Underexploited (*ipso, ortho*) Microbial Arene Dihydroxylation: Uses in Synthesis & Catalysis

Julia Anne Griffen

A thesis submitted for the degree of Doctor of Philosophy

University of Bath
Department of Chemistry
2013

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with the author. A copy of this thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that they must not copy it or use material from it except as permitted by law or with the consent of the author.

This thesis may be made available for consultation within the University Library and may be photocopied or lent to other libraries for the purposes of consultation.

Signed .. Date ..
Contents

Contents .. ii
Acknowledgements ..v
Abstract ...vi
Abbreviations ... vii
1 Introduction: Microbial Arene Oxidation ... 1
 1.1 Sustainable biocatalysis ... 1
 1.2 Traditional synthetic methods which disrupt aromaticity 2
 1.3 Microbial arene oxidation (MAO) ... 4
 1.4 Classes of microbial arene oxidation .. 5
 1.4.1 Common classes of microbial arene oxidation .. 5
 1.4.2 Less common MAO class: Benzoate Dioxygenase (BZDO) 6
 1.4.3 Halogenated substituents in MAO ... 7
 1.5 Other diols available from bacteria .. 8
 1.6 Examples in synthesis ... 9
 1.6.1 Historical perspective .. 9
 1.6.2 Cyclitols .. 10
 1.6.3 Inositols .. 12
 1.6.4 Aminocyclitols .. 14
 1.6.5 Carbasugar derivatives ... 14
 1.6.6 Natural product synthesis .. 15
 1.7 Benzoate dioxygenase in synthesis ... 15
 1.8 Work originating from the Lewis group ... 19
 1.9 Glycosidase inhibitors ... 22
2 Chapter 2: Aminocyclitols ... 26
 2.1 Introduction .. 26
 2.1.1 Aminocyclitols from MAO .. 27
 2.1.2 Tamiflu .. 28
 2.2 Project Aims ... 32
 2.3 Results and Discussion .. 33
 2.3.1 Dihydroxylations .. 36
 2.3.2 Hydrogenations .. 38
 2.3.3 De-protection of the silicon .. 39
 2.3.4 Acid deprotection – final step .. 40
 2.3.5 Biological assays .. 41
 2.4 Conclusion: Aminocyclitols ... 41
3 Chapter 3: Cyclitols ... 42
 3.1 Introduction ... 42
 3.1.1 Cyclitols – Specific MAO singlet oxygen examples 42
 3.1.2 Cyclitols – specific singlet oxygen examples .. 45
 3.2 Aims ... 49
 3.3 Results and Discussion .. 49
 3.4 Conclusion .. 59
4 Chapter 4: Bromine Substrates for BZDO .. 60
 4.1 Introduction: Halogenated Substrates MAO ... 60
 134,135
 4.2 Aims and Previous work .. 62
Chapter 5: Introduction Asymmetric Epoxidations

5.1 Background to Asymmetric Epoxidations ... 69
5.2 Organocatalytic Asymmetric Epoxidation ... 71
5.2.1 Chiral Ketones .. 71
5.2.2 Chiral Carbocycles Ketone Catalysts ... 76
5.3 Organocatalytic Asymmetric Epoxidations – with H\textsubscript{2}O\textsubscript{2} 78
5.3.1 Shi – Chiral ketones and H\textsubscript{2}O\textsubscript{2} .. 79
5.3.2 Juliá Colonna – Peptide Asymmetric Epoxidations 80
5.3.3 Miller – Peptide Asymmetric Epoxidaitons .. 80
5.4 Summary .. 83

Chapter 6: Peracid Epoxidations

6.1 Introduction – Chiral peracids & epoxidations .. 84
6.2 Results and Discussion: Catalyst Synthesis .. 85
6.2.1 Acetonide protection of diol acid .. 85
6.2.2 Silicon protection of diol acid ... 86
6.2.3 Formation of acid catalysts via esters ... 87
6.2.4 Formation via methyl esters ... 87
6.2.5 Formation via Benzyl Esters .. 92
6.2.6 Silicon protection of esters ... 93
6.2.7 Methyl Ethers ... 94
6.2.8 Other catalysts .. 96
6.3 Conclusions – Catalyst Synthesis ... 99
6.4 Results and Discussion: Catalyst Testing ... 100
6.4.1 Initial Catalyst testing ... 100
6.4.2 Reaction Optimisation Using DIC .. 103
6.4.3 HPLC Methods ... 107
6.4.4 Chiral Acid Epoxidations HPLC results – unoptimised conditions 108
6.4.5 Chiral Acid Epoxidations HPLC results – optimised conditions 109
6.4.6 Summary HPLC results ... 111
6.4.7 Different coupling agents ... 112
6.4.8 Different urea source ... 113
6.4.9 Is the active catalyst actually being formed? ... 114
6.5 Conclusions ... 117

Chapter 7: Shi Catalyst Analogue

7.1 Shi Like Catalysts – Catalyst #1 ... 118
7.2 Catalyst Design #2 .. 121
7.3 Catalyst Testing .. 124
7.4 Conclusion .. 127

Chapter 8: Conclusions and Future Work

8.1 Conclusions .. 128

Experimental .. 130
9.1 General ... 130
<table>
<thead>
<tr>
<th>Section</th>
<th>Chapter/Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2</td>
<td>Chapter 1</td>
<td>Aminocyclitols Experimental</td>
<td>132</td>
</tr>
<tr>
<td>9.3</td>
<td>Chapter 2</td>
<td>Cyclitols Experimental</td>
<td>153</td>
</tr>
<tr>
<td>9.4</td>
<td>Chapter 3</td>
<td>Bromo-diene Experimental</td>
<td>159</td>
</tr>
<tr>
<td>9.5</td>
<td>Chapter 5</td>
<td>Peracid epoxidation</td>
<td>165</td>
</tr>
<tr>
<td>9.6</td>
<td>Chapter 6</td>
<td>Shi like catalysts</td>
<td>182</td>
</tr>
<tr>
<td>9.7</td>
<td>Chapter 6</td>
<td>Experimental</td>
<td>193</td>
</tr>
<tr>
<td>9.8</td>
<td>Chapter 7</td>
<td>Epoxidation conditions</td>
<td>194</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td></td>
<td>196</td>
</tr>
<tr>
<td>Appendix</td>
<td></td>
<td></td>
<td>203</td>
</tr>
</tbody>
</table>
Acknowledgements

This may be read first but it has been savoured and written last.

Much thanks and appreciation is deserved for my supervisor Dr Simon Lewis, for the continual help, support and scientific ideas.

Funding through the DTC (EPSRC) has allowed me to participate in all the ‘otherthings’ I have been lucky enough to be part of, enjoy and learn from. Namley the internship to Ethiopia, attendance at several international scientific conferences and all of the public enagagement and outreach activities. Working with other students, now at the end with good friends.

Thanks are also deserved for the individuals, family, friends and colleagues who have had significant input and influence both professionally and personally, they know who they are.
Abstract

This thesis sought to expand upon the synthetic application of the underexploited ipso, ortho diene cis-diol microbial arene oxidation product from benzoic acid.

The microbial oxidation of benzoic acid by mutant strains of bacteria to give the ipso, ortho diene cis-diol may be considered to be a green and clean method. This biocatalytic route yields large quantities of an enantiopure chiral building block, which is not assessable via traditional synthetic methods.

The fermentation product has seen application towards the synthesis of aminocyclitols, which have been tested for their biological activity. Attempts to synthesise the fully oxygenated counterparts, cyclitols, were investigated. Expansion of previous work using a bromine substituted derivative led to a range of cross-coupled and iron co-ordinated products. Finally, a range of novel chiral acids and ketones were synthesised and evaluated for their catalytic activity towards asymmetric epoxidation.
Abbreviations

°C Degrees Celsius
Å Angstrom
Ac Acetyl
AIBN Azobisisobutyronitrile
aq. Aqueous
Ar Aryl
Bn Benzyl
Boc tert-Butyloxycarbonyl
BOM Benzyloxymethyl acetal
Bt Benzotriazole
Bu Butyl
Bz Benzoyl
CAN Cerium Ammonium Nitrate
cat. Catalytic quantity
Cbz Carboxybenzyl
CDI N,N'-Carbonyldiimidazole
Conc. Concentrated
DCM Dichloromethane
DIAD Di-iso-propyl azodicarboxylate
DET Diethyltartrate
DIBAL Di-iso-butylaluminum hydride
DMAP 4-Dimethylaminopyridine
DME 1,2-Dimethoxyethane
DMEDA N,N'-Dimethylthelyenediamine
DMF N,N'-Dimethylformamide
DMM Dimethoxymethane
DMP 2,2-Dimethoxypropane
DMSO Dimethyl sulfoxide
EDC N-Ethyl-N'-(3-dimethylaminopropyl)carbodiimide hydrochloride
EDTA Ethylene diaminetetraacetic acid
ee Enantiomeric excess
Equiv. Equivalents
ESI Electrospay ionisation
Et Ethyl
et al. et alia
Et$_2$O Diethyl ether
Et$_3$N Triethylamine
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>EtOAc</td>
<td>Ethyl acetate</td>
</tr>
<tr>
<td>g</td>
<td>Grams</td>
</tr>
<tr>
<td>GC</td>
<td>Gas Chromatography</td>
</tr>
<tr>
<td>h</td>
<td>Hours</td>
</tr>
<tr>
<td>HMBC</td>
<td>Heteronuclear multiple-bond correlation spectroscopy</td>
</tr>
<tr>
<td>HOBt</td>
<td>1-Hydroxybenzotriazole hydrate</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>HRMS</td>
<td>High resolution mass spectrometry</td>
</tr>
<tr>
<td>HSQC</td>
<td>Heteronuclear single-quantum correlation spectroscopy</td>
</tr>
<tr>
<td>hv</td>
<td>UV light</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>IBX</td>
<td>2-Iodoxybenzoic acid</td>
</tr>
<tr>
<td>IPA</td>
<td>iso-propyl alcohol</td>
</tr>
<tr>
<td>'Pr</td>
<td>iso-propyl</td>
</tr>
<tr>
<td>LA</td>
<td>Lewis acid</td>
</tr>
<tr>
<td>LDA</td>
<td>Lithium diisopropylamide</td>
</tr>
<tr>
<td>LHMDS</td>
<td>Lithium bis(trimethylsilyl)amide</td>
</tr>
<tr>
<td>m</td>
<td>Meta</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>m.p.</td>
<td>Melting point</td>
</tr>
<tr>
<td>m/z</td>
<td>Mass to charge ratio</td>
</tr>
<tr>
<td>mCPBA</td>
<td>meta-Chlorobenzoic Acid</td>
</tr>
<tr>
<td>Me</td>
<td>Methyl</td>
</tr>
<tr>
<td>MeCN</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>mg</td>
<td>Miligrams</td>
</tr>
<tr>
<td>MHz</td>
<td>Mega Hertz</td>
</tr>
<tr>
<td>mins</td>
<td>Minutes</td>
</tr>
<tr>
<td>mL</td>
<td>Milliliters</td>
</tr>
<tr>
<td>mmol</td>
<td>Milimoles</td>
</tr>
<tr>
<td>mol%</td>
<td>Molar percent</td>
</tr>
<tr>
<td>MS</td>
<td>Molecular Sieves</td>
</tr>
<tr>
<td>MW</td>
<td>Molecular weight</td>
</tr>
<tr>
<td>NBA</td>
<td>N-Bromoacetamide</td>
</tr>
<tr>
<td>nBuOH</td>
<td>n-Butanol</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>NMO</td>
<td>4-Methylmorpholine N-oxide</td>
</tr>
<tr>
<td>NOESY</td>
<td>Nuclear overhauser effect spectroscopy</td>
</tr>
<tr>
<td>o</td>
<td>ortho</td>
</tr>
<tr>
<td>p</td>
<td>para</td>
</tr>
<tr>
<td>PDC</td>
<td>Pyridinium Dichromate</td>
</tr>
<tr>
<td>Petrol</td>
<td>Petroleum ether</td>
</tr>
</tbody>
</table>
Abbreviations

Ph Phenyl
Piv Pivaloyl
PMB para-methoxybenzyl
pMBDMA para-methoxybenzaldehyde dimethyl acetal
PMP para-methoxyphenyl
ppm Parts per million
psi Pounds per square inch
pTSA para-toluenesulfonic acid
Py Pyridine
Quant. Quantitative
R Generic substrate or group
r.s.m Recovered starting material
r.t. Room temperature
Rf Retention factor
TBAB Tetrabutyl ammonium bromide
TBAF Tetrabutyl ammonium fluoride
TBDMS tert -butyldimethylsilyl
TBS tert -butylsilyl
1Bu tert -butyl
Tf Trifluoromethanesulfonate
TFA Trifluoroacetic acid
THF Tetrahydrofuran
TLC Thin layer chromatography
TMEDA N,N,N′,N′ -Tetramethylethylenediamine
TMO Tri-methylamine N-oxide
TMS Tri-methylsilyl
TPP 5,10,15,20-Tetraphenyl-21H,23H-porphine
Ts Tosyl
V Volts
v/v Volume/volume
W Watts
wt% Weight percent
α Alpha
β Beta
δ Chemical shift in parts per million
μ Micro
μM Micro molar
ν Wavenumber cm$^{-1}$
1 Introduction: Microbial Arene Oxidation

1.1 Sustainable biocatalysis \(^{1,2}\)

Chemical transformations that are cleaner, more efficient, environmentally benign and cost effective are becoming ever more prevalent within the chemical industry and in research. This can be surmised by the growth in the field of green chemistry, which addresses all of these issues to ensure that chemical manufacture remains a key and prominent industry which grows and develops in a sustainable manner so that future generations can expect products for a quality of life to which we are accustomed.

Traditional synthetic methods have in most (but not all) cases their known hazards, risks and costs, associated with the process. For example most transformations require the use of volatile organic solvents, toxic and hazardous reagents, occasionally forcing reactions conditions (with the associated energy requirements) and the use of precious metals, although hopefully in catalytic amounts.

Biocatalysis is the use of an enzyme, either isolated or whole cell, which catalyses a chemical transformation. As an alternative to traditional synthesis, biocatalysis presents many benefits. Biological systems require mild reaction conditions and often produce non-toxic waste. Additionally they often proceed with very high degrees of regio–, stereo– and enantioselectivity. This selectivity is attributed to the specific size and shape of the folded proteins that make up the enzyme active site environment. As a result biocatalysis often functionalises a compound in ways which traditional chemical synthesis cannot.

Despite this biocatalysis does have its downfalls and barriers to implementation; including difficulty of enzyme isolation, necessity of co-factors, optimisation being required due to the differences between cellular and industrial setting and the need for expensive and specialised equipment which require specialised training and knowledge.
Overall, if applied correctly, biocatalysis can be viewed as a sustainable alternative to traditional synthesis.

1.2 Traditional synthetic methods which disrupt aromaticity

Selective oxidation of aromatic compounds is traditionally difficult to achieve due to the high stability of the aromatic system. Only a few synthetic methods are known to permanently disrupt this stable aromaticity, without cleaving the ring. These reactions often require harsh reaction conditions and use or produce toxic or hazardous substances, which is obviously undesirable.

![Scheme 1: Reduction and oxidation of aromatic compounds.](image)

One of the few examples that demonstrates the de-aromatisation of arenes is the Birch reduction $1 \rightarrow 2^3$. This achieves the 1,4 reduction of aromatic rings to the corresponding cyclohexadienes using alkali metals (e.g. Li, Na, K) dissolved in liquid ammonia in the presence of an alcohol. However, this procedure entails undesirable hazards associated with the use of highly reactive metal reagents and toxic liquid ammonia. Scheme 1.

Recently the complete reduction of benzene has been reported with the use of a water soluble rhodium catalyst in a biphasic system $1 \rightarrow 3^4$. The work demonstrated high catalytic activity, excellent thermal stability and good catalytic recovery facilitated by the biphasic system. Scheme 1.

Many iron and other metal based catalysis are noted to be able to oxidise aromatic species,5 however this only temporarily disrupts the aromaticity within the
transition state of the reactions. The driving force for the completion of the reaction is often the re-aromatisation step. $1 \rightarrow 4$. Scheme 1.

Perhaps the most relevant transformation relating to this project was pioneered by Motherwell in 1995. He sought a simple chemical method to produce diene diols as building blocks for biologically important molecules such as conduritols and inositol. The method involved a photochemically induced charge transfer between osmium tetroxide and benzene 1. The presence of a suitable oxygen transfer reagent, either barium chlorate or bromate, led to formation of an osmate esters of benzene dihydrodiol 5, which with further processing led to the synthesis of cyclitol derivatives 6 and 7 and later (\pm)-pinitol 10. Scheme 2.

![Scheme 2: Motherwell et al. Catalytic Photoinduced Charge-Transfer Osmylation.](image)

Reagents and conditions: a) i) OsO$_4$ (cat.), hv, Ba(ClO$_3$)$_2$; ii) Ac$_2$O, Et$_3$N, DMAP, 6 5%, 7 31%; b) i) OsO$_4$ (cat.), hv, NaBrO$_3$; ii) TP, acetone, H$_2$O, 8%; c) K$_2$CO$_3$, MeOH, Δ, 83%; d) i)Al$_2$O$_3$, MeOH, Δ; ii) H$_2$O, THF, HCl, 60%.

Related to the work of Motherwell, Que et al. sought a bio-inspired catalyst to mimic the oxidation of aromatic compounds by bacteria $11 \rightarrow 12$. Insertion of the diol moiety breaks the aromaticity of the naphthalene starting material. This is the only known chemical example which mimics a bacterial transformation of the type with which this thesis is concerned and has helped to further the understanding of the role of the iron centre present in the enzymes that carry out these oxidative transformations. Scheme 3.

![Scheme 3: Que et al. Catalyst = $[Fe^{II}(TPA)(NCMe)]^{2+}$ TPA = tris(2-pyridylmethyl)-amine](image)
1.3 Microbial arene oxidation (MAO)

As highlighted above, disrupting the aromaticity is difficult to achieve via traditional synthetic means. A recent review in 2011 highlighted the importance of dearomatisation strategies in the synthesis of complex natural products. This review noted the importance of microbial arene oxidation (MAO) as a viable alternative to traditional synthetic methods, and detailed its use in synthesis. 10

Microbial arene oxidations are performed by bacteria which contain dioxygenase enzymes. Dioxygenase enzymes are known to occur within certain soil bacteria which have the ability to metabolise and mineralise aromatic compounds. The full degradation pathway of aromatic compounds by this class of bacteria is shown below. 11 Scheme 4.

![Scheme 4: Benzene degradation pathway](image)

Mutant strains of the bacterium containing the dioxygenase enzyme which are blocked in the DHB (1,2-dihydro-1,2-dihydroxybenzoate) pathway accumulate and excrete the cis-diol 13, which can be isolated and used in synthesis. 12 Scheme 4.

![Scheme 5: Transformation of toluene with Pseudomonas putida F1](image)

This transformation was first reported by Gibson in 1968, who successfully isolated and identified the cis-dihydropdiol product 21 from the oxidation of toluene 20 with
Chapter 1

Introduction: Microbial Arene Oxidation

Since the time of Gibson the area of microbial arene oxidation has seen rapid expansion, today over 400 arene cis-diol products have been reported and their use and application to synthesis is vast. \(^{2,12,14}\)

1.4 Classes of microbial arene oxidation

1.4.1 Common classes of microbial arene oxidation

Many different microorganisms, including naturally occurring, mutant and genetically modified recombinant strains have been reported to contain dioxygenase enzymes which can carry out MAO. These dioxygenase enzymes are classified due to their substrate specificity. The vast majority of organisms express toluene dioxygenase (TDO) \(^{20}–^{21}\), other significant classes include naphthalene dioxygenase (NDO) \(^{11}–^{22}\) and biphenyl dioxygenase (BPDO) \(^{23}–^{24}\). Scheme 6. These classes of enzyme are not as tightly defined as the term suggests as in many cases there is no such specificity and several enzymes act on a number of different substrates.

![Scheme 6: Microbial arene oxidation classes](image)

Nevertheless these transformations are well understood and reliable predictive models have been developed for these enzyme classes. The transformations are known to occur with high levels of regio– and stereospecificity. Boyd et al.,\(^{15}\) investigated the dihydroxylation of a variety of 1,4-disubstituted benzenes, \(^{25}\), and measured and compared their associated enantioselectivities of the corresponding diols, \(^{26}\). Their conclusions led to a predictive model for the observed enantioselectivities based on the size of either substituent. If \(L>S\) high enantioselectivities are observed and a single cis-diol enantiomer is obtained. In contrast if \(L\approx S\) (e.g. \(L = F, S = H\)) enantioselectivities dramatically decrease. He
concluded that size of the substituents was a dominant factor in the selection of which bond is preferentially oxidized. Scheme 7.

![Scheme 7: Boyd’s model for size and selectivity of dihydroxylation products.](image)

Possible problems with the use of mutant strains of the dioxygenase enzyme is that the blocked DHB dioxygenase pathway, which allows for the accumulation of the desired cis-diol product, may become reactivated if the bacteria is stressed and may need to metabolise the cis-diol for energy. The use of recombinant dioxygenase expression in *Escherichia coli* prevents the reactivation of DHB dioxygenase, as it is no longer present. TDO, the most commonly used dioxygenase enzyme has been readily expressed in *E. coli* over a number of different generations and mutations. The use of *E. coli* enables faster turnover and greater stability in the production of the microbial oxidation product.\(^\text{16}\)

1.4.2 Less common MAO class: Benzoate Dioxygenase (BZDO)

An example of a less common class of microbial arene oxidation enzyme is that of benzoate dioxygenase \(29 \rightarrow 30\). In comparison to the more common classes of dioxygenase as described above, the BZDO dioxygenase enzyme displays not only different regioselectivity but the opposite sense of enantio-induction. e.g. the substrate is oxidised *ipso, ortho* as shown in B as opposed to *ortho, meta* as shown by A. Scheme 8.

![Scheme 8: Benzoate dioxygenase transformation.](image)
There are few BZDO containing bacteria prevalent in the literature, the most commonly reported strains include *Ralstonia eutropha* B9, *P. putida* U103 and *P. putida* KTSY01.

Oxidation of benzoic acid by bacteria was first reported in 1948. Not until 1971 did Reiner and Hegeman first report the breakdown of benzoic acid by a mutant strain of bacteria, *R. eutropha* B9 (formerly *Alcaligenes eutrophus*), blocked in the DHB dioxygenase pathway, and isolate diene cis-dihydrodiol. Scheme 8B.

This chemical oxidation of benzoic acid is considered to be a unique transformation as there is no equivalent in synthesis for the insertion of a cis-diol of ipso-ortho substitution pattern to benzoic acid.

1.4.3 Halogenated substituents in MAO

A common substrate utilised in TDO dihydroxylation is bromo benzene, giving. Beneficially, the bromine acts as a synthetic handle to further functionalise the compound. The presence of the bromine does not reduce the activity of the enzyme. Other substituted benzenes have also been used in TDO containing bacteria to widen the substrate and synthetic scope. When there is more than one substituent present enantioselectivities decrease as is the case with which presents a 20% ee. This is expected as per Boyds predictive models, which states with similar size substituents results in a reduction in observed enantioselectivities. Scheme 9.

![Scheme 9: Substrate scope within TDO](image)

As shown above, TDO can tolerate a variety of substituents on the aromatic ring and hence shows great versatility in organic synthesis. In contrast BZDO shows little tolerance to aromatic substituents and therefore has less broad synthetic scope.

There is very little work on the use of substituted benzoates in MAO. In all cases work is focused on halogenated benzoates. In consideration of the possible
oxidation products of meta-substituted benzoate, it has been suggested that two possible products could exist, 38 and 39. These arise due to the different orientation of the substrate within the enzyme active site. Scheme 10.

Scheme 10: Two possible products 3- and 5- substituted cis-diols.

There is little consistency within the literature with regards to the preference for formation of either the 3- 38 or the 5- 39 substituted cis-diols, though it has been suggested that electron withdrawing and bulky substituents both reduced the rate of the biotransformation. This suggests that both steric and electronic effects are involved in the rate determining step. 13,21,26-28

(More detailed literature on halogenated substrates in BZDO can be found at the start of Chapter 3, where it finds relevance to the results of the bromobenzoic acid MAO product being exploited in synthesis.)

1.5 Other diols available from bacteria

We have seen above, that microbial arene oxidation produces cis-diols. Access to the biologically derived trans-diol is not so straightforward 29 and has been the significant work of Müller et al. This work utilises the biologically derived chorismate 40. It was found that chorismate could be subjected to further biological transformation using a mutant strain of Klebsiella,30 and later recombinant E. coli.31 This enabled production of trans-diols 41 – 42 on a large scale (up to 15 gL$^{-1}$).
The synthetic potential for these substrates was realised as the building blocks for carbohydrate and cyclitol synthesis, as demonstrated in the synthesis of plant growth inhibitor streptol \(^{43,31}\) biologically active epoxides crotepoxide \(^{44}\) and senepoide \(^{45}\) as well as valienone \(^{46}\).

\textbf{1.6 Examples in synthesis}

Dihydrodiol metabolites produced from bacteria, offer a range of functionalities which have the possibility to be manipulated further into synthetically and biologically interesting complex molecules.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{synthetic_utility_of_dihydrodiols.png}
\caption{Synthetic utility of dihydrodiols.}
\end{figure}

Some of these synthetic handles have been highlighted. Figure 1. This next section describes some key examples where \textit{cis}-dil compounds have been utilised in synthesis.

There is a large abundance of organic synthesis research publications which showcase the use of microbial arene oxidation in synthesis. The majority of works utilise TDO enzymes which have been expressed in \textit{E. coli} for ease of use and stability.

This section includes a brief overview of the historical examples of MAO in synthesis and further discusses the targeted synthesis of cyclitols, inositois, aminocarbasugars, carbasugars and other natural products.

\textbf{1.6.1 Historical perspective}

It was not until 20 years after Gibson\(^{13}\) first identified and assigned the stereochemistry of the enzymatic dihydroxylation products that synthetic applications were found: The earliest known example of microbial arene oxidation in synthesis dates back to 1983, where ICI (Imperial Chemical Companies)
developed the use of cis-dihydrodiol 13 in the synthesis of polyphenylene 47. 34,35

Scheme 12.

Scheme 12: Synthesis of polyphenylene from benzene via microbial arene oxidation. Reagents and conditions: a) P. putida; b) Ac₂O, Py; c) Radical initiator then Δ.

The continued work of Gibson et al. in 1983 exploited NDO in the synthesis of indigo 50, 36 which was later optimised and scaled up as an industrial process. 37 Scheme 13.

Scheme 13: Synthesis of indigo

1.6.2 Cyclitols
Cyclitols are polyhydroxy-substituted cycloalkanes with at least three hydroxy groups, each attached to a different ring carbon atom. Many naturally occurring cyclitols are biologically active and hence are interesting targets for organic synthesis.

Ley and co-workers in 1987 was first to realise the potential of the possible products from microbial arene oxidation in the synthesis of cyclitols. They synthesised a series of highly oxygenated structures: (+) and (−)-pinitol 51, 38 (+)-conduritol-F 52, myo-inositol and myo-inositol-1,4,5-triphosphate 53. 39 Figure 2.

Figure 2: Cyclitols, Ley’s work

Further elaborating on Ley’s original work, Hudlicky designed an enantio-divergent synthesis of both enantiomers of pinitol 51. 40 Scheme 14. This utilises the plane of symmetry present in either enantiomer. Using identical reagents but changing their
order of addition allowed the two enantiomers to be synthesised from the same starting material. Enantio-divergent synthesis has been employed in the synthesis of many other cyclitols, carbohydrates and other natural products with latent planes of symmetry.

Later Hudlicky in 2006 also synthesised (−)-conduritol E 63, from di-bromo benzene 59. Scheme 15. Conduritols are a class of cyclitols which contain a derivative double bond, and four hydroxyl groups. There are six possible isomeric forms, all of which have been synthesised via microbial arene oxidation.

There are many noted advantages of the use of cis-diols in cyclitol synthesis. Firstly MAO offers substrates in high yields and high enantiomeric purities while providing the six carbon skeleton of the targeted compounds. The double bonds are easily oxygenated via epoxidation or dihydroxylation methods to the desired cyclitols. Additionally synthesis is often enantio-divergent, as demonstrated by Hudlicky in 1990, allowing access to both enantiomers.

1.6.3 Inositols

Inositols are structures which consist of a cyclohexane core substituted with six hydroxy groups. This gives rise to six contiguous stereocentres, the arrangement of which gives rise to nine possible stereoisomers.\(^{45}\)

Chemists have extensively studied inositols, due to their important biological application including as glycosidase inhibitors, for intercellular communication, protein anchoring and phosphate storage.\(^{46}\) Traditional synthetic techniques require transformation of simple carbohydrates or oxidation of alkenic compounds, but this can be difficult. Microbial arene oxidation offers a technique to give high levels of selectivity in the synthesis.\(^{43}\)

Carless in 1993 reported synthesis of \textit{muco-}, \textit{chiro-}, \textit{allo-} and \textit{epi-} inositol \(65 - 68\) from \textit{meso-}diol \(31\). The work utilised photo-oxidation with singlet oxygen to obtain an endo peroxide bridge \(64\). Scheme 16.\(^{47}\)

\[
\text{Scheme 16: Carless 1993, use of singlet oxygen in inositol synthesis.}
\]

Subsequent work from Hudlicky 1993 – 2000 \(^{48,49}\) synthesised \textit{neo}, \(+\)-\textit{chiro}, \textit{muco}, \textit{allo} and \textit{myo-} inositol from products of microbial oxidation, using similar methods and reagents. A more recent publication details the synthesis of \textit{neo}-inositol \(74\) in a 17\% overall yield over six steps without need for chromographic purification of any of the intermediate compounds.\(^{50}\) Scheme 17.
Scheme 17: Inositols from microbial arene oxidation.50 Reagents and conditions: a) DMP, \(\rho\)TSA, acetone; then 1,3-dibromo-5,5-dimethylhydantoin, \(\text{H}_2\text{O}\), acetone; b) 10\% aq KOH, DME; c) r.t., to \(\Delta\); d) \(\text{Bu}_3\text{SnH}, \text{AIBN}, \text{benzene}, \Delta\); e) \(\text{OsO}_4, \text{NMO}, \text{tBuOH}, \text{acetone-}\text{H}_2\text{O}\), f) conc. HCl, MeOH.

Further application of MAO to inositol targets has seen bromo-diene 31 used in the targeted synthesis of oligomers of conduritol-F and \textit{muco}-inositol, which were synthesised and evaluated for their glycosidase inhibition.51 Here alcohol 75 was used as a nucleophile to couple with epoxide 57 to form an oligomer. Final conduritol-F oligomer 77 was obtained via electrochemical dehalogenation of 76.52

Scheme 18.

