology. The class of2; 1)-symplectic manifolds of
dimension2n 6 contains as a subclass thalmost (pseudo}Kahler manifolds, which
are symplectic, and the subclass ofearly Kéhler manifolds, i.e. those almost Hermitian
manifolds that satisfyr ¢ = r 9 , which is manifestly equivalent to3r 9 =
(d) . Since in dimensior2n = 4 any 3-form has type(2; 1)+(1; 2), the condition for
an almost Hermitian manifold of dimensiord to be (2; 1)-symplectic is equivalent to the
condition to be almost (pseudo-)Kahler. IfJ is integrable, i.e.(M; J;g) a Hermitian
manifold, then (M;J;g) is (2;1)-symplectic if and only ifd = 0 , i.e. (M;J;Q) is
(pseudo-)Kahler.

De nition 4.3. Let (M; J;g) be an almost Hermitian manifold of dimensior2n 4.
Then aHermitian connectiononM is an a ne connectionr with r J =0 andr g=0.

Such Hermitian connections exist and are uniquely determad by their torsion. A
discussion of Hermitian connections and of the freedom ingscribing their torsion
can for instance be found in[48] (see also [69]). The followiproposition shows that
(2; 1)-symplectic manifolds can be characterised as those almé#trmitian manifolds
which admit a minimal Hermitian connection; for a proof see4g].

Proposition 4.1. Suppose(M;J;g) is an almost Hermitian manifold of dimension
2n 4. Then (M; J;g) admits a (unique) Hermitian connection whose torsionT is of
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type (0; 2) as 2-form with values inTM, equivalently T = %NJ, if and only if it is
(2; 1)-symplectic.

For a a (2; 1)-symplectic manifold (M; J;g) we refer to the unique Hermitian con-
nectionr of Proposition[4.1 as thecanonical connectionof (M; J;g). In terms of the
Levi-Civita connectionr 9 of g it is given by

r X =r9% +3(r9% ) X: (96)

For the convenience of the reader let us check that this corst®n has the desired
properties. For an arbitrary almost Hermitian manifold (M; J; g) the formula (9@8) is
obviously a complex connection, since

r@ X)=3(r9%J3 X )+J r9x)
Jr X =3(r93 X )+J roX);

which implies(r J )X =r (J X ) J r X =0 forallvector elds X . Since
r 9 is a metric connection, the connection given by (96) is a matrconnection if and
onlyif (r9J )J g =(r9 )J isskewin and , which follows immediately
from (@3). Hence, on any almost Hermitian manifold formuladg) de nes a Hermitian
connection. Moreover, since 9 is torsion free, the torsionT of (98) satis es

T =3((r9 )J (r%3 )J ): (97)

Recall that the Nijenhuis tensor can be expressed in terms 0f (actually in terms of
any torsion free connection) as

NY = (r93 )3 +(r9 )J JrJ +JrJ ; (98)
which by ([@3) reduces in the case of &; 1)-symplectic manifold to the equation
NY = 2((r 9 )J (r 93 )J ): (99)

Comparing (97) with (@9) shows that on a(2; 1)-symplectic manifold the torsionT of
(©6) satises T = %NJ as required. Note that, if the Levi-Civita connectionr ¢ of
(M; J; g) is a complex connection, then alsp ¢ = 0, which by (@2) implies that

is closed. Moreover, the identity[(93) shows thal is necessarily integrable in this case.
Conversely, the same identity shows that, il is integrable and the fundamental2-
form closed, then the Levi-Civita connection is a complex aaection, cf. Corollary13.
Hence, the connection in[(96) coincides with the Levi-Civét connection of on an almost
Hermitian manifold if and only if (M; J; g) is (pseudo-)K&hler.

Remark 4.1. We have already observed that formula[{96) de nes a Hermitracon-
nection on any almost Hermitian manifold, which is usually eferred to as the rst

canonical connectionfollowing [69]. In the case of 2; 1)-symplectic manifold the rst
canonical connection coincides also witthe second canonical connectioof [69], which
is also calledChern connection see([48].

Let (M;J;g) be a(2;1)-symplectic manifold and denote byR the curvature of its
canonical connectionr . Sincer is Hermitian, we haveR 2 2(M; u(TM)), where
uTM) T M TM denotes the subbundle of unitary bundle endomorphisms of

(TM; J;9). SettingR Ran g ,thepropertyR 2 ?(M; u(TM)) of the curvature
of a (2; 1)-symplectic manifold can be expressed as
R = R[ 1 and R [J] =0: (100)

Moreover, recall that for any linear connection the Bianchsymmetry holds. HenceR
satis es
Ry =1 T +T T3 (101)
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whereT = %NJ is the torsion ofr . Note that (LOT) for a minimal connection is
of course precisely equivalent to the already establishedentities (41) and (42). Since
r is a complex connectionR decomposes as 2form with values in the complex endo-
morphism of TM into three components according to type as explained in Semt [2.4.
In barred and unbarred indicesR can therefore be encoded by the three tensors

C C C .
Rab d Rap d Rab d;

or equivalently by their complex conjugates, wherR ;%4 a b _ gR and so on.
Sincer preserves in addition a (pseudo-)Riemannian metric, the ddional symmetry
R = R implies

Rancd  Rav‘dec =  Rap‘cled Rabde Rad RapdOec = Rap cGed Rabd
Rancd Rap‘dOec = RapcGed Rabdc Rancd Rab’dOec = Rab cGed Rabdc:

Note that the rst two identities (which are conjugates of ezh other) show that for
the canonical connection of 42; 1)-symplectic manifold (in contrast to a general min-
imal complex connection) the curvature componentR %y and Ra,°y = R,.Sq are not
independent of each other, since they are related lgy Hence, the curvatureR of the

canonical connection of §2; 1)-symplectic manifold can be encoded by the two tensors
Rabed = R[ab]cd and  Rgypg

(or their complex conjugates). By [(101), [(100) and the facthat the torsion of r
has type (0; 2) one deduces straightforwardly that the curvature and the tsion of a
(2; 1)-symplectic manifold satisfy the symmetries

Rabcd = ' cTabd  Rancd + Rbaca + Rdach =0 (102)
Il albga =0 (103)
Racd Raca= Tad®Terx  Raa  Racbd = Toc' Tead (104)
Rancd  Rodab = TabeToa® + Trda Tep ; (105)

where Tape = TanlGeg and T, = To%0ee (cf. also (41) and [42)). Now let us consider
the Ricci tensor Ric of the canonical connection of g2;1)-symplectic manifold. By
de nition we have

RICab = Rcacb Rlcab = Rcacb Rlcab = Rcacb RICab = Rcacb:
From the identities (I02) we we conclude that

H — C H - 1 C
Rfcab r cT ab R?C[ab] 2r cTab (106)
Ric,,= r (TS, RiCiy = 35 cTay':
Moreover, taking a Ricci type contraction in [I0b) shows imediately that the J-
invariant part of the Ricci tensor of the canonical connectin of a (2; 1)-symplectic
manifold is symmetric:
Ric,, = RiC,: (207)
The canonical connection of &2;1)-symplectic manifold is special in the sense of
Section[Z.5, since it preserves the volume form gf hence [I06) and[(Z07) con rm in
particular what we deduced there for the Ricci curvature ofggecial connections.
We already observed that2; 1)-symplectic is equivalent to (pseudo-)Kahler whed
is integrable. Hence, in this case, the canonical connectisimply coincides with the
Levi-Civita connection. SupposdM; J;g) is now a (pseudo-)Kéhler manifold. Then
the identities (102) (L05) imply that R is determined by any of the following tensors

Rabad Rabad Rancd Rabcd
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which are now subject to the following symmetries
Rabad = Rbaa Rabad = Randc Rabat = Repad Rabat = Radeb (108)
as well as

Rancd  Rapba = Rbadc!
Remark 4.2. Let us remark that for the curvature R of a (pseudo-)Kahler manifold,

we haveR; ;=0 which, together with the symmetries [100), implies

R =R and JJ R =R (109)
The symmetries of [100) and[{109) are precisely the ones [N0@) expressed in real
indices. Note also that [[109) shows immediately that the Rat tensorRic = R

is symmetric andJ-invariant, which is consistent with (10T).

Moreover, note that it is immediate that the rank of the bunde of (pseudo-)Kéahler
curvatures is(n(n + 1) =2)? and that this bundle further decomposes unded(n) as
82/\ 1,0 SZ/\ 0;1 — (SZ/\ 1.0 SZ/\ 0;1) (/\ 1,0 A O;l) R

where the subscript means trace-free part andR stands for the trivial bundle. Under
this decomposition, the (pseudo-)Kahler curvature spliteis

Rabad = Uaba  2( abBed *  cdBab*  ad%bt  obfad) 2 ( GanOcd + Gaalen);  (110)

where

Uabad = Uebad = Uaden gbcuabod =0 gba ab=0:

This is a Kahler analogue of the usual decomposition of Riemaan curvature into the
conformal Weyl tensor, the trace-free Ricci tensor, and thecalar curvature. The tensor
U,q IS called theBochner curvature (or tensor) and is the orthogonal projection of
the conformal Weyl curvature onto the intersection of the spce of Kahler curvatures
with the space of conformal Weyl tensors [2]. The analogue odnstant curvature in
(pseudo-)Kéahler geometry is to insist thatR pgc = ( GapOcq + 9en0ad), Where the (a
priori) smooth function is constant by the Bianchi identity. This is calledconstant
holomorphic sectional curvatureand (for > 0) locally characterisesCP" and its
Fubini Study metric as in Section[Z.6 (where the normalisabn is such that =1 ).

4.2. Other curvature decompositions. It will be useful, both in this article and
elsewhere, to decompose the (pseudo-)Kéahler curvature sem from various di erent
viewpoints, some of which ignore the complex structure. Wibut a complex structure,
barred and unbarred indices are unavailable so rstly we skt rewrite the irreducible
decomposition [TID) using only real indices. We recall that

R :R[ I R[ ]:0 R [J] =0 (111)
and the real version of [110) will apply to any tensor satisfyig these identities. Re-
calling that =J =J g ,we obtain

R =U
+g g g +g
+ + +2 +2 (112)
+(g9g g9gg+ +2 );
where
U is totally trace-free with respect tog and
J whilst IS symmetric, trace-free, and of typ€1,; 1):

= () =0 = [ 7
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A simple way to see this is to check that all parts of this decoposition satisfy (I11) as
they should and then apply , , . . using the various identities from Sectiof 111
including (@), to recover [110). One can also read o from () the corresponding
decomposition of the Ricci tensor in (pseudo-)K&hler geotng Speci cally,

Ric =2(n+2) +2(n+1) g Scal =4n(n +1)

and, conversely,

— 1 — 1 H 1
= e ocal = smiy RIC s5Scalg
Other natural realms in which one may view (pseudo-)Ké&hleregpmetry are
projective
conformal
c-projective
symplectic

and in each case decompose the curvature accordingly. Thejactive Weyl curvature
tensor [42] on a Riemannian manifold of dimensiom is given by

R —1-g Ric + -1-g Ric
If this vanishes, then, in conjunction with the interchangesymmetry R =R
we deduce thatR = (g ¢ g g ) where, ifm 3, the (a priori) smooth

function is constant by the Bianchi identity. This is Beltrami's Theaem that the

only projectively at (pseudo-)Riemannian geometries areonstant curvature (when
m = 2 one instead uses that the projective Cotton York tensor vaishes). In any case,
comparison with (112) shows that fom 2 the only projectively at (pseudo-)Kahler

manifolds are at. The conformal Weyl curvature is given by

R g Q +9g Q gQ +9 Q ;

whereQ is the Riemannian Schouten tensor

1 . 1
Q e Ric mScalg

Thus, if the conformal Weyl curvature vanishes on a (pseudgcahler manifold, then
2R [J] =J Q +2(n Z)J Q

From (L11), we see that fom 3 the only conformally at (pseudo-)Kéhler manifolds
are at. For n = 2 it follows only that the geometry is scalar at and, in fact, Tanno [96]
showed that4-dimensional conformally at K&éhler manifolds are locallyof the form
cpP! whereCP! has the Fubini Study metric up to constant scale and the comiex
surface has a constant negative scalar curvature of equal magnitudmit opposite
sign to that on CP*.

From the c-projective viewpoint, if we compare the decompiteon (L12) with (24),

then we conclude, rstly that W = H (see the proof of Propositiorn_4l4 for a
barred/unbarred index proof of this), and then that
H =U + +
g g (9 g ) (113)
+2 + 22 + ):

Notice, in particular, that
H =200 (114)

n+l
from which we can deduce the following c-projective counigairt to Beltrami's Theo-
rem.
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Theorem 4.2. Suppose a(pseudo}Kahler metric is c-projectively at. Then it has
constant holomorphic sectional curvature.

Proof. To be c-projectively at, the harmonic curvature tensorH must vanish.
Then from (114) we nd that =0 and from (113) that alsoU = 0. According
to (I12) we nd that R is of the required form.

Finally, we may view (pseudo-)Kahler geometry from the pulg symplectic view-

point as follows. For any torsion-free connection preseng , the tensorR
is symmetric in  and may be decomposed into irreducible pieces undgp(2n; R):
R =V + + +2 ; (115)
where
Voo =My M =0 v. =0 = ()

Proposition 4.3. On a (pseudo}Kéahler manifold, if the tensorV vanishes, then
the metric has constant holomorphic sectional curvature.

Proof. From (I15), we nd that

R = [ + +2 ]=4(n+1)
whereas computing according td{112) leadsto R =4 . We conclude that
=(n+1) at which point we may compare [(115) with [(I12) whervV =0
to conclude thatU =0 and =0, as required.
4.3. Metrisability of almost c-projective manifolds. Suppose(M; J; [r ]) is an

almost c-projective manifold. It is natural to ask whether|r ] contains the canonical
connection of a(2; 1)-symplectic metric on(M; J).

De nition 4.4. On an almost c-projective manifold(M; J; [r ]) a (2; 1)-symplectic
metricg 2 ( S?T M) on(M;J) is compatiblewith the c-projective clasgr ]if and only
if its canonical connection is contained ifr ]. The almost c-projective structure onM
is said to bemetrisableor (2; 1)-symplecticor quasi-Kahler (or Kahler or pseudo-Kéhler
whenJ is integrable) if it admits a compatible (2; 1)-symplectic metric g (respectively
a Kahler or pseudo-Kéhler metricg, if J is integrable).

The volume formvol(g) of g is a positive section of* 2T M, which we view as a
c-projective density of weight( (n+1); (n+1)) under the identi cation of oriented
real line bundles® T M = Ex( (n+1); (n+ 1)) determined by

"abc"ge r 2 (MT (N+1;n+1));

where" ., <2 (A "%n+1;0)) is the tautological form from Sectioi ZIl. We now write
vol(g) = ¢ (n+1) uniquely to determine a positive sectiongy of Ez(1;1). The canonical
connectionr of g is a special connection in the c-projective class, and forl al2 Z,
g =Vvol(g) =™ 2 (Eg(%;")) is ar -parallel trivialisation of Er(’;").

In the integrable case, the metrisability of a c-projectivestructure gives easily the
following constraints on the harmonic curvature.

Proposition 4.4. Let (M;J;[r ]) be a c-projective manifold of dimensior2n 4.
If [r ] is induced by the Levi-Civita of a(pseudo}Kahler metric on (M;J), then the
harmonic curvature only consists of th€l; 1)-part

c — c
Wabd— Habd

of the (c-projective) Weyl curvature.
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Proof. Suppose rst that 2n 6. Then we have to show thatW,,°q vanishes. Recall
that, by construction, Wy,°4 is the connection-independent part of th¢€2; 0)-component
of the curvature of any connection in the c-projective classHence, if[r ] is induced
from the Levi-Civita connection of a (pseudo-)Kahler metg on (M;J), then W’y
vanishes identically, since the curvature of a (pseudo-)Kéer metric is J-invariant. If
2n = 4, then Wy is always identically zero and thg2; 0)-part Cy, of the Cotton
York tensor is independent of the choice of connection in theprojective class. Since
the Ricci tensor Ric  of a (pseudo-)Kahler metricg is J-invariant (L09), we have
P., = —-Ric,, and Ricy, = Pa, = 0. Hence, if2n = 4 and the c-projective structure is

n+1
metrisable, thenCy,c = 1 aPpc ' pPac Vanishes identically, which proves the claim.

We now link compatible metrics to solutions of the rst BGG operator associated to
a real analogueV of the standard complex tractor bundleT . Any almost c-projective
manifold (M; J; [r ]) admits a complex vector bundle

Ve=T T:
Although the construction of T and T requires the existence and choice of gn +1) st
root E(1;0) of ~"T*°M, the vector bundleT T is de ned independently of such
a choice. Moreover, swapping the two factors de nes a realrstture on T T and

henceV. is the complexi cation of a real vector bundleV over M corresponding to
that real structure. The ltration (49)lof T induces ltrations on V and V¢ given by

Vo=Vt v e v,
where
Ve'=Ve=T%M  TM( 1, 1)
V2=vEi= (T T%M)( 1, 1)
Vi=E( 1, 1)

For any choice of connectiom 2 [r ] we can therefore identify an element o¥c with
a quad6uple

8
be < b2 TOIM  TIOM( 1; 1)
@xb j ybA; where . XP2 TIOM( 1; 1); YP2 TOIM( 1; 1)
' 2E( 1, 1);
and elements oV can be identi ed with the real elements ofV::
b= P4 Xb=vYP and = : (116)

The formulae (52) and [38) for the tractor connection ol immediately imply that
the tractor connection onV¢ :OT T is given by

bc ra bc 4 acyb 1
rye@xbj ybA = @ XP+ 0 Pu Pjr Y Py PA (117)
r a Pabe PabXb
0 1 0 o 1
bc I, C 4 abxc
rE@xoj YA =@ XD Py 1Y+ PP AT (118)

r a PabY b Pabx b

Note that the real structure onVc is parallel for this connection and that, consequently,
the tractor connection onV is the restriction of (I17) and [11B) to real sections (116).
Now consider, for a section® of T%'M  TX°M ( 1; 1), the system of equations

Fa ™+ 2°YP=0; r, ™+ X°=0 (119)
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for some sectionX ¢ of T*°M ( 1; 1) and YPof TO*™M ( 1; 1). It follows immedi-
ately from the invariance of [59) that the system [(119) is c4pjectively invariant. In
fact, if "2 (T%M T¥M( 1, 1)) satises (II9) for some connectiom2 [r ],
for someX®¢ 2 (TY¥M( 1; 1)), and for someYP 2 ( T¥M( 1; 1)), then *°
satis es (I19) for2 [r ] with
Xe¢=x¢ P and YP=YP PG (120)
Moreover, if (I19) is satis ed, one must havey® = ir , P and X¢= iy , 2 |f
b¢ js a real section, then the rst equation in [(11D) is satis edf and only if the second
equation of (TI9) holds, in which cask ? = Y®. We can reformulate these observations
as follows. There is an invariant di erential operator
(/\ 1;0 TO;lM Tl;OM( 1; 1))
DL THMM  THM( 1, 1)! (121)
(A 0;1 TO;lM Tl;OM( 1; 1))
givenby P71 (r o *¢ 2 °r ¢ Py, B¢ 1 by, 9% Restricting DVe to real sections

bc = b gives an invariant di erential operator DV. It is the rst operator in the BGG
sequence corresponding to the tractor bund and D Ve is its complexi cation.

