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Abstract 
 
Globally, green-certified buildings (GBs) are promoted as an effective solution to mitigate climate 

change challenges, saving energy, and delivering better Indoor Environment Quality (IEQ). 

However, the actual role of green certification in improving the quality of indoor environment 

and improving occupant satisfaction is much debated. There is a concern that GBs may succeed 

in achieving energy efficiency targets but may exhibit unintended consequences that reduce the 

quality of indoor environment and curtail occupant satisfaction, health, and work performance.  

 

In the Middle East (ME), the number of green-certified buildings is increasing rapidly and 

associated with an increase in the number of localised Green Building Codes (GBCs). However, 

to date, no systematic research has evaluated the actual performance of IEQ in green buildings in 

this region. Hence, this thesis is designed to examine whether the IEQ of green office buildings 

in the ME meets the standards-recommended ranges of thermal comfort and indoor air quality 

(IAQ) that identified by GBCs, and if so, to what extent they are perceived satisfied by their 

occupants.  

 

This thesis starts with examining the role of localised GBCs in improving the performance of 

IEQ. This is achieved through a longitudinal field study, we follow 120 occupants who 

transitioned from four conventional office buildings (CBs) to the first GB, designed to the local 

Jordanian Green Building Guide (JGBG). The repeated-measures protocol (pre- and post-move) 

is used. Measures cover physical parameters (i.e., air temperature, relative humidity, and indoor 

CO2 levels), subjective parameters (i.e., occupants’ satisfaction, self-reported Sick Building 

Syndrome symptoms (SBS)), and occupant thermal comfort. Alongside this, instantaneous 

measures for temperature, mean radiant temperature, air speed, and relative humidity were 

conducted for compliance. Results show that moving from CBs to the JGBG-certified building 

does not improve the occupant satisfaction of IAQ, lighting and acoustic comfort and associated 

with an increase in the prevalence of SBS symptoms. Further, both building types fail the 

ASHRAE 62.1 threshold of 20%, so can be labelled as “sick” buildings.  

 

Next, this thesis expands the evaluation to include the green-certified office buildings designed 

to the international LEED standard. It compares CBs and LEED-certified buildings in terms of 

the performance of IEQ, occupant satisfaction and work performance. A cross-sectional study 

design with between-subjects comparison is followed. Further, continuous measures for 

temperature, relative humidity and CO2 are adopted, covering 13 office buildings and 502 

occupants. In addition, semi-structured interviews are conducted to gain in-depth information 
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about green design motivation and features. Data were collected between summer 2017 and 

winter 2019 in Jordan. Results show that although LEED buildings comply with recommended 

ranges of thermal comfort and CO2 levels, occupant satisfaction with IEQ aspects was 

significantly lower compared to occupants in CBs, while no significant difference in absenteeism 

and presenteeism was reported between building types. Over half of those surveyed in LEED 

buildings and CBs reported IAQ, ventilation and thermal comfort as important issues that need to 

be improved.  

 

Finally, this thesis investigates the suitability of the applied thermal comfort standards in 

predicting occupant thermal sensation in air-conditioned buildings in the ME. This is achieved 

using three approaches. A meta-analysis is used to aggregate outcomes of existing thermal 

comfort research in the ME to identify challenges faced by occupants in air-conditioned buildings. 

This is followed by seven thermal comfort field surveys covering 31 air-conditioned buildings 

and 1,101 occupants in four countries in the ME. Finally, energy model simulations are carried to 

estimate any potential energy saving in the building energy demand for space cooling in air-

conditioned buildings in the surveyed countries. Results demonstrate a clear gap between thermal 

comfort models and observed thermal sensation of occupants in air-conditioned buildings (i.e., 

CBs and GBs) in the ME. During the cooling season, the PMV model fails to predict the thermal 

sensation of 94% of occupants. The monitored thermal conditions in surveyed buildings complied 

with standards recommended ranges for 58% of the time, and only 40% of occupants find these 

conditions comfortable. This thesis provides the empirical evidence of overcooling in summer, as 

39% of surveyed occupants expressing cold discomfort, which is associated with an increased 

energy demand for space cooling up to 20% compared to non-overcooled conditions. 
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Chapter 1. Introduction 
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1 Introduction 
 

One of the promised benefits of green office buildings is providing a better quality of the 

indoor environment for occupants compared to conventional buildings. However, the real 

performance of IEQ in green buildings and their positive impacts on buildings’ users are 

still much debated. This chapter introduces the overall topic. It also develops the argument 

that suggests this is an important yet underdeveloped area of research, particularly, in the 

ME, requiring timely attention. First, the background outlines the concept of green 

buildings and how GBCs are developed, also, it discusses the potential impact of IEQ on 

building occupants. Next, the research problem illustrates the knowledge gaps, and how 

these gaps are translated into the aim and objectives. Then the research scope and thesis 

structure are presented. Finally, the chapter presents the publications associated with this 

research. This thesis constitutes of three published papers, that represent the main 

contribution of this research.  

1.1 Background  

The concept of green design of a building is defined as practices applied to design a 

building to increase energy, water, and material efficiency, and curtail the harmful impact 

of buildings on the micro and macro environments (EPA, 2020). So essentially, when 

these practices applied correctly, the green buildings may last longer, cost less to operate 

and increase occupant satisfaction and health (WGBC, 2014). 

Over the last two decades, there has been a rapid motive for buildings to be “green” 

overall the world (WGBC, 2016). This has resulted in developing the localised GBCs, 

which are adopted from leading and widely used international codes, i.e. BREEAM in the 

United Kingdom (BREEAM, 2019) and LEED in the United States (USGBC, 2019). 

Localised codes are customised to overcome the regional challenges and accommodate 

specific local context (e.g., economic level, climatic and geographic conditions). Green 

Star in Australia (Green Building Council Australia, 2003), Green Mark in Singapore 

(Ministry of National Development Singapore, 2021), Pearl Building Rating System in 

the United Arab Emirates (Abu Dhabi Urban Planning council, 2010) and Jordanian 

Green Building Guide in Jordan (Ministry of Public Works and Housing, 2013), all are 

examples of localised GBCs.  
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Most of these codes are voluntary rather than mandatory and are designed to objectively 

evaluate the performance of buildings regarding thermal comfort, acoustic, lighting, 

ventilation, water and energy efficiency. However, occupant physical and psychological 

satisfaction and health are not explicitly considered in such codes.  

Globally, delivering “green” office buildings gained higher attention (WGBC, 2016). 

Organizations’ owners and decision-makers have recognized the potential benefits on 

investment via increased employee satisfaction and work performance when committing 

to green office buildings (Kats et al., 2003). This is because the employees’ cost (i.e., 

salaries and benefits) is around 90% of the business cost, so even 1% improvement in 

employees’ work performance may contribute to substantial financial implications for the 

organization (WGBC, 2014). 

However, it is still unclear whether green office buildings perform as promised in terms 

of the quality of the indoor environment. In particular, research suggests that many high-

level green-certified buildings in the USA, the UK, and elsewhere fail in delivering 

effective performance in improving IEQ (Veitch et al., 2007; Fostervold and Nersveen, 

2008; Altomonte and Schiavon, 2013; Gou, Prasad and Lau, 2013; Ravindu et al., 2015; 

Tham, Wargocki and Tan, 2015; Sediso and Lee, 2016). In many instances, green office 

buildings may show unintended consequences, including reduce occupants’ comfort and 

satisfaction or increase the prevalence of sick building syndrome symptoms, which may 

increase the absenteeism and presenteeism rate, and in return could negatively influence 

the work performance of employees.  

In green buildings, the performance gap can be categorised into three classes, namely 

energy efficiency, quality of the indoor environment, and occupant perception (Jain et al., 

2020). Since the energy performance alone cannot capture the full impact of green 

building on its occupants, and the energy efficiency gap is beyond this thesis interest, 

hence, my research focuses on the two gaps (i.e., IEQ performance and occupant 

perception). IEQ aspect can be defined as the quality of a building’s environment in 

relation to the health and wellbeing of its users (CDC, 2020). It comprises mainly of four 

parameters, Indoor Air Quality (IAQ) and thermal, visual and acoustic comfort (ISO 

17772‑1, 2017).  

Although the performance gap in the IEQ in green buildings was examined by a good 

amount of research around the world (Gou, Lau and Shen, 2012; Altomonte and 

Schiavon, 2013; Ravindu et al., 2015; Altomonte, Saadouni and Schiavon, 2016; 
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MacNaughton et al., 2017), the evidence of the in-use performance of green buildings 

does not exist in the ME. To date, no previous study has evaluated the performance of 

IEQ in green buildings, thus understanding how occupants perceive their buildings is still 

an unsolved challenge. Also, the actual role of the used localised GBCs in improving the 

performance of the IEQ and increase occupant comfort and health has not been 

investigated in this region. Missing the opportunity of incorporating occupants’ feedback 

into the future green buildings’ development. 

The quality of the indoor environment and its influence on occupants has become one of 

the worrying concerns we face today. Particularly, in light of the current health crisis, i.e., 

COVID-19 epidemic, since the majority of people spend most of their time indoors, and 

improper IEQ could lead to several health problems, i.e., sick building syndrome 

symptoms. It is becoming extremely important to ensure that GBCs not only embrace 

environmental issues but also provide a high-quality indoor environment for people.  

1.2 Research problem 

Much uncertainty still exists about the actual performance of the IEQ in green office 

buildings, and the potential impacts of IEQ on employee satisfaction, health, and work 

performance. The research problem can be classified into three categories as following:  

1.2.1 Green Building Codes  

Although many emerging international policies like ISO 52003 (EN ISO 52003-1, 2017), 

Kyoto Protocol (UNFCCC, 1998), and Energy Performance of Buildings Directive in the 

European Union (European Parliament, 2010) have emphasised the importance of 

attaining a balance between saving energy and delivering proper IEQ, historically, due to 

the climate change challenges, energy and carbon aspects have gained higher attention, 

this has resulted in devaluation the IEQ aspect.  

Most of GBCs worldwide have incorporated the IEQ as an aspect to evaluate the 

“greenness” level of buildings. However, in most GBCs, specifically the localised codes, 

IEQ has been given less credit weight compared to other green building design aspects, 

such as energy efficiency (Table 1.1Error! Reference source not found.). For example, 

the international LEED standard has weighted the IEQ by 14% compared to 32% for 

energy efficiency, and in the localised JGBG, IEQ is given the lowest credit weight of 

(9%) compared to other green design aspects.  
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Moreover, most of the identified requirements in GBCs focus on the objective assessment 

of IEQ metrics (e.g., IAQ, lighting, acoustic, thermal conditions), which is usually 

required to be conducted within the first two months of obtaining the green certification, 

that does not consider the occupancy conditions (USGBC, 2019). However, occupants’ 

related aspects, such as health, physical, and psychological comfort are neglected in most 

of GBCs, rising a question if GBCs are really doing enough in terms of enhancing 

occupant satisfaction, health, and work performance. 

 

Table 1.1 The relative weighting of energy efficiency (EE) and indoor environment  quality 

(IEQ) in two global GBCs and five localised GBCs in the ME. 

   Relative Weighting (%) 

Country  Green Building Code Version date EE IEQ 

United States Leadership in Energy and Environmental 

Design (LEED) 

2007 32% 14% 

United Kingdom Building Research Establishment 

Environmental Assessment Method 

(BREEAM) 

2018 19% 15% 

Jordan Jordanian Green Building Guide (JGBG) 2013 39% 9% 

Qatar Global Sustainability Assessment System 

(GSAS)  

2009 72% 42% 

United Arab Emirates Pearl Building Rating System (PBRS) 2007 44% 37% 

Israel  Israeli Green building Standard (SI 528) 2005 40% 18% 

Egypt Green Pyramid Rating System (GPRS) 2011 25% 10% 

 

1.2.2 Performance gap  

Achieving a balance between the high level of building energy performance and 

satisfying quality of indoor environment could be a challenge for building designers, 

specifically, in green buildings, which are originally developed from the need for more 

energy-efficient and environmentally buildings.  

However, improving the energy performance of green office buildings can curtail the 

occupant comfort and health. Especially in hot climate regions, such as the ME, where 

the office buildings are designed with an airtight envelop, no operable windows, and fully 

control HVAC systems. The majority of  occupants in these buildings have limited control 

over indoor environmental conditions (e.g., temperature, light), so saving more energy. 

Such conditions can negatively influence occupant satisfaction with IEQ and cause 

profound health consequences. 

Researchers around the world have observed a significant performance gap in green 

buildings (Gou, Lau and Shen, 2012; Altomonte and Schiavon, 2013; Alborz and Berardi, 

2015; Ravindu et al., 2015; MacNaughton et al., 2017). This gap is defined as the 
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difference between the predicted performance of IEQ during the design stage and that 

measured performance during the operation stage (Figure 1.1). The most two debated IEQ 

aspects in the literature over the past two decades were thermal comfort and IAQ (Liang 

et al., 2014; Tham, Wargocki and Tan, 2015; Sediso and Lee, 2016), this could be referred 

to the less attention has given to these two aspects in GBCs.  

Most of the conducted research all over the world has followed a single methodological 

approach of Post Occupancy Evaluation (POE) to evaluate the IEQ in green buildings, 

which is relying on the objective assessment of IEQ metrics (Leaman and Bordass, 2007a; 

Paul and Taylor, 2008; Brown et al., 2010; Thatcher and Milner, 2012, 2016; Altomonte 

and Schiavon, 2013; Gou, Prasad and Lau, 2014; Sediso and Lee, 2016). However, to 

understand how the green building is performing against the design intents required a 

systematic and continuous evaluation covering building itself and its occupants. 

Further, although the international POE of green buildings is growing rapidly, little is 

known about the as-built performance of green buildings in the ME. So far it is not clear, 

whether the IEQ in such buildings meets the expected performance by designers, and if 

so, whether the occupants are satisfied with their indoor environment quality. 

 

 

Figure 1.1 The performance gap of IEQ in green buildings. 

 

1.2.3 Thermal comfort codes and energy use 

In the absence of local thermal comfort standards in the ME, the international ASHRAE 

55 standard (ANSI/ASHRAE 55, 2017) and/or Fanger’s Predicted Mean Vote (PMV) 

(Fanger, 1970) are used to design the indoor thermal environment in air-conditioned 

buildings. These standards also are adopted by the localised GBCs in this region to 

identify the acceptable thermal comfort ranges in green buildings.  
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However, such standards have no basis of empirical data from this region, and they do 

not consider several factors such as physiological, contextual, and occupant psychological 

acclimatization (Indraganti and Boussaa, 2017). Such factors may affect people concept 

of coolness and warmness. 

Research has questioned the applicability of the applied international standards in 

predicting the occupant thermal sensation in hot climates (Indraganti et al., 2014). It has 

been argued that there is an inconsistency between the predicted thermal comfort levels 

and the observed occupant thermal sensations, which end up with an “overcooling” in air-

conditioned buildings. This may lead to higher electricity consumption for space cooling 

and lower thermal comfort accompanied by cold state tendency between occupants (Al-

ajmi, 2010; Indraganti and Boussaa, 2017).  

In the ME, which is one of the world’s hotter regions, the current cooling energy demand 

represents 70% of the total building energy demand (Nematollahi et al., 2016). This 

percentage is projected to double by 2100 (IEA, 2018), as a result of climate change and 

the continued growth of the population. Hence, there is an urgent need to ensure that the 

current applied thermal comfort standards in this region are avoiding the “overcooling” 

and assist in improving energy efficiency without compromising occupants’ thermal 

comfort.  

1.3 Research scope 

The quality of the indoor environment and its impact on building’s occupants is a complex 

issue. To retain focus, this thesis deals only with IEQ in two types of office buildings: (i) 

green buildings designed and certified to localised (i.e., JGBG) and international (i.e., 

LEED) GBCs. (ii) Conventional buildings, that are built according to the national 

building and construction codes, with no green design intention. 

In addition, the focus of this thesis is on full-time employees working in the surveyed 

buildings, because they spend up to 8 hours daily inside their offices, and the quality of 

indoor work environment could significantly affect their comfort, health, and work 

performance.  

Further, this thesis focuses on two measurable IEQ aspects, i.e., IAQ and thermal comfort, 

as evidence showed that these aspects can have a direct influence on occupant health and 

work performance (Wargocki et al., 1999; Nakano J, S and K, 2002; Lan and Lian, 2009). 

These two aspects also are the most debated in the green building literature. Though, other 
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IEQ aspects, i.e., visual and acoustic comfort are beyond our objective assessment, as 

they were broadly seen as satisfactory by occupants who were surveyed in green buildings 

in several studies around the world. Our subjective assessment for occupant perception 

covered all IEQ aspects (i.e., IAQ, thermal, visual and acoustic comfort), and other 

secondary IEQ metrics (i.e., privacy, biophilia, odour), as they could have indirect effects 

on occupant comfort and health (WGBC, 2016). 

The ME is selected to be the context of this study and to answer the three research 

questions illustrated in the following section (1.4) for two reasons: 

(i) The number of green buildings in the ME is increasing considerably, these 

buildings are certified under a wide range of GBCs. However, to date, no study 

has examined the as-built performance of green buildings in this region. 

(ii)  The body of evidence of the actual role of localised GBCs in improving occupant 

satisfaction, thermal comfort, and perceived health is not existing in the ME, thus, 

there is an urgent need to increase the POE database of green-certified buildings 

in this region. 

1.4 Aim and objectives 

This research aims to investigate whether green office buildings in the Middle East meet 

the requirements of thermal comfort and IAQ that specified by GBCs, and if so, to what 

extent they are improving the occupants ‘satisfaction, perceived health and work 

performance compared to the occupants in conventional buildings. This aim is achieved 

by addressing three research gaps identified in section 1.2, which are translated into three 

key research questions that are presented with objectives and the applied research 

methods as followings: 

 

Research Question 1 What is the actual role of localised GBCs in improving the 

performance of IEQ, occupant satisfaction, thermal comfort, and perceived 

health?  

 

Objective  1-A To objectively assess the IEQ (thermal conditions and IAQ) 

experienced by occupants of the JGBG-certified building against those 

experienced by them in their previous conventional buildings. 
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Objective  1-B To investigate if moving from conventional buildings to a 

JGBG-certified building has a positive impact on occupant satisfaction with 

IEQ, thermal comfort, and prevalence of SBS symptoms. 

 

Research Methods Data were collected through a longitudinal field study with 

repeated measures protocol (over 12-month). We follow 120 employees as they 

transitioned from four conventional buildings to a single office building certified 

under the localised JGBG in Jordan. Objective and subjective measurements 

were conducted pre- and post-moving to the green building (Covered in Chapter 

2). 

 

Research Question 2 To what extent LEED office buildings in the ME achieve the 

specified minimum IEQ standards, after handover, and to what extent occupants 

of these buildings are satisfied and demonstrate better work performance 

compared to occupants in conventional buildings?  

 

Objective  2-A To compare between design estimations and actual 

performance of IAQ and thermal comfort in LEED-certified buildings in 

occupancy stage. Taking LEED buildings in Jordan as a relevant example of 

LEED buildings in the ME. 

 

Objective  2-B To compare between occupants in LEED buildings and 

conventional buildings in terms of their satisfaction of IEQ and work 

performance, which is measured through assessing absenteeism and 

presenteeism rates. 

 

Research Methods Data were collected through POE, including objective 

assessment of thermal conditions and indoor CO2 levels in 13 office buildings 

(5 LEED buildings + 8 conventional buildings) over summer and winter between 

2017 – 2019. Also, we surveyed 502 full-time employees working in these 

buildings to compare satisfaction level of IEQ and work performance between 

building types. To better understand the context, this was supported by in-depth 

interviews to collect further information on the investigated buildings (Covered 

in Chapter 3). 
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Research Question 3 How suitable are international thermal comfort standards 

“including GBCs” for occupants in air-conditioned buildings in the ME?  

 

Objective  3-A To investigate whether air-conditioned buildings (i.e., green 

and non-green buildings) in the ME, fall within the standards specified ranges of 

thermal comfort, and when they do, to what extent they are found to be thermally 

comfortable by their occupants. 

 

Objective  3-B To calculate the difference between predicted and observed 

neutral (comfort) temperatures and estimate any potential reduction in the 

building energy use for space cooling based on this difference. 

 

Research Methods Data were collected using two approaches, a meta-analysis 

of prior thermal comfort evidence in the ME and new thermal comfort field 

studies during summer and winter between 2017 and 2019. The objective 

measures covered 31 air-conditioned buildings within four countries. Also, the 

subjective measures cover 1,101 occupants in four occupancy types. This was 

followed by calculating the comfort temperature and energy model simulations 

for the investigated countries to compute prospect energy saving from space 

cooling (Covered in Chapter 4). 

1.5 Thesis structure 

This thesis consists of peer-reviewed journal publications, which represent the main 

contributions of this research presented in chapters 2, 3, and 4. Similarly, supporting work 

published in international conferences is included in 0 and 0. The content of these chapters 

is identical to the original published manuscript with minor style changes to deliver a 

consistent presentation. Each paper stands alone, including its introduction, literature 

review, and methodology, also, a preamble and a postscript link each chapter within the 

overall aim and narrative of the thesis. 

Chapter 1- (this chapter) presents the research background and the research gaps, which 

are the motivation for the study of IEQ in green office buildings and its impact on 

occupant satisfaction, health and work performance. After, it establishes the aim 

and objectives of the thesis, also the scope for studies presented here.  
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Chapter 2- presents the first published journal paper to be submitted as part of this 

research. It is a within-subjects’ comparison study. Results from this chapter led 

us to question the performance of IEQ in green office buildings, which designed 

to the international GBCs. Hence, we expand our investigation to include LEED-

certified buildings, which is done in the following chapter.  

Chapter 3- presents the second published journal paper. It is a systematic evaluation of 

the performance of IEQ in LEED-certified buildings in Jordan. It is a between-

subjects comparison study. Results from this chapter highlight a clear problem in 

terms of occupant thermal comfort in air-conditioned buildings in hot climate 

region. This leads to conduct the following investigation. 

Chapter 4- presents the third published journal paper, it is a large-scale thermal comfort 

research. This chapter examines the suitability of the applied thermal comfort 

codes for the occupant in air-conditioned buildings in the ME. It provides an 

empirical evidence of thermal comfort gap in air-conditioned buildings in the ME.  

Chapter 5- concludes all studies by summarising the main outcomes regarding the aim 

and objectives of the thesis, and identifies the key research contribution of the 

work, then recommends future research areas. 

0- presents the first published conference paper. It examines the role played by green 

certification and gender differences in the prevalence of self-reported SBS 

symptoms. This study supports Chapter 3 and showed how green certification 

failed in reducing the prevalence of self-reported SBS symptoms. 

0- presents the second published conference paper. It systematically compares the 

performance of the localised JGBG and the imported LEED in terms of IAQ and 

reported absenteeism rate. This study is in a line with the work presented in 

Chapter 2. 

1.6 Publications associated with this research 

The research presented in this thesis is published and accepted in peer-reviewed journals 

and presented in international conferences, also the research dataset of each paper has 

been published. The research dissemination as follows:  



 

Chapter 1. Introduction 

 

11 

 

1.6.1 Peer reviewed paper  

R. Elnaklah, I. Walker, S. Natarajan, Moving to a green building: Indoor environment 

quality, thermal comfort and health, Building and Environment. 191 (2021) 

107592. https://doi.org/10.1016/j.buildenv.2021.107592 (Chapter 2). 

 

R. Elnaklah, D. Fosas, S. Natarajan, Indoor environment quality and work performance 

in “green” office buildings in the Middle East, Building Simulation. 13 (2020) 

1043–1062. https://doi.org/10.1007/s12273-020-0695-1 (Chapter 3). 

 

R. Elnaklah, A. Alnuaimi, B. Alotaibi, E. Topriska, I. Walker, S. Natarajan, Thermal 

comfort standards in the Middle East: current and future challenges, Buildings and 

Environment. 200 (2021) 107899. https://doi.org/10.1016/j.buildenv.2021.107899 

(Chapter 4). 

1.6.2 Proceeding of international conferences 

R. Elnaklah, D. Fosas, Sukumar Natarajan, Are Green Buildings Doing Enough? The 

role of green certification and gender on sick building syndrome, in: PLEA 

(Planning Post Carbon Cities), Coruña, Spain, 2020: pp. 193–198. 

https://doi.org/https://doi.org/10.17979/spudc/9788497497947 (Appendix A). 

 

R.A. Elnaklah, S. Natarajan, A comparison of indoor air quality and employee 

absenteeism in ‘local’ and ‘imported’ green building standards, in: Indoor Air 

Quality, Ventilation and Energy Conservation in Buildings, Bari, Italy, 2019: pp. 

42–89. https://doi.org/10.1088/1757-899X/609/4/042089 (Appendix B). 

1.6.3 Datasets 

R. Elnaklah, S. Natarajan, Dataset for journal article “‘Moving to a green building: 

indoor environmental quality, thermal comfort and health,’” University of Bath 

Research Data Archive, Bath, 2020. 

https://doi.org/https://doi.org/10.15125/BATH-00925.  

 

R. Elnaklah, Dataset for “‘Indoor environment quality and work performance in “green” 

office buildings in the Middle East,’” University of Bath Research Data Archive, 

Bath, 2020. https://doi.org/https://doi.org/10.15125/BATH-00863. 

https://doi.org/10.1016/j.buildenv.2021.107592
https://doi.org/10.1007/s12273-020-0695-1
https://www.sciencedirect.com/science/journal/03601323/200/supp/C
https://doi.org/10.1016/j.buildenv.2021.107899
https://doi.org/https:/doi.org/10.17979/spudc/9788497497947
https://doi.org/10.1088/1757-899X/609/4/042089
https://doi.org/https:/doi.org/10.15125/BATH-00925
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R. Elnaklah, A. Alnuaimi, B. Alotaibi, E. Topriska, S. Natarajan, Dataset for “‘Thermal 

comfort standards in the Middle East: current and future challenges,’” University of Bath 

Research Data Archive, Bath, 2021. https://doi.org/10.15125/BATH-00967. 

 

1.6.4 Awards and scholarships 

2020- SBSE scholarship in 35th PLEA conference: Planing Post Carbon Cities 

(Scholarship for the top 30 PhD research), provided by the Society of Building 

Science Educators.  

2019- Project prize for ‘Portable lab’, in the third Santander Technology Fund round, 

provided by Santander Bank. 

2017-2021- Architecture and design, Al-Ahliyya Amman University scholarship to carry 

research as a PhD student.
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2 Moving to a green building: indoor 
environment quality, thermal comfort, 
and health 

 

2.1 Preamble 

IEQ of green buildings is an aspect largely debated, yet evidence indicates that there is a 

gap in the performance of IEQ and occupant’s perception and health in green buildings. 

This chapter provides the results of our longitudinal field study that examines whether 

localised GBCs improve building performance, occupant satisfaction and perceived 

health. The localised JGBG in Jordan was selected to be examined as an example of other 

emerging localised GBCs, due to three reasons:  

1- Developing world including the Middle Eastern countries have produced their 

localised codes for green building design, which often do not systematically 

recognise IEQ or health as crucial issues, while the main attention has paid to 

other green design aspects (e.g., energy and water efficiency), which is seen in the 

JGBG. 

2- In countries with limited energy and water sources such as Jordan, the most 

considered performance metrics in evaluating green building is how much the 

building achieves the energy or water-saving targets, while the important impact 

of IEQ on occupant comfort and health is mostly ignored. To date, there is no 

study examining the role of localised GBCs in improving the IEQ performance 

and occupant experience, whether on a theoretical basis or from a performance 

standpoint. 

3- The case study of green building investigated in this chapter provided us with the 

opportunity to follow a novel approach on several fronts, including longitudinal 

research design with repeated measures within subjects. We follow the same 

employees of a single organisation as they transition from old conventional 

buildings to the first JGBG-certified building. We repeated the objective and 

subjective assessments three times over one year (pre- and post-moving), then we 

compare results to quantify the magnitude of improvement. The repeated 
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measures protocol is a well-established method for controlling participant 

variability between pre- and post-conditions, where the results can be considered 

more rigorous. 
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2.3 Abstract 

A global movement towards the creation of “green” buildings is currently underway. 

Although driven primarily by an external environmental agenda such as energy or carbon, 

there is growing recognition that greener buildings could affect the Indoor Environment 

Quality (IEQ). However, localised green building codes, especially in the developing 

world, often do not systematically recognise IEQ or health as crucial issues, which 

therefore remain understudied. Since the developing world alone is expected to nearly 

double current global built floor space by 2050, it is crucial that green buildings perform 

holistically to be effective. Here, we follow 120 employees of a single organisation as 

they transition from four conventional office buildings to the first green building (GB), 

designed to the local Jordanian Green Building Guide. We ask if the move has a positive 

effect on occupant perception of IEQ, thermal comfort and prevalence of Sick Building 

Syndrome (SBS), using a repeated-measures protocol. Statistically significant differences 

in thermal conditions, positively biased towards the GB, were observed across the move, 

and this enhanced occupant thermal comfort. Surprisingly, no significant improvement in 

occupant perception of air quality, visual and acoustic comfort was detected after moving 

to the GB, while odour, mental concentration, and glare were perceived to be poor in the 

GB and associated with an increase in the prevalence of SBS symptoms. Hence, our 

results support the growing concern that green buildings may create unintended 

consequences in terms of occupant comfort and health in the pursuit of a better thermal 

environment and energy efficiency. 

2.4 Introduction  

Much of the future growth in the construction of new buildings is expected to come from 

the developing world. For example, if we take the Global South to include China, India, 

Africa, the Middle East, and Latin America, then the expected additional built floor space 

by 2050 from these regions is 171 billion m2; 100 billion m2 of which will be in countries 

with no building energy regulations at the present (IEA, 2013). This additional growth is 

equivalent to 75% of the current global total of 230 billion m2 (IEA, 2017). Recognition 

of this has driven a significant rise in Green Building Codes (GBCs) and regulations to 

drive down energy consumption from buildings (Janda, 2009). 

Countries in the Global South including the Middle East have developed local GBCs 

designed to suit the specific local needs of each region, such as the Pearl Building Rating 
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System (PBRS) in the United Arab Emirates (Abu Dhabi Urban Planning council, 2010), 

the Global Sustainability Assessment System (GSAS) in Qatar (Gulf Organization for 

research and developmnet (GORD), 2020), and the Jordanian Green Building Guide 

(JGBG) in Jordan (Ministry of Public Works and Housing, 2013). Most of these codes 

were adapted from well-established international standards (e.g., ASHRAE 55 

(ANSI/ASHRAE 55, 2017), ASHRAE 62.1 (ANSI/ASHRAE 62.1, 2010)) or global 

green building certification schemes, such as BREEAM from the United Kingdom 

(BREEAM, 2019) and LEED in the United States (USGBC, 2019). While these GBCs 

should help reduce building consumption, and so are a necessary forward-looking step, it 

is important at the same time to be vigilant for unintended side-effects arising from the 

move to greener buildings (The European Parliament and the Council of the European 

Union, 2018). Interest in the performance of green office buildings, in particular, has 

increased dramatically over the past two decades (WGBC, 2016).  

From a business perspective, it has been argued that a green office building not only 

reduces energy consumption but also improves the Indoor Environment Quality (IEQ) 

(Ries et al., 2006; Gou, Prasad and Lau, 2014). This is interpreted as resulting in more 

comfortable, satisfied, and productive employees with reduced sick leave, and hence 

higher economic returns (Fisk and Rosenfeld, 1997; Tham, 2004; Ries et al., 2006). 

However, a green or energy-efficient office building per se does not guarantee a healthy 

indoor environment for employees. Indeed, green buildings are known to be particularly 

susceptible to unintended consequences that negatively affect the IEQ of workplaces and 

in some cases might result in “Sick Building Syndrome” (SBS)1 (Davies and Oreszczyn, 

2012). Given that people spend around 90% of their time indoors in industrialised 

economies, a trend towards which developing economies are likely to move, it is essential 

that improvements in overall building efficiency are not accompanied with poor IEQ (The 

European Parliament and the Council of the European Union, 2018).  

2.4.1 Jordanian Green Building Guide (JGBG) 

In Jordan, the JGBG was produced in 2013 to gradually replace the international LEED 

standard. JGBG is used to evaluate the performance of buildings in terms of six major 

aspects: IEQ, Building management, Site selection, Material, Water and Energy 

efficiency (Elnaklah and Natarajan, 2019). JGBG certified buildings into four categories 

 

1 SBS is defined as a medical condition where the occupant of a building suffer from symptoms of illness or feel unwell 

for no apparent reason, these symptoms can be linked to time spent in the building (Passarelli, 2009).  
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(A, B, C, and D) based on the obtained credits. Although the JGBG scheme is based on 

LEED, it was designed to reflect the local Jordanian context. For example, JGBG pays 

great attention to energy and water efficiency, as they are considered the two main 

challenges for Jordan. It would seem that the focus on the more immediate issues of 

energy and water has resulted in the relative devaluation of IEQ, Figure 2.1 (Left) 

(Ministry of Public Works and Housing, 2013).  

In JGBG, IEQ is evaluated based on evaluation the performance of ten metrics that focus 

on Indoor Air Quality (IAQ), ventilation, acoustics, lighting, thermal comfort, and the 

innovation design of IEQ, Figure 2.1 (Right). However, eight out of ten items are elective 

and not considered essential areas in the overall green evaluation process, particularly for 

thermal comfort and ventilation aspects, that lack any compulsory specifications. A 

building can be certified with the highest green category ‘A’ when it achieves 80% of the 

total assigning credits, and this can be easily attained with covering the minimum 

requirements of IEQ items.  

Further, the occupants’ health, physical and psychological aspects are not explicitly 

addressed in the JGBG, thus little is known about the real-world performance of IEQ of 

certified buildings under local GBCs in Jordan and the wider Middle East. Given the 

current health crisis prompted by the COVID-19 pandemic, where poor IEQ is associated 

with the potential for increased spread of pathogens, combined with the expectation of 

longer indoor occupancy periods in the future, there is a need to ensure that GBCs not 

only assist in reducing building energy or water consumption but also provide a high-

quality indoor environment for users as they promised. 
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Figure 2.1 The Relative weighting of the individual parameters in the Jordanian Green Building Guide in 

Jordan (Left), the relative weighting of the ten metrics of IEQ specified by the JGBG (Right) (Ministry of 

Public Works and Housing, 2013), totals for all bars in each plot sum to 100%. 

 

2.4.2 Research objectives  

This paper aims to examine whether localised GBCs improve building performance, 

occupant satisfaction and health compared to conventional buildings. We address this aim 

using the JGBG in Jordan as a case study, with the following objectives: 

1. To assess the IEQ (thermal conditions and indoor air quality) experienced by 

occupants of the first – and only – JGBG-certified office building against those 

experienced by them in their previous conventional office buildings. 

2. To investigate if moving from conventional office buildings to a green-certified 

office building has a positive effect on the perceived comfort of IEQ, perceived 

health and the environmental attitude of occupant. 

2.5 Current literature 

The role of GBCs in improving the performance of IEQ and its effect on employee 

satisfaction and health have become a primary concern. There is a good amount of 

empirical research investigating the IEQ of green office buildings certified under 

international codes (e.g., LEED, BREEAM) or localised codes, such as ‘EEWH’ in 

Taiwan, ‘Green Mark’ in Singapore, and ‘Green Star SA’ in South Africa, summarised 

in Table 2.1.  

Seven out of sixteen studies in Table 2.1 have assessed BREEAM buildings in the UK 

(Altomonte, Saadouni and Schiavon, 2016), LEED buildings in USA (Altomonte and 
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Schiavon, 2013; Alborz and Berardi, 2015; MacNaughton et al., 2017) and in other 

countries that imported LEED, such as Sri Lanka (Ravindu et al., 2015), Hong Kong 

(Gou, Lau and Shen, 2012), and Jordan (Elnaklah, Fosas and Natarajan, 2020). It is 

somewhat surprising that no improvement in occupant satisfaction of IEQ was reported 

in all these studies except one (MacNaughton et al., 2017). The observed results were 

either lower satisfaction in all or some of IEQ metrics (Ravindu et al., 2015; Elnaklah, 

Fosas and Natarajan, 2020) or no significant differences were reported in employee 

satisfaction between green buildings and conventional buildings (Gou, Lau and Shen, 

2012; Altomonte and Schiavon, 2013). 

On the other hand, seven out of nine studies (Thomas, 2010; Liang et al., 2014; Pei et al., 

2015; Tham, Wargocki and Tan, 2015; Sediso and Lee, 2016; Thatcher and Milner, 2016; 

Liu et al., 2018), that assessed the performance of certified buildings under localised 

GBCs observed improved satisfaction, wellbeing, perceived air quality, and self-reported 

productivity in the green buildings compared to conventional buildings (two had lower 

(Thatcher and Milner, 2012; Menadue, Soebarto and Williamson, 2014), whereas one did 

not have a comparator (Thomas, 2010)). If we assume a direct relationship between 

perception and performance, these results suggest that buildings under localised GBCs 

outperform buildings with international green building certification in terms of IEQ, when 

they are compared to conventional buildings.  

In the Middle East, there are approximately 1,200 green-certified buildings built to a 

range of global and localised GBCs, of which 28 are in Jordan (Ministry of Public Works 

and Housing, 2013; Sabbagh, Mansour and Banawi, 2019). A survey of the literature 

demonstrates that little is known about the as-built performance of these green codes, 

with only one study investigating the IEQ performance of LEED buildings in this region 

done by the authors (Elnaklah, Fosas and Natarajan, 2020), and one study undertaking 

energy performance monitoring (Rosenlund, Emtairah and Visser, 2010).  

Instead, current literature in the Middle East has focused primarily on theoretical analyses 

of the benefits or applicability of green buildings mostly for new-build (Alrashed and 

Asif, 2012; Attia and Al-Khuraissat, 2016; Ibrahim, 2017) but also in terms of retrofits 

(Krarti and Dubey, 2018). Some studies have also examined the applicability of 

international GBCs in the region (Attia and Abaieh, 2013; Awadh, 2017) including the 

broader links with sustainability and the United Nations Sustainable Development Goals 

(Alawneh et al., 2019) and urban planning (Ferwati et al., 2019). Remarkably, there is no 

study examining the role of localised GBCs in improving the IEQ and occupant 
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experience in the region, whether on a theoretical basis or from a performance standpoint. 

Overall, however, it is clear that a study looking at IEQ in the Middle East region is both 

timely and necessary, to add to the growing body of evidence on the relative impact of 

IEQ between conventional and green buildings.  

 

Table 2.1 Summary of research evaluated the performance of IEQ in localised GBCs in different countries. 

CB indicates conventional building and GB indicates certified-green building. 

Study GBC Country Buildings 

(n) 

Responses 

(n) 

IEQ 
evaluation 
method 

Findings  

International  GB CB GB CB   

(Altomonte, 
Saadouni and 
Schiavon, 2016) 

BREE
AM 

UK 2 2 111 91 Survey Lower 
satisfaction 

(Altomonte and 
Schiavon, 2013) 

LEED USA 65 79 10,129b 11,348 Survey No 
difference 

(Alborz and 
Berardi, 2015) 

LEED USA 4c  - 593a - Physical 
measures + 
survey 

Lower 
satisfaction 

(MacNaughton 
et al., 2017) 

LEED USA 6 4 69 40 Physical 
measures + 
survey 

Higher 
cognitive 
function 
and lower 
sick leave. 