Scheme 18: Conduritol-F from MAO as a glycosidase inhibitor51 Reagents and conditions: a) DMP, \(\rho\)TSA, acetone; b) \textit{mCPBA}, \(\text{CH}_2\text{Cl}_2\), 75\% 2 steps; c) 57, \(\text{BF}_3\cdot\text{OEt}_2\), \(\text{CH}_2\text{Cl}_2\), 0 °C, 55\%; d) -3.0 V, \(\text{Et}_4\text{NBr}, \text{MeCN}\); then TFA:THF:\(\text{H}_2\text{O}\) (4:1:1), 40\%.
1.6.4 Aminocyclitols

Aminocyclitols pose structural similarities to that of a variety of antibiotics, glycosidase inhibitors and other biologically active molecules, and as such they prove important synthetic targets for chemists. Aminocyclitols are cycloalkanes containing at least one free or substituted amino group and three additional hydroxyl groups on the ring atoms. Because of their structural similarity, aminocyclitols are often referred to as aminocarbasugars.\(^{53}\)

We have seen that microbial arene oxidation has been applied to cyclitols, conduritols and inositols, expansion is therefore straightforward to similar amine analogues.

(This area is reviewed in detail at the beginning of Chapter 2: Aminocyclitols)

1.6.5 Carbasugar derivatives

Pseudo sugars or carbasugars also have potential biological activity and can act as glycosidase inhibitors.\(^{54}\) These are usually synthesised from naturally occurring sugars or metabolites from plants or bacteria on small scales.

Scheme 19: Boyd sugar derivative work\(^ {55}\) Reagents and conditions: a) DMP, \(\rho\mathrm{TSA}, \) 98%; b) OsO\(_4\), NMO, acetone, \(\mathrm{H}_2\mathrm{O}, \) 87%; c) Pd(OAc)\(_2\), CO, NaOAc, MeOH, 81%; d) Rh/Al\(_2\)O\(_3\), \(\mathrm{H}_2; \) e) BzCl, Py, 28% 2 steps; f) LiAlH\(_4\), 74%; g) TFA, 90%.

Scheme 19 highlights an example of how cis-diols have been used to synthesise several sugar analogues 85 – 88. It is worth nothing that in these examples the
seventh sugar carbon had to be added onto the six carbon framework of the microbial oxidation product, \(80 - 81\), it would be more step and atom efficient if the microbial oxidation product already contained the seven carbon framework.

1.6.6 Natural product synthesis

The aminocyclitol motif is found in many natural products for example the amaryllidaceae group of alkaloids e.g. pancratistatin \(89\), narcicasine \(90\) and lycoricidine \(91\). These have antimicrobial activity against mycobacteria as well as possessing anti-tumour and glycosidase inhibition. Again these have been synthesised via routes employing microbial arene oxidation. Figure 3.\(^{56-58}\)

![Natural Product Synthesis](image)

Other natural products synthesised from microbial arene oxidation include codeine \(92\), \(^{41,59}\) balanol \(93\) a protein kinase C inhibitor\(^{60}\) and Zeylena \(94\)\(^{61}\) a structurally interesting natural product. Figure 3.

1.7 Benzoate dioxygenase in synthesis

BZDO has seen few uses in synthesis, there are notably fewer examples of BZDO in current literature (i.e. only \(\approx 15\) examples as of 2013) than the more common TDO, NDO and BPDO.

Widdowson in 1995, reported the first example of BZDO used in synthesis. Scheme 20.
The work utilised *P. putida* U103 as a source of BZDO, in an attempt to determine the absolute stereochemistry of the MAO product. As well as describing 15, 2R stereochemistry of the diol by synthesis of a crystalline derivative, the work also sets precedent for [4 + 2] cycloadditions with peroxide 95, nitroso 96 and urazole 97 dienophiles. The work observed syn addition of the dienophile in the presence of the free diol dienes (attributed to a favourable interaction between the diol and approaching dienophile). In contrast, when the diol was protected as an acetonide, the opposite selectivity was observed and the dienophile added in an anti fashion. This was attributed to an unfavourable steric clash between approaching dienophile and bulky acetonide group.\(^\text{18}\)

\[\text{Scheme 20: Widdowson 1995.}\]

Not until 2001 did Myers *et al.* realise the synthetic potential of substrates derived from the cis-dihydrodiol 30. The work created a library of 16 novel compounds that could be used as chiral building blocks in organic synthesis, e.g. 98 – 100. Scheme 21. The work demonstrated the synthetic utility and robustness of the substrate 30 under different reaction conditions. Additionally the work also described large scale preparation of the cis-diol acid 30, allowing for the process to become more accessible to the everyday chemist, who may be unfamiliar with biological techniques and processes.\(^\text{17}\)

\[\text{Scheme 21: Myers work}\]

Later work by Myers, 2005, developed total syntheses of unnatural deoxycycline 112\(^\text{62}\) antibiotic from the product of microbial arene oxidation in which all of the
stereocentres were installed under substrate control from the initial benzoate cis-diol 30. Scheme 22.

Scheme 22: Myers’ antibiotics.
- Reagents and conditions: a) mCPBA, EtOAc, 83%; b) i) TMSCHN₂; ii) TBSTf, Et₃N, 70%; c) THF, -78 °C, organolithium reagent 103, 73%; d) i) LiOTf, PhCH₃, 60 °C; ii) TFA, CH₂Cl₂, 62%; e) i) CBr₄, PPh₃; ii) PhSH, Et₃N, 87%; f) i) chiral oxidant 107; ii) P(OMe)₃, MeOH, 70 °C, 76%; g) i)BnO₂CCl, DMAP; ii) TBAF, HOAc; iii) IBX, DMSO; iv) TBSTf, Et₃N 85%; h) LDA, TMEDA, THF, -78 °C, 109, -78 °C - 0 °C, 79%; j) i) HF, MeCN; ii) H₂, Pd, THF, MeOH, 90%.

In 2004 Parker et al. reported the synthesis of a series of Topiramate analogues such as 118, a novel anticonvulsant, in only seven steps from microbial oxidation product 30. This highlighted the synthetic utility of the compounds described by Myers in 2001. The paper also describes the use of 30 to synthesise carba-β-L-fructopyranose, a carbohydrate target. Scheme 23.

Scheme 23: Parker et al.
- Reagents and conditions: a) TMSCHN₂, MeOH, C₆H₆, 96%; b) DMP, HCl, acetone, 98%; c) OsO₄, NMO, t-BuOH, H₂O, acetone, 73%; d) H₂ Pd/C, EtOAc, 95%; e) DMP, HCl, acetone, 80%; f) DIBAL-H, THF, 85%; g) CISO₂NH₂, NaH, DMF, 93%.
Mihovilovic64,65 with access to \textit{R. eutropha} B9 concentrated on intramolecular Diels–Alder reactions using tethered dieneophiles under microwave conditions to produce product \textbf{120}. Scheme 24.

\begin{center}
\includegraphics[width=0.5\textwidth]{Scheme24.png}
\end{center}

\textbf{Scheme 24: Mihovilovic 2004, 2010.} Reagents and conditions: a) i) DMP, \(p\)-TSA, acetone, 94%; ii) EDC, HOBt, Et\textsubscript{3}N, allylamine, DCM, 83%; b) Microwave 210 °C, 500 min, 28%.

Recent work from Hudlicky in 2011, synthesised the dimeric natural product \textit{Idesolide} \textbf{125} in only 4 steps from the microbial oxidation product \textbf{30}.66 The synthetic procedure involved diimide reduction of diene \textbf{121} to form a regioselective mixture of alkenes \textbf{122} and \textbf{123} in a 2:1 ratio, of which \textbf{122} was isolated and oxidised to ketone \textbf{124}. Dimerisation of \textbf{124} was eventually achieved with Na\textsubscript{2}HCO\textsubscript{3} to give (−)-idesolide \textbf{125} in a 19 % overall yield. This work again reiterates the possible ease of fast and efficient synthesis from MAO products.

\begin{center}
\includegraphics[width=0.5\textwidth]{Scheme25.png}
\end{center}

\textbf{Scheme 25: Hudlicky 2011.66} Reagents and conditions: a) CH\textsubscript{2}N\textsubscript{2}, THF, 0 °C, 79%; b) Potassium azodicarboxylate, AcOH, MeOH, 0 °C, 61%; c) IBX, DMSO, 60%; d) NaHCO\textsubscript{3}, 66%.

The most recent work this year from Hudlicky67 exploited the \textit{ipso, ortho} diene \textbf{30} for the targeted synthesis of hydroxylated pyrrolidines \textbf{135}. Polyhydroxylated pyrrolidines are interested targets as this structural motif arises in many biologically active molecules and natural products. Hudlicky’s synthesis utilised hetero Diels–Alder methodology through to regioisomers \textbf{126} and \textbf{127}. Ozonolysis and subsequent reduction of the ozonide and acylation gave separable isoxazolidine
acetates 128 and 129. Hydrolysis and immediate N-O bond reduction with Mo(CO)₆ gave tetrol 130. Oxidative cleavage and acylation gave bis acetate 131. Removal of the Boc protecting group with TFA to furnished the stable salt, which under basic hydrolysis conditions gave pyrroline 133. Finally hydrogenation and salt formation gave final pyrrolidine 1375.

Scheme 26: Hudlicky67 Pyrrolidines. Reagents and conditions: a) BocNHOH, NaIO₄, MeOH, H₂O, 96%; b) i) O₃, CH₂Cl₂, -78 °C, NaBH₄; ii) Ac₂O, 22%; c) i) K₂CO₃, MeOH; ii) Mo(CO)₆, MeCN, H₂O, 87%; d) i) SiO₂, NaIO₄, CH₂Cl₂, 0 °C; ii) Ac₂O, Et₃N, DMAP, CH₂Cl₂, 56%; e) TFA, CH₂Cl₂, 62%; f) K₂CO₃, MeOH, 81%; g) Pd/C, H₂, AcOH, H₂O, quant; h) MeOH, HCl, 40 °C, 75%.

1.8 Work originating from the Lewis group
Much of the work within the Lewis group 2010 – 2013 has centred on the use of the benzoate cis-dihydrodiol 30. Work by Ali-Khan et al.68,69 has concentrated on the use of tricarbonyliron(0) co-ordination in order to stabilise or protect the diene moiety to obtain structures which would not be accessible with the uncomplexed diene, such as synthesis of compound 137 from 136. Scheme 27. Later work investigated the facial selectivity of the iron co-ordination and found that when the diol was protected as an acetonide 113, co-ordination of the metal to the upper face led to unexpected rearrangement of the acetonide 138. Following the removal of the iron an arene cis diol with a different substitution could be obtained, 139, being ortho, meta substituted, similar to that obtained with TDO but the opposite enantiomer.
Most recently Ali-Khan utilised iron complexation towards a known intermediate in the synthesis of Oseltamivir (Tamiflu®) 145. This work exploits many $[n^5]$ cationic complexes and susceptibility to nucleophilic addition to obtain a wide library of synthetic intermediates. Scheme 28.

Scheme 28: Ali-Khan63,70 Reagents and conditions: a) EtI, CsF, DMF, 23 h, 69%; b) $[\text{Fe}_2(\text{CO})_9]$, THF, 5 d, 61%; c) i) HBF$_4$, Ac$_2$O. ii) NaBH$_4$, 18 h, MeCN, 0 °C, 39%; d) HBF$_4$, CH$_2$Cl$_2$, 100%; e) iPr$_2$NEt, tBuOCONH$_2$, CH$_2$Cl$_2$, 24 h 82%; f) ref71.

Within the Lewis group use of these iron complexes has seen application to the synthesis of the natural product (+)-grandifloracin 150. Scheme 29.72
Scheme 29: Grandifloracin synthesis.72 Reagents and conditions: a) DIBAL-H, THF/CH\textsubscript{2}Cl\textsubscript{2}, -78 °C; b) BzCl, 2,4,6-collidine, THF, 33% (2 steps); c) MnO\textsubscript{2}, CH\textsubscript{2}Cl\textsubscript{2}, 78%; d) CAN, acetone, 34%.

Expanding on the topic of metal complexation to ipso, ortho diene 30, diverging away from the use of iron; Cobalt complexes were investigated 152.74 This brief report highlights the viability of cobalt co-ordination to MAO products with synthetic applications yet to be scoped. Scheme 30.

Scheme 30: Cobalt complex of MAO product.74 Reagents and conditions: a) PhMe, r.t., 30 mins, 26% after recrystallisation.

Natural products have been targeted in the total synthesis of zeylenols and zeylenones structures from the ipso, ortho diene 153.75 This work utilises singlet oxygen methodology to reach a series of natural products, highlighting novel
Kornblum–DeLaMare rearrangement via neighbouring group participation through to targeted structures 154 – 156. Scheme 31. (This work has significant relevance to Chapter 3: Cyclitols).

Scheme 31: Synthesis of zeylenols via photooxygenation. Reagents and conditions: a) O_2, TPP, CCl$_4$, 12 h, 10°C, 81-90%; b) iPr$_2$NEt, CH$_2$Cl$_2$, 94-100%; c) thiourea, CH$_2$Cl$_2$/MeOH, r.t., 12 h, 63-99%.

Additional work has targeted compounds with potential biological activity. Structurally similar compounds are known glycosidase inhibitors used for treatment of diabetes. In particular three aminocarbasugars 157 – 159, were synthesised and tested. However these compounds showed no biological activity. Figure 4.

Figure 4: Aminocarbasugar synthesis

1.9 Glycosidase inhibitors

As shown above by the numerous synthetic examples a common application of MAO products is the synthesis of natural products which possess biological activity, notably glycosidase inhibition. This section describes in detail that application.

Glycosidases are enzymes that catalyse the cleavage of glycosidic bonds in oligosaccharides and glycoconjugates 160 – 161. Scheme 32. Glycosidases are fundamental to several biological processes including digestion, metabolism as well as immune response, intercellular recognition, cellular differentiation and solubility of proteins etc.
Scheme 32: Glycosidase enzyme function

The two types of glycosidase, α and β, each hydrolyse the corresponding forms of the sugar, depending on the stereochemistry of the hydroxyl group at the anomeric position. Figure 5.

Figure 5: α and β glycosidases and their transition states

The mechanism of the breakdown of sugars by glycosidase involves a key transition state. Figure 5. The intermediates of both α and β glycosidase react via slightly different transition states depending on the position of the anomeric hydroxyl group. In both transition states there is a syn relationship between the attacking nucleophilic oxygen from the carboxyl group and the anomeric carbon. In the α case, the other carboxyl oxygen interacts directly with the endocyclic oxygen developing a oxocarbenium-like transition state. In comparison with the β case the remaining carboxy oxygen interacts with the hydroxyl group at C2, favouring carbocation formation.

Furthermore both α and β glycosidase can act via two distinctive mechanisms; either resulting in inversion or retention of the cleaved glycosidic bond. Below is an example of both β glycosidase mechanisms. Scheme 33. Both involve oxacarbenium-ion-like transition states and a pair of carboxylic acids at the active site.
Inversion and retention.

In the case of the inversion mechanism, the reaction is completed in a single step and via a single transition state structure. The acidic enzyme residues have to be approximately 10 Å apart in order to fit both the substrate and the water molecule into the enzymatic cavity.

In contrast, the retaining glycosidase proceeds via a two-step process; first via the enzyme being glycosylated which forms an intermediate, which is then broken down by nucleophilic water in the deglycosidation step. In this case the enzyme residues are approximately 5.5 Å apart.\(^{78,79}\)

Common glycosidase inhibitors both natural and synthetic include disaccharides, iminosugars, carbasugars and thiosugars. Glycosidase inhibitors interact with their targets by mimicing this transition state, hence rendering it either inactive or less efficient at metabolising carbohydrates. Glycosidase inhibitors have many potential medical applications, and have been studied as HIV agents and treatments for diabetes, obesity, glycosphingolipid lysosomal storage disease and cancers.
Commercial glycosidase inhibitors include acarbose (Precose®) 162, voglibose (Basen®) 163, miglitol (Glyset®) 164 and N-butyl-1-deoxynojirimycin (Zavesca®) 165. Figure 6. 162 – 164 are used in the treatment for non-insulin dependent, type II, diabetes. These drugs act to reduce postprandial hyperglycemia by interfering with the digestion of carbohydrates. While 165 is employed for the control of Gaucher’s disease, which relates to disturbed lysosomal storage.

Concentrating on carba and pseudoamino sugars, these are of great structural interest as the cyclic oxygen is replaced with a carbon, which is similar enough in structure to fit into the enzymatic site, but does not induce the same level of electronic effects as seen in the transition states described above. Additionally the presence of a basic nitrogen attached to the ring has been shown to increase the hydrophobic interaction within the enzyme pocket. 54

Carbasugars and aminocarbasugars therefore have great potential as glycosidase inhibitors, and if synthesised via MAO this could potentially provide sustainable routes to biologically active compounds.
2 Chapter 2: Aminocyclitols

2.1 Introduction

Aminocyclitols are poly-hydroxylated cycloalkanes containing at least one free or substituted amino group. Aminocyclitols are an interesting class of compounds which can serve as effective mimics of natural carbohydrates; this similarity is acknowledged in their alternative name of aminocarbasugars.\(^1\) The amino functionality is fundamental in affecting the biological activity, and lack of the endocyclic oxygen leads to enhanced hydrolytic stability.\(^1\)\(^2\) Several aminocyclitols possess structural similarities to a variety of antibodies,\(^80\) glycosidase inhibitors\(^81\) and other biologically active molecules, and as such they prove important synthetic targets for chemists. Natural aminocyclitols include antibiotics such as validamycins\(^166\). Table 1.\(^82\)\(^83\) Simpler aminocyclitols of the inosamine\(^167\) class are found in several natural products which display antibiotic characteristics.\(^83\) Notably a few aminocyclitols are currently in clinical use; e.g. acarbose\(^162\),\(^84\) Voglibose\(^163\),\(^85\) miglitol\(^164\) (technically an aminosugar, not azacarbasugar) which are \(\alpha\)-glycosidase inhibitors that are used in the treatment of type II diabetes.\(^86\) Figure 7.

![Validamycin](image)

Table 1: Validamycin R groups

<table>
<thead>
<tr>
<th>Validamycin</th>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>R₄</th>
<th>R₅</th>
<th>R₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>H</td>
<td>H</td>
<td>β-D-Glc</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>B</td>
<td>H</td>
<td>H</td>
<td>β-D-Glc</td>
<td>H</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>C</td>
<td>H</td>
<td>α-D-Glc</td>
<td>β-D-Glc</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>D</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>α-D-Glc</td>
</tr>
<tr>
<td>E</td>
<td>H</td>
<td>H</td>
<td>α-D-Glc(1-4)-β-D-Glc</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>F</td>
<td>α-D-Glc</td>
<td>H</td>
<td>β-D-Glc</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>G</td>
<td>H</td>
<td>H</td>
<td>β-D-Glc</td>
<td>OH</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>α-D-Glc(1-4)-β-D-Glc</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>
2.1.1 Aminocyclitols from MAO

The application of MAO towards the formation of a variety of cyclic, poly-hydroxylated and complex structures including cyclitols, conduritols and inositols has been discussed previously in the introduction. Expansion is therefore straightforward to similar amine analogues; aminocyclitols.

The significant difference lies in the chemical procedures utilised to insert the nitrogen functionality into this class of compound. This is most often achieved via a hetero-Diels-Alder (HDA) approach, as in Hudlicky 1991, synthesis of Conduramine A-1 \(171\). Addition of benzyl-\(N\)-hydroxycarbamate to \(\text{BuNIO}_4\) generates the reactive acylnitroso \textit{in situ} which adds to the diene with complete regioselectivity. Reductive cleavage of the N-O bond and further transformation gave conduramine \(171\) in a 24% overall yield. Scheme 34.

An alternative method of nitrogen insertion involves alkene epoxidation followed by ring opening with a nitrogen nucleophile e.g. azide, \(^{88}\) phthalimide, \(^{89}\) ammonia \(^{90}\) or other amines. \(^{91}\) An example from Carless \(^{92}\) utilises the dihydrodiol MAO product of

![Figure 7: Natural and commercially available aminocyclitols](image-url)
toluene from \textit{P. putida} 21. Photooxidation and epoxidation inserts the oxygen functionality stereospecifically due to substrate control. The azide attacks regioselectively to form 175 followed by reduction and deprotection to give aminocyclitol 176 in 18\% yield over 6 steps form the MAO product. Scheme 35.

Scheme 35: Carless aminocyclitol synthesis azide nitrogen insertion. Reagents and Conditions: a) O$_2$, methylene blue, hv; then thiourea, MeOH, 18 h, 53\%; b) DMP, acetone, TsOH, 92\%; c) mCPBA, CH$_2$Cl$_2$, 2 days, 61\%; d) DMF, H$_2$O (20:1), NaN$_3$, reflux, 20 h, 71\%; e) AcOH, H$_2$O (1:9), 80$^\circ$C, 1 h, 96\%; f) H$_2$, Pt, 50 psi, EtOH, 4 h, 92\%.

2.1.2 Tamiflu
An interesting example of an amine-containing bioactive product is that of oseltamivir, or Tamiflu®. The current industrial synthesis relies on the availability of naturally occurring pure shikimic acid which can be problematic, additionally the process utilises an azide reagent, which on a large industrial scale can present a risk of explosion. Several different methods have been used to synthesise Tamiflu without using shikimic acid, herein we describe approaches which utilize MAO derived 1,2 cis–dihydrodiols.

The first from 2008, Fang et al. started with commercially available bromo cis–dihydrodiol 31 transformed regio– and stereoselectively via bromo-acetamidation to 177. This was converted to the aziridine 178 which was ring opened with 3-pentanol to give 179. Bromination gave 181 which was reduced using super hydride LiBHEt$_3$ to alcohol 182. This was converted to the carbamate via the isocyanate to give 183, avoiding the previous azide route. Subsequent coupling reactions to convert the side chains gave the desired Tamiflu product 186. Scheme 36.
Scheme 36: Fang Synthesis of Tamiflu. Reagents and Conditions:
a) i) DMP, acetone, cat. H⁺, 0 °C to r.t., 0.5 h; ii) cat. SnBr₄, NBA, H₂O, CH₃CN, 0 °C, 0.5 h, 75% 2 steps; b) LHMDS, THF, -10 °C to 0 °C, 0.5 h; c) 3-pentanol, BF₃·OEt₂, -10 °C to 0 °C, 6 h, 73% 2 steps; d) conc. HCl, MeOH, 50 °C, 6 h, 94%; e) AcOCMe₂COBr, THF, 0 °C to r.t., 3.5 h; f) LiBH₄, THF, 0 °C to r.t., 2 h, 82% 2 steps; g) DDQ, PPh₃, nBu₄NOCN, CH₂CN, r.t., 18 h, then tBuOH, Δ, 24 h, 78%; h) Cu, DMEDA, nBuOH, 120 °C, 24 h; i) cat. [Pd(OAc)₂], CO, NaOAc, EtOH, r.t., 24 h, 82% 2 steps; j) H₃PO₄, EtOH, 50 °C, 6 h, 81%.

In summary Fang provides an azide free route presenting good yields, 26% over 11 steps, from the commercially available MAO bromo cis-dihydrodiol. Described as hazardous and toxic free, utilising simple procedures Fang intends to work towards a large scale synthesis.

Banwell et al. in 2008 developed upon Fang’s synthesis providing a route to key intermediate 180, again utilising the MAO derived bromo cis-dihydrodiol 31. Banwell sought to use the copper catalysed intramolecular aziridiation to afford a cyclic carbamate intermediate 192, formed through 3-pentanol ring opening of acylaziridine 191. Subsequent basic hydrolysis ring opening of the carbamate,
acylation, and acid deprotection of the PMB group gave intermediate 180 from Fang’s synthesis.

Scheme 37: Banwell’s Synthesis of key Tamiflu intermediate.95,96 Reagents and Conditions: a) pMBDMA, (+)-camphor sulfonic acid, toluene, 0 °C, 1.5 h; b) DIBAL-H, Et\textsubscript{3}N, toluene, -78 °C to -30 °C, 5 h, 85%; c) i) CDI, MeCN, 0 °C, 1 h; ii) NH\textsubscript{2}OH·HCl, imidazole, 0 °C to 18 °C, 16 h, 56%; d) pTsCl, Et\textsubscript{3}N, Et\textsubscript{2}O, 0 °C to 18 °C, 16 h, 79%; e) Cu(MeCN)\textsubscript{4}PF\textsubscript{6}, K\textsubscript{2}CO\textsubscript{3}, MeCN, 3-pentanol, 0 °C to 18 °C, 16 h, 43%; f) LiOH, 1,4-dioxane, H\textsubscript{2}O, 100 °C, 48 h, 85%; g) AcCl, Et\textsubscript{3}N, 0 °C to 18 °C, 1 h, 99%; h) HCl, MeOH, 35 °C, 16 h, 90%; i) Fang’s synthesis.93

Banwell presents 16 step enantioselective synthesis of Tamiflu, again azide free and an alternative to Fang’s.

The most recent synthesis by Hudlicky \textit{et al.}98 has seen Tamiflu produced in 10 chemical steps in a 55% overall yield from the MAO derived cis-dihydrodiol 195. It is advantageous that the starting material 195 already possesses the ethyl ester side chain which instantly reduces the number of transformations needed. Nitrogen is inserted via an acylnitroso Diels-Alder cycloaddition to form key intermediate 197,
which is reductively opened to form 198. The new protocol avoided the use of azide and employed [3,3] oxidative rearrangement to enone 199. This work displays the Dauben-Michno oxidative transposition applied to electron withdrawing substituents. Formation of the oxime 200 proceeded without need for purification. Basic elimination using NaOEt formed alkene product 202. Aziridine formation followed by Copper triflate-catalysed ring opening using 3-pentanol gave Boc protected Tamiflu product 186.

Scheme 38: Hudlicky TamiFluSynthesis Tamiflu synthesis.98 Reagents and Conditions: a) DMP, TsOH, r.t.; b) CH$_3$CONHOH, NaIO$_4$, MeOH, r.t., 88% 2 steps; c) Mo(CO)$_6$, MeCN, H$_2$O, (15:1), reflux, 87%; d) CrO$_3$, Ac$_2$O, CH$_2$Cl$_2$, 4 °C, 5 min; e) NH$_2$OH-H$_2$O, EtOH, Py, r.t., 75-82% 2 steps; f) 5% Rh/Al$_2$O$_3$, H$_2$ (60 psi), 96% EtOH$_{aq}$ (Boc)$_2$O (2-3 equiv), 93%; g) 0.05 M EtONa, EtOH, 94%; h) PhMe$_2$P, DIAD, CH$_2$Cl$_2$, 4 °C, 78%; i) 3-pentanol, Cu(OTf)$_2$, 60%; j) H$_3$PO$_4$, EtOH, 50 °C, 6 h, 81%.

In summary, Hudlicky presents a shorted and concise synthesis of Tamiflu. Key intermediate 200 can be synthesised on a multi-gram scale in just five steps in 52% yield from the MAO cis-dihydrodiol, this suggests that this route could be industrially viable.
2.2 Project Aims
The frequent use of the ortho, meta arene cis-dihydrodiols in aminocyclitols synthesis has been shown. In contrast the ipso, ortho arene cis-diol has been remarkably underexploited. In a single report, originating from the Lewis group in 2011,76 starting with the MAO product, zwitterionic aminocyclitols, 204, were synthesised and tested for their inhibitory activity against a range of glycosidase enzymes. In this present work we aim to synthesise aminocyclitols with the side chain in the lower oxidation state, 205, in hope that they will have markedly different solubilities and biological activity. Figure 8.

Figure 8: Current research aims.
2.3 Results and Discussion

Starting with the ipso, otho arene cis diol 30, formation of acetonide-protected methyl ester 113, could be achieved via two routes: Either following the previously utilised TMS-diazomethane procedure 12164 or avoiding this expense via the use of coupling agents 206.18 Reduction to form the corresponding alcohol 207, was best achieved using mild LiBH₄. Silyl ether protection of the primary alcohol to form 208, was needed so it is not oxidised in subsequent steps. Scheme 39.

Scheme 39: Protection of microbial arene oxidation product.

These first protections steps are necessary due to the sensitive nature of these MAO derived diene diols as they readily undergo rearomatisation under acidic 209 or basic conditions 210.99 Notably the ipso, otho arene cis–diols have the ability to decompose via a decarboxylation mechanism, which isn’t possible for the more common ortho, meta cis–diols. Figure 9.

Figure 9: Rearomatisation of diene diols.
In order to form a final product in which there is controlled and predictable stereochemistry of all ring bound atoms, we considered the acynitroso hetero Diels–Alder methodology. It is well known that oxidation of N-hydroxycarbamate esters 212 with tetraethylammonium or sodium periodate allows formation of an acyl intermediate \textit{in situ} which is trapped by a diene 211, to give N-alkoxycarbonyl-3,6-dihydro-2H-I, 2-oxazines 213. Scheme 40.100

![Scheme 40: Nitroso–Diels–Alder reaction](image)

This method has been commonly applied in synthesis using the more common analogue from microbial arene oxidation 28, both in the synthesis of aminocyclitols87,101 and of (+)-lycoridine 102 and has shown both high levels of stereo- and regio–specificity in good yields.

For this work, experiments were carried out in accordance with literature precedent. Scheme 41.76

![Scheme 41: HDA reaction](image)

The reaction proceeded in good yields, with high levels of specificity with sole attack of the dienophile to the upper face with a preference of regio– selectivity with the carbamate and silyl ether groups on the same side, which is perhaps surprising on steric grounds.
Facial selectivity studied previously and facial selectivity observed here is consistent with that previously reported. For both of the products isolated a clear NOESY correlation was observed between the protons of the acetonide concave methyl groups and those of the alkene. This confirmed the approach of the dieneophile to the upper face of 208 in both cases. Figure 10 & Figure 11.

Figure 10: NOESY 2D-NMR of 214. Indicating acetonide alkene through space interaction

Figure 11 NOESY 2D-NMR of 215. Indicating acetonide alkene through space interaction

Identifying whether the Cbz group was distal 214 or proximal 215 to the CH₂OTBDMS side chain could not be achieved unambiguously by means of NOESY spectra alone. The assignments were instead inferred from the structure of a derivative synthesised subsequently (Figure 12) whose identity was established beyond doubt by X-ray crystallography.
2.3.1 Dihydroxylations
At this stage dihydroxylation was chosen for controlled facial selectivity for the introduction of the final oxygen functionality. Experiments were carried out in accordance with literature procedure.76 In the case of the minor distal regio isomer 214, a single product 216 was observed in a high yield. In contrast the major proximal regio isomer 215, gave the desired product 217 in a moderate yield as well as a side product 220.