Proposition 4.5. Let (M;J;[r ]) be an almost c-projective manifold of dimension
2n 4. Then, whenn is even, the map sending a Hermitian metrigy, to the real
section ® = g® 1 of T®?M TM( 1; 1) restricts to a bijection between com-
patible (2; 1)-symplectic Hermitian metrics on(M; J; [r ]) and nondegenerate sections
in the kernel of DV. The inverse map sends? to the Hermitian metric gy, with
g® = (det ) 2°, where

det := ﬁuac e"bd f ab cd of 2 ( ER(]-;]-)) (122)

and" ., . denotes the tautological section 8f":°(n+1;0). Whenn is odd, the mapping
b b.— b i ingab b.—  1gab pi
;T g* = (det ) ®is 2 1and, F;onversely, the mappllnga 7 @= 1o picks
a preferred sign for 2 but, otherwise, the same conclusions hold.

Proof. Assume rst that gy is a compatible(2; 1)-symplectic Hermitian metric, i.e. its
canonical connectionr is contained in[r . Then 2 = g g 1is a real section of
TOIM  TIOM( 1; 1), which satises (II9) forr with X¢=0 and Y¢ = X¢=0.

Hence, ™ is in the kernel of DY, anddet = " "= 4.

Conversely, suppose that*™ 2 (T%M TI¥M( 1; 1)) is a real nondegenerate
section satisfying [TIB) for some connectiar?2 [r Jwith X2 ( T*°M( 1; 1)) and
Yb=XP2 (T®M( 1; 1)). Since ? is nondegenerate, there is a uniqué-form

b such that 2 , = X2 Let us denote by"2 [r ] the connection obtained by c-
projectively changingr via 5. Then we deduce form[{I20) that' , "= ", P¢=0.
Since" 4, ¢ Is parallel for any connection in the c-projective classlet is parallel for
. Hence,g” = "edet is a real nondegenerate section %M  T1°M that is
parallel for ", i.e. its inversegy. is a(2; 1)-symplectic Hermitian metric whose canonical
connection isf'2 [r ].

The real vector bundleV can be realised naturally in two alternative ways as follows
First, let us view T as a real vector bundleTz equipped with a complex structureJ T
(thus, equivalently, T, C =T T). Then we can identify V as the JT -invariant
elements inS?Tg. However, sincel™ induces an isomorphism betweed " -invariant
elements inS?Tg and such elements irf* 2Ty, cf. (88), we may, secondly, realis¥ as
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the latter. Realised as the bundle ofl " -invariant elements in S>Tg we can, for any
choice 0(1; conilection in t8he c-projective class, identify aslement ofV with a triple

< 2 STM Eg( 1, 1)withJd J =
@x A:where X 2TM Eg( 1 1)
2Er( 1; 1)

In this picture the tra8tor clonneé:tion becomes 1
r + (X)+J3073IX

rva@x A=@ r X + P A (123)
r P X
The formulae (I17) and [11B) may be recovered froh (123) by ta@al projection:
r;/(;: ar V; r;/C:_ar V; bc— b ¢ : xb: bx : Yb:_bx :

so that, for example,
2 p(r X + P Y= XP+ P P, P

b b cb.
r aX + a Pac )

as in (I17). To pass explicitly to the second (skew) viewpdion V described above,
one can write =J andY =J X . Then, for any choice of connection in
the c-pBojectii/e class, aé'l element of may alternatively be identi ed with a triple

< 272TM ERr( 1, 1)withJ J =
@y A;where Y 2TM Eg( 1, 1)
2Er( 1, 1):
The tractor connectio(51 beCf)meB 1
+ Lyl+303 1y

r
rY@y A=@ r Y +J +P A (124)
r +P J Y
The formulae (I1T) and [(1IB) are again projections df (1124):
=i P e XP= i Py ¥P=iPy
4.4. The metrisability equation and mobility. Let (M;J; [r ]) be an almost c-

projective manifold. By Proposition[4.5, solutions to the ratrisability problem on
M, i.e. compatible(2; 1)-symplectic metrics up to sign, correspond bijectively to an-
degenerate solutions of the equationDV = 0. We refer to this equation as the
metrisability equationon (M; J; [r ]). It may be written explicitly in several ways.
First, viewing V as the real part ofV, "¢ satis es, by (I19), the conjugate equations:

Fa ™+ °XP=0 and r, ™+ SX°=0 (125)

for some (and hence any) connection 2 [r ] and some sectionX? of T1°M
Er( 1; 1) with conjugate X 2. In the alternative realisation (IZ3) ofV, the metris-
ability equation for J-invariant sections of S°TM ER( 1, 1)is

r + (X)+303)x =0 (126)

for some sectionX of TM E g( 1; 1). Similarly, using the realisation [124) ofV,
the metrisability equation for J-invariant sections of "2TM ER( 1, 1)is

r + [yl+303 )y =0 (127)
for some sectiony of TM E r( 1, 1).
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De nition 4.5. The (degree o) mobility of an almost c-projective manifold, is the
dimension of the space

J J =
r + (X )+ 303 )X =0 for someX

of solutions to the metrisability equation.

me[r ]:=kerDV =

In the sequel, the notion of mobility will only be of interestto us when the metris-
ability equation has a nondegenerate solution. The(M; J; [r ]) has mobility 1, and
the mobility is the dimension of the space of compatibl€; 1)-symplectic metrics. For
any (2; 1)-symplectic Hermitian metric g on a complex manifold(M; J ), the mobility
of the c-projective clasgr ] of its canonical connectiorr is 1, and will be called the
mobility of g. If such a metricg has mobility one, i.e. the constant multiples ofy are
the only metrics compatible with c-projective clasgr ], then most natural questions
about the geometry of the c-projective manifoldM; J; [r ]) can be reformulated as
guestions about the Hermitian manifold(M; J; g). For example the c-projective vector
elds of (M; J; [r ]) are Killing or homothetic vector elds for g. Hence, roughly speak-
ing, there is essentially no di erence between the geometof the Hermitian manifold
(M; J; g) and the geometry of the c-projective manifoldM; J; [r ]).

We will therefore typically assume in the sequel tha{M;J;g), or rather, its c-
projective class(M; J; [r ]), has mobility 2, and hence admits compatible metrics
g that are not proportional to g; we then sayg and g are c-projectively equivalent
Although all metrics in a given c-projective class are on theame footing, it will often
be convenient to x a background metricg, corresponding to a nondegenerate solution

of (IZ8). Then any section~of T%M  TI'M( 1, 1) may be written

_ac — abA c
= b
for uniquely determinedAy° explicitly, we have:
A® = (det )~ and A.°= g..A®:

Since and ~are real,A,° is g-Hermitian (i.e. the isomorphismT%!M ! 10 induced
by g intertwines the transpose ofA,” with its conjugate):

AL = AP, = g"ACaca:
Using the canonical connectiom of g, the metrisability equation (I2Z5) for ~ may be
rewritten as an equation forA.°, which we call themobility equatior

raAS= S b or (equivalently) r A= gu B (128)
where P= ° with real,and ,= , = .9 = O 2with 2= 2 |
Taking a trace gives . = r. and =71, ,with = A@2= Asreal The

metric g itself corresponds to the solutiom;” = .° of (IZ8), with . =0.

Since the background metriq trivialises the bundlesE("; ") by r -parallel sections
g\ = (det ), we shall often assume these bundles are trivial. We may alsgise and
lower indices usingg to obtain further equivalent forms of the mobility equatiors:

raAP= ° P or 1 APC= PG (129)

r aAbc = Oac b or r aAbc = Oba c: (130)

Like the metrisability equation, the mobility equation canbe rewritten in explicitly
real terms. If we let~ = A and raise indices usingy, then the metrisability

equation (126) maybe rewritten as a mobility equation for te unweighted tensoA 2
( S;(TM)):
r A = C ) 303 (131)
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We thus have that
=r where = ia (132)
Tracing back through the identi cations, note that

V0|(g) 1=(n+1)

; 133
vol(g) (133)
whereg = (det~)~ is the inverse metric induced by~
We may, of course, also lower indices to obtain:
r A = g )+ ( J ) . (134)

This is the form of the mobility equation used in[[41], 94] andH, Equation (3)] to study
c-projectively equivalent Kahler metrics. This is a speciacase of Propositior 45, in
which we suppose that there is a (pseudo-)Kahler metric in oe-projective class and
we ask about other (pseudo-)Kahler metrics in the same c-peative class.

Finally, we may rewrite (I127) as a mobility equation with repect to a background
(2; 1)-symplectic metric g with fundamental 2-form  and canonical connectiorr .
Trivialising E(1;1) and lowering indices usingy, we obtain

r +g[Y] [J]Y:O

for a 2-form . In the integrable case (i.e. whery is (pseudo-)Kahler) this is the
equation forHamiltonian 2-forms in the terminology of [2]. We extend this terminology
to the (2; 1)-symplectic setting and refer to its c-projectively invamant version (I1Z27) as
the equation for Hamiltonian 2-vectors on an almost c-projective manifold.

Remark 4.3. If gis a Kahler metric, then applying the contracted di erentid Bianchi
identity g°r (cR.n = O to the Bochner curvature decomposition{110), we deduce tha

if the Bochner curvature is coclosed, i.eg®r Uy =0,then Ay :=(N+2) 4+ Oy
satis es the mobility equation in the form (I30). Equivalerly, the correspondingJ-
invariant 2-form, which is a modi cation of the Ricci form, is a Hamiltonan 2-form.
This was one of the motivations for the introduction of Hamtionian 2-forms in [2], and
is explored further in [5].

Remark 4.4. Many concepts and results in c-projective geometry have dogues
in real projective di erential geometry. We recall that on asmooth manifold M of
dimensionm 2, a (real) projective structure is a clasgr ] of projectively equivalent
a ne connections, cf. (I0). It is shown in [43] that the oper&or

(M;S?TM( 2)3 7! (r ) (135)

whereS?’TM (' 2) denotes the bundle of contravariant symmetric tensors of pjective
weight 2and denotes the trace-free part, is projectively invariant (itis a rst BGG
operator) and that, whenn is even and otherwise up to sign, nondegenerate solutions
are in bijection with compatible (pseudo-)Riemannian meics, i.e. metrics whose Levi-
Civita connection is in the projective clasqdr ]. We de ne the mobility of [r ], or of
any compatible (pseudo-)Riemannian metric, to be the dimeion of this space

mrl:=1 2 (M;S*TM)jr = + , forsome g

of solutions to this projective metrisability or mobility equation where we reserve the
latter term for the case that the projective structure admis a compatible metric.
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4.5. Prolongation of the metrisability equation. SupposgM; J; [r ]) is an almost
c-projective manifold and let us prolong the invariant sysm of di erential equations
on sections *° of T%'M  TLX°M( 1; 1) given by (II9). We have already observed
that (LI9) implies that

XP= Ir,® —and YP= 1ir,"™ (136)

Moreover, we immediately deduce froni(119) that
(Falp ropra) @+ Tar e =2 % yY® Tup'X (137)
(Fal p T of ) O+ Ty e ©=2 [l b]xd Ta'Y (138)

The left hand sides of equationg (137) andE(IBS) equal

d ce c ed cd ey cd
Rab e + Rab e + 2|:)[ab] n+1 (r e ab )

= Wabde “+2 [a de]e +(I’ Tabc) ed n+l (I’ T e) o (139)
Rabce ed 4 Rab e 4 2P[ab] n+1 (r . abe) cd
= Wap'e 042 0%Phe 0+ (1 oTaph) © 22o(r eTay) & (140)

where we have used Theorem 2]13 to rewrite the curvature tems Rp%q, R4 Rap'ds
and Ra,%;. We conclude from [(137) and[(139), taking a trace with respeto a and d,
and from (138) and [140), taking a trace with respect t@ and c, that

Y ©= Ppe ©+ tUpS roX9= Py ®+ 2V (141)

where
Up® = 3 Tan’X 2+ 30500 eTan®) @ g (7 eTan®) @ (142)
Vbd = ﬁ adea+ ﬁ(r eTabd) ae m(r e abe) ad (143)

depend linearly on ¢ and on X 2 respectively Y 2.

Remark 4.5. Suppose] is integrable. Then the equations[{I41) imply p,Y ¢ = Py €
andr X9 = P, ®. Hence, in this case, the equalities betweeh (137) arld (1.3®)d
between [13B) and[{140) show that

Wele © 0 W, %4 o (144)

If 2 is a nondegenerate solution of (119), theri_(144) implies thaW,,°y and its
conjugate are identically zero, which con rms again Propason 4.4 for 2n 6.

Now consider

(Fal b © of &) = Ryle ©+ Ryple 0+ Py @ Py, o (145)
By Equation (I19) and TheoreniZ. 13 we may rewriteE(ES) as
o aX 9 0 YO = Wle 4 Wople 0+ 9Pp [P (146)
Taking the trace in (146) with respect tob and ¢ shows that
raX?= Py o 2'(Ppe ™ 1 pY") %Wabde e (147)
and with respecta and d that
FpYS = Poe 1 (Pae 1 XY+ AW, (148)

As the contraction of (14T) with respect toa and d and the contraction of (148) with
respectb and ¢ must lead to the same result, we see that

1P 1 YD) = I(Pee @ 1 oX?); (149)
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which we denote by 2 ( E( 1; 1)). Inserting (I36) into (I49) therefore implies
that

= niz(r al b 2 4 NPap %) = niz(r bl a 2+ r”:)ab ba): (150)
By Theorem[2.1B we have
(ralrp I of )X®=RySX %+ PypXC PpX°© (151)

= Wap'aX T+ 2PpgX @ + PgpX ©
Inserting the second equation of (141) and (147) into the kehand side of [151) one
computes that
(rarp r pra)X®=nr, +PypX? nPLY®+ Cyo 0+ Z,; (152)
with
Zo = e (" aTen )Y+ 23T Pag 0+ gy Ten Ua®

d d.
moer (el aTe’) O+ G ar aTe) (153)

where we have used (119)[(I42) and that/,,24 is zero. Note again thatZ, depends
linearly on 2, X 2andY?. From (I51), the expression{152) must be equal ttP, X 9+
P,,X 2, which implies that

Ny = PbaXa+ PbeYe %Cabe ea %Zb: (154)
Rewriting (r ar , T a)Y°© analogously shows immediately that
Na = Padxd + PaeYe+ %Cabd bd+ %Qa; (155)

where

. ‘ b d by/ d
Qa = Gaptn o (M eTaa)X "+ 75 Taa Pre 4 iy Taa Vo

o o eTaa®) ™+ G of eTaa®) % (156)

depends linearly on 2, X 2 and Y2. In summary, we have proved the following.

Theorem 4.6. Supposg(M; J; [r ]) is an almost c-projective manifold. The canonical
projection Ve =T T ! T9M T¥OM( 1; 1) induces a bijection between
sections ofV¢ that are parallel for the linear connection

0
bc 1 0
rJe@yb j ybA + ﬁ@wadbc dj  UPA (157)
Cabc be Qa
and 0 1 0 1
bc 1 0
r XC @Xb ] YbA + n @ Vab J Wacbd deA (158)
Cacb be Za

and elements in the kernel ob Ve, whereU,?, V.°, Q, and Z, are de ned as in (I42),
(I43), (I53) and (I58). The inverse of this bijection is induced by a di erential ogrator
L: T9*™™M  T¥M( 1; 1) !V ¢, which for a choice of connectiorr 2 [r ] can be

written as 0 . 1

L: bC7!@ %raabj %rabaA:
1
n_z(r al b b + NPap ab)

If J is integrable, W 6y = H.%q and Waby = Haply (by TheoremZIB and Uy, V.,
Q. and Z, are identically zero.
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Let now V be the real form of the vector bundlé/c, as de ned in the previous section.
Obviously, the connection in Theoreni 416 preserve$ and therefore Proposition”4.b
and Theorem[4.6 imply that:

Corollary 4.7. Suppose(M; J; [r ]) is an almost c-projective manifold of dimension
2n 4. Then, up to sign, there exists a bijection between compddil§2; 1)-symplectic
Hermitian metrics and sectionss of V that satisfy

(s) b¢ js nondegenerate
s is parallel for the connection given byI57) and (I58).

Note, that sinces is a real section, it is covariant constant for(I57) if and only if it
is covariant constant for (I58).