(Ravindu et al., 
2015) 

LEED Sri Lanka 1 1 70 a  - Physical 
measures + 
survey 

Lower 
satisfaction 
in thermal 
comfort 
and 
ventilation  

(Gou, Lau and 
Shen, 2012) 

LEED Hong 
Kong 

2 1 99 117 Survey No 
difference 

(Elnaklah, Fosas 
and Natarajan, 
2020) 

LEED Jordan 5 8 261 241 Physical 
measures + 
survey 

Lower 
satisfaction 

Localised        

(Thomas, 2010) Green 
Star 

Australia 1c  - 238 a - Survey Higher 
satisfaction 

(Liang et al., 
2014) 

EEWH Taiwan 3  

 

2 134 

 

99 Physical 
measures + 
survey 

Higher 
satisfaction  

(Tham, 
Wargocki and 
Tan, 2015) 

Green 
Mark 

Singapore 1 

 

1 32 33 Physical 
measures + 
survey 

Higher 
satisfaction  

(Pei et al., 2015)  China's 
Green 
Buildin
g 
Labelli
ng 

Mainland 
of China 

10 42 500 500 Physical 
measures + 
survey 

Higher 
satisfaction  

(Liu et al., 
2018) 

Three-
Star 

Mainland 
of China 

- - 1,892 2,194 Online 
survey 

Higher 
satisfaction 

         

(Sediso and Lee, 
2016) 

KGBC
C 

R.O. Korea 2 2 222 a - Survey Higher 
satisfaction 
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(Thatcher and 
Milner, 2016) 

Green 
Star SA 

South 
Africa 

3  2 211 

 

69 Survey Better 
wellbeing, 
productivit
y and 
perceived 
air quality  

(Menadue, 
Soebarto and 
Williamson, 
2014) 

Green 
Star 

Australia 4 4 600 a - Physical 
measures + 
survey 

Lower 
satisfaction  

(Thatcher and 
Milner, 2012) 

Green 
Star SA 

South 
Africa 

1c - 161 79 Survey Lower 
perceived 
productivit
y, physical, 
and 
psychologi
cal 
wellbeing  

Notes:  
a Sample size per building type not provided. 
b Refers to data contained within the Centre of the Built Environment (CBE) database at the University of California, 

Berkeley. 
 c Number of surveyed conventional building is not provided. 

 

2.6 Materials and methods  

Extant research on the quality of the indoor environment in green buildings falls into two 

classes of research design. One class of studies uses a between-subjects design, where 

simultaneous or near-simultaneous Post Occupancy Evaluations (POE) to compare green 

and conventional buildings is undertaken (Altomonte and Schiavon, 2013; Ravindu et al., 

2015; Altomonte, Saadouni and Schiavon, 2016). The main strength of this research 

design is its ability to capture aleatory variability, especially if done at scale, thus 

producing more generalizable results. However, a potential weakness of this design is that 

the buildings, organizations, job types, management strategies, and psychological work 

environment might be fundamentally different, raising questions of comparability in 

studies that use small samples.  

The second class of studies is the repeated-measures design, where the comparison is 

between the same sample of occupants when moving from conventional to green 

buildings (Ries et al., 2006; Thatcher and Milner, 2012, 2016). Such studies usually ask 

respondents to rate the IEQ conditions in the old ‘non-green’ offices and the new green 

offices, often after they have moved to the new building. Hence, although such studies 

provide clear control over differences in job types, organisational, cultural, and 

idiosyncrasies tied to particular respondents, and are thus suited to smaller-scale study, 

the results need to be interpreted with caution given the risk of memory bias or biases 

arising from nostalgia for the old building or a neophilic response to the new one.  
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Our study falls into the second class, i.e., a longitudinal research design with repeated 

measures. We follow the same occupants working in the same organisation, a commercial 

company in Jordan, as they move from four conventional office buildings to a single 

JGBG-certified “green” building. The repeated measures research design is a well-

established method for controlling participant variability between pre- and post-

conditions, where the results can be considered more rigorous (Miller, 1984). As the 

confounding variables of age, gender, job role, organisational differences, etc. are well-

controlled, we expect a very sensitive measure of the effect of the building type on 

occupants (Charness, Gneezy and Kuhn, 2012). The data collection methods included 

five variables covered buildings and their occupants’ performance (Elnaklah and 

Natarajan, 2020) (Table 2.2). 

 

Table 2.2 The performance variables are evaluated in the conventional buildings and the certified-green 

building in this study. 

Type Aspect Method  Metric  

Objective 

Building performance 

(Thermal conditions + IAQ)  

Longitudinal 
measures + 
spot measures 

Air temperature (Ta), Mean radiant 
temperature (Tr), Relative humidity 
(RH), Air speed (Va), and indoor 
Carbon Dioxide concentration level 
(CO2) 

Subjective 

Perceived comfort  Survey  Self-reported 

Thermal comfort  Survey + spot 
measures 

Thermal Sensation Votes (TSV), 
Thermal Preference Votes (TPV), 
Predictive Mean Votes (PMV), Clothes 
thermal insulation (clo), and Metabolic 
rate (met) 

Perceived health  Survey  Frequency of symptoms of Sick 
Building Syndrome (SBS) 

Occupant environmental 
attitude 

Survey Self-reported 

 

2.6.1 Study description  

This study consists of two phases (Figure 2.2). Phase I (pre-moving, Jul - Nov 2017) 

involved surveying 120 employees with co-incident monitoring of the indoor 

environment parameters, spread over four medium-sized conventional office buildings. 

Phase II (post-moving), using identical survey and sensor instruments, was conducted in 

two waves. The first wave was between Jul - Nov 2018, six months after the employees 

transitioned to the new green building to capture early reactions to the move. The second 

wave was undertaken between Jan – Feb 2019, twelve months after transitioning to 

account for the fact that 90% of new buildings display poor control performance in the 
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first year of operation and there is hence a period of “bedding in” (Yudelson and Meyer, 

2013). All the buildings are located within a 1.5 km radius of each other in Amman, north-

western Jordan, reducing logistical burden, and providing external climatic and 

environmental homogeneity. Gatekeeper consent (via the upper management), as well as 

prior informed consent from all participants were obtained. Ethical approval was obtained 

using the approved university procedures. The organisation, buildings, and participants 

have been anonymised for security and data privacy. Hence, we refer to the four 

conventional buildings as buildings CB1, CB2, CB3, and CB4, while the green building 

is referred to as building GB.  

 

 

Figure 2.2 Research design timeline and data collection; n_CBs = 4; n_GB = 1; n_(occupants (CBs ) =
120; n_(occupants (GB ) = 102. Length of bars indicates months in which data were collected. All phases 

involved longitudinal and periodic cross-sectional data collection.  

 

2.6.2 Buildings’ description 

Table 2.3 compares the buildings’ attributes and key characteristics of the CBs and GB. 

All surveyed buildings in this study are office buildings (Figure 2.3). The CBs were owner 

occupied, except CB4 was multi-tenanted. CBs were constructed approximately 20 years 

ago and complied with the legislation and building regulation for the Municipality of 

Greater Amman at that time. All CBs have cellular (for single occupant) and shared (2 - 

3 occupants) offices.  

The green building under this investigation is the first building rated under the JGBG in 

Jordan, where it received the highest possible rating of ‘A’. It is also LEED-Platinum 

certified. It was completed and occupied by January 2018. The majority of the building’s 

https://en.wikipedia.org/wiki/Jordan
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layout is open with no partitions, with few numbers of cellular offices are occupied by 

the upper management staff. The GB achieved 67% and 72% of the IEQ requirements 

specified by the LEED and JGBG, respectively (Table 2.4). 

In addition to passive design features, such as appropriate building orientation and 

window shading, the GB includes renewable generation in the form of facade-integrated 

300 Wp monocrystalline photovoltaic panels with an efficiency of 20%. According to the 

elective requirement in JGBG, a computer energy modelling of the building was produced 

at the time of the design stage using e-QUEST software. The expected savings in energy 

consumption were 39% compared to the building energy baseline model. It is noteworthy, 

however, that there is some debate on the quality and reliability of results in energy 

modelling (Negendahl, 2015; Imam, Coley and Walker, 2017), so such predictions need 

to be viewed carefully. 

 

Table 2.3 Description of the conventional office buildings (CB) and green office building (GB), * M.M 

refers to Mixed-Mode ventilation system, ** refers to low volatile organic compound. 

Feature CB1 CB2 CB3 CB4 GB 

Occupants (n) 26 27 37 30 102 

Building size (m2) 750 2,000 550 600 8,642 

No. of floors 3 2 2 1 10 

Occupants have view 
to the exterior (%) 

65 55 40 53 23 

Lighting fixtures  Halogen 
incandescent 

Fluorescent Fluorescent Fluorescent High 
efficiency 

LED 

Ventilation system* M.M M.M M.M M.M Energy 
recovery 

ventilators 

Heating and cooling Wall split air-
conditioner 

Multi-split 
units 

Wall split 
air-

conditioner 

Wall split 
air-

conditioner 

Variable 
refrigerant 

flow system 
(VRF) 

Operable windows ✓ ✓ ✓ ✓  

Control temperature ✓ ✓ ✓ ✓ (Only 
operating 
manager) 

Control lighting  ✓ ✓ ✓ ✓ (Occupancy 
sensor 

systems) 

Low VOC interior 
finishes** 

    ✓ 
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Figure 2.3 (a and b) Examples of conventional office buildings in this study, (c) external photo of the GB 

showing BIPV panels, (d) view of the interior in the GB shows the open plan workplace, and (e) view of 

the interior in CB1 sows shared office. 

 

Table 2.4 The fifteen metrics of IEQ were passed by the GB to be certified under LEED and JGBG, * 

indicates prerequisite that should be achieved before starting the green certification process, all items in the 

table are elective except the two noted items, note: other six IEQ items specified by LEED and JGBG were 

excluded from the table, as they were not achieved by the GB 

Item LEED JGBG 

Minimum indoor air quality* ✓  ✓  

Indoor CO2 level less than 1,100 ppm ✓ ✓ 

Environmental Tobacco smoke control* ✓  ✓  

Outdoor air delivery monitoring ✓   

Increased ventilation  ✓  ✓ 

Construction IAQ management plan-during 
construction 

✓   

Construction IAQ management plan-before 
occupancy 

✓   

Low emitting materials-adhesives and sealants ✓   

Low emitting materials-paints and coating ✓   

Indoor chemical and pollutant source control ✓  ✓ 

Controllability of systems-lighting ✓  ✓ 

Thermal comfort-design ✓  ✓ 

Thermal comfort-verification ✓   

Artificial light  ✓ 

Acoustics performance  ✓ 

(a) (b) (c) 

(d) (e) 
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2.6.3 Physical measurements 

To complement the survey (Section 2.6.4) and ensure representative coverage across the 

buildings, i.e., the CBs and GB, longitudinal objective sensor data for both thermal 

conditions and IAQ were needed at an adequate spatial resolution (see installation 

2.6.3.1). There is a wide variety of sensing that has been employed in the literature 

covering several metrics, such as lighting (Fostervold and Nersveen, 2008), ventilation 

(Seppanen, Fisk and Mendell, 1999), and noise level (Banbury and Berry, 2005). 

However, the most common are indoor air temperature (Ta) and relative humidity (RH) 

for thermal conditions, and indoor (CO2) concentration level for IAQ  (Seppanen, Fisk 

and Mendell, 1999; Maula et al., 2016; Vehviläinen et al., 2016).  

The CBs in our study have concurrent mixed-mode ventilation, which refers to a 

combination of natural ventilation from manually operable windows and mechanical 

ventilation system (Ackerly, Baker and Brager, 2011). The GB is fully mechanically 

heated, ventilated, and air-conditioned through air handling units with a fixed set point. 

Meaning that the indoor conditions would rarely change at a frequency higher than one 

hour. As it was convenient to do so, a highly conservative record frequency of five 

minutes was selected. The data were collected using rigorously tested and calibrated 

Raspberry-Pi based sensors (Figure 2.4 a & b), as they have proven suitable for 

longitudinal field studies (Lovett et al., 2016; Vellei et al., 2016). 

These were assembled in two varieties: one device to monitor Ta and RH together and the 

second dedicated to CO2 concentration levels. Given that SBS symptoms or other 

occupant performance-related effects, i.e. perceived comfort can take four weeks to 

manifest (Kessler, Petukhova and McInnes, 2007), and the need to minimise seasonal 

effects, the physical measures were conducted in CBs for five months between Jul – Nov 

2017 (i.e., one month before the administration of the survey and continued for three 

months after). In the GB, physical measures continued for eight months between Jul 2017 

and Feb 2019 to replicate the survey. 

Further, we benchmark the longitudinal sensing using periodic cross-sectional “spot” 

measurements using ISO7726 (EN ISO 7726, 2001) and ISO7730 (ISO 7730, 2005) 

compliant equipment ‘SWEMA’ (SWEMA, 2020) (Figure 2.4. c). The cross-sectional 

measurements were undertaken three times over the study period (i.e., once in CBs and 

twice in the GB) (Figure 2.2). These had a two-fold purpose: (i) to enable verification of 

the longitudinal data for air temperature and relative humidity such that any persistent 

https://en.wikipedia.org/wiki/Ventilation_(architecture)
https://en.wikipedia.org/wiki/Mechanical_system
https://en.wikipedia.org/wiki/Mechanical_system
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errors could be identified and (ii) obtain co-incident measurements of mean radiant 

temperature (Tr) and air speed (Va), necessary for evaluating PMV. The measurement 

period was five minutes for each workstation: two minutes to account for the temperature 

sensor’s time constant and three additional minutes to obtain a stable reading of the PMV. 

The technical specifications for used sensors and instruments are given in section (2.13. 

a). 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 (a) The Raspberry-Pi based sensors (Ta + RH), (b) CO2 sensor, and (c) SWEMA instrument 

position on employee’s desk. 

 

2.6.3.1 Sensor installation 

In both building types, four factors were considered to calculate the required number of 

Raspberry-Pi based sensors for each building. Factors are namely, the net internal area, 

temperature differential, HVAC vents, and the employment density of full-time 

employees. This resulted in one sensor per 30 m2 (Table 2.5). Sensor clock times were 

carefully set to ensure observations can be synchronised at analysis, as all sensors were 

set to offline logging mode. This was done to avoid the need for an internet-driven clock 

setting (e.g. in (Mogles et al., 2017)), which is susceptible to clock errors if connectivity 

is lost. The installation of sensors was as following:  
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In the CBs (Phase I): the four office buildings were provided by 45 sensors, which were 

installed between Jul to Nov 2017. Sensors were located in both shared and private offices 

and were positioned on the employee’s desk or in a safe place away from local sources 

of radiation (e.g., window, heater, PC monitor) at a height of 80 - 110 cm from the ground 

level to reduce the ambient ground temperature affecting the reading (Figure 2.5 a - d).  

In the GB (Phase II): the building was provided with 38 sensors between Jul 2018 to 

Feb 2019. Sensors were distributed on the four floors and were located mainly in the 

open-plan area, as it represents the majority of the typical floor area, though some cellular 

offices were also monitored for completeness, the same criteria for positioning the sensors 

in CBs were followed in the GB (Figure 2.5 e & f).  

 

Table 2.5 Installation of sensors in the monitored buildings , ‘F’ indicates the floor number within the 

building, sensor totals per building in bold. 

 

 

 

 

 

 

 

Building CB1  CB2  CB3  CB4 GB  

Floor F1 F2  F1 F2  F1 F2  F1 F1 F2 F3 F4  

Ta + RH 2 8 10 2 6 8 4 4 8 14 10 10 10 2 32 

CO2 1 - 1 1 - 1 - 1 1 2 2 2 2 - 6 
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Figure 2.5 (a & b) Example of installation the Ta, RH, and CO2  sensors on employee’s desk in the CBs, (c 

& d) sensors positioned in a safe place at high 110 cm in CBs, (e) example of installation the sensors in the 

open plan area in the GB, and (f) example of installation the sensors in a cellular office in the GB. 

 

2.6.4 Survey 

To aid in comparison with other studies, our survey utilised existing survey instruments 

to cover the following four broad areas: 

• Perceived comfort of IEQ was assessed using the World Green Building Council 

for Health, Well-Being, and Productivity in offices questionnaire (WGBC, 2014). 
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It consists of 13 questions on a 5-point satisfaction scale. The questions cover four 

main IEQ parameters namely IAQ, temperature, lighting, and acoustics, also four 

secondary metrics, including privacy, biophilia, odour, and view. 

• Occupant thermal comfort was assessed using the widely used ASHRAE seven-

point scale, which measures the TSV and TPV (ANSI/ASHRAE 55, 2017). The 

metabolic rate of participants was calculated using the standard tables provided 

by ASHRAE 55 and ISO 8996 (EN ISO 8996, 2004). As all buildings monitored 

in this study were used as offices and occupants were involved in typical office 

tasks (e.g., reading, writing, and computer typing), a light metabolic load of [1.00 

- 1.30 met] was assumed throughout. Occupant clothing thermal insulation was 

assessed using ASHRAE 55 and ISO 9920 (EN ISO 9920, 2009) and ranged 

between [0.70, 1.00 clo] in summer in both building types, while in winter (GB 

only) it had a higher range of [1.09, 1.20 clo]. 

• Perceived health was evaluated by assessing the SBS symptoms. The Health and 

Work Performance Questionnaire produced by the World Health Organization 

(WHO HPQ) is used (Kessler, Petukhova and McInnes, 2007). The frequency of 

SBS symptoms was evaluated by asking the participants how much they were 

bothered by each of a group of ten medical symptoms (e.g., headache, irritated 

skin, itchy eyes, and other symptoms) in the 28-day preceding the survey date. 

The questions were on a 5-point response scale, ranged between 'not at all’, ‘a 

little of the time’, ‘some of the time’, ‘most of the time’, and ‘all of the time’. 

• Occupant environment attitude was assessed using the Environmental Attitude 

Inventory (EAI) (Milfont and Duckitt, 2010), it consists of eight questions that 

measure the occupant tendency to be green.  

Since most of the participants spoke Arabic as a first language, the survey questionnaire 

and consent form were translated into Arabic by a ‘sworn translator’ who has a high level 

of education and experience. The accuracy of the translation was verified as follows. The 

translated survey – without the English original – was sent to five university students 

fluent in both Arabic and English, and they were asked to translate it back to the English. 

Based on their suggestions, minor refinements, such as deletion of overlapping terms 

were made. The English originals were retained alongside the Arabic translations in the 

final questionnaire. The questionnaire was paper-based and distributed alongside a 

consent form to the employees in the selected buildings (section 2.13. b). 
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The surveys were administered in three rounds, the first was in the CBs (6-month pre-

moving), the second and third rounds were in the GB (at 6 and 12-month post-moving, 

respectively). Participants were asked not to discuss their responses with anyone else. 

Average survey completion time was approximately five minutes. As the participants 

were tracked across the two phases of the study, each participant was identified using a 

unique identification code (ID), using the first two letters of the participant’s forename 

followed by the first two letters of surname and month of birth (e.g., MA AL - 4). 

2.6.4.1 Sample size 

Initial sample size estimation for the paired samples t-test required for before-and-after 

comparison, assuming a medium effect size of 𝑑 = 0.5 and power of 0.95, suggested a 

total sample size of 76 would be adequate in each phase of the experiment (Faul et al., 

2007). This minimum sample size was exceeded in this study, as the Phase I and Phase II 

sample sizes were 120 and 102 respectively. Over recruitment, in addition to improving 

the power of statistical tests, covers for study vulnerabilities, such as subject dropout or 

invalid survey responses. The overall demographic distribution was nearly identical in 

the two phases (section 2.13.c). 

2.6.5 Analysis methods 

As is customary in Jordan, weekdays were defined as Sunday to Thursday. Normal 

working hours were determined through management to be between 0900 and 1700 and 

this period was hence used to define working hours for analyses. The analysis was done 

using R (R Core Team, 2019), including packages from the ‘tidyverse’ family (Wickham 

et al., 2019),‘comf’ (Schweiker et al., 2019b), and ‘cowplot’ (Claus O. Wilke, 2020). The 

data analysis process was as follows: 

• For the sensor data (where the response variable is numerical and continuous on 

a ratio scale as in the case of temperature (°C), relative humidity (%), air speed 

(ms-1), and CO2 concentration (ppm), we use Welch’s heteroskedastic t-test to test 

the null hypothesis that there is no difference in the mean measurements between 

the two types of buildings. This is a common form of the t-test which assumes 

that samples follow a normal distribution, without assuming equal variance. 

Confidence intervals are reported together with the differences between groups. 

Here, effect sizes are reported using Cohen’s well-known 𝑑 metric, calculated 

using (Cohen, 1988): 
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𝑑 = (μa − μb)/𝑠 (1) 

 

where μa represents the sample mean in one group, μb the mean of the other group 

and 𝑠 the pooled variance of the samples. Further, the objective measures from 

the GB are compared to the JGBG recommended ranges of thermal conditions 

and indoor CO2 levels, which are based on ASHRAE 55 and ASHRAE 62.1 

standards. 

• For the survey data, each respondent provided a pair of scores, xCB from Phase I 

and xGB from Phase II2. Since we are interested in the consistent difference of 

participant outcomes (e.g. perceived comfort, perceived health) pre- and post-

moving to the GB, the paired samples t-test was used due to its suitability for 

studies with repeated measures (Zimmerman, 1997). In comparing thermal 

comfort data, TSV was evaluated as “comfortable” within [-1 and +1] 

(ANSI/ASHRAE 55, 2017), whereas PMV was evaluated between [-0.5 and +0.5] 

(ISO 7730, 2005), as is common in studies of this kind (Indraganti and Boussaa, 

2018). The paired samples t-test is once again used to compare the mean scores 

between the TSV and PMV in each phase of the study.  

• The proportion of occupants who experienced any SBS symptom for ‘some of the 

time’ was calculated and compared to the ASHRAE 62.1 threshold of 20%, thus 

we can investigate whether buildings would classify as exhibiting SBS. 

2.7 Results  

Here we present the results of the objective data (building performance) and subjective 

data (perceived comfort, thermal comfort, and perceived health), and analysis using the 

methods presented in Section 2.6.5 above. 

 

2 The paired sample t-test requires “before” and “after” pairs of observations. In our case, we have “after” observations 

in two waves (6-month and 12-month after moving to the GB) (Figure 2.2). A comparison of data from both waves 

suggests no significant difference in occupant responses between the two waves (see section 2.13.d). We choose the 

second wave data as the “after” component of our pair as it commences 12-month into occupation when the majority 

of issues to do with commissioning and operating new buildings are likely to have been solved, as suggested in the 

literature (Yudelson and Meyer, 2013). 
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2.7.1 Building performance 

Each building had its Ta, RH, and CO2 measured 288 times per day for 149 days. Figure 

2.6 presents density plots of the observed air temperature between 0900 and 1700 from 

the longitudinal monitoring during summer 2017 (Jul – Nov) in CBs, summer 2018 (Jul 

– Nov) and winter 2019 (Dec – Feb) in the GB. In the plots for summer, there is a clear 

downward trend in temperatures between July and November across both building types, 

but the gradient is much steeper in the mixed-mode CBs (~ 2.2 K per month) compared 

to the fully mechanically air-conditioned GB (~ 0.4 K per month). During the winter 

season, the mean air temperature in the GB was stable between December to February 

(cross-monthly mean = 20 °C, s = 1 °C).  
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Figure 2.6 Monthly observed indoor air temperature distribution evaluated on working days between [0900 

– 1700]. Summer (S) in the conventional buildings (CB) is over July – Nov 2017, whereas it is Jul – Nov 

2018 for the green building (GB). Winter (W) data is only for the GB over Dec 2019 – Feb 2020, the dashed 

line represents the mean score for each month. 

 

Figure 2.7 shows in boxplot the distribution of the Ta, RH, and CO2 varied across 

monitored buildings during the same monitored period. Several effects are immediately 

apparent, for example, the GB is notably lower than the CBs in its mean daily Ta and RH 

measurements. Further, there were various sources of repeated sampling within the data. 

For example, each building had its Ta, RH and CO2 recorded every day for five months, 

repeated over two years. To deal with the non-independence this introduces to the data, 

the analysis used linear mixed-effects models. The sole fixed-effects predictor was a 

binary variable coding whether each building was green or conventional. Month and a 
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code representing each building’s unique identity, were entered as random effects to see 

how much of the residual variance in the Ta, RH, and CO2 measures could be explained 

by these identifiers once the effects of being a green building had already been accounted 

for.  

 

 

Figure 2.7 Box plots of the variation in air temperature (Ta), relative humidity (RH), and CO2 across all 

monitored buildings using continuous measurement data between Jul 2017 and Feb 2019, (CB indicates 

conventional buildings and GB indicates green building), whiskers indicate the minimum and maximum 

scores, black dots indicate outliers. 

 

The results of these models are presented in Table 2.6, which shows that the mean daily 

air temperature is significantly lower in the GB than in CBs, with a mean difference of 

2.26 °C. Mean daily relative humidity was also significantly lower in the GB, with a mean 

difference of 11.9%. On the other hand, mean daily CO2 concentration was not 

significantly different across the two classes of building.  

 

Table 2.6’s overview of the model’s random effects shows that month explained most of 

the variance in mean daily air temperatures (56%) once any differences attributable to 

green building status were accounted for. The month was a poorer predictor of RH, 

however, explaining only 12% of the variance in measurements, after green building 

status was accounted for. The majority of the variance in RH measures that could not be 

explained by green building status was still unexplained even after the month and building 
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identity were included in the model and so must arise from variables we have not 

considered here.  

The majority of residual variance in the mean CO2 level was also left unexplained here, 

although it is notable that, for this outcome, individual building identity is a more 

important predictor for Ta and RH. Specifically, individual differences from one building 

to another accounted for 26% of the variance in CO2 readings once any effects of green 

building status had been considered. This suggests that some buildings intrinsically and 

consistently have higher levels of CO2 than others. Based on Figure 2.7, it appears that 

CB3 and GB generally have higher mean scores of CO2 concentrations than the other 

three buildings.  

Table 2.7 presents the mean, 𝑝-value and effect size (Cohen’s 𝑑) for the spot measures of 

four thermal comfort metrics namely Ta, Tr, RH, and Va conducted in Aug 2017 in CBs 

and Aug 2018 in the GB. These variables were used to calculate the PMV along with clo 

and met values. Also, Table 2.7 shows the results of the t-tests suggest rejecting the null 

hypothesis of no differences between the mean scores for all measured variables (𝑝-value 

< 0.05), with medium to large effect size. The GB had a slightly lower mean of Ta and Tr 

compared to the CBs with a difference of 0.6 °C and 1.4 °C respectively. Similarly, the 

GB had lower mean of RH (mean = 36.6%, s = 3) compared to CBs (mean = 40.5%, s = 

6.4). Observed indoor air speed in both building types was always less than 0.2 ms-1 

(mean = 0.13 ms-1, s = 0.11). 

 

Table 2.6 The results of linear mixed effects models. 

 

 

 

 

 

    Random effects 

Outcome Obs. Intercept 

(95% CI) 

Effect of green 
building status 

(95% CI) 

Total 
residual 
variance 

Building ID Month Unexplained 
variance 

Mean Ta 

(°C) 

622 25.71 

(23.86 – 27.55) 

-2.26 

(-4.07 – -0.45) 

6.38 0.66 

(10%) 

3.56 

(56%) 

2.16 

(34%) 

Mean RH 

(%) 

623 42.17 

(41.40 – 42.94) 

-11.89 

(-13.11 – -10.67) 

3.06 0.29 

(9%) 

0.38 

(12%) 

2.39 

(78%) 

Mean CO2 

(ppm) 

473 559.40 

(471.76 –647.04) 

125.67 

(-59.93 – 311.28) 

27147.73 6979.16 

(26%) 

834.23 

(3%) 

19334.34 

(71%) 
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Table 2.7 Results of t-test and descriptive statistics of data from spot measures of thermal conditions pre- 

and post-moving to the GB during Aug 2017 in CBs and Aug 2018 in the GB, ** 𝑝 < 0.01, *** 𝑝 < 0.001. 

 
CBs (Pre-
moving) 

GB (Post-
moving) 

   
  

Paramete
r 

(M ± SD) (M ± SD) CI 99% 𝑡 df 
𝑝 -value Effect size (𝑑) 

Ta (°C) 24.11 ± 1.65 23.52 ± 0.62 0.11 1.10 2.44 62.59 0.01** 0.48  Medium 

Tr (°C) 25.32 ± 1.95 23.91 ± 0.80 0.95 2.11 4.76 65.20 0.00*** 0.93  Large 

RH (%) 40.51 ± 6.46 36.51 ± 3.00 2.02 6.04 3.99 69.10 0.00*** 0.79  Large 

Va (ms-1) 0.09 ± 0.07 0.01 ± 0.00 0.06 0.10 8.28 49.00 0.00*** 0.79  Large 

 

2.7.2 Perceived comfort of IEQ 

While the GB outperforms the CBs in terms of the measured thermal conditions (as seen 

in 2.7.1), it is necessary to obtain a picture of occupant perception of the obtained IEQ. 

Therefore, the occupants perceived comfort over thirteen perceptual IEQ metrics were 

compared between Phase I and Phase II. These metrics are grouped into five aspects: 

IAQ, temperature, visual comfort, acoustic comfort, and secondary metrics. Figure 2.8 

compares between the two building types and shows the distribution of occupants’ 

satisfaction towards the individual IEQ metrics, that were almost comparable among both 

study phases. 

 In the CBs, control lighting and odour had higher mean scores of satisfactions, whereas 

moving to the GB has increased the mean score of occupant satisfaction of view, fresh 

air, and temperature (winter). However, these differences were not statistically significant 

(𝑝-value > 0.05), as illustrated in Table 2.8.  

The results of the paired samples t-tests fail to reject the null hypothesis of no significant 

differences in the mean scores of occupant satisfaction between both building types for 

ten metrics, namely, noise, temperature (winter and summer), lighting, biophilia, privacy, 

view, air quality, and control over temperature and lighting (𝑝-value > 0.05). The only 

significant differences in mean scores were observed in odour (𝑡(101) = −4.22, 𝑝 =

 0.001, 𝑑 =  0.36), mental concentration (𝑡(101) = −1.95, 𝑝 =  0.02, 𝑑 =  0.21), and 

glare (𝑡(101) =  2.03, 𝑝 =  0.04, 𝑑 =  0.20), which are seen to be statistically 

significant but with a small effect size. These three metrics had lower mean scores after 

moving, hence they were perceived worse in the GB. Therefore, it can be stated that 

occupants who moved to the GB did not show any notable improvement in the overall 

perceived comfort.  
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Figure 2.9 compares the overall mean scores of occupant satisfaction with all IEQ metrics 

in the CBs and GB, that were almost equal pre-moving (mean = 2.61) and post-moving 

(mean = 2.69). However, mean scores in both building types were lower than the neutral 

midpoint (i.e., three) on a scale ranged between strongly dissatisfied (1) and strongly 

satisfied (5) suggesting that at no point were occupants overall satisfied with their 

workplace, whether in the GB or not. 

 

 

Figure 2.8 The distribution of occupant satisfaction of thirteen IEQ metrics pre- and post-moving to the 

GB, satisfaction score from (1) strongly dissatisfied to (5) strongly satisfied, and (3) represents the 

neutrality, n_CBs = 120, n_GB = 102, (statistical analysis in Table 2.8). 

 

Table 2.8 Statistical analysis of differences in mean scores of occupant perceived comfort pre- and post- 

moving to the GB, * significant at 𝑝 < 0.05; *** significant at 𝑝 < 0.001; n.s. indicates not significant.  

 Mean score ∈ [1,5]      

IEQ parameter 

CBs 

(Pre-
moving) 

GB 

(Post-
moving) 

CI 99% 𝑡   𝑝-value Effect size (𝑑) 

IAQ        

Overall air quality 2.55 3.49 0.94 1.23 5.24 
0.17 
n.s. 

 0.13  
Negligible 

Temperature          

Temperature 
(winter) 

2.65 2.8 0.15 0.45 0.97 
0.33 
n.s. 

0.09  
Negligible 
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Temperature 
(summer) 

2.92 2.75 -0.16 0.14 -0.89 
0.18 
n.s. 

 0.04  
Negligible 

Control 
temperature 

3.61 3.56 -0.04 0.25 -0.26 
0.39 
n.s. 

 0.06  
Negligible 

Visual comfort         

Natural lighting 2.85 3.23 0.37 0.67 2.02 
0.97 
n.s. 

 0.11  
Small 

Glare 2.17 1.94 -0.22 0.03 2.03 0.04*  0.20  Small 

Control lighting 3.61 3.56 -0.04 0.25 -0.26 
0.39 
n.s. 

 0.06  
Negligible 

Acoustic comfort         

Noise 3.29 3.13 -0.16 0.09 -1.04 
0.14 
n.s. 

 0.17  
Negligible 

Mental 
concentration 

2.95 2.65 -0.30 -0.04 -1.95 0.02* 0.21  
Small 

Secondary metrics         

Odour 2.72 2.03 -0.68 -0.41 -4.22 0.00*** 0 .36  Small 

Privacy 2.58 2.46 -0.11 0.21 -0.59 
0.27 
n.s. 

 0.12  
Negligible 

View 2.75 3.33 0.58 0.92 2.91 
0.99 
n.s. 

 0.04  
Negligible 

Biophilia 1.73 1.45 0.27 0.49 2.09 
0.98 
n.s. 

 0.15  
Negligible 

 

 

 

 

 

 

 

 

 

Figure 2.9 Overall mean score of occupant satisfaction in both study phases, satisfaction score from (1) 

strongly dissatisfied to (5) strongly satisfied, and (3) represents the neutrality, whiskers indicate the 

minimum and maximum scores, black dots indicate outliers, red star indicates mean score. 

 

2.7.3 Thermal comfort 

 

Figure 2.10 and Table 2.9 show the distribution of the observed Thermal Sensation Vote 

(TSV), Thermal Preference Vote (TPV), and calculated Predicted Mean Vote (PMV) pre- 

and post-moving to the GB. In CBs, only 72% of the TSV votes were within the ASHRAE 

55 acceptable comfort zone of TSV between [-1 and +1], hence failing the 80% ASHRAE 

(IEQ satisfaction level) 

CBs (Pre-moving) 

GB (Post-moving) 
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acceptability threshold that is adopted by the JGBG. Although PMV predicts neutral to 

slightly warm, with 85% predicted to fall within the ISO 7730 recommended range of [-

0.5, +0.5], 40% of the TSV votes fall within slightly cool (-1) to cool (-2) in the summer 

( 

Figure 2.10 (Left)). This is supported by the TPV, as 48% of the occupants in CBs 

preferred a warmer indoor air temperature in their workplaces ( 

Figure 2.10 (Right)).  

In contrast, in the GB, 87% of TSV votes fell within slightly warm (+1) or slightly cool 

(-1), which is broadly commensurate with the PMV prediction of 92% and are hence in 

the acceptable range. The TPV in the GB show compliance with the ASHRAE standard, 

as less than 20% of occupants preferred either a bit cooler or a bit warmer thermal 

environment.  

Figure 2.11, compares the reported TSV by occupants and the predicted PMV in both 

building types. In the CBs, there was a statistically significant difference between mean 

score of TSV (-0.17) and PMV (0.05), while the PMV predicted neutrality, the majority 

of occupants’ votes were on the cold side. Contrary to the GB, there was no statistical 

difference between the mans of observed TSV (0.09) and PMV (0.19), which both were 

close to the neutral (i.e., zero), thus a higher thermal comfort was observed in the GB. 

 

 

 

Figure 2.10 The distribution of the observed Thermal Sensation Votes (TSV) (Left), and Thermal 

Preference Votes (TPV) (Right), in both building types pre- and post-moving. 
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Table 2.9 Thermal acceptability percentages for objective and subjective measurements pre- and post-

moving to the GB. 

 

 

 

Figure 2.11 Comparison between the observed TSV and the predicted PMV by Fanger model in both 

building types, n_CBs = 120, n_GB = 102, * indicates significant difference, n.s. indicates no significant 

difference, (statistical analysis in Table 2.9). 

 

2.7.4 Perceived health  

 

 

Figure 2.12 shows the frequency of ten reported SBS symptoms pre- and post-moving to 

the GB. In both building types, the incidence of four symptoms namely ‘arms, legs and 

joints pain’, ‘muscle soreness’, ‘tiredness’, and ‘trouble sleeping’ was almost similar. 

Interestingly, in the GB, a higher prevalence of dizziness and fever symptoms was 

observed. 

 

 

Building 
type 

TSV  

(M ± SD) 

PMV  

(M ± SD) 

Acceptable range 

   -1 ≤ TSV ≤ +1 -0.5 ≤ PMV ≤ 
+0.5 

- 1 ≤ TPV ≤ 
+1 

CBs (Pre-
moving) 

-0.17 ± 1.31 0.05 ± 0.31 72% 85% 90% 

GB (Post-
moving) 

0.09 ± 1.03 0.19 ± 0.27 87% 92% 88% 
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Table 2.10 presents the results of the paired samples t-test, which suggests rejecting the 

null hypothesis of no difference between mean scores of reported SBS for only two 

symptoms, namely tiredness (𝑡(101) = −2.95, 𝑝 =  0.02, 𝑑 =  0.31) and watery eyes, 

runny nose, and stuffy head (𝑡(101) = −1.70, 𝑝 =  0.04, 𝑑 =  0.13). 

However, these findings should not be taken at face value. Our analysis of  

Figure 2.12 

 involves ten t-tests, so we apply the Holm Bonferroni method to deal with family-wise 

error rate (FWER) for multiple hypothesis tests (Holm, 1979). When corrected, none of 

the SBS symptom t-tests were significant, and so we conclude that there appears to be no 

change in SBS symptoms after moving to the GB. Additionally, Table 2.11 illustrates the 

proportions of five frequency categories for all reported SBS symptoms in both building 

types. According to the ASHRAE standard 62.1 threshold, CBs and GB could be labelled 

as ‘sick buildings’, since 20% and 23% of their occupants respectively had experienced 

some of the SBS symptoms for ‘some of the time’ during working hours. 

 

 

 

https://www.statisticshowto.com/probability-and-statistics/hypothesis-testing/
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Figure 2.12 The distribution of occupant responses of each SBS symptom pre- and post-moving to the GB, 

n_CBs = 120, n_GB = 102, (statistical analysis in Table 2.10). 

 

 

 

 

Table 2.10 Statistical analysis of differences in mean scores of occupants self-reported SBS symptoms pre- 

and post- moving to the GB, frequency score from (1) none of the time to (5) all the time, and (3) represents 

some of the time, corrected 𝑝-value indicates the 𝑝-value of Holm-Bonferroni-corrected test at an alpha 

level of 0.05. 