The proposed structure of the byproduct would have arisen due to reaction between the nucleophilic hydroxyl oxygen and the nearby carbamate group, thus eliminating benzyl alcohol. Scheme 42. The structure was assigned to key analytical data, through analysis of molecular mass, a characteristic $\nu\text{(C=O)}$ absorbance at 1808 cm-1 and a ^{13}C NMR resonance at $\delta = 154.4$ ppm.

Additionally in support of the assigned structure 220, in an attempt to desilylate 216 to complete the synthesis, treatment of cis diol 216 with TBAF did not give the expected alcohol 221, but instead gave cyclic carbonate 222 in a 24% yield with no recovery of starting material. Scheme 43. Comparison of analytical data to 220.
indicated a Cyclic carbonate has $\nu_{(C=O)} = 1800 \text{ cm}^{-1}$ and a 13C NMR resonance at $\delta = 154.6$ ppm. Furthermore the structure of 222 was secured by X-ray crystallographic analysis. Figure 12.

Scheme 43: Desilylation. Reagents and conditions: b) TBAF, THF, 0 °C, 12 h, 24%.

Figure 12: ORTEP diagram of X showing ellipsoids at 50% probability. H atoms are shown as spheres of arbitrary radius.
2.3.2 Hydrogenations
As silicon deprotection was not viable at this stage due to risk of forming cyclic byproducts, an alternative strategy was implemented to perform the reductive hydrogenation to open the bridging N-O bond. Hydrogenation has been shown to be a common method of opening the N-O bridge of analogous compounds.76 Additionally under standard hydrogenation conditions we hope to perform multiple reductive transformations; deprotection of the Cbz group and reduction of the alkene.

Hydrogenations on both the alkenic and dihydroxylated Diels-Alder products, 214 – 217 were subjected to hydrogenation to yield the resulting ring opened products cleanly and in good to excellent yields 223 – 226. Scheme 44. Isolated yields of the oxygenated species 225 – 226 were significantly lower; this can be attributed to their retention on celite through purification.

![Scheme 44: Hydrogenation results](image-url)
2.3.3 De-protection of the silicon

With the ring opened products 223 – 226 in hand, removal of the silyl protection group to yield the corresponding alcohol was achieved with some difficulty. Scheme 45. Under standard TBAF silicon deprotection conditions the water soluble alcohol 227 was isolated contaminated with tetrabutylammonium salts. In order to remove the contaminant, 227 was subjected to acetonide formation to yield 228 which could be purified.

Scheme 45: De-protection of the silyl-alcohol.

The structure of poly-acetated 228 was tentatively inferred based on interpretation of 13C NMR spectra. Three quaternary acetal carbons were observed δ_C 110.5, 109.5 and 90.2 ppm which can be used to indicate ring size and hetero atom binding. According to literature studies and comparison to previously synthesised compounds, values of 110.5 & 109.5 are consistent with 5 membered rings bound through oxygen. The lower value of 90.2 ppm is indicative of an acetonide bound through nitrogen; this is in agreement of literature values of similar compounds where the quaternary carbon appears upfield, ranging from 90-95 ppm. The NMR signals do not suggest a six membered ring, for which one would expect to observe at 97-101 ppm.

The acetonide protecting groups were then cleaved with 1M HCl to give 229 in a moderate yield of 58% over 2 steps. Although successfully obtaining the first aminocyclitol, these results suggest that TBAF is an unsuitable desilylation reagent, due to the potential contamination and extra required steps, for use with these compounds.

Additionally final aminocyclitol salt 229 isolated via this route did not match the NMR spectra of the corresponding final compound 232 isolated further on within this
chapter. This suggests that possible epimerisation or rearrangement may have occurred via this route and again supports the unsuitability of this synthesis. A shorted and simpler route needs to be considered.

2.3.4 Acid deprotection – final step

To our advantage it was found that simple treatment of \(223 \rightarrow 226\) with 1M aqueous HCl followed by an organic wash to remove the silanol by product, resulted in cleavage of both the acetonide and silicon protecting groups cleanly and in high yields to give desired final products \(230 \rightarrow 233\). This was repeated in high yields for all corresponding compounds. Scheme 46.

\[
\begin{align*}
\text{223} & \quad \text{230} \\
\text{224} & \quad \text{231} \\
\text{225} & \quad \text{232} \\
\text{226} & \quad \text{233}
\end{align*}
\]

Scheme 46: Final Products.
2.3.5 Biological assays

This work has led to the successful synthesis of four compounds of aminocyclitol structure which were tested for glycosidase inhibitory activity.

![Scheme 47: Final compounds for testing](image)

Compounds synthesised were tested against α-glucosidase (type I from *S. cerevisiae*), β-glucosidase (almond), β-galactosidases (from *A. oryzae* and *E. coli*) and β-glucuronidases (from bovine liver, *E. coli* and *P. vulgata*); no inhibitory activity was observed at 100 μM. The yellow colour indicates all enzymes remained active and could still cleave the glycosidic bond to release the yellow para-nitro phenol from the sugar substrates.

![Figure 13: Biological assay results.](image)

2.4 Conclusion: Aminocyclitols

Although the compounds synthesised and tested were inactive as glycosidase inhibitors, herein we have showcased novel methodology starting with the microbial arene oxidation product through to polyhydroxylated aminated structures with up to six contiguous stereo-centres; all inserted under substrate control. Key steps include the hetero–Diels–Alder reaction and the advantageous two deprotection steps each performing multiple reactions in one pot.
3 Chapter 3: Cyclitols

Singlet oxygen formation of endoperoxides en route to novel cyclitols architectures.

3.1 Introduction

Cyclitols are polyhydroxylated alkanes, which are predominantly synthesised and studied due to their potential biological activity. Examples of biologically active compounds which contain the cyclitol motif include; Inositol hexanicotinate 234, a commercial food supplement which releases niacin (vitamin B₃). It breaks down to form myo-inositol, the most common naturally occurring inositol, which is known to play an important role in cell signalling. Bicylitol 235 displayed strong inhibitory activity of α-glucosidase in yeast, {Mehta, 2005 #262} and Narcislasine 90 is a potent antineoplastic agent. {Kornienko, 2008 #263} Figure 14.

![Inositol hexanicotinate 234, Bicylitol 235, Narcislasine 90]

Figure 14: Examples of compounds which display the cyclitol motif.

Synthesis of cyclitols traditionally relies on the availability naturally occurring inositols and carbohydrate material as a source of chirality. As a result, synthetic procedures often entail many protection, deprotection and auxiliary agents, and hence tend to be wasteful and inefficient. {Duchek, 2011 #200}

Cyclitol synthesis derived from the products of MAO offers a viable and efficient alternative. With chirality already embedded within the reactive and readily adaptable starting material, subsequent synthetic steps often proceed under substrate control though to enantiopure targets.

3.1.1 Cyclitols – Specific MAO singlet oxygen examples

Synthesis of cyclitols from ortho, meta diene diol products of MAO has been extensively investigated and reviewed. {Hudlicky, 1996 #265; Duchek, 2011 #200} (references therein & see introduction chapter). Here we highlight cyclitol examples.
with particular emphasis on the use of singlet oxygen methodology, focusing on the formation of bridged bicyclic complexes, and the procedures utilised to open such bridged systems are discussed below.

Photochemistry has been used to access cyclitols by Carless et al. (Carless, 1989 #266; Carless, 1993 #201; Carless, 1992 #215). Procedures utilised singlet oxygen cycloaddition to form the endoperoxide bridge in MAO compounds 237, followed by opening with thiourea to form alcohol 238. Further transformation, epoxidation and ring opening led to pinitol (±)-51 in 18% yield over 4 steps from the silylated diene 236. Scheme 48.

Scheme 48: Carless (Carless, 1989 #266) route to pinitol 51. Reagents and conditions: a) P. putida; b) TBDMSiCl, Et3N, CH2Cl2; c) O2, -80 °C, 32% over 3 steps; d) thiourea/MeOH; e) mCPBA, 95% 2 steps; f) CF3CO2H(aq), MeOH, 60%.

In addition Carless investigated further irradiation of endoperoxide 237 to form a mixture of β-epoxyketones 240 and 241 and bisepoxide 242. Catalytic amounts of triethylamine led to formation of hydroxyenones 243 and 244. Scheme 49.
Scheme 49: Carless\cite{Carless, 1989 #266} endoperoxide bridge opening. Reagents and conditions: a) $h\nu$, C$_6$H$_6$, 3:1:1 of 240:241:242; b) cat. Et$_3$N, C$_6$H$_6$, 100%.

In summary, Carless identified a range of methodologies for exploiting the endoperoxides derived from MAO through to novel architectures as potential building blocks in cyclitol chemistry.

Exploiting application of the less common ipso, otho MAO product from benzoic acid, Lewis \textit{et al.}\cite{Palframan, 2012 #224} in 2012 synthesised zeylenols and zeylenones using singlet oxygen methodology to obtain bicyclic endoperoxide species 154. Reductive opening using thiourea gave diols 156, whereas redox neutral Kornblum–DeLaMare fragmentation accessed ketone motif 155. Scheme 50.

Scheme 50: Synthesis of zeylenols via photooxygenation.\cite{Palframan, 2012 #224} Reagents and conditions: a) O$_2$, TPP, CCl$_4$, 12 h, 10°C, 81-90%; b) Pr$_2$NEt, CH$_2$Cl$_2$, 94-100%; c) thiourea, CH$_2$Cl$_2$/MeOH, r.t., 12 h, 63-99%.
3.1.2 Cyclitols – specific singlet oxygen examples

With cyclitol targets in mind, significant contribution to cyclitol synthesis employing singlet oxygen should be considered. The work of Balci et al. (Sutbeyaz, 1988 #251; Balci, 1985 #250; Balci, 1983 #249; Balci, 1983 #248; Balci, 1981 #247; Balci, 1981 #247; Balci, 1983 #248; Balci, 1983 #249; Balci, 1985 #250; Sutbeyaz, 1988 #251; Seçen, 1994 #55; Baran, 2008 #264; Cantekin, 2009 #62; Kilbas, 2011 #184; Baran, 2012 #246) over the last 20 years has developed methodology and synthesis based upon endoperoxide opening and cyclitol targets. In 2008 Balci (Baran, 2008 #264) synthesised various analogues of naturally occurring cyclitols, including novel architectures such as 250 which have been evaluated as glycosidase inhibitors. Scheme 51.

\[
\begin{align*}
\text{245} & \xrightarrow{a} \text{246} & \text{246} & \xrightarrow{b} \text{247} & \text{247} & \xrightarrow{c} \text{248} \\
& & \text{248} & \xrightarrow{d} \text{249} & \text{249} & \xrightarrow{e} \text{250}
\end{align*}
\]

Scheme 51: Balci (Baran, 2008 #264) 2008, Bishomo-inositols as glycosidase inhibitors. Reagents and conditions: a) \(^1\text{O}_2\), TPP, CH\(_2\)Cl\(_2\), hv, 12 h, 85%; b) thiourea, MeOH, 3 h then Py, Ac\(_2\)O, 12 h, 87%; c) OsO\(_4\), NMO, Acetone/H\(_2\)O, then Ac\(_2\)O, Py 25 h, 73%; d) NH\(_2\)SO\(_3\)H, Ac\(_2\)O/AcOH reflux 24 h, 84%; e) NH\(_3\), MeOH, 5 h, 91%.

Endoperoxide 246, derived from diene 245, was opened using mild reduction conditions with thiourea. Dihydroxylation conditions followed by acetylation gave the tetra acetate 248. Ring opening with sulfamic acid produced the hexa acetate 249, which was finally subjected to deacetylation with ammonia in methanol to give the desired Bishomo-Inositol 250. 250 was tested for its potential glycosidase inhibitory, with an inhibition rate of 57 ± 0.96% for 10 μM concentration of compound 250 which transposes to a calculated IC\(_{50}\) value of 8 μM.
Subsequent work from Balci {Baran, 2012 #246} further exploited singlet oxygen derived alkene 246, using alternative endoperoxide opening methodology to form other novel bishomo inositol derivatives 255 – 258. Scheme 52.

Scheme 52: Balci(Baran, 2012 #246) 2012, Bishomo-inositols as analogues. Reagents and conditions: a) \(^1\)O\(_2\), TPP, CH\(_2\)Cl\(_2\), hv, 12 h, 85%; b) CoTPP, CH\(_2\)Cl\(_2\), 0 °C, 2 h, 84%; c) H\(_2\)SO\(_4\), H\(_2\)O, 24 h, then Py, Ac\(_2\)O, 24 h, 252 15%, 253 50%, 254 19%; d) i) NH\(_2\)SO\(_3\)H, Ac\(_2\)O/AcOH reflux 24 h, 70%; ii) NH\(_3\), MeOH, 5 h, 96%. e) i) NH\(_2\)SO\(_3\)H, Ac\(_2\)O/AcOH reflux 24 h, 74%; ii) NH\(_3\), MeOH, 5 h, 92%; f) i) NH\(_2\)SO\(_3\)H, Ac\(_2\)O/AcOH reflux 24 h; ii) NH\(_3\), MeOH, 5 h, 257 97%, 258 90%.

In this work Balci exploited his known methodology {Balci, 1985 #250;Balci, 1983 #248;Balci, 1983 #249} of opening unsaturated endoperoxides with cobalt(II) tetraphenylporphyrin (CoTPP) to form the corresponding diepoxides with syn configuration. This work then followed similar procedures to his 2008 work with acidic ring opening followed directly by acetylation. Surprisingly tetra-acetate compounds 252 – 254 were separable via column chromatography, and fully identified and characterised based on their NMR spectroscopic data. Interestingly, formation of bishomo–chiro–inositol was explained via neighbouring group participation of the acetate group which lead to inversion of one of the stereocentres. It is also interesting to consider that this neighbouring group participation was not observed for the other structures. Scheme 53.
Scheme 53: Neighbouring group participation, explanation of inversion of stereochemistry.

From 2013, Balci and co-workers’ most recent publication [Baran, 2013 #371] report the first example of three sequential singlet oxygen molecules being incorporated in a cascade process. Photooxygenation of diene 260 with a 500 W projection lamp, in CH₂Cl₂ at 0 °C afforded endoperoxide 264. Further irradiation led to 264 undergoing a cascade photooxygenation reaction to form the two regioisomeric tricyclic bis-endoper-oxides 261 and 262. The formation of the major regioisomer 261 was attributed to the second attack of singlet oxygen to the more substituted double bond in intermediate diene endoperoxide 264, as supported with their previous findings [Yardimci, 2006 #372]. Following the proposed mechanism, diene 264 undergoes an ene reaction to form diene 266 which then reacts for the third and final time with singlet oxygen to form final product 261. Scheme 54.
Exploiting the highly functionalized structure of endoperoxide 261 towards cyclitol motifs, Balci followed his previous experimental precedent of thiourea endoperoxide opening, acetate protection, epoxidation, and deprotection. Balci displayed elegant synthesis of carbasugar 270 in a 60% yield over 4 steps from the endoperoxide 261. Scheme 55.

Scheme 55: Balci (Baran, 2013 #371) Carbasugar synthesis from endoperoxides. Reagents and conditions: a) i) thiourea/MeOH ii) Ac₂O, Py, 82%; b) mCPBA, CH₂Cl₂, 67%; c) i) H⁺/H₂O ii) Ac₂O, Py, 78%; d) NH₃, MeOH, 95%.
In summary, Balci’s use of singlet oxygen photochemistry has allowed access to highly oxygenated and functionalised architectures which prove ideal substrates for the synthesis of carbasugars. In many cases procedures obtain single enantiomers, which have been proven to be biologically active. Balci’s simple protocols highlight the ease of handling and purification of these types of structures. These approaches could be applied to other dienes, for example those derived from MAO, en route to enatio-pure carbasugar motifs.

3.2 Aims
The aim of this project was to synthesise inositol analogues 271 from MAO products 30. Utilising singlet oxygen methodology already president within the Lewis group, and methodology inspired from Balci’s work discussed above. The proposed synthetic procedure is shown below. Scheme 56.

![Scheme 56: Proposed route to inositol analogues from MAO product 30.](image)

3.3 Results and Discussion
Following literature procedures through to known compounds, previously discussed methyl ester 113 was synthesised via two routes. (Chapter 1 Aminocyclitols) Scheme 57.

![Scheme 57: Synthesis of methyl ester 113.](image)
Formation of the reduced side chain, 207, was achieved using LiAlH$_4$, with a reasonable yield of 77% which is enhanced from previous reports using LiBH$_4$ 68%. {Palframan, 2012 #224} Standard acetylation proceeded well to form 274. Scheme 58.

Scheme 58: Synthesis of acetylated diene 274.

Following synthetic procedures from Widdowson {Jenkins, 1995 #11} Balci {Baran, 2012 #246} and Lewis {Palframan, 2012 #224} reaction of 274 with 1O$_2$ yielded endoperoxide 275, in varying yields from 36% to 68% recovering starting material and in one instance a byproduct 276. Higher yields were obtained by utilising slow addition of TPP (5,10,15,20-Tetraphenyl-21H,23H-porphine) dissolved in CH$_2$Cl$_2$ and irradiating for at least 10 h. It was found that after this time reaction progression slowed. After approximately 10 h the purple pink colour of the solution would start to discolour to green/brown. This indicated that the TPP had degraded and was deactivated. Concentrated reaction solutions which contained more TPP did not precede any faster and seemed to degrade even quicker. Additionally these yields are lower than those previously reported, {Palframan, 2012 #224} however avoid the use of extremely toxic carbon tetrachloride. Scheme 59.

Scheme 59: 1O$_2$ yielded endoperoxide 275 and byproduct 276.

The unexpected byproduct 276 was fully characterised by interpretation of 2D-NMR spectra and mass spectrometry. Additional support for this structure comes from comparison to known literature compound 277, which shows very similar chemical resonances and splitting pattern in 1H NMR spectra. This also supports the proposed stereochemistry around the epoxide. Table 2. {Myers, 2001 #12}
Scheme 60: Myers’ (Myers, 2001 #12) synthesised epoxide, for comparison to byproduct 276.

<table>
<thead>
<tr>
<th></th>
<th>Compound 276</th>
<th>Myers 277 {Myers, 2001 #12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2</td>
<td>6.09 (1H, dd, J = 10.0, 4.0 Hz)</td>
<td>6.18 (1H, dd, J = 10.4, 4.4 Hz)</td>
</tr>
<tr>
<td>H3</td>
<td>5.70 (1H, dt, J = 10.0 1.5 Hz)</td>
<td>5.84 (1H, dt, J = 10.0, 1.2 Hz)</td>
</tr>
<tr>
<td>H5</td>
<td>4.65 (1H, t, J = 1.0 Hz)</td>
<td>5.17 (1H, m)</td>
</tr>
<tr>
<td>H4</td>
<td>3.64 (1H, dd, J = 3.5, 2.5 Hz)</td>
<td>3.65 (1H, dd, 1H, J = 3.6, 2.0 Hz)</td>
</tr>
<tr>
<td>H3</td>
<td>3.37 (1H, m)</td>
<td>3.39 (1H, m)</td>
</tr>
</tbody>
</table>

Table 2: Comparison of byproduct 276 to literature NMR spectroscopy values.

In consideration of how byproduct 276 was formed, a mechanism has been proposed below. Scheme 61. Literature suggests that singlet oxygen can react with alkenes via an ene-reaction, to form intermediate peroxide 278. This intermediate has been previously observed by Balci in 2013, {Baran, 2013 #371} Davis 1996, {Davis, 1996 #399} and Carless in 1989. {Carless, 1989 #266} Decomposition and rearrangement through radical reactions leads to formation of the observed by product 276. {Frimer, 1979 #400}

Scheme 61: Proposed mechanism for the formation of byproduct 276.

Following methodology from Balci {Baran, 2012 #246; Balci, 1983 #248; Balci, 1983 #249; Balci, 1985 #250; Sutbeyaz, 1988 #251} unsaturated bicyclic endoperoxides can be converted to the diepoxide with syn-configuration on treatment with cobalt (II)
tetraphenylporphyrin (CoTPP). On treatment of 275 under these conditions, bisepoxide 281 was isolated in near quantitative yields. Scheme 62.

![Scheme 62: Formation of endoperoxide 281.](image)

Opening of the bisepoxide 281 was evaluated using various experimental procedures. Attempts via acid hydrolysis and ammonia in methanol were unsuccessful and both resulted only in cleavage of the acetate to form alcohol 272. Scheme 63.

![Scheme 63: Diepoxide opening resulted in acetal hydrolysis to form 272.](image)

Attempts at nitrogen incorporation was undertaken following procedures using Yb(OTf)_3, MsOH, {Kaburagi, 2007 #311} NaN_3{Cristina, 1999 #253} all attempts were unsuccessful. Scheme 64.

![Scheme 64: Endoperoxide opening using nitrogen nucleophiles, unsuccessful.](image)

Attempts to open the bisepoxide 281 under forcing conditions of refluxed aqueous acid to form 283 was attempted and unsuccessful. The expected poly-ol product, from aqueous acid ring opening, 283 would be extremely polar and difficult to column, purify or isolate. Considering methodology from Balci{Baran, 2012 #246}, in which acid catalysed ring opening was instantly followed by acetylation, the
expected poly acetals products should be able to be purified by column chromatography.

Following this procedure, 281 was subjected to aqueous acid to form 283 in situ, then subsequent acetylation to form 284. Variations in reaction time, equivalents of all reagents and temperature were investigated. Crude reaction mixtures did indicate formation of acetylated compounds; however these proved very difficult to isolate and purify. This is potentially due to partially acetylated products all having very similar polarity and hence extremely difficult to separate due to co-elution via column chromatography. Scheme 65.

Scheme 65: Formation of polyacetals 284.

In a rare example, a single poly acetate product (later assigned as 290A) was isolated in pure form from one of these reactions, 3mg <1% yield. Enough material was isolated only to obtain full NMR data (no further derivatisation was undertaken). Below, rationale and discussion follows to suggest which product and conformer has been isolated.

Initial inspection of the NMR spectra indicates that the compound is a tetra acetate, with four distinct CH₃ regions between 1.99 – 2.20 ppm. Additionally the acetonide protecting group has been removed as there is an absence of quaternary acetonide carbon signal in the ¹³C spectrum and the methyl acetonide groups from the ¹H proton spectrum. Figure 15 & Figure 16.
In consideration of the mechanism and possible products that could be formed from the reaction of acidic water ring opening the bisepoxide, four possible products 288 - 291 may be formed. Scheme 66.
Scheme 66: Possible products from acid water hydrolysis of bisepoxide 285

Via interpretation of the proton NMR spectra of the isolated tetra acetate, coupling constants of the ring protons suggest a $H_{ax} - H_{ax} - H_{eq} - H_2 - H_2$ arrangement around the cyclohexane ring according to coupling constants. (Minch, 1994 #258; Karplus, 1963 #257) The Karplus equation gives an estimation of $^3J_{H-H}$ proton coupling constants based on their dihedral angle, and *vice versa*. The strict relationship is only applied to unstrained, saturated unsubstituted hydrocarbons, however the equation and its more complicated variants can be applied to deduce the conformation of ring systems. E.g. cyclohexane, (Garbisch, 1968 #260; Karplus, 1963 #257) monosubstituted cyclohexanes, (Jensen, 1969 #259) polyhydroxylated cyclohexanes. (McCasland, 1968 #261) In summary, larger $^3J_{H-H}$ proton coupling constants are observed between $H_{ax} - H_{ax}$ protons (9 – 12 Hz) and values are typically less for $H_{eq} - H_{ax}$ or $H_{eq} - H_{eq}$ (3 – 4 Hz).

Analysis of NMR spectra of isolated polyacetate indicates a large coupling constant of 10 Hz, between the resonances at 5.09 ppm and 4.29 ppm, indicating a $H_{ax} - H_{ax}$ conformation. If 5.09 ppm is an axial position, within the proposed structure, this proton must be adjacent to the quaternary carbon, hence only coupling to one other proton, as we do not observe any smaller splitting due to $H_{ax} - H_{eq}$ coupling.
Proton resonance at 4.29 ppm is split into a double doublet, coupling to 5.91 ppm with a coupling constant of 4.5 Hz, indicating a $H_{ax} - H_{eq}$ interaction. All other peaks appear as singlets, suggesting the angle between H_{eq} and subsequent protons is ~90°, hence it cannot be stated with certainty whether the protons are in an axial or equatorial environment. Figure 15.

In consideration of all possible conformations (simplified to be based on cyclohexane conformations) of all possible products, a $H_{ax} - H_{ax} - H_{eq}$ relationship needs to be present, with the first H_{ax} adjacent to the quaternary carbon. Two possible conformers have been identified which display this pattern. Figure 17. (Assignments of acetate positions has been inferred later, substituents have been simplified to OR in this instance, where R = H or Ac)
Conformer 289B has been discounted as NOESY 2D NMR spectroscopy indicates through space interaction between H₁, (identified at 4.29 ppm as a doublet of doublets, displaying coupling to adjacent axial and equatorial protons) and CH₂, which is only possible in the conformation of 290A. Figure 18.
Additionally Conformer 289B has been discounted as from proposed conformational order, $6H_{ax} - 1H_{ax} - 2H_{eq} - 3H_{eq} - 4H_{ax}$, expected coupling between $3H_{eq} - 4H_{ax}$ with a coupling constant between 3 – 4 Hz is not observed. This argument further supports the choice of conformer 290A, as from proposed conformational order, $6H_{ax} - 1H_{ax} - 2H_{eq} - 3H_{eq} - 4H_{eq}$, no coupling between $3H_{eq} - 4H_{eq}$ is observed; hence $3H_{eq}$ and $4H_{eq}$ appear as singlets.

Figure 18: NOESY spectra of poly acetate, indicating through space interaction between $H^1 4.29$ ppm and CH_2.

Further consideration of 2D spectroscopic assignments of carbons and other protons can be made, albeit not fully due to the two ambiguous singlet resonances which cannot be assigned as they both show NOESY through space correlation to 5.08 ppm. Figure 18. Additional ambiguity arises, as regards the question of which alcohols are acetylated. It could be assumed that the most down field 1H resonances (5.91, 5.56, 5.09 ppm and the CH_2) are acetylated. On this basis, 290A is tentatively assigned the structure shown in Figure 19.
3.4 Conclusion

Despite being able to fully characterise this compound, it is obvious that under these reaction conditions, multiple products form of similar polarity, and as a result are difficult to purify and separate. Additionally, it is possible that neighbouring group participation could be in effect, as shown with Balci, {Baran, 2012 #246} which would further complicate mixture and lead to difficult chromatographic separations.

Future work would look at selective ring opening, with the use of larger nucleophiles to induce some selectivity. At this point, no further work was carried out in this area.
4 Chapter 4: Bromine Substrates for BZDO

4.1 Introduction: Halogenated Substrates MAO

There are many examples within the literature of halogenated, substituted and polycyclic aromatic compounds which when subjected to MAO give ortho, meta substituted dienes. Scheme 67. This field has been reviewed in the earlier literature introduction.

\[\text{Scheme 67: Dioxygenase enzymes which metabolise substituted aromatics.} \]

Substituted benzoate substrates that may be elaborated via BZDO mediated dihydroxylation to give ipso, ortho substituted dienes are comparably less exploited. From the first report of A. eutrophus B9, Reiner & Hageman 1971, identified 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid as the MAO product of benzoic acid. This preliminary study indicated that substituted benozates could be metabolised, albeit at appreciably slower rates. Scheme 68.

\[\text{Scheme 68: Reiner & Hageman 1971, A. eutrophus B9 and substituted aromatics.} \]

Two years later, in 1973, Knackmuss and Reineke investigated mono, di-chloro and methyl- substituted benzoates, and although A. eutrophus B9 showed the ability to metabolise such substrates, again rates were 10-1000 times slower.
depending on the specific substrate. This study was further expanded in 197827,28 to include bromo- and fluorobenzoates, and once again a decrease in rate was observed, which was attributed to the steric effects of the substituents. The relative rates of oxidation, according to the substituent were established to be F>Cl>Me>Br. Regarding regioselectivity, \textit{meta} substituted benzoates were metabolised more readily than \textit{ortho} or \textit{para}. For \textit{meta}-substituted substrates, a preference for formation of the 3-substituted diene product 38 over the 5-substituted isomer 39 was reported. Scheme 69.

\begin{center}
\includegraphics[width=0.8\textwidth]{Scheme69.png}
\end{center}

\textbf{Scheme 69: Knackmuss 1978, preference for 3-substituted diene product 38 observed.}27,28

Later Knackmuss in 1980136 found that \textit{A. eutrophus} B9 had the ability to use 2-fluorobenzoate 294 as a sole carbon source and produce 6-fluoro-3,5-cyclohexadiene-1,2-diol-1-carboxylic acid 295 as a single product. Knackmuss attributed this to a defective DHB-dehydrogenase enzyme, preventing formation of 3-fluoro catechol 296. Scheme 4.

\begin{center}
\includegraphics[width=0.8\textwidth]{Scheme70.png}
\end{center}

\textbf{Scheme 70: Knackmuss 1980, identified that the reason for accumulation of diene 295 was due to the defective enzyme.}136

Other organisms expressing BZDOs have been show to metabolise substituted benzoates. For example, \textit{Pseudomonas mt-2}.137,138 and \textit{P. putida} JT 10319 have been used for the biotransformation of fluorinated benzoates. BZDO has also been expressed in recombinant \textit{E.coli}.139-141

As highlighted above there is a plethora of research, dating back to the 1980’s, investigating whether substituted benzoates can be metabolised by dioxygenase-
expressing bacteria. With a range of homochiral products identified and dioxygenase expression in stable recombinant strains, it is surprising that there is very little use of these substituted benzoate products in further synthetic applications.

The sole literature example, displaying the synthetic use of substituted ipso, ortho cis-diols, was reported by Banwell et al. in their approach to vinblastine. Scheme 71. With access to P.putida BGXM1, which contains enzymes capable of oxidising toluenes to benzoic acids and TADO enzymes capable of the di-hydroxylation of toluates; Banwell utilised this in an elegant one pot microbial transformation of meta-ethyltoluene 297 via meta-ethylbenzoic acid 298 to targeted metabolite 299 in >55% yield. This was then converted into its derivative 300 using conventional chemical techniques, for analysis and determination of absolute stereochemistry via single crystal X-ray analysis.

Scheme 71: Banwell 2005, one pot synthesis of chiral diene 299 with P.putida BGXM1.142

4.2 Aims and Previous work
The work presented here completes a set of studies from our previous academic report143 which has since been compiled and published.144

Previous studies sought to subject meta-bromo benzoic acid 301 to MAO, to identify and isolate enantiopure cis-diol diene 302. As substituted chiral diol dienes of this origin are underexploited in synthesis, it was sought to scope the synthetic viability of possible transformations of this building block.