Supposes is a section ofV that is parallel for the tractor connection. Then (s) b
is still in the kernel of DV and hence Theoreni 416 implies thas is also parallel for
the connection given by [I157) and[{158), i.e.(s) ab must satisfy W, 4% 9 = 0,
Woy 9 =0, U =0, Vi =0, Cppe "+ Qs = 0 and Cye ®+ Z, = 0. The
following proposition gives a geometric interpretation oparallel sections of the tractor
connection and hence of so-calledormal solutions of the rst BGG operator DV in
the terminology of [33].

Proposition 4.8. SupposgM; J; [r ]) is an almost c-projective manifold of dimension
2n 4. Then, if n is even, there is a bijection between sectiossof V such that

(s) b¢ js nondegenerate
s is parallel for the tractor connectionr ¥ on V

and compatible(2; 1)-symplectic metricsg satisfying the generalised Einstein conditian
Ric,=0 and Ric,, = kg,, for some constantk 2 R; (159)

whereRic is the Ricci tensor of the canonical connection aj. If J is integrable, then
([I59) simply characterises(pseudo}Kahler Einstein metrics. If n is odd, the same
conclusions are valid up to sign.

Proof. Supposes 2 (V) is parallel for the tractor connectionr V and that (s)
bc 2 kerDV is nondegenerate. Then Proposition 4.5 implies that the ievse ofg?®
ddet is a compatible(2; 1)-symplectic Hermitian metric. Now letr 2 [r ] be the
canonical connection ofy,,. With respect to the splitting of V determined byr the
sections corresponds to the section

0 1 O 1
bc bc
@xbjxPA=@0joA: (160)
1 ba
nPab

From r Vs = 0 it therefore follows on the one hand thatP,. °¢ = 0, which implies
P.c = 0 by the nondegeneracy of ¢, SinceRicyp = (N 1)Pap+2 Play, We see that the
rst condition of (159) holds for g. On the other hand, we deduce from Vs =0 that

Pac ®= Jandr , =r, =0. SinceP, = —Ricy, we conclude that

RiC,cg® = (n+1) (det ) .

Henceg,, satis es also the second condition of_(159).

Conversely, supposeg,, is a compatible(2; 1)-symplectic Hermitian metric satisfying
([@59). Let us writes 2 (V) for the corresponding parallel section of the prolongation
connection given by [(I57) and[{158). With respect to the spting of V determined
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by the canonical connectionr of g,, the sections is again given by [[I6D), where
B det( ) = g?. By assumption we have

Ricy, = 0; (161)
which is equivalent toP,, = 0, and also that
Pab = %Ricab = %gab (162)

for some constantk. Moreover, (161) yields
O0=RiCar= g (Tua Oy 0 =RiCpy = 3r ¢Tar’ (163)
which shows immediately that (with respect tor ) in (I57) and (158) we have
ULP=0 VeP=Upb=0 Q,=0 Z,=0Q,=0:

Hence, to prove thats is parallel forr V it remains to show that W,4°.g% and C,,.g™
(or equivalently their conjugates) are identically zero. Fom Theorem[Z.IB and[{162)
we obtain

Wadbcgdc = RadbcgdC abpdcgdC I:)dagdb = RadbcgdC K ab: (164)
Therefore, if we lower theb index in (I64) with the metric, we obtain

WadbcgoIC = RadbcgoIC kgab:

Sincer preservegy, the tensorsR, g, = Rgapc@Nd R,y COINCide. HenceR 4, 9% =
Rgackd® = Ric 4, = Kg.p, Which shows that [I64) vanishes identically. From{161) @h
([@62) it follows immediately that Cy. = r 4Py ' ,Pac Vanishes identically, which
completes the proof.

Remark 4.6. As observed in Section 4l13/c = T T, and sections o may be viewed
as Hermitian forms onT . This has an interpretation in terms of the construction of he
complex ane cone ¢:C! M described in Sectiohi 3]12: by Lemm@a_3.4, a Hermitian
formon T pulls back to a Hermitian form onT C. If this form is nondegenerate, its
inverse de nes a Hermitian metric onC. Further, if the section of V is parallel with
respect to a connection oty induced by a connection orT , then the latter connection
induces a metric connection ort.

In particular, if we have a compatible metric satisfying thegeneralised Einstein
condition of Proposition[4.8, then it generically induces anetric on C which is parallel
for the connectionr € induced by the tractor connection onT .

4.6. The c-projective Hessian.  Let us consider the dualW of the tractor bundle
V of an almost c-projective manifold. Its complexi cation isgiven byWc =T T ,
which admits a ltration
We=W:.' w2 wi;
such that for any connectionr 2 [r ] we can write an element oV as
0

< 2E@1);
@,j A;where 22M(1;1); 2 ~%IM(1;1);
b T2 VML),
and the tractor con61ect|on a}Ls 1
r a a
rXVC@bj A =@, p+Pap I a4+ Py ab? (165)

bc rabc"'l:)ac b+Pabc
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and 0 1 0 1
r a a
rve@,j A=0ar, p+ Py ba T aptPa A (166)
bc rabc"'Pacb‘l'Pabc
The rst BGG operator associated toWc or W is a c-projectively invariant operator
of order two, which we call thec-projective Hessian It can be written as

DW:E(1;1)! SALOM(1;1) S2A0IM(1;1) (167)

DY =(r@eo *+Pay:r@eu *Pay)
or alternatively as
DY =r(ry +PCy I Iy(rr +P ) (168)

for any connectionr 2 [r ]. The reader might easily verify the c-projective invariane
of DW directly using Proposition[25, the identities [I6), and tle formulae for the
change of Rho tensor in Corollary 2.12. The following Propiti®n gives a geomet-
ric interpretation of nonvanishing real solutions = 2 ( E(1;1)) of the invariant
overdetermined systenDY =0.

Proposition 4.9. Let (M;J; [r ]) be an almost c-projective manifold and 2 ( E(1;1))

a real nowhere vanishing section. TheB"Y =0 if and only if the Ricci tensor of the
special connectionr 2 [r ] associated to satis es Rica, = 0. In particular, if J

is integrable, thenDW =0 if and only if the Ricci tensor ofr  satis es Ricg, = 0,

i.e. the Ricci tensor is symmetric andJ -invariant.

Proof. Let = 2 ( E(1;1)) be nowhere vanishing. Recall that the Ricci tensor of
the special connectiorr associated to satis es

RiCab = RICba RiC[ab] = %r CTabC:

With respect tor the equationDYc¢ =0 reduces to
P(ab) =0 P(ab) = O,
i.e. t0 Ricay = —5P@p =0 and Ricyy = —55Pay = 0, since  is nonvanishing.

It follows immediately that if a c-projective manifold (M; J; [r ]) admits a compati-
ble (pseudo-)Kahler metricg, then 4 =vol(g) ™" 2 ( E(1;1)) satisesDY 4=0.
By Proposition [4.5, 4 = det , where is the nondegenerate solution of the metris-
ability equation corresponding tog. This observation continues to hold without the
nondegeneracy assumption.

Proposition 4.10. Let (M;J; [r ]) be a c-projective manifold and suppose that® 2
(T9™™M  T¥OM( 1; 1)) is a real section satisfying(IZ58). Then det 2
( E(1;1)) is a real section in the kernel of the c-projective Hessiafwhich might be
identically zerg).

Proof. Let U M be the open subset (possibly empty), where is nowhere vanishing
or equivalently where "¢ is invertible. By Proposition 435 the section °(det ) 2
(T9™™M  TL°M) de nes the inverse of a compatible (pseudo-)Kahler metricnoU
and its Levi-Civita connection onU isr . Since the Ricci tensor of a (pseudo-)Kahler
metric is J-invariant (L09), i.e. Ricy, = Ric 4, = 0, we deduce from Proposition 419 that

satises DV =0 on U whence, by continuity, onU. Since vanishes identically
on the open setM nU, we obtain that DV is identically zero on all ofM.
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Remark 4.7. For an almost c-projective manifold admitting a compatible(2; 1)-
symplectic metric g, the section 4 2 ( E(1;1)) is in the kernel of the c-projective
Hessian, if the Ricci tensor of the canonical connectian of g satis es

RiC(ab) =T cTC(ab) = %r cN C(ab) =0;

where we use to raise and lower indices. It is well known that nearly Kéhlemanifolds
can be characterised ag2; 1)-symplectic manifolds such thatT,,. is totally skew (see
e.q.[63]). It then follows straightforwardly from the idenities (L02) (I03) that the
canonical connection of a nearly Kahler manifold preservets torsion, i.e.r T =

%r N = 0 (see [[58/87]), andRaq Vanishes identically. Hence, Proposition_4.10
extends to the nearly Kéhler setting.

4.7. Prolongation of the c-projective Hessian. The c-projective Hessian will play
a crucial role in the sequel. We therefore prolong the assai®d equation. Suppose
2 ( E(1;1)) is in the kernel of the c-projective Hessian:

M@y +Pay =0 @y +Pay =0; (169)

Then we deduce from[{46) that[(169) is equivalent to
ral o +Pap =7 @l gy +Pay = ﬁ(r oTan®)  3Tap’r ¢ (170)
ral b *Papy =T @y +Pag = ﬁ(r ¢Tap) %Tabcr c (171)

where we abbreviate the left-hand sides by, respectively ., which depend linearly
on andon ,:=r , respectively ,:=r 5 . From (@5) we moreover deduce that

FaptPap =Talp +Pyp =T pra + Py =7p at Ppa;
which we shall denote by ., 2 * %M (1;1). Consequently, we have
Fal cbl ofab= (172)
Nae (FaPe) Peoat(r cPap) + Pap ct  anc
where
ae = gy ((F of gTan) +(r gTa) o) (173)
+ 2((r Tan®) ¢ Tap'Peg+ Ta” ca)

depends linearly on , , and .. From Proposition[ZI3 and the identity [45) we
obtain that the expression [I7R) must be also equal to

Fal c bl cfanp= Wacdb d I:)cb a Pac bs (174)
which shows that
Naomw= Pac Pa b Wacdb d* Cach abc- (175)
Similarly, one shows that
Naoc= Pab c Pac b Wabdc d + Cabc abcs (176)
where
abc = ﬁ((r bl dTacd) +(r dTacd) b) (177)

+ %((r bTacd) d Tacdpbd + Tacd bd)

depends linearly on , 5 and 5. In summary, we have shown the following theorem:
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Theorem 4.11. Suppose(M; J; [r ]) is a c-projective manifold. Then the canonical
projection : W !E (1;1) induces a bijection between sections W that are parallel
for the linear connectiorcl)

1 O 0 1
rye@,j A+@ ab ] O A (178)
0 bc 1 0 Wacdb d gacb +  anc
rye@,j A+@ 0j 4 A (179)
b Waple ¢ Cax + apc

and sections 2 ( E(1;1)) in the kernel of the c-projective Hessian, whereg,,  4p,

abc @nNd g are de ned as in (I70), (I71), (I73) and (LZ4). The inverse of this
bijection is induced by a linear di erential operatorL, which, for a choice of connection

r2 [r ], can be written as

L:E(L;1)!W
(LW c 1

L()=@r, jr, A:
rar, + Py

The following Proposition characterises normal solutionsf DV ( ) = 0, i.e. real

sections = 2 ( E(1;1)) in the kernel of the c-projective Hessian that in addition
satisfy:
ab=0 an=0 (180)
Wacsr ¢ Cacb + ac=0 Wao'el ¢ Cac + atc=0; (181)
where , , and depend linearly on andr

Proposition 4.12. Let (M;J; [r ]) be an almost c-projective manifold and suppose
that 2 ( E(1;1)) is a real nowhere vanishing section in the kernel of the c-protive
Hessian. Then satis es (I80) if and only if the Ricci tensor Ric  of the special
connectionr 2 [r ] corresponding to satis es

Ricyp, =0 and r ;Rice =0 = r ,Ricy:

If the Ricci tensor Ricy, = Ric ¢, IS, in addition, nondegenerate, then it de nes 42; 1)-
symplectic Hermitian metric satisfying the generalised Bstein condition (I59) with
canonical connectionr

Proof. Let = 2 ( E(1;1)) be areal nowhere vanishing section in the kernel ¢f{167).
With respect to the special connectiomr 2 [r ] corresponding to , the equations

(I80) reduce to

— 1 — 1 H —
0= 2(n+1) r CTabC = mRIC[ab] = P[ab]
—_ 1 — 1 H —_ .
0= 5mig" cTab = mip RiChay = Play;

which, since is in the kernel of the c-projective Hessian, is equivalenbtRic,, = 0 =
Ric,,. If these equations are satis ed, is follows immediately #t also ac and  a
are identically zero (with respect tor ) and that the equations [I81) reduces to

Cacb = (r aPCb) = (r anC) = ﬁ(r aRiCbC) =0
Cabc = (r anc) = ﬁ(r aRiCbc) =0

which proves the claim, since is nowhere vanishing.
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5. Metrisability, conserved quantities and integrability

In this section we investigate the implications of mobility 2 for the geodesic ow of
a (pseudo-)Kéahler manifold(M; J; g): we show that any metricg c-projectively equiv-
alent, but not homothetic, to g gives rise to families of commuting linear and quadratic
integrals for the geodesic ow ofy, and characterise when this implies integrability of
the ow.

5.1. Conserved quantities for the geodesic ow. For any smooth manifoldM ,

the total space of its cotangent bundlgp: T M ! M has a canonical exact symplectic

structure d , where : TT M ! R is the tautological 1-form de ned by (X) =
(Tp(X)). The Poisson bracket of smooth functions o M preserves the subalgebra

M
Coo(T M; R) = C! (M;SkTM)
k 0
of functions which are polynomial on the bres ofp, where a symmetric tensoiQ of
valence(k; 0), i.e. a section ofSKT M, is identi ed with the function 7! Q(;:::; )

onT M (which is homogeneous of degréeon each bre ofp). The induced bracket
f:g:C*(M;SITM) C!(M;:SkKTM)! C!(Si*k ITM)

on symmetric multivectors is sometimes called the (symmet) Schouten Nijenhuis
bracket. It may be computed using any torsion-free conneotanr onTM as

fQ;Rg =jQ¢ r R )7 kRO r Q (182)

Whenj =1 and Q is a vector eld, fQ; Rg is just the Lie derivative L gR.

Now supposeg is a (pseudo-)Riemannian metric orM. Then the inverse metric
g induces a function onT M which is quadratic on each bre. The ow of the
corresponding Hamiltonian vector eld onT M is the image of the geodesic ow on
TM under the vector bundle isomorphismfM ! T M de ned by g.

De nition 5.1. A smooth functionl : TM ! R on a (pseudo-)Riemannian manifold
(M; g) is called anintegral of the geodesic ow(or an integral) of g, if for any a nely
parametrised geodesic, the function s 7! 1 (_(s)) is constant.

The interpretation of the geodesic ow as a Hamiltonian ow @ T M allows us to
describe integrals as functions oii M.

Proposition 5.1. Q: T M ! R denes an integrall of the geodesic ow ofg if and
only if it is a conserved quantity forg i.e. has vanishing Poisson bracket with

We shall only consider integrals de ned byQ 2 Cgol(T M; R). Without loss of
generality, we may assume such an integral is homogeneowende given by a symmetric
tensor Q 2 C! (M;SKTM). Using the Levi-Civita connection ofg to compute the
Schouten Nijenhuis bracket, we obtain

fg;Qg  =2g9'r Q
which is obtained fromr ( Q by raising all indices (usingg) and multiplying by 2.
Whenk =1, fg;Qg = 0 if and only if Q is a Killing vector eld. Thus we recover
Clairaut's Theorem, that Killing vector elds de ne integr als of the geodesic ow.

More generally, asymmetric Killing tensor of valence(0; ) on a (pseudo-)Riemannian
manifold (M; g) is a tensorH 2 ST M that satis es

r H )y = 0; (183)
where™ 1 can be any integer and is the Levi-Civita connection ofg.
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Corollary 5.2. Q 2 C!' (M;S*XTM) de nes an integral of the geodesic ow of if
and only if Q is a symmetric Killing tensor ofg.

5.2. Holomorphic Killing elds. Let (M; J;g) be a (pseudo-)Kahler manifold with
Levi-Civita connectionr and Kahler form =J g

De nition 5.2. A vector eld X on (M;J;g) is called aholomorphic Killing eld if
it preserves the complex structure) and the metricg, i.e.LxJ =0 andLxg=0.

In terms of the Levi-Civita connectionr the de ning properties of a holomorphic
Killing eld can be rewritten as:

r X = J Jr X and r X +r X =0: (184)
It follows immediately from the de nition of a holomorphic Killing eld X that X also
preserves the Kahler form, which means thdty = d(ix ) =0 or equivalently
r( X)r ( X)=0: (185)
In particular, this equation is satis ed if there exists a smoth functionf: M ! R
such that ix = o, i.e. X =r f, or, using the Poisson structure
X = r f=J r f (186)

in which caseX is said to be thesymplectic gradientof f .

Proposition 5.3. If X and Y are symplectic gradients of functiong and h, then
Lxh =0 if and only if Lyf = 0 if and only if (r f)(r h) =0 if and only if
X Y =0. These equivalent conditions imply thaX andY commute [X;Y ]=0.

Proof. ixdh = ix(iy) = iy(ix ) = iyd and so the equivalences are trivial.
Now Ly h =0 implies0 = Lxdh= L x(iy) = ix:y] » sinceLx =0 . Hence
[X;Y]=0, since is nondegenerate.

In this situation, X and Y haveisotropic span with respect to , and they are said
to Poisson commutesincef and h have vanishing Poisson bracket.
We now return to holomorphic Killing elds.

Proposition 5.4. Letf:M ! R be a smooth function. Then the symplectic gradient
X = r f is a holomorphic Killing eld if and only if the Hessianr ?f is J-
invariant, i.e.

raf of =0= 71 4r ,f: (187)

Proof. Since any two equations of[(184) and (I85) imply the third, wdeduce that a
vector eld of the form X = r f is a holomorphic Killing eld if and only if

r Jr f+r J r f=0 (188)

or equivalently
rr f=J3 Jr r f (189)

which is equivalent to [187).