 
Mean ∈ [1,5]   

Symptom CBs  

(Pre-

moving)  

GB  

(Post-

moving)  

CI 99% 𝑡 Corrected 𝑝-

value 

Effect size 

(𝑑) 

Tired 2.81 2.44 -0.37 -0.16 -2.95 0.20  0.31  Small 

Watery eyes, runny nose, stuffy head 2.04 1.83 -0.21 0.00 -1.70 0.36 0.13  Small 

Dizzy 2.36 1.94 -0.42 0.27 -0.97 1.00 0.10  Small 

Trouble sleeping 2.56 2.44 -0.11 0.12 -0.81 1.00  0.08  Negligible 

Back/neck pain 2.76 2.6 -0.16 0.09 -1.05 1.00  0.10  Small 

Arms, legs and joints pain 2.46 2.42 -0.03 0.19 -0.27 1.00  0.02  Negligible 

Muscle soreness 2.3 2.25 0.04 0.17 -0.36 1.00 0.02  Negligible 

Cough/ sore throat 1.56 1.58 0.01 0.21 0.17 1.00  0.01  Negligible 

Fever symptoms 1.46 1.59 0.12 0.31 1.12 1.00  0.11 Small 

Constipation and loose bowels 1.84 1.85 0.00 0.25 0.06 1.00  0.00  Negligible 

 

Table 2.11 Proportion of occupants who reported any of SBS symptoms in both building types, classified 

into five frequency categories. 

Frequency of 
symptoms 

CBs 

 (Pre-moving)  

GB  

(Post-moving) 

None of the time 38% 38% 

A little of the time 29% 30% 

Some of the time 20% 23% 

Most of the time 11% 8% 

All the time 2% 1% 

 

2.8 Discussion 

Our results can be split into two parts: observed IEQ performance (i.e., thermal conditions 

+ IAQ) and perceived performance, we discuss these below.  
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2.8.1 Thermal conditions and IAQ 

Localised recommended ranges of indoor air temperature and CO2 concentration levels 

are absent in the JGBG, which instead refers to ASHRAE 55 for determining the 

acceptable thermal comfort range and ASHRAE 62.1 for acceptable indoor CO2 level. 

ASHRAE 55 suggests a temperature range between 21.5 °C – 27 °C (under the conditions 

of a thermal clothing insulation value between 0.5 and 1, metabolic rate between 1 and 

1.3, and Va ≤ 0.2 ms-1). Comparing our results of continuous monitoring of Ta in the 

surveyed buildings showed that in CBs, only 48% of recorded Ta fell in the acceptable 

indoor temperature range, while in the GB, this percentage was higher, as 62% of 

monitored Ta were within the recommended range.  

Further, comparing the results of thermal conditions from spot measures (i.e., Ta, Tr, RH, 

and Va) across building types showed a significant difference in the mean scores between 

the CBs and GB in all monitored variables with lower mean in the GB. The RH in the GB 

(mean = 36.5%, s = 3%) was significantly lower than the threshold of acceptability of 

50% defined by JGBG. The monitored indoor air speed in both building types was within 

the JGBG recommended acceptable value (≤ 0.2 ms-1). 

The disparities in monitored thermal conditions between the CBs and GB were expected 

due to the variances of the building design approaches and the differences in heating, 

cooling, and ventilation systems. Further, behavioural adaptations (e.g., open/close 

windows, turn on/off the air-conditioning, and changing temperature set points) could 

play a role in the thermal conditions’ variations between the two building types. 

Surprisingly, a variation in the air temperature behaviour within the floors of GB was 

observed. Figure 2.13 shows that the top floor (F4) of the GB performed differently with 

a higher mean air temperature of (mean = 29 °C, s = 2.2 °C) across all monitored months 

compared to the mean air temperature of the other floors in the GB. This disparity is 

attributable to several reasons: (i) unlike the other floors, the top floor was 30% occupied 

during the monitored period, and as each floor is controlled individually by the operating 

manager, the AC system on this floor was turned off to account for this. (ii) Solar gains 

are likely to have been higher in the top floor compared to the bottom floors, and (iii) a 

covered glazed void on the south side for daylighting links all floors vertically, possibly 

trapping air moving upwards due to the stack effect.  

Turning to the result of monitored indoor CO2 concentration levels, it shows that though 

GB and CB3 had higher mean scores of indoor CO2 levels compared to other monitored 
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buildings as shown in Figure 2.7, all buildings had achieved the ASHRAE 62.1 

recommended standard for CO2 of 1,100 ppm inside workplaces for an 8-hr workday 

(ANSI/ASHRAE 62.1, 2010).  

 

 

Figure 2.13 The difference in mean scores of monitored indoor air temperature between the monitored four 

floors in the GB, data recorded between Jul 2018 and Feb 2019, whiskers indicate the minimum and 

maximum scores, black dots indicate outliers, the red star indicates mean score for each floor. 

 

2.8.2 Occupant perception, thermal comfort and SBS 

Contrary to expectations, occupant satisfaction of IEQ does not show a significant 

difference between CBs and GB, excepting in three metrics namely odour, glare and 

mental concentration. While these were perceived to be significantly worse after moving 

to the GB, the effect sizes were small. Speculative reasons for the worsened odour 

perception in the GB could be: (i) indoor emissions derived from the building itself (e.g., 

furnishing, personal products of employees, cleaning products, and office machines), as 

the GB has sealed envelope, this makes the odour more noticeable by occupants; and (ii) 

outdoor emissions included vehicle exhausts nearby entering the building air intake are 

distributed by the mechanical ventilation system in the entire floor.  

Moreover, a possible explanation for the decline in occupant satisfaction of glare and 

mental concentration after moving to the GB might be that bullpen workplace with 

insufficient lighting distribution and poor control in the GB may be considered “chaotic” 

(Danielsson, Wulff and Theorell, 2015). Only 30% of occupants in the GB can adjust the 

light intensity in their workplaces, and this could increase stress level and negatively 

affecting employee mental concentration.  

However, the overall mean scores of all IEQ satisfaction voted by occupants in both 

building types were comparable and below the neutral midpoint as shown in Figure 2.9, 
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 hence, we can consider that occupants perceived the GB and CBs to be broadly similar, 

in that neither was particularly nice. Unlike the majority of studies in localised GBCs 

from different countries (Table 2.1), the JGBG building in this study is not seen to 

improve occupant perception of IEQ. This finding is consistent with an earlier study, 

which had a similar research design, following a group of workers after the transition 

from conventional building to the first Green Star-building in South Africa (Thatcher and 

Milner, 2012).  

Furthermore, we could speculate the lack of any improvement in occupant perception 

after moving to the GB to that participants' values and attitudes were not pro-

environmental. As in both study phases, the mean score of the Environmental Attitude 

Inventory (EAI) for the whole dataset was (3.61, s = 1.07). This is very close to the 

midpoint of the scale mean score, i.e., three.  

The mean of EAI was almost equal in the CBs (3.68) and GB (3.55) (Figure 2.14). This 

indicates that participants had a similar environmental concern level pre- and post-

moving to the GB and, as this was not particularly high, we might speculate that moving 

to the GB is unlikely to have activated green attitudes or self-identities in most people, 

which in turn might be expected to lead people to evaluate the GB favourably.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14 The difference in mean scores of occupants’ Environmental Attitude pre- and post- moving to 

the GB, scale ranged between (1) strongly disagree (5) strongly agree, and (3) represents no opinion or the 

neutrality, whiskers indicate the minimum and maximum scores, black dots indicate outliers, red star 

represents mean score. 

 

Turning now to the evidence of thermal comfort that suggests the presence of 

“overcooling” in the CBs, well known to exist in air-conditioned buildings in many parts 

of the world (Sekhar, 2016). This overcooling could be referred to the improper 

distribution of cool air from the split air conditioner units in the workplaces in CBs. 

CBs (Pre-moving) 

GB (Post-moving) 

(EAI level) 
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However, the presence of this overcooling disappears after the move to the GB despite 

the fact that average indoor temperatures fell after moving. Our results are consistent with 

several studies that observed green buildings exhibits superior performance in terms of 

thermal comfort compared to other IEQ aspects, such as visual and acoustic comfort or 

other secondary metrics, i.e. privacy (Abbaszadeh et al., 2006; Thomas, 2010; Lin et al., 

2016). 

Another important finding was that no significant differences were observed in the mean 

scores of all SBS symptoms between both building types. We found that 20% and 23% 

of occupants in CBs and the GB respectively experienced SBS symptoms for ‘some of 

the time’, therefore, both building types fail the ASHRAE 62.1 threshold. This is a 

remarkable, and concerning, outcome for any modern building, and raises questions about 

whether building codes and practices are adequate. 

In CBs, five symptoms were experienced frequently by more than 20% of the occupants, 

these symptoms were back or neck pain (28%), tiredness (38%), watery eyes, runny nose 

and stuffy head (22%), muscle soreness (24%) and trouble sleeping (28%). After moving 

to the GB, the same proportion of occupants experienced the same five symptoms, with 

higher prevalence in trouble sleeping (33%). The dizziness was perceived as a problem 

by 25% of the occupants in the GB. What is surprising is that the percentage of occupants 

who had fever and flu symptoms has increased from 6% in CBs to 16% after moving to 

the GB. The high prevalence of these observed symptoms in the GB could be explained 

according to the following three factors:  

• Plan-layout: The GB has a bullpen layout which is known to spread pathogens 

easily. For example, it has been shown that in congested open-plan workplaces, 

respiratory and fever symptoms can be spread faster due to the short distances 

between workstations (Habchi et al., 2016).  

• Natural light: As the GB is a deep-plan, the daylight and the visual connection to 

the outdoor were poor and this may lead to fatigue and trouble sleeping (WGBC, 

2016). 

• Building envelope: The GB in this study is sealed with no operable windows to 

prevent any thermal loss, so increase the energy efficiency, this may lead to ‘Tight 

Building Syndrome’, which causes particular health symptoms including 

dizziness, fatigue and sneezing (Rogers, 1987). However, the success of many 

Passivhaus buildings, which are built to the strictest airtightness standards 
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globally, and the general trend towards tighter construction would suggest that 

other vectors may also be in play, meriting further investigation. 

Overall, in spite of the vital role of GBCs in the current green building development that 

resulted in vast reduction of energy use and operational costs, a building's green 

credentials should be viewed as completely orthogonal to its comfort and health credits. 

GBCs need to be amended and expanded based on building users’ perception to include 

their health, physical and psychological aspects.  

2.9 Conclusions  

This study set out to examine whether the localised GBCs improve the performance of 

IEQ and occupant feedback in green buildings. We focus on the JGBG in Jordan, the 

results have shown that moving from conventional office buildings to the JGBG-certified 

building did not automatically guarantee a significant improvement in the employee 

perceived comfort and perceived health. 

 We find that despite the green building complied with the requirements of JGBG for 

thermal conditions and indoor CO2 concentration level, no significant improvement in the 

occupant satisfaction of IEQ metrics was detected. In both building types, the mean of 

occupant satisfaction was small compared to the neutral midpoint. However, a modest 

improvement in the occupant thermal comfort was observed after moving to the GB.  

Another major finding was that no significant improvement in the prevalence of SBS 

symptoms was reported after moving to the GB. In CBs, around 20% of occupants had 

experienced five SBS symptoms for ‘some of the time’, and this percentage has increased 

to 23% of occupants after moving to the GB. Hence, both building types could be labelled 

as “sick”, according to the ASHRAE 62.1 standard – a remarkable, and disturbing, finding 

for any modern building. 

Based on the evidence of this study, we suggest that green building designers, developers 

and policymakers pay greater attention to the occupants’ related aspects. While reducing 

energy consumption and consequent emissions are undoubtedly important, designers of 

green buildings should think beyond these features, towards improving employee health, 

visual and acoustic comfort.  

This would suggest the need for developing a follow-up management plan, that can be a 

part of the green building certification scheme. This plan might include regular 

assessments with two themes, i.e., objective and subjective that cover the building itself 
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and its occupants. The assessment could be repeated every 12-month, as our results show 

no significant differences in occupant feedback between the first wave (6-month post-

moving) and the second wave (12-month post-moving). This enables developers to 

benefit from occupant feedback in further IEQ developments in green buildings. 
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2.13 Appendices  

(a) Specifications of instruments used in monitoring indoor environment parameters.  

Measurement type Sensor Variable Unit Valid Range Accuracy 

Spot measurements SWEMA (ISO 7730) 

Ta °C [0, 50] ±0.1 

RH % [0, 100] ±0.8 

Va ms-1 [0.1, 5] ±0.2 

Continuous measurements 

(Raspberry Pi-based sensors) 

Maxim IC DS18B20 Ta °C [-10, 85] ±0.5 

AdaFruit DHT22 RH % [0, 100] ±2 

Sensair K30 CO2 ppm [0, 5000] ±30 

 

(b) Survey used in this study. 

Organization:  Date:   Time:  Subject ID: 

Demographic 

https://doi.org/10.15125/BATH-00925
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Age   

20-30 

31-40 

41-50 

51 or 

more 

 

Gender  

Female 

Male 

 

Your Role  

Administrative  

Design 

Marketing 

Executive 

Other 

 

How long have you 

been working at this 

company? 

≤ 6 months  

6-month - 1 year 

1 year - 2.5 years 

2.5 - 5 years  

≥ 5 years  

Nationality 

Jordanian  

Non-Jordanian  

 

Education level 

Not graduate  

High school 

graduate 

College 2-year  

Holding B.Sc.  

Holding M.Sc. 

 

Indoor Environment Quality 

From scale 1 -5 how much do you satisfy with the following 

S
tr

o
n

g
ly

 

D
is

sa
ti

sf
ie

d
 

D
is

sa
ti

sf
ie

d
 

N
eu

tr
al

 

S
at

is
fi

ed
 

S
tr

o
n

g
ly

 

sa
ti

sf
ie

d
 

1 2 3 4 5 

1 Overall air quality      

2 Temperature (winter)      

3 Temperature (summer)      

4 Control temperature      

5 Natural lighting      

6 Glare      

7 Control lighting      

8 Noise      

9 Mental concentration      

10 Odour      

11 Privacy      

12 View      

13 Biophilia      

Thoughts on the Natural Environment 

 

From scale 1 -5 how much do you agree with the following: 

S
tr

o
n

g
ly

 

d
is

ag
re

e 

D
is

ag
re

e 

N
eu

tr
al

 

A
g

re
e 

S
tr

o
n

g
ly

 

ag
re

e 

1 2 3 4 5 

1 I am the type of person who cares about the 

environment 

     

2 We are approaching the limit of the number of people 

the Earth can support 

     

3 Humans have the right to modify the natural 

environment to suit their needs 

     

4 When humans interfere with nature it often produces 

disastrous consequences 
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5 Human ingenuity will ensure that we do NOT make the 

Earth unlivable 

     

6 Humans are severely abusing the environment      

7 The Earth has plenty of natural resources if we just 

learn how to develop them 

     

8 Plants and animals have just as much rights as humans 

to exist 

     

Sick Building Syndrome   

 

During the past 4 weeks (28 days), how much were you 

bothered by each of the following conditions: 

N
o

t 
at

 

al
l 

A
 l

it
tl

e 

o
f 

th
e 

ti
m

e 

S
o

m
e 

o
f 

th
e 

ti
m

e 
M

o
st

 o
f 

th
e 

ti
m

e 

A
ll

 o
f 

th
e 

ti
m

e 

1 2 3 4 5 

1 Tired      

2 Watery eyes, runny nose, stuffy head      

3 Dizzy      

4 Trouble sleeping      

5 Back/neck pain      

6 Arms, legs and joints pain      

7 Muscle soreness      

8 Cough/ sore throat      

9 Fever symptoms      

10 Constipation and loose bowels      

 

 

 

At present, you feel:      

 Cold Cool Slightly 

cool 

Neutral Slightly 

warm 

Warm Hot 

 -3 -2 -1 0 +1 +2 +3 

At present, you would prefer to be: 

 Much 

cooler 

cooler A bit 

cooler 

No 

Change 

A bit 

warmer 

Warmer Much 

warmer 

 -3 -2 -1 0 +1 +2 +3 

Your clothes at present (Please 

tick) 

What is your activity during the past 15 minutes (Please tick) 

Short Sleeve shirt/blouse  Sitting (passive work  

Long sleeve shirt/blouse  Sitting (active work)  

Vest   Standing relaxed  

Trousers/long skirt  Standing working  

Shorts  Walking indoors  

Dress  Walking outdoors  
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(c) Sociodemographic information of the respondents. 

 

Category  n_occupants = 120 

Gender   

  Female  42 (35%) 

  Male  78 (65%) 

Age   

  20 - 30 61 (51%) 

  31 - 40 44 (37%) 

  41 - 50 11 (9%) 

  ≥ 50 4 (3%) 

Working position    

  Administrative 20 (17%) 

  Design 16 (13%) 

  Marketing 24 (20%) 

  Executive 21 (18%) 

  Other 39 (33%) 

Working experience    

  ≤ 6 months 17 (14%) 

  6-month - 1 year 19 (16%) 

  1 year - 2.5 years 31 (26%) 

  2.5 - 5 Years 22 (18%) 

  ≥ 5 Years 31 (26%) 

Education level    

  Not graduated 6 (5%) 

  High school 7 (6%) 

  College 2 years 10 (8%) 

  Bachelor 85 (71%) 

  Master 12 (10%) 

Nationality    

  Jordanian  116  (97%) 

  Non-Jordanian  4 (3%) 

 

Pullover  Other………………  

Jacket  
Instantaneous Measurements (for researcher only)  

Long socks  

Short socks  Air Velocity (ms-1) 

Air Temperature (°C) 

Relative Humidity (%) 

Mean radiant temperature (°C) 

CO2 level (ppm) 

Tights  

Tie  

Boots  

Shoes  

Sandals  

Headwear  

Barefoot  
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(d.1) Statistical analysis of differences in mean scores of occupant satisfaction of IEQ 

between the first wave (6-month post-moving to GB) and second wave (12-month post-

moving to GB), n.s. indicates not significant. 

 

 Mean     

IEQ parameter 6-month  12-month CI 99% 𝑡   𝑝-value Effect size (𝑑) 

IAQ       

Overall air quality 3.05 3.49 0.87 0.91 6.24 0.61 n.s.  0.11 (Small) 

Temperature         

Feeling cold 2.45 2.8 0.11 0.55 0.87 0.42 n.s. 0.12 (Small) 

Feeling hot 2.77 2.75 0.18 0.21 0.77 0.08 n.s.  0.13 (Small) 

Control temperature 3.55 3.56 0.14 0.15 0.31 0.45 n.s. 
 0.08 

(Negligible) 

Visual comfort        

Natural lighting 3.22 3.23 0.35 0.59 2.55 0.19 n.s. 
 0.01 

(Negligible) 

Glare 1.82 1.94 
-

0.31 
0.09 3.11 0.07 n.s. 

 0.08 
(Negligible) 

Control lighting 3.45 3.56 0.14 0.35 0.28 0.45 n.s.  0.14 (Small) 

Acoustic comfort        

Noise 3.61 3.13 0.21 0.15 2.11 0.12 n.s.  0.15 (Small) 

Mental concentration 2.45 2.65 0.22 0.07 1.65 0.06 n.s. 
0.08 

(Negligible) 

Secondary metrics        

Odour 2.01 2.03 0.53 0.38 1.12 0.21 n.s. 0.14 (Small) 

Privacy 2.39 2.46 
-

0.23 
0.23 -0.63 0.39 n.s.  0.11 (Small) 

View 2.85 3.33 0.61 0.13 3.11 1.11 n.s. 
 0.09 

(Negligible) 

Biophilia 1.60 1.45 0.31 0.55 2.5 0.79 n.s.  0.13 (Small) 

 

(d.2) Statistical analysis of differences in mean scores of self-reported SBS symptoms 

between the first wave (6-month post-moving to GB) and second wave (12-month post-

moving to GB); n.s. indicates not significant.  

 

 Mean     

Symptom 6-month  
12-
month 

CI 99% 𝑡 𝑝-value Effect size (𝑑) 

Tired 2.55 2.44 0.29 0.21 3.21 0.09 n.s.  0.11 (Small) 

Watery eyes, runny nose, stuffy 
head 

2.11 1.83 -0.12 0.01 -1.55 0.14 n.s. 
0.19 (Small) 

Dizzy 2.21 1.94 0.56 0.31 0.89 0.41 n.s. 0.15 (Small) 

Trouble sleeping 2.61 2.44 -0.13 0.09 -0.95 0.53 n.s.  0.12 (Small) 

Back/neck pain 2.81 2.6 0.19 0.12 0.09 0.33 n.s.  0.08 
(Negligible) 

Arms, legs and joints pain 2.56 2.42 0.13 0.19 -0.27 0.81 n.s.  0.02 
(Negligible) 
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Muscle soreness 2.28 2.25 0.13 0.21 -0.41 0.52 n.s. 0.06 
(Negligible)  

Cough/ sore throat 1.45 1.58 0.21 0.31 0.21 0.71 n.s.  0.09 
(Negligible) 

Fever symptoms 1.58 1.59 0.14 0.27 2.22 0.15 n.s.  0.08 
(Negligible) 

Constipation and loose bowels 1.88 1.85 0.01 0.09 0.08 0.70 n.s.  0.00 
(Negligible) 

2.14  Addendum  

 This section has been added and is not a part of the published manuscript. It contains 

detailed information about the location of sensors in all surveyed buildings in this study: 

green-certified and conventional buildings.  

 

Note: red circle represents Ta + RH sensors and blue circle represents CO2 sensor.  

 

a) Location of sensors in green-certified building 
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b) Location of sensors in four conventional buildings 

    

 

       

 

            

 



Chapter 2. Moving to A Green Building…. 

56 

 

    

 

 

2.15 Postscript 

This chapter aims to assess the role of localised GBCs in improving the performance of 

IEQ, occupant satisfaction and perceived health in green-certified office buildings. The 

main findings of this chapter are the following:  

• Moving from conventional buildings to the JGBG-certified building did not  

improve the occupants’ satisfaction with IEQ or perceived health. 

• Despite the JGBG-certified building meets the standard specification of thermal 

conditions and indoor CO2 concentration levels, no significant improvement in 

the occupants' satisfaction with IEQ was detected. 

• A slight improvement in occupant thermal comfort was observed across the move 

to the GB . 

• The percentage of occupants who reported SBS symptoms has increased three  

percentage points after moving to the GB. Similarly, the percentage of occupants 

who experienced fever and flu symptoms has increased by 10 percentage points 

after transition. 

Overall, this case study showed that although green-certified building meets the 

specifications of JGBG for thermal comfort and indoor CO2  level, it failed to improve the 

occupant satisfaction with IEQ and perceived health. Further, this chapter highlighted the 

IEQ factors that may affect the prevalence of SBS symptoms, and suggested measures 

that can be followed to prevent the increase of SBS in workplaces. Findings from this 

chapter pointed out the need for a wider investigation that cover other green buildings are 

designed and certified to other GBCs. This can help to understand in depth the 
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performance gap between design estimations and effective performance of buildings in 

use, this is investigated in the following chapter. 
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3 Indoor environment quality and work 
performance in “green” office buildings 
in the Middle East 

 

3.1 Preamble  

This chapter expands the investigation that was presented in Chapter 2. In this chapter, I 

focus on LEED-certified office buildings. This is the first study of its kind in the ME, 

which is experiencing significant growth in the overall number of green buildings, while 

there remains a paucity of evidence of the actual performance of green buildings in this 

region. The LEED office buildings in Jordan were selected as relevant examples of LEED 

buildings in the ME to be investigated. 

This chapter aims to investigate whether LEED office buildings achieve the required 

minimum IEQ standards in terms of thermal conditions and indoor air quality, during 

occupancy stage, and if so, whether occupants of these buildings are satisfied with their 

IEQ and demonstrated better work performance compared to their counterparts in 

conventional buildings. Further, this chapter identifies the main concerns of IEQ 

perceived by the occupants in LEED buildings, also, it investigates the most IEQ aspects 

that may negatively influence the employee work performance.  

Our systematic evaluation has included two aspects of POE, which were done in LEED-

certified-buildings and CBs: 

1. Objective measures of IEQ aspects included monitoring of thermal conditions 

(e.g., air temperature, mean radiant temperature, air speed, relative humidity) and 

indoor CO2 concentration levels as an indicator of IAQ.  

2. Subjective measures covering 502 employees and assess their satisfaction of four 

IEQ aspects (i.e., IAQ, thermal, visual and acoustic comfort), also assess the work 

performance of employees by measuring two metrics (i.e., absenteeism and 

presenteeism rates). 
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3.3 Abstract  

Globally, a primary concern is whether green office buildings perform as promised in 

terms of providing better Indoor Environment Quality (IEQ) for employees, which may 

affect their satisfaction and work performance. In the Middle East, although there has 
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been renewed interest in green building design, post occupancy evaluation of 

performance has never been conducted to-date, and evidence of actual occupant 

perception in green and non-green buildings is still ambiguous. Hence, we present the 

first study on IEQ performance in the Middle East. We show that Jordan can be taken as 

a representative example and systematically compare five “green” office buildings 

(representing 71% of all green-certified office buildings) against eight comparable 

conventional office buildings (CBs). 

 Detailed bi-lingual survey data on perceived IEQ (n=502) and work performance are 

accompanied by high-resolution continuous physical measurements of air temperature + 

relative humidity (n=83) and CO2 concentrations (n=21) with periodic measurements of 

mean radiant temperature and air speed, covering two typical summers and one typical 

winter.  

Results show both building types comply with design standards for indoor CO2 levels, 

while thermal comfort in green buildings is better than in CBs. However, CBs have a 

higher overall occupant satisfaction of IEQ. Work performance measured as absolute and 

relative absenteeism was slightly higher in CBs, with no significant differences in relative 

and absolute presenteeism between the two buildings types. These findings challenge the 

notion that green buildings improve occupant satisfaction and work performance over 

CBs and suggest the need for a better understanding of the performance ↔ satisfaction 

gap. 

3.4 Introduction 

Buildings consume 48% of global energy, and they are responsible for a quarter of global 

carbon emissions (IEA, 2019a). The desire to reduce their energy use and greenhouse gas 

emissions has resulted in an increasing interest in ‘green buildings’ (IEA, 2013). 

Although there is no formal definition of this term, a ‘green building’ conventionally 

refers to a building that is designed to be efficient in the consumption of natural resources, 

while conserving energy, reducing harmful impact on the environment, and improving 

quality of life for users (EPA, 2019).  

This resulted in the creation of several building design standards all over the world, but 

of which the earliest, i.e. BREEAM (Building Research Establishment Environmental 

Assessment Method) established in 1990 in the United Kingdom (BREEAM, 2019), and 

LEED (Leadership in Energy and Environmental Design) launched in 1998 in the United 
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States (USGBC, 2019), are the most widespread, being used in 70 and 162 countries 

respectively. These standards cover the design, construction, delivery and operation of 

buildings, and they are used to evaluate the potential of a building to be energy efficient, 

with reduced environmental impact, and the ability to provide an adequate indoor 

environment for users (Wei, Ramalho and Mandin, 2015). 

Although most green building standards are applicable to a range of building types, e.g., 

schools, residential, healthcare and offices, it is the last of these that has seen the greatest 

adoption. For example, office buildings are the largest single category of LEED buildings 

globally, representing 41% of LEED stock (USGBC, 2019). According to the World 

Green Building Council (WGBC) three factors, apart from their reduced environmental 

impact, have driven demand for the construction of green offices: (i) investors and 

stakeholders recognising the potential for reduced operational costs through a reduction 

in building energy demand; (ii) reputational benefit through association with positive 

“green” branding and (iii) improved employee satisfaction and work performance3 

through improved Indoor Environment Quality (IEQ) (WGBC, 2016). 

Since IEQ plays an important role for both companies and their occupants, it is worth 

investigating it in detail. IEQ is defined as “the quality of a building’s environment in 

relation to the health and wellbeing of those who occupy space within it” (CDC, 2020). 

It refers mainly to four parameters, namely Indoor Air Quality (IAQ) and thermal, visual 

and acoustic comfort (ISO 17772‑1, 2017). These aspects have a direct effect on the 

occupant comfort, health, and wellbeing. In addition, according to the WGBC, other 

secondary physical factors of indoor environment (e.g., layout, aesthetics, amenities, and 

biophilia) could also play a role in the occupant comfort and satisfaction (WGBC, 2016). 

As a result of the climate change agenda, there have been international efforts like the 

Kyoto Protocol (UNFCCC, 1998) or the Energy Performance of Buildings Directive 

(EPBD) in the European Union (European Parliament, 2010; The European Parliament 

and the Council of the European Union, 2018), to link the high level of energy 

performance with the high level of IEQ in buildings. Further, there is growing recognition 

that the savings in operational costs from green buildings pale in comparison to the likely 

improvements in work performance emerging from factors such as reduced absenteeism 

and presenteeism. This is because 90% of the typical operational cost of a business goes 

towards employee salary and benefits as opposed to only 1% on the operational energy 

 

3 This term is formally defined in Section 3.5.2.  



Chapter 3. Indoor Environment Quality and Work Performance … 

62 

 

of the building (WGBC, 2014). Moreover, given that employees spend at least 24% of 

their time in a typical week at their workplaces and, in many instances, with poor control 

over the indoor environmental conditions (e.g., space conditioning, lighting, window 

control), it is clear that improved IEQ could provide a direct pathway for improved 

occupant satisfaction and work performance. 

However, occupant satisfaction is perceptual rather than objective and hence data is 

needed over several buildings to reduce the effect of aleatory uncertainties. Similarly, 

work performance is a secondary measure of the effect of the indoor environment and is 

hence subject to the effect of other confounding factors.  

Despite WGBC’s reported benefits of improved in IEQ of green buildings, it is unclear 

whether green office buildings really perform better in terms of IEQ and increase 

employee satisfaction or work performance (Veitch et al., 2007; Fostervold and 

Nersveen, 2008; Altomonte and Schiavon, 2013; Gou, Prasad and Lau, 2013; Ravindu et 

al., 2015; Tham, Wargocki and Tan, 2015; Sediso and Lee, 2016). Some evidence 

suggests that though green buildings might achieve their energy efficiency targets 

(WGBC, 2016), they may also exhibit unintended consequences that reduce the quality 

of indoor environment and curtail occupant satisfaction. For example, green buildings 

with airtight envelope and poorly thought out ventilation can end up with poor air quality 

that might lead to increase the health problems and discomfort between occupants 

(Leaman and Bordass, 2007b; Brown and Cole, 2009; Armitage, Murugan and Kato, 

2011; Davies and Oreszczyn, 2012; Collinge et al., 2014).  

Although standards such as ISO 52003 (EN ISO 52003-1, 2017) and EPBD (The 

European Parliament and the Council of the European Union, 2018) highlight the 

importance of creating a balance between the high energy performance of buildings and 

providing a proper IEQ, historically there has been a lower emphasis on IEQ compared 

to energy and carbon, due to the climate change imperative. 

Most green building rating tools include minimum standards for IEQ and some even 

consider it as a design parameter through which the score of the building can be enhanced. 

However, when included, IEQ is typically weighted with lower credits compared to other 

green design aspects such as energy efficiency (Table 3.1). In a review of 31 global green 

rating systems, IAQ was found to contribute an average of only 7.5% of the total score 

(Wei, Ramalho and Mandin, 2015). For example, LEED rates buildings as either 

“Certified”, “Silver”, “Gold” or “Platinum”, according to the scores they achieve, where 

‘Certified’ represents the lowest possible achievement and ‘Platinum’ the highest.  
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A building achieves LEED “Platinum” if it achieves at least 80 out of the 110 possible 

points, something attainable without addressing any of the extra IAQ points, such as 

increasing the ventilation rate 30% more than the minimum required rate, using low 

Volatile Organic Compound (VOC) painting and furniture, and providing the building 

with localised sensors of Carbon Monoxide (CO) and Carbon Dioxide (CO2). In practice, 

certified projects seem to address the compulsory IEQ aspects plus any other extra points 

or credits that are cost-effective and easy to apply (Srebric, 2010). In addition, Section 6 

‘IEQ’ in the LEED standard requires conducting baseline IAQ testing as part of the IAQ 

management plan. This should be done twice, one after the construction stage and the 

other prior to occupation, usually within 30 to 60 days of issuing the certificate (USGBC, 

2019). Therefore, this does not account for in-use conditions. The lower attention to IEQ 

compared to other aspects, especially energy efficiency, can be explained by the initial 

goal of developing the green building rating tools, which was primarily one of lowering 

building energy demand. 

Taking the Middle East as an example, the population grew at an average rate of 1.7% 

per year between 1999 and 2019. This was associated with a growth in the energy demand 

for heating and cooling of 10% per year, compared to 0.4% per year in OECD 

(Organization for Economic Co-operation and Development) countries over the same 

period (IEA, 2019a). In response to this, governments in the Middle East produced new 

building standards geared towards the production of more energy efficient and sustainable 

buildings. In fact, all but Iraq, Syria, and Yemen in the Middle East now have their own 

green building standards.  

However, the adoption of such standards in the Middle East faces three challenges: (i) 

lack of public awareness of the direct and in-direct benefits of green buildings (Al Horr 

et al., 2016); (ii) lack of trained/educated green building professionals that may affect 

design, construction, or follow-up stages, and (iii) investors associate green design 

features with costly technologies that threatens the profitability of a project (DODGE, 

2018). Indeed, these issues are shared across the developing world where the most 

aggressive growth in global building construction is projected to occur over the next 30 

years (Gobbi, Puglisi and Ciaramella, 2016), raising questions around the viability of 

these standards in the long term. Unfortunately, little research exists on the as-built 

performance of green buildings in the Middle East, which would aid in improving 

awareness while either allaying or confirming concerns around their costs. Studies that 

do exist focus primarily on the residential sector and, unsurprisingly, attempt to assess 
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the energy performance rather than IEQ of the buildings (Hassouneh, Al-Salaymeh and 

Qoussous, 2015). No study heretofore has considered the occupants’ perception in green 

buildings in this region in the surveyed literature. 

 

 

Table 3.1 Relative weighting of energy efficiency and IEQ aspects used in two of the most popular global 

standards (LEED and BREEAM) and in five standards local to the Middle East. 

  Relative Weighting (%) 

Country  Green Building 

Standard 

Energy Efficiency 
IEQ 

United States LEED 32% 14% 

United Kingdom BREEAM 19% 15% 

Jordan JGBG 39% 9% 

Qatar GSAS  72% 42% 

United Arab Emirates PBRS 44% 37% 

Israel  SI 5281 40% 18% 

Egypt GPRS 25% 10% 

 

3.5 Literature review 

Given the paucity of literature on green buildings and their impact on occupants in the 

Middle East, we provide an overview of studies from other parts of the world as a means 

to understand the key issues. 

3.5.1 Research on IEQ in green office buildings 

As we observed in Section 3.4, all green rating tools directly address IEQ and hence there 

is an expectation that green office buildings will provide better IEQ, resulting in increased 

employee satisfaction and work performance. However, this remains a debated question 

despite the numerous studies addressing IEQ in green offices (Newsham et al., 2013; 

Gou, Prasad and Lau, 2014; Pei et al., 2015; Ravindu et al., 2015; Tham, Wargocki and 

Tan, 2015; MacNaughton et al., 2016; Sediso and Lee, 2016). The two most debated IEQ 

aspects in green office buildings in the literature over the past two decades have been 

thermal comfort and IAQ. Table 3.2 groups these studies according to methods and 

outcomes. From a methodological standpoint, the overall approach used by all these 

studies can be classed under the umbrella term Post Occupancy Evaluation (POE). There 

are several methods of undertaking a POE assessment (e.g., TM22 (CIBSE, 2019), ( BUS 

Methodology, 2019), BePAD (Oxford Brookes University, 2019)) but they will usually 

consider one or more of three complementary aspects:  
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Aspect I Subjective assessment of building performance via occupant feedback 

(questionnaire, focus group or interviews) (ISO 10551, 2019);  

Aspect II Objective assessment of energy consumption (e.g., via utility bills or 

detailed measurement) (CEN ISO/TR 52000-2, 2017); and  

Aspect III Measurements of physical IEQ parameters including: (i) thermal comfort 

indicators (e.g., air temperature (Ta), mean radiant temperature (Tr), air speed (Va), 

and relative humidity (RH)), (ii) IAQ indicators (e.g., carbon dioxide (CO2), 

carbon monoxide (CO), and other pollutant metrics), (iii) visual comfort, and (iv) 

acoustic comfort. The as-built performance of the building is then compared to 

design goals and against occupant feedback to appraise the relative merits of the 

final building (e.g., EN ISO 7726 (EN ISO 7726, 2001); ISO 16814 (ISO 16814, 

2008); EN ISO 3382-3 (EN ISO 3382-3, 2012); ISO 16817 (ISO 16817, 2017)). 

In terms of outcomes, we group findings with respect to the differential impact green 

buildings have on occupant satisfaction when compared to conventional buildings or to 

national benchmarks, when considering thermal comfort and IAQ. For both thermal 

comfort and IAQ, studies grouped under the label ‘A’ suggest greater occupant 

satisfaction in green buildings whereas those grouped as ‘B’ and ‘C’ show lower 

satisfaction or no difference, respectively. 

We observe that although there are fewer studies falling into Group B (i.e., green 

buildings showing lower satisfaction), this group contains the study with the highest 

overall sample size (Altomonte and Schiavon, 2013) which covers a large number of 

global buildings. Unfortunately, these results are based primarily on occupant perception 

(Aspect I) rather than measured IEQ (Aspect III). Indeed, only one study in this group 

uses an Aspect III measurement and control group (i.e., non-green buildings) (Ravindu et 

al., 2015). 

Similarly, only three out of the nine studies in Group A (i.e., green buildings showing 

higher satisfaction) contain a control group as well as Aspect III measurements. In these 

studies, a strong alignment was observed between measured and perceived IEQ, 

suggesting that coincident Aspect III measurements are needed for a holistic assessment 

of performance. 

A key deficiency of the published literature, in general, is the broad reliance on p-values 

for significance testing (14 out of 16) but the lack of accompanying analysis of effect size 

(7 out of 13). It is well-known that a lack of expression of effect sizes can lead to 

erroneous conclusions about true significance (for example, a t-test suggesting significant 
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difference in mean indoor operative temperatures when the difference is 0.1 °C). Finally, 

although a small number of developing countries (Sri Lanka, South Africa, and China) 

are represented in these studies, responses are heavily weighted towards industrialised 

countries. Indeed, the Middle East is currently unrepresented, supporting the case for 

studies in this region. 

 

 

Table 3.2 Summary of studies investigating the perception and satisfaction of thermal comfort (TC) and 

IAQ in green buildings compared to conventional buildings, benchmark or to the scale midpoint. 