This present work goes further to expand the synthetic scope and viability of 302, specifically looking at formation of tricarbonyliron(0) complexes and cross-coupling reactions.
Our previous work143 had successfully provided a route to bromo diene 304, which was used at the starting point for subsequent synthetic procedures.

\[\text{Scheme 73: Previous synthetic work} 143,144 \]

4.3 Results and Discussion

4.3.1 Iron complexes – Relevant Literature Reports

Tricarbonyl (cyclohexadiene) iron complexes were first reported by Pauson in 1958.145 They are commonly used as intermediates in synthesis as they can 1) protect reactive diene functionality to prevent re-aromatisation 2) impart a sense of stereo control in further synthetic transformations. 3) act to separate prochiral dienes.146 Rigid cyclohexadiene iron(0)tricarbonyl complexes have been shown to exhibit excellent stereo-induction, upon complexation.147-149 Scheme 74.

\[\text{Scheme 74: Complexation of dienes 305 with di-ironnonacarbonyl to give co-ordinated complexes 306.} \]

Previous work within the Lewis group found that on complexation of compound 121 with di-ironnonacarbonyl a single product 136 was obtained whereby iron is co-ordinated solely to the bottom face of the diene system. This is attributed to a favourable interaction between the electron donating hydroxyl groups and the incoming 16 valence-electron iron carbonyl fragment.68 In contrast, in an attempt to
co-ordinate iron with compound 113, a product 138 is formed due to acetonide migration.69

\[
\text{[Scheme 75: Previous iron work68,69]
}

It was thought that investigation of complexation of the bromo-diene compound 304 with iron might give mechanistic insight into the previous findings.

\subsection{4.3.2 Iron complexes – This work}
Complexation of 304 with di-ironnonacarbonyl gave a mixture of 307, 308 and recovered starting material 304. Scheme 76. This suggests the bromodiene is less reactive than the unsubstituted diene analogues, which furnished products in 55\% yield of 136 and 26\% yield of 138 (under the same reaction conditions). This could be attributed to steric clash between the incoming iron fragment and the large bromine atom.

The absolute structure of 307 was determined via X-ray crystallography. Figure 20. In contrast, compound 307 was not crystalline and proved unstable, attributed to the steric bulk of both the iron and the acetonide on the same face.

\[
\text{[Scheme 76: Complexation of 304 with di-ironnonacarbonyl gave a mixture of 307, 308 and r.s.m.]
\]
Figure 20: Solid state structure of 307. Of two independent molecules in the unit cell, only one is shown for clarity. Ellipsoids are represented at 50% probability. H atoms are shown as spheres of arbitrary radius.

Complexation products 307 and 308 were the only products observed; acetonide rearrangement was not observed. This supports the previously proposed mechanism for formation of 138, namely clockwise acetonide migration. Scheme 77.

Scheme 77: Proposed mechanism of acetonide migration. 69
In the present case, the meta-bromo substituent imparts steric bulk at the carbon which would be attacked by the oxygen lone pair in the acetonide migration process. The presence of the atom may play a role in blocking attack of the oxygen lone pair.

4.3.3 Cross-coupling reactions – Relevant Literature Reports

Palladium-catalysed cross-coupling reactions have been widely implemented with the more common ortho, meta cis-diol product from microbial oxidation, 312.

Stille cross-coupling reactions are the most prevalent within the literature, with more recent examples using Suzuki cross-coupling due to their cleaner reaction conditions, avoiding the use of tin. Songashira cross-coupling conditions have also been utilised. Compound 302 has not previously been synthesised for synthetic purposes, therefore this work aimed to scope the possibilities of using 304 in cross-coupling reactions. Scheme 78.

![Scheme 78: Previous cross-coupling chemistry](image)

4.3.4 Cross-coupling reactions – This work

Suzuki-Miyaura coupling was carried out in accordance with reported experimental procedure. The desired product 315 was not observed in the first instance; however the free acid 314 was isolated and subjected to treatment with TMS-diazomethane to form the methyl ester 315 in an overall yield of 30% over two steps. Scheme 79. The free acid 314 may have formed due to the 18 equivalents of potassium carbonate used, which may result in basic hydrolysis of ester 307 to form the acid 314.
Scheme 79: Suzuki reaction to form coupled methyl ester 315.

Sonogashira coupling161 of 304 was carried out in accordance with literature procedure87 to give methyl ester 316 in 98%. Scheme 80.

Scheme 80: Sonogashira coupling.

It was sought to exploit further the synthetic utility of the Sonogashira product 316. Deprotection of the TIPS silicon protecting group gave the terminal acetylene 317. This was then subjected to copper catalysed Huisgen162 cycloaddition with benzyl azide to form a 1,2,3-triazole, 318. These reactions, commonly referred to as an example of ‘click reactions’ are known to proceed in high yields. Scheme 81.

Scheme 81: Azide click cycloaddition
4.3.5 Conclusions
This expansion of previous work has shown that the bromo-diene \(^{304}\), although less reactive than its un-substituted counterpart \(^{121}\), can co-ordinate to form iron complexes. The bromo complex does not rearrange which supports the proposed mechanism from previous work.\(^{69}\)

This work has also demonstrated the synthetic utility of the bromine substituent as a synthetic handle in cross-coupling reactions. Both Suzuki and Sonogashira couplings have proven successful with moderate to excellent yields. Further expansion with azide ‘click’ chemistry illustrates the synthetic utility and stability of the compound, enabling diversification to other chemical intermediates.

The formation of cross-coupling products especially \(^{315}\) is of particular significance, as these structures are arene dihydrodiol derivatives that would not be accessible by direct metabolism of the corresponding arene substrates. Scheme 82.

Scheme 82: Dihydrodiol product \(^{315}\) synthesised via this work, potentially inaccessible dihydroxylation product of \(^{320}\).
Chapter 5: Introduction Asymmetric Epoxidations

5.1 Background to Asymmetric Epoxidations

Catalytic asymmetric epoxidations are an important class of chemical transformation as they enable the generation of up to two stereogenic centres and a reactive epoxide which can be further functionalised. This enables such methodology to be used towards the synthesis of enantiomerically pure chemical building blocks for the synthesis of complex biologically active molecules. The importance of this transformation was most notably recognised by the Nobel Prize in chemistry from 2001, awarded for asymmetric catalysis, where Sharpless (one of three winners) gained recognition for his work towards directed asymmetric epoxidation catalysis. Sharpless’ and Katsuki’s seminal work employed Ti(O\text{Pr})_4 as the transition metal catalyst precursor, TBHP (tert-butyl hydrogen peroxide) as the oxidant and DET (diethyltartrate) as the chiral additive, achieving >90% ee on allylic alcohol substrates \(321\). Scheme 83.

\[\text{Scheme 83: Sharpless asymmetric epoxidation.}\]

The use of chiral titanium complexes, developed by Sharpless has seen much innovation, development and progress since his initial work in the 1980s. This area has been extensively reviewed. This work has been followed by the next significant milestone, development of manganese-salen complexes by Katsuki et al. and Jacobsen et al. Scheme 84.
Jacobsen and Katsuki showed the enantioselective epoxidations of unfunctionalised alkyl- and aryl- substituted olefins. The catalysts show strong structural resemblance to porphyrin-metal complexes that are known in biological systems. The procedure showed excellent enantioselectivities for specific substrates with values 90 – 95% ee.\(^{166}\)

The advantages of the Jacobson-Katsuki epoxidation are: \(^{168}\)

1. Chiral Schiff-base salen ligands are easily synthesised via the condensation of readily available \(C_2\) symmetric chiral diamines and substituted salicylaldehydes
2. Expands the substrate scope from Sharpless’ allylic alcohols to a variety of conjugated, non-conjugated, substituted and functionalised alkenes.
3. Cyclic and acyclic \((Z)\)-1,2-disubstituted alkenes are epoxidised with almost 100% enantioselectivity.
4. \((E)\)-1,2-disubstituted oelphins are poor substrates for Jacobsen’s catalyst 326, but work better with Katsuki’s 327.
5. Cheap and readily available stoichiometric oxidants can be used e.g. NaOCl, \(m\)CPBA and PhIO.
5.2 Organocatalytic Asymmetric Epoxidation

From a sustainability perspective organocatalysis can be viewed to be beneficial as it eliminates the use of metals, which (depending on the metal) could be scarce, toxic, and expensive or require extensive processing, mining or catalyst and ligand synthesis.

A metal free epoxidation example is that from Corey and Chaykovsky,169 who in 1962 developed methodology for the generation of epoxides from the corresponding aldehydes or ketones \textbf{328}. A reactive sulfur ylide \textbf{329} is prepared \textit{in situ} from deprotonation of the corresponding sulfonium salt.170 Development has shown that the use of chiral sulfides in asymmetric epoxidations is possible.171,172

An example is from Metzner et al., who developed a new generation of 2,5-dimethylthiolanes with a locked conformation to promote the asymmetric addition of chiral sulfonium ylides to aldehydes. The novel chiral sulfur derivative succeeded in the synthesis of \textit{trans}-stilbene oxide derivatives with enantiomeric ratios ranging from 90 – 96\% ee.171 Scheme 85.

Scheme 85: Metzner et al.171 Asymmetric epoxidations using chiral sulfur ylides.

5.2.1 Chiral Ketones

The use of chiral ketones \textbf{331} in the presence of Oxone\textregistered (K\textsubscript{2}SO\textsubscript{4}, KHSO\textsubscript{4} and KHSO\textsubscript{5}) generates chiral dioxiranes \textbf{332}, which are capable of oxidising alkenes to form the corresponding epoxides \textbf{333}, regenerating the chiral ketone \textbf{331}. For this reason dioxiranes are considered to be environmentally friendly and versatile oxidizing agents. Scheme 86.
Scheme 86: Generic oxidation of alkenes by chiral dioxiranes generated in situ from chiral ketone and Oxone.

In the seminal publication of Curci et al., in 1984173 the first chiral ketone catalysed asymmetric epoxidation was reported. Epoxidation of 1-methylcyclohexene and trans-\(\beta\)-methylstyrene with chiral ketone 335 and 336 in biphasic systems led to good yields and up to 12.5\% ee. Later in 1996, Yang174 exploited the use of binaphthylene chiral ketones 337, with intention of the \(C_2\) symmetry aiding selectivity and activity of the catalyst. The electron withdrawing nature of 337 enabled it to be an effective catalyst, with high conversions obtained at 10 mol\%. It was found that increasing the size of the \textit{para} substituent of \textit{trans} stilbenes substrates improved the selectivity from 47 to 87\% ee. Following on from Yang’s work many other \(C_2\) symmetric biphenyl ketones have been evaluated, including the work of Denmark et al.,175 who developed 7 membered biaryl ketone 338 to achieve good yields and selectivities up to 94\% ee for \textit{trans} stilbene. Scheme 87.

Scheme 87: Examples of Chiral Ketones for Epoxidation of Alkenes

In 1998, Armstrong and co-workers reported bicyclic ketones 339 – 341 to be used with Oxone to enantioselectively epoxidise a variety of alkene substrates. Scheme 88.176,177 Catalyst 339 achieved 83\% ee for a variety of substrates. Replacing the nitrogen bridge head with oxygen, 340, lead to further improvements, up to 98\% ee, with acetate substituents giving the best selectivities in both cases. More
recently Armstrong has investigated a new class of tetrahydropyran-4-one catalysts.178 Catalyst 341 was considered to be more stable than the bicyclic counterparts, with as low as 10 mol\% being used to obtain 100\% conversion. Despite slightly lowered enantioselectivities (43 to 83\% ee) compared to the bridged bicyclic systems, this suggests that this bridge within the structure does not contribute greatly to the observed enantioselectivity. However Armstrong concluded that the α-acyloxy group seemed to play an important role in reactivity and selectivity.

Undoubtedly the most well-known organocatalytic asymmetric epoxidation is the work of Shi \textit{et al}.173,179-181 Shi and co-workers developed a range of chiral ketones derived from sugars. The easily synthesised catalysts are now commercially available and have been employed in the synthesis of natural products.182

Shi’s principal catalyst 344 was synthesised from d-fructose 342, with the other enantiomer easily accessible from l-sorbose which can be converted into l-fructose, this method avoids incurring excessive cost of using l-fructose directly.183 The catalyst 344 was designed based on three key principles179
\begin{enumerate}
\item The stereogenic centres are close to the reacting centre, resulting in efficient stereochemical communication between substrate and catalyst.
\item The presence of the fused ring and quaternary centre α to the carbonyl group minimises the epimerisation of the stereogenic centres.
\item One face of the catalyst is sterically blocked to limit the possible competing approaches.
\end{enumerate}
It was found that pH has a large impact on the epoxidation reactions.\(^{180}\) Earlier studies were carried out at pH 7 – 8 in an attempt to reduce the decomposition of Oxone, however this resulted in the decomposition of ketone catalyst 344, and formation of assumed byproducts 348 – 349, most likely due to Baeyer – Villiger oxidation. (N.B. byproducts 348 and 349 were never isolated from this reaction, attributed to their decomposition on work up and affinity to remain within the aqueous phase, identification of byproducts was investigated under controlled reaction conditions. Scheme 92.) The optimal pH of 10.5 was achieved with addition of K\(_2\)CO\(_3\) and saw conversion increase from 5% to >80%, this was attributed to the improved formation of anion 346 and subsequent formation of the dioxirane 347 within the catalytic cycle.\(^{184}\) Scheme 90.
Exploring the substrate scope of Shi catalyst 344, unfuctionalised trans and tri substituted olefins, as well as allylic, homoallylic, conjugated dienes, silyl enol ethers and esters were investigated. This shows broad substrate scope and good functional group tolerances.

Table 3.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Yield (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>85</td>
<td>98</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>78</td>
<td>96</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>83</td>
<td>95</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>92</td>
<td>92</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>68</td>
<td>92</td>
</tr>
</tbody>
</table>

Table 3: Asymmetric epoxidation of trans and trisubstituted olefins with Shi catalyst 344. Reagents and conditions: Ketone (0.3 equiv), Oxone (1.38 equiv), K$_2$CO$_3$ (5.8 equiv), MeCN-DMM-0.5 M Na$_2$B$_4$O$_7$·10H$_2$O of aq Na$_2$EDTA (1:2:2 v/v).

The high catalyst loadings are attributed to the competing Baeyer – Villiger decomposition pathways. Scheme 90. In attempts to reduce this, several different catalyst iterations and designs have been investigated. 184 Scheme 91.

Scheme 91: Different generation of Shi chiral ketone catalyst.

Catalyst 350 with the fused oxazolidinone imparted enhanced electron withdrawing characteristics, enabling catalyst loading to be reduced to 1 – 5 mol%. Since dioxiranes are electrophilic reagents acetate derived catalyst 351 proved to be an efficient catalyst for electron deficient α,β- unsaturated ketones, 57% – 96% yield and 82% – 97% ee, an improvement from the original catalyst 344. Scheme 91.
5.2.2 Chiral Carbocycles Ketone Catalysts

As this thesis concerns carbocyclic compounds, (aminocarbasugars and cyclitol chapter) it is interesting to note the variety of carbocycle research which followed from Shi’s seminal publications.

In 2001 Shi investigated carbocyclic chiral ketones derived in 10 steps from from (−)-quinic acid; these included the carbocyclic analogue 352 to the original Shi catalyst 344. Scheme 92. Shi noted that the most dramatic effect of replacing the pyranose oxygen with CH$_2$ was the decrease in reactivity. Catalyst 352 gave <10% conversion in 8 h of trans-stilbene, compared to 75% conversion in 1.5 h for the Shi Catalyst 344. This indicated that the pyranose oxygen is beneficial for the reactivity, the electron withdrawing nature inductively activates the carbonyl to attack from the Oxone, and further activates the electrophilic dioxiranes to attack from the alkene substrate.

Additionally under controlled oxidative Baeyer – Villiger reactions, it was found that carbocycle ketone 352 formed substantial amounts of the corresponding lactones 353 – 354, suggesting the CH$_2$ enhances the relative migratory aptitude of the spiro carbon.

![Scheme 92: Shi carbocyclic chiral ketone](image)

Structural X-Ray analysis of 352 indicated slight differences in conformational shape compared to the original catalyst, destabilizing steric interactions were discussed as an explanation for decreased activity of catalyst 352. Figure 21. It was also noted that carbocyclic ketone 344 gave higher ee’s for cis-olefins indicating a different type of olefin requires different structural elements for stereoselectivity.
Following this, in 2004 Shi presented a direct comparison and study on transition states for chiral ketones 355 and 356.186 Scheme 93. Ketone 356 was found to be an active catalyst for the styrenes, ((R)-styrene oxide was obtained with 20 mol% 356 at -10 °C over 8 h which gave 100% conversion and 90% ee). Higher ee’s obtained with carbocycle 356 rather than 355 were attributed to the replacement of the pyranose oxygen with CH\textsubscript{2}. Experiments probed the substrate structures and suggested favourable transition states and corresponding favourable orbital interactions to explain observed selectivities of this challenging class of styrene substrates.

Scheme 93: Shi carbocyclic ketone 356, compariative study to pyranose 355.

Further carbocyclic ketone structures have been investigated for their epoxidation capabilities, including structure 357, and its derivatives.187,188 Investigation into this
class of C_2 symmetric ketones highlighted the importance of ketone conformation in reactivity and selectivity of the catalyst. Scheme 94.

During investigations into the position of the spiro structural element in the carbocycle ketones, Shi evaluated the reactivity and selectivity of structures 358 – 359.185 Results indicated lower enantioselectivities (12% – 72% ee) for a variety of test substrates, indicating that the chiral control element should be close and big enough to impart good ees but not too much so as to retard the reaction. Scheme 94.

Further investigations in 1998 by Yang et al.,189 reported a series of ketones 360 containing a quaternary carbon adjacent to the ketone and various substituents on the ring. The work aimed to investigate the remote substituent effect and electronic tuning potential as an important tool in catalyst design. Following Shi’s Oxone procedure, Yang reported epoxidation of various meta or para substituted trans-stilbenes achieving selectivities 42% - 97% ee. Scheme 94.

To conclude this section, it is obvious from the amount of literature available, that cyclic ketones provide viable asymmetric organocatalytic systems for the epoxidation of a range of alkene substrates.184,190

5.3 Organocatalytic Asymmetric Epoxidations – with H_2O_2

With an interest in organocatalytic asymmetric epoxidations which utilise hydrogen peroxide, this area has been extensively reviewed.163,184,191,192 Hydrogen peroxide as oxidant is becoming increasingly utilised as a reagent due to its environmental and economic benefits, thanks to high atom economy and formation of water as a by-product.192 Organocatalysis has emerged as a convenient and effective tool for
stereoselective synthesis of either simple or complex molecular scaffolds. An organocatalyst presents many benefits as an alternative to traditional metal catalysed reactions – since generally they are easily available, generally derived from the chiral pool, and are less sensitive to moisture and aerobic conditions.

Within this section key epoxidations which utilise hydrogen peroxide that have specific relevance to the work carried out within this thesis will be reviewed.

5.3.1 Shi – Chiral ketones and H\textsubscript{2}O\textsubscript{2}

From the previous section it has been shown that the most effective and widely employed ketone based catalysis methodology comes from Shi and Yang, whom developed original Oxone (K\textsubscript{2}SO\textsubscript{4}, KHSO\textsubscript{4} and KHSO\textsubscript{5}) methodology of generating dioxiranes *in situ* for the epoxidation of alkenes. In more recent work, 1999 – 2007,193-195 Shi developed the methodology to use peroxymic acid \textit{361} formed \textit{in situ} from hydrogen peroxide and acetonitrile. (analogous to the Payne oxidation196)

Scheme 95. Under the hydrogen peroxide conditions the chiral Shi catalyst \textit{344} was able to epoxidise \textit{trans}–stilbene in 24 h with 90% yield and 98% ee.

\textit{Scheme 95: Shi epoxidations Utilising hydrogen peroxide.}

These modified reaction conditions proved to be milder, reducing the amount of salts and solvents needed and eliminating the need for the use of parallel syringe
pumps and careful addition of reagents. Results were comparable to that of the Oxone based systems. Mixed solvent systems proved useful with substrates of poor solubility, with efficient mixing being noted as being influential in achieving good yields in the biphasic system. Various nitriles were evaluated, with acetonitrile being optimal. 193

5.3.2 Juliá Colonna – Peptide Asymmetric Epoxidations
The Juliá–Colonna epoxidations from the 1980s 197-199 is the peptide catalysed asymmetric epoxidations of enones. The methodology utilises a three phase system consisting of aqueous NaOH, hydrogen peroxide, toluene and insoluble peptide, typically poly-L-alanine or poly-L-leucine as catalysts to convert α,β-unsaturated ketones to their corresponding epoxides in good yields and high enantioselectivities.

A recent review highlights the use of tBu-glycine in the enantioselective epoxidation of substrate 365.200 Scheme 96.

![Scheme 96: Juliá–Colonna epoxidations.](image)

5.3.3 Miller – Peptide Asymmetric Epoxidations.
Following on from the peptide theme, Miller et al. 201-204 developed an N-Boc-protected L-aspartate benzyl ester 367 in combination with DIC as a stoichiometric activator, DMAP as an acyl transfer catalyst and hydrogen peroxide. Reactions on 1-phenylcyclohexene 368 were performed in order to optimise epoxidation conditions achirally with up to 15 catalytic turnovers (5 mol% cat. leading to 74% yield within 3.5 h). Scheme 97.
Miller performed numerous experiments to establish the role of each of the components of the reaction mixture. As a result of the findings, a mechanism was proposed. Figure 22.

Figure 22: Miller’s proposed mechanism. R^* = chiral side chain.

Miller suggested that as expected from the literature precedent\cite{205,206} diacyl peroxide byproduct 373 is formed under the reaction conditions. Formation of 373 is obviously undesirable, as competes with the epoxidation process and is only slowly perhydrolysed back to 372. Miller found that addition of DMAP accelerates the perhydrolysis reaction. Critically Miller stated that no conversion of 368 to 369 was observed until addition of peptide catalyst 367.

To induce asymmetry, aspartic acid was incorporated into a peptide sequence which resulted in a β-turn-type structure as shown in peptide catalyst structure 374. To test the epoxidation capabilities of peptide 374 carbamate functionalised substrates 375 were chosen to facilitate potential catalyst–substrate interaction through hydrogen bonding. Scheme 98.
Scheme 98: Miller's peptide catalyst and substrate reaction conditions.

Results indicated that 374 was a suitable catalyst obtaining 17 catalytic turnovers at 25 °C. Substrate (Ar = Ph, n = 1) could be epoxidised obtaining 97% yield and 89% ee at -10 °C. Various other carbamate substrates were tested the majority with high yields and selectivities, albeit in some examples at low temperature and over extended periods of time.

In a follow up study, catalyst analogues 377 – 379 were assessed for their catalytic activity, to give insight and mechanistic understanding.

Scheme 99: Miller's new catalysts

Catalyst 377 gave insight into the importance of the NHBoc functionality; under standard test conditions catalyst gave 88% ee which is comparable to the original catalyst 374, which suggests the NHBoc group is not involved in the hydrogen bonding interaction with the substrate. Catalyst 378 evaluated the function of the Pro-ᴅ-Val amide, which in this case was replaced by an alkene, the reduction in selectivity was observed, 16% ee, under standard conditions, which suggests this structural feature contributes greatly to the observed enantioselectivity. This is also supported by the observed structural differences in the X-ray crystal structures. Finally fluorinated alkene catalyst 379 was used to imitate amide like character in an olefinic mimic. Enatioselectivities observed with 379 were 52% ee, explained by a slightly weaker hydrogen bonding effect, with ‘inbetween’ characteristics of the two previous catalysts 377 and 378.
5.4 Summary
From this short yet specific literature review it is firstly obvious that there is a wealth of work and research in the area of asymmetric epoxidations.

The majority of the asymmetric organocatalytic epoxidations – for this is the area of research interest – employ catalysts which are derived from natural sugars or chiral pool sources.

We have seen in the preliminary introduction that MAO offers viable route to an abundant source of enantio-pure chiral material. It is therefore intuitive to explore the viability of MAO products to the application of asymmetric organocatalytic epoxidations.
6 Chapter 6: Peracid Epoxidations

6.1 Introduction – Chiral peracids & epoxidations.

This body of work takes its inspiration from Miller et al.201 who utilised hydrogen peroxide and a chiral peptide catalyst 374 to selectively epoxidise specific alkenes 380 which contain a carbamate side chain. Their report presents varying enantiomeric excesses and conversions over a variety of time periods and temperatures, including some excellent results, and highlights the potential of a chiral acid, standard peptide coupling reagents and hydrogen peroxide to generate selective epoxides 381 under the conditions of asymmetric catalysis.

Figure 23.

With access to a sustainable source of a chiral acid 30, via the MAO of benzoic acid, we sought to scope its viability as a catalyst for the asymmetric epoxidations of alkenes with hydrogen peroxide. Figure 24.

Figure 24: Aim of microbial derived acid to act in epoxidations reactions.
The initial aim of this work was to synthesise acid structure of type 382 to be used as catalysts for the enantioselective epoxidation of alkenes. It is necessary to protect the alcohol functionalities so they do not interfere with the coupling reagents and self-condense. Additionally removal of the reactive diene functionality is essential so the catalyst does not affect self-epoxidation.

6.2 **Results and Discussion: Catalyst Synthesis**

6.2.1 **Acetonide protection of diol acid.**

Initially we sought to protect the diol 30 utilising standard acetal protection, a common technique used for this type of compounds, having precedent within the research group. Scheme 100.

![Scheme 100: Acetonide Protection hydrogenated diol acid.](image)

Starting with the product from MAO 30, hydrogenation with palladium on carbon gave the desired saturated acid diol 383, albeit obtained with varying yields, 33-71%. Higher isolated yields were obtained with an adapted column chromatography purification procedure; addition of 10%, 50% v/v aqueous AcOH, to the corresponding eluting solvent prevented compounds adhering and retaining on the column resulting in higher isolated yields. Residual AcOH could be removed from the isolated final compound under reduced pressure and heating to obtain pure, white crystalline product 383.

The diastereoisomer of 383 has been previously synthesised, with coincidentally consistent melting points to the product synthesised here. 208,209
Attempts to form the acetonide protected product 384 were unsuccessful. Conditions included both the standard 2,2-Dimethoxypropane and pTSA,207 Zerolit 225 solid acid resin, heating and varying solvents, all resulting in recovery of starting material 383.

In an alternative approach, taking the known acetonide protected diene 206, under standard hydrogenation conditions, the desired product 384 was not formed, instead the product isolated, 383, indicated acetonide deprotection. We can attribute the instability of compound 384, and the inability to form the acetonide group to the inherent acid sensitivity of an acetal protecting group. With the presence of the free carboxylic acid functionality on the molecule itself, deprotection could plausibly be autocatalytic.

6.2.2 Silicon protection of diol acid.

With an abundance of the hydrogenated diol acid 383, silicon protection and formation of bicyclic systems were attempted. More rigid structures may possibly induce enhanced enantioselectivity if used as catalysts. Scheme 101. Following procedures common within the literature for silicon protection,210 attempts using Di-tert-butylsilyl bis(trifluoromethanesulfonate) and 1,2-bis(chlorodimethylsilyl)ethane under standard silylation conditions to form the corresponding desired products 385 and 386 were unsuccessful. Again this could conceivably be attributed to the acid lability of silacycles 385 and 386, especially steric strained disiloxane 385.

Scheme 101: Silicon protection of diol acids.
6.2.3 Formation of acid catalysts via esters

With problems of autocatalytic deprotection due to the presence of the free acid functionality we sought to transiently protect the acid as an ester. Esters are formed readily and are much simpler to purify.76,144 Scheme 102.

6.2.4 Formation via methyl esters

Formation of the methyl ester 387 using TMS diazomethane proceeded under quantitative conversion. Surprisingly, alternative use of dicyclocarbodiimide (DCC), avoiding both cost and toxicity of TMS diazomethane, proceeded well with yields 53-73%. No self-coupled dimer products were observed, despite the alcohol functionality in the starting material. This could be attributed to the dilute reaction conditions; there is more chance of a compound coupling with methanol than with another molecule of itself.

Methyl ester 387 has been previously synthesised albeit not in 100% ee, but as a scalemic mixture211,212

Acetonide protection of methyl ester 388 proceeded well with 61% yield to give the desired product. On a large scale repetition of this procedure a byproduct 389 was identified isolated in a 2% yield. This dimer formation, due to reaction with the starting material 387 with the desired product 388 highlights the potential unwanted reactivity of the secondary alcohol.

Scheme 102: Formation of acids via methyl esters.
The final basic hydrolysis step of methyl ester 388 proved problematic. LiOH was unsuccessful and several attempts using NaOH and THF both at room temperature and heating gave inconsistent results with yields ranging from 5 to 10%. Under reflux both decomposition and rearrangement was observed giving acetonide migration product 390 13%, desired acid 384 10% and decomposition product diol acid 383 21%. Reduction in isolated mass could be attributed to loss of product in the aqueous acidification and workup. These results indicate the sensitive nature of the acetonide with regards to unwanted migration and cleavage.

The Migration product 390 was fully assigned by detailed 2D-NMR spectroscopy studies, as described below. Analysis of 1H and 13C 1D-NMR spectra alone were insufficient, with only a few assignments being made. Figure 25.

![Figure 25: NMR spectroscopy assignments based on complete 2D data.](image)

Analysis of HSQC identified direct C-H bond interactions; this enabled the complex aliphatic region of the spectra to be split up to single proton environments. Additionally the OH region was identified. Figure 26. This technique alone was insufficient for further assignments to be made.
Figure 26: Compound 390 HSQC 2D-NMR Spectra, indicating which protons are bound to each carbon resonance.

Figure 27: 390 HMBC 2D-NMR Spectra
Complete assignment was achieved with combined analysis of both HSQC and HMBC 2D-NMR spectra. HMBC indicated the carbonyl $\delta_c 174.0$ interacted with saturated hydrogens at $\delta_H 1.92$ and 1.73. HSQC could identify that these hydrogens were bonded to $\delta_c 33.6$. Figure 28.

Figure 28: Further assignments of compound 390 via interpretation of 2D-NMR spectra.

Analysis of HMBC $\delta_H 3.75$ interactions identified adjacent carbons at $\delta_c 31$ and 24. Again HSQC identified the corresponding proton chemical shifts. The only unassigned carbon $\delta_c 20.1$ could be assigned by matter of elimination. Further support for the assignment can be observed though negative interaction; peaks that are not present. $\delta_c 70.9$ does not see any interaction with protons bound to $\delta_c 23.6$ as well as $\delta_c 83.2$ does not see any interaction with protons bound to $\delta_c 20.1$. This is expected as HMBC interaction over four bonds is rarely observed due to weak intensity over greater bond distances. Figure 29.