We call f in this case aKilling potential or a Hamiltonian for the holomorphic
Killing eld X. Note that a holomorphic Killing eld always admits such a paential
locally (and on any open subset with H(U;R) = 0).

Suppose now thatg is a compatible (pseudo-)Kéhler metric on a c-projective nma
ifold (M;J; [r ]). Then we may write any real section 2 ( E(1;1)) as = h 4 for
some functionh: M ! R, where g is the trivialisation of E(1; 1) determined byg.

Proposition 5.5. Let (M;J; [r ]) be a c-projective manifold anch 2 C! (M; R).
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(1) If 4 is the (real) trivialisation of E(1; 1) corresponding to a compatible metrig,
then = h 4 is in the kernel of the c-projective HessiaDV =0 if and only
if h is a Killing potential with respect to(g; J).

(2) If g and g are compatible metrics whose corresponding trivialisatis of E(1; 1)
are related by 4 = e ' g, then h is a Killing potential with respect to(g;J) if
and only if € h is a Killing potential with respect to(g; J).

Proof. For the rst part, compute DYV using the Levi-Civita connectionr 9. Since

¢ is parallel, and the Ricci tensor ofg is J-invariant, DY = 0 if and only if the
J-invariant part of the Hessian ofh is zero, and Propositiori. 54 applies. The second
part follows from the rst.

These observations may be generalised to (possible degater solutions of the
metrisability equation. Given any J-invariant section of S°TM E g( 1; 1)and
any section of Ex(1;1), we de ne vector elds (; )andK(; ) by

(; )= 1y (190)
K()=3 ()= S ; (191)

where =J
Proposition 5.6. (; ) and K(; ) are c-projectively invariant, and if is a

nondegenerate solution of the metrisability equation c@sponding to a metricg and
= hdet is in the kernel of the c-projective Hessian, then(; ) is holomorphic,
and K (; ) is the holomorphic Killing eld of g with Killing potential h.

Proof. For a c-projectively equivalent connection’'2 [r ], we have
1 N

A —
r n r = r +

and the terms cancel, showing that (; ) and hence also K (; ) isindependent
of the choice ofr 2 [r ].

Now if is nondegenerate, corresponding to a compatible metgcwith 4 = det ,
we user ¢ to compute

S|

r

K (; )= r 9 ¢)= roh;
which is the holomorphic Killing eld associated toh.

Remark 5.1. Suppose that(M; J; [r ]) is an almost c-projective manifold and consider
the tensor product
VC w c= T T T T:
SinceT T =AM E (0;0), there is a natural projection
AM E (0;0)
Ve W ¢! (192)

M E (0;0)
or equivalently a natural projection
V WIA M E (0;0): (193)

Hence, the results in[[25] imply that there are two invarianbilinear di erential oper-
ators

T¥M TYM( L 1) E@D! TM T%M (194)
c:T®M  T¥M( 1; 1) E (1;1)!'E (0;0) E (0;0); (195)
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which are constructed as follows. Consider the two di ererdl operatorsL : T%'M
TEM( 1; 1))!'V candL:E(X;1) ! W ¢ from Theorem[46 respectively 4.11.
Recall that in terms of a connectiorr 2 [r ] they can be written as

0 1 0 1

bc
L(P)=@ i @ L =A  1()=@r, jr, A:
L(rar b @+ Py, @) ralp + Py
Then and c are de ned as the projections toTcM = AcM=A2M respectively to
E(0;0) E (0;0)of (L( " L()).
In particular, for a choice of connectiorr 2 [r ], the invariant di erential operator
is given by

;)= My Ryt dorgte (196)

Note that if P¢and are real sections, the two components di (1196) are conjugdte
each other. In this case we may identify *° with a J-invariant section of S°TM.

5.3. Hermitian symmetric Killing tensors. Suppose(M; J) is an almost complex
manifold andk 1. Then we call a symmetric tensoH 2 ( S*T M) Hermitian,
if it satis es

J( H y = 0: (197)
Since, by de nition, H = H¢ ), equation (197) is equivalent to
J H +JH + +JH =0: (198)

Viewing a symmetric tensoH of valence(0; 2k) as an element irS*T M C = S~ 1
via complexi cation, we can use the projectors from Sectiofl to decomposeH into
components according to the decomposition &~ ! into irreducible vector bundles:

k
SZk/\ 1_ SZk in 10 Sj N 0;1: (199)

j=0
Since this decomposition is in particular invariant under he action ofJ, all the compo-
nents of a tensoH 2 S#n 1 that satis es (I198) must independently satisfy [198).
If Hy, 4o 1 IS @ Section ofS% 1A 10 SiA 01 that satis es (I98), then this equation
says that2(k j)iH =0, which implies thatH 0 unlessj = k. We conclude that

Hermitian symmetric tensors of valencg0; 2k) can be viewed as real sections of the

vector bundle
Sk/\ 1;0 Sk/\ 0;1.

which is the complexi cation of the vector bundle that conssts of those elements in
ST M that satisfy (I97).

Remark 5.2. Note that, if H is a symmetric tensor of valenc€0; 2k + 1) satisfying
([I97), then the above reasoning immediately implies thait 0. The same argu-
ments apply, mutatis mutandis, to symmetric tensorsQ of valence(2k; 0), and to
weighted tensors of valencé0; 2k) and (2k; 0).

Suppose nowM; J; g) is a (pseudo-)Kahler manifold and = 2k is even, then we can
restrict equation (183) for symmetric Killing tensors of véence (0; 2k) to Hermitian
tensors. If we complexify[(183), we obtain the following stem of di erential equations
on tensorsH 2 ( Sk~ L0 gka Oy

I @Hoe djer n =0 and 1 @Hjpe ger g =0; (200)
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wherej j means that one does not symmetrise over these indices. Realsons of

(200) thereby correspond to Hermitian symmetric Killing tesors of valenc€0; 2k) and

obviously for real solutions the two equations of (200) areonjugates of each other.
The following proposition shows that (suitably interpretel) the Killing equation for

Hermitian symmetric tensors of valenc€0; 2k) is c-projectively invariant.

Proposition 5.7.  SupposgM; J; [r ]) is an almost c-projective manifold of dimension
2n 4 If Hy go n 2 ((SKME0 Sk 012k 2k)) satis es

I @Hpc ayert n =0 I @Hjbc djer ny = 0; (201)
for some connection inr 2 [r ], then it does so for any other connection in the c-
projective class.

Proof. SupposeH 2 ( Ska %0  ska0l(2k:2Kk)) satis es (Z01) for some connection

r2 [r]andlet?2 [r] be another connection in the c-projective class. Then it
follows from Proposition[2.5 and Corollary 2J4 that

N
FMaHp de n =T aHp ge n K aHp ge n bHa de n dHp ae n
+2k aHb de h
=T aHp ge n* K aHp e n bHa de n dHp ae n:

Sincer Hyp ge n =0 by assumption and

— 1 .
@Hp ge n = G ( aHp de n+ bHa ge n ¥ +  gHp e n);

we conclude that the symmetrisation over the unbarred inde&s on the right hand side
is zero, which proves that the rst equation of [2011) is indepndent of the connection.
Analogous reasoning shows that this is also true for the sexbequation of [201).

We refer to solutions of the c-projectively invariant equabn ([201) asc-projective
Hermitian symmetric Killing tensors of valence(0; 2k).

Corollary 5.8. Suppose(M; J; [r ]) is a metrisable c-projective manifold with com-
patible (pseudoyKahler metric g. Then a real sectionH 2 ( SkA %0 Ska0l) js g
Hermitian symmetric Killing tensor of g (i.e. a solution of (200) with respect tor 9)
if and only if 92"H is a c-projective Hermitian symmetric Killing tensor. In patic-
ular, in this case, if g is another compatible(pseudo}Kahler metric, then e H is a
Hermitian symmetric Killing tensor of g, wheref is given by g=e ' .

The di erential equation (201 gives rise to a c-projectiviy invariant operator, which
is the rst BGG operator

2k+1 0 0 O

0
|O|||| & (202)

2k+1 0 0 O

corresponding to the tractor bundleW, whereW is the Cartan product ofk copies of
A 2T andk copies of* 2T . As for the BGG operators discussed in previous sections,
this implies (see([20[ 52, 88]), that there is a linear conrtean on W whose parallel
sections are in bijection to solution of [(2Z01). Hence, the mliension of the solution
space is bounded by the rank dfV.
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Proposition 5.9. Suppos€M; J; g) is a (pseudo}Kahler manifold of dimension2n
4 and letk 1 be an integer. Then the space of Hermitian symmetric Killingensors
of valence(0; 2k) of (M; J;g) has dimension at most

(k+1)(k+2)2  (k+(n 1)%(k+n) *
(n 1) '
In the sequel, we shall be interested in the cake= 1, where any compatible metriqy

de nes a c-projective Hermitian symmetric Killing tensorH, = gnga by Corollary5.8.
This has the following c-projectively invariant formulation.

(203)

Proposition 5.10. Let (M;J; [r ]) be an almost c-projective manifold and let® be a
real section of T%*™M  T¥OM( 1; 1). Then

Hia 1= Gipr"ac e"ba ¢ ¢ (204)

is a real section of* %0 A 01(2:2) with Hy, 2 = %, where = det . If 2
satis es (19) for someX 9;Y¢ (depending orr ) then Hy, is a c-projective Hermitian
symmetric Killing tensor and

“U gHp = YHpe a° Y Hpg; I (Hpa = X®Hea v X Hp: (205)

Proof. The rst statement is straightforward. For the rest, suppo® rst that 2 is
nondegenerate, hence parallel with respect to some conriest? in [r ], related tor
by with , = HgmY?2and ., = HwXP Then Hy is parallel with respect tof",
hence a Hermitian symmetric Killing tensor, and equation[{Z5) follows by rewriting
this condition in terms of r . At each point, these are statements about théd-jet of
H, which depends polynomially on thel-jet of . They hold when the O-jet of s
invertible (at a given point, hence in a neighbourhood of thtgpoint), hence in general
by continuity.

5.4. Metrisability pencils, Killing elds and Killing tensors. Suppose we have
two (real) linearly independent solutions 2 and ~#° of the metrisability equation (IZ25).
Since the metrisability equation is linear, the one paramet family

~S0(t) =~ t (206)

also satis es [125), and we refer to such a family asgencil of solutions of the metris-
ability equation, or metrisability pencil for short.
By Proposition [4.10, the determinant

~(t) := det ~(t) (207)

of the pencil (206) lies in the kernel of the c-projective Hemn for allt 2 R (as does
:=det ). If «(t) is degenerate for alt, then ~(t) is identically zero. Otherwise, we
may assume, at least locally:

Condition 5.1. is nondegenerate, i.e. = det is nonvanishing, and hencg =
(det ) isinverse to a compatible metria.

Assuming Condition[5.1, we may write-*° = A ° as in Section[ 4.4, where the
(9; J)-Hermitian metric A satis es (I28). SettingA,°(t) := A t °, we have

2oty = BAL() and ~(t) = (det )(det A(t)):

Thus ~(t) is essentially the characteristic polynomiatiet A(t) of A,®, regarded as a
complex linear endomorphism of the complex bundlg*°M .
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Remark 5.3. A pencil is another name for a projective line: if we make a pjective
changes = (at + b=(ct + d) of parameter (with ad bcé 0) then the pencil may be
rewritten, up to overall scale, asa~+ b s(c~+d)=(~ t )(ad bg=(ct+ d).
Assuming that c~+ d is nondegenerate, the rescaled and reparameterized pengil
thus (c~+ d )(A sld), where A= (cA+ did) (aA + bid).

We next setH, := ﬁ"ac e"bd 1 e as in (204) and introduce

Ba(t) = ﬁ "ac e bd f ~Cd(t) ~*f (t) = (adj A(t))p*Heca; (208)

whereadjB denotes the endomorphism adjugate t8, with B adjB = (det B)I .
Proposition[5.10 implies that for allt 2 R, B,(t) is a c-projective Hermitian sym-
metric Killing tensor of (M;J; [r ]). Hence for anys 2 R with ~(s) nondegenerate,

~(s) 214(t) de nes a family of Hermitian symmetric Killing tensors for te corre-
sponding metric.

Similarly, Proposition 5.8 implies that if ~(s) is nondegenerate (fos 2 R), then for
allt 2 R, K(~(s); ~(t)) is a holomorphic Killing eld with respect to the correspondéhg
metric (hence aninessential c-projective vector eld). Now observe that

K(~(s);~(1)) = K((t) +(t s); ~(1) =(t 9K (; ~(1));
sinceK is bilinear andK (~(t); ~(t)) = 0. By continuity, the vector elds
K(t) = K(; ~(1)); ie. I (1) = r detA(t); (209)
which are holomorphic Killing elds with respect to g, preserve~(s) for all s;t 2 R,
i.e. Ly ~(s) =0, and hence alsd ¢ )18 (s) =0 = L, ~(s). Thus K (t) preserves the
Killing potential detA(s) of I€(s) with respect to g, so Proposition[5.3 implies that
K (s) and K (t) Poisson-commute. We summarise what we have proven as fokow

Theorem 5.11. Let (M;J; [r ]) be a c-projective manifold with metrisability solutions
and ~ corresponding to compatiblgpseudo}Kahler metric metrics g and g that are
not homothetic. Let~(t) be the corresponding metrisability pencifZ0g).

(1) The vector elds B (t) : t 2 R de ned by (207) (209) are Poisson-commuting
holomorphic Killing elds with respect tog and g.

(2) The tensorsid(t) : t 2 R de ned by (207) (208) are c-projective Hermitian
symmetric Killing tensors, invariant with respect tol€(s) for any s 2 R. In

particular, by Corollary 5.8, they induce Hermitian symmetc Killing tensors
of g respectivelyg (by tensoring with 2 respectively g 2).

We call the vector elds € (t) and tensor densitiedd (t) the canonical Killing elds
and canonical Killing tensors (respectively) for the pair(g;g); the former are Killing
vector elds with respect to any nondegenerate metric in thdamily (206), and the
latter give rise to symmetric Killing tensor elds for any swch metric by tensoring with
the corresponding trivialisation ofE( 2; 2).

Since the canonical Killing elds K (t) are holomorphic with [ (t); € (s)] = 0 for
all s;t 2 R, we also have[l (t); JI(s)] = 0. SincelJ is integrable, JK (t) are also
holomorphic vector elds, and[JI€(t); JK (s)] =0 for all s;t 2 R.

The fact that for all t 2 R, €(t) is a holomorphic Killing eld means equivalently
(by linearity) that the coe cients of € (t) are holomorphic Killing elds, whose Killing
potentials with respectg are the coe cients of the characteristic polynomialdet A(t).
Up to scale, the nontrivial coe cients of detA(t) can be written

= AL — = APAT - = APAS A (210)



70 D.M.J. CALDERBANK, M.G. EASTWOOD, V.S. MATVEEV, AND K. NE USSER

which are real-valued becaus@ is Hermitian with respect to g. Raising an index
in (L28), we have

r A= ¢® ,; orequivalently, r °A,=  ,° ® (211)

Hence, applying the(1; 0)-gradient operatorr 2= 2g r to the canonical potentials
in (210), we obtain (up to sign) holomorphic vector elds

= % =2 BaA o Gii=n BASAS ALY (212)
whose imaginary parts are (up to scale) the coe cients of (t). In particular, , 2=
X iIK ), where the holomorphic Killing eld K =J is the leading coe cient
of I€(t). In general, the coe cients satisfy the recursive relation

(+1) = Ap” (?q +~p (213)

Proposition 5.12. Let g and g be compatible metrics oiM; J; [r ]) related by a(real)
solution A of (128). Then there is an integer, with O~ n, such that j;:::; @

are linearly independent on a dense open subsethdf and dimspani€(t) ~ on M.

Proof. Suppose for some 2 M and 1 k n, ("i() is a linear combination of
..... b ; H H H b .....
Qyiih & patp. Then A 4, is a linear combination ofAy® )51 A & gy,

hence of §y;:::; () by 13). Applying (Z13) once more, we see thatj,,, is a

linear combination of §,;:::; (). Hence at eaclp2 M, dimsparf §,;:::5 §,9=
dim spani (t) is the largest integer” such that 2,;:::; ¢ are linearly independent

_ a b P
holomorphic k-vector D @ (K)

linearly independent is empty (fork > ") or dense (fork ). The result follows.
Following |2], the integer” of this Proposition will be called theorder of the pencil.

Proposition 5.13. Let g and g be compatible metrics oiM; J; [r ]) related by a(real)
solution A of ([I28). Then the endomorphismg and A commute, i.e.

ASr o P AL, c=0: (214)

Proof. We rst give a proof using Theorem5.111, which implies thaK is a holomor-
phic Killing eld with respect to both g and g. It follows that Lx A = 0. However,
r«A=0 (since °r A= . P= ° (A®) and so[r K;A]=0. Equation (ZI2)
is obtained by taking (1; 0)-parts.
We now give a more direct proof of[(214), starting from the olesvation that

Fap= T al A= T F A% =Ty o
(i.e.r 5 pisreal). Now expandr of ,r f a)A% by curvature and also by using[{129)
to obtain

Rap®eA® + RypleA® = 9y ¢ or o & (215)
Transvect with AP, to conclude that

AR peA%y + APA R pge = GagAr b ¢ Al a g
and hence that
A"RapeA%y  A®RiecAq® = 0 (216)

(i.e. AR, A%, is real). Now transvect [Z15) withA; 2 P to conclude that

At RIC1 A% + Af PR geAC = Al ¢ ¢ NAFr 4 4
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and hence that
Aa"RicieA%  AP4RpcaeA™ = N(A%T , 2 A" b g):
But from (216) the left hand side vanishes whence
ATy = Ay o= A = A g B
as required.