Study Country 

Buildings 

covered 

Occupants 

surveyed 

Outcome
† 

POE 

Meth

ods‡ 

Statistical 

metrics§ 

Green Non-

Green 

Green Non-

Green 

TC IAQ 
p d 

Brown et al (2010) Canada  1 1 104 145  A I   

Thatcher and Milner 

(2016) 
South Africa 3 2 211 69  A I ⬤ ⬤ 

Thatcher and Milner 

(2012) 
South Africa 1 1 161 79  A I ⬤  

Thomas (2010) Australia 1 - 238 -  A I, II ⬤ ⬤ 

Tham et al. (2015) Singapore 1 1 32 33 A A I, III ⬤ ⬤ 

Liang et al. (2014) Taiwan  3 2 134 99 A A I, III ⬤  

Sediso and Lee (2016)  R.O. Korea  2 2 222*  A  I ⬤  

Pei et al. (2015) China  10 42 500 500 A  I, III ⬤  

Gou and Lau. (2013) China  1 - 182 - A  I, III   

Gou et al. (2014) China 9 5 774 477 B  I ⬤ ⬤ 

Ravindu et al. (2015) Sri Lanka 1 1 70* - B B I, III ⬤  

Paul and Taylor (2008) Australia  1 2 40 53 B  I ⬤  

Collinge et al. (2014) USA  1 - 48 - B  I, II ⬤  

Altomonte and Schiavon 

(2013) 
Globala 65 79 10,129 11,348 B C I ⬤ ⬤ 

Menadue et al. (2014) South Africa  4 4 600* - C  I, III ⬤ ⬤ 

Leaman & Bordass 

(2007) 
UKb 177 - - - C C I ⬤ ⬤ 

 

Notes:  
† Study outcome: A = higher satisfaction in green buildings, B = lower satisfaction, and C = no difference found. 
‡ POE methods covered: I = subjective assessment, II = energy performance, III = IEQ measurement. 
§ Whether studies use inferential statistics in determining outcomes: p indicates use of p-value for significance testing 

and d a generic measure of effect size, most commonly Cohen’s d. 
* These studies do not explicitly provide per group sample sizes. 
a Refers to data contained within the Centre of the Built Environment (CBE) database at the University of California, 

Berkeley, 63% of which come from industrialised countries. 
b Data from the Building Use Studies (BUS). 

 

3.5.2 Work performance and IEQ 

In the literature, ‘work performance’ is also termed ‘job performance’, ‘productivity’, 

‘employee performance’, and ‘individual work performance’. Here we use ‘work 

performance’ as it is the most commonly used term. Work performance can be defined as 
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a measure indicating how an employee is performing against the expected work tasks 

(Christiansen, Chandan and Global, 2017). It has been argued that level of work 

performance can vary according to the level of comfort with IEQ of workplace (Ali, Chua 

and Lim, 2015). Employees who are more satisfied with the conditions of their physical 

workplace are more motivated and achieve a better work performance (Leaman, 1995; 

Dole and Schroeder, 2001).  

To test this, several studies have attempted to correlate work performance with different 

IEQ aspects, unfortunately, results across studies are contradictory (Table 3.3). Of the 

thirteen studies reviewed here, six studies focused on the effect of indoor air temperature 

on work performance (Nishihara, Yamamoto and Tanabe, 2002; Hedge, Sakr and 

Agarwal, 2005; Lan and Lian, 2009; de Korte et al., 2015; Tanabe, Haneda and Nishihara, 

2015; Maula et al., 2016); three studied the effect of IAQ, ventilation and CO2 levels 

(Wargocki et al., 1999; Milton, Glencross and Walters, 2000; Federspiel et al., 2004), 

and one study investigated the link between occupant comfort of overall IEQ and work 

performance metrics, such as absenteeism (Singh et al., 2010). Some also cover other 

IEQ aspects such as noise (Witterseh, Wyon and Clausen, 2004), lighting (Fostervold and 

Nersveen, 2008; de Kort and Smolders, 2010) and  control over workplace features (de 

Korte et al., 2015).  

As there is no single metric to assess work performance, the studies use a variety of 

subjective metrics (e.g., occupant satisfaction, self-appraisal), objective metrics (e.g., 

computerised tests) and secondary indicators (e.g., absenteeism and presenteeism). The 

studies in Table 3.3 are categorized into two groups according to their outcomes. Group 

A suggests a link between the investigated IEQ aspect and chosen work performance 

metric, while group B indicates no link. Outcomes are split across the two groups almost 

equally, though overall sample sizes in Group A are somewhat higher.  

Six out of the thirteen reviewed studies are laboratory based (one additional study uses 

both laboratory and field data) and typically use computerised tests, often in controlled 

climate chambers over short periods (hours, or < 5 days), with small sample sizes 

(typically 20 – 60). Such studies can provide useful primary evidence through careful 

experimental design and allow for precise control of confounding and independent 

variables. This allows a cause-and-effect relationship to be established. However, the 

outcomes were contradictory in these studies as well, as only three out of six studies 

showed a link between work performance and IEQ aspects. Four out of the seven field 

studies use self-reported subjective metrics to measure work performance, while the 
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remaining three use secondary objective metrics (e.g., absenteeism, tardiness) to measure 

work performance, but usually over short time periods (< 14 days/month).  

In field studies, both subjective and objective data each have their limitations. For 

example, it is well-known that self-reported work performance is often inflated (Hoorens, 

1993). Similarly, absenteeism as a secondary measure may mask the effect of other 

factors. For this reason, where possible, combined subjective and objective metrics are 

likely to provide a fuller picture of the effect of IEQ on work performance. Unfortunately, 

none of the studies in the literature use both metrics. Where time is a factor, i.e., there is 

an expectation that IEQ may change over time or it is necessary to observe temporal 

effects, work performance should be evaluated for a period long enough to detect changes 

in relation to changing IEQ; one month, at least, according to Kessler et al. (2007) 

(Kessler, Petukhova and McInnes, 2007). 

 

Table 3.3 Summary of studies investigating the relationship between IEQ aspects and work performance in workplaces. 
†Study outcome: A = there was an effect and B = no effect was detected. 

 

Study 
IEQ 

parameter 

Work performance 

metrics 

Sample 

size  

Study type  Study 

conclusion† 

Singh et al. (2010) Overall IEQ 
perceived absenteeism 

and work hours. 

263 Field 
A 

Tanabe et al. (2015) 
Thermal 

satisfaction 

Simulated office work: 

three-digit multiplication, 

proof reading, and 

creative thinking. 

11 Field and 

Laboratory  
A 

Lan and Lian 

(2009) 

 

Indoor air 

temperature  

Computerized 

neurobehavioral tests. 

21 Laboratory  A 

Hedge et al. (2005) Air 

temperature 

and relative 

humidity 

Software estimated 

percentage of total 

keystrokes (correct + 

error keystrokes). 

9 Field A 

Witterseh et al. 

(2004) 

Noise  Self-estimated 

performance. 

30 Laboratory  A 

Wargocki et al. 

(1999) 

Air quality Simulated office work. 58 Laboratory  A 

Milton et al. (2000) Lower levels 

of outdoor 

air supply 

and IEQ 

complaints 

Short term sick leave. 600 Field  A 

Nishihara et al. 

(2002) 

Thermal 

conditions  

Computer tasks (Walter 

Reed Performance 

Assessment Battery test). 

40 Laboratory  B 

Fostervold and 

Nersveen (2008) 

Type of 

lighting 

(direct or 

indirect) 

The Digit Symbol subtest 

(WAIS-R). 

64 Field  B 

de Korte et al. 

(2015) 

Control over 

lighting and 

Standard reading task.  20  Laboratory  B  
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air 

temperature  

de Kort and 

Smolders (2010) 

Dynamic 

lighting  

Days of sick leave. 140 Field  B 

Maula et al. (2016) 

 

Air 

temperature 

Working memory, 

psychomotor 

performance during 

writing, and long-term 

memory. 

33 Laboratory  B  

Federspiel et al. 

(2004) 

Ventilation 

rate 

Talk tasks (length of call 

time). 

119 Field B  

 

3.6 Aim of the research 

The preceding review suggests that (i) the Middle East is unrepresented in the literature 

on green buildings despite their importance as depicted by the marked growth in energy 

consumption, (ii) existing research on the impact of IEQ on occupants in relation to green 

buildings is contradictory and relies primarily on subjective evaluation and (iii) there is 

insufficient field-data on work performance in relation to IEQ covering both subjective 

and objective metrics. To address these, we choose: 

1. Jordan as a relevant example of the Middle East, e.g. the building sector represents 

approximately 33% of the total energy consumption in the country 

(Komendantova et al., 2017), which is comparable to the rest of the Middle East 

at 28% (Nematollahi et al., 2016). 

2. LEED as the standard representing ‘green buildings’ in Jordan. To-date there are 

21 registered4 office buildings and 7 certified office buildings in the country, all 

adhering to the LEED standard (Ministry of Public Works and Housing, 2013).  

We then perform a systematic field-evaluation of all certified LEED office buildings in 

Jordan, using comparable conventional “non-green” offices as control, to address the 

following research questions: 

RQ 1. Do LEED office buildings in Jordan achieve the specified minimum IEQ 

standards in terms of thermal conditions and indoor air quality, after hand over?  

RQ 2. Are employees of LEED office buildings in Jordan more satisfied with the 

quality of their indoor environment compared to employees in conventional 

offices, and do these correspond with the observed differences in IEQ, if any? 

 

4 A LEED registered building achieves some of LEED requirements without attaining the minimum required score (40 

points) to be classified as LEED-certified, hence the building can be only registered with USGBC without green 

certification level.  
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RQ 3. Do employees in LEED office buildings in Jordan demonstrate better work 

performance compared to employees in conventional buildings, when measured 

using both subjective and objective metrics?  

3.7 Methods 

Of the three methodological aspects discussed in Section 3.5.1, this study uses Aspects I 

and III to answer the research questions. Aspect I, i.e., subjective assessment of occupant 

satisfaction with IEQ and their work performance is supported by in-depth interviews to 

collect further information of investigated buildings to better understand the context. 

Absenteeism and presenteeism are also measured as secondary indicators of work 

performance. Aspect III i.e., objective assessments, co-incident with Aspect I, covered 

thermal conditions (Ta, Tr, RH, and Va) and indoor CO2 concentration levels as an 

indicator of IAQ (ASTM D6245-18, 2018). We do not use Aspect II because assessment 

of energy use is not part of our research questions. As our interest is in the potential 

difference in response of particular metrics (from Aspect I and Aspect III) between two 

or more groups (i.e. different types of buildings), we use a between-subjects experimental 

protocol (Miller, 1984). The next sections detail building selection, occupant recruitment, 

methods for objective and subjective data collection, and analysis.  

3.7.1 Building selection 

The total number of LEED-certified office buildings in Jordan is currently seven. The 

buildings are owner-occupied and belong to organisations whose overall size is in the 

fourth quartile (by number of full-time employees) (Ministry of Public Works and 

Housing, 2013).To match these, we targeted organizations with a conventional office 

building (hereafter referred to as CB) located within the same urban context of the LEED 

buildings, with at least 40 full-time employees with similar job roles to those in LEED 

buildings. Recruitment of buildings for the study was achieved through an invitation 

letter, explaining the research idea and objectives, sent to senior management of 33 CBs 

and all 7 LEED buildings. Five out of the seven LEED buildings agreed to participate 

(5:7, 71%) along with eight CBs (8:33, 24%), bringing the total to 13 office buildings. 

The two remaining LEED buildings cited building security criteria as the key reason for 

not being able to participate. All buildings are in Amman, north-central Jordan, and they 

match the same climate conditions, long hot summer and short cold winter. The relative 

humidity is around 70% in winter and between 30% – 40% in summer (DOS, 2016). 
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A contact person, usually a middle manager, was appointed by each participating 

organisation to discuss the process of conducting the fieldwork. All eight CBs agreed to 

surveys being administered to their employees, while only five agreed to conduct on-site 

measurements. The participating LEED buildings confirmed all the research aspects. The 

data were collected from these buildings during three data collection campaigns spread 

over two years between Jul 2017 – Feb 2019 (Figure 3.1). Details of the participating 

buildings can be seen in Table 3.4. All the buildings in our study are classed as “offices” 

with occupants undertaking similar job roles varying between clerical, design, 

administrative, and management (Figure 3.2 and Figure 3.3) 

 

 

Figure 3.1 Overview of research data collection (July 2017 – February 2019; nbuildings = 13; noccupants =

502). 

 

Table 3.4 Comparison of LEED and conventional building (CB) characteristics.  

Item LEED CB 

Construction age 

range 
2010 – 2019 2000 – 2019  

TFA (m2) 

9,000 – 15,000 m2  

(including car parking, gathering areas, 

meeting rooms, cafeteria, and sport 

facilities).  

Estimated “office only” TFA range is:  

1650 – 2000 m2. 

700 – 1500 m2. 

Workplace layout 

85% of respondents work in open-plan 

workplaces and only 15% had private 

offices. 

56% of respondents had open 

plan workplace and 44% had 

their own private offices. 

Employment area (m2) 
4 m2/person in open plan. 

12 m2/person in private offices. 

4 m2/person in open plan. 

10 m2/person in private offices. 

Total number of 

employees  

50 – 120 40 – 50 

Number of floors 8 – 14  2 – 5 

1. Summer 2017 

5 conventional buildings

(120 occupants)

Survey + IEQ physical 
measures 

(Jul - Nov 2017)

5 months 

2. Summer 2018 

2 LEED buildings

(126 occupants)

Survey + IEQ physical 
measures 

(Jul 2017 - Feb 2019)

8 months 

3. Winter 2019

3 LEED buildings

(135 occupants) 

+

3 conventional buildings 

(121 occupants).

Survey + IEQ physical 
measures (Jan - Feb 2019)

1 month
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Ventilation 

Active ventilation systems, designed to 

achieve 8.5 l/s/person. 

Concurrent mixed-mode 

ventilation (active cooling 

between May – October, while 

active heating during December, 

January, and February, buildings 

natural ventilation in March, 

April, and November by 

open/close windows to regulate 

the internal air temperature. 

Lighting 

Artificial and natural lighting (occupancy 

and illuminance sensors). 

Artificial and natural lighting 

(occupants have full control over 

lighting). 

Windows 
Fixed double-glazed facades. Evenly distributed operable 

windows. 

Other features 

Walls were painted with Volatile Organic 

Compound (VOCS) free paint and floors 

covered with carpet to eliminate indoor air 

pollutants. 

- 

LEED certification 

category 

1 x LEED-Silver. 

3 x LEED-Gold. 

1 x LEED- Platinum. 

- 

 

Figure 3.2 Examples of buildings in this study. 

 

Figure 3.3 Selected workplaces in the study (examples a–b from conventional building, c–d from LEED). 

 

3.7.2 Occupant recruitment 

As the maximum number of employees across the recruited offices was 120, all 

employees in all organisations were invited to participate in the research through a leaflet 

that explained the overall aim of the research, data privacy procedures, and the need for 

prior informed consent. This resulted in an overall return rate of 53.5% (241/450) in CBs 

and 65.2% (261/400) in LEED buildings. A complete socio-demographic breakdown split 

by building type can be seen in section (3.11.a), which is available in the Electronic 

Supplementary Material (ESM) in the online version of this paper. 
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We observe that job categories, working experience, daily working hours, education level 

and monthly earnings are broadly comparable across the building types. However, we 

observe systematic differences in gender distribution (39% and 49% females in CB and 

LEED, respectively) and the number of people per office (a majority of 1 – 4 people per 

office in CB compared to 10 – 24 in LEED). Both are representative of the respective 

distributions in each building type, i.e., fewer females and cellular offices in the eight CB 

buildings surveyed. 

3.7.3 Objective measurements 

To address RQ1 and the latter half of RQ2, continuous on-site monitoring of Ta, RH, and 

CO2 was conducted in the investigated buildings (Table 3.5) (Elnaklah, Fosas and 

Natarajan, 2020). Continuous measurements were undertaken using Raspberry-Pi-based 

sensors that have undergone rigorous testing and calibration, making them suitable for 

obtaining time series with good accuracy (Lovett et al., 2016; Vellei et al., 2016). 

Monitored buildings were provided with 83 Raspberry-Pi to monitor air temperature and 

relative humidity, and 21 Raspberry-Pi to monitor CO2 (Figure 3.4) 

Indoor sampling positions were selected based on four coverage criteria (i) areas with 

both high and low density, (ii) areas experiencing any occupant complaints or discomfort, 

(iii) different floors of the buildings, and (iv) sampling criteria for CO2 concentration is 

one per 500 m2 for buildings with total floor area less than 3000 m2 (Region, 2019). 

In LEED buildings, a majority of sensors were located in the open plan workplaces, as 

these were the most common type of occupied area within the buildings. While in CBs, 

sensors were located in both open plan workplaces and cellular offices. All sensors were 

placed on employees’ desks at heights varying between 0.70 – 0.90 m from floor level 

and away from local heat sources (e.g., heaters, windows, and PC monitors). The date 

and time were setup according to the local time in Jordan. All sensors were identified 

with a label showing the serial number and building name. Employees were asked not to 

cover, touch or unplug the sensors from power. The data were logged at 5-minute 

intervals and downloaded on a weekly basis during the monitored periods. 

In addition to continuous measurements, periodic spot measurements which complied 

with EN ISO 7730 (ISO 7730, 2005) and ISO 7726 (EN ISO 7726, 2001)were undertaken 

in the investigated buildings to assist in evaluating the occupants’ thermal comfort and 

calculate the predicted mean vote (PMV) (ANSI/ASHRAE 55, 2017; d’Ambrosio Alfano 

et al., 2020). The spot measurements covered four physical indicators: Ta, Tr, RH, and Va 
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for which readings were taken simultaneously to the time of the survey using the HD 32.3 

kit (Delta OHM, 2019). In addition, two other indicators were assessed to help in 

calculating the PMV, clothing thermal insulation (clo) and metabolic rate (met).  

All the investigated buildings in our study are offices and their occupants involved in 

typical sedentary work activities (e.g., reading, writing, computer typing) with occasional 

walking between workstations for document delivery or communication. This is expected 

to entail a light metabolic rate between 1.1 and 1.3 met (EN ISO 8996, 2004; 

ANSI/ASHRAE 55, 2017). As the monitoring campaigns were conducted in both summer 

and winter, occupant clothing insulation levels ranged between 0.9 and 1.4 clo (EN ISO 

9920, 2009; ANSI/ASHRAE 55, 2017). 

Further, local discomfort was assessed during the spot measurements, and no significant 

local discomfort sources were detected, thus we assume that the Raspberry-Pi devices 

reflect the actual performance of the building in terms of air temperature and relative 

humidity. Technical specification of our instruments is provided in (3.11.a), which is 

available in the Electronic Supplementary Material (ESM) in the online version of this 

paper. 

 

Table 3.5 Number and location of sampling points for continuous monitoring using Raspberry-Pi devices 

(F = floor, CB = conventional building). 

 

Building Sensor type Location Monitoring period Total continuous days 

 Ta + RH CO2  Months Year/s  

LEED1 3 2 F2, F3 
Jan – Feb 

 

2019 

 

30 (Ta  + RH + CO2) 

 
LEED2 3 2 F2, F3 

LEED3 3 2 F2, F3 

LEED4 5 2 F1, F2, F3 Jul – Feb  2018 - 19 240 (Ta + RH + CO2) 

LEED5 35 3 F1, F2, F3, F4 

CB1 8 2 F1, F2 

Jul – Nov  2017 150 (Ta + RH + CO2) 

CB2 8 2 F2, F3 

CB3 8 2 F1, F2 

CB4 5 2 F1 

CB5 5 2 F1 
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Figure 3.4 Raspberry-Pi based CO2 logger in the study (‘a’ logger; ‘b’ example of logger location on 

employee’s desk). 

 

3.7.4 Subjective measurements 

Here, we describe first, the overall process, and then the details and sources used, to 

design the questionnaire to help address RQ2 and RQ3. Initial discussions with the 

various gatekeepers suggested that the most effective means to obtain high return rates 

would entail a paper-based questionnaire, completed with researcher assistance.  

The questionnaire contained both English and Arabic text, as most participants’ first 

language is Arabic. The English version of the questionnaire was translated into Arabic 

by a ‘sworn translator’ who has a high level of education and experience. The translated 

version of the questionnaire was tested before starting the study by sending it to five 

university students fluent in both Arabic and English. Based on their suggestions, minor 

refinements such as deletion of overlapping terms were made. The English originals were 

retained alongside the Arabic translations in the final questionnaire. 

Survey respondents were provided with an introductory session (5 – 7 minutes) by the 

researcher to explain the research idea and objectives, and that all responses will be 

anonymised and not directly shared with gatekeepers. Prior informed consent was 

obtained following well-established university ethics procedures. Pilot tests suggested an 

average survey completion time of 5 minutes, which was borne out during data collection. 

The questionnaire comprises three sections. The first section contains six socio-

demographic questions covering gender, job role, work experience, salary, number of 

daily working hours and workplace layout. The second and third sections, described 
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below, were designed to evaluate occupant perception of IEQ and work performance 

respectively. 

Occupant satisfaction with IEQ: This section was based on two well-established 

workplace surveys (WGBC, 2014): the Building Use Studies survey (Methodology, no 

date) and the Occupant Indoor Environmental Quality Survey by CBE, Berkley (CBE, 

2019). Four key IEQ parameters were interrogated: indoor air quality and ventilation, 

noise, lighting, and thermal comfort, with each aspect covered using 2 – 5 questions that 

had three types: 

• Satisfaction rating of IEQ items on a seven Point-Likert scale going from 

dissatisfied (-3) to satisfied (+3), where 0 represents a neutral or no opinion.  

• Each of the previous questions was followed with a question asking respondents 

to rate if a particular IEQ aspect affect the work performance negatively on a 

seven-point scale from ‘not a significant negative effect’ (1) to a ‘significant 

negative effect’ (7).  

• Open-ended question to allow respondents the freedom to provide more detailed 

responses and raise any specific problem that is not covered in the survey.  

• In addition, Thermal Sensation Vote (TSV) and Thermal Preference Vote (TPV) 

of occupants were  assessed using the widely used ASHRAE 55 seven points scale 

(ANSI/ASHRAE 55, 2017). 

Work performance: Based on Singh et al. (2010) and Milton et al. (2000), we use 

absenteeism and presenteeism as key indicators of work performance. While other, more 

direct measures, such as computerized neurobehavioral tests, standard reading task, 

memory task, and different simulated office tasks were adopted in the literature, these 

were considered inappropriate for our study due to being too intrusive or not repeatable 

at-scale in a real working environment.  

Absenteeism can be defined as the average number of employee days lost per year 

through illness and unauthorized absences as a percentage of contracted days (IFC, 2017). 

While presenteeism can be defined as being not fully functioning at work because of 

health issues (WGBC, 2014). Chua et al. (2016) found in their study that the high level 

of employee absenteeism could be viewed as an indicator of poor work performance, and 

the highly motivated and comfortable employees take 37% fewer sick leaves. 
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We assess absenteeism and presenteeism using the short version of the Health and Work 

Performance Questionnaire (WHO HPQ), developed by the World Health Organization 

(WHO). This questionnaire is well-established in the literature and is considered both 

valid and reliable (Kessler, Petukhova and McInnes, 2007; de Kort and Smolders, 2010; 

Pournik et al., 2012). For both absenteeism and presenteeism one may use either the 

preceding 7 days or 4 weeks, but we use both as an inter-metric reliability check. The 

absenteeism section consists of 8 questions covering:  

• The total number of working hours in the last 7-day (and the last 4-week) prior to 

the survey date. 

• The number of missed workdays due to illness or other reasons (including 

vacations).  

• Number of days – miss part of working day – due to physical / mental health issues 

or other reasons. 

• Number of days when they came early to work, or went home late, or worked on 

their day off. 

• The expected total working hours by employer in a typical 7-day week.  

The monthly Absolute Absenteeism (𝐴𝐴, hours) is then calculated as (Kessler, Petukhova 

and McInnes, 2007) : 

𝐴𝐴 = 4 × B4 − B6    (2) 

where B4 represents the number of expected working hours by employer in a typical 7-

day week, and B6 is the number of hours that employee worked in the past 4 weeks. 

Similarly, monthly Relative Absenteeism (𝐴𝑅) is computed as: 

 

𝐴𝑅 =
4 × B4 − B6

4 × B4
 (3) 

 

where 𝐴𝑅 is a percentage ranging between a negative number (i.e., the employee worked 

more than the expected working hours), 1 (indicates employee was always absent during 

the last 4 weeks) and 0 (indicates employee work as expected).  

Turning to the presenteeism section, it consists of three questions asking employees to 

evaluate their work performance on a scale from 0 to 10 (where 0 is the worst performance 

and 10 is the top performance). These ask employees to: 
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• Rank their work performance according to most workers in a similar job.  

• Evaluate their work performance during the last year.  

• Evaluate their work performance in the period of 4 weeks prior to the survey date.  

In this section, the absolute and relative presenteeism were measured to provide better 

understanding of employee work performance for 4 weeks. The Absolute Presenteeism 

(𝑃𝐴, %) was calculated as: 

 

where B11 is the self-assessed score of work performance in the last 4 weeks. 𝑃𝐴 is an 

integer score between 0 (total lack performance during working hours) and 100 (no lack 

of performance during working hours). Relative Presenteeism (𝑃𝑅) is calculated as:  

 

𝑃𝑅 =
B11

B9
 (5) 

 

where B9 is the self-reported score of work performance compared to other employees 

working in a similar job. 𝑃𝑅 ranges between 0.25 (indicating the employee worked 25% 

or less than other workers), and 2 (indicating that the employee worked 200% more than 

other workers).  

For example, if respondent rates his own performance as 1, and the average worker’s 

performance at 8, he is assigned a presenteeism score of 0.25 (1 divided by 8 is 0.125, 

restricted to the lower bound of 0.25). This means, that respondents’ work performance 

was as low as one-fourth the average. If another respondent rates his performance at 9, 

but rates the average worker’s performance at 3, he gets the score of 2 (9 divided by 3 is 

3, restricted to upper bound of 2). This means, that respondent has more than twice the 

work performance of the average worker. 

In addition to the questionnaires, 15 semi-structured interviews with the buildings’ 

owners, managers, designers, and operators were conducted between July 2017 – Feb 

2019. Each interview took approximately 60 – 90 minutes. The data generated by the 

interviews were documented using handwritten notes. These interviews had three themes:  

• Motivations to implement green design and basic data (e.g., total floor area of 

building, building age, total number of employees). 

𝑃𝐴 = 10 × B11 (4) 



Chapter 3. Indoor Environment Quality and Work Performance … 

79 

 

• Details of green features (e.g., green certification level, Heating, Ventilation and 

Air-Conditioning system (HVAC), and lighting). 

• Architectural and structural details. 

3.7.5 Analysis methods 

Classical hypothesis testing is used to analyse potential differences in the performance of 

conventional and LEED buildings in the study. When the response variable is numerical 

and continuous over an interval, like the case of CO2 concentration in part-per-million 

(ppm), the t-test is used to test the null hypothesis that there is no difference in the mean 

response between the two groups, which assumes that samples follow a normal 

distribution. In particular, Welch's unequal variances t-test is used as the number of 

samples or their variances are not necessarily equal, as seen in the next section. 

Confidence intervals are reported together with the differences between groups and the 

effect size is reported using Cohen’s d metric, 

 

𝑑 =
𝜇𝑎 − 𝜇𝑏

𝑠
 (6) 

 

where 𝜇𝑎 represents the sample mean in one group, 𝜇𝑏 the mean of the other sample and 

𝑠 the pooled variance of the samples (Cohen, 1988).  

Other response variables follow a categorical or ordinal scale, like satisfaction scores on 

a 7-point Likert item (Garland, 1991). For these cases, the non-parametric Kruskal-Wallis 

H test is used to test the null hypothesis that there is no difference in the median response 

between the two groups, under the assumption that the samples of the two groups follow 

the same distribution.  

Effect sizes are reported using the Rank Biserial Correlation (RBC) (Cureton, 1958), a 

measure of how disaggregated the ranks of two groups 𝑎 and 𝑏 are. Values of RBC range 

between -1 to 1: values of 0 mean that the ranks are similar between the two groups and 

values of -1 and 1 that the ranks of one group are all below those of the other (the sign 

depends on which of the two groups is taken as the reference). For thermal comfort data, 

the TSVs were compared to the ASHRAE 55 comfortable range of [-1, +1] 

(ANSI/ASHRAE 55, 2017), and PMVs were compared to ISO 7730 comfort range of [-

0.5, +0.5] (ISO 7730, 2005), then a comparison between TSVs and PMVs was conducted 

in both buildings types.  
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The analysis considers only questionnaires with responses to every question. However, 

in the case of absenteeism and presenteeism, data were cleaned according to WHO 

guidelines (Kessler, Petukhova and McInnes, 2007). This section of the questionnaire 

requires users to give thoughtful numerical responses about their working hours. The 

standard questions include pre-quest, i.e., questions that are not included in the analysis 

but that help respondents give better estimates on a following question.  

The pre-quest allows superficial responses to the hours worked in the last 28 days to be 

estimated. Aligning with WHO guidelines, a rational imputation of the data is made for 

large differences between the estimated hours the occupant worked in the last 28 days 

and the reported ones based on the 90th percentile. This reduced the dataset from 502 

total responses to 452 (i.e., from 261/241 responses in LEED/CB to 228/224). The 

analysis was done using (i) Python (Python Software Foundation, 2020), including 

Numpy (Oliphant, 2006; Walt, Colbert and Varoquaux, 2011), Pandas (McKinney, 2010) 

and Pingouin (Vallat, 2018) libraries, and (ii) R (R Core Team, 2019), including the 

Tidyverse family (Wickham et al., 2019) and HH libraries (Heiberger and Robbins, 

2014). 

3.8 Results and discussion  

This section presents the results from the objective measures of thermal conditions (Ta, 

Tr, RH, and Va), and IAQ (CO2 concentration levels) (see Aspect III in Section 3.5.1), 

and the result of subjective measures including occupant satisfaction with IEQ and work 

performance (absenteeism and presenteeism) (see Aspect I in Section 3.5.1). As we are 

interested in occupant perception during working hours, data between 0900 and 1700 

from Sunday to Thursday were extracted and analysed based on the typical working time 

in Jordan (Friday and Saturday being the weekend). Thermal comfort conditions and CO2 

data were compared to both the recommended standards LEED /ASHRAE 55 and LEED 

/ASHRAE 62.1 respectively, and across building groups. 

 

3.8.1 IAQ  

Taking the CO2 concentration as a proxy for indoor air quality, two complementary 

aspects were studied. Firstly, mean CO2 concentration levels were compared according to 

the building type, and secondly, the average fraction of the day within the LEED limit of 

1,100 ppm was appraised (Figure 3.5) (ANSI/ASHRAE 62.1, 2010). For average CO2 
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concentration levels, Welch's unequal variances t-test suggests that the null hypothesis of 

equal means between CBs (μ=587.23, s =219.54, n=3223) and LEED (μ=655.96, s 

=198.67, n=1576) buildings can be rejected (𝑡(3421) = −10.87, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 <

 10−4; ∆𝜇𝐿𝐸𝐸𝐷−𝐶𝐵 = +68.73; 95% CI [56.33, 81.13]; 𝑑 = 0.32). Although statistically 

significant, the effect size is small, and the difference is negligible in practical terms since 

both means are well under the upper limit of 1,100 ppm, even though LEED has a 

marginally higher concentration.  

This characterization contrasts with the second test for the average fraction of the day 

within design limits. Here, the test suggests that the null hypothesis of equal means 

between CBs (μ=95.85, σ=3.35, n=31) and LEED (μ=98.26, σ=3.67, n=31) buildings, 

can be rejected (𝑡(60) = −2.71, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 <  10−2;  ∆𝜇𝐿𝐸𝐸𝐷−𝐶𝐵 =

+2.41; 95% CI [0.63, 4.20]; 𝑑 = 0.65). These results show how LEED buildings deliver 

an environment that is more often within the design specification despite the marginally 

higher CO2 concentration levels, with a moderate effect size. 

This variation is judged to be attributable to the different design approaches of ventilation 

in these buildings. LEED buildings are designed to be airtight to reduce energy 

consumption and use controlled HVAC systems, while the CBs used mixed-mode 

ventilation that depends on wind and stack effect and occupant behaviour of window 

opening to deliver fresh air. 
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Figure 3.5 CO2 concentration according to building type using continuous measurements filtered to 

occupied hours [0900, 1700] between July 2017 and February 2019—see Section 3.8.1; sample size 

conventional: 3223 hours in 5 buildings; sample size in LEED: 1576 hours in 5 buildings; whiskers indicate 

minimum and maximum readings; dashed line indicates upper acceptable limit at 1100 ppm according to 

ASHRAE 62.1. 

 

3.8.2 Thermal conditions and comfort  

Figure 3.6 compares the self-reported TSVs and the calculated PMVs using Fanger’s 

model in ASHRAE 55 and ISO 7730 in the CBs and LEED buildings, and Table 3.6 

illustrates the thermal acceptability percentages of TSVs, TPVs and PMVs5. In CBs, only 

73% of the TSVs were within [-1, +1], hence failing the 80% ASHRAE 55 acceptability 

threshold. This is consistent with the PMV prediction of neutral to slightly warm and 71% 

predicted to fall within ISO 7730 recommended PMV range of [-0.5, +0.5].  In LEED 

buildings, 85% of TSVs fell within the ASHRAE 55 acceptable comfort zone, which 

aligns with the PMV prediction of 85%. An analysis of spot measurements of thermal 

conditions reveals that dry bulb temperature and mean radiant temperature are almost 

identical (difference of 0.18 ± 0.36 °C, R2 = 0.97), this is consistent with other studies in 

the literature (Walikewitz et al., 2015; Hughes and Natarajan, 2019).  

 

 

5 Note TSV and TPV are ordinal due to survey design whereas PMV is continuous within the range. Hence, observations 

will refer to integer values whereas predictions and standards may contain non-integer values. 
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Figure 3.6 Comparison of TSV as reported by occupants and PMV as predicted by Fanger model in ISO 

7730 (2005). PMV data calculated using spot measurements. The plot shows squares proportional to the 

number of vote counts only used categories, which vary according to building type. Cases without votes 

are empty; Conventional Buildings (CB, n_samples=241, minimum count = 1, maximum count = 57); 

(LEED, n_samples=261, minimum count = 1, maximum count = 123). 

 

Table 3.6 Thermal acceptability percentage for both subjective and objective measurements; CB indicates 
conventional building. PMV calculated from spot measurements. Note that the standard specifies a comfort 
range for PMV [− 0.5, +0.5], whereas survey data are ordinal and are hence presented within [−1, +1]. For 
comparison, we present PMV data within both ranges . 

Bldg. 

Type 

TSV  

(M ± SD) 

PMV  

(M ± SD) 

-1 ≤ TSV ≤ +1 -0.5 ≤ PMV ≤ +0.5 -1 ≤ PMV ≤ +1 - 1 ≤ TPV ≤ 

+1 

CBs -0.1 ± 1.3 0.3 ± 0.4 73% 71% 95% 88% 

LEED 0.0 ± 1.0 0.3 ± 0.3 85% 85% 98% 88% 

 

We illustrate prevailing indoor conditions in Figure 3.7 and Figure 3.8 based on the time 

series for air temperature and relative humidity obtained with the Raspberry-Pi devices 

for both CBs and LEED buildings. These alone cannot be used to quantify the percentage 

of time that indoor environments meet requirements in ASHRAE 55 of PMV votes in the 

range of [-0.5, +0.5], because Fanger’s model also requires mean radiant temperature, air 

velocity, occupant clothing and occupant metabolic rate.  

However, data collected as part of the questionnaires and spot measurements reveal that, 

besides air and radiant temperatures being almost identical, there is little variation in 

observed values for air velocity, clothing, and metabolic rates. Considering that spot 

measurements were taken at different times of the year, a reasonable assumption can be 

made that these values are representative over the continuous measurement periods.  

Hence, we can estimate the percentage of occupied hours indoor thermal conditions are 

within the recommended ASHRAE 55 ranges using the mean and standard deviation of 

these variables. We estimate that between 1% and 36% of the data points in the CBs 

(Figure 3.7) fall within the ASHRAE 55 recommended range during working hours, in 

contrast to the range between 49% and 69% for the LEED buildings (Figure 3.8). Despite 
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the uncertainty in the ranges obtained, this suggests better standard compliance in the 

LEED buildings. 

 

 

 

 

 

 

 

 

Figure 3.7 Psychometric chart for conventional buildings in the study using continuous measurement data 

filtered to occupied hours [0900, 1700] between July 2017 and November 2018 — see section 3.8.2; sample 

size of  560 hours in 5 conventional buildings; hexagons shade proportional to number of samples. 

 

 

 

 

 

 

 

Figure 3.8 Psychometric chart for LEED buildings using continuous measurement data filtered to occupied 

hours [0900, 1700] between Jul 2018 and February 2019 — see section 3.8.2; sample size of 912 hours in 

5 LEED buildings; hexagons shade proportional to number of samples. 

 

3.8.3 Occupants’ satisfaction of IEQ 

Figure 3.9 shows the median, first and third quartile of occupant satisfaction with the 

LEED and CBs in four IEQ aspects: IAQ and ventilation, noise, lighting, and thermal 

comfort. Surprisingly, this suggests that the occupants of LEED buildings had a lower 

median score of satisfaction for all investigated IEQ parameters except noise. This finding 

was supported with the results of the Kruskal-Wallis H test, which suggests rejecting the 
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null hypothesis of no difference between median response according to the building type 

for the IAQ and ventilation, noise and thermal comfort (p-value <  0.05), while it failed 

to reject differences for lighting (Table 3.7).  

Further, differences between the median scores of satisfaction achieved for eight 

individual aspects related to the IEQ were investigated (Table 3.7 and Figure 3.10). 

Interestingly, occupants in LEED buildings had lower satisfaction compared to their 

counterparts in CBs in overall IAQ, fresh air, ventilation, sun glare, and air temperature 

where the differences in the median scores of occupants’ votes on 7-point scale were (2, 

1, 1, 1, 1) respectively.  

LEED buildings’ occupants were more satisfied with the noise levels with a difference in 

median scores of -1, similar to Liang et al. (2014). To compare the obtained results to 

other studies’ findings, the differences in mean scores of occupants’ satisfaction towards 

the investigated IEQ parameters were computed. The obtained mean differences ranged 

between 0.22 – 0.60 and can be considered high when compared it to the literature. For 

example, Altomonte and Schiavon (2013) and Paul and Taylor (2008) report differences 

in mean scores ranging between 0.001 – 0.22.  

 

 

 
Figure 3.9 Occupant satisfaction with four IEQ aspects (sample sizes: 241 respondents in conventional 

buildings (CB), 261 respondents in LEED buildings; satisfaction score from dissatisfied (−3) to satisfied 

(3); whiskers indicate minimum and maximum scores). 
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Table 3.7 Statistical analysis of differences in median statistics from the surveys, according to building type 

and IEQ aspects (H indicates Kruskal-Wallis H statistic; * indicates statistically significant results at 95% 

confidence level; RBC is the rank biserial correlation); CB indicates conventional building. Numbers in the 

CB and LEED columns represent responses on their respective scales in the survey. 