Figure 29: Complete assignment of compound 290 via interpretation of 2D-NMR spectra.
Finally, via analysis of NOESY spectrum could suggest the conformation of the cyclohexane ring. Axial protons at $\delta_H 3.75, 1.88, 1.73, 1.38$ showed through space interactions. Figure 31.

In further support for the structure, the polarity of the compound, $R_f = 0.50$ (50% EtOAc-petrol), this is much more a-polar than any of the previous isolated carboxylic acids, suggesting an ester functionality rather than acid. Furthermore, analysis of the ketal resonance in the carbon spectra at $\delta_c 110$ is in support of a five membered ring, structure 390, rather than a possible six membered ring as shown in 391. This is supported by literature studies,106 five membered acetonides have characteristic quaternary carbon chemical resonances between 108 – 111 ppm, whereas six membered ketals have shifts between 97-101 ppm. Figure 32.
To summarise, formation of acetonide protected acid 384, via methyl esters, is possible via this route, although the basic hydrolysis step proves unreliable due to decomposition and rearrangement.

6.2.5 Formation via Benzyl Esters
We next investigated benzyl esters as their deprotection can be achieved without basic hydrolysis. Carboxylate alkylation of 383 was selective in formation of the ester 392 33-42% and no benzyl ethers were observed. Acetonide protection gave benzyl ester 393 in a considerably improved 91% yield. In contrast to the methyl ester 388 the benzyl ester hydrogenolysis was successful, to give 384 in a 63% yield. Scheme 103.

![Scheme 103: Benzyl ester route to acid catalyst 384.](image)

Telescoping the process resulted in an overall reduction in isolated yield. Scheme 104. This indicates the sensitive nature of the desired acetonide protected acid, as telescoping would lead to a build-up of impurities.

![Scheme 104: Telescop ed process.](image)
The previous synthesis of the acetonide acid involved two hydrogenation steps, Scheme 103, one to reduce the alkenes in 30, one to deprotect the benzyl ester 393. Combining the hydrogenation steps to form the acetonide acid 384 in three steps from the MAO product was successful. Scheme 105. From the known benzyl ester 394, facile acetonide protection achieved 395 in a 92% yield and the optimised hydrogenation to remove both diene and ester 384 was achieved in 80% in the first instance.

![Scheme 105](image)

Scheme 105: Combined hydrogenation steps.

However, the final hydrogenation step to form 384, proved inconsistent; decomposition product diol acid 383, methylester diol 387, unidentifiable byproducts and significant loss of mass were observed on purification. This suggests autocatalytic deprotection. Scheme 106.

![Scheme 106](image)

Scheme 106: Decomposition products observed.

Issues of decomposition upon purification were addressed by using a dry column chromatography method, being able to isolate up to 80% of 384 from hydrogenation of 395. At this stage we have a stabilised route through to the acetonide acid 384 in three steps from the product of MAO.

6.2.6 Silicon protection of esters.

With benzyl ester 394 in hand, we sought again to attempt silyl protection. Scheme 107. This was achieved easily in 75 – 81% yield. This was followed by facile reduction/deprotection to give 385 in 53% yield.
Scheme 107: Silyl protection of esters to form silyl acids.

However, again, disappointingly repetition of the final deprotection step, purification lead led to decomposition of the silyl acid 385 down to the diol acid 383. Scheme 108. This again indicates the instability of this type of compounds with respect to both purification and autocatalytic deprotection.

Scheme 108: Decomposition of silyl acid on purification.

Starting with the methyl ester 387, silicon protection was successful to form 397 with an 82% yield, however basic hydrolysis was not. Again this could be due to the acid sensitive nature of the product in the work up, which involves careful acidification of the basic hydrolysis mixture to neutral conditions. Scheme 109.

Scheme 109: Silyl protection of methyl ester

6.2.7 Methyl Ethers

At this stage, it had been demonstrated how sensitive the most commonly applied hydroxyl protecting groups are to the presence of the acid side chain on the molecule. A hydroxyl derived functional group that was not acid or base sensitive was needed; methyl ethers were considered appropriate.\(^{215}\)

Unsurprisingly attempted formation of 398 from diene benzyl ester 394 was unsuccessful, and shows that this type of diene cis-diol is sensitive to acidic and basic conditions and readily rearomatises. Scheme 110.
Scheme 110: Attempted methyl ether formation.

Diol acid 383 and 2 equivalents of methyl iodide, gave methyl ester 387 18% and desired product, protected ether 399 51%, which could be separated. Scheme 111.

Scheme 111: Attempted methylation

Repeating the procedure with 3.4 equivalents of MeI, two inseparable esters were identified. Silicon protection of the mixture, 399 and 400, facilitated separation to give silyl compound 401 18% and di-ether 399 70% over two steps. Scheme 112.

Scheme 112: bis(methyl ether) formation

Upon optimisation and incorporating an excess of methyl iodide, 4 equivalents, the diether 399 was obtained, 69% as the sole product. Scheme 113.

Scheme 113: Optimised methylether formation

In order to obtain the desired chiral acids, basic hydrolysis of the methyl esters was required. Unfortunately hydrolysis of these methyl esters proved inconsistent. Hydrolysis of silicon ether 401, was unsuccessful and recovered small amounts of
starting material. Scheme 114. More success was obtained with the di methyl ether 399, where 36-75% isolated yields were obtained. Scheme 115.

Scheme 114: methyl ester hydrolysis

Scheme 115: methyl ester hydrolysis

At this stage a reliable and reproducible route to di methyl ether acid 403, in three steps form the product of MAO was in hand.

6.2.8 Other catalysts.

It is commonly known that to enhance stereoselectivity of a catalyst the two most important factors are steric bulk and electronic properties of the catalyst, as was shown by Miller and his carbamate – peptide interactions, and Shi and his pyranose ketones.184

Thus synthesis of bicyclic acid catalysts was attempted in order to enhance any stereoselectivity observed. Following the Ley carbohydrate protection methodology we sought to protect the diol functionality using 2,3-Butanedione and trimethyl orthoformate. Considering the double anomeric effect present in 405, this would be expected to be the favoured diastereomer. Figure 33.

Figure 33: Expected product from ley protection.
Attempts on both the acid 383 and methyl ester 387 using methanol were unsuccessful. Very small amounts of product were identified when utilising a ρTSA acid catalyst and CH₂Cl₂ as the solvent. The small mass isolated, complex NMR and the TLC showing multiple components with similar R₆ suggests different diastereoisomers had formed and would be difficult to isolate and purify. This was not pursued.

Scheme 116: Ley protection.

In a different approach with methylester 387, diastereomer formation with benzaldehyde was investigated. It was speculated that different diastereoisomers may result in different stereoselectivity. Attempts using CH₂Cl₂ at room temperature gave recovered starting material. Utilising THF at reflux resulted in THF being incorporated into the products. Success was finally obtained using toluene as the solvent and refluxing for 24 h. Scheme 117.

Scheme 117: Benzylaldehyde acetal protection

Diastereoisomers were separated by column chromatography; unfortunately they could not be separated completely and a 1:1 mix of 408 and 409 was obtained in a 40% yield, in addition to 24% of 408 and 35% of 409.

Identification of the diastereoisomers 408 and 409 could be achieved using NOESY NMR spectroscopy. Additionally the 3D modelling indicates that the lower yield in
408 could be due to steric clash of the aromatic ring with the carbonyl group. Figure 34 and Figure 35.

Figure 34: NOESY NMR spectroscopy of 408, to determine diastereoisomer.

Figure 35: NOESY NMR spectroscopy of 409, to determine diastereoisomer.
6.3 Conclusions – Catalyst Synthesis

At this stage several different routes have been scoped for the viability of synthesising a range of chiral acid catalysts derived from the \textit{ipso}, \textit{otho} \textit{cis}-diol MAO product of benzoic acid.

Three chiral acids \textbf{384}, \textbf{385} and \textbf{403} have been synthesised. Scheme 118 In the next section these chiral acids have been evaluated for their catalytic activity in asymmetric epoxidation reactions.

Scheme 118: Chiral acids synthesised
6.4 Results and Discussion: Catalyst Testing

6.4.1 Initial Catalyst testing

Using Miller et al. 201 as a starting point for reaction optimisation, styrene 410 was chosen as a substrate, \(N,N'-\text{Dicyclohexylcarbodiimide (DCC)}\) was chosen as the available carbodiimide coupling agent and benzoic acid as the achiral acid catalyst for comparison to the synthesised chiral acids. Scheme 119.

![Scheme 119: Preliminary conditions used for catalyst testing.](image)

The subsequent reactions evaluated at many variables to predominantly achieve high conversions and investigate the roles of each of the components to gain greater insight into the reaction. Results of conversions and specific reaction conditions are graphically shown below. Table 4.

<table>
<thead>
<tr>
<th>Rxn</th>
<th>(\text{H}_2\text{O}_2)</th>
<th>DCC</th>
<th>DAMP</th>
<th>Acid</th>
<th>Other</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
<td>No Acid 0.87 M</td>
<td>59%</td>
</tr>
<tr>
<td>R2</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>Dilute Conditions 0.18 M</td>
<td>18%</td>
</tr>
<tr>
<td>R3</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>Just (\text{H}_2\text{O}_2)</td>
<td>0%</td>
</tr>
<tr>
<td>R4</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
<td>Just (\text{H}_2\text{O}_2 + \text{DCC})</td>
<td>21%</td>
</tr>
<tr>
<td>R5</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
<td>Alkene added last</td>
<td>48%</td>
</tr>
<tr>
<td>R6</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>Chiral Acid 384 Alkene added last</td>
<td>12%</td>
</tr>
<tr>
<td>R7</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>DCC last</td>
<td>51%</td>
</tr>
<tr>
<td>R8</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>Alkene added after 1 h</td>
<td>19%</td>
</tr>
<tr>
<td>R9</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>-22°C to r.t. DCC last</td>
<td>44%</td>
</tr>
<tr>
<td>R10</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>Exact replicate R9</td>
<td>63%</td>
</tr>
<tr>
<td>R11</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>Chiral Acid 385, DCC added last</td>
<td>11%</td>
</tr>
</tbody>
</table>

Table 4: Initial Reaction optimisation conditions
An initial reaction R1 0.87 M in the absence of benzoic acid gave a conversion of 59%, this suggests the benzoic acid is not essential for the reaction to take place, and that a background reaction is significant. A dilute reaction in the presence of benzoic acid R2 under dilute conditions for 20 h at 0.18 M resulted in a disappointing conversion of 18%. (N.B. all subsequent reactions were carried out at 0.87 M for consistency and comparability of results.)

Further investigations into the specific roles of each of the components, R3 showed that hydrogen peroxide alone was insufficient, and only in the presence of DCC R4 would the reaction proceed, albeit with a lower conversion, 21%. This result is of interest as the conversion is higher than that for the dilute reaction R1, suggesting the concentration plays a key role. The presence of DMAP R5 again improved conversions to 48%.

Initial reactions using a chiral acetonide catalyst 384 under these standard conditions R6, at 0.87 M, and employing addition of the styrene after an hour, in an attempt to allow the peracid to form in situ, progressed with a disappointing 12% conversion.

Following the Miller precedent, which added the diimide last, ‘added to start the reaction’, in reaction R7 DCC was added last in presence of benzoic acid gave a 51% conversion. Investigating further the order of addition, R8 involved no acid and styrene addition after an hour gave 19% conversion.

Results to briefly scope the effect of temperature, in reactions R9 and R10 components were added at -22 °C and allowed to warm to room temperature slowly over the course of the reaction. R9 added DCC last and gave a 44% conversion; a repeat of this R10 to observe reproducibility of results gave a 63% which suggests poor reproducibility. Disappointingly R11 using chiral acid 385, achieved a meagre 11% conversion.

Considering the length of reaction, R1 and R2 were left for 20 h, R3 to R8 were left for 90 h and R9 to R11 for 60 h. Firstly considering this length, conversions are low
and unimpressive, the significant difference in time does not result in a significant difference in conversion. It is worth noting Miller also reported some lengthy reaction times over several days.

To summarise the above results, it is obvious there is little reproducibility and consistency between comparable reactions. Notably the use of DCC proved problematic in the aqueous work up and extraction, the DCC urea derived byproduct precipitated and caused poor phase separation. Future reaction optimisations will consider other carbodimides such as \(N,N'\)-Diisopropylcarbodiimide (DIC) and \(N\-(3\text{-Dimethylaminopropyl})-N'\text{-ethylcarbodiimide hydrochloride (EDCI).}

Graph 1: Initial catalyst screening and optimisation
6.4.2 Reaction Optimisation Using DIC
Again using Miller201 as a starting point for reaction optimisation, \(N,N' \)-Diisopropylcarbodiimide (DIC) was chosen as the available carbodiimide and benzonic acid as the achiral alternative for comparison to the latter synthesised chiral acids. Scheme 120. Considering the variety in reaction conditions investigated in the previous section, a more systematic approach was taken, results shown in Table 5 and Graph 2.

Scheme 120: Starting point for reaction optimisation using DIC.

<table>
<thead>
<tr>
<th>Rxn</th>
<th>Investigation</th>
<th>Outcome</th>
<th>Max conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>R12</td>
<td>Solvent Screen</td>
<td>Acetone</td>
<td>19%</td>
</tr>
<tr>
<td>R13</td>
<td>Use of a carousel</td>
<td>Acetonitrile – improved mixing</td>
<td>32%</td>
</tr>
<tr>
<td>R14</td>
<td>Order of addition</td>
<td>Very little difference</td>
<td>26%</td>
</tr>
<tr>
<td>R15</td>
<td>Amount of DMAP</td>
<td>20 mol% beneficial</td>
<td>36%</td>
</tr>
<tr>
<td>R16</td>
<td>Concentration (\text{H}_2\text{O}_2)</td>
<td>50% (\text{H}_2\text{O}_2) had no effect</td>
<td>27%</td>
</tr>
<tr>
<td>R17</td>
<td>Concentration of reaction</td>
<td>4.0 M improved conversion</td>
<td>44%</td>
</tr>
<tr>
<td>R18</td>
<td>Amount of (\text{H}_2\text{O}_2)</td>
<td>1.0 mL 12 equiv.</td>
<td>77%</td>
</tr>
<tr>
<td>R19</td>
<td>Amount of DIC</td>
<td>4 equiv., 2 used for solubility</td>
<td>83%</td>
</tr>
<tr>
<td>R20</td>
<td>Solvent screen</td>
<td>Acetonitrile</td>
<td>66%</td>
</tr>
<tr>
<td>R21</td>
<td>EDCI</td>
<td>Water soluble diimide</td>
<td>2%</td>
</tr>
<tr>
<td>R22</td>
<td>Chiral acids 384 and 385</td>
<td>Under optimised conditions</td>
<td>72%</td>
</tr>
</tbody>
</table>

Table 5: Overview of reaction optimisation investigation and outcomes.

Initial solvent screen of the reaction R12 and R13 scoped a variety of different solvents; Acetonitrile was the best performing solvent with 32% conversion, followed by MeTHF 23%, \(\text{CH}_2\text{Cl}_2 \) 21% and 2-butanol 19%. As suspected polar aprotic solvents are beneficial for the reaction, and \(\text{CH}_3\text{CN} \) being water miscible promotes the reaction.
Improved mixing and use of a carousel was implemented from R12 to R13. The benefits are shown noting R12.1 and R13.1 both use CH$_2$Cl$_2$, conversion of 13% to 21% respectively indicates the importance of uniformed and good mixing in a biphasic reaction. Use of a phase transfer catalyst, tetrabutylammoniumbromide (TBAB), ceased the reaction and was not further investigated. R12.2

R14 investigated order of addition of the reagents, using MeCN as the optimal solvent. In his work Miller presents two methods:

General Procedure a: Acid + DMAP + Solvent + Alkene + H$_2$O$_2$ + DIC

General Procedure b: Alkene + Acid + Solvent + H$_2$O$_2$ + DIC + DMAP

As it is obvious there are two possible pathways for epoxide formation, one using the acid catalyst, one not, it would seem important that the active oxidant is the chiral peracid and not the DIC-peroxide complex. In order to promote peracid formation the procedure below was employed. The length of stirring was varied 0 mins, 5 mins, 1 h.

Procedure c: Acid + DIC + DMAP + Solvent (Stir), then H$_2$O$_2$ (Stir), then Alkene

Results indicated very little difference in conversions, 22-26%, which indicates that order of addition is not of primary importance.

R15 investigated increasing the amount of DMAP, as this should improve the rate of formation of the peracid over the DIC-peroxide species. Results showed that 0.2 equiv improved conversion to 36% however 0.4 equiv reduced conversion to 27%. Possibly due to competing reactions and formation of byproducts are indicated by the Miller report.

The next set of experiments R16 and R17 evaluated concentration of the reaction and the peroxide concentration and equivalents. Again using the standard conditions and acetonitrile; the use of concentrated, 50% H$_2$O$_2$, 2.5 equiv R16 showed slight improvement to 27%. Varying the concentration of the reaction, R17.1 from 0.8 M to 1.0 M in MeCN improved conversion to 35%, further concentration R17.2 to 4.0 M further improved conversion to 44%.
Chapter 6

Peracid Epoxidations

Graph 2: Reaction Optimisation using DIC
R18 kept the concentration constant at 0.8 M while varying the amount of H$_2$O$_2$ added, from 0.4 – 1.0 mL, showed a dramatic increase in conversions, as 1 ml equates to 12 equivalents of oxidant, a 78% conversion was observed as the best achieved so far.

Finally R19 investigated how equivalents of DIC affected conversions; as expected increasing the amount of diimide improves conversion, however not to the extent that varying quantity of the oxidant did. Conversion ranged between 80% to 83%.

Finally a solvent screen R20 was performed for a second time to confirm that MeCN was the optimal solvent. Solvents chosen were previously tested CH$_2$Cl$_2$, MeTHF and Acetone, as these were the best performing solvents from previous screens. Conversions for these other solvents dropped dramatically which indicated unambiguously that MeCN is the solvent of choice.

A drawback from all of the work carried out above is the presence of an insoluble urea byproduct, this can be filtered out however even after chromatography it sometime may persist. Use of a water soluble diimide EDCI219 was investigated as would be removed in aqueous work up. However reactions using EDCI did not proceed. No conversions were observed.

To summarise, conditions have been optimised to greatly improve the conversion of the reaction over the 20 h given time frame. Scheme 121.

![Scheme 121: Optimised conditions.](image)
6.4.3 HPLC Methods

Chiral HPLC methods were developed for styrene oxide 411 as the chosen substrate. The first: Chiralpak AS. 0.2 mlmin⁻¹. 0.6% IPA/Hexane, 254nm. This gave good baseline separation and peaks of equal integration at t₁ = 30 mins and t₂ = 35 mins.

Graph 3. The second shortened the method significantly: Chiralpak AS. 0.8 mlmin⁻¹. 0.2% IPA/Hexane, 254nm. This gave good baseline separation and peaks of equal integration at t₁ = 9.9 mins and t₂ = 12.4 mins. Graph 4.

Graph 3: Method 1. Styrene oxide, racemic, HPLC separation. Chiralpak AS. 0.2 mlmin⁻¹. 0.6% IPA/Hexane, 254nm. t₁ = 30 mins and t₂ = 35 mins

Graph 4: Method 2. Styrene oxide, racemic, HPLC separation. Chiralpak AS. 0.8 mlmin⁻¹. 0.2% IPA/Hexane, 254nm. t₁ = 9.9 mins and t₂ = 12.4 mins
6.4.4 Chiral Acid Epoxidations HPLC results – unoptimised conditions

During the reaction optimisation process some chiral acids were evaluated and tested for their enantioselectivity, albeit under un-optimised reaction conditions. Scheme 119 & Graph 1. Using the chiral acetonide acid 384 in reaction R6, a 12% conversion and a 25% ee was calculated via HPLC method 1. Graph 5.

Graph 5: R6 using chiral acetonide acid 384 HPLC result. HPLC method 1.

Reaction using the silicon protected acid 385 in reaction R11 gave a 11% conversion and a calculated selectivity of 6% ee, again using HPLC method 1. Graph 6.

Graph 6: R11 using chiral silicon acid 385 HPLC result. HPLC Method 1.

At this stage of reaction screening, it is worth emphasising that these are un-optimised conditions, using an unfunctionalised substrate and a fairly minimally functionalised catalyst. Although the reactions are low yielding, the selectivity
observed is not zero. It is also worth noting that the HPLC quality is mediocre, this is due to samples being unpurified, residual styrene can be removed under reduced pressure, and most of the urea byproduct can be filtered off, however some still persists, often resulting in poor quality chromatograms. Nevertheless, at this early stage of catalyst screening, these resulting presented an excellent starting point for catalyst development an encouraged the work to continue.

6.4.5 Chiral Acid Epoxidations HPLC results – optimised conditions

After optimising the reaction conditions. Scheme 121 & Graph 2. Some more chiral acids were tested under the optimised reaction conditions and analysed using HPLC method 2.

Repeating the chiral acetonide 384 under the optimised reaction conditions R22.1 resulting in an increased conversion to 72%, however as a penalty selectivity reduced to 14% ee. Graph 7.

![Graph 7: R22 chiral acetonide acid under optimised conditions. HPLC method 2.](image)

Using the di-methyl ether acid 384 under the optimised conditions R22.2 again gave a sufficient conversion of 69%, however disappointingly a selectivity of only 4% ee, which could be attributed to error or variation in either integration, base line effects or sample preparation. Graph 8.
Graph 8: R19.2 Chiral di-methyl ether 403 under optimised conditions. HPLC method 2.

At this stage, chiral HPLC's are of singular reactions, to ensure validity of results it is essential that they are repeated. R22.1 was chosen to be replicated as showed the best enantioselectivities. Results are shown below. Table 6, Graph 9, Graph 10.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Conv.</th>
<th>% ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 22.1</td>
<td>72%</td>
<td>14%</td>
</tr>
<tr>
<td>R 23.1</td>
<td>80%</td>
<td>6% A</td>
</tr>
<tr>
<td>R 23.2</td>
<td>70%</td>
<td>6% B</td>
</tr>
</tbody>
</table>

Table 6: Repeating chiral acid reactions

Graph 9: R23.1 repeat of R22.1 HPLC Method 2.
Unfortunately these repeated chiral catalysts runs, not only show a reduction in the selectivity of 6\% ee, which is small enough to be considered error, but additionally inversion of the selectivity was observed between runs.

6.4.6 Summary HPLC results

These results, despite optimisation, have shown that an increase in conversion has not enhanced the selectivity. It is worth considering whether the catalyst is playing a vital role. Under the optimised conditions reaction with benzoic acid gave a 79\% conversion, and without benzoic acid gave 74\%. This suggests the acid catalysed process has in effect has become the background reaction, and the known background reaction of di-imide and hydrogen peroxide218,220 to form the complex 412 is actually performing the majority of the epoxidations. Figure 36.

![Figure 36: Epoxidation of styrene via di-imide and peroxide complex.](image)

To summarise the above chiral HPLC results – it has been shown that some selectivity has been observed, maximum 25\% ee, other results have been much less, and even racemic.
The optimisation of the reaction conditions has led to the chiral catalyst playing little part in the reaction; this needs to be addressed.

It is also worth noting the difficulty in obtaining good quality HPLC for styrene oxide, despite through optimisation and trials of many different columns, conditions and methods, DIC urea byproduct in samples leads to poor quality traces.

From all the above and from the start, it has been aware that the epoxidation proceeds in the absence of acid, and since been shown that the background reaction, via intermediate 412, is now very much in the foreground. In an attempt to address this both varying urea source and coupling agent will be considered.

6.4.7 Different coupling agents

DIC, DCC are all common peptide coupling agents. Other coupling agents were identified and tested. Under the optimised reaction conditions EDCI and HATU, both on their own and with the addition of HOBr activating agents gave no reaction. The use of T3P® (Propane Phosphonic Acid Anhydride) did not give the desired epoxide, instead ring-opened to form the corresponding diol 413. 219

The diol was analysed for its enantioslectivity by known methodology. 221 Formation of an imine 416 with addition of boronic acid 414 and chiral amine 415 was followed by NMR spectroscopy. Analysis and integration of the diastereotopic protons of the imine, showed a racemic mixture had been formed and hence no enantioslectivity was induced in the epoxidation.

![Scheme 122: Formation of chiral imine to calculate enantioslectivity.](image-url)
6.4.8 Different urea source.
Initially investigations used aqueous H$_2$O$_2$, however this is not the only possible oxidant and others are used in industry. Most commonly used is urea hydrogen peroxide, due to cost, ease of handling and safety.
Under the optimised conditions, hydrogen peroxide urea gave a 13% conversion, which is a reduction to the 80% observed using the aqueous peroxide solutions. This reduction in conversion could be attributed to a solubility issue, to enable a direct comparison a solvent screen using urea hydrogen peroxide was carried out under un-optimised conditions, to enable a direct comparison to previous solvent screen results. Scheme 100 and Table 7.

Scheme 123: Conditions for urea H$_2$O$_2$ solvent screen.
<table>
<thead>
<tr>
<th>Solvent</th>
<th>Urea H₂O₂</th>
<th>Aqueous H₂O₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₂Cl₂</td>
<td><1%</td>
<td>21%</td>
</tr>
<tr>
<td>Me-THF</td>
<td>0%</td>
<td>23%</td>
</tr>
<tr>
<td>Acetone</td>
<td>14%</td>
<td>15%</td>
</tr>
<tr>
<td>Butanone</td>
<td><1%</td>
<td>19%</td>
</tr>
<tr>
<td>MeCN</td>
<td>9%</td>
<td>32%</td>
</tr>
</tbody>
</table>

Table 7: Solvent Screen Urea Hydrogen peroxide compared to aqueous peroxide.

These results indicate that urea hydrogen peroxide is not a good candidate, as the aqueous peroxide performs better in all cases.

6.4.9 Is the active catalyst actually being formed?

All the above results suggest the known background reaction is significant. For absolute conformation, isolated and purified chiral peracid catalyst would need to be synthesised to evaluate its ability to directly epoxidise alkenes, rather than being generated in situ. However this is not possible due to the difficulty and risk associated in isolating potentially explosive peracid material. Additionally peracid synthesis often requires a strong acid, which is not viable for our acetonide acids, as would result in deprotection. Alternative analysis needs to be performed.

It is known within the literature that oxidation of organic sulfides to sulfoxide occurs rapidly with peracids and proceeds very slowly with hydrogen peroxide. Methodology has been developed using GC to determine the amount of active peracid in the presence of an excess of hydrogen peroxide.²²² The same theory can be transferred to develop NMR spectroscopic method. Scheme 124. If the peracid is formed in situ, thioanisole 418 will be readily oxidized to methyl phenyl sulfoxide 419 which can be analysed via NMR spectroscopy, as the chemical shifts of the methyl protons are distinctive from one another. Scheme 125. Results & NMR spectra shown below Table 3.
Scheme 124: Reaction Scheme for testing presence of peracid formation.

Scheme 125: Approximate chemical shifts of thianisole and corresponding sulfoxide and sulfone.

Figure 37: NMR spectra of reactions to determine presence of active peracid catalys.
Experiment 1 indicated that, under the reaction conditions, benzoic acid was converted to perbenzoic acid resulting in 50% conversion of thioanisole to the sulfoxide in 15 mins.

Experiment 2 utilised the synthesised chiral acetonide acid 384, under the same conditions as experiment 1 but instead over an extended period of 1 h, as we expect the catalyst could be less active. These results indicated a reduction in oxidative conversions, suggesting the chiral peracid is a poorer oxidative species.

Experiment 3 utilised the same reaction conditions as experiment 2, over 1 h, containing no acid species. This reaction was performed to observe the background oxidation via H_2O_2. With almost identical conversion to experiment 2, it suggests the only conversion observed in experiment 2 is due to oxidation via H_2O_2, and suggest the chiral peracid isn’t being formed.

Experiment 4 was carried out to complete this series of investigations. Benzoic acid was utilised under the same conditions as experiment 2 & 3 for direct comparison over 1 h reaction time. Complete conversion to the sulfide was observed. This
suggests under these conditions benzoic acid is able to form the perbenzoic acid. Whereas in comparison under these conditions the chiral acid 384 isn’t able to form the chiral peracid.

6.5 Conclusions
This final sulfide oxidation experiment, along with the unselectively and low conversions observed throughout the catalyst epoxidations optimisation process suggest that the chiral peracid isn’t being formed under these reaction conditions, and hence why we see very little, if no selectivity.

It has been considered that this work will not be pursued further.

Despite this this section shows a range of synthetic procedure through to novel chiral acids – future work would hope to find application of these, or use as synthons towards subsequent organic targets.
Chapter 7: Shi Catalyst Analogue

As we have seen in the literature introduction to epoxidations Shi developed a range of catalysts of general type 344. The aim of this work is to synthesise a Shi catalyst analogue 421 derived from the MAO product 30. Notably similarities include the α-quaternary carbon. Differences include the lack of the endo cyclic oxygen and peripheral substituents around the cyclohexane ring.

Many similar carbocyclic ketones have also been shown to be active epoxidation catalysts, as seen in the previous epoxidations literature section.

![Figure 38: Shi Catalyst and proposed MAO derived catalyst](image)

7.1 Shi Like Catalysts – Catalyst #1

Within the previous chapter, in search for an asymmetric peracid epoxidation catalyst, compound 390 was isolated and fully characterised as a byproduct from the basic hydrolysis of methyl ester 388. Scheme 126. With a quaternary centre α to the alcohol, and the acetonide protected side chain, there are obvious structural similarities to the Shi catalyst 344.

![Scheme 126: Shi like by product identified via basic hydrolysis of 388.](image)

With 390 isolated and purified, oxidation to form the ketone, and direct Shi analogue 422 was evaluated. Scheme 127. Mild oxidative conditions were considered as deprotection or rearrangement of the acetonide was possible, as we have seen with compounds in the previous chapter.

Use of pyridinium dichromate (PDC) was unsuccessful, recovering starting material. Dess Martin periodinane gave sufficient yield of 60% with the remaining isolated mass being recovered starting material.
Scheme 127: Synthesis of ketone 422, shi analogue.

This new chiral ketone 422, has many structural similarities with, and prerequisites of the Shi catalyst, as reviewed by Shi

- The chiral control element has to be placed close to the reacting carbonyl to enhance the stereochemical interaction between substrate and catalyst.
- Fused rings and/or quaternary centre α to the carbonyl group being used to minimize epimerization of the stereogenic centres.
- Approach of an olefin to the reacting dioxirane being directed by sterically blocking one face or by a C₂ or pseudo-C₂-symmetric element.
- The carbonyl being inductively activated by introduction of an electron withdrawing element.