Note that (214) can be used to provide an alternative proof @it the holomorphic
vector elds (ZI2) commute. IfV2 and WP are two such elds, we must show that

0=[V;W]°= Ve ;WP W?ar V" (217)
Let us takeVa@= 2andWP"=2 [PA . Then (IZ8) yields
FaWP=(ra DAS+ P A (ra AL °r A
=(ra DAS "o (ra OASH S C
whenceVar ;,WP=23(r , DAL 3 , 9AL and
Var QWP War vP= (A . P AL, o)
Similar computations show that all the elds in (Z12) commug.

Remark 5.4. It is interesting to compare Proposition 5. 18 with what happns in the
real projective setting. The mobility equations [128) areaplaced by

r-A = g

and the development runs in parallel. These equations cootrthe existence of another
metric in the projective class other than the assumed backgund metric and, from the
coe cients of the characteristic polynomial ofA , a solution gives rise ta canonically
de ned potentials for n canonically de ned vector elds. These are counterparts tthe
elds (P12) and, as such, need not be Killing. Neverthelesthey commute and to see
this it is necessary to employ the alternative reasoning thhave encountered near the
end of the proof just given. The key observation, likd_(214)s that the endomorphisms
A andr commute and its proof follows exactly the course just given.

5.5. Conserved quantities on c-projective manifolds. On a c-projective mani-
fold (M; J; [r ]), the construction of an integral from a compatible metric ad Killing
tensor has a c-projectively invariant formulation: in partcular, given a nondegenerate
solution of the metrisability equation, and a c-projective Hermitiam symmetric
Killing tensor H of valence(0; 2), the Hermitian (2; 0)-tensor H denes an
integral of the geodesic ow of the metric corresponding to; if H is associated to

by Proposition[5.10, then this integral is the Hamiltonian asociated to the inverse
metricg = (det )

De nition 5.3.  Let (M; J; [r ]) be a c-projective manifold, and let- (t) := ~ t

be a metrisability pencil satisfying Condition 5.1, sothag = (det ) isinverse to
a (nondegenerate) compatible metrig, and we may write~2°(t) = A 5(t). Then the
linear and quadratic integralsLy;l;: TM ! R of (the geodesic ow of)g are de ned by
LX) = g8 ();X) = g K& (DX andl(X):= (ZROGX)= 428 (DX X,
where K (t) and K (t) are the holomorphic Killing elds and c-projective Hermitan
symmetric Killing tensors associated ta by Theorem[5.11.

Proposition 5.14. The integralsl;L; of g (for all t 2 R) mutually commute under
the Poisson bracket oim M induced byg.
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Proof. Since, by Theoreni’5.11, the canonical Killing elds commutand Lie preserve
the canonical Killing tensors, it remains only to show thatdr any s;t 2 R the qua-
dratic integrals | ¢ and I, commute. The Hermitian symmetric tensors of valencg; 0)

corresponding tdl; areQ?j) := ¢ oH U where we writeH ! instead of4(t). It thus
su ces to show that for all s 6 t 2 R, Q3 and Qff} have vanishing Schouten Nijenhuis
bracket, which (in barred and unbarred indices) means

d(a c)b d(a b _ A. c(b d)a c(b da _ A.
FoQy Qe Qg Qu =0: raQy Qe aQy Qu =0:
We prove the rst equation (the second is analogous); takindor r the Levi-Civita
connection ofg (sor = 0), this reduces to:

(s) H(t) =0:

t
cf r fH() H(S) cf r fHa(b e =

a(b d)c

The key trick is to multiply the left hand side by s t and observe that(s t) ¢ =
~f(t)  ~(s). Now using equation [Z06) for-#°(t) and H{Y, we obtain

(t) H (s) YCH (t) H (s) = YCH (t)H (s) YCH (t) H (s)

_cf (t) (s)
© (t) r+H H e(b' 'd)c a(b' "d)c c(b’ "d)a a(b’ "d)c

ab e~ Y© a°H
for someY?2. The same reasoning applies t6?°(s) and Hé? with the same vector eld
Y? to obtain the same expression witts and t interchanged. These two expressions
sum to zero and hence

_cf (t) cf (S) rs H (t) H (s)

S B (s) H ()R- ~(s)r H (s) ~t)r H (t)

r+Haw Hay (dpa @pa

which vanishes becaus# (s) and I19(t) are c-projective Hermitian symmetric Killing
tensors.

We now discuss the question how many of the functions; and I; (t 2 R) are
functionally independenton TM, i.e. have linearly independent di erentials. Since
TM has dimensiordn, and the functionsL; and |; mutually commute (i.e. they span
an Abelian subalgebra under the Poisson bracket induced lgy, at most 2n of these
functions can be functionally dependent at each point of M. If equality holds on
the bres of TM over a dense open subset & , the geodesic ow ofg is said to be
integrable

SinceAP(t) = A® t P integrability turns out to be related to the spectral theowy
of the eld A." of endomorphisms off°M . In particular, using the trivialisation of
E(1;1) determined by g, the determinant ~(t) := det ~(t) becomes the characteristic
polynomial A(t) := det A(t) of A,°. SinceA is Hermitian, the coe cients of A(t)
are smooth real-valued functions oM. Any complex-valued function on an open
subsetU M has an associate@lgebraic multiplicity m : U ! N, wherem (p) is
the multiplicity of (p) as a root of A(t) at p 2 U, or equivalently the rank of the
generalised (p)-eigenspace of\,? in Tpl?OM; additionally, its geometric multiplicity
d (p) is the dimension of the (p)-eigenspace of,® in Tpl;OM , and its index h (p) is
the multiplicity of  (p) in the minimal polynomial of A.P at p.

Remark 5.5. If :U ! C is smooth with m constant onU, then the restriction
of A° .” to the generalised -eigendistribution, de nes, using an arbitrary local
frame of this distribution, a family of nilpotent m m matricesN. There are only
nitely many conjugacy classes of such matrices, paramesed by partitions of m :
we can either use theSegre characteristicswhich are the sizes of the Jordan blocks
of N, or the dual partition by the Weyr characteristics dimkerN*  dimkerNk 1,
k2 Z*. The indexh isthe rst Segre characteristic (i.e. the size of the largédordan
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block), while the geometric multiplicity is the rst Weyr ch aracteristic dimkerN (so
maxfd ;h g m with equality if and only if d =1 or h =1). The unique (hence
dense) open orbit consists of nilpotent matrices of degree , whose Jordan normal
forms have a single Jordan block, and in general, the orbitadures stratify the nilpotent
matrices (with the partial ordering of strata correspondig to the dominance ordering
of partitions). Thus N maps a su ciently small neighbourhood of a pointp 2 U into

a unique minimal stratum, and for generig 2 U, this stratum is the orbit closure of
N (p). In other words, the type ofN may be assumed constant in neighbourhood of
any point in a dense open subset df.

The general theory of families of matrices is considerablyngpli ed here by Propo-
sition and the following two lemmas.

Lemma 5.15. SupposeU is an open subset oM and T*°U = E F whereE and
F are smoothA-invariant subbundles ovelJ such that the restriction ofA to E has
a single Jordan block with smooth eigenvalue U! C. Then the gradient of is a
section overU of E  F? TXU T%U=TU C, whereF? denotes the subspace
of T%U orthogonal toF with respect tog.

of F in Y% andletZ,(1);:::;Z,(m) be the dual frame (withZ,(i)Z2(j) = ). Then
the transpose ofA is in Jordan normal form with respect to this dual frame in regrse
order: fork =1;:::m we thus have

(A" NZ%(K) = Z°kk 1) (218)
(A P)Zp(k) = Zp(k +1); (219)

whereZP( 1) =0= Zy(m+1). By (I28), the (0; 1)-derivative of (2ZI8) yields
(Gac "+ ar ¢ )Z2(K) = (AL° ) Z2(K) 1 Z%k 1) (220)

which we may contract with Zy(k), using (219), to obtain
"Zu(K)GacZ?(K) + T ¢ = Zp(k+ 1)1 Z°(k)  Zu(K)r Z°(k  1):

Summing fromk = 1 to m, the right hand side sums to zero, and hence

X
mr ? = b7 (k) Z (k)
k=1
so the(1; 0)-gradient of is a linear combination ofZ2(1);:::;Z2(m), hence a section

of E. SinceA is Hermitian, its restriction to F’ also has a single Jordan block, with
eigenvalue , and sor @ =r 2 belongs toF? by the same argument.

It follows that if there is more than one Jordan block with eignvalue , then s
constant equivalently, all nonconstant eigenvalues of A have geometric multiplicity
one. In fact, a stronger result holds.

Lemma 5.16. Let be a smooth function orM and letU M be a nonempty open

subset on which has constant algebraic multiplicitym. If is constant andM is

connected, then has algebraic multiplicitym m on M. Conversely, ifm 2 then
is locally constant onU.

Proof. SinceA is Hermitian, A(t) has real coe cients, is an eigenvalue oA with the
same algebraic multiplicity as , andr 2 =r 2 . By assumption A(t)=(t )™q(t)
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on U, whereq is smooth with g( ) nonvanishing. Since (t) is a Killing potential for
g, its gradientr @ (t) is a holomorphic vector eld onM for all t.

Suppose rst that is constant: we shall show by induction ok thatif m  k then
m k on M, which is trivially true for k = 0. So suppose tham k+1 andm K,
so thatp(t) = A(H)=(t )¥is a polynomial int. Sincer 2p( ) is holomorphic onM
and vanishing onU, it vanishes onM, sinceM is connected. Similarly forp( ), so
that p( ) is locally constant onM , hence zero, sinc®! is connected and)( ) vanishes
onU. Thus m k +1 as required.

For the second part, the(m 2)nd derivative int of 2(t) is also a Killing potential,
which may be written

ra M2 =mit HgM)r d +(t )2XA(L)

for some polynomial of vector eldsX 2(t). Applying r ®* = g*r . and evaluating at
t= vyieldsr 2 r® =0,ie.r® =0. Replacing by ,we deduce that is locally
constant onU.

In contrast, in the analogous real projective theory of ge@dically equivalent pseudo-
Riemannian metrics, Jordan blocks with nonconstant eigealues can occur: seé [15].

In order to apply the above lemmas at a poinp 2 M, we needp to be stable forA in
the following sense. First, we need to suppose that the numbef distinct eigenvalues
of A, is constant on some neighbourhood g@f This condition on p is clearly open,
and it is also dense: if the number of distinct eigenvalues it constant near p,
then there are points arbitrarily close top where the number of distinct eigenvalues
is larger; repeating this argument, there are points arbiarily close to p where the
number of distinct eigenvalues is locally maximal, hencedally constant. Now, on the
dense open set where this condition holds, the eigenvaluésAg® are smoothly de ned,
and their algebraic multiplicities are locally constant (gce they are all upper semi-
continuous). Now a pointp in this dense open set istableif in addition the Jordan
type (Segre or Weyr characteristics) of each generalisedy@nspace of\,” is constant
on a neighbourhood op. The stable points are open and dense by Remdrk5.5.

De nition 5.4.  We sayp2 M is aregular point for the pencil t) = ®(A° t P
if it is stable for A,?, and for each smooth eigenvalue on an open neighbourhood of
p, eitherd , 60 or is constant on an open neighbourhood @f

Equivalently, the regular points are the open subset of theable points where the
rank of the span of the canonical Killing elds associated tahe pencil is maximal,
i.e. equal to the order . Consequently, by Propositiori5.12, the regular points far a
dense open subset dfl .

Corollary 5.17. Let be a smooth eigenvalue @& over the set of stable points. Then
ALfrp = ra and ALry, = 14 (221)
If is constant, its algebraic multiplicity is constant on the et of regular points.

Indeed, where has algebraic multiplicity m = 1, Lemmal5.15 implies thatr ,
generates the eigenspace of whereas wherem 2, Lemmal5.I6 implies that
is locally constant, and hence equationg (2R1) are trivigllsatis ed. Furthermore, it
implies that the algebraic multiplicities of the constant &ggenvalues are upper semi-
continuous onM, hence constant on the connected set of regular points.

Theorem 5.18. Let (M; J; [r ]) be a c-projective manifold that admitgpseudo}Kahler
metrics g,, and &,, associated to linearly independent solutions® and ~#¢ = 3A°
of the metrisability equation(I23).
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(1) The number of functionally independent linear integralk is equal to the num-
ber of nonconstant eigenvalues & at any regular point ofM .

(2) The number of functionally independent quadratic integmsll; is equal to the
degree of the minimal polynomial oA at any stable point ofM .

(3) The integralsl, are functionally independent from the integrals .

Proof. Integrals of the formLs or |; are functionally independent nearX 2 T,M if
their derivatives are linearly independent atX. Sincelg is linear along the bres of
TM ! M, the restriction of dLs to Tx (T,M) = T,M is g(K(s); ) (at p). Similarly, I,
is quadratic along bres, and the restriction ofdl; to Tx (T,M) = T,M is 4 21 (t)(X; )
with 4 =det . Hence, for generiX 2 T,M, the quadratic integralsl; are functionally
independent from the linear integrald_s, and the number of functionally independent
linear, respectively quadratic, integrals is at least the ichension of the span of€(s)
at p, respectively the dimension of the span df (t) at p.

The geodesic ow preserves the integrals and therefore theoperty of the integrals
to be functionally independent. Since any two points oM can be connected by a
piecewise geodesic curve, it su ces to compute the dimens® of these spaces at a
regular point of p, where the dimensions of the spans & (s) and K (t) are maximal.

At such a point, the number of linearly independent Killing \ector elds € (s) is the
number of nonconstant eigenvalues &, so it remains to compute the number of lin-
early independent Killing tensorsi (t). For this, recall that B, (t) = (adj A(t))p°Hea,
with adjA(t) = A(t) ‘detA(t). Now write A(t) in Jordan canonical form: on an
h h Jordan block with eigenvalue , (t Y'A(t) !is a polynomial of degreeh 1
in t with h linearly independent coe cients. Hence on the generalised-eigenspace,
(t )™ A(t) !is a polynomial int with h linearly independent coe cients, where
m is the geometric multiplicity of , and h the index (the multiplicity of in the
minimal polynomial, i.e. the size of the largest Jordan bldg. It follows readily that
the dimension of the span o&dj A(t) is the degree of the minimal polynomial oA.

5.6. The local complex torus action. For a c-projective manifoldM 2" admitting a
metrisability pencil with no constant eigenvalues, Theoma [5.18 shows that any metric
in the pencil is integrable, i.e. its geodesic ow admit2n functionally independent
integrals. Furthermoren of the independent integrals are linear, inducing Hamiltaan
Killing vector elds. Hence if M is compact, it is toric (i.e. has an isometric Hamil-
tonian n-torus action).

When the pencil has constant eigenvalues, there are onlyindependent linear in-
tegrals, where’ is the order of the pencil (the number of nonconstant eigenvalues),
and at most n independent quadratic integrals. In this case the ows of t& Hamil-
tonian Killing vector elds K(t) generate a foliation ofM whose generic leaves are
“-dimensional. IfM is compact, one can prove (segl[2]) that these leaves are thiits
of an isometric Hamiltonian action of an -torus U(1) , and it is convenient to assume
this locally. The complexi ed action, generated by the commiting holomorphic vector
elds I€(t) and JK(t), is then a local holomorphic action ofC ), and the leaves of
the foliation, which are locally J-invariant submanifolds with generic dimensior2,
will be called complex orbits

Lemma 5.19. The complex orbits through regular points are totally geie and their
tangent spaces aré\-invariant. The c-projectively equivalent metricsg and ¢ restrict
to nondegenerate c-projectively equivalent metri€svith respect to the induced complex
structure) on any regular complex orbiO¢. The metrisability pencil ~(t) restricts to a
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metrisability pencil of order” on O€, using g and its restriction to trivialise Ex(1;1),
and theng is a constant multiple of the metric induced by-

Proof. Since the complex orbit of any regular point contains only gular points and
the tangent space to the orbit is spanned by holomorphic vemt elds, it su ces to

prove that the (1; 0)-tangent spaces to regular points are closed under the LeWivita
connectionr of g. These tangent spaces are spanned by eigenvect@sof A,° with
nonconstant eigenvalues, and by di erentiating the eigenvector equation using[(128
as in the proof of Lemmd5.15, we obtain

(Aab ab)r Z% = ( a cb+; abr ¢ )Z%= ( aZ%) cb+(r c )Zb:

Clearly if we contract the right hand side with a(1; 0)-vector X ¢ tangent to a complex
orbit, we obtain another such vector. Hence x Z is a (1;0)-vector tangent to the
complex orbit as required: the complex orbits are thus totgt geodesic.

The tangent spaces to a regular complex orbi©° are clearly J-invariant and A-
invariant, so that g induces a Kahler metricO¢, with a metrisability pencil spanned
by the restrictions of and ~, where we usey and its restriction to trivialise Er(1;1).
Since~= A, and the generalised eigenspaces/iwhich are not tangent toO° have
constant eigenvalues, the metric induced by the restrictiroof ~is a constant multiple
of the restriction of g.

Also of interest is the local(R*) action whose local orbits are the leaves of the
foliation generated by the vector eldsJ K (t), which will be calledreal orbits.

Lemma 5.20. The real orbits through regular points are totally geodesiand their

tangent spaces aré-invariant and generated by the gradients of the nonconstagigen-

values ofA. The c-projectively equivalent metricgg and g restrict to nondegenerate
projectively equivalent metrics on any regular real orbiD, and the restriction of A is

a constant multiple of the(1; 1)-tensor 58] = (8io) gio.

Proof. At a regular point p, X 2 T,M is tangent to the real orbit through p if and only

if it is tangent to the complex orbit through p and orthogonal to the Killing vector

elds K (t) at p. Since both properties are preserved along geodesics, tkalrorbits

are totally geodesic with respect tay (hence alsog).