Case Reference CB LEED   H p-value  RBC 

Overall satisfaction Figure 3.9      

   IAQ & Ventilation  1 0.25 14.79 <10-3* -0.20 

   Noise  0 1 4.68 0.03* 0.11 

   Lighting  1 0.5 1.98 0.15 -0.07 

   Thermal comfort   2 1 12.18 <10-3* -0.18 

Individual questions Figure 3.10      

   Air quality  2 0 16.78 <10-3* -0.21 

   Fresh air  1 0 18.29 <10-3* -0.22 

   Air humidity  1 1 3.44 0.06 -0.09 

   Overall ventilation  1 0 11.50 <10-3* -0.17 

   Background noise  0 1 4.68 0.03* 0.11 

   Natural light  2 1 0.10 0.75 -0.02 

   Sun glare  1 0 4.99 0.03* -0.11 

   Air temperature  2 1 12.18 <10-3* -0.18 

Work performance Figure 3.11      

   Quality of air  -1 0 1.68 0.19 0.07 

   Distraction from noise  0 0 0.21 0.64 -0.02 

   Quality of light  -1 -1 2.21 0.14 0.08 

   Temperature  0 0 2.40 0.12 -0.08 

Absenteeism Figure 3.12      

   Absolute Eq.    (2) 4 0 4.22 0.04* 0.11 

   Relative Eq. (3) 0.02 0 4.46 0.03* 0.12 

Presenteeism  Figure 3.13      

   Absolute Eq. (4) 80 90 1.59 0.21 -0.07 

   Relative Eq. (5) 1.14 1.13 0.25 0.62 0.03 
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Figure 3.10 Occupant satisfaction in IEQ categories according to building type . CB indicates “conventional 

building”, LEED indicates “LEED building”; the scores span from dissatisfied (−3) to satisfied (3), and (0) 

no opinion. To enable interpretation, the x-axis has been mapped such that “0%” maps to “0” on the survey 

scale. Numbers on either side of “0%” can be used to judge the percentage of responses in each of the three 

categories below and above “0” on the survey scale. 

 

The perceived IEQ results related to thermal comfort show that there are statistically 

significant differences between CBs and LEED buildings, but that the effect size is 

moderate (Table 3.7). This seems to challenge findings in the previous sections (3.8.2), 

where both building types shown to have satisfactory indoor environments for their 

occupants based on TSVs, TPVs and PMVs (Table 3.6). This could be explained 

considering Figure 3.10, which shows that the main differences between CBs and LEED 

buildings are in the proportion of votes in the extreme categories of the satisfaction scale.  

Further, although the ventilation systems in the LEED buildings were designed based on 

the LEED requirements (8.5 L/(s.person)) and the physical measurements of CO2 showed 

a compliance with LEED specification (ANSI/ASHRAE 62.1, 2010), surprisingly only 

48% of the respondents were satisfied with the overall IAQ and ventilation compared to 

66% in CBs (Figure 3.10). One possible explanation reported in the literature that 

ventilation rates below (10 L/(s.person)) in buildings can cause lower perceived IAQ 

(Rashid and Zimring, 2008). Ravindu et al. (2015) also show that occupants in a LEED-
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platinum building in Sri Lanka had lower satisfaction with ventilation compared to the 

control group. 

Figure 3.11 shows the occupants’ responses of which IEQ parameter of the four 

investigated parameters (IAQ and ventilation, noise, lighting, and indoor air temperature) 

has a significant negative effect on their work performance. We observe that the 

percentage of occupants whose work performance was negatively affected by IAQ, noise, 

and lighting was higher in the LEED buildings compared to the CBs, while occupants’ 

work performance in CBs was negatively affected by air temperature. However, this 

finding was not statistically significant, as the Kruskal-Wallis test fails to reject the null 

hypothesis of no difference between median responses according to building type for all 

four aspects (p-value >  0.05, Table 3.7). 

Table 3.8 shows the results of respondents’ perception of the most IEQ parameters that 

they judged to need improvement. The air temperature was the main concern for 43% of 

respondents in CBs, while the ventilation was the major concern for 34% of respondents 

in LEED buildings, a finding that is supported across other studies in the literature 

(Roelofsen, 2002; Paul and Taylor, 2008). According to 24% of respondents, the air 

temperature in LEED buildings needs to be improved. Lighting was seen to need 

improvement by only 8% and 12% of occupants in CBs and LEED respectively, while 

noise was not perceived as a problem in both building types. 

 

 

Figure 3.11 Effect of four IEQ aspects on occupant work performance. CB indicates “conventional 

building”, LEED indicates “LEED building”; the scores span from not a significant negative effect (1) to a 

significant negative effect (7), and no opinion (4). To enable interpretation, the x-axis has been mapped 
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such that “0%” maps to “4” on the survey scale. Numbers on either side of “0%” can be used to judge the 

percentage of responses in each of the three categories below and above “4” on the survey scale.  
 

Table 3.8 Top 5 physical items occupants would like to change in their work places according to the 

building type (sample sizes: 241 respondents in conventional buildings (CB), 261 respondents in LEED 

buildings; N.B. multiple choices were allowed per occupant— columns do not add to 100%). 

Rank CB %  LEED  % 

1 Air temperature 43  Ventilation 34 

2 Layout 29  Nothing 30 

3 Ventilation 18  Temperature 24 

4 Lighting 8  Lighting 12 

5 Nothing 8  Layout 7 

 

3.8.4 Absenteeism and presenteeism  

The 4-week estimation revealed a small difference in the absolute and relative 

absenteeism of respondents according to the building type (Figure 3.12), for which the 

Kruskal-Wallis test suggests rejecting the null hypothesis (Table 3.7). CBs respondents 

had 4 hours of absolute absenteeism per month and 0.02% of relative absenteeism. This 

is expected to result in a loss of 48h of the expected working hours per year, which means 

losing around 300 JD (≈ 425 USD) of annual operation cost due to absenteeism if we 

consider a yearly income level of about 12,000 JD (≈ 16,900 USD); hence a negligible 

effect. 

Turning now to presenteeism, there is no significant difference in both absolute and 

relative presenteeism between respondents of LEED and CBs (Figure 3.13), as the 

Kruskal-Wallis test fails to reject the null hypothesis (Table 3.7). Respondents in both 

building types do not report any lack of performance during time on the job during a 4-

week period. The respondents in CBs and LEED buildings rated their work performance 

at 114% better than employees working in a similar job to their jobs. This can be 

understood through the well-known phenomenon of illusory superiority, which is a 

condition of cognitive bias that refers to the tendency that people overrate their 

performance above the average or above the performance of other people (Hoorens, 

1993). 
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Figure 3.12 Absenteeism scores (see Eqs.    (2) and (3) for absolute and relative scores , respectively; 

floating segments indicate group median; positive values indicate absenteeism while negative ones 

overwork; whiskers indicate minimum and maximum values. Sample sizes: 224 respondents in 

conventional buildings (CB), 228 respondents in LEED buildings). 

 

 

Figure 3.13 Presenteeism scores (see Eqs. (4) and (5) for absolute and relative scores , respectively; floating 

segments indicate group median; boxplot whiskers indicate minimum and maximum values. Sample sizes: 

224 respondents in conventional buildings (CB), 228 respondents in LEED buildings). 

 

3.9 Conclusions 

One of the main unresolved challenges for the building industry is to truly understand 

how occupants perceive the buildings they occupy, feeding these lessons back into the 

design and operation process. Although there is a growing database of building use 

studies, the Middle East is highly under-represented, with no study of IEQ performance 

in the region. Hence, this is the first study to evaluate the IEQ performance in office 

buildings in the Middle East.  

Using Jordan as a representative example of the Middle East, we compare “green” LEED 

buildings and conventional buildings using post-occupancy evaluation covering: (i) 

carefully constructed bi-lingual surveys, which address occupants’ satisfaction of all four 
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IEQ parameters (indoor air quality, noise, lighting, and thermal comfort) (ii) matching 

objective measurements for air quality and thermal comfort, including high-resolution 

on-site continuous monitoring of air temperature, relative humidity and CO2 with periodic 

measurements of mean radiant temperature and air speed.  

In addition, we assess occupant work performance through absenteeism and presenteeism 

rates. We show that the “green” LEED office buildings in Jordan comply with LEED 

specification in terms of indoor CO2 concentration levels during the monitored period. 

However, this was contrary to the perception of occupants, who rated the ventilation as 

the IEQ aspect most in need of improvement. Indeed, the overall IAQ satisfied only 48% 

of the occupants in the LEED buildings, whereas it satisfied 66% of those in the 

conventional buildings.  

In LEED buildings, the estimated percentage of monitored temperature fell within the 

ASHRAE 55 recommended range during working hours was between 49% – 69%, while 

this percentage was lower in CBs (1% - 36%). Only 73% of the TSVs were within the 

ASHRAE 55 acceptable range in CBs, hence failing the 80% threshold. In LEED 

buildings, on the other hand, 85% of TSVs were within the ASHRAE 55 acceptable 

comfort zone, consistent with the internationally accepted ISO 7730 PMV model, which 

also suggests a satisfaction rate of 85%, for the same conditions.  

A surprising finding was that occupant satisfaction with IEQ aspects namely: overall 

IAQ, ventilation, fresh air, and sun glare is observed to be greater in the CBs, than in the 

“green” LEED buildings. Only noise level was perceived to be better in the LEED 

buildings. Two out of the four categories of IEQ, i.e. IAQ + ventilation and thermal 

comfort were seen to be more important issues by the occupants (accounting for 61% and 

58% of the ranking scores in Table 3.8 for the CBs and the LEED buildings respectively), 

while the remaining two, lighting and noise, were seen as much less important (8% and 

12% for CB and LEED respectively in the case of lighting, and 0% in the case of noise). 

While we did not objectively verify standards compliance for these aspects, it is 

reassuring that these aspects were broadly seen as satisfactory by the occupants, with no 

significant difference in satisfaction with lighting between the building types, and slightly 

better satisfaction in terms of noise in the LEED buildings. Absolute and relative 

absenteeism was slightly higher in CBs compared to LEED buildings, though with a 

negligible effect. No differences were reported in relative and absolute presenteeism 

between buildings types.  
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According to these results, there are a number of important changes and development, 

which need to be made in terms of IAQ and ventilation systems in LEED buildings in the 

region. A periodic assessment of LEED buildings after hand over, which covers the 

occupants and physical parameters of buildings should be considered to ensure that LEED 

buildings are not only achieving the specifications of certification but that these standards 

are in accordance with occupant desires. This is the first study of its kind in the Middle 

East, which is experiencing significant growth in both the overall number of buildings as 

well as green buildings. Hence further studies are merited to expand the database of 

building performance evaluation and help drive the better design of buildings in the 

region. 
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3.11 Appendices  

(a) Demographic breakdown of participants in each building classification (n.b. the 

number of occupants is presented with absolute values as well as relative within 

parentheses in the table body; relative number of occupants is broken down per category 

and adds to 100% within the same type of building; CB indicates conventional building). 

 

Category CB 

 (noccupants= 241) 

LEED  

(noccupants= 261) 

Gender     

Female 95 (39%) 128 (49%) 

Male 146 (61%) 133 (51%) 

Job category      

Administrative 62 (26%) 86 (33%) 

Sales 37 (15%) 50 (19%) 

Design 37 (15%) 39 (15%) 

Executive 37 (15%) 36 (14%) 
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Other 68 (28%) 50 (19%) 

Working experience      

0.0, 0.5) 31 (13%) 22 (8%) 

[0.5, 1.0) 37 (15%) 23 (9%) 

[1.0, 2.5) 54 (22%) 61 (23%) 

[2.5, 5.0) 37 (15%) 65 (25%) 

[5.0, ∞) 82 (34%) 90 (34%) 

Daily working hours      

0, 1 -  2 (1%) 

1, 3 -  6 (2%) 

3, 5 4 (2%) 7 (3%) 

5, 7 10 (4%) 6 (2%) 

7, 8 24 (10%) 31 (12%) 

8, ∞ 203 (84%) 209 (80%) 

Education level      

High school 15 (6%) 14 (5%) 

College 23 (10%) 10 (4%) 

Bachelors 158 (66%) 194 (74%) 

Master 45 (19%) 43 (16%) 

Number of people in the same office      

[0, 1) 106 (44%) 39 (15%) 

[2, 4) 98 (41%) 35 (13%) 

[4, 10) 17 (7%) 22 (8%) 

[10, 24) 20 (8%) 150 (57%) 

[24, ∞) -  15 (6%) 

Net monthly earning (JD)     

[0, 400) 21 (9%) 17 (7%) 

[400, 700) 56 (23%) 94 (36%) 

[700, 1000) 76 (32%) 61 (23%) 

[1000, 1300) 16 (7%) 39 (15%) 

[1300, 1600) 24 (10%) 24 (9%) 

[1600, 2000) 16 (7%) 3 (1%) 

[2000, ∞) 32 (13%) 23 (9%) 

 

(b) Technical specifications of instruments used in monitoring thermal conditions and 

CO2. 

Measurement type Sensor Variable Unit Valid Range Accuracy 

Spot measurement HD 32.3 Ta °C [0, 50] ±0.1 

RH % [0, 100] ±0.8 

Va ms−1 [0.1, 5] ±0.2 

Time series 

(Raspberry Pi-based sensors) 

Maxim IC DS18B20 Ta °C [-10, 85] ±0.5 

AdaFruit DHT22 RH % [0, 100] ±2 

Sensair K30 CO2 ppm [0, 5000] ±30 

 

3.12 Postscript 

Our investigation in this chapter compares the design estimation and actual performance 

of IEQ in LEED-certified buildings. Findings show the following findings:  
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• LEED-certified buildings and conventional buildings comply with the standards 

level for indoor CO2 concentration levels.  

• The thermal environment was slightly better in LEED-certified buildings 

compared to the CBs. 

• Occupants in CBs seem to experience higher overall satisfaction with IEQ aspects 

compared to those in LEED-certified buildings.  

• The overall IAQ satisfied only 48% of the occupants in LEED-certified buildings, 

whereas it satisfied 66% of those in the CBs.  

• Thermal comfort was perceived by the occupant of CBs as an issue that needed 

improvement.  

• Occupants in LEED buildings reported ventilation as the most aspect that needs 

improvement.  

The findings in this chapter provide empirical data to expand the international POE on 

green office buildings. Findings also may help building developers and decision-makers 

in the further development of green building design. The next chapter expands to study 

in-depth the occupant thermal comfort in air-conditioned buildings in several occupancy 

types within different countries in the ME. 
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4 Thermal comfort standards in the 
Middle East: current and future 
challenges 

 

4.1 Preamble  

This chapter represents the first large-scale thermal comfort field study in the ME. It 

reports two lines of evidence. First pooled results from a meta-analysis of existing thermal 

comfort studies in the ME. Second, results obtained from seven new thermal comfort field 

surveys conducted in 31 air-conditioned buildings over two years between 2017 and 2019 

in four countries in the ME. This chapter specifically addresses RQ 3 “How suitable are 

international thermal comfort standards for occupants in air-conditioned buildings in the 

Middle East?”. This chapter reports the observed and predicted thermal comfort votes of 

1,101 subjects during summer and winter and illustrates the calculation of the observed 

and expected neutral temperature for each surveyed city. It estimates also any potential 

reduction in the building energy demand used for space cooling in air-conditioned 

buildings, if the indoor temperature is adjusted based on the occupants’ preferences. 
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4.3 Abstract  

Cooling energy demand has increased three-fold in the Middle East (ME) over the last 

30-years. This is driven by the need to maintain thermal comfort in an extremely hot 

climate, and supported by rising incomes, falling costs of air-conditioning and growth in 

the number of buildings. The definition of thermal comfort in these buildings is drawn 

from “international” standards, which, though empirically derived, have no basis data 

from this region. Hence, we ask, to what extent do indoor conditions in the ME fall within 

the standards recommended range of thermal comfort, and when they do, whether they 

are found to be comfortable by their occupants. We present the first large-scale study of 

thermal comfort in the ME, consisting of two approaches: (i) a meta-analysis of data from 

existing studies, (ii) independent field data covering four countries representing 27% of 

the region’s population, 31 air-conditioned buildings of different types, including “green” 

buildings, and 1,101 subjects. The meta-analysis demonstrates that current thermal 

comfort standards fail to predict thermal sensation of 94% of occupants. Our own data 
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show that, while indoor conditions are within standards-recommended ranges 58% of the 

time, only 40% of occupants find these conditions acceptable. We find evidence of 

overcooling in summers, with 39% occupants expressing cold discomfort. Computer 

models suggest that this is likely to have increased annual cooling energy demand 

between 13%-20%, compared to non-overcooled conditions. These results suggest the 

necessity of localised thermal comfort standards that mitigate excess cooling energy 

demand, without compromising occupant thermal comfort. 

4.4 Introduction  

Heating, Ventilation, and Air-Conditioning (HVAC) systems currently consume around 

50% of the global building energy demand (IEA, 2013; Yang et al., 2014). In 2019, space 

cooling alone consumed 20% of the global electricity used in buildings (IEA, 2020). In 

developing countries, many of which experience warm to hot climates, population growth 

combined with rising incomes has resulted in increasing the energy demand for space 

cooling 10% between 2018 and 2019 (IEA, 2018). In low latitude countries (e.g., India, 

China, Africa, Northern Australia, South and Latin America, and Middle East (ME6)), 

energy use for space cooling is projected to rise from its present average of 32% of total 

building energy consumption to 72% by 2100 (EPA, 2019), driven largely by warmer 

outdoor temperatures as a result of climate change.  

The ME is especially vulnerable to the impact of climate change projections due to its hot 

arid and semi-arid environment, with extreme climate conditions (Beck et al., 2018). For 

example, the outdoor air temperature in summer frequently exceeds 50 °C in countries 

like Kuwait, Saudi Arabia, and Qatar, while in winter it drops down below 5 °C in Jordan, 

Syria, and Lebanon (Beck et al., 2018). Currently, the building sector in the ME consumes 

28% of the total energy consumption, with 70% attributed to space cooling (IEA, 2018, 

2019b; Nematollahi et al., 2016). The high space cooling demand is in response to the 

growing demand for better thermal comfort within the built environment, especially in 

non-domestic buildings (e.g., commercial, governmental, and health facilities) (Yang et 

al., 2014). Indeed, cooling system penetration is around 65% across the ME (IEA, 2020; 

KAPSARC, 2020). Today, there are 1.1 billion air-conditioning units in the ME (i.e., 

 

6  There is no standard definition of the countries comprising the Middle East (ME). The most common definition 

classes fifteen countries namely Bahrain, Egypt, Iran, Iraq, Israel, Jordan, Kuwait, Lebanon, Oman, Palestinian 

Territories, Qatar, Saudi Arabia, Syria, United Arab Emirates, and Yemen (Middle East Policy Council, 2020), as the 

ME, and is the definition used here. 
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three units per capita), and it is projected to increase to 3.1 billion units (five units per 

capita) by 2050 (Iain Campbell et al., 2018; MENAGBC, 2020; The Washington Institute 

for Near East Policy (WINEP), 2020). The need to drive this growth in a sustainable 

manner has resulted in the creation of several national-scale, and some regional-scale, 

voluntary Green Building Codes (GBCs). For example, the Pearl Building Rating System 

(PBRS) is localised to the United Arab Emirates (UAE) (Abu Dhabi Urban Planning 

council, 2010), whereas the Global Sustainability Assessment System (GSAS (Gulf 

Organization for research and developmnet (GORD), 2020)), which was originally 

developed within Qatar (as QSAS), has now been adopted across the region. As many of 

these codes are often based on international codes such as the American LEED (USGBC, 

2019) or British BREEAM (BREEAM, 2019), a side effect has been the wholesale 

adoption of the underlying technical standards that these GBCs make reference to. In the 

case of thermal comfort, ASHRAE 55 (ANSI/ASHRAE 55, 2017) and ISO 7730 (ISO 

7730, 2005), have been adopted as these are seen as internationally applicable. There is a 

well-known trajectory for such codes to transition from voluntary to mandatory status, 

such as through incorporation within building regulations. It is therefore not surprising 

that eight countries out of fifteen in the ME have now adopted ASHRAE 55 and/or ISO 

7730 as part of compliance procedures within national building regulations (see Section 

4.5).  

However, it has often been argued that thermal comfort could be affected by the complex 

interplay of several factors. These are usually grouped into three categories: behavioural 

(e.g., individual thermal adaptation), physiological (e.g., gender, race, age), and 

contextual (e.g., geographic location, climate, season) – none of which are factors within 

the international standards (Michael A Humphreys & Nicol, 2002). While some factors 

have been shown to not have a major influence (e.g., gender (Vellei et al., 2017)), there 

is little in the literature to clearly demonstrate the effect of others, such as geography or 

culture (Aljawabra & Nikolopoulou, 2010; Kenawy & Elkadi, 2013). More recently, 

however, there is some evidence to suggest that the adoption of these standards in warm 

climates can produce cooler than desired indoor conditions (Alnuaimi & Natarajan, 

2020).  

Hence, it is important to gather evidence on whether the international thermal comfort 

standards, if applied, produce comfortable indoor conditions in this region. If true, a 

straightforward pathway for their general adoption is opened, and indeed, may support 

their adoption in other parts of the world. However, if the application of these standards 
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does not consistently deliver indoor thermal comfort, then more localised standards would 

be needed. This is the basic question investigated in this paper. We approach this problem 

for the ME by constructing two independent lines of evidence. First, we conduct a meta-

analysis for all existing thermal comfort studies are done in the ME to collect related 

evidence (section 4.7). Second, we undertake new thermal comfort field surveys in four 

countries within the Middle East during cooling and heating season (section 4.8). Then, 

we combine our independent results (section 4.9) with the meta-analysis findings to create 

a large-scale thermal comfort dataset, which provides the opportunity to understand the 

thermal comfort patterns across the ME and show the potential saving in the building 

energy demand for space cooling and heating (section 4.10).  

 

4.5 Current thermal comfort standards in the ME 

GBCs are usually considered more inclusive and comprehensive because they include the 

national building regulations as a mandatory basic level that need to be met in advance of 

starting the assessment process. Given the trajectory of rules transitioning from voluntary 

to mandatory, as stated earlier, one can expect the set of building regulations making 

reference to thermal comfort standards to be a subset of GBCs making reference to the 

same standard. Further, GBCs will also frequently lay claim to higher quality indoor 

environments, and hence, any evaluation of the success or failure in the provision of 

thermal comfort must also include an assessment of the performance of GBC-certified 

buildings. We therefore commence with an analysis of thermal comfort standards as 

adopted within GBCs in the ME. 

Of the fifteen countries in the ME, eight have developed a local GBC or equivalent. 

Hence, these eight codes are selected to investigate which thermal comfort standards are 

used in the ME. These GBCs are: ARZ Building Rating System in Lebanon (Lebanon 

green building council, 2008), GSAS (formerly QSAS) in Qatar (Gulf Organization for 

research and developmnet (GORD), 2020), Green Pyramid Rating System (GPRS) in 

Egypt (The Egyptian Green Building Council, 2011), Israeli Green Building Standard (SI 

5281) in Israel (Israel Ministry of Environmental Protection, 2016), Jordanian Green 

Building Guide (JGBG) in Jordan (Ministry of Public Works and Housing, 2013), 

Mostadam in Saudi Arabia (Sustainable Building, 2019), Palestinian Green Building 

Guide (PGBG) in the Palestinian Authority (Palestine Engineers Association and 
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Palestine Higher Green Building Council, 2013), and Pearl Building Rating System 

(PBRS) in UAE (Abu Dhabi Urban Planning council, 2010).  

Table 4.1 Summary of thermal comfort requirements specified in the green building codes 

in the Middle East, • indicates that the element is explicitly mentioned in the tool and it has weight of the 

total scale weight; ◊ indicates that the element is implicitly mentioned in the tool, n/a indicates not available.  

 

 shows that each of the investigated codes adopts either or both the ISO7730 and 

ASHRAE 55 standards. This is not surprising since they are based either on LEED and/or 

Tool ARZ 

(Lebanon 

green 

building 

council, 

2008) 

GSAS (Gulf 

Organization 

for research 

and 

developmnet 

(GORD), 

2020) 

GPRS (The 

Egyptian 

Green 

Building 

Council, 

2011) 

JGBG 

(Ministry of 

Public 

Works and 

Housing, 

2013) 

Mostadam 

(Sustainable 

Building, 2019) 

PGBG 

(Palestine 

Engineers 

Association and 

Palestine Higher 

Green Building 

Council, 2013) 

PBRS (Abu 

Dhabi Urban 

Planning council, 

2010) 

SI 5281 (Israel 

Ministry of 

Environmental 

Protection, 

2016) 

Country  Lebanon Qatar Egypt Jordan Saudi Arabia Palestinian 

Authority 

UAE Israel 

Year 2008 2009 2011 2013 2019 2013 2007 2005 

Thermal comfort 

standard 

ASHRAE 55 ISO 7730 

ASHRAE 55 

ASHRAE 55 ASHRAE 55 ISO 7730 

ASHRAE 55 

ISO 7730 

ASHRAE 55 

ISO 7730 

ASHRAE 55 

ISO 7730 

ASHRAE 55 

Assessment approach  n/a Design stage:  

PMV for 

spaces with 

direct 

exposure to 

the solar heat 

and/or  

Air Diffusion 

Performance 

Index (ADPI) 

for other 

spaces 

 

Operation 

stage: 

Air 

temperature 

range of 22 – 

25 °C, relative 

humidity 

range of 35% - 

55%, air speed 

below 

 0.2 ms-1   

n/a n/a -0.5≤ PMV ≤ 

0.5 

 PPD ≤ 10% 

-0.7 ≤ PMV ≤ 

0.7 

 PPD ≤ 15%  

 

Class I:  

-0.5≤ PMV ≤ 

0.5 

 PPD ≤ 10% 

Class II: 

-0.7 ≤ PMV ≤ 

0.7 

 PPD ≤15%  

 

 Mechanical class 

I:   

-0.5≤ PMV ≤ 0.5 

 PPD ≤ 10% 

 

Mechanical class 

II:  

-0.7 ≤ PMV ≤ 0.7 

 PPD ≤ 15%  

 

Mixed-Mode 

ventilation (class 

B and C):  

90% acceptability 

limits  

-0.5≤ PMV ≤ 

0.5 

 PPD ≤ 10% 

Thermal Comfort Requirement        

Thermal zoning        •  

Occupant control   ◊   • • •  

Occupancy sensor linked 

to HVAC 

 
 

  
• 

• 
  

Operable windows  •    • • • 

Thermal comfort 

modelling  

 
 

  
• 

 
◊  

Post-occupancy thermal 

comfort survey 

 
• 
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BREEAM, which use these standards. The thermal comfort standards and requirements 

are included in these codes either under the Indoor Environment Quality (IEQ) aspect (as 

in ARZ, GSAS, GPRS, PGBG, and JGBG) or under other aspects, i.e., health and 

wellbeing, liveable buildings, health, and comfort.  

There are minor differences in the implementation of the international standards within 

each of the eight codes, observable through the difference in treatment of the Predicted 

Mean Vote (PMV) and Predicted Percentage Dissatisfaction (PPD) indices, that specify 

the acceptable range of thermal conditions for building users. Whereas PBRS and PGBG 

explicitly state the use of two classes of PMV/PPD for mechanically ventilated and 

mixed-mode buildings, broadly corresponding to the classes contained in ISO7730; SI 

5281 and Mostadam only use the range for “normal” expectation, i.e., PMV [-0.5, +0.5] 

and PPD <10%. GSAS is unique within this group to separate design and operation stages, 

the latter being required to adhere to thermal conditions that would apply for “normal” 

levels of thermal expectation (i.e., the same as SI 5281 and Mostadam) but being pre-

calculated assuming western office attire and standard levels of metabolic activity rates. 

This is odd, given that these conditions would be an automatic requirement within ISO 

7730 for such levels of activity and attire, but precludes adjustment for other conditions.  

Closer inspection of the thermal comfort requirements in  

Table 4.1 Summary of thermal comfort requirements specified in the green building codes 

in the Middle East, • indicates that the element is explicitly mentioned in the tool and it has weight of the 

total scale weight; ◊ indicates that the element is implicitly mentioned in the tool, n/a indicates not available.  

Tool ARZ 

(Lebanon 

green 

building 

council, 

2008) 

GSAS (Gulf 

Organization 

for research 

and 

developmnet 

(GORD), 

2020) 

GPRS (The 

Egyptian 

Green 

Building 

Council, 

2011) 

JGBG 

(Ministry of 

Public 

Works and 

Housing, 

2013) 

Mostadam 

(Sustainable 

Building, 2019) 

PGBG 

(Palestine 

Engineers 

Association and 

Palestine Higher 

Green Building 

Council, 2013) 

PBRS (Abu 

Dhabi Urban 

Planning council, 

2010) 

SI 5281 (Israel 

Ministry of 

Environmental 

Protection, 

2016) 

Country  Lebanon Qatar Egypt Jordan Saudi Arabia Palestinian 

Authority 

UAE Israel 

Year 2008 2009 2011 2013 2019 2013 2007 2005 

Thermal comfort 

standard 

ASHRAE 55 ISO 7730 

ASHRAE 55 

ASHRAE 55 ASHRAE 55 ISO 7730 

ASHRAE 55 

ISO 7730 

ASHRAE 55 

ISO 7730 

ASHRAE 55 

ISO 7730 

ASHRAE 55 
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 shows that among GSAS, PGBG, PBRS, Mostadam, and SI 5281, the thermal comfort 

credits are clustered around occupant control over indoor temperature, thermal zoning, 

the requirement for operable windows, and occupancy sensors. Thermal comfort 

modelling at the design stage is required explicitly in Mostadam, while it is implicitly 

mentioned in PBRS and not included within the total assigning credits. Only GSAS 

requires a thermal comfort survey after occupancy as a mandatory credit. The lack of any 

of the above details in ARZ, GPRS, and JGBG, is striking in comparison. 

Overall, therefore, we find that there is a clear trend for GBCs in the region to adopt 

international thermal comfort standards. Although they prescribe some minor 

adjustments, one cannot conclude that this results in localisation since there is neither 

underpinning localised evidentiary basis for their use nor an implicit adjustment to the 

standards based on expert knowledge or experience. From this, we can inductively reason 

Assessment approach  n/a Design stage:  

PMV for 

spaces with 

direct 

exposure to 

the solar heat 

and/or  

Air Diffusion 

Performance 

Index (ADPI) 

for other 

spaces 

 

Operation 

stage: 

Air 

temperature 

range of 22 – 

25 °C, relative 

humidity 

range of 35% - 

55%, air speed 

below 

 0.2 ms-1   

n/a n/a -0.5≤ PMV ≤ 

0.5 

 PPD ≤ 10% 

-0.7 ≤ PMV ≤ 

0.7 

 PPD ≤ 15%  

 

Class I:  

-0.5≤ PMV ≤ 

0.5 

 PPD ≤ 10% 

Class II: 

-0.7 ≤ PMV ≤ 

0.7 

 PPD ≤15%  

 

 Mechanical class 

I:   

-0.5≤ PMV ≤ 0.5 

 PPD ≤ 10% 

 

Mechanical class 

II:  

-0.7 ≤ PMV ≤ 0.7 

 PPD ≤ 15%  

 

Mixed-Mode 

ventilation (class 

B and C):  

90% acceptability 

limits  

-0.5≤ PMV ≤ 

0.5 

 PPD ≤ 10% 

Thermal Comfort Requirement        

Thermal zoning        •  

Occupant control   ◊   • • •  

Occupancy sensor linked 

to HVAC 

 
 

  
• 

• 
  

Operable windows  •    • • • 

Thermal comfort 

modelling  

 
 

  
• 

 
◊  

Post-occupancy thermal 

comfort survey 

 
• 
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that buildings in the ME, in general, are likely to conform to an international thermal 

comfort standard when designed to be standards compliant. 
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Table 4.1 Summary of thermal comfort requirements specified in the green building codes in the Middle East, • indicates that the element is explicitly mentioned in the tool and it has 

weight of the total scale weight; ◊ indicates that the element is implicitly mentioned in the tool, n/a indicates not available. 

Tool ARZ 

(Lebanon 

green 

building 

council, 

2008) 

GSAS (Gulf 

Organization 

for research 

and 

developmnet 

(GORD), 

2020) 

GPRS (The 

Egyptian 

Green 

Building 

Council, 

2011) 

JGBG 

(Ministry of 

Public 

Works and 

Housing, 

2013) 

Mostadam 

(Sustainable 

Building, 2019) 

PGBG 

(Palestine 

Engineers 

Association and 

Palestine Higher 

Green Building 

Council, 2013) 

PBRS (Abu 

Dhabi Urban 

Planning council, 

2010) 

SI 5281 (Israel 

Ministry of 

Environmental 

Protection, 

2016) 

Country  Lebanon Qatar Egypt Jordan Saudi Arabia Palestinian 

Authority 

UAE Israel 

Year 2008 2009 2011 2013 2019 2013 2007 2005 

Thermal comfort 

standard 

ASHRAE 55 ISO 7730 

ASHRAE 55 

ASHRAE 55 ASHRAE 55 ISO 7730 

ASHRAE 55 

ISO 7730 

ASHRAE 55 

ISO 7730 

ASHRAE 55 

ISO 7730 

ASHRAE 55 

Assessment approach  n/a Design stage:  

PMV for 

spaces with 

direct 

exposure to 

the solar heat 

and/or  

Air Diffusion 

Performance 

Index (ADPI) 

for other 

spaces 

 

Operation 

stage: 

Air 

temperature 

range of 22 – 

25 °C, relative 

n/a n/a -0.5≤ PMV ≤ 

0.5 

 PPD ≤ 10% 

-0.7 ≤ PMV ≤ 

0.7 

 PPD ≤ 15%  

 

Class I:  

-0.5≤ PMV ≤ 

0.5 

 PPD ≤ 10% 

Class II: 

-0.7 ≤ PMV ≤ 

0.7 

 PPD ≤15%  

 

 Mechanical class 

I:   

-0.5≤ PMV ≤ 0.5 

 PPD ≤ 10% 

 

Mechanical class 

II:  

-0.7 ≤ PMV ≤ 0.7 

 PPD ≤ 15%  

 

Mixed-Mode 

ventilation (class 

B and C):  

90% acceptability 

limits  

-0.5≤ PMV ≤ 

0.5 

 PPD ≤ 10% 
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humidity 

range of 35% - 

55%, air speed 

below 

 0.2 ms-1   

Thermal Comfort Requirement        

Thermal zoning        •  

Occupant control   ◊   • • •  

Occupancy sensor linked 

to HVAC 

 
 

  
• 

• 
  

Operable windows  •    • • • 

Thermal comfort 

modelling  

 
 

  
• 

 
◊  

Post-occupancy thermal 

comfort survey 

 
• 
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4.6 Research objectives  

This study is designed to examine whether air-conditioned buildings in the ME fall within 

the recommended ranges of thermal comfort identified by the applied standards in this 

region, and when they do, to what extent they are found to be comfortable by their 

occupants. To address this, we start by a meta-analysis approach to aggregate the 

outcomes of multiple thermal comfort studies in the ME  (Section 4.7) and then, we 

conduct new field surveys in four countries: Jordan, Qatar, Saudi Arabia, and the United 

Arab Emirates, representing 27% of the ME population, using the definition suggested 

earlier (Section 4.4). Our detailed objectives are: 

• To perform a meta-analysis of previous thermal comfort research in air-

conditioned buildings in the ME. 

• To assess thermal conditions in GBC-certified and typical air-conditioned 

buildings in the ME against both the applied international thermal comfort 

standards and those proposed by localised GBCs. 

• To compare the predicted mean vote (PMV) and observed thermal sensation vote 

(TSV) in all building types and investigate any seasonal differences.  

• To calculate the difference between predicted and observed neutral (comfort) 

temperatures and estimate any potential reduction in the building energy use for 

space cooling and heating based on the obtained differences, if any.  

 

4.7 Meta-analysis of evidence in the ME  

There are two methods to perform the meta-analyses, either using individual participant 

data (i.e., raw data collected by multiple studies) or aggregate data (i.e., available 

evidence from literature) (Burke et al., 2017). We rely on the latter approach, as the raw 

data were not publicly available. First, we systematically review the relevant literature 

(DeLuca et al., 2008), including the recently released ASHRAE Global Thermal Comfort 

Database II (Földváry Ličina et al., 2018). We determine the eligibility of studies for our 

meta-analysis based on two criteria: (i) the operation mode in the surveyed buildings (i.e., 

air-conditioned only), and (ii) the available thermal comfort data (Figure 4.1). Second, 

we extract the aggregate data from selected studies and compute summary statistics from 

each study (Debray et al., 2013).   

https://en.wikipedia.org/wiki/Individual_participant_data
https://en.wikipedia.org/wiki/Individual_participant_data
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Table 4.2 summarises the eight included studies in the meta-analysis. All studies 

investigated occupant thermal comfort in air-conditioned buildings in the ME and were 

done in the past ten years (2010 - 2020) during the cooling season. In the ME, the cooling 

season varies according to the climate zone, for example, coastal cities, such as Jeddah, 

Doha and Bahrain are humid and very hot throughout the year, thus air-conditioning is 

used for space cooling continuously. Whereas in cities at high elevations such as Amman, 

Beirut, and Damascus, the use of air conditioning for space cooling is limited to four 

months only between June and September; while in December, January and February, 

there is some space heating demand usually delivered via the air conditioning system or 

through supplementary heating. In these latter cities, therefore, there exists potential for 

natural ventilation during the remaining five months (i.e., March, April, May, October, 

and November).  

Among the analysed studies, offices comprise the most studied group of buildings (80% 

of the total sample size (Indraganti & Boussaa, 2017, 2018), some studies include homes 

(Al-ajmi & Loveday, 2010a; Alshaikh et al., 2014), mosques (Al-ajmi, 2010a; Kotbi et 

al., 2012), hospitals (covering patients only) (Alotaibi et al., 2019), and educational 

buildings, i.e. university campuses (Al-ajmi, 2020). The studies cover three countries 

namely Kuwait, Qatar, and Saudi Arabia and employ transverse sampling, except one 

which has a longitudinal design (Indraganti & Boussaa, 2017). 

When all data are pooled, the resulting dataset covers 76 air-conditioned buildings and 

2,825 subjects in the age range ∈ [21, 34] years (mean = 31 years, s = 4.6 years), hence, 

this is a young sample. All studies (except one (Alshaikh et al., 2014), report aggregate 

data for five standard thermal comfort parameters: air temperature (Ta), relative humidity 

(RH), air speed (Va), metabolic rate (met), and clothing thermal insulation (clo). Three 

studies report either the mean radiant temperature (Tr) (Alotaibi et al., 2019; Indraganti 

& Boussaa, 2017) or the globe temperature (Tg), from which Tr can be derived (Indraganti 

& Boussaa, 2017, 2018). All studies report the operative temperature (To), except two 

studies (Al-ajmi, 2010a; Al-ajmi & Loveday, 2010a). The summary statistics for these 

studies shown in Table 4.2 are based on a total of 7,077 records of environmental and 

subjective observations. We observe that mean clothing thermal insulation was 0.94 clo 

(s = 0.26 clo), with the lowest mean of 0.42 clo in homes. Estimated metabolic rates varied 

considerably between 2.3 met for employees in office buildings to 0.67 met in homes 

(dataset mean 1.24 met, s = 0.48 met).  
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RH ranged between 35% and 60% (mean 44%, s = 8.6%) with Kuwait at the lower end 

and Saudi Arabia at the higher end of the scale. Va does not exceed 0.25 ms-1 (mean = 

0.11 ms-1, s = 0.09 ms-1) in all studies. Means for Ta (23.2°C, s = 1.56 °C), Tr (23.1 °C, s 

= 0.63 °C), Tg (23.3 °C, s = 0.49 °C) and To (23.1 °C, s = 0.86 °C) were comparable 

through the dataset. Mean Ta ranged between 22– 24 °C, with the exception of data from 

homes in Saudi Arabia which reported a mean Ta of 27 °C.  