Rather than obtaining the catalyst 422 as the low yielding byproduct of the basic hydrolysis of 388, a synthetic route was proposed to specifically target 422. Scheme 128.

Scheme 128: Synthetic route through to chiral ketone 422.
Previously synthesised benzyl ester diene diol **394** was subjected to TBDMS-OTf silylation, in order to form the desired singly protected silyl **423** in a 78% yield. The di-silyl protected byproduct **424** was isolated and identified.

Silyl benzyl ester **423** was subjected to hydrogenation to simultaneously reduce the alkenes and cleave the benzyl ester to give **425** in near quantitative yields.

Attempts to form the acetonide protected compound **426** were unsuccessful on several attempts, utilising varying ratios of reagents and heating. The inability to form **426** could be attributed to the presence of the acid side chain. Acetonides are more commonly used to protect alcohols and diols, carboxylic acid protection is less precedent. Additionally autocatalytic deprotection could be preventing the reaction from occurring as we have seen reoccurring with compounds from the previous chapter.

It was considered that this new chiral ketone **422** may be able to act in a similar mode to the Shi catalyst in the asymmetric epoxidations of alkenes. To evaluate this, *trans*-stilbene **427** was chosen as a substrate it gives good yields (77-91%) and enantioselectivity (94-98% ee) in Shi’s work.\(^{184,223}\) Additionally the substrate was chosen as stilbene oxide **428** is easily separable via chiral HPLC. Graph 12. This circumvents the issue encountered in the previous chapter of poor quality HPLC traces of styrene oxide.

![Graph 12: HPLC method for trans-stilbene oxide](image)

Graph 12: HPLC method for trans-stilbene oxide. Chiralcel OD. 1.0 ml/min\(^{-1}\), 10% IPA/Hexane, 254nm. gave good baseline separation and peaks of equal integration at \(t_1 = 5.9\) mins and \(t_2 = 10.2\) mins.
Chiral ketone catalyst 422 was evaluated under the conditions described in Shi’s most recent work following the Oxone procedure.

![Figure 39: Epoxidation of trans-stilbene with chiral ketone 422.](image)

Disappointingly the above reaction was unsuccessful, with complete recovery of trans-stilbene.

The Oxone methodology is known to be particularly sensitive to experimental procedure, Shi states that it is essential for the Oxone and K_2CO_3 to be added simultaneously and constantly, ideally via two separate syringe pumps, to control and maintain a constant pH to prevent decomposition of either the Oxone or the chiral catalyst.

7.2 Catalyst Design #2

As the above synthetic route is deemed implausible, we sought a new catalyst design, 429, for ease of synthesis and greater similarity to the Shi catalyst 344.

![Figure 40: New catalyst design.](image)
Since silyl alcohol acid 427 was in hand, synthesis of reduced diol 430 was attempted. Attempts using LiAlH₄ were unsuccessful with complete consumption of 427 to form complex inseparable mixtures. Scheme 129.

Scheme 129: Attempted reduction of 427.

As it has proven difficult to reduce the carboxylic acid 427, a new synthetic route was devised to form the reduced alcohol side chain from an ester, as this has literature precedent. Scheme 130.

Scheme 130: Catalyst Synthesis.

Known methyl ester 121 was converted to the desired singularly protected silyl methyl ester 431, in improved selectivity (98% yield) compared to the benzyl ester analogue 425 (78% yield). Diene 431 was subjected to standard hydrogenation conditions to give the desired product 433 in 42% and the deprotected diol 387 in
58% yield as the major product. Diol methyl ester 387 was easily converted back to the desired silicon protected ester 433 in near quantitative yields, 98%.

Reduction of silicon protected methyl ester 433 was attempted under various conditions, DIBAL-H was unsuccessful, LiAlH₄ proved too harsh as resulted in low yields, and formation of rearrangement product 434, observed in varying ratios. Milder NaBH₄ proved most successful and selective giving 91% yield of desired diol 430. Now with the reduced side chain in hand, acetonide protection formed the expected acetonide 435. Silicon deprotection under standard TBAF conditions gave 436 in 53% yield.

Finally mild oxidation attempts to form the desired ketone using PDC were unsuccessful. Swern conditions proved to work, albeit in a 30% yield of 429. More successfully Dess Martin Periodinane gave high yields of 86% of 429, although over a 3 day period.

The chiral ketone 429 has been synthesized in 20% overall yield in 7 steps from MAO product. 429 has been fully characterised and matches known literature data of the opposite enantiomer, which has never been evaluated as a catalyst; the enantiomer 429 synthesised here has not been previously reported.226
7.3 Catalyst Testing

In order to minimise unnecessary waste of chiral catalyst and to ensure well practiced experimental procedures, preliminary epoxidations reactions were carried out using cyclohexanone as an achiral analogue. Scheme 131, Table 9. Findings are discussed below.

Scheme 131: Epoxidation of trans-Stilbene under various conditions.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Method</th>
<th>Conversion</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>T 1 227</td>
<td>A</td>
<td>9%</td>
<td>Cyclohexanone – Oxone.</td>
</tr>
<tr>
<td>T 2 193</td>
<td>B</td>
<td>4%</td>
<td>Cyclohexanone – H2O2</td>
</tr>
<tr>
<td>T 3 194</td>
<td>C</td>
<td>0%</td>
<td>Cyclohexanone – H2O2 – nBuOH</td>
</tr>
<tr>
<td>T 4 193</td>
<td>D</td>
<td>13%</td>
<td>Cyclohexanone – H2O2 – CH2Cl2 – cryostat used.</td>
</tr>
</tbody>
</table>

Table 9: Method A: trans-stilbene (180 mg, 1.0 mmol), cyclohexanone (0.03 mL, 30 mol%), and tetrabutylammonium hydrogen sulfate (0.01 g, 0.04 mmol) in MeCN-DMM (v/v, 1:2) (15 mL) was added buffer (10 mL, 0.05 M aq Na2B4O7·10H2O in 4 × 10⁻⁴ M aq Na2(EDTA)). The mixture was cooled to 0 °C in an ice bath. A solution of Oxone (1.0 g, 1.6 mmol in 6.5 mL 4 × 10⁻⁴ M aq Na2(EDTA)) and a solution of K2CO3 (0.93 g, 6.74 mmol H2O 6.5 mL), were added dropwise separately and simultaneously via syringe pump over 2 h. The reaction was quenched by addition of pentane and extracted with pentane. The combined organic layers were dried over MgSO4, filtered and concentrated under reduced pressure. Method B: To a solution of trans-stilbene (180 mg, 1.0 mmol) and cyclohexanone (0.03 mL, 30 mol%) in MeCN-DMM (v/v, 1:2) (6 mL) was added buffer solution (1.5 mL, 2.0 M K2CO3 in 4 × 10⁻⁴ M aq Na2(EDTA)). Followed by H2O2 (30%, 0.25 mL, 3 mmol) at 0 °C. The reaction was left to room temperature over 48 h. Reaction was quenched and extracted as per Method A. Method C: To a solution of trans-stilbene (180 mg, 1.0 mmol), cyclohexanone (0.03 mL, 30 mol%), MeCN (0.2 mL, 3.8 mmol), n-BuOH (3.0 mL) was added buffer solution (3.5 mL, 0.3 M K2CO3 in 4 × 10⁻⁴ M aq Na2(EDTA)). Followed by H2O2 (35%, 0.25 mL, 3 mmol) at 0 °C and left to warm to room temperature over 24 h. Reaction was quenched and extracted as per Method A. Method D: To a solution of trans-stilbene (180 mg, 1.0 mmol) and cyclohexanone (0.03 mL, 30 mol%) in MeCN-EtOH-CH2Cl2 (v/v, 1:1:2) (2.0 mL) was added buffer solution (1.5 mL, 2.0 M K2CO3 in 4 × 10⁻⁴ M aq Na2(EDTA)). Followed by H2O2 (30%, 0.25 mL, 3 mmol) at 0 °C for 24 h. Reaction was quenched and extracted as per Method A.

T 1, Method A, followed the Shi precedent for the use of Oxone and K2CO3 to form insitu dioxiranes. In this instance solutions of Oxone and K2CO3 were added separately and simultaneously via syringe pump, as stipulated by Shi. 227 Despite following this stringent procedure observed conversions were extremely low, 9%.

This suggests that either cyclohexanone is not an active epoxidations catalyst or that the procedure is more sensitive to experimental error than originally considered. Considering this, subsequent reactions T 3 – T 4, methods B – D,
followed Shi’s hydrogen peroxide methodology. A more recent development, 1999–2007,193-195,228 indicates that the hydrogen peroxide methodology is simpler and easier to perform, eliminating the use for syringe pumps, with effective mixing being highlighted as the only stipulated experimental requirement. Additionally as discussed in introductory sections, hydrogen peroxide is considered to be a green and sustainable oxidant.

Comparing the hydrogen peroxide methods $T_3 - T_4$, differences includes the variations in solvent choice; this was found to have little effect on reactivity and conversions. The best conversion was observed with method D, where additionally the temperature of the reaction was maintained at 0 °C with use of a cryostat. This suggests that temperature is an extremely influential factor.

In conclusion it seems that cyclohexanone, under the above reaction conditions, is an ineffective epoxidations catalyst. It was decided that commercial available Shi catalyst would be used to test the experimental reproducibility of the Shi methodology, and would be later used for a direct comparison to any epoxidations using synthesised chiral ketone \textit{429}. Table 10.

Direct comparison of the Shi catalyst and cyclohexanone T_5 indicated that the correct experimental procedures were being followed, as the Shi catalyst showed complete conversion, as in accordance with the literature values.193 However cyclohexanone remained an inactive catalyst.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Procedure</th>
<th>Conversion</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_5.1$</td>
<td>D</td>
<td>100%</td>
<td>Shi 30 mol%</td>
</tr>
<tr>
<td>$T_5.2$</td>
<td>D</td>
<td>0%</td>
<td>Cyclohexanone</td>
</tr>
<tr>
<td>$T_6.1$</td>
<td>E</td>
<td>38%</td>
<td>Shi 15 mol%</td>
</tr>
<tr>
<td>$T_6.2$</td>
<td>E</td>
<td>0%</td>
<td>Catalyst \textit{429} 15 mol%</td>
</tr>
<tr>
<td>$T_7.1$</td>
<td>F</td>
<td>0%</td>
<td>Catalyst \textit{429} 1 equiv</td>
</tr>
<tr>
<td>$T_7.2$</td>
<td>F</td>
<td>0%</td>
<td>Cyclohexanone 1 equiv</td>
</tr>
</tbody>
</table>

\textit{Table 10: Method D}: To a solution of trans-stilbene (180 mg, 1.0 mmol) and catalyst (30 mol%) in MeCN-EtOH-CH$_2$Cl$_2$ (v/v, 1:1:2) (2.0 mL) was added buffer solution (1.5 mL, 2.0 M K$_2$CO$_3$ in 4×10^{-4} M
aq Na₂(EDTA)). Followed by H₂O₂ (30%, 0.25 mL, 3 mmol) at 0 °C for 24h. Reaction was quenched and extracted as Method A. **Method E:** To a solution of trans-stilbene (180 mg, 1.0 mmol) and catalyst (15 mol%) in MeCN-EtOH-CH₂Cl₂ (v/v, 1:1:2) (2.0 mL) was added buffer solution (1.5 mL, 2.0 M K₂CO₃ in 4 × 10⁻⁴ M aq Na₂(EDTA)). Followed by H₂O₂ (30%, 0.25 mL, 3 mmol) at 0 °C for 24h. Reaction was quenched and extracted as Method A. **Method F:** To a solution of trans-stilbene (180 mg, 1.0 mmol) and catalyst (1 equiv) in MeCN-EtOH-CH₂Cl₂ (v/v, 1:1:2) (2.0 mL) was added buffer solution (1.5 mL, 2.0 M K₂CO₃ in 4 × 10⁻⁴ M aq Na₂(EDTA)). Followed by H₂O₂ (30%, 0.25 mL, 3 mmol) at 0 °C for 72 h. Reaction was quenched and extracted as Method A.

T 6 directly compared the Shi catalyst and the synthesised chiral ketone catalyst 429 at a 15 mol% catalyst loading (due to amount of material available). Disappointingly chiral ketone 429 displayed no conversion. Results either indicated that the chiral catalyst 429 is an inactive epoxidation catalyst, or is not as active as the Shi catalyst and higher catalyst loadings need to be considered. As is the case with the Shi catalyst, by reducing the catalyst loading by half, the conversion from T 5.1 – T 6.1 has reduced from 100% – 38%, a significant reduction.

Finally, **T 7** reactions were performed for length (3 days), using excess catalyst (1 equiv) and a maintained temperature (0 °C). These conditions should test whether chiral ketone 429 is in any way active. Cyclohexanone was also evaluated for comparison under these conditions. Disappointingly results indicated no conversion in either case.

From all of the above results it can be suggested that chiral ketone catalyst 429 is an inactive catalyst under the Shi hydrogen peroxide conditions. For completeness original Oxone conditions should be re-evaluated. Table 11.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Procedure</th>
<th>Conversion</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>T8.1</td>
<td>A</td>
<td>65%</td>
<td>Shi 30 mol%</td>
</tr>
<tr>
<td>T8.2</td>
<td>A</td>
<td>0%</td>
<td>Chiral Ketone 429 30 mol% 72 h</td>
</tr>
</tbody>
</table>

Table 11: Method A: trans-stilbene (180 mg, 1.0 mmol), cyclohexanone (0.03 mL, 30 mol%), and tetrabutylammonium hydrogen sulfate (0.01 g, 0.04 mmol) in MeCN-DMM (v/v, 1:2) (15 mL) was added buffer (10 mL, 0.05 M aq Na₂B₄O₇·10H₂O in 4 × 10⁻⁴ M aq Na₂(EDTA)). The mixture was cooled to 0 °C in an ice bath. A solution of Oxone (1.0 g, 1.6 mmol in 6.5 mL 4 × 10⁻⁴ M aq Na₂(EDTA)), and a solution of K₂CO₃ (0.93 g, 6.74 mmol H₂O 6.5 mL), were added dropwise separately and simultaneously via syringe pump over 2 h. The reaction was quenched by addition of pentane and extracted with pentane. The combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure.
The above results indicate that, as expected, the Shi catalyst epoxidises trans-stilbene with comparable yields to the literature (63 – 85% yield).188 Chiral ketone reaction \textbf{T 8.2} performed under the same conditions, with the exception of time (as literature precedent suggest carbocycles are less active catalysts, the reaction was left for 72h at 0 °C)185 gave no conversion. Interestingly, in comparison to the other chiral ketone hydrogen peroxide reactions, \textbf{T 6.2} and \textbf{T 7.1}, in this instance no chiral catalyst or potential byproducts were recovered. This could indicate decomposition, and possible reason why the reaction did not work.

\section*{7.4 Conclusion}

It can be concluded that the chiral catalyst \textbf{429} is an inactive epoxidations catalyst. Additionally it can be suggested that the endocyclic oxygen present within the Shi catalyst is important to its catalytic activity as indicated in many of Shi’s carbocyclic studies.185

Despite this novel chiral ketone \textbf{429} has been successfully synthesised in 8 steps in 20% overall yield from the MAO product.

Further elaboration and scope would intuitively follow adaption of the chiral ketone to make it a more active catalyst, including addition of electron withdrawing groups, potentially acetates or fluorine, as from the literature these have been shown to be viable.
Chapter 8: Conclusions and Future Work

This thesis details the application of the underexploited *ipso, ortho* diene *cis*-diol from the fermentation of benzoic acid by mutant strains of bacteria which contain benzoate dioxygenase enzymes.

Within Chapter 2 the synthesis of novel aminocyclitol architectures is detailed. Unfortunately the compounds synthesised proved to be biologically inactive for the specific application of glycosidase inhibition. Despite this the work details novel methodology through to compounds containing six contiguous stereocenters, all imparted via substrate control.

The subsequent cyclitol section, Chapter 3, sought to synthesise the fully oxygenated counterparts. Despite a literature precedent the work led to complex mixtures of structurally similar compounds which proved difficult to isolate and purify. However a small quantity of one compound was isolated and structural identity and conformation alluded to.

Further work in these two areas would involve the synthesis of further aminocyclitol and cyclitol analogues, with specific interest and investigation into the controlled ring opening of epoxides and aziridines to avoid the complex mixtures and purification issues. Targets would be tested for a range of biological activities, as we have seen many applications through the literature sections of this work.

Chapter 4 completed and concluded some previous academic work, and highlights the synthetic utility of bromine substituted *ipso, ortho* diene *cis*-diols. Further work in this area would explore the substrate scope and find the structural tolerances of the bacteria. It may be beneficial to engineer the bacteria so that it can tolerate different substrates, for example hetero-aromatics would be an interesting substrate (e.g. pyridine) as the nitrogen will already be present within the system, nitrogen insertion methodologies may be circumvented.
Finally the last section within this thesis, Chapter 6 and 7, investigated the viability of chiral acids and ketones derived from MAO as asymmetric epoxidation catalysts. Both the Miller203 and Shi184 precedent have been followed. There is vast scope for further investigation within this topic. Further manipulations and additions to the chiral substrates and further investigation into reaction conditions would, as the literature precedent suggests, yield comparative yields and selectivities. Structures 438 – 440 would be interesting targets, as we have seen electron withdrawing substituents enhance catalyst activity towards Oxone reagents and formation of the dioxirane intermediate. Scheme 132.

Scheme 132: Future chiral catalyst targets.

Additional future work might scope the viability of oxidising azacarbasugar or cyclitol motifs towards chiral ketones such as 441 and 442 for the use in catalytic asymmetric epoxidations.

Scheme 133: Chiral ketones derived from azacarbasugars.

Overall this thesis has scratched the surface of the proposed applications for the underexploited MAO product. Future work would continue these efforts.

Overall this thesis has scratched the surface of the proposed applications for the underexploited MAO product. Future work would continue these efforts.
9 Experimental

9.1 General

Reactions which required the use of anhydrous, inert atmosphere techniques were carried out under an atmosphere of nitrogen. In most cases, solvents were obtained by passing through anhydrous alumina columns using an Innovative Technology Inc. PS-400-7 solvent purification system. All other solvents were purchased as “anhydrous” grade from Fisher Scientific. “petrol” refers to petroleum spirit b.pt. 40-60 °C.

TLC was performed using aluminium backed plates precoated with Alugram®SIL G/UV 254nm. Visualization was accomplished by UV light and/or KMnO₄ followed by gentle warming. Organic layers were routinely dried with anhydrous MgSO₄ and evaporated using a Büchi rotary evaporator. When necessary, further drying was facilitated by high vacuum.

Flash column chromatography was carried out using Davisil LC 60Å silica gel (35-70 micron) purchased from Fisher Scientific.

IR spectra were recorded on Perkin-Elmer 1600 FT IR spectrometer with only selected absorbances quoted as ν in cm⁻¹. NMR spectra were run in CDCl₃ (unless otherwise specified) on Bruker Avance 250, 300, 400 or 500 MHz instruments at 298 K. The following abbreviations are used: s, singlet; d, doublet; t, triplet; q, quartet; dd, doublet of doublets; dq, doublet of quartets; td, triplet of doublets; m, multiplet and br, broad. J values are quoted to the nearest 0.5 Hz.

A micrOTOF electrospray time-of-flight (ESI-TOF) mass spectrometer (Bruker Daltonik GmbH, Bremen, Germany) was used; this was coupled to an Agilent 1200 HPLC system (Agilent Technologies, Waldbronn, Germany).
The HPLC system was used as an autosampler only. 10μL of sample was injected into a 30:70 flow of water:acetonitrile at 0.6mL/min to the mass spectrometer. For each acquisition 10μL of calibrant of 5mM sodium formate was injected after the sample. The observed mass and isotope pattern matched the corresponding theoretical values as calculated from the expected elemental formula.

X-Ray crystallography was recorded on a Nonius Kappa CCD diffractometer with Mo-Kα radiation (λ=0.71074Å). All structures were solvent by direct methods and refined on all F2 data using SHELX-97 suite of programs. Enantiomeric excess was measured using a Perkin Elmer 200 Series HPLC machine fitted with a Chiralcel AS column (25 cm), eluting with HPLC grade hexane and isopropylalcohol.
9.2 Chapter 1 Aminocyclitols Experimental

9.2.1 (1S,6R)-methyl 1,6-dihydroxycyclohexa-2,4-dienecarboxylate

![Chemical Structure](image)

To a stirred solution of the microbial oxidation cis – diol acid 30 (982 mg, 6.3 mmol, 1 equiv) in MeOH/benzene (1:1, 30 mL) (trimethylsilyl)diazomethane (8 mL, 2.0 M in hexanes) was added dropwise until the yellow colour persisted and effervescence ceased. The solution was stirred for 2 h at room temperature then concentrated under reduced pressure to give crude 121 (1.06 g, 99%) as pale brown crystals, sufficiently pure to be used without further purification.

121 has been reported previously; spectroscopic data are in agreement with published values.\(^\text{18}\)

\[R_f = 0.25 \text{ (50 % EtOAc-petrol); } \delta_H (250 \text{ MHz, CDCl}_3) 6.10 \text{ (1H, dd, } J = 10.0, 5.0 \text{ Hz, C=CH), 5.85} - 5.95 \text{ (1H, m, C=CH), 5.72} - 5.81 \text{ (2H, m, HC=CH), 4.81 (1H, s, CH(O)), 3.83 (3H, s, OCH}_3);\]
9.2.2 (3aS,7aR)-2,2-dimethyl-3a,7a-dihydrobenzo[d][1,3]dioxole-3a-carboxylic acid

To diol acid 30 (1.77 g, 11.3 mmol, 1 equiv) and para-toluenesulfonic acid (5 mg, 0.3 mmol, 4 mol%) in acetone (50 mL), 2,2-dimethoxypropane (8.5 mL, 68.0 mmol, 6 equiv) was added dropwise. The reaction mixture was stirred at room temperature for 24 h, transferred to a separating funnel, washed with saturated NaHCO$_3$(aq) then extracted with EtOAc (3 × 20 mL). The organic phase was dried over MgSO$_4$ and filtered. The filtrate was concentrated under reduced pressure and purified via column chromatography (50% EtOAc–petrol) to give 206 (2.08 g, 94%) a pale yellow oil.

206 has been reported previously; spectroscopic data are in agreement with published values.17

17

$R_f = 0.35$ (50 % EtOAc-petrol); δ_H (250 MHz, CDCl$_3$) 6.21 – 6.11 (2H, m, C=CH), 6.05 – 5.98 (1H, m, C=CH), 5.83 – 5.78 (1H, m, C=CH), 4.94 (1H, d, $J = 4.5$ Hz (CH(O)), 1.49 (3H, s, CH$_3$), 1.43 (3H, s, CH$_3$);
9.2.3 (3aS,7aR)-methyl 2,2-dimethyl-3a,7a-dihydrobenzo[d][1,3]dioxole-3a-carboxylate

To acetonide protected acid 206 (443 mg, 2.25 mmol, 1 equiv), N,N'-Dicyclohexylcarbodiimide (465 mg, 2.25 mmol, 1 equiv), in methanol (30 mL), N,N-Dimethylpyridin-4-amine (13 mg, 0.11 mmol, 5 mol %) was added. The resulting mixture was stirred at room temperature for 48 h. The reaction mixture was transferred to a separating funnel, diluted with EtOAc and washed with saturated brine. The organic phase was dried over MgSO$_4$ and filtered. The filtrate was concentrated under reduced pressure and purified via column chromatography (15% EtOAc–petrol) to give 113 (268 mg, 56%) as a pale yellow oil.

Or:

To methyl ester diol 121 (1.09 g, 6.45 mmol, 1 equiv) and para-toluenesulfonic acid (50 mg, 0.3 mmol, 4 mol%) in acetone (70 mL) 2,2-dimethoxypropane (5.5 mL, 40.0 mmol, 6 equiv) was added dropwise. The reaction mixture was stirred at room temperature for 24 h, transferred to a separating funnel, washed with saturated NaHCO$_3$(aq) then extracted with EtOAc (3 x 30 mL). The organic phase was dried over MgSO$_4$ and filtered. The filtrate was concentrated under reduced pressure and purified via column chromatography (15% EtOAc–petrol) to give 113 (1.30 g, 95%) as a pale yellow oil.

113 has been reported previously; spectroscopic data are in agreement with published values.75

$R_f = 0.70$ (60 % EtOAc-petrol); δH (250 MHz, CDCl$_3$) 5.85 – 6.02 (3H, m, C=CH), 5.66 – 5.74 (1H, m, C=CH), 4.84 (1H, d, J 2.5 Hz CH(O)), 3.66 (3H, s, OCH$_3$), 1.31 (3H, s, CH$_3$), 1.28 (3H, s, CH$_3$);
9.2.4 ((3aR,7aR)-2,2-dimethyl-3a,7a-dihydrobenzo[d][1,3]dioxol-3a-yl)methanol

To methyl ester 113 (612 mg, 2.9 mmol, 1 equiv), lithium borohydride, 2M in THF, (1.45 mL, 2.91 mmol, 1 equiv) was added at -78 °C. The reaction mixture was stirred at -78 °C for 8 h, then left to warm to room temperature overnight. The reaction mixture transferred to a separating funnel, washed with saturated brine then extracted with EtOAc (4 × 25 mL). The organic phase was dried over MgSO$_4$ and filtered. The filtrate was concentrated under reduced pressure and purified via column chromatography (15% EtOAc–petrol) to give 207 (548 mg, 96 %) a pale yellow oil.

207 has been reported previously; spectroscopic data are in agreement with published values.75

$R_f = 0.30$ (50 % EtOAc–petrol); δ_{H} (250 MHz, CDCl$_3$) 5.91 – 6.06 (3H, m, C=CH), 5.63 (1H, d, $J = 5$ Hz, C=CH), 4.42 (1H, d, $J = 5$ Hz, CH(O)), 3.52 (1H, d, $J = 10.0$ Hz, CHH), 3.29 (1H, d, $J = 10.0$ Hz, CHH), 1.38 (3H, s, CH$_3$), 1.30 (3H, s, CH$_3$);
9.2.5 *tert*-butyl(((3aR,7aR)-2,2-dimethyl-3a,7a-dihydrobenzo[d][1,3]dioxol-3a-yl)methoxy)dimethylsilane

To alcohol 207 (548 mg, 3.0 mmol, 1 equiv) dissolved in dichloromethane (30 mL), triethylamine (1.0 mL, 7.5 mmol, 2.5 equiv) was added and stirred at 0 °C. *tert*-Butyldimethylsilyl trifluoromethanesulfonate (0.83 mL, 3.6 mmol 1.2 equiv) was added dropwise at 0 °C over 5 mins. The resulting mixture was stirred at 0 °C for 1 h. The reaction mixture was transferred to a separating funnel. Saturated brine (10 mL) was added, then extracted with EtOAc (3 × 10 mL). The organic phase was dried over MgSO$_4$ and filtered. The filtrate was concentrated under reduced pressure and purified via column chromatography (15% EtOAc-petrol) to give 47 (636 mg, 72%) as a colourless oil.

208 has been reported previously; spectroscopic data are in agreement with published values.75

$$R_f = 0.90 \text{ (10 \% EtOAc-petrol); } \delta_H \text{ (250 MHz, CDCl}_3) \ 6.10 - 5.94 \text{ (3H, m, C=CH), 5.67 (1H, d, } J = 10.0 \text{ Hz, C=CH), 4.52 (1H, } J = 5.0 \text{ Hz, CH(O)), 3.55 (1H, d, } J = 12.0 \text{ Hz, CHH), 3.44 (1H, d, } J = 12.0 \text{ Hz, CHH), 1.43 (3H, s, CH}_3, 1.36 \text{ (3H, s, CH}_3, 0.87 \text{ (9H, s, C(CH}_3}_3\text{), 0.05 (3H, s, SiCH}_3, 0.04 \text{ (3H, s, SiCH}_3\text{);}$$
9.2.6 (3aR,4R,7S,7aR)-Benzy 3a-(((tert-butyldimethylsilyl)oxy) methyl)-2,2-dimethyl-3a,4,7,7a-tetrahydro-4,7-(epoxyimino)benzo[d][1,3]dioxole-8-carboxylate

and

9.2.7 (3aR,4S,7R,7aR)-benzyl 7a-(((tert-butyldimethylsilyl)oxy) methyl)-2,2-dimethyl-3a,4,7,7a-tetrahydro-4,7-(epoxyimino)benzo[d][1,3]dioxole-8-carboxylate

To a solution of diene 208 (446 mg, 1.5 mmol, 1 equiv) and tetrabutylammonium periodate (1.3 g, 3.0 mmol, 2 equiv) in dichloromethane (30 mL) at -78 °C was added N-(benzyloxycarbonyl)hydroxylamine (503 mg, 3.0 mmol, 2 equiv) in dichloromethane (10 mL) dropwise via cannula over 5 min. The reaction mixture was stirred at -78 °C under N\textsubscript{2} for 20 h, then diluted with EtOAc (10 mL) and washed with saturated aqueous sodium thiosulfate solution (5 mL) and then saturated brine (5 mL). The organic layer was separated and dried over MgSO\textsubscript{4}, then concentrated under reduced pressure and purified by column chromatography (5% EtOAc-petrol) to give 214 (217 mg, 31%) as a colourless oil and 215 (403 mg, 58%) as a colourless oil.