Let O° be the complex orbit through the regular real orbitO, so that g and g restrict
to c-projectively equivalent Kahler metrics onO°. Furthermore (vol(gjo:)) 2™ g Yjoc
is a constant multiple of(vol(gjoc)) ¥ "V g 1 Ajoc. The tangent spaces t® are gen-
erated by the vector eldsr 2 , for nonconstant eigenvalues , which are mutually
orthogonal and non-null. Hencel,O°¢ is the orthogonal direct sum ofT,O and JT,0O
(with respect to both g and g). Henceg and g restrict to nondegenerate metrics on

O and A restricts to a constant multiple of 1%8e) Y (o) 'gjo. The Levi-Civita

connections ofg and g on O°¢ are related by [11) for somel-form . If we now
restrict to O (which is totally geodesic inO°), it follows that the induced Levi-Civita

connectionsr and € are related by
e X r X =3 + );
i.e. the metrics onO are projectively equivalent.

5.7. Local classication. Let (M;J;[r ]) be a c-projective 2n-manifold admitting

two compatible non-homothetic (pseudo-)Kéhler metrics, rad hence a pencil of so-
lutions of the metrisability equation of order0 ~ n. Lemmal[5.20 shows that
the real orbits yield a foliation of the setM? of regular points which is transverse
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and orthogonal to the common level sets of the nonconstantgenvalues ;;::: -
of A; these are also the levels of the elementary symmetric furats 4;::: - of
1;::: ~, which are Hamiltonians for Killing vector elds generatirg the local isomet-
ric Hami@nian “-torus gction onMP. Indeed, onM®  A(t) = c(t) nc(t), where
()= "o, )= (1) .t ", (t) has constant coe cients, and ¢ = 1.
The leaf spaceS of the foliation of M ° by the complex orbits may then be identi ed
with the Kahler quotient of M° byéhis local "-torus action.

It is convenient to write (t) = ~, (t)™, where (t) are the distinct irreducible
real factors (with deg , = 1 or 2) and m, their multiplicities. Then if S is a manifold,
its universal cover is a product of complex manifoldS, of (real) dimension2m, deg .

These observations lead to a local classi cation of (pseudiahler metrics which
belong to a metrisability pencil (i.e. admit a c-projectivéy equivalent metric, or equiv-
alently, a Hamiltonian 2-form), which was obtained in[2] in the Kahler case, and in 6]
for general (pseudo-)Kahler metrics. We state the result dsllows.

Theorem 5.21. Let (M;J; [r ]) be a c-projective2n-manifold, and suppose thag is
a (pseudo}Kahler metric in a metrisability pencil of order, which we may write as
~2bt) = ad(A Lt .P), where 2° corresponds tog. Then on any open subset dfl °
for which the leaf space of the complex orbits is a manifdd we may write

X X j , X () X A 2
g= Al nc(As); )+ - dj + - r1(j) (222)
u i=1 iC) j=1 I
X X X .
I = Fo( ne(As) 5 )+ d,” ,; with d,= ( D" u(Ag "5); (223)
u r=1 u
o\ X X oo
3, =T ey =y (224)
- - 100)

The ingredients appearing here are as follows, where we hibjects onS to M by

identifying the horizontal distributionker(d 1;:::d ; 1;::: -) with the pullback ofT S.
1;::. - are the nonconstant roots oA, which are smooth complex-valued func-

tions on M2, functionally independent overR, such that for anyj 2f1;::: g,

Tk f(%s ‘some(neceslga‘rily uniqué k.

)= Tt )= (T, é’]) is the (r  1)st elementary
symmetric function off  :k6& jg,and ;= " ,4,(; k).
Forj2f1,:::7g, ; is asmooth nonvanishing complex function on the image
of ; suchthatif ; = , then ;= .

For each distinct irreducible real factor , of ., the metric g, is induced by a
(pseudo}Kahler metric on the factorS, of the universal cover ofS.

As s a parallel Hermitian endomorphism with respect to the latproduct met-
ric  ,du on S, preserving the distributions induced by S;, on which it has
characteristic polynomial (t)™.

Any such (pseudo}Kahler metric admits a metrisability pencil of order’, with
X @ @
A=As+ d; —+Jd; J—:
- T )
In other words (M; g;J;! ) is locally a bundle over a productS of (pseudo-)Kahler

whose bres (the complex orbits) are totally geodesic tori¢pseudo-)Kéahler manifolds
of a special kind, called orthotoric. The proof in[[2] proeeds by establishing the
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orthotoric property of the bres and the special structure @ the baseS. In contrast,

the proof in [16] relies upon the observation (generalisingemmalb.20) that the local
guotient of (M; g) by the real isometric”-torus action admits a projectively equivalent
metric: the rst two sums in (222) are the general form of sucla metric when the
nonconstant eigenvalues of the projective pencil have algaic multiplicity one.

In the Riemannian case, the expressiorE(ZZprrovides a cdetp local descrip-
tion of the metric: locally, we may assumeS = = S, is product of open subsets
Sy R?™ and then As is a constant multiple of the identity on each factor. In
the pseudo-Riemannian, ibremains only to describe explilyi the parallel Hermitian
endomorphismAs onS= ~ | S, for which we refer to [13].

Remark 5.6. In order to understand the compatible metrics correspondgto the
general element- t of the metrisability pencil, it is convenient to make a projetive
changes = (at+ b)=(ct+ d) of parameter, as in Remark5]3. The metric corresponding
to c~+ d (assuming this is nondegenerate) must have the same forin 222as g,
with respect to the coordinates = (a; + b=(c; + d), and with A replaced by
A=(cA+d) Y(aA+ b. We nd in particular that the new functions ~; are related
to the old functions by ~j(s)(ct+ d) ** = (ad bg *' (t)in other words they
transform like polynomials of degree + 1 (sections ofO(" + 1) over the projective
parameter line).

Remark 5.7. It is straightforward to show that the restriction of the metric (£222) to
any complex orbit (a totally geodesic integral submanifolaf @;J@ :j 2f1;:::7°9)
has constant holomorphic sectional curvature if and only gach (t) is a polynomial
independent ofj, of degree at most + 1: the curvature computgiqns in [2] extend
readily to the (pseudo-)Kahler case. If we write j(t) = ( t):= . ,at ', then
the complex orbits have constant holomorphic sectional cuature B = %a 1.

Following [2], we may introduce holomorphic coordinates; + it, on the complex
orbits by writing , = dt,+ , andJdu, = dt, forr 2f 1;::: g, where , are pullbacks
of 1-forms onS. Thus

X oT
Jdu, =, (1) —L—Jd;
= i10i)
P . .
whered =, ( 1)"!4(Ag " ; ), and these formulae extend to any . Forr 1,
dJdu, =0, whereasdJdup = ! anddJdu ;= + ;!,where = g(JA ;).
In particular, if ;(t) = ( t), then
X
( D'a@du+ )= Jd,
r= 1
and hence N
ddd 1=a 1( + 1!)+ a! Lu(CA) 5 )
u
However, ; diers from traceA = A, 2 by an additive constant, sod ; = and

henceddd ;= 2rJ , ie.

X
2r =(ai;+a 1)g+a9(A;) w(( A);): (225)
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6. Metric c-projective structures and nullity

Henceforth, we assume thatM;J) is a complex manifold (i.e. withJ integrable)
of real dimension2n 4, equipped with a metric c-projective structure i.e. a c-
projective structure [r ] containing the Levi-Civita connection of a (pseudo-)Kahle
metric g, which we denote byr 9, or r if g is understood. We may also consider a
metric c-projective structure as an equivalence clagg|] of (pseudo-)Kéahler metrics on
(M; J) having the sameJ-planar curves.

By Proposition [43, the map sending a metrig 2 [g] to = , 'g ' embeds[g]
into m. = m[r ] as an open subset of the nhondegenerate solutions to the msdibility
equation (I26). We refer todim m, as the mobility of g for any g 2 [g], cf. Section 4.4,
and we are interested in the case thalimm, 2. In Section[3, we obtained some
consequences of this assumption for the geodesic owgobn M. We now turn to the
relationship between mobility and curvature.

As explained in Sectiorir4l5m, may be identi ed with the space of parallel sections
of the real tractor bundle V with respect to the prolongation connection(I57) (I58).
However, in [44, Theorem 5], it was shown that illimm, 3, then m; may also be
identi ed with the space of parallel sections ol with respect to the connection

0O 1 o0
A r A+ C )+303)

r @ A=-@ ¢ + 2Bg A A
r 2Bg

for some uniquely determined constar . In this section we explore this phenomenon,
and its implications for the curvature of M. First, as a warm-up, we consider the
analogous situation in real projective geometry.

6.1. Metric projective geometry and projective nullity. A metric projective
structure on a smooth manifoldM of dimensionn 2 is a projective structure|r ]
containing the Levi-Civita connection of a (pseudo-)Rientaian metric, or (which
amounts to the same thing) an equivalence clagg] of (pseudo-)Riemannian metrics
with the same geodesic curves. As in the c-projective casedsSectiori 4]3 and Re-
mark[4.4), up to sign,[g] embeds into the spacen = m[r ] of solutions to the projective
metrisability equation (135) as the open subset of nondegenate solutions.

A metric projective structure has mobility dimm 1, and we are interested in the
case thatdimm 2. However, it is shown in[[5F] that, on a connected projective
manifold (M; [r ]) with mobility dimm 3, there is a constantB such that solutions
A of the mobility equations may be identi ed with parallel setions for the connection

0 1 0 1
A r A +2 )
r @ A=@ + Bg A A (226)
r 2Bg

on the tractor bundle associated to the metrisability equabn. This connection is
the main tool used in [45] to determine all possible values tiie mobility of an n-
dimensional simply-connected Lorentzian manifold.

This result is an example of a general phenomenon: in metricgpective geome-
try, solutions to rst BGG equations are often in bijection with parallel sections of
tractor bundles for a much simpler (albeit somewhat mysteous) connection than the
prolongation connection. We illustrate this with a toy exanple. The operator

(TM( 1))3 7!([’ ):r % r
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is projectively invariant, where TM (1) denotes the bundle of vector elds of projec-
tive weight 1; its kernel consists of solutions to theoncircularity equation

(r ) =0; (227)
called concircular vector elds. This equation is especially congenial in that its pro-

longation connection coincides with the Cartan connectionindeed, following [7], for
any solution  of (227) there is a unique function (of projective weight 1) such

that r = ,nhamely = ir . We then have
R =(rr r r ) = r r; (228)
and tracing over  yields Ric =(n 1r . We conclude that lifts uniquely
to parallel section of the standard tractor bundle for the conection
r = 7 (229)
induced by the (normal) Cartan connection, wheré n—llRic

The simpler connection arising in the metric projective casis described as follows.

Theorem 6.1. Let (M;[r ]) be a metric projective manifold, and for anyp 2 M, let
N, be the dimension of the span gb of the local solutions of (2214). Then for any
metric g with Levi-Civita connectionr 9 2 [r ], there is a functionB on M, which is
uniquely determined and smooth whefé¢, 1, such that every concircular vector eld
lifts uniquely to a parallel section of the standard tractobundle for the connection

rg +
re Bg
Moreover B is locally constant on the open set whefd, 2, which is empty or dense

in each connected component & . If M is connected andB is locally constant on a
dense open set, it may be assumed constant n

r (230)

Proof. We taker = r 9 and useg to raise and lower indices. Suppose that

r + =0 and r e+ e=0
for solutions ;e of (ZZ1). Then (228) implies that
RY =g r r and R% e=gr e
9 g 9 g (231)
andso 2gr ; =R e = RS e =2r e
In particular, [ r ; =0 and so there is a unique smooth functioB on the open set
where 6 0 such that
r Bg =0 (232)

on M for any extension ofB over the zero-set of (sincer also vanishes there).
Equation (231) now implies that any two concircular vector elds have the same func-
tion B where both functions are determined. Thus$B is uniquely determined and
smooth whereN, 1. Di erentiating (232) on the open set whereB is smooth gives

rr r B+Bg =0;

and so [ r ;B =0. Hencer B =0 on the open set whereN, 2. This subset is
empty or dense in each component ® , since two solutions of[(227) that are pointwise
linearly dependent on an open set are linearly dependent ohat open set.

It remains to show that if M is connected and is locally constant on a dense open
subsetU (which could be disconnected), then it may be assumed constaTo see this,
we use only that

P =B and r B=0
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on U, for then we may di erentiate once more to conclude that

r P) +Pr = Br
and hence that
(r P ) P = Bg
on U. Tracing over  vyields
(r P ) P = nB
and hence that
; . %F? - B (233)

on U. Although this equation was derived onU, it is a valid stipulation everywhere
on M. Moreover, the tractor

is nowhere vanishing oM (else in (Z29), the vector eld would vanish identically).
From this point of view, we see thatB extends as a smooth function oM . Finally,
sinceB is locally constant onU, it is locally constant and hence constant o .

The connection [23D) of Theorenl 611 di ers from the tractor annection (229) by
the endomorphism-valuedl-form
0 0 . 0

P Bg o0 X " P Bg )X

The connections agree on the at model. Speci cally, on thenit sphere we have
R =g g g g whence P =g ;

so that the connections coincide wittB = 1.

The proof of Theoreni 6.1l may be broken down into two steps. Bir, one shows that
the connection [Z3D) has the required lifting property for@me functionB, which may
only be uniquely determined and smooth on an open set. Secbndne establishes
su cient regularity to determine the connection globally on M (in this case, with B
constant). In the literature, the second step has often beerarried out by probing M
with geodesics. In the above proof we advocate an alternaiVine of argument that
we believe to be simpler and more generally applicable.

Remark 6.1. For example, we may apply the same technique to the mobilitygeia-
tions (2286), where the replacement fof{233) has the form
0

10 1 20 1 0 13
R 0 0 A A A 9

@ rR R 0A@ A=B4@ A —_@ 0 AS:
m R+R/R rR R N 1ip

As above, this is su cient to show that B is constant if it is locally constant on a
dense open set. One striking di erence between this case afbdeorem[6.1, however,
is that the connection [23D) actually has the same covariamonstant sections as does
the standard Cartan or prolongation connection[(229). Forte mobility equations,
however, not only is the resulting connection[{226) di ereinfrom the prolongation
connection [[43] but also their covariant constant sectionsre generally di erent. Nev-
ertheless, all solutions of the mobility equations lift urquely as covariant constant
sections with respect to either of these connections (andishis their crucial property).
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We next seek to elucidate the rst step in the proof of Theorer®. 1. Here we observe
that the key equations [231) used to establish the uniquereesfB may be viewed as
a characterisation ofB in terms of the curvature RY of g, namely that

R®  =B(g g )
This motivates the introduction of some terminology, follwing Gray [50].

De nition 6.1. Let (M; g) be a (pseudo-)Riemannian manifold and suppose that the
tensor R has the symmetries of the Riemannian curvature aj. Then a nullity
vector of R at p2 M is a tangent vectorv 2 T,M with R v =0, and the nullity
spaceof R at pis the set of such nullity vectors. We sayRr has nullity at p if the nullity
space is nonzero, i.e. the nullity index is positive.

In particular, if RY is the Riemannian curvature ofg, then at eachp 2 M, there is
at most one scalaB 2 R such thatR® = RY B(g ¢ g g ) has nullity
at p. Indeed ifv ande are nullity vectors for R® and R® respectively then

0=(B B)Yg g 9gg)ev=(B B)(veg ve),
which implies that B = B unlessv or e are zero.

De nition 6.2. Let (M; g) be a (pseudo-)Riemannian manifold. Then thepfojective)
nullity distribution of g is the union of the nullity spaces ofR®  overB 2 R and
p2 M. We say thatg has (projective) nullity at p2 M if there is a nonzerov 2 T,M
in the nullity distribution of g, i.e.

R® B(@g g9gg)v =0 (234)
for someB 2 R, uniquely determined byp.
The de nition of B is reminiscent of an eigenvalue; indeed, the trace of (234) is
P v =Bv;

soB is an eigenvalue of the endomorphisia . On the other hand the trace-free part
of (234) provides a projectively invariant characterisabn, using the projective Weyl
tensor P =R P + P ,as follows (cf.[[49]).

Proposition 6.2. Let (M; g) be a(pseudo}Riemannian manifold of dimensiom 2,
and letv 2 T,M be nonzero. Then the following statements are equivalent

(1) v is a projective nullity vector atp
(2) there existsB 2 R such thatP v =(P Bg )v
3)P v =0.

Proof. (1)) (2). SinceP v =Bg v ,R =R andP =P , we have
P v=R v gPvVv+gPyvVv
B@g 99g)v Bggv+gPv=(P Bg)gvVv;

and (2) follows by raising the index .
(2)) (3). SinceP; ;=0, which follows easily fromR; =0,

P v =(P P v,
which vanishes by (2), sincé® Bg is symmetricin .
(3)) (1). Observethat0 =R vv =(g P g P )vv =yv P v. Hence
there existsB 2 R such thatP v = Bg v, and hence
R v=(gP gP)y=B@gg gg),
i.e. v is in the projective nullity at p.
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In particular, this shows that the projective nullity distribution is a metric projective
invariant, as is the expressiorP Bg wherever there is projective nullity, hence
so is the special tractor connection[{230). The above argumiefor this fact is given
in [49], where the special connection on the standard tractbundle is also discussed.

Remark 6.2. In the 2-dimensional case, all metrics have nullity at all points ah B
is the Gauyian curvature. On the unitn-sphere the nullity distribution is the tangent
bundle andB 1. Condition (234) may be written as

C vzmScal +B(@v gv) -5Rc v Ricv)
where C is conformal Weyl curvature tensor. For a Riemannian metricwe may
orthogonally diagonalise the Ricci tensor to see that i€ = 0 (as it is in three

dimensions or in the conformally at case in higher dimensits) thenR has nullity
if and only if all but possibly one of the eigenvalues d® coalesce withB being the
possible exception. So in the three-dimensional RiemannigaseR has nullity if
and only if the discriminant of the characteristic polynomal of P vanishes:

(P ) 9P )P P )+21(P )P P )> 3P P )3
+8(P PP P ) 36P )P P )P P P )+18(P P P )*=0:

Indeed, in three dimensions (wher&® is determined byP ) it is also the case in
Lorentzian signature that R has nullity if and only if P is diagonalisable with
eigenvalues distributed in this manner. In any case, in theedimensions it follows that
B is a continuous function and is smooth except perhaps at ptégnwhereP  is a
multiple of g . In the four-dimensional Riemannian case, one can check thAR

has nullity and the eigenvalues oP areB; ,; 3; 4, then

I C C =6 ( 2 )2+( 3 )+ ( 4 2)?
and if this expression is nonzero, then
B=7P ++C C C 18C P P

It follows that B is smooth onfl 6 0g whilst on f1 = 0g three of the four eigenvalues
of P merge as above an® is the odd one out unles$® / g . Therefore, as in
three dimensions, it follows thatB extends as a continuous function that is smooth
except whereP  is a multiple ofg . We anticipate similar behaviour in general but,
for the moment, the regularity of B remains unknown.