An average of 43% of votes in the dataset can be classified as neutral (i.e., TSV∈ [-1, 

+1], Figure 4.2.a). Hence, none of these buildings achieve 80% acceptability as 

recommended by the ASHRAE 55 standard. A significant proportion of the votes (26% 

on average) demonstrate cold discomfort (i.e., TSV < -1), which is substantially higher 

than the average vote for warm discomfort (21%).  

 TSV is cooler on average than predicted by PMV in all types of buildings except in the 

hospital study (Figure 4.2.b and c). Hence, the observed neutral temperatures based on 

TSV (Tn(TSV)), in these buildings were higher compared to those predicted by PMV 

(Tn(PMV)), which underestimated neutrality by an average of 2.1 K (Figure 4.2.d). A 

possible cause for the hospital study resulting in PMV underestimating TSV, is that this 

study looks at thermal comfort in patients suffering from cardiovascular and respiratory 

diseases and are hence not directly comparable to healthy subjects in other studies. Here, 

we find that mean PMV = -0.5 compared to mean observed TSV = +0.3, corresponding 

to Tn(TSV) = 22.7 °C and Tn(PMV) = 25.6 °C, i.e. a difference of 2.9 K. While the authors 

of that study speculate that lowered met and clo may be the cause for this unusual result, 

this would seem counterintuitive and can hence be considered as not fully understood.   

Overall, the meta-analysis suggests, with the exception of the hospital, as above, that the 

PMV model usually results in cooler conditions than those preferred by building 

occupants in the ME. However, given that the data cover only three countries and only 

typical buildings, there is clear potential for additional data from other locations including 

from more modern “green” buildings. That all the extant studies are from the cooling 

season (i.e., summer and autumn) also suggests the need to investigate the heating season, 

where appropriate. Finally, it would be useful to understand to what extent the results of 

the hospital study are due to the survey being confined to patients and not staff. Hence, 

the next part of this paper aims to increase the coverage of locations, seasons, building 

types and occupant types for thermal comfort data in the ME.  
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Figure 4.1 Schematic flow diagram of literature screening process, including the number of potentially 

relevant studies and the final number of included studies that met the two inclusion criteria. 
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Table 4.2 Descriptive summary statestic of the existing field thermal comfort studies  in air-conditiond buildings in the ME during cooling season, the reported values for thermal 

comfort parameters in this table represent the mean for each study. Note: the mean value of age is not reported in two studies, as instead they report the percentage of multiple age 

group, (𝑛_𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 = 76; 𝑛_𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑠 = 2,825).   

     Reported mean within each study 

Ref Location Bldg. 

Type 

Bld

g 

(n) 

Subject 

(n) 

Vote 

(n) 

Age 

(y) 

clo met  Ta 

(°C) 

Tg 

(°C) 

Tr 

(°C) 

Va 

(ms-1 

) 

RH 

(%) 
To 

(°C) 

PMV TSV Tn(PMV) 

(°C

)  

Tn(TSV) 

(°C) 

Diff 

(°C) 

(Al-ajmi & 

Loveday, 

2010b) 

Kuwait 
Hom

es 
25 111 111 32.1 

0.9

0 
1.20 22.7 - - 0.13 34.5 23.7 0.13 -0.28 

23.

3 
25.2 

1.9

0 

(Al-ajmi, 

2010b)  
Kuwait 

Mosq

ues 
6 140 140  32.6 

0.9

3 
1.30 23.0 - - 0.23 44.1 23.9 0.19 -0.26 

23.

3 
26.1 

2.8

0 

(Kotbi et 

al., 2012) 

Saudi 

Arabia 

Mosq

ues 
1 281 422 - 

1.1

3 
1.30 21.7 - - 0.25 31.9 21.5 0.01 -0.19 

21.

5 
22.3 

0.8

0 

(Alotaibi et 

al., 2019) 

Saudi 

Arabia 

Hosp

ital 
1 120 120 - 

1.3

0 
0.80 23.1 - 23.4 0.04 48.3 23.3 -0.5 0.32 

25.

6 
22.7 

-

2.9

0 

(Indraganti 

& 

Boussaa, 

2017) 

Qatar 
Offic

es 
9 828 1,926 32.7 

1.0

0 
1.10 23.1 22.7 22.5 0.02 44.9 22.8 0.04 -0.23 

23.

7 
24.1 

0.4

0 

(Indraganti 

& 

Boussaa, 

2018) 

Qatar 
Offic

es 
10 1,174 3,742 32.9 

0.8

0 
2.30 23.8 23.4 - 0.04 45.7 - - -0.54 - 24.8 -  

(Al-ajmi, 

2020) 
Kuwait  

Cam

puses 
7 136 136 21.6 

1.0

1 
1.30 22.8 - - 0.09 46.0 23.3 0.50 0.11 

18.

9 
22.9 4.0 

(Alshaikh 

et al., 

2014) 

Saudi 

Arabia 

Hom

es 
17 35 480 34.0 

0.4

2 
0.67 27.0 - - - 60.0 - - 1.30 - - - 

Mean  

(SD) 

    
31 

(4.6

) 

0.9

4 

(0.3

) 

1.2 

(0.4) 

23.2 

(1.5) 

23.3 

(0.4

) 

23.1 

(0.6

) 

0.11 

(0.1) 

44.2 

(8.6) 

23.1 

(0.8

) 

0.06 

(0.3) 

0.03 

(0.6) 

23.

3 

(2.3

) 

24.3 

(1.4) 
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Total  76 2,825 7,077            
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Figure 4.2 Summary results of the meta-analysis  with 𝑛𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 = 76; 𝑛𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑡𝑠 = 2,825, (a) raw TSV 

distribution for the dataset, (b) TSV distributions split by building type, (c) the difference between mean 

scores (i.e., Δμ = TSV-PMV) based on the building type, i.e. (Δμ > 0) indicates TSV is greater than PMV, 

(d) the difference between mean neutral temperatures derived from TSV (𝑇𝑛(𝑇𝑆𝑉)) and PMV (𝑇𝑛(𝑃𝑀𝑉)). 

4.8 New thermal comfort dataset in the ME: methods 

To achieve the aim outlined at the end of Section 4.7, we undertook seven standardised 

thermal comfort field surveys over three years between May 2017 and Sept 2019 (Figure 

4.3), using methods described in the following sections.  
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Figure 4.3 Timeline of data collection in the present study. Data were collected between May 2017 and 

Sept 2019 in four countries in the ME, Yellow represents studies undertaken in the summer, and blue, 

winter. The length of bars adjacent to each label indicates the months over which data were collected. 

𝑛_𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 = 31; 𝑛_𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 = 1,101. 

 

4.8.1 Outdoor conditions in the survey areas 

According to the widely used Köppen climate classification (Beck et al., 2018), the 

climate for Doha, Dubai and Jeddah are classified as hot desert (BWh), with extremely 

hot summers and warm dry winters. Amman, on the other hand, is classified as a 

composite climate, i.e., one with hot semi-arid conditions (BSh) but bordering on cold 

semi-arid (BSk), with a long hot summer and short cold winter (DOS, 2016). However, 

this is a broad classification, and we hence use the annual heating degree days (HDDs) 

and cooling degree days (CDDs) for each city to illustrate how winters and summers are 

distributed (Table 4.3). We find that, while Doha and Jeddah do not experience wintry 

conditions (4 and 0 HDDs respectively), there may be some merit in investigating winter 

comfort in Dubai (21 HDDs) and definitely for Amman (873 HDDs). CDDs, on the other 

hand, are uniformly large. Thus, our field surveys were conducted in peak summer for all 

cities and peak winter in Amman and Dubai only. 

Table 4.3 also presents the mean daily outdoor air temperature (Tout) and relative humidity 

(RHout) in the surveyed cities during the time of the surveys, using data obtained from 

local weather stations. It is noteworthy that observed temperatures during the studies in 

Amman and Doha are likely to be higher than shown due to the well-known urban heat 

island effect, given that the data were obtained from the nearby airport (Gedzelman et al., 

2003).  

Outdoor summer mean temperatures are comparable in Amman, Dubai, and Jeddah with 

a range of 32.6 °C and 34.1 °C, while Doha had higher mean Tout of 40.5 °C. In Amman, 

where we have data from two consecutive summers, mean Tout in summer 2017 was 

slightly lower compared to the same time period in the following year 2018, with a 
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difference of 1.1 °C. In winter, the mean Tout in Amman (10.4 °C) was lower than in 

Dubai (20.1 °C). The relative humidity ranges in Amman and Dubai during winter were 

higher than in summer. The RHout range in Jeddah varied between 31.9% - 91% and was 

comparatively higher than the RHout in Doha.  

 

 

Table 4.3 The daily mean outdoor temperature (𝑇𝑜𝑢𝑡) and relative humidity (𝑅𝐻𝑜𝑢𝑡) recorded during the 

study periods in Amman, Doha, Jeddah and Dubai. Annual heating degree days (HDD) and annual cooling 

degree days (CDD) are calculated using a base temperature [> 18 °C and < 18 °C], respectively. 

City Amman1 Doha2 Jeddah3 Dubai4 

Climate  BSh + BSK BWh BWh BWh 

HDDs 873 4 0 21 

CDDs 3,814 5,006 6,587 5,392 

Time of 

survey 

Jul – Aug 

2017 

Jul – Aug 

2018 

Jan – Feb 

2019 

May 

2019 

May – Jul 

2017 

Dec – Jan 

2017 - 18 

Jun 

2019 

𝐓𝐨𝐮𝐭 (°C)       

 Mean 33.2 34.1 10.4 40.5 32.6 20.1 33.4 

  Max. 40.1 41.2 22.0 45.5 42.6 31.3 36.7 

  Min. 25.3 26.1 5.0 38.0 23.8 12.9 25.3 

Range [25.3, 40.1] [26.1, 41.2] [5.0, 22.0] [38.0, 45.5] [23.8, 42.6] [12.9, 31.3] 
[25.3, 

36.7] 

𝐑𝐇𝐨𝐮𝐭  (%)       

Mean 42.3 47.4 70.3 46.6 49.9 66.4 62.3 

Max. 52.1 56.6 75.1 58.0 91.0 80.1 78.7 

Min. 13.4 15.1 69.1 37.0 31.9 50.5 41.1 

Range [13.4, 52.1] [15.1, 56.6] [69.1, 70.3] [37, 58] [31.9, 91.0] [50.5, 80.1] 
[41.1, 

78.7] 

 

Data sources:  
1Jordan meteorological department, Amman civil Airport 
2Department of meteorology, Civil Aviation Authority, Doha 
3Department of meteorology, King Abdul-Aziz University, Jeddah 
4National center of meteorology, UAE 

 

4.8.2 Sampling  

In the literature, there are two common methods for undertaking thermal comfort surveys: 

(i) longitudinal with repeated measures, usually with a small sample size (M. A. 

Humphreys et al., 2013) and (ii) transverse with a large number of responses collected 

once (Feriadi & Wong, 2004). Our interest is in investigating indoor conditions and 

comfort across a large number of buildings and hence the latter method is used. Surveys 

were conducted in the four locations discussed earlier and thermal comfort data were 

collected using a standardised questionnaire ((ANSI/ASHRAE 55, 2017), Appendix (a) 

), as well as the necessary objective data (see Section 4.8.3). Data were obtained from 

1,101 subjects from 31 different buildings, with each subject providing one response. A 

range of non-domestic occupancy types were covered, including twenty-five office 
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buildings (n = 849), three schools (n = 98), two mosques (n = 102), and one hospital 

(nursing staff only, n = 52).  

Surveyed buildings were constructed in the last twenty years, twenty-six buildings are 

mechanically air-conditioned, and five buildings have mixed-mode ventilation (Figure 

4.4). Seven of the office buildings are green-certified, under either local GBCs (e.g., 

JGBG, GSAS) or the international LEED. In addition, the surveyed buildings in Dubai 

and Jeddah were recipients of regional design awards and can therefore be considered as 

high-quality (see Appendix (b)) for the specific details of the investigated buildings). All 

subjects have voluntarily participated in the survey, prior informed consent being 

obtained. A comprehensive profile of the participating subjects is presented in Table 4.4. 

 

 

Figure 4.4 Examples of the surveyed buildings in this study, (a) mosque in Dubai, (b – e) office buildings 

in Amman, (f) hospital in Jeddah (source: IMC Research Centre, Saudi Arabia, reproduced with 

permission), (g) example of mixed-mode ventilation office in Amman, (h) example of fully HVAC office, 

and (i) interior shot of prayer hall in the mosque, 𝑛𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 = 31. 
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Table 4.4 Comprehensive profile of subjects in each surveyed city. Height, age, and weight data for Dubai 

are unavailable, 𝑛_𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 = 1,101. 

City   Sample 

(n) 

Gender Height 

(cm) 

Weight 

(Kg) 

Age 

(y) 

  Female Male Mean SD Mean SD Mean SD 

Amman  502 223 279 172.2 11.2 76.8 13.3 29.3 5.3 

Doha  377 70 307 169.6 10.9 77.6 16.3 38.2 9.3 

Dubai  170 23 79 - - - - - - 

Jeddah 52 39 14 160.9 7.6 65.2 12.2 34.6 7.2 

 

4.8.3 Thermal comfort parameters measurements 

We measure all four physical parameters affecting thermal sensation (i.e., Ta, Tr, RH, and 

Va) in all surveyed buildings, except for the two buildings in Dubai during summer, where 

only measurements for Ta and RH were possible. Thus, data from Dubai (summer) survey 

are used to gain an idea of the indoor thermal conditions, while the PMV calculation for 

these two buildings was not possible, due to the absence of other thermal comfort indices. 

The measurements of the four physical parameters in all buildings were coincident with 

the time of each individual survey. In Amman, Doha, and Jeddah two instruments were 

used to monitor all parameters, SWEMA (SWEMA, 2020) and HD 32.3 (Delta OHM, 

2019), both compliant with ISO 7726 (EN ISO 7726, 2001) and ISO 7730 (ISO 7730, 

2005) standards. In Dubai (winter) study, an Extech HT200 heat stress wet bulb globe 

thermometer was used to monitor Ta, Tr, and RH, and ATP unidirectional hot wire 

thermo-anemometer was used to simultaneously measure Va. The latter set while not 

being ISO compliant, produces data of sufficient accuracy for use in fieldwork (e.g., 

(Maykot et al., 2018)). Technical specifications of all instruments are in Appendix (c) . 

The sample period of Ta, Tr, RH, and Va was five minutes including two minutes for 

sensors to stabilise and additional three minutes to provide a stable PMV reading. 

Measurements in the office buildings, schools (staff room), and hospital (nursing stations 

and corridors) were taken at height 60 – 110 cm from the ground level, and the instrument 

was located on the subject’s desk (Figure 4.5. a and b) (Richard J. de Dear & Gail Schiller 

Brager, 1998), during working hours between 09:00 – 17:00. In the mosques, 

measurements were taken at height 60 cm above the floor level for seated subjects as 

specified in ISO 7726 and ASHRAE 55, the instruments were located in the main prayer 

hall during Friday’s congregational prayer, i.e., at maximum occupancy. The clothing 

thermal insulation level was calculated based on ASHRAE 55 and ISO 9920 (EN ISO 

9920, 2009) (Figure 4.5. c - e). Similarly, the metabolic rate of subjects was calculated 
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based on the standard tables provided by ASHRAE 55 and ISO 8996 (EN ISO 8996, 

2004). 

 

Figure 4.5 The instrument setup in surveyed buildings (a and b), examples of indoor subjects’ summer 

clothing (c), winter clothing (d), and female subject with headwear (e). 

 

4.8.4 Subjective measurements 

The questionnaire consists of two sections. The first pertains to socio-demographic data 

on age, gender, height, weight, job role, and nationality. The second section covers the 

standardised thermal comfort survey based on ASHRAE 55. The survey was designed 

and written in English and translated to Arabic as most respondents speak Arabic as a 

first language. In Doha, Dubai and Jeddah, classical Arabic was used as it is the common 

dialect, however, for respondents in Amman, the Levantine-Arabic dialect was used (see 

Appendix (a)). This resulted in subtle but important differences in the coding of the 

questionnaire, particularly for TSV (Albadra et al., 2017). The Arabic and English 

versions were combined with a consent form and distributed randomly within the 

surveyed buildings. The questionnaire was paper based instead of online to promote the 

response rate, as some subjects, i.e., those at prayer and nurses did not have access to a 

computer or internet connection during the survey time. The survey completion time 

ranged between 40 - 60 seconds, with ten multiple-choice questions, all completed 

concurrently with the sensor measurement, per Section 4.8.3. All the buildings’ 



Chapter 4. Thermal comfort standards in the Middle East… 

 

118 

 

managers/owners were interviewed to introduce the research idea and their written 

consent was obtained. While extraneous factors such as family circumstances, driving to 

work etc. may affect perceptions, these are not explicitly explored here due to the need to 

keep survey times low and thus maximise response rates, whilst being consistent with 

other studies. This is somewhat mitigated by the cross-sectional nature of the survey that 

will reduce the effect of aleatory uncertainties, though not systematic bias.  

 

4.8.5 Analysis methods 

A total of 1,101 data points was aggregated, analysed, and presented based on three levels 

namely location, building type, and season. Operative temperatures (To) were calculated 

per ISO 7726 (EN ISO 7726, 2001). As our data are numerical, differences in means are 

analysed using standard statistical inference, i.e., t-test, 95% confidence intervals and 

Cohen’s well-known 𝑑 metric for effect size. The mixed-effects model was used to test 

the differences between data and deal with non-independence. PMV was classified into 

three categories: cold discomfort ∈ [-3, -0.5), neutral ∈ [-0.5, +0.5] and hot discomfort ∈ 

(+0.5, +3], since PMV ±0.5 is considered neutral for typical buildings, Category II in 

ASHRAE 55 (ANSI/ASHRAE 55, 2017). Although hospitals and schools could be 

classified as Category I buildings, where PMV ±0.2 would be considered neutral, we do 

not use this definition for consistency with the other data; and the fact that we are 

surveying only staff in the hospitals and schools. 

Observed TSV were classified into cold ∈ [-3, -1), neutral or comfort ∈ [-1, +1] and hot 

∈ (+1, +3]. This choice of neutrality is consistent with other studies in the literature 

(Indraganti & Boussaa, 2018) and relates to the likelihood of the TSV scale being 

interpreted as ordinal, rather than interval, during subject self-completion. Note that this 

is likely to suggest a wider neutral band in the observed TSV than would be the case with 

a band consistent with PMV, and hence lead to an underestimate of the cold and hot 

discomfort classification on either side of neutral. 

 

4.8.5.1 Calculating neutral (comfort) temperature 

Simple linear regression is used to calculate the neutral temperature (Tn) from PMV and 

TSV for each surveyed city. We plot observed TSV and PMV against To and identify the 
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neutral temperature as the temperature when the mean of PMV or TSV equals zero. We 

thus use the following equations:   

 

TSV = 𝛼To + 𝑏 (7) 

PMV = 𝛼To + 𝑏 (8) 

Tn = −𝑏/𝛼 (9) 

 

where (𝛼) indicates the regression coefficient (gradient), and (𝑏) refers to the intercept 

on the y-axis, i.e., TSV or PMV. For data with a small disparity in operative temperatures 

(e.g., Amman), we instead use the well-known Griffith’s method to compute the neutral 

temperature derived from TSV using following equation: 

 

Tn = To + (0 − TSV) /𝐺                                    (10)    

 

where 𝐺 indicates the Griffith’s constant. There are several commonly used values for 𝐺 

in the literature ranging ∈ [0.25/K, 0.5/K]. We use 𝐺 = 0.5/K in line with similar studies 

in the ME, such as (Indraganti & Boussaa, 2018; Zaki et al., 2017). Tn is difficult to 

calculate with a small dataset (M. Humphreys et al., 2015), and hence was not computed 

for schools and mosques in Doha and Dubai respectively. All analysis is conducted using 

R (R Core Team, 2019), due to the convenient availability of the ‘comf’ package 

(Schweiker et al., 2019) for thermal comfort plus data management and plotting packages 

such as the ‘tidyverse’ family (Wickham et al., 2019) and ‘cowplot’ (Claus O. Wilke, 

2020). 

 

4.8.5.2 Simulation of building energy consumption 

We carried out energy model simulations for the calculated Tn(PMV) and observed Tn(TSV) 

to illustrate the variation in building energy demand for the two indices. The well-known 

EnergyPlus building energy simulator (EnergyPlus, 2019), is used with ANSI (American 

National Standards Institute)/ASHRAE/IES (Illuminating Engineering Society) Standard 

90.1 prototype building models for our analysis (Deru et al., 2011).  

The simulation is done for two occupancy types: office buildings in Amman and Doha 

(medium office prototype building) and hospital in Jeddah (hospital prototype building) 

(see Appendix (d)). The schools and mosques were excluded due to small sample sizes 
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and hence no predicted Tn, as mentioned earlier. The selected models resemble the real 

size and function of the buildings where the data were originally collected to maintain 

suitability with the building energy simulation results. Considering the default 

commercial prototype building model operational mode for both cooling and heating and 

the calculated Tn(PMV) and Tn(TSV), the cooling and heating setpoints for occupancy hours 

were adjusted to reflect the recommended upper and lower neutral temperature 

conditions. Amman, Doha and Jeddah models are simulated with the three calculated 

neutral temperatures using TSV and PMV as building setpoint temperatures in each city’s 

climate respectively. 

 

4.9 Results  

This section presents results of the data obtained from our field study covering 31 air-

conditioned buildings, four occupancy types, and 1,101 subjects, during summer and 

winter. 

4.9.1 TSV and ASHRAE 55 comfort zones 

Table 4.5 illustrates the mean scores of measured thermal comfort parameters based on 

season, city and building type. The mean Ta over summer and winter is within a relatively 

narrow range [21.7 °C, 24.0 °C], or 2.3 K, for all the buildings. RH was slightly higher 

in summer (pooled mean 46%) than in winter (pooled mean 43%) but over a wide range 

[36%, 58%]. Va ranged between [0.05 ms-1, 0.17 ms-1] which is below the maximum 

acceptable air speed of 0.20 ms-1 given in the ASHRAE 55 standard.  

For the subjects in the survey, the mean values of metabolic rate ranged between 1.08 met 

for sitting with passive work in office buildings and 2.49 met for praying in the mosques. 

In all surveyed cities, most (92%) male subjects were wearing western clothing, with the 

remaining wearing non-western clothing with clo value varied between 1.10 - 1.57 clo. A 

small proportion (22%) of female respondents wore headwear (Figure 4.5. e), which 

resulted in an increased insulation value of 0.03 clo (Havenith et al., 2015), with the rest 

wearing western clothing, with no headwear at 1.08 clo. Surprisingly, the clo value of 

subjects in summer was higher than in winter, with difference +0.03 clo in Amman, and 

+0.20 clo in Dubai. The lowest clo value was observed in the hospital in Jeddah, as 

nursing staff wear very light uniform (mean = 0.59 clo).  
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Figure 4.6 compares the observed thermal comfort zones in all surveyed buildings among 

the four cities to the recommended comfort zone by ASHRAE 55 standard 

(ANSI/ASHRAE 55, 2017). We observe that all surveyed buildings in Amman and Doha 

were within the recommended comfort zone during summer and winter, whereas the 

thermal comfort zone in mosques in Dubai was shifted to the left side and this refers to 

the high metabolic rate in mosques (mean = 2.5). The hospital in Jeddah was also 

completely outside the standard-recommended comfort zone. Hence, we can conclude 

that the buildings in Amman and Doha were thermal comfort standards compliant 

whereas those in Dubai and Jeddah were not.  
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Table 4.5 Summary of the monitored thermal comfort parameters in the surveyed buildings  in the four cities during summer and winter, Ta and Va were not available 

for Dubai (summer) survey, 𝑛_𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 = 31, 𝑛_𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 = 1,101. 

Season City Bldg. Type clo met  Ta (°C) Tr (°C) RH (%) Va (ms-1) 

   Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

Summer 

Amman Office 1.3 0.05 1.2 0.18 21.7 1.76 22.0 1.82 37.4 3.29 0.1 0.15 

Doha Office 1.1 0.26 1.2 0.00 23.8 1.39 23.8 1.44 47.8 8.86 0.2 0.19 

Doha School 1.1 0.19 1.2 0.00 23.7 0.96 23.9 1.28 42.2 3.53 0.2 0.18 

Dubai School 1.2 0.12 1.2 0.10 24.0 1.23 - - 57.7 3.59 - - 

Jeddah Hospital 0.6 0.05 1.1 0.12 21.8 1.36 22.1 1.32 45.1 2.11 0.1 0.11 

Winter 
Amman Office 1.3  0.13 1.2  0.20 22.1 0.84 22.1 0.87 35.6 2.74 0.2 0.09 

Dubai Mosque 1.0 0.31 2.5 0.23 23.3 1.73 23.2 1.62 51.2 4.00 0.1 0.07 
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Figure 4.6 The observed thermal conditions for all surveyed buildings  (outlined boxes) in Amman, Doha, 

Dubai, and Jeddah on psychrometric charts compared to the recommended thermal comfort zones (shaded 

boxes) provided by ASHRAE 55 standards (ANSI/ASHRAE 55, 2017), plots generated using the CBE tool 

(Schiavon et al., 2014). 

 

4.9.2 Distribution of TSV and PMV 

Table 4.6 illustrates the overall distribution of PMV and TSV during summer and winter, 

the votes being classified into three categories, i.e., hot, cold, and neutral (see section 

4.8.5). In summer, while PMV predicted that 53% of votes would be in the neutral 

category, substantially below the 80% acceptability criterion specified by the ASHRAE 

55 standard (ANSI/ASHRAE 55, 2017), TSV was even lower at only 41% votes falling 

into neutrality. Surprisingly, while PMV predicts 40% of votes would fall in hot 

discomfort, TSV shows an almost exact proportion (39%) falling into cold discomfort. In 

winter, while PMV predicted 78% votes to fall into neutral (i.e., almost meeting the 

acceptability criterion), only 35% TSV are actually comfortable, 48% subjects suggesting 
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a sensation of warm discomfort. Amman and Doha perform differently to Dubai and 

Jeddah, due to the former group falling within the recommended standards (Figure 4.6). 

Figure 4.7 shows the distribution of PMV and TSV based on the occupancy types. The 

average of PMV-hot was higher in office buildings and schools (average 35%), while it 

was negligible in mosques and hospital buildings. PMV-hot was higher in Doha offices 

compared to Amman offices, due to the variation in the operation mode, as five buildings 

out of thirteen in Amman have mixed-mode ventilation, contrary to Doha offices, that 

have no operable windows (see Appendix (b)). In mosques during winter, though PMV 

predicts neutrality for 97% of subjects, the majority of TSVs were on the warm side 

(Figure 4.7), this could be due to the high metabolic rate for prayers. In the hospital 

building, the PMV shows a cold state for 87% of subjects, and this was supported with 

50% of observed TSV.  

 

Table 4.6 The distribution of predicted PMV and observed TSV in all surveyed buildings in the four cities 

during summer and winter, the votes are classified into three categories (i.e., cold, neutral, and hot). 

  PMV TSV 

Season  Subjects (n) Cold Neutral Hot Cold Neutral Hot 

Summer  677 7% 53% 40% 39% 41% 20% 

Winter  356 5% 78% 17% 18% 35% 48% 

Overall  1,033 7% 58% 35% 33% 40% 28% 

 



Chapter 4. Thermal Comfort Standards in The Middle East… 

 

125 

 

 

Figure 4.7 The distribution of observed TSV and PMV based on occupancy type  and city during summer 

and winter, 𝑛_𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 = 1,033, the subject votes are classified into three categories (i.e., cold, neutral, 

and hot). 

 

4.9.3 Difference between TSV and PMV 

Figure 4.8 shows the recorded indoor air temperature in each building in all surveyed 

cities across summer and winter. In summer, the indoor temperature ranged between 17.2 

°C and 26.1 °C. In winter, we observe that the reported minimum indoor air temperature 

(20.2 °C, s = 0.9 °C) was higher than the reported temperature in summer. Further, to 

examine the differences in mean scores between the PMV and observed TSV in all 

surveyed buildings, we use the mixed-effects model to deal with the non-independence, 

as our sample has yielded 1,033 valid individual thermal comfort responses (i.e., TSV 

and PMV)7, from four occupancy types, nd from four cities. The dependent variable was 

identified to be the difference between TSV and PMV (i.e., Δμ = TSV - PMV). The city, 

season, and building type were identified as predictors. In addition, building identity (ID) 

were included as a random effect, as there were multiple measurements from each 

building and analysis has to consider this clustering.  

 

7 Dubai-summer data (n = 68) were omitted from the total number of dataset (n = 1,101) due to unavailable PMV, this 

resulted to reduce dataset to n = 1,033 (see section 4.8.3). 
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Results from mixed-effects model show that the only significant predictor found to be 

city [Δμ = -0.56, 95% CI = -0.93 to -0.19] thanks to mean temperatures being 0.56 °C 

lower in Doha than Amman. While season [Δμ = 0.19, 95% CI = -0.22 to 0.59] and 

building type [Δμ = 0.54, 95% CI = -0.12 to 1.20] were not significant predictors. Further, 

our analysis of the random effect shows that not all buildings were the same in each city, 

slight differences between all the individual buildings were observed. There were only 

three office buildings in Doha namely QO1 [Δμ = 0.01, 95% CI = 0.20 to 0.94]; QO8 [Δμ 

= -1.8, 95% CI = -0.96 to -0.15]; and QO9 [Δμ = -1.41, 95% CI = -0.78 to -0.05], where 

the difference between TSV and PMV appears to be significantly different from zero 

(Figure 4.9). Therefore, the cities differ significantly from one another, Doha has a lower 

mean score for (Δμ) compared to the other three cities. while no overall significant 

difference between summer and winter was reported. 

 

 

Figure 4.8 Ranked boxplots for mean indoor air temperatures for each building  in the four surveyed cities 

in winter (blue)  and summer (red), (each building has a unique ID, see Appendix B), whiskers indicate the 

minimum and maximum scores, black dots indicate outliers, blue square indicates mean score for each 

building. 
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Figure 4.9 Boxplots for winter (blue) and summer (red) show the difference values  between the observed 

TSV and predicted PMV (TSV - PMV) over all surveyed cities in each individual building during summer 

and winter, (each building has a unique ID, see Appendix B), whiskers indicate the minimum and maximum 

scores, black dots indicate outliers, blue square indicates mean score for each building, 𝑛_𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 =
1,033. 

 

4.9.4 Compare TSV to other thermal comfort models 

The analysis in Section (4.9.2) has demonstrated that the PMV model results in indoor 

conditions that do not result in 80% acceptability. It is therefore pertinent to ask whether 

other thermal comfort models would fare better. Hence, here we present a systematic 

comparison between TSV and three extant thermal comfort models to investigate their 

applicability in predicting occupant’s thermal sensation in the ME. The selected models 

are: (i) the predicted thermal sensation (Tsens) by Gagge (Gagge et al., 1986), (ii) PMVg 

that is Gagge’s version of PMV (Gagge et al., 1986), and (iii) PMV∗ which is similar to 

PMV except that is calculated using SET∗ (Standard Effective Temperature) rather than 

operative temperature. SET∗ is calculated using the surface temperature and skin 

wettedness (Ye et al., 2003). These models are acknowledged in the literature and used 

only in air-conditioned buildings.  

Figure 4.10 shows the mean scores of all tested thermal comfort models and the TSV, 

with the latter has the lowest mean value (-0.12). To examine the difference between 

mean scores of all tested variables, a one-way ANOVA test was used. Result shows 

statistically significant differences between all means (F (4) = 337.5, p < 0.00), except 

the difference between means of Tsens and PMVg , was not statistically significant (Table 

4.7), as suggested by the Post-hoc test. As we see from Table 4.7, the difference between 

mean of TSV and means of all thermal comfort models were statistically significant, with 
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adjusted p-value < 0.001. This finding shows discrepancies between observed TSV and 

all tested thermal comfort models’ predictions, though this is least between PMV and 

TSV.  

 

 

Figure 4.10 Boxplots show the differences in mean scores  between the observed TSV and four thermal 

comfort models used in air-conditioned buildings, whiskers indicate the minimum and maximum scores, 

black dots indicate outliers, blue square indicates mean score for each variable.  

 

Table 4.7 The reported results of Post-hoc test, *** indicates p < 0.00, n.s. indicates not statistically 

significant.  

Difference of 

Levels 

Difference 

of means 

95% CI Adjusted 

p-value 

PMV* - PMV 0.57 0.48 0.65 0.00*** 

PMVg - PMV 0.33 0.25 0.42 0.00*** 

Tsens - PMV 0.26 0.17 0.34 0.00*** 

TSV - PMV -0.51 -0.60 -0.42 0.00*** 

PMVg - PMV* -0.23 -0.32 -0.15 0.00*** 

Tsens - PMV*  -0.31 -0.40 -0.22 0.00*** 

TSV - PMV* -1.08 -1.16 -0.99 0.00*** 

Tsens - PMVg -0.08 -0.16 0.01 0.11 n.s. 

TSV - PMVg -0.84 -0.93 -0.76 0.00*** 

TSV - Tsens -0.77 -0.85 -0.68 0.00*** 

 

μ = -0.12 

μ = 0.59 μ = 0.67 
μ = 0.90 

μ = 0.31 
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4.9.5 Thermal comfort in green buildings 

To investigate whether green buildings in the ME improve subjects’ thermal comfort 

compared to the occupant in non-green buildings, we compare the observed TSV to the 

predicted PMV in seven green buildings and 17 non-green buildings in Amman and Doha 

(Figure 4.11). Note that Figure 4.6 has already shown that all buildings in our sample in 

Amman and Doha are standards compliant, so the goal here to examine whether there is 

a difference in acceptability. The green buildings in Amman are both LEED and JGBG-

certified, which rely on ASHRAE 55 standard recommended range for thermal comfort, 

while green buildings in Doha are designed to the localised GSAS, that defines particular 

thermal conditions for operation stage as illustrated in section 4.5. The t-test suggests 

statistically significant differences between mean scores of TSV and PMV in both 

building types in Amman and Doha (𝑝-value < 0.05).  

In non-green buildings, we observed that mean PMV was significantly higher than mean 

TSV, with differences of -0.33 and -0.75 in Amman and Doha, respectively. In green 

buildings, the differences between mean scores of PMV and TSV were also statistically 

significant and ranged between [-0.18, -1.32]. The difference was higher in green 

buildings in Doha compared to those in Amman. The majority of observed TSVs in 

buildings (i.e., green and non-green) in Doha were on the cold side. This result shows that 

green buildings that expected to provide better thermal environment for their occupants 

compared to non-green buildings have failed to do this. Further, result from green 

buildings in Doha questions the capability of the localised thermal comfort codes in 

improving occupant thermal comfort in the region. 
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Figure 4.11 Comparison between the observed TSV and PMV  in the certified-green buildings and non-

green buildings in Amman and Doha. Green buildings in Doha are GSAS-certified and those in Amman 

are LEED + JGBG-certified, 𝑛_𝐴𝑚𝑚𝑎𝑛 = 502, 𝑛_𝐷𝑜ℎ𝑎 = 377, 𝑛_𝐺𝐵 = 7, 𝑛𝑛𝑜𝑛 − 𝐺𝐵 = 17. 

 

4.9.6 Neutral (comfort) temperature for the ME 

We use linear regression to calculate the neutral temperature (Tn), based on TSV and 

PMV (see equation (7), (8), and (9)), Tn was calculated for each city separately. At the 

outset, the TSV and PMV were regressed with the indoor operative temperature (To) to 

predict the Tn. The observed TSV were binned in 1°C intervals (Albadra et al., 2017; 

Mishra & Ramgopal, 2015; Natarajan et al., 2015). The gradient of the linear regression 

(α) represents the temperature perturbation required for a one-unit change on the TSV 

scale, thus we can measure the subjects’ sensitivity to changes in the indoor thermal 

environment (Albadra et al., 2017; Indraganti, 2010; Nguyen et al., 2012). Table 4.8 

illustrates the gradient (α) and intercept (𝑏) of the fitted linear models together with the 

𝑝-value for the gradient and the coefficient of determination (R2). Looking at Table 4.8, 

the Tn(PMV) showed a varied range of temperatures; cooler comfort temperature of 19.62 

°C in office buildings in Amman, moderate conditions of 20.66 °C in office buildings in 

Doha, and warmer perceptions of 25.42 °C in the hospital in Jeddah.  

Mean PMV = 0.46 

  

μ TSV = 0.05 

t = -2.8 

𝑝 < 0.004  

μ PMV = 0.23 

  

μ TSV= -0.03 

t = -3.9 

𝑝 < 0.00  

μ
 PMV

= 0.30 

  

μ
 TSV

 = -1.10 

t = -6.3 

𝑝 < 0.00  

μ
 PMV

 = 0.22 

μ
 TSV

 = -0.29 

t = -9.97 

𝑝 < 0.00  
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Likewise, Tn(TSV) was calculated based on the observed TSV. In Doha and Jeddah, the 

R2 generated from TSV were high (0.85 and 0.76 respectively), and To can hence be used 

as a good predictor to estimate Tn in these two cities (Table 4.8). In contrast, in Amman 

R2 was low at 0.18 and hence too small to predict Tn. Therefore, Tn in Amman was instead 

predicted using Griffith’s method (see equation (10)), which gives Tn = 21.96 °C. Results 

from mosque buildings in Dubai were not significant for both PMV and TSV (p-value > 

0.05), thus Tn could not be predicted.Figure 4.12 shows the plotted regression lines of 

TSV and PMV against the To in the three cities, the mean neutral temperature is the point 

where the regression lines corresponding to mean PMV/TSV of zero. The gradient of the 

regression line for Doha and Jeddah (both α = 0.34 K) is steeper than those seen for other 

studies in the ME; 0.23 K in domestic buildings in Kuwait (Al-ajmi & Loveday, 2010a), 

0.21 K in offices in Qatar (Indraganti & Boussaa, 2017) but the smooth gradient was 

found in air-conditioned mosques of 0.13 K (Al-ajmi, 2010a). The PMV predictions 

underestimated the observed neutrality in offices in Amman and Doha by about 2.34 °C 

and 4.08 °C respectively, while in hospital building in Jeddah, the PMV overestimated 

the observed neutrality by 2.78 °C. This may indicate that air-conditioning systems in 

hospital are operated in a way that does not consider the nature of nurses’ job that requires 

to move around between patient rooms (higher activity levels). In contrast, employees in 

workplaces preferred warmer temperature due to their sedentary levels. 

 

Table 4.8 Linear regressions of TSV and PMV versus operative temperature, 𝑇𝑜 was binned into 1 °C 

interval, (* 𝑝 < 0.05; ** 𝑝 < 0.01; *** 𝑝 < 0.001; n.s. indicates not significant). The results from Dubai 

study were not significant for both PMV and TSV, thus not presented in the table, 𝑛_𝐴𝑚𝑚𝑎𝑛 = 502, 

𝑛_𝐷𝑜ℎ𝑎 = 377, 𝑛_𝐽𝑒𝑑𝑑𝑎ℎ = 52. 