214: R\textsubscript{T} = 0.19 (15% EtOAc-petrol); [\alpha]_{D}^{25} +1.53 (c 0.66 in CH\textsubscript{2}Cl\textsubscript{2}); \delta\textsubscript{H} (300 MHz, CDCl\textsubscript{3}) 7.28 – 7.23 (5H, m), 6.46 (1H, br t, J = 5.0 Hz), 6.28 (1H, ddd, J = 7.5, 2.5, 1.5 Hz), 5.10 (1H, d, J\textsubscript{AB} = 10.0 Hz), 5.06 (1H, dd, J = 6.0, 3.0 Hz) 5.02 (1H, d, J\textsubscript{AB} = 10.0 Hz), 4.82 (1H, ddd, J = 6.0, 3.0, 1.5 Hz), 4.07 (1H, d, J = 3.0 Hz), 3.80 (1H, d, J = 12.0 Hz), 3.76 (1H, d, J = 12.0 Hz), 1.30 (3H, s), 1.21 (3H, s), 0.08 (9H, s), 0.01 (3H, s), -0.01 (3H, s); \delta\textsubscript{C} (75 MHz, CDCl\textsubscript{3}) 158.2, 135.5, 132.4, 129.0, 128.4, 128.2, 128.0, 112.3, 84.0, 75.7, 72.2, 68.0, 66.2, 53.6, 28.0, 27.0, 25.9, 18.4, -5.5, -5.6; \nu\textsubscript{max} (film) 3515, 2929, 2857, 1747, 1713, 1497, 1455, 1379, 1312, 1284, 1248, 1211, 1184, 1151, 1097, 1061, 1024, 984, 929, 910, 776, 751, 731, 696, 616 cm-1; HRMS (ESI+) m/z calcd for (C\textsubscript{24}H\textsubscript{35}NO\textsubscript{6}Si+Na+), 484.2131; found 484.2140.
215: $R_f = 0.28$ (15% EtOAc-petrol); $[\alpha]_D^{25} +12.6$ (c 0.87 in CH$_2$Cl$_2$); δ_H (300 MHz, CDCl$_3$) 7.37 – 7.29 (5H, s), 6.53 (1H, ddd, $J = 7.5$, 2.5, 1.5 Hz), 6.42 (1H, br t, $J = 5.0$ Hz), 5.22 (1H, d, $J_{AB} = 12.0$ Hz), 5.19 (1H, d, $J_{AB} = 12.0$ Hz), 5.06 (1H, ddd, $J = 5.0$, 5.0, 1.5 Hz), 4.89 (1H, dd, $J = 5.0$, 2.5 Hz), 4.18 (1H, d, $J = 2.5$ Hz), 3.90 (2H, s), 1.39 (3H, s), 1.28 (3H, s), 0.90 (9H, s), 0.09 (3H, s), 0.08 (3H, s); δ_C (75 MHz, CDCl$_3$) δ 157.5, 135.5, 131.1, 129.8, 128.4, 128.3, 128.1, 112.5, 84.1, 75.1, 71.5, 68.1, 65.6, 53.6, 28.3, 27.1, 26.0, 18.5, -5.3, -5.4; ν_{max} (film) 2930, 2857, 1748, 1709, 1498, 1462, 1380, 1370, 1327, 1295, 1248, 1214, 1170, 1150, 1096, 1080, 1065, 1026, 1005, 934, 904, 836, 776, 736, 696, 683, 670 cm$^{-1}$; HRMS (ESI$^+$) m/z calcd for (C$_{24}$H$_{35}$NO$_6$Si+Na)$^+$, 484.2131; found 484.2108.
9.2.8 (3aR,4R,5S,6R,7S,7aR)-benzyl 3a-(((tert-butyldimethylsilyl)oxy)methyl)-5,6-dihydroxy-2,2-dimethylhexahydro-4,7-(epoxyimino)benzo[d][1,3]dioxole-8-carboxylate

To alkene **214** (195 mg, 0.43 mmol, 1 equiv) in acetone:water (4:1, 20 mL) was added N-methylmorpholine N-oxide (57 mg, 0.43 mmol, 1.0 equiv) as a solid. Osmium tetroxide (2.5% in tert-butanol, 60 μL, 0.008 mmol, 2 mol%) was added via syringe and the reaction mixture was stirred at room temperature for 48 h. A change from colourless to pale yellow was observed. The reaction mixture was transferred to a separating funnel, diluted with EtOAc (15 mL) and washed with saturated aqueous sodium thiosulfate (5 mL) and saturated – (5 mL). The organic phase was separated and dried over MgSO₄, concentrated under reduced pressure and purified by column chromatography (50% EtOAc-petrol) to give **216** (172 mg, 81%), as a colourless oil.

\[R_f = 0.38 \text{ (40\% EtOAc-petrol); } [\alpha]_{D}^{25} = -27 \text{ (c 8.2 in CHCl}_3\text{);} \delta_H \text{ (250 MHz, CDCl}_3\text{) 7.36-7.30 (5H, m), 5.18 (2H, s), 4.66 (1H, br s), 4.38 (1H, br s), 4.24-4.17 (3H, m), 3.82 (1H, d, } J = 12.5 \text{ Hz), 3.75 (1H, d, } J = 12.5 \text{ Hz) 3.75-3.63, (2H, m), 1.43 (3H, s), 1.40 (3H, s), 0.87 (9H, s), 0.04 (6H, s); } \delta_C \text{ (75 MHz, CDCl}_3\text{) 156.8, 135.4, 128.2, 128.1, 127.9, 111.1, 82.0, 78.0, 76.4, 72.3, 67.9, 64.9, 61.8, 61.2, 26.5, 26.4, 25.7, 18.2, -5.6, -5.7; } V_{\text{max}} \text{ (film) 3419, 2959, 2929, 2886, 2857, 1708, 1553, 1498, 1460, 1408, 1384, 1258, 1212, 1071, 836, 779 cm}^{-1}; \text{ HRMS (ESI+) } m/z \text{ calcd for (C}_{24}H_{37}NO_8Si+Na}+, 518.2186; \text{ found 518.2210.} \]
9.2.9 (3αR,4S,5S,6R,7R,7aR)-benzyl 7a-((tert-butyldimethylsilyl)
-5,6-dihydroxy-2,2-dimethylhexahydro-4,7-(epoxyimino)benzo[d][1,3]dioxole-8-carboxylate

and

9.2.10(3αS,4S,4aR,7αR,8R,8αR)-7α-((tert-butyldimethylsilyl)
-6,6-dimethylhexahydro-4,8-(epoxyimino)benzo[1,2-d:4,5-d']bis([1,3]dioxole)-2-one

To alkene 215 (489 mg, 1.06 mmol, 1 equiv) in acetone:water (4:1, 20 mL) in a
round-bottomed flask (50 mL) was added N-methylmorpholine N-oxide (143 mg,
1.06 mmol, 1 equiv) as a solid. Osmium tetroxide (2.5% in tert-butanol, 130 μL, 0.02
mmol, 2 mol%) was added via syringe and the reaction mixture was stirred at room
temperature for 48 h. A colour change from colourless to pale yellow was observed
and reaction mixture was transferred to a separating funnel, diluted with EtOAc (10
mL) and washed with saturated aqueous sodium thiosulfate (5 mL) then saturated
brine (5 mL). The organic phase was separated and dried over MgSO₄, concentrated
under reduced pressure and purified by column chromatography (50% EtOAc-
petrol) to give 217 (230 mg , 44%) and 220 (70 mg, 17%) both as colourless oils. Also
isolated was recovered starting material 215 (97 mg, 19%).

217: Rᵣ = 0.36 (50 % EtOAc-petrol); [α]D²⁵ +17 (c 11.5 in CHCl₃); δH (250 MHz, CDCl₃)
7.38 – 7.32 (5H, m), 5.20 (2H, s), 4.67 (1H, br s), 4.39 (1H, br s), 4.25 – 4.21 (3H, m),
3.84 (1H, d, J = 10.0 Hz), 3.78 (1H, d, J =10.0 Hz) 3.54 (1H, br s), 3.32 (1H, d, J = 5.0
Hz) 1.44 (3H, s), 1.42 (3H, s), 0.89 (9H, s), 0.06 (6H, s); δC (75 MHz, CDCl₃) 158.9,
135.5, 128.5, 128.3, 128.3, 111.7, 83.1, 76.2, 73.2, 68.3, 66.0, 62.5, 61.4, 58.9, 26.7,
26.6, 25.9, 18.4, -5.5, -5.6; νmax (film) 3428, 2929, 2856, 1710, 1498, 1454, 1383,
1256, 1102, 1064, 835, 777 cm⁻¹; HRMS (ESI⁺) m/z calcd for (C₂₄H₃₇NO₆Si+Na)⁺,
518.2186; found 518.2210.
220: $R_f = 0.57$ (50 % EtOAc-petrol); $[\alpha]_D^{25} = -6.5$ (c 3.5 in CHCl$_3$); δ_H (250 MHz, CDCl$_3$) 6.06 (1H, br s), 5.03-5.02 (2H, m), 4.33 (1H, d, $J = 6.0$ Hz), 4.21 (1H, d, $J = 6.0$ Hz), 4.08 (1H, d, $J = 12.0$ Hz), 3.90 (1H, d, $J = 12.0$ Hz), 3.67 (1H, br s) 1.45 (3H, s), 1.44 (3H, s), 0.90 (9H, s), 0.09 (3H, s), 0.08 (3H, s); δ_C (75 MHz, CDCl$_3$) 154.4, 110.9, 81.8, 73.7, 71.7, 69.9, 68.3, 66.2, 53.4, 26.9, 26.6, 25.8, 18.3, -5.4, -5.5; ν_{max} (film) 3270, 2955, 2930, 2857, 1808, 1463, 1361, 1254, 1166, 1077, 836, 779 cm$^{-1}$; HRMS (ESI$^+$) m/z calcd for (C$_{17}$H$_{29}$NO$_7$Si+Na)$^+$, 410.1611; found 410.1664.
9.2.11(3aS,4R,4aR,7aR,8S,8aR)-4a-(hydroxymethyl)-6,6-dimethyl hexahydro-4,8-(epoxyimino)benzo[1,2-d:4,5-d’]bis([1,3] dioxole) -2-one

To silyl ether 216 (165 mg, 0.33 mmol, 1 equiv.) in THF (20 mL) at 0 °C was added tetrabutylammonium fluoride (0.3 mL, 1.0 M in THF, 1.0 equiv) dropwise over 5 min. The reaction mixture was stirred at 0 °C for 12 h, then transferred to a separating funnel and diluted with EtOAc (20 mL) and washed with water (2 x 10 mL). The organic phase was then washed further with saturated brine (5 mL), dried over MgSO₄, concentrated under reduced pressure and purified by column chromatography (50% EtOAc-petrol) to give 222 (34 mg, 24%), as a colourless oil.

Rf = 0.20 (50% EtOAc-petrol); [α]D²⁵ -1.5 (c 1.7 in CHCl₃); δH (250 MHz, (CD₃)₂CO) 6.88 (1H, br s), 5.16 (1H, dd, J = 8.0, 4.0 Hz), 5.09 (1H, d, J = 8.0 Hz), 4.42 (1H, d, J = 4.0 Hz), 4.27 (1H, t, J = 4.0 Hz), 4.19 (1H, br s), 3.97 – 3.84 (3H, m), 1.50 (3H, s), 1.48 (3H, s); δC (75 MHz, (CD₃)₂CO) 154.5, 110.1, 81.7, 73.7, 72.0, 70.6, 69.4, 64.5, 51.6, 25.8, 25.6; νmax (film) 3268, 2992, 2923, 1800, 1780, 1454, 1369, 1165, 1067, 770 cm⁻¹; HRMS (ESI⁺) m/z calcd for (C₁₁H₁₆NO₇+Na)⁺, 296.0746; found 296.0787.
9.2.12(3aS,4R,7S,7aR)-7-amino-3a-((tert-butyldimethylsilyl)oxy)methyl)-2,2-dimethylhexahydrobenzo[d][1,3]dioxol-4-ol

To alkene 214 (61 mg, 0.13 mmol, 1 equiv) in EtOAc (20 mL) was added palladium on carbon (6 mg, 10 wt%). The reaction mixture was stirred under an atmosphere of H₂ at room temperature for 24 h then filtered through celite. The filtrate was concentrated under reduced pressure and purified by column chromatography (50% EtOAc-petrol) to give 223 as a colourless oil (43 mg, 99%).

Rₛ = 0.85 (50% EtOAc-petrol); [α]₀⁺²⁵ -15 (c 0.55 in CHCl₃); δₜ (300 MHz, CDCl₃) 4.05 (1H, d, J = 3.0 Hz), 3.97 (1H, d, J = 12.0 Hz), 3.83 (1H, d, J = 12.0 Hz), 3.80 (1H, app q, J = 3.0 Hz), 3.46-3.42 (1H, m, 1H), 2.76 (3H, br s), 2.02 – 1.87 (1H, m), 1.83 – 1.72 (2H, m), 1.61 – 1.51 (1H, m), 1.46 (3H, s), 1.37 (3H, s), 0.91 (9H, s), 0.10 (3H, s), 0.09 (3H, s); δₜ (75 MHz, CDCl₃) 108.1, 83.6, 80.1, 73.2, 65.1, 47.4, 28.1, 26.7, 25.9, 25.4, 24.5, 18.3, -5.5, -5.6; νₘₚₙ (film) 2961, 2927, 2854, 1590, 1519, 1463, 1392, 1300, 1251, 1215, 1151, 1033, 747 cm⁻¹; HRMS (ESI⁺) m/z calcd for (C₁₆H₃₃NO₄Si+Na)⁺, 354.2076; found 354.2054.
9.2.13\((3aR,4S,7R,7aR)-7\text{-amino-7a-}((\text{tert-butyldimethylsilyl})\text{oxy})\text{methyl}-2,2\text{-dimethylhexahydrobenzo[d][1,3]dioxol-4-ol}\)

To alkene 215 (253 mg, 0.55 mmol, 1 equiv) in EtOAc (20 mL) was added palladium on carbon (26 mg, 10 mass%). The reaction mixture was stirred under an atmosphere of H$_2$ at room temperature for 24 h then filtered through celite. The filtrate was concentrated under reduced pressure and purified by column chromatography (20% MeOH-79% EtOAc-1% Et$_3$N) to give 224 as a colourless oil (179 mg, 98%).

\[
R_f = 0.43 \text{ (20% MeOH-79% EtOAc-1% Et}_3\text{N); } [\alpha]_D^{25} = -37 \text{ (c 3.5 in CHCl}_3\text{); } \delta_H \text{ (300 MHz, CDCl}_3\text{) } 4.03 \text{ (1H, br s), 3.96 – 3.93 (2H, m), 3.70 (1H, d, } J = 11.0 \text{ Hz), 3.36 (3H, br s), 3.12 (1H, br s), 2.00 – 1.88 (1H, m), 1.82 – 1.72 (2H, m), 1.62 – 1.58 (1H, m), 1.41 (3H, s), 1.32 (3H, s), 0.88 (9H, s), -0.09 (6H, s); } \delta_C \text{ (75 MHz, CDCl}_3\text{) } 108.4, 83.1, 79.8, 67.3, 65.8, 52.3, 27.5, 26.3, 26.0, 25.9, 23.7, 18.3, -5.3, -5.5; \nu_{\text{max}} \text{ (film) } 3282, 2898, 2930, 2856, 1472, 1378, 1250, 1216, 1087, 963, 835 \text{ cm}^{-1}; \text{ HRMS (ESI$^+$) } m/z \text{ calcd for (C}_{16}H_{33}NO_4Si+Na)$^+$, 354.2076; found 354.2076.
9.2.14(3aS,4R,5R,6R,7S,7aR)-7-amino-3a-(((tert-butyldimethylsilyl)oxy)methyl)-2,2-dimethylhexahydrobenzo[d][1,3]dioxole-4,5,6-triol

To diol 216 (28 mg, 0.06 mmol, 1 equiv) in EtOAc (20 mL) was added palladium on carbon (5 mg, 20 mass%). The reaction mixture was stirred under an atmosphere of \(\text{H}_2 \) at room temperature for 24 h then filtered through celite. The filtrate was concentrated under reduced pressure and purified by column chromatography (10% MeOH-89% chloroform-1% Et\(_3\)N) to give 225 as a colourless oil (11 mg, 50%).

\(R_f = 0.25 \) (15% MeOH-84% EtOAc-1% Et\(_3\)N); \(\alpha \)\(_D\)\(^{25} \) +43 (c 0.6 in H\(_2\)O); \(\delta \)H (300 MHz, D\(_2\)O) 4.46 – 3.93 (10H m), 1.45 (3H, s), 1.39 (3H, s), 0.92 (9H, s), 0.12 (6H, s); \(\delta \)C (75 MHz, CDCl\(_3\)) 108.9, 83.8, 74.3, 70.6, 67.6, 65.3, 64.7, 51.9, 29.6, 27.9, 26.6, 26.0, 25.9, 18.4, -5.3, -5.4; \(\nu \)\(_{\text{max}} \) (film) 3324, 3256, 2965, 2813, 2787, 1432, 1376, 1244, 1156, 1020, 978, 836, 774 cm\(^{-1}\); HRMS (ESI\(^+\)) m/z calcd for (C\(_{16}\)H\(_{33}\)NO\(_6\)Si\(_{\text{Na}}\))\(^+\), 386.1907; found 386.1968.
9.2.15(3aR,4S,5S,6S,7R,7aR)-7-amino-7a-(((tert-butyldimethylsilyl)oxy)methyl)-2,2-dimethylhexahydrobenzo[d][1,3]dioxole-4,5,6-triol

To diol 217 (120 mg, 0.24 mmol, 1 equiv) in EtOAc (20 mL) was added palladium on carbon (12 mg, 10 mass%). The reaction mixture was stirred under an atmosphere of H₂ at room temperature for 24 h then filtered through celite. The filtrate was concentrated under reduced pressure and purified by column chromatography (50% EtOAc-petrol) to give 226 as a colourless oil (39 mg, 45%).

Rᶠ = 0.35 (50% EtOAc-petrol); [α]D²⁵ +33 (c 0.39 in CHCl₃); δH (300 MHz, CDCl₃) 4.25 – 4.20 (2H, m), 4.18 – 4.15 (2H, m), 4.03 (1H, d, J = 15.0 Hz), 3.91 (1H, d, J = 15.0 Hz), 3.30 (1H, s), 1.46 (3H, br s), 1.43 (3H, s), 0.92 (9H, s), 0.11 (3H, s), 0.10 (3H, s); δC (75 MHz, CDCl₃) 110.3, 81.9, 73.8, 72.9, 66.7, 62.7, 60.2, 58.3, 26.8, 26.8, 25.9, 18.4, -5.3, -5.4; νmax (film) 3404, 2958, 2930, 2857, 1463, 1382, 1255, 1210, 1101, 1060, 863, 779 cm⁻¹; HRMS (ESI⁺) m/z calcd for (C₁₆H₃₃NO₆Si+H)⁺, 364.2155; found 364.2093.
9.2.16(4aR,7aR,8S,8aR,11aR,11bR)-2,2,6,6,10,10-hexamethylhexahydrobis([1,3]dioxolo)[4',5':2,3;4'',5'':5,6]benzo[1,2-d][1,3]dioxin-8-amine

225 (38 mg, 0.1 mmol, 1 equiv) dissolved in THF (20 mL) was added TBAF (0.1 mL 1M in THF) was added at 0°C and stirred for 24 h. The resulting solution was extracted with water. The aqueous layer was concentrated down and contained the alcohol product and quaternary ammonium salts which could not be separated. The resulting oil was dissolved into acetone (20 mL) to which was added 2,2-dimethoxypropanol (2 mL, 16 mmol, 160 equiv), and para-toluenesulfonic acid (20 mg, 0.1 mmol, 1 equiv). The resulting solution was stirred at room temperature for 24 h. The reaction mixture was transferred to a separating funnel, diluted with EtOAc, washed with saturated brine, dried over MgSO₄, concentrated under reduced pressure to give intermediate 228 a yellow oil (26 mg, 10%).

δ₁H (300 MHz, CDCl₃) 4.98 (1H, d, J = 12.0 Hz), 4.42 – 4.65 (5H, m), 3.65 – 3.69 (2H, m), 1.36 – 1.44 (18H, m, CH₃); δC (75 MHz, CDCl₃): 101.5 (C(CH₃)₂), 109.6 (C(CH₃)₂), 90.2 (NC(CH₃)₂), 76.5 (CHO), 73.0 (CHO), 69.6 (CHO), 69.4 (CHO), 67.2 (CHN), 55.5 (CH₂), 29.8 (C(CH₃)₂), 26.7 (C(CH₃)₂), 26.5 (C(CH₃)₂), 26.1 (C(CH₃)₂), 25.7 (C(CH₃)₂), 20.6 (C(CH₃)₂); ν max (film) 2994, 2933, 2864, 1459, 1381, 1252, 1211, 1072, 868 cm⁻¹; HRMS (ESI⁺) m/z calcd for (C₁₆H₂₇NO₆+H)⁺, 330.1917; found 330.1796.
228 (26 mg, 0.08 mmol) was stirred in 1M HCl (20 mL) for 24 h at room temperature. The resulting mixture was concentrated under reduced pressure to give 229 (15 mg, 89%) a yellow oil unpurified.

\[[\alpha]_D^{25} -32 \text{ (c 0.5, H}_2\text{O); } \delta_H \text{ (300 MHz, D}_2\text{O) } 4.43 \text{ (1H, d, } J = 6.0 \text{ Hz), } 4.25 \text{ (1H, d, } J = 9.0 \text{ Hz), } 4.06 \text{ (1H, d, } J = 6.0 \text{ Hz), } 3.97 \text{ (1H, d, } J = 6.0 \text{ Hz), } 3.85 \text{ (1H, br s), } 3.60 - 3.71 \text{ (2H, m); } \delta_C \text{ (75 MHz, D}_2\text{O) } 76.3, 76.0, 72.8, 67.7, 66.6, 66.5, 60.3; \nu_{\max} \text{ (film) } 3349, 2506, 1631, 1433, 1258, 1063 \text{ cm}^{-1}; \text{ HRMS (ESI$^+$) } m/z \text{ calcd for (C}_{7}\text{H}_{15}\text{NO}_6\text{H}^+, 210.0978; found 210.0965.} \]
9.2.18(1S,2R,3S,4R)-2,3,4-trihydroxy-3-(hydroxymethyl) cyclo hexanaminium chloride

Hydroxyamine 223 (43 mg, 0.13 mmol) was stirred in aqueous hydrochloric acid (1.0 M, 20 mL) at room temperature for 24 h. The aqueous phase was washed with EtOAc (2 x 10 mL) to remove the silanol byproduct. The aqueous phase was concentrated under reduced pressure to give 230 as a colourless oil (26 mg, 94%).

\[\alpha \] D\textsubscript{25} +22 (c 1.3 in H\textsubscript{2}O); \(\delta \)\textsubscript{H} (300 MHz, D\textsubscript{2}O) 3.85 (1H, s), 3.64 (1H, d, J = 12.0 Hz), 3.57 (1H, d, J = 12.0 Hz), 3.55 (1H, d, J = 9.0 Hz), 3.37 – 3.18 (1H, m), 1.80 – 1.55 (4H, m); \(\delta \)\textsubscript{C} (75 MHz, D\textsubscript{2}O) 76.0, 69.9, 68.6, 63.5, 52.1, 25.8, 22.7; \(\nu \)\textsubscript{max} (film) 3336, 2981, 2482, 1602, 1383, 1233, 1156, 1069, 1021, 956, 797 cm-1; HRMS (ESI+) m/z calcd for (C\textsubscript{7}H\textsubscript{15}NO\textsubscript{4}+Na+)+, 200.0898; found 200.0906.
9.2.19(1R,2R,3R,4S)-2,3,4-trihydroxy-2-(hydroxymethyl) cyclohexanaminium chloride

Hydroxyamine **224** (30 mg, 0.09 mmol) was stirred in aqueous hydrochloric acid (1.0 M, 20 mL) at room temperature for 24 h. The aqueous phase was washed with EtOAc (2 × 10 mL) to remove the silanol byproduct. The aqueous phase was concentrated under reduced pressure to give **231** as a pale yellow oil (17 mg, 88%).

\[\alpha \] \text{D}^25 +35 (c 0.85 in H2O); \h{H} (300 MHz, D2O) 3.86 (1H, d, J = 12.0 Hz), 3.81 (1H, td, J = 7.5, 4.0 Hz), 3.55 (1H, d, J = 12.0 Hz), 3.49 (1H, d, J = 6.0 Hz), 3.38-3.34 (1H, m), 1.92 – 1.63 (3H, m), 1.52 – 1.40 (1H, m); \h{C} (75 MHz, D2O) 74.1, 72.3, 69.8, 63.4, 54.0, 26.0, 22.8; \nu_{\text{max}} (film) 3317, 2940, 2508, 1400, 1071, 1027, 799 cm\(^{-1}\);

HRMS (ESI\(^+\)) m/z calcd for (C\(_7\)H\(_{15}\)NO\(_4\)+H\(^+\)), 179.1157; found 179.1129.
9.2.20\((1S,2R,3R,4R,5R,6R)-2,3,4,5,6\text{-pentahydroxy-3-(hydroxymethyl)cyclohexanaminium chloride}\)

Aminotriol 225 (11 mg, 0.03 mmol) was stirred in aqueous hydrochloric acid (1.0 M, 20 mL) at room temperature for 24 h. The aqueous phase was washed with EtOAc (2 \times 10 mL) to remove the silanol byproduct. The aqueous phase was concentrated under reduced pressure to give 232 as a colourless oil (8 mg, 99%).

\([\alpha]_D^{25} -47 (c \ 0.4\ \text{in H}_2\text{O}); \delta_H (300\ \text{MHz, D}_2\text{O}) 4.24 (1H, q, J = 3.0\ \text{Hz}), 4.04 – 3.99 (3H, m), 3.89 (1H, d, J = 12.0\ \text{Hz}), 3.75 (1H, d, J = 12.0\ \text{Hz}), 3.57 (1H, dd, J = 10.5, 3.0\ \text{Hz}); \delta_C (75\ \text{MHz, D}_2\text{O}) 75.5, 72.6, 70.4, 65.6, 65.1, 62.8, 53.3; \nu_{\text{max}}\ (\text{film}) 3302, 2958, 2511, 1629, 1508, 1077, 1028, 808, 723\ \text{cm}^{-1}; \text{HRMS (ESI}^+\text{) } m/z \text{ calcd for (C}_7\text{H}_{15}\text{NO}_6\text{Na})^+, 232.0797; \text{found 232.0783.}\)
9.2.21\((1R,2R,3R,4S,5S,6S)-2,3,4,5,6-pentahydroxy-2-(hydroxymethyl)cyclohexanaminium chloride\)

Triol 226 (35 mg, 0.1 mmol) was stirred in aqueous hydrochloric acid (1.0 M, 20 mL) at room temperature for 24 h. The aqueous phase was washed with EtOAc (2 × 10 mL) to remove the silanol byproduct. The aqueous phase was concentrated under reduced pressure to give 233 as a pale yellow oil (21 mg, 80%).

\([\alpha]_D^{25} +32 \ (c \ 0.5 \in H_2O)\); δ\(_H\) (250 MHz, D\(_2\)O) δ 4.16 – 4.14 (2H, m), 3.91 (1H, d, \(J = 12.0 \text{ Hz}\)), 3.83 – 3.70 (3H, m), 3.59 – 3.56 (1H, br t, \(J = 2.5 \text{ Hz}\)); δ\(_C\) (75 MHz, D\(_2\)O) 75.9, 75.6, 72.4, 69.3, 66.3, 66.1, 59.9; \(v_{\text{max}}\) (film) 3272, 2943, 2507, 1622, 1496, 1398, 1184, 1155, 1074, 1025, 928, 892, 814, 712 cm\(^{-1}\); HRMS (ESI\(^+\)) \(m/z\) calcd for \((C_7H_{15}NO_6+H)^+\), 210.0978; found 210.0965.
9.3 Chapter 2: Cyclitols Experimental

9.3.1 ((3aR,7aR)-2,2-dimethyl-3a,7a-dihydrobenzo[d][1,3]dioxol-3a-yl)methyl acetate

![Chemical Structure](image)

To a stirred solution of 207 (637 mg, 3.50 mmol, 1 equiv) in CH₂Cl₂ (20 mL) was added triethylamine (0.48 mL, 3.49 mmol, 1 equiv), DMAP (42 mg, 0.35 mmol, 10 mol%) and Ac₂O (0.33 mL, 3.50 mmol, 1 equiv). TLC indicated reaction was complete after 30 mins. Water (20 mL) was added to the reaction mixture and extracted with EtOAc (4 x 20 mL). The organic layers were combined and dried over MgSO₄ and concentrated under reduced pressure. The resulting oil was purified via flash column chromatography (15% EtOAc-petrol) to yield pure 274 (600 mg, 77%) as a yellow oil.

Rᶠ = 0.45 (15% EtOAc-petrol); [α]D²⁵ -81.6 (c 1.20, CH₂Cl₂); δₛ (300 MHz, CDCl₃) 6.13 – 6.08 (1H, m, C=CH), 6.03 – 5.98 (2H, m, C=CH), 5.72 (1H, d, J = 10.0 Hz, C=CH), 4.41 (1H, d, J = 4.5 Hz, C(H)OC(CH₃)₂), 4.15 (1H, d, JAB = 11.5 Hz, CH₂), 3.94 (1H, d, JAB = 11.5 Hz CH₂), 2.07 (3H, s, OAc), 1.44 (3H, s, CH₃), 1.37 (3H, s, CH₃); δc (75 MHz, CDCl₃) 170.6 (C=O), 128.1, 125.4, 124.3, 123.1 (C=C), 106.6 (C(CH₃)₂), 78.3 (CO(CH₂)), 71.8 (C(H)OC(CH₃)₂), 66.1 (CH₂), 27.1, 26.4 (C(CH₃)₂), 20.8(C=OCH₃); νmax (film) 2991, 2937, 1741, 1415, 1372, 1239, 1172, 1043, 906, 728, 648 cm⁻¹; HRMS (ESI+) m/z calcd for (C₁₂H₁₆O₄+Na)⁺, 247.0946; found 247.0931.
9.3.2 \([(3aR,4R,7S,7aR)-2,2\text{-dimethyl-3a,4,7,7a-tetrahydro-4,7-epidioxybenzo}[d][1,3]\text{dioxol-3a-yl})\text{methyl acetate}]

and

9.3.3 \([(2aS,4aR,7aR,7bR)-6,6\text{-dimethyl-2a,4a,7a,7b-tetrahydro-[1,2]dioxeto}[3',4':3,4]\text{benzo}[1,2-d][1,3]\text{dioxol-4a-yl})\text{methyl acetate}]

To a stirred solution of 274 (94 mg, 0.42 mmol, 1 equiv) in CH$_2$Cl$_2$ (20 mL) was added a solution of 5,10,15,20-Tetraphenyl-21H,23H-porphine (10 mg, 0.016 mmol, 4 mol%) in CH$_2$Cl$_2$ (50 mL) dropwise over a period of 18 h, while the solution irradiated with 150 W halogen lamps, and being continually sparged with oxygen. After 18 h no more conversion was observed; the solution was concentrated under reduced pressure and purified via flash column chromatography (15% EtOAc-petrol) to yield pure 275 (52 mg, 48%) as a colourless oil, by product 276 a pale pink oil (10 mg, 9%) and r.s.m 274 (11 mg, 12%).