6.2. C-projective nullity. We return now to metric c-projective geometry, where
we seek to develop analogous interconnections between atmve and special tractor
connections to those in the metric projective case. In orde¢o do this, we rst de-
velop a notion of c-projective nullity for (pseudo-)Kahlermetrics, modelled on the
curvature of complex projective spacd_(48) in the same waydhprojective nullity for
(pseudo-)Riemannian metrics is modelled on the curvaturd the unit sphere.

We suppose therefore that{M; J; g) is a (pseudo-)Kahler manifold withr the Levi-
Civita connection ofg and =J g the K&hler form. Further let us write

S g g gg + +2 (235)

for the Kahler curvature tensor of constant sectional holoorphic curvature 4. As in
the (pseudo-)Riemannian case, at eagh2 M, there is at most one scalaB 2 R such
that GB =R BS has nullity at p. Indeed, ifv ande are nullity vectors
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for GB  and G® respectively then
0=(B B)S wev
=(B B)veg ve +J ve +J v] e +2J vJ] we)
which implies that B = B unlessv ore are zero. By analogy with De nition[6.2, and

again following Gray [50] (who used the term holomorphic cstancy ), we therefore
de ne c-projective nullity as follows.

De nition 6.3.  The (c-projective) nullity distribution N of a (pseudo-)Kahler mani-
fold (M; J;g) is the union of the nullity spaces oflG®B overB 2 Randp2 M, and
for eachp 2 M, we write N, for the (c-projective) nullity spaceN\ T,M. We say that
(J;9) has (c-projective) nullity at p2 M if N, is nonzero, i.e.

R BS v =0; (236)
for someB 2 R, uniquely determined byp, and some nonzerv 2 T,M.

Thus N, is the kernel of the linear map
v 71G® v,

for someB 2 R depending onp. Let us remark that, sinceG = GB has the symmetries
of the curvature tensor of a Kahler metricN, is aJ-invariant subspace off ;M (i.e.v 2
Np impliesJ v 2 N,), hence is even dimensional.

Bearing in mind the discussion of Sectioh 4.1, we may writ€38) in barred and
unbarred indices. We nd that

Rabat + 2B (Ganed + GepGag) VI =0
Rapcd 2B (GacGap + GapGac) V¢ = 0:
As in the projective case, tracing[(236) over yields an eigenvalue equation
Ric v =2(n+1)Bv ; equivalently P v =2Bv ; (238)
sinceP = —-Ric by (25) and (I09). This can equivalently be expressed in bau
and unbarred indices as
Pvd = 2BVvP; oras  P°v?=2Bv" (239)
Of course, we may derive[{Z39) also directly by tracing the send equation of [23]7),
respectively its conjugate, with respect taac, respectivelyac. Further, note that the
symmetries of the Ricci tensor of a (pseudo-)Kahler metricew that (239) can be also

equivalently written as Ps®v® = 2BvP®, respectivelyP,°v? = 2 Bv®:
Now assume that [[Z3]7) is satis ed and decompos$e,,°4 according to (28) as

(237)

Rab'd = Hapa+ a"Pog* o Phal

Then equation [239) implies
Hao’aV® = (Rap’s  aPog aPoa)V° =2B( aVa+ ¢Va) ( a"Pogt o°Poa)V° = 0:
Furthermore,
Ha'aV? = (Rap’s  a“Pog dPpa)V°

=(2B(GaV°+ aVp) 2B J°Vp  PpaV)

=(2BGay PV
which impliesH,.Sqv3v® = 0. It fact these two conditions are also su cient for nullity.
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Proposition 6.3. Let (M;J;g) be a(pseudo}yKahler manifold of dimension2n 4,
and letv® 2 Tpl?oM = T,M be a nonzero tangent vector. Then the following statements
are equivalent

(1) V¢ 2N,

(2) there existsB 2 R such thatH,%qv¥ = (2Bg,, Pa)V®

(3) Hylqv@v? =0 and H,%Vv°=0,

where, as in(Z8), H. q is the trace-free part ofR % 0°°R 4he-

Proof. We have just observed that (1) implies (2) and (3). Note, morver that taking
the trace with respect toa and c in (2) gives (239), which shows immediately that (2)
implies (1). Hence, it remains to show that (3) implies (1). fl @) holds, then

C y,a,,d — c c a,,d a,,d — d
Rap dVV" = ( aPpgt dPoadV'V' ) RapegV?V" = 2VePygv

so0 = V[CPb]dVd and we conclude thatPqv® = 2BV, for some constanB . Substituting
the conjugate conclusiorP,.v® = 2Bv, into R,,SqV° gives

RalaV® = (Hyla+ aPogt aCPra)VP = 2B vy + 2B v,

which, after lowering the indexc is equivalent to (Z37), as required. (Note thaB is
necessarily real, sinc®,,°q and S,,°q are real tensors.)

Corollary 6.4. At any p2 M, the nullity distribution of N, is a metric c-projective
invariant, i.e. the same for c-projectively equivalen{pseudo}Kahler metrics g,, and

.- Furthermore, if N, is nonzero, andB; B 2 R are the corresponding scalars in the
de nition of N, with respect tog;g respectively, thenP,, 2B, = P, 2B0q.

Proof. By Proposition[Z.13, criterion [3) of Proposition 6.8 is c-mjectively invariant.
In fact, by Proposition[4.4,H % is precisely the harmonic curvature of the underlying
c-projective structure. The last part follows immediatelyfrom criterion (2)).

Remark 6.3. For later use, we apply the projectors of Sectionl 1 to reforrfate the
equivalent conditions of Propositiori 6.3 directly in termofv 2 T,M as follows:

(1) v 2N,
(2) there exists a constantB 2 R such that H v=(J P 2B )J v
3)H vv =0 and(H +JJ H )v =0,

where H R [ Py+J P;J +J P J andP LR

n+1

Proposition 6.5. Let (M;J;g) be a(pseudo}yKéhler manifold of dimension2n 4,
and B a smooth function on an open subséi. Then for any (real) vector eld v in
the nullity of G= GB on U, if v is non-null at p2 U, then dB =0 there.

Proof. The di erential Bianchi identity r zRgcs® =0 on U implies that
I aGhed” = 2(1 [@B)Ghe o +2(r [aB) 5°Cuc:
Sincev? and v belong to the nullity of G, we may contract with vev? to obtain
0=2(r [aB)GycVVe + 2(1 (aB) 5°GacVVE:

A further contraction with ve = ge V' yields (r (aB)Viydacveve = 0, so if v is non-null at
p, (r aB)Vvy = 0 there; hence(r ;B) y° =0, which impliesr ;B =0, i.e.dB =0.
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6.3. Mobility, nullity, and the special tractor connection. Our aim in this sec-
tion is to show that, under certain conditions, the solutios of the mobility equa-
tion (I29) on a (pseudo-)Kahler manifold M; J; g) lift uniquely to parallel sections of
V V ¢ for the special tractor connection:

0 1 O 1
Abc r aAbc+ ac b

rYe@boj bA=@ by b 2BALjr, PA
I a 2B .

0 1 0 1 (240)

Abc r aAbC+ ab c

I’XC@ bj bA:@ra bjra by b ZBAbaA;
ra 2B 4

wherer is the Levi-Civita connection forg,, and B is a smooth function onM . Here
Vc is identi ed via g,, with a direct sum of unweighted tensor bundles, and we write
the connection in barred and unbarred indices, so that for sgons of V. V ¢, the two
lines of (240) are conjugate.

Remark 6.4. By Theorem[4.6, we know already that any solutiom3® of the mobility
equation (129) lifts uniquely to a parallel section o¥ for the more complicated pro-
longation connection [I5F7) (I58). If it also lifts to a pardlel section for (240), then
(cf. Remark[6.1) the two lifts may di er, albeit only in the last component. More
precisely the last component of the parallel lift for the special tractor connection is
givenby = ©° I(P, 2Bg,)A®, where Cis the last component of the parallel
lift for the prolongation connection. Note that if the metric g?° itself lifts to a parallel
section for (240), thenB must be locally constant.

In [44, Theorem 5], it is shown that if the mobility of(M; g; J) is at least three, then
there is a constantB such that all solutions of the mobility equation lift uniqudy to
parallel sections ofV for (240). Before developing this, and related results, it M be
useful to establish some basic properties of special tracmnnections [Z4D) and their
parallel sections. Throughout this section we set, for a ggwn function B,

Gabod = Rava ¥ 2B (Gaped + Genaa) (241)

The equations satis ed by parallel sections of (240) are

r aAbC = aC b (242&)
ra ¢= Qat+t2BA; and r , ,=0; (242b)
r« =2B , (242c)

and their complex conjugates. Of course, the rst line is siply the mobility equation.
In particular, from (L45) (146) (and the symmetry of P,) we have

O’ a ¢ Gaol b d = RapecAd®  RapaeA’c (243)
= WapeAd®  WapeA%c  GacPerAd® + GupPaeA’c;
whereW, .. = Hgpeer SiNced is integrable.
Lemma 6.6. If A,° and |, satisfy (242a) (2428) for smooth functionsB; , then
GapcAe = GaplAct (244)
Gapel = Gulfa 2B a)+2(r aB)Ay (245)
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Proof. We substitute (242b) into (243) to obtain
RabecAd®  RapeA%c = Gac(Gap  2BAg)  Ga(Fac 2BAxc)
= 2B (GupGaeA%  GacOerAd");
and (244) follows from [(2411). To obtain [(245), we applyL(24lipstead to the identity
Rao a=(Fafp I pfa) c=Fal gop+2BAy)
=2(r aB)Ayp 2BOap ¢ Ol a ):
In Theorem[6.11, we will show that if(M;g;J) of mobility 2 has c-projective
nullity, then all solutions of the mobility equation lift uniquely to parallel sections oV

for (240), whereB is characterised by nullity. First we establish the followig converse
and regularity result.

Theorem 6.7. Let (M;J;g) be a connected(pseudo}Kéhler manifold with a non-
parallel solution A2 of the mobility equation, which lifts, over a dense open sebsJ
of M, to a real parallel section(A2®; 2; ) for (240Q) with B locally constant. Then
(1) B is constant and(A2; 2; ) extends to a parallel section ove¥i ;
(2) G, ¢ =0, and hence(J; g) has c-projective nullity on the dense open subset
where 2 is nonzero.

Proof. As noted in Remark6.4, Theoreni 416 provides a real sectigA®; 2; 9 of V
(de ned on all of M) which is parallel for the connection given by[{187) and (158 0On

U we compute, using[(242b) and{243), that

Ra’t A% + RyCeA® = 2B( %A% [FALY); (246)
which implies
L(Ricyi A® + Ryp%A®) = 2B (A% 1 °A%): (247)
Applying r 4 to (247) and taking the trace with respect tod and ¢ shows that
armry (7 aRIG)AY +(r Rpl)A®+(1 n)Ric, ' =2B 1 (248)
Recall that
b+ZBAab= roa b — Oab+ PaCACb %HacbdACd

and that P,, = njl Ric,,. Hence, applyingr 1, to (248) and taking trace shows, together

with the identities and (248 that we have an |dent| of the form
0 (e47) ()) 20 4 0 13

R 0 0 O A® Ao Ac O
@ r R R 0A@ 2A=2B4@ 2A 2@ o AS:  (249)
m R+R/R rR R 0 0 N ipg

Since the left-hand side of[{249) is de ned on all df1 and (A%; 2; 9 is a nowhere
vanishing section onM, the identity (249) can be used to extendB smoothly as
a function to all of M. SinceB is locally constant onU and M is connected,B
is actually a constant and(A2; 2; ) extends smoothly to a parallel section of the
connection [24D) on all ofM .

The second part is immediate from[(245) withr ,B =0 andr , =2B ,.

Remark 6.5. When (J; g) has c-projective nullity, P,, 2Bg,, (with B given by (Z36))
is a metric c-projective invariant by Corollary[6.4, and heoe the connection [(240) is
metric c-projectively invariant. In particular, by Theorem[6.4, the connection is metric
c-projectively invariant if B is constant and it admits a parallel section with , nonzero.
On the other hand, if the connection [[24I0) admits a parallelextion with 5, = 0,
then (242D) shows thatB = 0 unless the corresponding solutior ,, of the mobility
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equation is a (necessarily locally constant) multiple af,,. Thus a parallel solution of
the mobility equation which is not a multiple of g lifts to a parallel section for (240) if
andonly if B =0.

Theorem 6.8. Let (M;J; [r ]) be a connected metric c-projective manifold of dimen-
sion 2n 4 arising from a (pseudo}Kéhler metric g with mobility 3. Then either
(J; g) has c-projective nullity on a dense open subdét M, with B constant in (Z38),
or 2n 6 and all metrics c-projectively equivalent ta are a nely equivalent to g
(i.e. have the same Levi-Civita connection

To prove this theorem, we use a couple of lemmas, the rst of wih is a purely
algebraic (pointwise) result.

Lemma 6.9. Suppose thaR,,, is a tensor which has Kahler symmetrie€108) with
respect tog,,. Let A, K., a and €, be (real) tensors that satisfy

RaxceAd® + Rapd A ¢ = Gac ab Ui ac (250)
RaceRa® + Rapa & ¢ = GacCap  GapCac: (251)
If A,, A, and g,, are linearly independent, then ,, respectively€,,, are linear
combinations ofg,, and A, respectivelyg,, and &, with the same second coe cient.

Proof. Note rst that these equations remain unchanged if we add st multiplies
of g, to the tensorsA,,, &.,,, . and €,. Hence, we can assume without loss of
generality that the trace of these tensors vanishes. We thérave to show that , and
€_, are a common scalar multiple oA\, and &, respectively.

From equation (250) it follows immediately that

A" (RppceAd® + Riupar A')  A'p(RajceAd® + Ragr A'¢)
= Rac ot Bap ac GcRb o Gufa ne! (252)
By the symmetries [108) ofR,,4, the left-hand side of identity (252) equals
(Ba"Rppe  A'pRaice)Ad® + (B Rppy A yRaar)A' ¢
= (Ra"Rppce + A pRecai)Ad®  (Ra"Ryrpn + A Ryrai)A' ¢
= AxcCipt Apfac GcA'bCa  GupAa” Che (253)
where the last equality follows from[(252). From[(252) and_&3) we therefore obtain
Oac ab+ Oab ac = AwpCac+ Aac®ap  Kap ac  Kac ao; (254)
where ,, = A.f€,, A", .. Taking the trace with respect toa and c yields
Ngpt Opa” =0; (255)
which shows that ,, = 0. Therefore, we conclude from(Z254) that
AgpCac+ AacCp = Kgp act Kac av

Since any nonzero tensor of this form determines its factoop to scale, andA,, and
A, are linearly independent, we conclude that ., and €, are the same multiple of
A,, and &, respectively.

We next relate linear dependence to pointwise linear depegrte.
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Lemma 6.10. Let (M;J;g) be a connected pseudo}Kahler 2n-manifold (n  2) and

let A, be a solution of (IZ8) such that&,” := p ,°+ gA° is also a solution for real
functions p and g. Then p and q are constant orA,”> = ,° for constant .

Proof. By assumption, we have ;A°= ¢ pandr &°=  .°€, hence

rapo’+radA’= (% g
If r .= 0, it follows easily that pand g are locally constant hence constant. Otherwise,
contracting this expression with a nonzero tangent vectoX 2 in the kernel ofr ,q, we
deduce that®,= q ,andr ,p= r oqfor some function . Thusr ,q(Ay° b°) =
0. If A,® = 5 it follows from what we have already proven that is constant.
Otherwise, we deduce thap and g are constant.

Proof of Theorem[6.8. Suppose thatA,, and A&,, are nondegenerate solutions of the
mobility equation such that g.,; A,, and &,, are linearly independent. At each point
of M, (243) implies that A, and &, satisfy (250) (251), with =71 5 cand €, =

r .€c. By Lemmal6.10,g,,; A,, and &, are pointwise linearly independent on a dense
open setU® and hence, onU% Lemmal6.9 implies thatA,, and &, lift to smooth
solutions (A, a; ) and (A&, €4; ~) of (242a) (2428) for the same smooth function
B. Thus we may apply Lemmd6J6.

The trace-free parts ofA,? and &,° are pointwise linearly independent orJ®, hence
if n = 2, their common centraliser at eactp 2 U° consists only of multiples of the
identity. By (244), G,, is a multiple ,, of .9, hence zero, sinc&,, ¢ = Gyt Thus
g has constant holomorphic sectional curvature, which prosethe theorem for2n = 4.