Index  Location α(/°C) b R2 p-value 𝑇𝑛 ± SE (°C) 

PMV Amman  0.165 -3.24 0.97 0.001*** 19.62 ± 0.20 

 Doha 0.125 -2.48 0.96 0.001*** 20.66 ± 0.26 

 Jeddah  0.304 -7.73 0.97 0.001*** 25.42 ± 0.42 

TSV Ammana  - - 0.18 0.20 n.s. 21.96 

 Doha 0.341 -8.44 0.85 0.01** 24.74 ± 1.41 

 Jeddah  0.342 -7.74 0.76 0.01** 22.64 ± 1.79 

a [𝑇𝑛(𝑇𝑆𝑉) for Amman is calculated using Griffith’s method, that has no gradient and intercept.  

The reported value for Amman represents the mean value of observed nuetral temperatuure]. 
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Figure 4.12  The relation between TSV and PMV with indoor operative temperature  (𝑇𝑜) in Amman, Doha, 

and Jeddah, each dot is a binned into 1 °C interval, so each dot represents several data points, 𝑛_𝐴𝑚𝑚𝑎𝑛 =
502, 𝑛_𝐷𝑜ℎ𝑎 = 377, 𝑛_𝐽𝑒𝑑𝑑𝑎ℎ = 52, (statistical analysis in  

Neutral (comfort) temperature for the ME 

We use linear regression to calculate the neutral temperature (Tn), based on TSV and 

PMV (see equation (7), (8), and (9)), Tn was calculated for each city separately. At the 

outset, the TSV and PMV were regressed with the indoor operative temperature (To) to 

predict the Tn. The observed TSV were binned in 1°C intervals (Albadra et al., 2017; 

Mishra & Ramgopal, 2015; Natarajan et al., 2015). The gradient of the linear regression 

(α) represents the temperature perturbation required for a one-unit change on the TSV 

scale, thus we can measure the subjects’ sensitivity to changes in the indoor thermal 

environment (Albadra et al., 2017; Indraganti, 2010; Nguyen et al., 2012). Table 4.8 

illustrates the gradient (α) and intercept (𝑏) of the fitted linear models together with the 

𝑝-value for the gradient and the coefficient of determination (R2). Looking at Table 4.8, 

the Tn(PMV) showed a varied range of temperatures; cooler comfort temperature of 19.62 

°C in office buildings in Amman, moderate conditions of 20.66 °C in office buildings in 

Doha, and warmer perceptions of 25.42 °C in the hospital in Jeddah.  

Likewise, Tn(TSV) was calculated based on the observed TSV. In Doha and Jeddah, the 

R2 generated from TSV were high (0.85 and 0.76 respectively), and To can hence be used 

as a good predictor to estimate Tn in these two cities (Table 4.8). In contrast, in Amman 

R2 was low at 0.18 and hence too small to predict Tn. Therefore, Tn in Amman was 

instead predicted using Griffith’s method (see equation (10)), which gives Tn = 21.96 °C. 

Results from mosque buildings in Dubai were not significant for both PMV and TSV (p-

value > 0.05), thus Tn could not be predicted.Figure 4.12 shows the plotted regression 

lines of TSV and PMV against the To in the three cities, the mean neutral temperature is 

the point where the regression lines corresponding to mean PMV/TSV of zero. The 



Chapter 4. Thermal Comfort Standards in The Middle East… 

 

133 

 

gradient of the regression line for Doha and Jeddah (both α = 0.34 K) is steeper than those 

seen for other studies in the ME; 0.23 K in domestic buildings in Kuwait (Al-ajmi & 

Loveday, 2010a), 0.21 K in offices in Qatar (Indraganti & Boussaa, 2017) but the smooth 

gradient was found in air-conditioned mosques of 0.13 K (Al-ajmi, 2010a). The PMV 

predictions underestimated the observed neutrality in offices in Amman and Doha by 

about 2.34 °C and 4.08 °C respectively, while in hospital building in Jeddah, the PMV 

overestimated the observed neutrality by 2.78 °C. This may indicate that air-conditioning 

systems in hospital are operated in a way that does not consider the nature of nurses’ job 

that requires to move around between patient rooms (higher activity levels). In contrast, 

employees in workplaces preferred warmer temperature due to their sedentary levels. 

 

Table 4.8). 

 

4.9.6.1 Energy saving scenario  

Table 4.9 shows the results from the Energy Plus models for the calculated Tn(PMV) and 

observed Tn(TSV) and the potential reduction in the annual building energy demand. In the 

office building models in Amman and Doha, the annual building energy demand was 

reduced by 20% and 13%, respectively, while the reduction was smaller (1.5%) in the 

hospital building model in Jeddah. Most of the reduction in the office building models 

has resulted from the higher indoor temperature for cooling set point based on the 

observed Tn(TSV) compared to the predicted Tn(PMV). The estimated overall building 

energy demand for space cooling was reduced from 27.04 kWh/m2 to 16.39 kWh/m2 in 

office models in Amman, and from 60.71 kWh/m2 to 49.87 kWh/m2 in Doha (Table 4.8). 

While, in the hospital model, the reduction in cooling energy demand was very small 

(6.00 kWh/m2). In all building models, the heating energy demand reduction was 

negligible, less than 1.0% of the total building energy demand reduction. 

 

Table 4.9 Annual building energy demand for simulated models based on the proposed 𝑇𝑛(𝑃𝑀𝑉) and 

observed 𝑇𝑛(𝑇𝑆𝑉) in office buildings in Amman and Doha and hospital in Jeddah during cooling season. 

Note: other end uses for each model (e.g., lighting, equipment operation, water systems, humidification, 

heat recovery, fans, and refrigeration) are excluded from the table due to their small values (< 2.0 kWh/m2). 

Location Amman Doha Jeddah 

Bldg. Type Office building Office building Hospital 

End Use 

(kWh/m2) 

Tn(PMV) Tn(TSV) Diff Tn(PMV) Tn(TSV) Diff Tn(PMV) Tn(TSV) Diff 

Heating 4.99 0.91 4.08 0.24 0.11 0.13 0.01 0.01 0.01 
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Cooling 27.04 16.39 10.66 60.71 49.87 10.84 77.81 71.81 6.00 

 

4.10 Discussion 

Since this study has two lines of evidence, we first discuss our independent results that 

are obtained from the new thermal comfort field surveys, then we pool them with results 

from the meta-analysis of the existing thermal comfort studies in the ME. 

4.10.1 New field evidence  

The energy demand for space cooling is the fastest-growing end-use in building sector, 

as it has tripled over the past twenty years between 1990 and 2020. In countries with 

extreme hot climate, such as the ME, it is expected that the energy demand for space 

cooling would triple by 2050. This growth rate in cooling energy demand needs to be 

alleviated, starting by a large-scale investigation to question the applicability of current 

codes that used to design the indoor thermal environment in air-conditioned buildings in 

the ME. There is a need to ensure that such codes promote occupant thermal comfort and 

simultaneously contribute to achieve the energy efficiency development scenario is 

targeted by this region. Thus, the present study was designed to collect evidence of 

whether the air-conditioned buildings in the ME comply with standards recommended 

ranges, and if so, whether they are found to be comfortable by their occupants.  

Our findings showed that the monitored thermal conditions in the surveyed buildings in 

Amman and Doha (i.e., offices and schools) were within the ASHRAE 55 recommended 

comfort zone. While the recorded thermal conditions in buildings of Dubai and Jeddah 

(i.e., mosques and hospital) failed to be within the recommended limits. Overall, the PMV 

predicted that 58% of votes would be in the neutral category, and only 40% of subjects 

voted neutral, this is significantly below the ASHRAE 55 recommended value of 80% 

(ANSI/ASHRAE 55, 2017). Interestingly, during the cooling season, 39% of subjects 

through all surveyed cities expressed cold sensation, contrary to the PMV prediction that 

suggested 40% of subjects would feel hot, this was clearly observed in office buildings 

and schools.  

In the hospital, the PMV prediction of cold discomfort for 87% of votes, was supported 

by 50% of the observed nurses’ votes, which show cold state. This can be explained by 

three reasons: (i) nurses had a variety of metabolic rates with low clo (mean = 0.6) and 

this may affect their thermal sensation, especially during sitting with light work, (ii) the 
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different requirements of thermal zones within hospital buildings, as nurses were 

surveyed at several locations at the inpatient wards nursing stations, and corridors (in 

front of patient rooms), these locations have no strict requirements within ASHRAE 170 

standard for ventilation in health care facilities (ASHRAE 170, 2017) in terms of design 

temperature and relative humidity compared to other spaces, (i.e., patient rooms, intensive 

care units), and (iii) the HVAC system is optimised to provide cooler temperatures in the 

nursing stations, due to prior expectation considering the nature of nurses’ job that 

required high metabolic rate. In the mosques, during heating season, PMV expected that 

97% of votes would be in the neutral category, while 93% of subjects felt hot. This is 

possibly due to excessive heating in the praying halls designed to heat the entire volume 

during the winter. Taking into consideration that those attending prayers spend a 

maximum of 15 minutes in the mosque and had high metabolic rate (mean = 2.5), which 

could affect their thermal sensitivity. 

The discrepancy between PMV and TSV was seen also between the recommended and 

observed neutral temperature. As our calculations for Tn(TSV) in air-conditioned office 

buildings in Amman and Doha were found to be 21.96 °C and 24.74 °C, which were 

comparatively higher than the predicted Tn(PMV) of 19.62 °C and 20.66 °C, respectively. 

In contrast, the Tn(TSV) in the hospital in Jeddah was 22.64 °C, lower than the Tn(PMV) of 

25.42 °C, with difference of 2.87 °C. These findings encourage us to compute the potential 

reduction in the building energy demand for space cooling, assuming Tn(TSV) is used 

instead of the recommended temperatures by PMV. We find that a reduction in the annual 

building energy consumption of between 13% and 20% is possible in office buildings, 

whereas it is significantly lower in the hospital (1.5%). These reductions correspond to 

raising the indoor temperatures in office buildings by 4.08 °C in Doha and 2.34 °C in 

Amman.  

From an economical perspective, raising the indoor temperature in office building in 

Amman by 2.3 °C may save 10.66 kWh/m2 /year of space cooling energy demand, and 

since the Jordanian government priced the electricity at 0.18 JD/kWh (0.25 USD/kWh) 

for commercial sector (National Electric Power Company (NEPCO), 2020), this resulted 

in annual energy saving of 5,756 JD (8,118 USD) for the single unit that has an average 

floor area of 3000 m2 .Likewise, adjustment the indoor temperature of 4.1 °C in the office 

building in Doha could cut the annual energy demand for space cooling by 10.84 

kWh/maintain. This resulted in dropping the annual cost for space cooling from 30,500 
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QR (8,377 USD) to 25,000 QR (6866 USD), with annual saving of 5,500 QR (1,479 USD) 

per the single office building, considering the electricity in Qatar is priced at 0.20 

QR/kWh (0.05 USD/kWh) (Qatar General Electricity & Water Corporation, 2020) and 

the building typical floor area is around 2,500 m2, similar to buildings surveyed in this 

study.  

In Qatar, the total annual energy demand for space cooling is around 14.7 TWh, with total 

annual cost around 5.5 billion QR (1.5 billion USD) (Saffouri et al., 2017), the total 

number of the commercial buildings over the last ten years is found to be around 9,518 

units (Krarti et al., 2017). Hence the expected energy cost saving in commercial buildings 

based on our estimation is around 0.05 billion per year. This value constitutes 1.1% of the 

total annual electricity cost for space cooling in Qatar. It is worth mentioning that the cost 

of electricity tariffs in most of the ME countries, specifically in the Gulf Cooperation 

Council countries, i.e. Qatar are among the lowest in the world (Krarti et al., 2017), with 

substantial price subsidised by governments, this could be one of the reason behind the 

continuous energy demand growth in air-conditioned buildings in this region. 

4.10.2 Pattern of thermal comfort across the ME 

To gain an aerial perspective of the occupant thermal comfort trend across the ME, we 

aggregate the meta-analysis results from section 4.7 with our obtained results from the 

present study (section 4.9), thus we have a large scale dataset covering five countries, six 

different occupancy types, with a total of 2,649 subjects (see appendix (e)). Figure 4.13 

(a) shows a forest plot for the calculated values of differences in mean scores between 

TSV and PMV (i.e., Δμ) through the whole dataset. Most thermal comfort studies in the 

ME reported similar results regardless the building type or the location of the study, with 

the majority of difference values were on the negative side and ranged between [-0.18 

and -0.81], i.e., mean scores of TSV were generally lower than mean scores of PMV. 

Indeed, the latter fail to predict the thermal sensation for 94% of subjects in this dataset. 

However, two studies reported contrary results, i.e., the hospital and mosque buildings. 

These differences could be a result of several factors including the building design, the 

low thermal insulation level for patients and staff in hospitals and the high metabolic rate 

for prayers in mosques. Overall, this suggests that there is likely to be no “one size fits 

all” solution to resolving the differences between predicted and observed thermal 

comfort, with some building categories such as hospitals and mosques potentially needing 

further study. 
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Further, the tendency to over predict hot discomfort by the PMV model is likely resulting 

in an oversizing of cooling systems, this was reflected on the predicted Tn(PMV), which 

was generally lower than the observed Tn(TSV) with difference ranged between [0.4 °C, 

4.1 °C] through all dataset (Figure 4.13. b). However, only in the hospital study, the 

difference was on negative side, which means subjects preferred lower indoor 

temperature than the delivered. 

Overall, this robust evidence shows the gap between the current thermal comfort codes 

used in the ME and the actual occupant thermal sensation, also it offers evidence on the 

potential energy reduction in the air-conditioned buildings if more localised thermal 

comfort codes are enforced. Although there are emerging attempts by Middle Eastern 

countries, i.e., Qatar to develop local thermal comfort codes, it seems that these codes 

lack supporting evidence from any field survey as shown in section 4.9.5, despite the fact 

that GSAS requires a thermal comfort survey after occupancy as a compulsory credit (see 

section 4.5).  

Similarly, other international thermal comfort models, i.e., Tsens, PMVg, and PMV∗ have 

failed in predicting occupant’s thermal sensation, while they provided similar results to 

those yielded by the PMV model. Therefore, a thermal comfort paradigm shift that can 

effectively and assuredly offset the exponential increase in the space cooling energy 

demand, without compromising the occupant thermal comfort is timely and necessary in 

the ME. This would not only reduce energy consumption and hence carbon emissions 

(IEA, 2019a), but also improve overall health, well-being, and work performance 

(WGBC, 2016) by obviating the need to wear warm clothing indoors or the need to resort 

to secondary heating, which has been anecdotally observed in some buildings in our 

study. 
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Figure 4.13 Forest plots from pooled analysis including the present study, (a) the difference between mean 

scores (i.e., Δμ = μ TSV- μ PMV) for each study, i.e. (Δμ > 0) indicates TSV is greater than PMV, (b) the 

difference between the observed neutral temperature 𝑇𝑛(𝑇𝑆𝑉), and predicted neutral temperature 𝑇𝑛(𝑃𝑀𝑉), 

through all datasets, 𝑛 = 2,649, x-axis represents the standardised mean difference and vertical dotted line 

represents the value of no difference, studies are identified by country, building type, and reference. 

 

4.11 Conclusions    

In the Middle East, the international standards ASHRAE 55 and/or ISO 7730 are the de-

facto industry tools used to design the indoor thermal environment in air-conditioned 

buildings. However, occupants’ thermal comfort in these buildings is still questionable. 



Chapter 4. Thermal Comfort Standards in The Middle East… 

 

139 

 

This study set out to investigate whether the air-conditioned buildings in the ME comply 

with standard recommended ranges for thermal comfort, and when they do, whether they 

are found to be comfortable by their occupants. From a meta-analysis using summary 

statistics of thermal comfort evidence in the ME, we demonstrate, for the first time, that 

the PMV model failed in predicting the occupant thermal sensation for 94% of occupants 

in five occupancy types (i.e., offices, homes, university campuses, hospitals, and 

mosques).  

We produce a second, independent, line of evidence using large-scale thermal comfort 

field surveys of 1,101 subjects in 31 air-conditioned buildings within four countries in the 

ME that strongly supports the initial obtained findings. We show that the monitored 

indoor conditions in surveyed buildings were within the standard recommended range for 

58% of the time, and only 40% of subjects found these conditions acceptable. We observe 

a gap between the expected thermal comfort and the observed subjects’ thermal sensation 

during the cooling season. We find that 39% of subjects felt cold, contrary to the PMV 

prediction, which suggested 40% of subjects would feel hot. This is the reason for the 

large variation between the predicted Tn(PMV) and the observed Tn(TSV). 

 In office buildings in Amman and Doha, the Tn(TSV) were found to be 21.96 °C and 24.74 

°C, which were higher than those expected by PMV, at 19.62 °C and 20.66 °C respectively. 

Finally, we use the yielded data to estimate the potential reduction in the annual building 

energy demand for space cooling. We demonstrate that raising the indoor temperature in 

office buildings in Amman and Doha by 2.3 °C and 4.1 °C (i.e., based on the Tn(TSV)) has 

resulted in a reduction of 20% and 13% in the annual cooling energy demand, 

respectively. Overall, this study highlights the inapplicability of the “one size fits all” 

solution to overcome the gap between the predicted and observed thermal comfort. It 

shows also that most thermal comfort models that are used in air- conditioned buildings 

(e.g., PMVg, PMV*, and Tsens) are not suitable to predict subjects’ thermal sensation in 

the ME. Further, it provides empirical data to be the basis for designers to develop a new 

and more localised thermal comfort model that considers the variations in subjects’ 

thermal perception and mitigates the energy demand for space cooling without 

compromising the occupant thermal comfort in the ME.  
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4.15 Appendices  

(a) Thermal comfort survey with Arabic-dialects translation (Classical Arabic + 

Levantine-Arabic) 

1. At present, I feel:      

 

English  Cold Cool Slightly 

cool 

Neutral Slightly 

warm 

Warm Hot 

Arabic-classic    حار دافىء  دافىء قليل  مرتاح بارد قليل  بارد بارد جدا 

Arabic-Levantine  
 بردان شوي  بردان بردان كتير

 مرتاح
 دافي  مشوب شوي 

كتير 

 مشوب 

 -3 -2 -1 0 +1 +2 +3 

2. Your clothes at present:  

(Please tick) 

3. What is your activity during the past 

15 minutes? (Please tick) 

Short Sleeve 

shirt/blouse 

 Sitting (passive work  

Long sleeve 

shirt/blouse 

 Sitting (active work)  

Vest   Standing relaxed  

Trousers/long skirt  Standing working  

Shorts  Walking indoors  

Dress  Walking outdoors  

Pullover  Other………………  

Jacket   

Long socks  

http://go.bath.ac.uk/dcarb
https://doi.org/10.15125/BATH-00967
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(b) Summary of surveyed buildings in this study; nbuildings = 31; nsubjects = 1,101. 

(M.M indicates mixed mode ventilation). 

City  ID Green 

certification  

Sector Operatio

n mode  

Bldg. type Subject

s 

(n) 

Participant 

type  

Amman  JO1 na Private M.M Offices 26 Employees 

Amman  JO2 na Private M.M Offices 27 Employees 

Amman  JO3 na Private M.M Offices 37 Employees 

Amman  JO4 na Private M.M Offices 20 Employees 

Amman  JO5 na Private M.M Offices 10 Employees 

Amman  JO6 Green Private HVAC Offices 102 Employees 

Amman  JO7 Green Private HVAC Offices 24 Employees 

Amman  JO8 Green Private HVAC Offices 47 Employees 

Amman  JO9 Green Private HVAC Offices 45 Employees 

Amman  JO10 Green Private HVAC Offices 48 Employees 

Amman  JO11 na Private HVAC Offices 35 Employees 

Amman  JO12 na Private HVAC Offices 41 Employees 

Amman  JO13 na Private HVAC Offices 40 Employees 

Doha  QS1 na Public HVAC School 45 Staff 

Doha QS2 na Public HVAC School 7 Employees 

Doha  QO1 na Private HVAC Offices 34 Employees 

Doha  QO2 na Private HVAC Offices 15 Employees 

Doha  QO3 na Public HVAC Offices 28 Employees 

Doha  QO4 na Private HVAC Offices 30 Employees 

Doha  QO5 Green Public HVAC Offices 26 Employees 

Doha  QO6 na Private HVAC Offices 67 Employees 

Doha  QO7 na Private HVAC Offices 30 Employees 

Doha QO8 na Private HVAC Offices 74 Employees 

Doha QO9 Green Public HVAC Offices 21 Employees 

Dubai  D1 Design award Public HVAC Mosque  23 Prayers  

Dubai  D2 Design award Public HVAC Mosque  79 Prayers  

Dubai  S1 na Public HVAC School 27 Staff  

Dubai  S2 na Public  School 10 Staff  

Dubai  S3 na Public  School 14 Staff  

Dubai  S4 na Public  School 17 Staff  

Jeddah  H 
Environment 

award 
Public HVAC Hospital  52 Employees 

 

(c) The instruments used to monitor indoor thermal conditions in surveyed buildings in 

the ME.  

Instrument  Variable Uni

t 

Valid 

range  

Accura

cy  

 

SWEMA (SWEMA, 2020) Tg ºC [0, 50]  ±0.1 

Ta ºC [10, 40] ±0.3 

RH % [0, 100]  ±1.0 

short socks  

Tights  

Tie  

Boots  

shoes  

sandals  

head wear  

barefoot  



Chapter 4. Thermal Comfort Standards in The Middle East… 

 

142 

 

Va ms-1 [0.05, 1.0]  ±0.03  

 
Delta 32.3 (Delta OHM, 2019) Tg ºC [-10, 100] ±0.1  

Ta ºC [-40, 100] ±0.1 

RH % [0, 90] ±1.5  

Va ms-1 [0.1, 5] ± 0.2 

Heat stress wet bulb globe 

thermometer 

Tg ºC [0, 80] ±0.6 

 

Ta ºC [0, 50] ±0.8 

 RH % [1, 99] ±3.0 

Hot wire thermo-anemometer Va ms-1 [0, 25]  ±0.01 

 
 

(d) Summary of the results in new dataset created using aggregated data from meta-

analysis and our results in present study, the reported values represent the mean scores, 

(Present) indicates current thermal comfort studies done by the authors, 𝑇𝑛 represents 

neutral temperature,  𝑛𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 = 2,649. 

 

Location Source  Season Subject 

(n) 

Bldg. 

Type 

μ(PMV) μ(TSV) μTn(PMV) 

 (°C) 

μTn(TSV)  

(°C) 

Saudi Arabia  

 (Kotbi, 

King and 

Prasad, 

2012) Summer 

281 Mosques 

0.01 -0.19 21.5 22.3 

 (Alotaibi et 

al., 2019) 

120 Hospital  
-0.50 0.32 25.6 22.7 

 Present 52 Hospital -1.11 -0.52 25.42 22.64 

Kuwait   

 (Al-ajmi 

and 

Loveday, 

2010) 
Summer 

111 

Houses 0.13 -0.28 23.3 25.2 

 (Al-ajmi, 

2010)  

140 
Mosques 0.19 -0.26 23.3 26.1 

 (Al-ajmi, 

2020) 

136 Campuses 
0.50 0.11 18.9 22.9 

Qatar  

 (Indraganti 

and 

Boussaa, 

2017) 

Summer 

828 Offices 

0.04 -0.23 23.7 24.1 

 Present 377 Offices  0.43 -0.38 20.66 24.7 

Jordan   

 Present Summer 

+ Winter 

502 Offices 0.30 -0.01 19.62 22.96 
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UAE   

 Present Winter 102 Mosques 0.03 1.49 - - 

 

4.16 Postscript  

This study aims to investigate the applicability of thermal comfort standards to design 

indoor thermal environment in air-conditioned buildings in hot environments, such as the 

ME. The results reported in this chapter show the following: 

• There is a discrepancy between Fanger’s PMV model prediction and the observed 

thermal sensation of occupants in air-conditioned buildings in the ME.  

• During the cooling season, 39% of people felt cooler than the PMV model 

expected.  

• Results also show a variation between the observed neutral temperature and the 

predicted comfort temperature by the PMV, which was higher with an average of 

2.0 K in office buildings.  

• This overestimation has resulted in an increase in the building energy demand for 

space cooling in the surveyed office buildings.  

• Findings suggest a possible saving in cooling demand up to 20% if the indoor air 

temperature is raised by 4.0 K in the office buildings.  
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5       Conclusions 
 

This thesis is concerned with the actual performance of IEQ in green office buildings at 

the operation stage in the ME. It has examined three interconnected research gaps, 

namely: (i) the role of GBCs in improving the performance of IEQ and enhancing 

occupant satisfaction with IEQ (ii) The design gap between the predicted performance 

and actual performance of IEQ in terms of thermal comfort and IAQ in green-certified 

office buildings, and (iii) the suitability of the applied thermal comfort codes to design 

indoor thermal environments in air-conditioned buildings, promote occupant thermal 

comfort, and save energy. To this end, three research questions were formulated and 

investigated in the contexts of the ME, the research questions were addressed as follows: 

 

RQ 1. What is the actual role of localised GBCs in improving the performance of 

IEQ, occupant satisfaction, thermal comfort, and perceived health? This question 

was addressed in the first study (Chapter 2) by examining two objectives. I compare the 

performance of IEQ and its impact on occupant satisfaction and perceived health before 

and after moving to the first JGBG-certified building in Jordan. A longitudinal field study 

with repeated measures protocol was conducted, with the following key findings: 

• Continuous monitoring in the surveyed buildings showed that 62% of monitored 

thermal conditions in the JGBG-certified building were within the standards 

specified limits, while only 48% of recorded thermal conditions in the CBs fell in 

this limit. There were statistically significant differences in Ta, Tr, RH, and Va, 

between the JGBG-building and CBs, with a lower mean score in the JGBG-

certified building. The monitored indoor CO2 level in both building types had 

achieved the ASHRAE 62.1 recommended threshold for CO2 of 1,100 ppm inside 

workplaces.  

• Contrary to expectations, no improvement in the occupant satisfaction with IEQ 

was detected after moving to the GB, while three metrics, namely odour, glare 

and mental concentration were perceived to be significantly worse after moving 

to the GB. However, the overall mean score of occupant satisfaction with IEQ 

was comparable and below the neutral midpoint pre- and post-moving. Similarly, 

the mean score of occupant environmental concern was almost equal through both 

study phases.  
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• Another concerning outcome is that no significant differences were reported in 

the mean scores of all SBS symptoms pre- and post-moving to the GB. While the 

calculated percentage of occupants who experienced SBS symptoms for some of 

the time has increased 3 percentage points after moving to the GB. The prevalence 

of fever and flu symptoms had raised 10 percentage points after the transition. 

However, CBs and GB fail the ASHRAE 62.1 threshold of 20%, hence both 

building types could be labelled as “sick” buildings. 

• Evidence of analysing occupant thermal comfort suggests that GB outperforms 

CBs, as the latter experienced an overcooling, with 40 % of occupants in CBs felt 

cold during summer, this was supported with 48% of occupants who preferred 

warmer indoor temperature in their workplaces. 

Although the localised GBCs can play a vital role in cut down the energy bill, operation 

cost, and harmful impact of buildings on the environment, it seems that the lack of 

occupant physiological, psychological and health aspects in the IEQ requirements has 

curtailed occupant satisfaction and perceived health. The implications of these results are 

providing empirical evidence of the performance of localised GBCs in terms of IEQ, 

which may assist green building developers and policymakers in future green buildings 

developments. Further, the green building policies should account for the performance of 

buildings after occupation stage, which could be achieved by design a follow-up plan that 

covers the building and its users. 

  

RQ 2. To what extent LEED office buildings in the Middle East achieve the specified 

minimum IEQ standards, after handover, and to what extent occupants of these 

buildings are satisfied and demonstrated better work performance? The second 

study (Chapter 3) examined the performance of the imported GBC, i.e., LEED standard, 

by comparing the performance of IEQ, occupant satisfaction and work performance in 

LEED-certified buildings and CBs. This investigation was essential after the yielded 

results from the first study, that suggested localised JGBG failed in improving the 

occupant perception and health. This study has identified the following findings: 

• Although LEED office buildings in Jordan comply with LEED specifications of 

indoor CO2 concentration levels and thermal comfort, the overall IAQ satisfied 

only 48% of the occupants.  
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• Interestingly, occupants in CBs had higher satisfaction with IEQ aspects (i.e., 

overall IAQ, ventilation, fresh air, and glare) compared to the occupants in LEED 

buildings.  

• In CBs and LEED buildings, 61% and 58% of the occupants respectively reported 

IAQ, ventilation, and thermal comfort as the most important issues that needed 

improvement. 

There are two main implications based on these results: (i) green building designers need 

to pay special attention to IAQ and ventilation since the current codes failed in improving 

occupant satisfaction with these two IEQ metrics. (ii) Results strengthen the idea that 

occupant feedback is as important as the objective measures when conducting the POE, 

as in many instances, subjective feedback reveals hidden concerns, which are hard to be 

detected using only objective assessment. 

 

RQ 3. How suitable are international thermal comfort standards “including GBCs” 

for occupants in air-conditioned buildings in the ME? The last study (Chapter 4) 

examined whether the air-conditioned buildings in the ME complied with thermal 

comfort standards recommended limits, and when they do, whether occupants of these 

buildings are thermally comfortable. This study designed to test this in a large-scale 

thermal comfort study that covered different occupancy types within four countries in the 

ME. This study provides two lines of evidence, pooled results from a meta-analysis of the 

existing thermal comfort studies in the ME and dependant results from new seven field 

thermal comfort surveys. Here are the following key findings:  

• The meta-analysis showed that during cooling season, the PMV Fanger’s model 

failed in predicting the occupants’ thermal comfort for 94% of the surveyed 

occupants in five occupancy types of air-conditioned buildings (i.e., office 

buildings, homes, hospital, mosques, and university campuses).  

• Only 40% of surveyed subjects were in the neutral category, while PMV predicts 

58% of subjects to be in the recommended thermal comfort zone. In the cooling 

season, 39% of the surveyed subjects express cold state discomfort, contrary to 

the PMV prediction for 40% of subjects would feel hot.  

• Other examined thermal comfort models (i.e., PMVg, PMV*, and Tsens) provided 

the similar results to that obtained by PMV, and all models over predict the warm 

sensation of subjects. 
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• The observed neutral temperature in office buildings seen to be higher than the 

expected by PMV with difference range between [0.41 °C and 4.08 °C]. 

• Computer models showed a potential reduction in the building energy demand for 

space cooling up to 20% if the indoor air temperature is raised between 2.3 K and 

4.0 K in office buildings.  

These findings provide robust evidence of the gap between the current used thermal 

comfort standards in the ME and the actual occupant thermal sensation. Also, it shows 

that occupants in a hot climate region have a preference for warmer indoor thermal 

environment than delivered. Further, findings highlight the urgent need for more 

localised thermal comfort codes that improve occupant thermal comfort and assist in 

reducing the excessive space cooling in air-conditioned buildings in this region.  

5.1 Future perspectives  

Based on the obtained findings in this thesis, further research is required to test such 

recommendations made by the thesis. This research has thrown up many areas in need of 

further investigation as followings:  

1. As shown in this thesis, there is a lack of systematic evaluation studies in green 

buildings, that covered the performance of IEQ and occupant perception, 

especially in the ME. Hence, more empirical research is required to validate the 

real performance of other green-certified building stock (e.g., residential, schools, 

and health care sector). This is critical for the future endeavour in green building 

design developments.  

2. GBCs lack any uniform measures of the actual impact of IEQ on building users. 

Hence, there is a need to develop an evaluation tool, which can be used to assess 

the performance of IEQ and its impact on occupant’s perception and health during 

the operation stage. This tool could be integrated into the newly released GBCs 

version. This should assist in bridging the performance gap and assist in IEQ 

developments.  

3. Using the current thermal comfort standards to design indoor thermal 

environments in air-conditioned buildings in the ME has resulted in 

uncomfortable occupants and excessive energy use for space cooling. Therefore, 

an essential next step in developing a new adaptive model, that significantly 

extends the range of acceptable indoor conditions. This could assist in saving 
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more energy in air-conditioned buildings in this region. Developing this model 

requires enhancing the current thermal comfort database in the ME and 

considering the future climatic condition changes. 

All afore-mentioned aspects serve as items of future agenda for green building-related 

research. 

 

5.2 Final remark  

Do green-certified buildings in the ME meet the requirements of thermal comfort and 

IAQ that specified by GBCs? and if so, to what extent they are improving the occupants’ 

satisfaction, perceived health, and work performance compared to the occupants in 

conventional buildings?  

Recalling the underpinning question of this work, it has shown that the gap between 

design estimation and effective performance of IEQ in green-certified buildings is a topic 

that requires timely attention.  

Green building standards and buildings’ regulations attempt to move occupants towards 

neutral acceptable environments, whereas the standards average users are not existing 

because there are several individual differences (e.g., biological, physical, and 

psychological) that can play a role in the occupants’ perception. 

The role of green building certifications in improving the physical performance of IEQ 

and occupants’ perception was evaluated in the office buildings. This work also focused 

on evaluating the suitability of current thermal comfort codes to design indoor thermal 

environments in air-conditioned buildings in hot environments such as the ME.  

Evidence demonstrated that occupants of conventional buildings showed higher 

satisfaction with most IEQ aspects (overall IAQ, thermal comfort, ventilation) than 

occupants of green-certified buildings. Thus, green building certification schemes could 

benefit from stricter criteria for indoor air quality, ventilation, and thermal comfort. 

 Far from being a criticism of the international or localised building codes, studies such 

as that presented in this thesis can provide evidence-based data to improve the standards 

achieved in green building certification, whereas the emphasis given to energy should not 

come to the detriment of IEQ and occupant satisfaction.  

Further, results obtained from this thesis could be applied to other modern office buildings 

that are built in recent times and share the same design approaches i.e., sealed envelopes 
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with no operable windows. Such type of buildings is common in the ME, due to the harsh 

climate conditions and the desire to improve the building energy performance.
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Appendix A 

Are green buildings doing enough? the 

role of green certification and gender on 

sick building syndrome 

 

A.1. Preamble  

One of the promised benefits of green buildings is providing healthier and more 

comfortable indoor environments for their occupants. However, there is a growing 

concern that green buildings could reduce the occupants' perceived health and increase 

the prevalence of sick building syndrome symptoms. For example, poor air quality, 

insufficient ventilation, and the lack of control over air temperature and lighting can 

negatively affect occupants’ perceived health. Hence, in this chapter, I compared the 

perceived health of occupants working in green-certified office buildings to occupants 

working in conventional office buildings. Further, since other factors could affect the 

perceived health, in this chapter I examine the role of gender differences on the prevalence 

of sick building syndrome. This chapter is in line with the research is presented in Chapter 

3. 
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A.3. Abstract  

One of the promised benefits of green buildings is providing healthier indoor 

environments for their occupants, however, this notion is still debated. To test this, a 

sample of 502 office-based workers from 13 air-conditioned office buildings (44.4% 

female and 55.6% male) in Jordan completed a questionnaire on Sick Building Syndrome 

(SBS) symptoms. The role played by gender in symptom-reporting was also investigated. 

Findings showed that building type made no significant difference to the prevalence of 

all SBS symptoms except the tiredness symptom which was slightly higher in the 

occupants of conventional buildings. Surprisingly, green buildings and conventional 

buildings had a higher occurrence of SBS symptoms than what industry standards allow 

for (up to 20%), suggesting that both building types would be classified as sick buildings. 

https://doi.org/https:/doi.org/10.17979/spudc/9788497497947
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Results have also shown that the only significant difference between male and female 

workers was in the cough and sore throat symptom, which was reported more often by 

female workers. These findings reinforce the need for further attention to the occupants’ 

perceived health in the green buildings, which may use as an indict of the building 

performance.  

A.4. Introduction 

There is an increasing interest in how the Indoor Environment Quality (IEQ) of the green 

building promotes occupants’ health, productivity, and satisfaction (WGBC, 2014), 

particularly in office buildings, where employees spend about a third of their time at the 

workplace. This is could be an important issue considering that prolonged exposure to 

environments with poor IEQ parameters (e.g., air quality, lighting, thermal comfort, and 

acoustic) could lead to the well-known Sick Building Syndrome (SBS). According to a 

definition provided by the World Health Organization (WHO), the SBS is a group of 

medical symptoms that affect buildings’ occupants and linked to the time spent in the 

building, and usually disappear when the person is away from the building [2].  

The benefits of the green building design are not limited to reduction in the energy 

consumption and the subsequent harmful impact on the environment, they can also 

include potential benefits of creating a healthier indoor environment for occupants 

(WGBC, 2016). There is an increasing concern of whether green buildings deliver a 

healthier indoor environment they promised or rather, they increase the prevalence of 

SBS compared to conventional buildings (Yudelson and Meyer, 2013). 

 To date, the research evidence on the effect of green buildings on the frequency of SBS 

symptoms is limited and equivocal. Although the study by Tham et al. in Singapore 

showed that the occupant perception of IEQ was slightly higher in the green building 

compared to the non-green building, no statistical differences in the proportion of SBS 

symptoms were found between the two occupants groups, also, the number of sick leave 

days was similar in both building types (Tham, Wargocki and Tan, 2015). In contrast, a 

pre- and post-evaluation study in the United States showed an improvement in the 

employees’ perceived health and reduction in the self-reported absenteeism after moving 

to the green buildings (Singh et al., 2010). 

However, building physical features such as ventilation, lighting, temperature, etc. are 

not the only reasons behind the prevalence of SBS. Other psychological and physiological 
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factors like job satisfaction, work-related stress, and gender differences might be as 

important in predicting SBS symptoms (Rostron, 2008). Of these, the effect of gender 

differences on the prevalence of SBS is still debated. 

 Several attempts had been made to clarify the role gender differences might play in 

explaining changes to the frequency of SBS symptoms reported by occupants. Findings 

suggested that female workers usually reported higher levels of SBS symptoms (e.g., 

fatigue, headache, irritated eyes or nose, cough, and dry skin) compared to male workers 

(Brasche et al., 2001; Bakke et al., 2007; Aries, Veitch and Newsham, 2010). This might 

be due to three factors are namely biological (e.g., genes, hormones, and metabolism), 

behavioural (e.g., smoking, diet), and social (e.g., stress, social network) (Rostron, 2008). 

Unfortunately, other researchers did not consider gender as a predictor for the frequency 

of SBS symptoms, missing the opportunity to clarify whether this is indeed the case or 

not (Norback and Edling, 1991; Kinman and Griffi, 2008). 

Given the uncertain evidence concerning the role of green certification and gender 

differences on SBS, this paper aims to answer two questions, which are studied from a 

holistic perspective that accounts for both factors the physical (i.e., building type) and 

physiological (i.e., gender differences) that underpin SBS prevalence, the two questions 

are:  

1. Do occupants in the green office buildings have a lower prevalence of SBS 

symptoms compared to their counterparts in the conventional buildings?  

2. Do gender differences affect the prevalence of SBS symptoms in the workplace? 

A.5. Methods  

To answer the two questions, the data collection campaigns were designed to gather the 

responses of occupants in green and non-green office buildings, each of which has a 

random proportion of self-identified male and female employees. The dataset sample in 

this study reflects 502 responses from full-time office-based employees. The participants 

were selected randomly from five green buildings (n=261 respondents) and eight 

conventional buildings (n=241 respondents). Surveyed buildings are in Amman, the 

capital city of Jordan. All buildings are offices occupied by the private sector and did not 

report any known indoor air quality issues previously. The data were collected between 

summer 2017 – winter 2019. 
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A.5.1. Survey 

The questionnaire was adapted from the Health and Work Performance Questionnaire 

produced by World Health Organization (WHO HPQ) (Kessler, Petukhova and McInnes, 

2007). It consists of two sections, the socio-demographic to collect information from 

employees on potential covariates (e.g., age, gender, work experience, job role, weight, 

and height). The second section includes ten questions to assess the prevalence of SBS, 

these questions were classified into three groups based on the WHO classification of SBS 

symptoms (Figure 0.1).  

Respondents were asked to rate the frequency of SBS symptoms during the 28 days 

preceding the survey date. A 5-point Likert scale was used per question (Garland, 1991). 

The scale ranged between ‘not at all’, ‘a little of the time’, ‘some of the time’, ‘most of 

the time’, ‘all the time’. Further, the frequency of each symptom was compared to the 

ASHRAE standard 62.1 threshold (ANSI/ASHRAE 62.1, 2010). According to this 

standard, a building can be labelled as sick when 20% or more of its occupants reported 

discomfort symptoms linked to the time spent in the building for a period exceeding two 

weeks. 

The paper-based survey was used. The questionnaire was designed and wrote originally 

in English, then translated to Arabic, the first language of most participants. Both versions 

of the questionnaire were combined with the consent form and distributed in the selected 

buildings during working hours between 0900 – 1700. Of the 502 participants, 55.6 % 

were Male and 44.4 % were female. 
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Figure 0.1 The categories of sick building syndrome symptoms. 

 

A.5.2. Data Analysis  

Each of the two research questions can be translated into the following questions: are the 

overall median prevalence of SBS symptoms the same between the two groups under 

consideration? Where the median is taken as an indicator of the overall change in self-

reported SBS symptoms and the two groups under consideration refer to the conventional 

and green building types or male and female workers when addressing potential 

differences due to employees’ self-reported gender. Each question is studied through the 

following analysis methods: 

• Graphical inspection: A normalised stacked bar-chart of the response counts for 

each category and question, split by the variable of interest, should reveal any 

differences through the relative offset of the stacked bar of a group over that of 

the other.  

• Statistical hypothesis testing: We have conservatively chosen to appraise medians 

since responses to the questions in the survey are Likert items. To this end, the 
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non-parametric Mann-Whitney U test (Wilcoxon’s rank-sum test) is used to test 

the null hypothesis of no differences between groups at the 0.05 significance level. 

• Analysis of effect size: Coherently with the numerical analysis based on medians, 

the Rank Biserial Correlation (RBC) (Guttman, 1956) was chosen as the measure 

of effect size, i.e. quantification of the magnitude of the difference between any 

two groups, regardless of their statistical significance. Similarly, to other 

correlation coefficients, the value of RBC is within [-1, +1], where 0 indicates no 

correlation, +1 a (perfect) positive correlation, and -1 a (perfect) negative 

correlation. 

These were possible thanks to the following open source software: R (R Core Team, 

2019), including the Tidyverse family (Wickham et al., 2019) and HH libraries 

(Heiberger and Robbins, 2014), and Python (Python Software Foundation, 2020), 

including Numpy (Oliphant, 2006), Pandas (McKinney, 2010) and Pingouin (Vallat, 

2018) libraries. 

 

A.6. Results and Discussion 

This section presents the results of the analysis of the impact of the green certification 

and gender differences on the SBS prevalence in workplaces, and it discusses the findings. 

A.6.1. Building type and SBS  

Figure 0.2 shows the breakdown of the scores for each SBS symptom in both building 

types. The occupants in the conventional buildings had a higher prevalence in most of 

SBS symptoms compared to the occupants in the green buildings. Moreover, from  

Figure 0.2 we can see that more than 20% of the participants in both building types 

experienced six SBS symptoms for ‘some of the time’, these symptoms are namely watery 

eyes, neck pain, arms, legs and joints pain, muscle soreness, eye dryness and stuffy head, 

and tiredness (see section A.10). Compare this finding to the ASHRAE standard 62.1 

threshold, both building types in this study would be classified as sick.   

Table A.1 shows the results of the Mann-Whitney U test, which fails to reject the null 

hypothesis of no difference between the median scores according to the building type for 

nine SBS symptoms (In cases p-value > 0.05). While the U test suggests rejecting the null 

hypothesis of no difference between the median response according to the building type 
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for tiredness symptom (U=27490.5, p-value < 0.01, RBC = 0.12), which was higher 

between the occupants in the conventional buildings.  

This outcome is contrary to that of Tham et al. (2015) who reported no significant 

difference in the frequency of SBS symptoms between the occupants of the green and 

non-green buildings in Singapore, while both building types were below the 

recommended threshold (Tham, Wargocki and Tan, 2015). This discrepancy could be 

attributed to the cultural and personal variances (Norback, Torgen and Edling, 1990; 

Runeson et al., 2004) or due to the differences in the buildings’ characteristics (Skyberg 

et al., 2003). 

 

 
 

Figure 0.2 Breakdown of responses to SBS symptoms questions according to the building type 

 (statistical analysis in Table A.1). 

 

Table A.1 Statistical analysis of individual SBS questions according to the Mann-Whitney U test (n 

Green=261, n Conventional=241); GB indicates green buildings and CB indicates conventional buildings. 

 μ Δμ     

SBS Symptom  GB CB GB -CB U Tail p-value RBC 

Dizzy 1 1 0 31475.0 Greater 0.49 ≈0.00 

Tired 1 2 -1 27490.5 Less <0.01 0.12 

Back or neck pain 1 2 -1 31957.5 Less 0.62 -0.02 

Pain in arms, legs, or 

joints 

1 2 -1 30264.0 Less 0.22 0.03 

Muscle soreness 1 1 0 30851.0 Greater 0.64 0.01 
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Watery eyes, runny nose, 

or stuffy head 

1 1 0 31227.5 Greater 0.55 ≈0.00 

Dryness of the eyes 1 1 0 29869.5 Greater 0.84 0.05 

Cough or sore throat 0 0 0 29605.5 Greater 0.89 0.05 

Flu symptoms 0 0 0 31753.0 Greater 0.41 -0.01 

Dry, itching or irritated 

skin 

0 0 0 29040.5 Greater 0.95 0.07 

 

A.6.2. Gender differences and SBS 

Figure 0.3 shows the results of the breakdown for the scores of SBS symptoms according 

to the occupants’ gender. The female workers tend to have a higher frequency of SBS 

symptoms compared to the male workers for all symptoms except two symptoms are 

namely dizzy and watery eyes, runny nose and stuffy head, that were reported more often 

between male workers. 

Table A.2 shows the results of the Mann-Whitney U test which fails to reject the null 

hypothesis of no difference between the median responses according to the occupants’ 

gender for all SBS symptoms (In cases p-value > 0.05) except the cough and sore throat 

symptom (U=26960.5, p-value < 0.01, RBC = 0.13), which has a negligible effect size.  

This finding is consistent with other studies in this area that found the gender differences 

is small and inconsistent in the self-reported symptoms (Kinman and Griffi, 2008). Also, 

the differences between male and female workers in SBS were observed to be reported 

frequently in particular symptoms included cough, sore throat, fatigue, and eye irritation 

(Bakke et al., 2007), this variance can be attributed to the biological and behavioural 

differences. 
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Figure 0.3 Breakdown of responses to SBS symptoms questions according to gender differences (statistical 

analysis in Table A.2). 

 

Table A.2 Statistical analysis of individual SBS questions according to the Mann-Whitney U test (n Female 

= 223, n Male = 279); F indicates female subjects and M indicates male subjects. 

 μ Δμ     

SBS Symptom  M F M-F U Tail p-value RBC 

Dizzy 1 1 0 31238.5 Greater 0.47 ≈0.00 

Tired 1 1 0 28498.0 Greater 0.96 0.08 

Back or neck pain 1 2 -1 30740.5 Less 0.41 0.01 

Pain in arms, legs, or joints 1 2 -1 28826.0 Less 0.07 0.07 

Muscle soreness 1 1 0 29961.0 Greater 0.77 0.04 

Watery eyes, runny nose, or stuffy head 1 1 0 30631.0 Greater 0.62 0.02 

Dryness of the eyes 1 1 0 27601.5 Greater 0.99 0.11 

Cough or sore throat 0 1 -1 26960.5 Less <0.01 0.13 

Flu symptoms 0 0 0 27612.5 Greater 0.99 0.11 

Dry, itching or irritated skin 0 0 0 28835.0 Greater 0.94 0.07 

 

A.7. Conclusion 

This study investigated if the occupants of green office buildings in Jordan have a lower 

prevalence of SBS symptoms compared to those in the conventional buildings. It 

investigated as well if gender differences play a role in the frequency of SBS symptoms.  

The findings of our analysis based on 502 office occupants show that building type made 

no significant difference to the frequency of all SBS symptoms except the tiredness 
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symptom, which was found to occur more often between the occupants of conventional 

buildings.  

However, according to the ASHRAE standard 62.1 threshold, both building types can be 

classified as sick buildings, as more than 20% of their occupants had experienced six SBS 

symptoms ‘some of the time’ during 28 days preceding the survey. Also, the present 

analysis indicates that female and male office workers reported the same frequencies for 

most of SBS symptoms, with a statistically significant higher prevalence of cough and 

sore throat symptom between the female workers albeit of negligible effect size. 

However, this study had a cross-sectional research design, and an absolute conclusion of 

causation cannot be made, thus longitudinal with repeated measures could assist in 

capturing any differences between the two samples. 

Overall, our findings highlight a clear problem in the office buildings in Jordan and 

suggest that architects, designers, and building owners need to pay further attention in the 

future to the unintended consequences of green office buildings, that could potentially 

impose on employee health and affect the work performance and the financial return of 

the business.  
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A.10. Appendix  

The percentage of occupant response for each SBS symptom in both building types during 

28-day preceding the survey 

 None of the 

time 

Little of the 

time 

Some of the 

time 

Most of the 

time 

All the time 

SBS Symptom GB CB GB CB GB CB GB CB GB CB 

Dizzy 43% 45% 36% 33% 17% 15% 3% 7% 15% 1% 

Tired 17% 15% 44% 34% 27% 32% 10% 17% 2% 2% 
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Back or neck pain 18% 20% 33% 30% 27% 29% 18% 17% 5% 4% 

Pain in arms, legs, or joints 21% 21% 31% 28% 28% 26% 16% 19% 4% 6% 

Muscle soreness 29% 31% 33% 26% 21% 24% 16% 16% 1% 2% 

Watery eyes, runny nose, or stuffy 

head 

28% 33% 39% 31% 21% 20% 10% 11% 1% 5% 

Dryness of the eyes 43% 39% 29% 27% 20% 24% 7% 7% 2% 2% 

Cough or sore throat 58% 51% 26% 31% 11% 14% 3% 3% 2% 1% 

Flu symptoms 63% 63% 21% 26% 12% 5% 3% 4% 0 2% 

Dry, itching or irritated skin 59% 53% 23% 24% 12% 11% 5% 11% 1% 2% 

 

A.11.   Postscript  

This chapter investigated whether green certification could reduce the prevalence of SBS 

symptoms reported by employees. Also, the role of gender differences in self-reported 

SBS symptoms was examined. The comparison between the occupants of green-certified 

buildings and conventional buildings shows that no difference in self-reported SBS was 

observed between the two building categories. Surprisingly, both building types did not 

meet the ASHRAE 62.1 threshold, thus they can be classified as ‘sick’ buildings.  

Further, findings indicate that male and female employees in all surveyed office buildings 

have a similar frequency of all investigated SBS symptoms, except cough and sore throat 

symptom that was statistically higher between female workers. This chapter highlights a 

clear concern in the modern office buildings in general and green-certified buildings in 

particular, as such buildings are designed and built to deliver a healthier indoor 

environment for employees, whereas they show the opposite during the operation stage. 
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Appendix B 

A comparison of indoor air quality and 
employee absenteeism in ‘local’ and 
‘imported’ green building standards 
 

B.1.  Preamble  

Several countries in the developing world have produced their localised GBCs, that suit 

the specific needs of the region. However, it has been argued that such codes could work 

better compared to the imported GBCs like LEED or BREEAM. Jordan as one of the 

developing world has developed the localised JGBG to replace the international LEED, 

which is commonly used to certify green buildings in Jordan. However, no systematic 

evaluation of the performance of the new localised code has been done. Further, no 

existing evidence of whether the localised JGBG superior to the imported LEED. Thus, 

in this chapter, we compare indoor air quality and absenteeism rates between two types 

of green buildings: JGBG-certified and LEED-certified. This chapter is supporting the 

investigation presented in Chapter 2.  
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B.3.   Abstract  

Buildings are responsible for a quarter of global carbon emissions. In the developing 

world, the desire to reduce energy consumption initially resulted in the adoption of 

‘imported’ standards such as LEED and BREEAM and, over time, the development of 

several ‘localised’ standards that either supplant or compete with the imported standards. 

However, such standards have often been implicated in the unintended consequence of 

reduced indoor air quality resulting from lowered ventilation rates, in turn affecting 

employee productivity and absenteeism. Here, we systematically review and compare the 

performance of office buildings built to the localised Jordanian Green Building Guide 

(JGBG) and the well-known international LEED standard. We measure building 

performance in terms of the indoor air quality (via CO2 concentration) and occupant 

absenteeism during winter 2019. Results show that the JGBG building had a significantly 

lower mean indoor CO2 concentration than the LEED building during working hours (p 

< 0.00). In addition, the occupants in the JGBG building reported 20% more working 

hours (p < 0.03) and approximately 9 hours less of absolute absenteeism. These initial 
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results suggest that further development of localised codes is likely to bring greater 

benefit to the performance of building and occupants compared to imported standards. 

 

B.4.  Comparison between Jordanian Green Building Guide and LEED  

In 1998, the U.S. Green Building Council (USGBC) produced the Leadership in Energy 

and Environmental Design (LEED) Green Building Rating System. LEED encompasses 

more than 90,000 registered buildings in the US and 165 countries, it coverers 2.2 million 

m² of projects area every day [1]. Recently, several countries, particularly in the 

developing world, have started to develop their own rating systems that address specific 

regional needs (e.g., climate, socio-economic, and cultural) [2]. The Pearl Rating System 

(PRS) in the United Arab Emirates, Qatar Sustainability Assessment System (QSAS) in 

Qatar, and ARZ Building Rating System in Lebanon are good examples of green 

assessment tools in the Middle East, which consider local needs.  

Jordan as part of the Middle Eastern countries has experienced several phases of green 

building developments, which are presented chronologically in Figure 0.1, with LEED 

being the most common. According to the Jordanian Green Building Council (2019), 

Jordan has 21 registered buildings and seven certified buildings by LEED in the 

commercial sector [3]. In 2013, the Jordanian Green Building Guide (JGBG) was 

produced to replace the international rating system gradually. JGBG is a voluntary rating 

system available for everyone to use and is connected to an incentive scheme put forth by 

the Jordanian government [4].  

Despite common targets and approaches to the issue of sustainability assessment with 

LEED, JGBG’s structure, indicators, and metrics were developed independently. JGBG 

has four categories that are classified according to the building type: single residential, 

multi-residential, commercial/offices, and educational. Each category includes two 

subcategories, either conditioned or free running, and each has its own assigned points 

[4]. The number of points collected for each style of building indicates the degree of 

building’s sustainability, which is divided into four classifications: A, B, C, and D. Table 

0.1 compares the main attributes of LEED and JGBG. Closer inspection of the Table 

shows that JGBG consists of six main parameters; five of them are in common with LEED 

but with different weight for each parameter depending on the local priorities. LEED’s 

‘innovation’ and ‘recycling and pollution’ categories are absent in JGBG while it adds 
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the ‘building management’ as a sixth parameter that is concerned with the overall 

performance of building post-handover.  

The relative weights for energy and water efficiency in JGBG (36% and 15%) and LEED 

(32% and 9%) demonstrate the localisation of the standard as each reflects the scarcity of 

energy and water resources faced by Jordan [1,4]. However, the actual performance of 

green buildings in Jordan certified either by LEED or JGBG have never been evaluated 

systematically, hence this paper compares the performance between LEED and JGBG 

buildings in terms of indoor air quality and occupants’ absenteeism rate as representative 

metrics to investigate if the local rating system has a positive impact on the performance 

of building and their occupants. 

 

 

 

 

 

 

Figure 0.1 The green building developments in Jordan. 

 

Table 0.1 The main attributes of LEED and JGBG. 

Tool Rating level Flexibility First 

version 

Last 

version 

Categories Total points and % of 

total 

LEED Certified ≥40 

Silver ≥50 

Gold≥60 

Platinum ≥80 

165 

countries 

199

8 

2013  LEED JGBG 

Site selection 26 

(23.6 %) 

35 

(14 %) 

Water 

efficiency 

10 

(9.1 %) 

38 

(15.2%) 

Energy 

efficiency 

35 

(31.8 %) 

89 

(35.6%) 

Material 14 

(12.7 %) 

36 

(14.4 %) 

IEQ 15 

(13.6%) 

24 

(9.6 %) 

Innovation 6 

(5.5 %) 

- 

JGBG A (≥80 points) 

B (70–79 points) 

C (60–69 points) 

D (50–59 points) 

1 country 201

3 

2013 Recycled 

and pollution 

4 

(3.6 %) 

- 

Building 

management 

 

- 28 

(11.2 %) 

Total points 110 250 

 

1998

The Royal 
Scientific 
Society 

(RSS) issues 
insulation 

codes.

2008

The first 
Energy 

Efficiency 
Code 

developed.

2009

The 
Jordanian 

Green 
Building 
Council 

established.

2013

The 
Jordanian 

Green 
Building 

Guide 
(JGBG) 

produced

2016

The first 
building 
certified 

according to 
the JGBG is 

built.
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B.5.  Indoor air quality and absenteeism rate in green office buildings 

The indoor air quality of office buildings is considered one of the most important factors 

affecting employee health. This is also known to affect the absenteeism rate due to an 

increase in sick leave. Carbon dioxide (CO2) is a primary indicator of indoor air quality 

and the healthy workplace should have low CO2 concentration above ambient levels, 

delivered through a high level of ventilation. However, the necessity to decrease energy 

consumption in green buildings has traditionally resulted in low rates of ventilation to 

avoid ventilation heat loss or gains. This tends to increase indoor CO2 concentration that 

can affect occupant performance (Satish et al., 2012).  

In addition, high levels of indoor CO2 concentration can be a reason for sick building 

syndrome symptom, CO2 concentration more than 2,000 ppm causes deepened breathing; 

4,000 ppm increases respiratory diseases; 10,000 ppm is associated with loss of 

consciousness and visual disorder; and 25,000 ppm can be a reason for death (Seppanen, 

Fisk and Mendell, 1999). Consequently, research has attempted to associate the CO2 

concentration in workplace with employee work performance(Vehviläinen et al., 2016). 

For example, in a study comparing the absenteeism rates of occupants working in free-

running and mechanically conditioned buildings in France, found that employees in the 

naturally-ventilated building had a lower rate of absenteeism compared to the employees 

in the mechanically-conditioned buildings (Teculescu et al., 1998). These results support 

the idea that the indoor air quality of the workplace can affect employee health related 

indicators such as absenteeism.  

B.6.  Methods  

  Indoor Carbon dioxide (CO2) measurement  

Indoor CO2 concentration was measured in the JGBG and LEED buildings (Figure 0.2 

and Figure 0.3) in the winter of 2019 for five weeks (7th Jan – 14th Feb 2019) using 

Raspberry-Pi sensors (Figure 0.4). The Raspberry-Pi sensors were used as they have 

undergone rigorous testing and calibration, making them suitable for continuous 

measurements with good accuracy (±30 ppm) (Lovett et al., 2016; Vellei et al., 2016). 

The sensors were tested before starting the study. The data were logged at 5-minute 

intervals. The sensors were installed in the two buildings and located in the shared multi-

occupant workspaces that have the most occupation density. They were placed in the 

middle of the monitored area at seated head height (0.9 m to 1.10 m). The employees 
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were asked not to cover or touch the sensors during the monitoring period. Both buildings 

were in Amman, reducing logistical burden, and providing climatic homogeneity. The 

physical characteristics of the selected spaces in the two buildings were matched as 

closely possible:  

• The volumes of the monitored rooms were approximately 216 m3 (L= 12 m, w = 

6 m, H = 3 m) and 210 m3 (L= 10 m, w = 7 m, H = 3 m) in the JGBG and LEED 

buildings respectively.  

• The occupancy area was 4 m2 per occupant.  

• The rooms have walls with low VOC paint, normal fixed double-glazed facades.  

• The floors were covered with carpet; no moistures problems were reported in the 

buildings. 

• There were no plants inside the monitored rooms.  

• Active ventilation is used in both buildings designed to achieve (8.5 L/(s. person)) 

according to JGBG and LEED specifications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 0.2 The JGBG-Certified building. Figure 0.3 The LEED-Certified building. 

 

Figure 0.4 The CO2 sensor.  
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B.6.2  Absenteeism rate measures 

Participants were surveyed to measure the absenteeism rate in workplaces for 4 weeks 

using the well-tested and reliable Health and Performance Questionnaire (HPQ), 

developed by the World Health Organization (WHO) (Kessler, Petukhova and McInnes, 

2007; Pournik et al., 2012). As most of the participants speak Arabic as a first language, 

the questionnaire was translated to Arabic, tested using a pool of technically literate 

bilingual speakers at the University of Bath through re-translation to English. The survey 

was combined with a consent form and distributed in the monitored spaces. The sample 

consisted of 100 employees, 50 participants from each building. Before starting the study, 

the upper management of the buildings were contacted directly to obtain their consent, 

and ethical approval was obtained from the University of Bath. As both buildings in this 

study were used as workspaces, their occupants were involved in typical office tasks (i.e., 

computer typing, reading, writing, and occasional walking for document delivery or 

communication).  

 

B.7.  Results 

Figure 0.5 shows the measured indoor CO2 concentrations during 5 weeks in the 

monitored spaces. Data were cleaned and analysed using the statistical programming 

language R. Mean CO2 concentration in the LEED building was higher (661ppm) 

compared to the JGBG building (470 ppm) during the working hours. A standard t-test at 

99% confidence level suggests this is a significant difference (p < 0.000). Interestingly, 

there is a considerable temporal variation of CO2 concentration between the two 

buildings.  

Figure 0.6 presents the CO2 concentration over a typical 24-hour period in both buildings. 

The indoor CO2 concentration in the JGBG building is almost constant during the working 

hours (0700 to 1700 hours, mean = 456 ppm) meeting the JGBG specification of indoor 

CO2 concentration in offices. It increases after working hours (1700 to 300 hours) peaking 

at 664 ppm. Conversely, the mean CO2 concentration in the LEED building during 

working hours is higher (693 ppm), declining dramatically during the lunch break 

between (1300 to 1400 hours), and subsequently falling to 404 ppm after working hours.  

The above differences can be attributed to the different ventilation approaches that have 

been followed in the two buildings. The JGBG building is provided with a ventilation rate 
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30% above that corresponding to the minimum rate required by LEED, due to an IEQ 

requirement in JGBG. Mechanical Ventilation Heat Recovery System (MVHR) is used 

in the JGBG building, which provides a balance between saving energy and providing 

high indoor air quality. The efficiency of the MVHR can be controlled according to the 

occupancy level. Therefore, the efficiency is raised to the maximum during the working 

hours to ensure a continuous ventilation rate, while it is reduced after working hours, 

when the building is almost empty. In contrast, the LEED building is provided with a 

constant level of airflow around the day, and hence CO2 concentration increases during 

the daytime because of human activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Absenteeism is scored in terms of “hours lost per month”, which is to say that a high score 

indicates a higher amount of absenteeism. The JGBG has a higher mean (206 h) of total 

working hours during 4-week compared to the LEED building (189 h) and compared to 

the expected working hours by the employer (180 h/ per 4-week). This is a statistically 

significant difference (p < 0.03) at 95% confidence level. The JGBG building reported 

lower mean (0.60) of missing days due to the sick leave in 4-week compared to the LEED 

building (mean = 2.6), and there was a significant difference between the two means (p < 

0.00) at 99% confidence level. In addition, absolute absenteeism, calculated using the 

absenteeism score set by Health and Performance Questionnaire (Kessler, Petukhova and 

McInnes, 2007), was substantially lower in the JGBG building (by 9 hours) during the 4-

week, compared to the LEED building. Of course, it is worth noting that we do not 

investigate causality for these results beyond those arising from the design, specification 

Figure 0.5 The indoor CO2 

concentrations in the monitored spaces 

during working hours over 5 weeks. 

Figure 0.6 The indoor CO2 concentrations in 

the buildings during a typical day (day/night). 
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and operation of the building and there could be other factors at play that create these 

differences. This will require further investigation.  

B.8.  Conclusion  

Indoor CO2 concentration has often been used as an indicator of adequate indoor air 

quality, which affects occupants’ health and performance. This paper aims to compare 

the performance of buildings built to the localised Jordanian Green Building Guide and 

the international LEED standard in terms of indoor air quality and occupant absenteeism 

rate. The results of this investigation show that there is a highly significant difference 

between the two means of the indoor CO2 concentration between the two buildings during 

working hours.  

The mean in the LEED building was higher compared to the JGBG building. However, 

the two buildings were within the recommended limits of CO2 concentrations inside 

offices for an 8-hr workday under both LEED and JGBG specifications (1,100 ppm). 

Further, respondents who reported higher levels of absenteeism rate were working in the 

building that reported significantly higher levels of CO2 concentrations during working 

hours. These results suggest that the development of local green assessment tool could 

bring better benefits to both building performance and occupants’ performance, although 

this requires further investigation in more buildings over longer periods. 
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B.10.  Postscript  

This chapter compares the performance of the localised JGBG in Jordan to the imported 

LEED standard. The comparison consists of two levels, including building performance 

in terms of IAQ and occupant performance, i.e., absenteeism rate. Findings show that, 

although both green-certified buildings (i.e., LEED and JGBG) complied with the 

standards for indoor CO2 concentration levels in workplaces, the employees in the JGBG-

certified building had a lower rate of absenteeism compared to their counterparts in the 
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LEED-certified building. This chapter indicates that localised GBCs could bring better 

benefits to the building performance and occupants compared to the imported green 

codes.
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Appendix C 

 Survey 

Section I (Please tick) 

a. Gender                    Male                                Female 

b. Job category  

Administrative Sales 

 

Design 

 

Marketing 

 

Executive 

 

Other…………………………… 

 

c. How long have you been working at this organization? 

<6 months 6 months to 1 year 

 

1 year to 2.5 years 

 

2.5 to 5 years  

 

>5 

years  

 

 

d. What is your education level? 

High school  

 

college or 2-year degree Holding B.Sc.  

 

Holding M.Sc. 

 

Holding 

Ph.D. 

 

 

e. How long do you typically spend in the office during the day?  

Hours >1 1 - 2 2-3 3 - 4 5 - 6 7 - 8 >8 

 

f. Your monthly income is ranged between (JD): 

<400  400-700  700-1000  1000-1300 1300-1600 1600-2000 >2000 Others…………… 

 

g. How many people are working with you in the same office? 

Only me 

(single) 

2-3  

(shared room) 

4-9 

 (small open plan)  

10-24  

(Medium open plan)  

>24  

(large open 

plan) 

h. If you have the ability to improve only one physical item (e.g., light, ventilation, temperature) in your 

workplace, what is this item? ……………………………………………………………………………….. 

Section II  Number of hours 

(00-97) 

B3. About how many hours altogether did you work in the past 7 days? (If 

more than 97, enter 97) 

 

 

We are conducting an evaluation of your office building to assess how well it performs for those who 

occupy it. This information will be used to assess areas that need improvement and provide feedback 

for similar buildings. Responses are anonymous, please answer all the relevant questions. 

Organization name:                                                                       Employee ID:  

Date:                                                                                               Time: 
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B4. How many hours does your employer expect you to work in a typical 7-

day week? (If it varies, estimate the average. If more than 97, enter 97.) 

 

B5. Now please think of your work experiences over the past 4 weeks (28 days). 

In the spaces provided below, write the number of days you spent in each of the 

following work situations… In the past 4 weeks (28 days), how many days did 

you… 

Number of days 

(00-28) 

B5a Miss an entire workday because of problems with your physical or 

mental health? (Please include only days missed for your own health, not 

someone else’s health.) 

 

B5b. Miss an entire workday for any other reason (including vacation)?  

B5c. Miss part of a workday because of problems with your physical or mental 

health? (Please include only days missed for your own health, not 

someone else’s health.) 

 

B5d. Miss part of a work day for any other reason (including vacation)?  

B5e. Come in early, go home late, or work on your day off?  

B6. About how many hours altogether did you work in the past 4 weeks (28 

days)?  (See examples below.) 

 

 

Examples for Calculating Hours Worked in the Past 4 Weeks 

40 hours per week for 4 weeks = 160 hours 

35 hours per week for 4 weeks = 140 hours 

40 hours per week for 4 weeks with 2 8-hour days missed = 144 hours 

40 hours per week for 4 weeks with 3 4-hour partial days missed = 148 hours 

35 hours per week for 4 weeks with 2 8-hour days missed and 3 4-hour partial days missed = 112 hours 

 

Section III 

B9. On a scale from 0 to 10 where 0 is the worst job performance anyone could have at your job and 10 is 

the performance of a top worker, how would you rate the usual performance of most workers in a job similar 

to yours? 

Worst 

performance 
 

Top 

performance 

0 1 2 3 4 5 6 7 8 9 10 

 

B10. Using the same 0-to-10 scale, how would you rate your usual job performance over the past year or 

two? 

Worst 

performance 
 

Top 

performance 

0 1 2 3 4 5 6 7 8 9 10 

 

B11. Using the same 0-to-10 scale, how would you rate your overall job performance on the days you 

worked during the past 4 weeks (28 days)? 

Worst 

performance 
 

Top 

performance 

0 1 2 3 4 5 6 7 8 9 10 
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Section IV (Please tick) 

During the past 4 weeks (28 days), how many 

of did you experience the following symptoms 

while working in the office? 

1. None of 

the time 

2. A little 

of the 

time  

3. Some 

of the 

time  

4. Most 

of the 

time  

5. All 

the 

time  

1 Feeling dizzy       

2 Feeling tired or having low energy      

3 Back or neck pain      

4 Pain in your arms, legs, or joints       

5 Muscle soreness      

6 Watery eyes, runny nose, or stuffy head      

7 Dryness of the eyes      

8 Cough or sore throat      

9 Fever, chills, or other cold/flu symptoms      

10 Dry, itching or irritated skin      

 

Section V  

a. Indoor air quality & ventilation  

(Please rate your satisfaction of the following items) 

The overall air quality of your office: 

Dissatisfied  Satisfied 

1 2 3 4 5 6 7 

 

The fresh air in your office? 

Dissatisfied  Satisfied 

1 2 3 4 5 6 7 

 

The air humidity in your office? 

Dissatisfied  Satisfied 

1 2 3 4 5 6 7 

 

The ventilation in your office? 

Dissatisfied  Satisfied 

1 2 3 4 5 6 7 

If you need to, are you able to: (Please click items you can control in your office) 

open/ close 

Windows  

 

open/ close  

curtains  

 

on/off 

Lights  

 

on/off  

Air condition  

on/off  

Heater  

 

 

Does the quality of the air in your office have a negative effect on your work performance?  

Not significant              Very 

significant 

1 2 3 4 5 6 7 

 

b. Noise (Please rate your satisfaction of the following items) 

The background noise in your office? 

Dissatisfied  Satisfied 

1 2 3 4 5 6 7 

 

Does the distraction from noise in your office have a negative effect on your work performance? 
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Not significant              Very 

significant 

1 2 3 4 5 6 7 

 

c. Lighting (Please rate your satisfaction of the following items) 

The natural light in your office? 

Dissatisfied  Satisfied 

1 2 3 4 5 6 7 

 

The sun glare in your office across the whole year: 

Dissatisfied  Satisfied 

1 2 3 4 5 6 7 

 

Does the quality of light in your office have a negative effect on your work performance? 

Not significant              Very 

significant 

1 2 3 4 5 6 7 

 

d. Thermal comfort (Please tick) 

At present, I feel:      

 

At present, I would prefer to be: 

 

Please rate thermal comfort satisfaction in your office 

Dissatisfied  Satisfied 

1 2 3 4 5 6 7 

 

Does the temperature in your office have a negative effect on your work performance? 

Not significant              Very 

significant 

1 2 3 4 5 6 7 

English  Cold Cool Slightly 

cool 

Neutral Slightly 

warm 

Warm Hot 

Arabic-classic    حار دافىء  دافىء قليل  مرتاح بارد قليل  بارد بارد جدا 

Arabic-Levantine  
 بردان شوي  بردان بردان كتير

 مرتاح
 دافي  مشوب شوي 

كتير 

 مشوب 

 -3 -2 -1 0 +1 +2 +3 

English  

 

Much 

cooler 

cooler A bit 

cooler 

No 

Change 

A bit 

warmer 

Warmer  Much 

warmer 

Arabic-classic  
 ادفىء  ادفىء قليل  لاتغيير  ابرد قليل  ابرد ابرد كثيرا 

دفىء  

 كثيرا 

Arabic-Levantine  
 ابرد ابرد كتير 

ابرد 

 شوي
 ادفى كتير  ادفى  ادفى شوي  لاتغيير 

 -3 -2 -1 0 +1 +2 +3 

3. Your clothes at present:  

(Please tick) 

4. What is your activity during the past 

15 minutes? (Please tick) 

Short Sleeve 

shirt/blouse 

 Sitting (passive work  

Long sleeve 

shirt/blouse 

 Sitting (active work)  
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Instantaneous Measurements (for researcher only)  

 

Air Velocity (ms-1)  

Air Temperature (°C)  

Relative Humidity (%)  

Globe temperature (°C)  

Mean radiant temperature (°C)  

CO2 level (ppm)  

Outdoor Temperature (°C)  

 

Vest   Standing relaxed  

Trousers/long skirt  Standing working  

Shorts  Walking indoors  

Dress  Walking outdoors  

Pullover  Other………………  

Jacket   

Long socks  

short socks  

Tights  

Tie  

Boots  

shoes  

sandals  

head wear  

barefoot  
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Appendix D 

Details of the used equipment 

Two types of instruments were used to monitor thermal conditions and indoor CO2 levels 

in buildings, the collected data have two themes as following: 

 

1. Time series data: Raspberry-Pi based sensors are used to conduct longitudinal 

measurements. The devices are developed at University of Bath, and they were 

combined into two compositions. First device to monitor air temperature and 

relative humidity simultaneously, and the second device to monitor the level of 

indoor CO2 concentration inside buildings (see Table D.1).  

All sensors were tested and calibrated before starting the fieldwork to ensure that 

all sensors are working and provide consistent readings. Sensors were calibrated 

using two approaches, first, sensor data were benchmarked using periodic spot 

measurements which complied with ISO7726 and ISO7730 using high quality 

instrument (SWEMA).  

Second, we tested all sensors between each other. Sensors were placed in 

unoccupied office room, with no operable windows or any source for heating, 

cooling and ventilation, sensors recorded thermal conditions (Ta + RH) and CO2 

for 24 hours, to assure accurate readings with ± 0.5 C margin resolution. I 

observed a consistency between recorded data from all sensors except three 

sensors, which were excluded from our data later. 
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Table 0.1 The components of Raspberry-Pi based sensors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Periodic spot measurements: They were conducted using two instruments as 

following:  

(i) Delta HD 32.3 is used to monitor air temperature, relative humidity, mean radiant 

temperature and air speed, which are used to calculate the PMV. This instrument 

complies with ISO 7730 and ISO 7726 (Table D.2). 

(ii) SWEMA is used to record thermal conditions and to benchmark the longitudinal 

sensor data as previously mentioned. This instrument complied with ISO7726 and 

ISO7730 (Table D.3). 

 

Table 0.2 The components of Delta HD 32.3 instrument. 

Unit  Description   

TP3276.2 Temperature probe has 5 cm diameter globe 

thermometer with Pt100 temperature sensor.  

 

Unit Description  

AdaFruit DHT22  digital sensor to measure temperature 

and relative humidity.  

 

DS18B20 Waterproof compatible temperature 

sensor. 

 

Sensair K30 CO2 sensor optimised for high 

response time and protected by a 

particle filter.   
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HP3217R Combined probe for temperature and relative 

humidity.  

 

AP3203.2 Probe with hot omnidirectional wire to measure 

air speed, with NTC 10kohm sensor type. 

 

HD 32.3  The main instrument which connects probes 

sensors and has the main interface. 

 

 

Table 0.3 The components of SWEMA instrument. 

Unit Description  

HygroClip2A-S 

(859447) 

 

Used to monitor indoor air humidity and 

temperature using rotronic sensing element 

and digital calibration. 

 

SWEMA 03 

 

Used to monitor air velocity and temperature, 

it consists of an omnidirectional anemometer 

that has sensitive microcontroller. It fulfils the 

ISO7726 requirements.  

 

SWEMA 05 

 

It is a 15 cm diameter black globe temperature 

sensor, meets the requirement of ISO 7726. 

 

SWEMA Multipoint PC 

program 

It has three separate windows: one for the 

setup and storing data in files, one for 

presenting data in online graphs and one ISO 

7730 window. 
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Appendix E 

 
Consent to participate in the research  

 

 

I understand that: 

• I will take part in brief questionnaire surveys as part of the research. 

• I am taking part in the Project on a voluntary basis, and I am free to withdraw 

from the research at any stage. 

• My personal data will be held by the University and will not be disclosed to any 

third person. All results that are obtained using my data will be made anonymous. 

• The results will be passed to upper management in aggregate form only and cannot 

be identified individually. 

• My personal data will be held and stored securely and protected in accordance 

with the requirements of the Data Protection Act 1998. 

• The objectives of this research have been explained to me. 

Under these circumstances, I agree to participate in the Research, and I expressly consent 

to the University of Bath holding and processing my personal data for the purposes of the 

research project. 

Name:  

Signature: 

Date: 
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Appendix F 

 
Questions of semi-structured interviews 
 

 

• How do you define green buildings? 

• Do green buildings cost more than conventional buildings, and if so, why? 

• What are the main drivers to build green buildings in the Middle East? 

• In your opinion, what are the most important aspects of green building design?  

• Do you think green certification can improve the occupants' experience inside 

the building?  

• How do you think we can improve the indoor environment quality in green 

buildings? 

• What do you think the relationship between the IEQ and occupant satisfaction? 

• As an architect, how do you think we should develop the techniques of green 

building design towards a more comfortable indoor environment quality?  

• What is the best method to assess the current green buildings in the Middle 

East?  

• Why are not all buildings built to be green? 
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