To prove the theorem for2n 6, we substitute (245) into G,,.¢ = G,,,° to obtain

Oen(l a 2B a) 2(r aB)Agp = Gan(r ¢ 2B o) 2(r B)A:
If we contract this equation with a vectorY ¢ in the kernel ofr B, then sincen 3,

we obtain a degenerate Hermitian form on the left hand sidegeal to a multiple of
0. Hence both sides vanish, i.eY ¢ is in the kernel ofr ;2B . and we have

AgY®= gguY© and ra 2B a=2 (r aB)
for some function on U°% Hence [245) now reads

GabcOI d = Z(r aB)(Acb gcb) = 2( r CB)(Aab gab):
If r B is nonzero on an open subset &f° it follows that A,P 22 has (complex)
rank at most one there, with image spanned by 2B and kernel containing the kernel
of r ,B. Since the same holds fo&,> ~ ,° for some function™, we have that . A,P
and &,P are linearly dependent, a contradiction. Hence (B is identically zero onU°
i.e. B is locally constant. The result now follows from Theorern 6.7

Remark 6.6. The above proof shows (for mobility 3) that any solution of the
mobility equation ([L29) lifts to a parallel section for (24}, where B is given by (236),
unless all solutions are parallel (i.e. a ne equivalent tag). However, in the latter case,
any solution of (129) lifts to a parallel section for[(240) wh B = 0 (cf. Remark[6.5).
This establishes[[44, Theorem 5]; the next result may be seama strengthening of this
theorem in which c-projective nullity is brought to the fore cf. also [26, Theorem 2].

Theorem 6.11. Let (M;J;g) be a connected(pseudo}Kahler manifold admitting a

solution of the mobility equation that is not a constant mufile of g. Assume that there
is a dense open subsét M on which(J;g) has c-projective nullity and denote by
B the function in (238). Then the following hold
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B is constant
any solution A2 of the mobility equation lifts uniquely to a section 0¥ which
is parallel for the special tractor connection24Q).

We divide the proof of Theoreni 6.1]1 into several propositien

Proposition 6.12. Under the assumptions of Theoren®.11, there is a dense open
subsetU® U on whichB is smooth, and for any solutiom . of the mobility equation
(1) there is a smooth real-valued function on U°such that (2428) holds, and ifB
is locally constant then(Z42¢) also holds onU®
(2) for any vectorv? in the nullity distribution of (J;g),

2r B)Agpve+ vy (2B 4 1r 4, )=0: (256)
In particular, if v2 is not in any eigenspace oA,” then B is locally constant.

Proof. To see that (1) holds forAy., rstrecall that 2, given by (2424), is holomorphic.
Next, by assumption, at anyp 2 U there is a nonzero tangent vector® such that
VPG4 = 0. Hence, by equation[[243), o we have

Vel a g% GagVr b ¢ = VPRapeA%  VPRaperAc®
= 2B(QaeVe *+ GeeVa)A®y + 2B (QagVe + GegVa)Ac® (257)
=2B (gadVbAcb VCAad)

and so
VCVad gadVbV bc = 0;

whereV,, r . , 2BA_. Asv?60 onU, it follows that V,, is pure trace, i.e. the
second equation of(242b) holds pointwise. By assumptiorhdre is a dense open subset
U® U on whichg,, and A, are pointwise linearly independent for some solutioA
from which it follows that B is a smooth real-valued function orJ% Hence [24Zh)
(2421) hold onUP for any solution, with  smooth onU°

By Lemmal6.6, any solution satis es[(Z245), which implied (2. Now ifr ,B =0 it
follows immediately from the existence of nullity that [242) holds onU®.

Proposition[6.12 and Theoreni 617 have the following immed&consequence.

Corollary 6.13. Theorem[6.11 holds unless the nullity distribution is contained in an
eigendistribution of every solution of the mobility equains.

It remains to show that Theorem[6.1l also holds when the nuifi distribution is
contained in an eigendistribution of every solution of the wbility equations, and for
this it su ces to show that r ;B = 0 on a dense open set. Suppose then tha is
a nonzero nullity vector such thatA,?v® = v® for some smooth function , so that
ra« 2B =2 r 4B by (Z58) and hence[(Z45) reads

Gabcd d = 2([’ aB)(Acb gcb) = 2([’ CB)(Aab gab) (258)

as in the proof of Theoreni©l8. Since? is an eigenvector ofA,° with eigenvalue ,

vP is an eigenvector ofA%, with eigenvalue . Howeverv® is in the nullity of G, so
the contraction of (258) with v° yields (r (B)(A,, g.,)Vv° = 0. If we now combine
these observations with Propositiorh_6]5, we obtain that dier r ,B = 0 on a dense
open set (and we are done) or there is an open set on whig® := A.° a2 has
(complex) rank at most one,v? is a null vector in its kernel, and is real. Hence the
generalised -eigenspace oA, is nondegenerate, and so has (complex) dimension at
least two, which implies that is locally constant by Lemma5.16. Now&k,? is a rank
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one solution of the mobility equation with a nonzero (but nd) nullity vector in its
kernel, and so Theoremh 6.11 is a consequence of the followimgposition.

Proposition 6.14. SupposeM; J;g) is a connected(pseudo}yKéhler manifold of di-
mension2n 4 admitting a non-parallel solution of the mobility equatiorA,, such
that A,” is a complex endomorphism of rank. Assume thatg has nullity on some
dense open sey M and that there is a nonzero vector in the nullity distributio
that is in the kernel of A,°. Then the functionB de ned as in (238) is a constant and
the conclusions of Theoren®©.11 hold.

Before we give a proof of Proposition 6.14 we collect some @al information about
solutions of the mobility equation of rankl.:

Lemma 6.15. Suppos€M; J; g) is a connected(pseudo}Kahler manifold of dimension
2n 4 admitting a non-parallel solution of the mobility equatiom\,, such thatA,® is
a complex endomorphism of rank. Assume thatg has nullity on some dense open
setU M and that there is a nonzero vector in the nullity distributio that is in the
kernel of A,°. Denote byB the function de ned as in (Z38) and let , = r , with

= A,2. Then the following holds on a dense open sub&gt U:

(1) the triple (A", 2; ) satis es system(242) (and its conjugaté for some smooth
nonvanishing real-valued function ;

(2) A= ' a pand = a9

(3) r 4B is proportional to ,, and at anyx 2 U%either r ,B = 0 or the nullity
space ofg at x lies in the kernel ofA,°

Proof. Statement (1) follows immediately from [(I3R), Propositior6.12 and the ex-
istence of a nullity vector in the kernel ofA.P. Since A, has rank 1, its nonzero
eigenvalue is , and 2 is a nonzero section of the corresponding elgenspace by
Corollary 5.I7. Thus on the dense open subsel® U where 260, A>= . P
with = —( a 2), and di erentiating this identity using (242) yields

(ra +2B 2 ) <=( 1)Gc:
Since the left hand side is simple and,, nondegenerate both sides must vanish, which
shows that = 1, and hence (2) holds. The identity [245) may now be written
Gabcd d= 2([’ aB)Acb =2 l(r aB) cC b
This immediately implies the second statement of (3), whilthe rst statement follows
from the symmetry of G,, .0 in a and c.

Proof of Proposition 614 We have already noted that to prove Propositiori 6.14 it
su ces to show that B is locally constant. By Lemma6.I6A is of the form

A =4 + J ) (259)

Let us write D TM for the distribution de ned by the kernel of A and

P o= (3 )= o+ o+ 1)

for the orthogonal projectionP: TM ! D, where we use Lemma6.115(2) to rewrite

=2 . = 2 . Note that (J;g) induces by restriction a complex structure
JP and a JP-invariant metric go on D. The projection P also determines a linear
connection onD by

rP°X =P r X ; for X2 (D)
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which preserves this Hermitian structure orD. Since andJ commute and preserve
D,L P =0 and ( D) is generated by sections commuting with andJ , which are
called basic For any basicX 2 ( D), Lemmal6.I5(1) implies

rr- X=ryx = X (260)
and hence for any other basic element 2 ( D) we compute
(L o)X;Y)=1L (@X;Y)=r1 (@(X;Y))= 2gp(X;Y):

SinceL =r =g(; )= 2 ,itfollowsthatL ( *go) =0. Letus now
regardr P as apartial connection on D, i.e. an operatorr ®: (D) ! (D D).
Sincer  =r yx =0 foranyX 2 ( D), the partial connectionr P preserves 'gp.
Furthermore, its partial torsion, given by

reY r 92X P(X;Y] for X;Y 2 (D)

vanishes. It follows thatL r P isasectonofD D D=D D D, which
is symmetric in the rst two entries and skew in the last two etries, which implies it
vanishes identically. We conclude that. RP =0, where thehorizontal curvature RP
of r P is de ned, for X;Y;Z 2 ( D), by

ROOXGYNZ)=rRr9Z 1 9rRZ t BuxypZ:

For basicX;Y;Z 2 ( D) we compute via [Z6D) that

rer9Z =P xrvzZ) 29(rvz; )X 2o vz;d )IX

FrovZ =P yZ) 90 xY; )Z 290 xY;3 )IZ:
Usingg(Y; )=0= g(Y;J )forY 2 ( D), we also obtain, forX 2 ( D), that

glr xY; )= g(X;Y) and o(r xY;J )= g(Y;IX);
from which we deduce, for (basicX;Y;Z 2 ( D), that

RP(X;Y)Z = P(R(X;Y)Z) 5S(X;Y)Z; (261)

where S is the constant holomorphic sectional curvature tensor deed as in [235).

Let us write RicP(Y;Z) = trace(X 7! RP(X;Y)Z) and RicP(Y;Z) = trace(X 7!
P (R(X;Y )Z)) for the Ricci-type contractions ofR® and P (R(X;Y )Z). Via the inverse
o' of g, we view Ric® and Ric” as endomorphism oD, from which viewpoint
equation (261) implies that they are related as follows:

Ric® =Ric? L Idp: (262)

By assumption, at each point of a dense open subset, there isector V in D that
lies in the nullity distribution of g. Inserting V into equation (261) yields

R°(X;V)Z= B + S(X;V)Z; (263)

which implies that

Ric°(V)=2nB 5 V: (264)

SetC .= B 5. By (1) and (3) of Lemmal6.1b we see that x C =0 forall X 2 ( D)
and that r ; C = 0. Equation (Z62) shows thatV is an eigenvector of Ric® with
eigenvalue2C. SinceL RP =0 andL (g,') = 0, it follows that L ( Ric®) =0,
and hencer C=L C =0 as well. ThusC is locally constant, which implies thatB
is locally constant by Lemmd6.15(1), and this completes thgroof.
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Remark 6.7. Proposition[6.14 may alternatively be proved as follows. &tting with
the usual equations

= g +2BA A = tKK
r =2B where ¢ - j 2 (265)
= +2 =0
we may consider the new metric
& g +(1+2 )A (266)
and verify from (265) that
L g =0,
foranyv suchthatA v =0, we have
Ric v =Ric v 2B + n oy Zi v, (267)

whereRic is the Ricci tensor ofg
Hence, ifv is a nullity vector for g so that in addition Ric v =2(n+1)Bv , then

g Ric v = n(2B ) SV (268)

Now, sinceL (g Ric ) = 0, it follows that any eigenvalue of this endomorphism is
preserved by the ow of . Therefore,

0=L n(2B ) 3 =n2LB+ (2Br r ) =2n L B:

But from (E65) we see thatO=r [ r ; =2(r [ B) ;whencer B =0, as required.

The only drawback with this proof is that verifying (267), though straightforward,
is computationally severe, whereas the corresponding idigyn (Z64) in the previous
proof is more easily established. The previous proof may bees as a limiting case of
the reasoning just given. Speci cally, for any constant 6 0, consider the metric

31 }g + iz 1+ A with inverse ¢ g +(1+ E)A (269)

to arrive at c

. : n

Ric v =Ric v B+ —+ - v (270)

instead of [267), an equation in which one can take a sensitilait as c! 0 essentially

to arrive at (264) instead of [268). The metrics[(269) and theinvarianceL ¢ =0

can also be recognised in the previous proof. More precisdlye rst equation from
(268) can be expressedds g = 2g +4BA or, more compactly, as

L ( 'g )=4 'BA ;
which implies, using our earlier terminology, that the metic g restricted to D is
invariant under the ow of . We also observed in the previous proof that orthogonal

projection P = + 1A onto D is invariant under this ow. We are therefore
led to invariance of the covariant quadratic form

PP ‘g = %g + A

which is the limit of (269) asc! 0 whilst the nondegenerate metrigy is obtained by

decreeing that the remaining vectors andK at each point be orthogonal toD and

each other and satisfyg =g K K =2c The metric (Z66) is the case that
and K are taken to be orthonormal. In any case, it follows that. ¢ =0.



94 D.M.J. CALDERBANK, M.G. EASTWOOD, V.S. MATVEEV, AND K. NE USSER

6.4. The standard tractor bundle for metric c-projective struct ures. The met-
ric theory of the standard tractor bundle T turns out to be rather degenerate. For a
metric c-projective structure (M; J; [r ]) induced by the Levi-Civita connectionr of a
Kahler metric g, we haveP,, = 0 and so the standard tractor connection[(52)[(5B) is
given by

T XP raXP+ P T XPo_ raXP

r = r

a ra a - ra Pabxb (271)

The kernel kerDT of the rst BGG operator (89) consists of vector eldsXP® with
c-projective weight( 1;0) which satisfy

r.XP+ =0 r XP=0 (272)

for some section of E( 1;0); then = %r aX 2, and, setting the torsion to zero in
Proposition[3.3,(X ?; ) de nes a parallel section for the tractor connection(271)This
is similar to the projective case, with the following distiigtion: although the tensor
in Theorem[6.1 is projectively weighted, the bundlé(1) is canonically trivialised by
a choice of metric; here, in contrast, it is the real line burld E(1;1) that enjoys such
a trivialisation, and not the complex line bundleE(1; 0).

However, taking care to use[(45) (see also Proposition—2.13) follows that any
solution of (Z72) satis es

6T a =(ral b I of a)X®= RapaX?+ PgpX©

273
= Hao®aX?  %PagX %, (273)

whereH % = Haq% and Hap% = 0. We may rearrange this as
6T a = pPagX? HapaX (274)

then the trace overb and c shows thatr , = P,,X° (as in Proposition[3.3) and hence
that H,,°4X 9 = 0. Following the projective case (Theoreni6l1), we lower andex
in (Z73) and (274) to obtain

Rabcdx d= Oocl' a I:)abx c- (275)
It follows that for any solutions (X 2; ) and (®2; 5 of (272),
Ramd% bx d = %Cr a Pab% bXC = %Cr a Xcr a~

and hence, by symmetry,
X[ar q== )@[Cr a]:

As in Theorem[6.1, by rst taking X = X, we conclude that there is a real functior,
uniquely determined and smooth on the union of the open setshere some solution
X2 of ([272) is nonzero, such that for any solutiorfX 2; ) of (272),

ra = PapXP=2BXa: (276)

Theorem 6.16. Let (M;J; [r ]) be a connected c-projective manifold, where pre-
serves a(pseudo}Kahler metric g,,. Suppose thatdimkerD"™ 2. Then there is a
unique constantB such that any element of the kernel @7 lifts to a parallel section
of T for the connection

XPo o XPhe P X P _ raXP

Ma = Ma Fa  2BgaXP

- (277)
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Proof. By Proposition[3.3 and [Z76), it remains only to show that thesmooth function
B is actually a constant. Di erentiating the equation 2Bg.,X° = r . and using [Z72)
gives

2(r aB)X: 2BQca =T af ¢ and 2(r B)Xc =71 4r ¢ (278)
With (46), the second equation of [(Z78) implies thaX.r ;B = 0. Where there are
two nonzero solutionsX 2 and %2, it follows from ([272) that the sectionsX 2; %P 2
( M; TX°( 1;0)) and thereforeX %" 2 ( M; T29( 2;0)) are holomorphic. Conse-
quently, U = fX %8 6 0g is the complement of an analytic subvariety and is thus
connected. OnU we also have€r 4B =0 whencer ,B =0, i.e. B is locally constant
on U, hence constant.

By analogy with the projective case, one might now expect a-gjective nullity to
appear. However, when we combiné(275) and (276), we obtain

Rabcd + PabOcd + 2B0cbGag X ¢ = 0;

which is a halfway house on the way td (237). Underlying thisefjeneracy is the fact
that T is associated to a holomorphic representation &.(n + 1;C).

Nevertheless the constantB in Theorem [6.16 is generically characterised by c-
projective nullity in the following degenerate sense.

Theorem 6.17. Let (M;J;g) be a connected(pseudo}Kahler manifold admitting a
non-parallel solutionX 2 of (Z72). For any function B, the following are equivalent
(1) B is characterised by c-projective nullity237) on a dense open subset
(2) B is constant andX P lifts to a section of T parallel for (277);
(3) I:)ab =2 Bgab-
In particular, g is an Einstein metric, and the connectiong2Z71) and (Z74) coincide.

Proof. (1)) (2). This follows from Theoremi 6.1l becausé?® XPis a solution of the
mobility equation which is not a constant multiple ofg?®, and by contracting (273) by
a nullity vector V.

(2)) (3). The identity (45) implies
Pap =(raln r o a) = 2BQacl tX°=2B0ab;
which establishes (3) on the dense open subdget6 0g, hence everywhere.
(3)) (1). Sincer 5 = P,gX9=2BgX 9, equation (Z73) implies
2BagX ¢ 1° = Rap’aX ¢+ PapX ® = Rap’aX ¢ + 2BgapX & (279)

and we deduce thatG,,°sX ¢ = 0. Hence,X = is a nullity vector for g on the dense
open subsef 6 0g.

6.5. Special tractor connections and the complex cone. Let (M;J;[r]) be a
metric c-projective structure. Then for any compatible meaic g and any function B,
there is a special tractor connection ol de ned by (Z74). We rst observe that
the induced connection onVe = T T is the special tractor connection [[240) (for
the given g and B). This can be seen easily by takingA®® = XbX¢ 2= X 2 and

= in (240). Consequently, parallel sections for the speciakictor connection onV
de ne parallel Hermitian forms onT . This was used in[[26] to characterise, for Kahler
manifolds (M; J; g), the presence of nontrivial parallel sections fof’(Z40) inetms of
the local classi cation of [2] (see Section3.7). Using thetension of this classi cation
(pseudo-)Kahler manifolds[[16], together with Remark5. And Theoremg$ 6.7 anG6.11,
we have the following more general characterisation.
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