275: $R_f = 0.35$ (15% EtOAc-petrol); $[\alpha]_D^{25} - 16.9$ (c 0.83, CH$_2$Cl$_2$); δ_H (400 MHz, CDCl$_3$) 6.65 (1H, t, $J = 8.0$ Hz, C=CH), 6.55 (1H, t, $J = 8.0$ Hz, C=CH), 4.88-4.91 (2H, m, C(H)O), 4.55 (1H, d, $J_{AB} = 12$ CH$_2$), 4.31 (1H, d, $J_{AB} = 12$ CH$_2$), 4.25 (1H, d, $J = 4.8$ Hz, C(H)OC(CH$_3$)$_2$), 2.13 (3H, s, C=OCH$_3$), 1.39 (3H, s, CH$_3$), 1.30 (3H, s, CH$_3$); δ_C (100 MHz, CDCl$_3$) 170.4 (C=O), 131.5 (C=C), 130.3 (C=C), 122.3 (C(CH$_3$)$_2$), 79.9 (CO(CH$_2$), 74.6 (C(H)OC(CH$_3$)$_2$), 72.1 (CHO-O), 71.8 (CHO-O), 65.9 (CH$_2$), 27.8 (C(CH$_3$)$_2$), 26.8 (C(CH$_3$)$_2$), 20.8 (COCH$_3$); ν_{max} (film) 2995, 2988, 2928, 1736, 1348, 1372, 1450, 1244, 1204, 1144, 1039, 919, 743, 712, 644 cm$^{-1}$; HRMS (ESI+) m/z calcd for (C$_{12}$H$_{16}$O$_6$+Na)$^+$, 279.0844; found 279.0829.

Byproduct 276: $R_f = 0.40$ (15% EtOAc-petrol); $[\alpha]_D^{25} - 14.3$ (c 0.28, CH$_2$Cl$_2$); δ_H (300 MHz, CDCl$_3$) 6.09 (1H, dd, $J = 10.0$, 4.0 Hz, HC=CHCO), 5.73 (1H, d, $J = 10.0$ 1.5 Hz, HC=CHCO), 4.65 (1H, t, $J = 1.0$ Hz, CHOC(CH$_3$)$_2$), 4.33 (1H, $J_{AB} = 11.0$ Hz, CH$_2$), 3.83 (1H, $J_{AB} = 11.0$ Hz, CH$_2$), 3.64 (1H, dd, $J = 3.5$, 2.5 Hz, CH(O)), 3.35 – 3.38 (1H, m, CH(O)), 2.09 (3H, s, C=OC(CH$_3$)$_3$), 1.39 (3H, s, CH$_3$), 1.30 (3H, s, CH$_3$); ν_{max} (film) 2995, 2988, 2928, 1736, 1348, 1372, 1450, 1244, 1204, 1144, 1039, 919, 743, 712, 644 cm$^{-1}$; HRMS (ESI+) m/z calcd for (C$_{12}$H$_{16}$O$_6$+Na)$^+$, 279.0844; found 279.0829.
CH(O), 2.09 (3H, s), 1.41 (3H, s), 1.37 (3H, s); δ_c (75 MHz, CDCl$_3$) 170.4 (C=O), 132.5 (C=CC(O)CH$_2$, 124.1 (C=CCH(O)), 110.5 (C(CH$_3$)$_2$), 79.0 (CO(CH$_2$), 71.3 (C(H)OC(CH$_3$)$_2$), 66.8 (CH$_2$), 50.3 (CH(O-O)CH(O)), 46.5 (CH(O-O)CH=CH), 27.8, 26.6 (CH$_3$), 20.8 (C=OCH$_3$); ν_{max} (film) 2989, 2943, 1745, 1455, 1379, 1236, 1181, 1162, 1089, 1060, 1042, 989, 829, 721 cm$^{-1}$; HRMS (ESI+) m/z calcd for (C$_{12}$H$_{16}$O$_5$+Na)$^+$, 263.0895; found 263.0903.
9.3.4 ((1aR,1bR,2aR,2bS,5aR,5bS)-4,4-dimethylhexahydrobis (oxireno)[2',3':3,4;2''3''':5,6]benzo[1,2-d][1,3]dioxol-2-yl)methyl acetate

To a stirred solution of 275 (755 mg, 2.94 mmol, 1 equiv) in CH$_2$Cl$_2$ (50 mL) was added 5,10,15,20-Tetraphenyl-21H,23H-porphine cobalt(II) (11 mg, 0.01 mmol, 6 mol%). The solution was stirred for 30 mins, until TLC indicated full conversion of 275. The solution was concentrated under reduced pressure and purified via flash column chromatography (15% EtOAc-petrol) to yield pure 281 (724 mg, 96%) as a colourless oil.

R$_f$ = 0.15 (15% EtOAc-petrol); [α]$_D^{25}$ -33.8 (c 0.80, CH$_2$Cl$_2$); δ$_H$ (300 MHz, CDCl$_3$) 4.35 (1H, d, J_{AB} = 11.0 Hz, CH$_2$), 4.32 (1H, d, J = 2.0 Hz, C(H)OC(CH$_3$)$_3$), 4.02 (1H, d, J_{AB} = 11.0 Hz, CH$_2$), 3.58 (1H, t, J = 3.0 Hz), 3.52 (1H, t, J = 3.0 Hz), 3.39 (1H, dd, J = 3.0, 2.0 Hz), 3.04 (1H, d, J = 3.5 Hz), 2.11 (3H, s, C=OCH$_3$), 1.43 (3H, s, CH$_3$), 1.42 (3H, s, CH$_3$); δ$_C$ (75 MHz, CDCl$_3$) 170.4 (C=O), 110.4 (C(CH$_3$)$_2$), 78.3 (CO(CH$_2$)$_2$), 71.9 (C(H)OC(CH$_3$)$_2$), 65.5 (CH$_2$), 51.5 (C(H)O), 50.9 (C(H)O), 47.6 (C(H)O), 47.5 (C(H)O), 28.0 (C(CH$_3$)$_2$), 26.3 (C(CH$_3$)$_2$), (C(CH$_3$)$_2$), 20.8(C=OCH$_3$); ν_{max} (film) 2991, 2938, 1742, 1455, 1435, 1380, 1231, 1175, 1063, 1043, 992, 964, 803, 630 cm$^{-1}$; HRMS (ESI+) m/z calcd for (C$_{12}$H$_{16}$O$_6$+Na)$^+$, 279.0844; found 279.0861.
9.3.5 ((1aR,1bR,2aR,2bS,5aR,5bS)-4,4-dimethylhexahydrobis (oxireno)[2′,3′:3,4;2′,3″:5,6]benzo[1,2-d][1,3]dioxol-2b-yl)methanol

To a stirred solution of 281 (23 mg, 0.089 mmol, 1 equiv) in MeOH (10 mL), NH₃ was continuously bubbled through the solution for 10 h. After TLC indicated consumption of all starting material the solution was concentrated under reduced pressure and purified via flash column chromatography (50% EtOAc-petrol) to yield pure 272 (18 mg, 95%) as a colourless oil.

Rf = 0.20 (50 % EtOAc-petrol); [α]D²⁵ -46 (c 1.02, CH₂Cl₂); δH (250 MHz, CDCl₃) 4.41 (1H, d, J = 2.0 Hz, C(H)OC(CH₃)₃), 3.77 (1H, d, J₉,₈ = 11.0 Hz, CH₂), 3.61 (1H, d, J₉,₈ = 11.0 Hz, CH₂), 3.57 (1H, d, J = 3.0 Hz C(H)O), 3.53 (1H, d, J = 3.5 Hz, C(H)O), 3.41 (1H, dd, J = 3.5, 2.0 Hz, C(H)O), 3.04 (1H, dd, J = 3.5, 2.0 Hz, C(H)O), 2.09 (3H, br s, OH), 1.44 (6H, s, CH₃); δc (100 MHz, CDCl₃) 110.0 (C(CH₃)₂), 79.4 (CO(CH₂), 71.5 (C(H)OC(CH₃)₂), 64.4 (CH₂), 51.7 (C(H)O), 51.4 (C(H)O), 47.6 (C(H)O), 47.5 (C(H)O), 28.1 (CH₃), 26.5 (CH₃); νmax (film) 3491, 2982, 2253, 1457, 1383, 1247, 1219, 1080, 1063, 907, 726, 647 cm⁻¹; HRMS (ESI+) m/z calcd for (C₁₀H₁₄O₅+Na)+, 237.0734; found 237.0792.
9.3.6 Compound 290A

281 (94 mg, 0.36 mmol, 1 equiv) was refluxed for 24 h in HCl (30 mL, 1M, excess). The resulting solution was carefully neutralised with NaHCO$_3$ (aq) and concentrated under reduced pressure. To the resulting solid was added Ac$_2$O (1.0 mL, excess) and pyridine (0.7 mL excess) and stirred at room temperature for 24 h. The resulting solution was acidified with 1.0 M HCl to pH 4, then extracted with EtOAc (4 x 20 mL). The organic layers were combined and dried over MgSO$_4$ and concentrated under reduced pressure. The resulting oil was purified via flash column chromatography (5% EtOAc-petrol) to a complex mixture of inseparable compounds and pure 290A (3 mg, 2%) as a colourless oil.

R$_f$ = 0.70 (50% EtOAc-petrol); $\delta$$_H$ (500 MHz, CDCl$_3$) 5.91 (1H, d, J = 4.5 Hz), 5.56 (1H, s), 5.09 (1H, d, J = 10.0 Hz), 4.54 (1H, d, J_{AB} = 10.0 Hz), 4.29 (dd, J = 10.0, 4.5 Hz), 4.23 (1H, s), 3.97 (1H, d, J_{AB} = 10.0 Hz), 2.20 (3H, s), 2.15 (3H, s), 2.13 (3H, s), 1.99 (3H, s); $\delta$$_C$ (100 MHz, CDCl$_3$) 169.9 (C=O), 169.8 (C=O), 169.7 (C=O), 169.4 (C=O), 83.4 (CH(O)), 78.3 (CH(O)), 75.2 (CH(O)), 72.1 (CH(O)), 69.9 (CH(O)), 69.7 (CH(O)), 55.4(CH$_2$), 20.8 (CH$_3$), 20.7 (CH$_3$), 20.6 (CH$_3$), 20.5 (CH$_3$); HRMS (ESI+) m/z calcd for (C$_{15}$H$_{22}$O$_{11}$+Na)$^+$, 401.1055; found 401.0615.
9.4 Chapter 3: Bromo-diene Experimental

9.4.1 (4S)-tricarbonyl(η^4-(3aS,7aS)-methyl 7-bromo-2,2-dimethyl-3a,7a-dihydrobenzo[d][1,3]dioxole-3a-carboxylate)iron(0) and

9.4.2 (4R)-tricarbonyl(η^4-(3aS,7aS)-methyl 7-bromo-2,2-dimethyl-3a,7a-dihydrobenzo[d][1,3]dioxole-3a-carboxylate)iron(0)

\[
\begin{array}{c}
\text{Fe(CO)}_3 \quad \text{Fe(CO)}_3 \\
\text{Br} \quad \text{Br} \\
307 \quad 308
\end{array}
\]

To a flask containing 304 (185 mg, 0.59 mmol, 1 equiv) in a glovebox was added nonacarbonyldiiron (440 mg, 1.21 mmol, 2 equiv). THF (40 mL) was added and the reaction mixture was stirred at room temperature for 7 d. The reaction mixture was then concentrated under reduced pressure (Care! Toxic pentacarbonyliron distilled over at this point) and purified by column chromatography (10% EtOAc-petrol) to give 307 as fine brown needles (43 mg, 17%) and 308 as a brown oil (36 mg, 14%). Unreacted 304 (100 mg, 60%) was also isolated. 307 was crystallized using EtOAc-petrol to obtain crystals suitable for X-Ray crystal structure analysis.

307: m.p 95-97 °C (EtOAc-petrol); \(R_f = 0.32 \) (10% EtOAc-petrol); \([\alpha]_D^{25} = -10\) (c 0.20, CH₂Cl₂); \(\delta_H \) (300 MHz, CDCl₃) 5.95 (1H, dt, \(J = 4.5, 1.5 \text{ Hz} \), CBr=CH), 5.47 (1H, dd, \(J = 6.5, 4.5 \text{ Hz} \) CBr=CH=CH=), 5.36 (1H, d, \(J = 1.5 \text{ Hz} \) CH-O-), 3.88 (3H, s, O-CH₃), 3.06 (1H, dd, \(J = 6.5, 1.0 \text{ Hz} \) CBr=CH=CH=CH), 1.45 (3H, s, C-CH₃), 1.23 (3H, s, C-CH₃); \(\delta_C \) (75 MHz, CDCl₃) 171.3 (˗C=OMe), 117.8 (˗O-C-˗O-), 89.9 (CBr=CH), 87.0 (C-COOMe), 86.7 (CH-O-), 83.6 (CBr=CH-CH=), 70.2 (CBr), 54.0 (CBr=CH=CH=CH), 53.3 (O-CH₃), 28.1 (C-CH₃), 27.3 (C-CH₃); \(\nu_{\text{max}} \) (film) 2981, 2068, 2003, 1730, 1437, 1375, 1261, 1214, 1162, 1062, 1027, 978, 865, 752, 687, 636 cm⁻¹; HRMS (ESI+) m/z calcd for (C₁₄H₁₃BrFeO₇Na)⁺, 450.9092, 452.9071; found 450.9106, 452.9164.
308: $R_f = 0.26$ (10% EtOAc-petrol); $[\alpha]_D^{25} -90$ (c 0.6, CH$_2$Cl$_2$); δ_H (500 MHz, CDCl$_3$) 5.76 (1H, d, $J = 3.5$ Hz, CBr=CH), 5.15 (1H, dd, $J = 6.0, 4.5$ Hz, CBr=CH - CH=), 4.60 (1H, s, CH-O-), 3.75 (3H, s, O-CH$_3$), 2.97 (1H, d, $J = 6.5$ Hz, CBr=CH-CH=), 1.71 (3H, s, C-CH$_3$), 1.20 (3H, s, C-CH$_3$); δ_C (75 MHz, CDCl$_3$) 207.1 (Fe C=O), 173.3 (-COOMe), 109.7 (-O-C-O-), 89.3 (CBr=CH), 85.4 (C-COOME), 84.8 (CH-O-), 80.5 (CBr=CH-CH=), 73.6 (CBr), 61.2 (CBr=CH-CH=CH), 53.1 (O-CH$_3$), 25.0 (C-CH$_3$), 24.2 (C-CH$_3$); ν_{max} (film) 2980, 2061, 1995, 1460, 1380, 1252, 1207, 1168, 1070, 1030 cm$^{-1}$; HRMS (ESI$^+$) m/z calcd for (C$_{14}$H$_{13}$BrFeO$_7$+Na)$^+$, 450.9092, 452.9071; found 450.9091, 452.9073.
9.4.3 (3aS,7aR)-methyl 2,2-dimethyl-7-(p-tolyl)-3a,7a-dihydrobenzo [d][1,3]dioxole-3a-carboxylate

Bromodiene 304 (25 mg, 0.096 mmol, 1 equiv), tetrakis(triphenylphosphine)palladium (2 mg, 2 μmol, 2 mol %), para-tolylboronic acid (105 mg, 0.78 mmol, 8 equiv) and potassium carbonate (238 mg, 1.73 mmol, 18 equiv) were dissolved in DMF-H₂O 5:1 (30 mL) and stirred at room temperature for 72 h. The reaction mixture was diluted with EtOAc (20 mL) and washed with water (20 mL). The organic layer was devoid of product; thus, the aqueous layer was concentrated under pressure to afford crude free acid cross-coupling product 314. The crude acid 314 was then dissolved in MeOH-benzene 1:1 (35 mL) and (trimethylsilyl)diazomethane (1.5 mL, 2.0 M in hexane) was added dropwise with stirring until the yellow colour persisted and effervescence ceased. The solution was stirred for 2 h then concentrated under reduced pressure. Purification by column chromatography (10% EtOAc-petrol) to give 315 (8 mg, 30% over two steps) as a colourless oil:

R_f = 0.36 (5% EtOAc-petrol); [α]_D^25 -156 (c 0.3, CH₂Cl₂); δ_H (250 MHz, CDCl₃) 7.50 (2H, d, J = 8.0 Hz, Ar-H), 7.18 (2H, d, J = 8.0 Hz, Ar-H) 6.48 (1H, d, J = 6.0 Hz, Ar-C=CH), 5.23 (1H, dd, J = 9.5, 6.0 Hz, Ar-C=CH=CH), 5.32 (1H, s, CH-O-C), 3.77 (3H, s, O-CH₃), 2.36 (3H, s, Ar-CH₃), 1.53 (3H, s, C-CH₃), 1.42 (3H, s, C-CH₃); δ_C (75 MHz, CDCl₃) 171.8 (C=O), 138.2, 135.3, 134.6, 129.4, 125.8, 124.8 (Ar-C=CH=CH), 124.5 (Ar-C=CH=CH=CH), 119.7 (Ar-C=CH), 107.6 (-O-C-O-), 81.2 (C-COOMe), 74.6 (CH=O-), 53.1 (O-CH₃), 27.1 (C-CH₃), 25.4 (C-CH₃), 21.4 (Ar-CH₃); ν_max (film) 2973, 2937, 2888, 1741, 1469, 1381, 1308, 1163, 1131, 1105, 951, 821 cm⁻¹; HRMS (ESI+) m/z calcd for (C₁₈H₂₀O₄+Na)^+, 323.1259; found 323.1258.
9.4.4 (3aS,7aR)-methyl 2,2-dimethyl-7-((triisopropylsilyl)ethynyl)-3a,7a-dihydrobenzo[d][1,3]dioxole-3a-carboxylate

To a solution of bromodiene 304 (81 mg, 0.28 mmol, 1 equiv), tetrakis(triphenylphosphine)palladium (16 mg, 0.014 mmol, 5 mol %), copper(I) iodide (3.7 mg, 0.0196 mmol, 7 mol%) dissolved in THF (20 mL), was added by syringe n-butylamine (110 μL, 1.12 mmol, 4 equiv) and (triisopropyl)acetylene (100 μL, 0.45 mmol, 1.6 equiv). The reaction mixture was stirred at room temperature for 24 h, then diluted with EtOAc (20 mL) and washed with NH₄Cl(aq) (20 mL) and saturated brine (20 mL). The organic phase was dried over MgSO₄ and filtered. The filtrate was concentrated under reduced pressure and purified by column chromatography (10% EtOAc-petrol) to give 316 (108 mg, 98%) as a yellow oil:

R_f = 0.45 (10% EtOAc-petrol); [α]_D^25 -176 (c 0.9, CH₂Cl₂); δ_H (250 MHz, CDCl₃) 6.37 (1H, d, J = 6.0 Hz, SiC=CH), 6.12 (1H, dd, J = 9.5, 6.0 Hz, SiC=C=CH), 5.85 (1H, dd, J = 9.5, 0.5 Hz, SiC=C=CH=CH), 4.91 (1H, d, J = 0.5 Hz, CH-O-), 3.78 (3H, s, O-CH₃), 1.45 (3H, s, C-CH₃), 1.39 (3H, s, C-CH₃), 1.08 (21H, br s, Si-CH and Si-CH-CH₃); δ_C (75 MHz, CDCl₃) 171.7 (C=O), 129.0 (C=C), 125.0 (C=C), 124.4 (C=C), 120.7 (C=C), 108.2 (-O-C-O-), 105.5 (C=C), 96.7 (C≡C), 80.0 (C-COOME), 75.6 (CH-O-), 53.0 (O-CH₃), 26.9 (C-CH₃), 25.6 (C-CH₃), 18.6 (Si-C-CH₃), 11.3 (Si-C-CH₃); v_max (film) 2943, 2865, 2158, 2032, 1741, 1462, 1381, 1243, 1039, 883, 677 cm⁻¹; HRMS (ESI+) m/z calcd for (C₂₂H₃₄O₅Si+Na)^+, 413.2124; found 413.2127.
9.4.5 (3aS,7aR)-methyl 7-ethynyl-2,2-dimethyl-3a,7a-dihydrobenzo [d][1,3]dioxole-3a-carboxylate

To a stirred solution of silylacetylene 316 (9.6 mg, 0.03 mmol, 1 equiv) in THF (30 mL) at room temperature was added tetra-n-butylammonium fluoride (1.0 M solution in THF, 0.05 mL, 0.05 mmol, 1.1 equiv). The reaction mixture was stirred for 24 h, then diluted with EtOAc (10 mL) and washed with saturated brine (10 mL). The organic layer was dried over MgSO₄ and filtered. The filtrate was concentrated under reduced pressure and purified by column chromatography (15% EtOAc-petrol) to give 317 (4.4 mg, 0.015 mmol, 76%) as a pale white gum:

R_f = 0.24 (15% EtOAc-petrol); [α]_D^{25} -184 (c 0.34, CH₂Cl₂); δ_H (400 MHz, CDCl₃) 6.46 (1H, d, J = 6.0 Hz, HC≡C-C=CH), 6.14 (1H, dd, J = 9.5, 6.0 Hz, HC≡C-C=CH-C=CH), 5.90 (1H, d, J = 9.5 Hz, HC≡C-C=CH-C=CH=CH), 4.92 (1H, s, CH-O-), 3.80 (3H, s, O-CH₃), 3.23 (1H, s, C≡CH), 1.48 (3H, s, C-CH₃), 1.43 (3H, s, C-CH₃); δ_c (75 MHz, CDCl₃) 171.5 (C=O), 130.6 (HC≡C-C=CH), 126.1 (HC≡C-C=CH-C=CH), 123.8 (HC≡C-C=CH-C=CH), 118.8 (HC≡C-C=CH), 108.1 (-O-C-CH₂-), 82.6 (HC≡C), 81.8 (HC≡C), 80.1 (C-COOMe), 75.0 (CH-O), 53.3 (O-CH₃), 27.0 (C-CH₃), 25.4 (C-CH₃); v_max (film) 2981, 2889, 1737, 1462, 1382, 1251, 1152, 954, 807 cm⁻¹; HRMS (ESI+) m/z calcd for (C₁₃H₁₄O₄+Na)^+ 257.0784; found 257.0751.
9.4.6 \((3aS,7aR) \)-methyl 7-(1-benzyl-1H-1,2,3-triazol-4-yl)-2,2-dimethyl-3a,7a-dihydrobenzo[d][1,3]dioxole-3a-carboxylate

![Chemical Structure](image)

To a stirred solution of terminal alkyne \(\text{317} \) (13.0 mg, 0.05 mmol, 1 equiv) in \(\text{EtOH}-\text{H}_2\text{O} \) 5:1 (25 mL) were added benzyl azide (7.9 mg, 0.06 mmol, 1.2 equiv), CuSO\(_4\) (1.1 mg, 1 mol %) and ascorbic acid (5.9 mg, 10 mol%). The solution was stirred at room temperature for 48 h, then diluted with saturated brine and extracted with EtOAc (3 \(\times \) 10 mL). The organic layer was dried over MgSO\(_4\) and filtered. The filtrate was concentrated under reduced pressure and purified by column chromatography (10% to 50% EtOAc-petrol) to give unreacted \(\text{317} \) (7.8 mg, 66%) and \(\text{318} \) (6.3 mg, 34%) as a pale brown oil:

\[R_f = 0.48 \text{ (50\% EtOAc-petrol)}; \quad [\alpha]^{25}_D -40 \text{ (c 0.18, CH}_2\text{Cl}_2); \quad \delta_H \text{ (300 MHz, CDCl}_3) \] 7.62 (1H, s, HetAr–H), 7.37 – 7.29 (5H, m, Ph–H) 6.94 (1H, d, \(J = 6.0 \text{ Hz, HetAr–C} = \text{CH–})\), 6.28 (1H, dd, \(J = 9.0, 6.0 \text{ Hz, HetAr–C} = \text{CH–CH=})\), 5.92 (1H, d, \(J = 9.0 \text{ Hz, HetAr–C} = \text{CH–CH=CH=})\), 5.61 (1H, d, \(J = 15.0 \text{ Hz, Ph–CHH–})\), 5.49 (1H, d, \(J = 15.0 \text{ Hz, Ph–CHH–})\) 5.27 (1H, s, CH–O–), 3.78 (3H, s, O–CH\(_3\)), 1.48 (3H, s, C–CH\(_3\)), 1.34 (3H, s, C–CH\(_3\)); \(\delta_c \) (75, CDCl\(_3\) MHz) 172.0 (C=O), 134.8, 129.3, 128.8, 128.1, 127.8, 126.1, 124.9, 124.5, 121.0 (3\(^9 \text{ HetAr}), 119.7 \text{ (HetAr–C–CH=)}\), 108.7 (–O–C–O–), 80.6 (C–COOMe), 74.2 (CH–O–), 54.3 (Ph–CH\(_2–\)), 53.2 (O–CH\(_3\)), 27.1 (C–CH\(_3\)), 25.8 (C–CH\(_3\)); \(\nu_{\text{max}} \) (film) 2995, 2917, 1857, 1739, 1496, 1457, 1258, 1066, 887, 799, 727 cm\(^{-1}\); HRMS (ESI+) m/z calcd for \((C_{20}H_{21}N_3O_4+Na)^+ \), 390.1429; found 390.1440.
9.5 Chapter 5: Peracid epoxidation experimental

9.5.1 (1S,2R)-1,2-dihydroxycyclohexanecarboxylic acid

A stirred solution of 30 (65 mg, 0.33 mmol) and Pd/C (10 mg, 10 wt. % loading, matrix activated carbon support) in MeOH (20 mL) was exposed to a hydrogen atmosphere at room temperature. After 24 h the solution was filtered and washed through a plug of celite and concentrated under reduced pressure. The resulting oil was purified via flash column chromatography (60% EtOAc 35% petrol 2.5% H₂O 2.5% AcOH) to yield pure 383 (20mg, 38%) as a white crystalline solid.

Or

A stirred solution of 206 (857 mg, 5.48 mmol) and Pd/C (50 mg, 10 wt. % loading, matrix activated carbon support) in MeOH (20 mL) was exposed to a hydrogen atmosphere at room temperature. After 24 h the solution was filtered and washed through a plug of celite and concentrated under reduced pressure. The resulting oil was purified via flash column chromatography (60% EtOAc 35% petrol 2.5% H₂O 2.5% AcOH) to yield pure 383 (625mg, 71%) as a white crystalline solid. 383 has been reported previously; spectroscopic data are in agreement with published values.²⁰⁸,²⁰⁹

m.p = 112-115 °C (EtOAc:petrol); Rf = 0.10 (60% EtOAc 35% petrol, 2.5% H₂O, 2.5% AcOH); [α]D⁺²⁵ + 13.3 (c 0.3, H₂O); δH (300 MHz, D₂O) 3.76 (1H, dd, J = 11.5, 3.5 Hz, CH(OH)), 1.60 – 1.56 (4H, m, CH), 1.40 – 1.08 (4H, m, CH); δC (125 MHz, MeOD) 180.1 (C=O), 79.5 (C(OH)CO₂H), 73.7 (CH(OH)), 35.0, 30.8, 25.3, 21.1 (CH₂); vmax (film) 3445, 3086, 2924, 2858, 1736, 1439, 1199, 1138, 1023, 948, 821 cm⁻¹; HRMS (ESI-) m/z calcd for (C₇H₁₂O₄-H)⁻, 159.0657; found 159.0672.
9.5.2 (1S,2R)-methyl 1,2-dihydroxycyclohexanecarboxylate

To a stirred solution of 383 (47 mg, 0.29 mmol) dissolved in MeOH:C₆H₆ (6 mL 1:1 ratio), was added TMS-CHN₂ (0.2 mL, 2.0 M solution in THF, 0.4 mmol, 1.4 equiv) until a yellow colour persisted. Solvent was removed under reduced pressure [CAUTION - TMS-CHN₂ diazomethane extremely toxic, removed under reduced pressure in fume hood, with acetic acid in solvent trap to quench any unreacted reagent] Pure 387 was obtained (52 mg, 100%) as a yellow oil.

387 has been reported previously; spectroscopic data are in agreement with published values.²¹¹,²¹²

Rf = 0.05 (30% EtOAc-petrol); [α]D -10.0 (c 0.3, CHCl₃); δH (250 MHz, CDCl₃) 3.82 – 3.74 (1H, m, CH(OH)), 3.77 (3H, s, CH₃), 2.86 (2H, br s, OH), 1.83 – 1.22 (8H, m, CH); δc (75 MHz, CDCl₃) 176.3 (C=O), 76.8 (C(OH)(CO₂CH₃)), 72.2 (CH(OH)), 52.9 (OCH₃), 34.2 (CH₂), 30.0 (CH₂), 23.9 (CH₂), 19.7 (CH₂); νmax (film) 3453, 2938, 2861, 1729, 1438, 1272, 1238, 1207, 1149, 1079, 998, 923 cm⁻¹; HRMS (ESI+) m/z calcd for (C₈H₁₄O₄+H)+, 175.0970; found 175.0981.
To a stirred solution of 387 (53 mg, 0.30 mmol) dissolved in acetone (10 mL, freshly distilled), was added 2,2-Dimethoxypropane (0.45 mL, 3.65 mmol, 12 equiv) and para-toluenesulfonic acid (6 mg, 0.03 mmol, 10 mol %). The solution was stirred at room temperature under N₂ for 20 h. The resulting solution was diluted with EtOAc (10 mL) followed by the addition of water (20 mL). The biphasic system was extracted with EtOAc (4 × 10 mL) and the organic layers combined and washed with saturated brine, dried over MgSO₄ and concentrated under reduced pressure. The resulting oil was purified via flash column chromatography (0-20% EtOAc-petrol) to yield 388 a colourless oil (40 mg, 61%).

Rᶠ = 0.70 (30% EtOAc-petrol); [α]D²⁵ -37.8 (c 0.65, CHCl₃); δH (300 MHz, CDCl₃) 4.35 (1H, t, J = 3.5 Hz, CH(OC(CH₃)₂)), 3.75 (3H, s, OCH₃), 2.06 – 1.93 (2H, m, C-H), 1.50 (3H, d, J = 0.5 Hz, CH₃) 1.35 (3H, d, J = 0.5 Hz, CH₃), 1.85 – 1.23 (6H, m, C-H); δC (75 MHz, CDCl₃) 173.2 (C=O), 108.9 (C(CH₃)₂), 81.0 (OC(CH₃)₂)(CO₂CH₃), 74.9 (CH(OC(CH₃)₂), 52.5 (OCH₃), 32.3, 28.0, 25.9, 25.8, 20.5, 18.7; νmax (film) 2997, 2941, 2873, 1733, 1450, 1383, 1217, 1160, 1054, 1025, 905, 725 cm⁻¹; HRMS (ESI⁺) m/z calcld for (C₁₁H₁₇NaO₄⁺H)⁺, 237.1102; found 237.1079.

On repeating this previous experimental procedure, small amounts (20 mg, 2%) of byproduct 389 were isolated:
$R_f = 0.85$ (50% EtOAc-petrol); $[\alpha]_D^{25} = -21 \, (c \, 1.6, \text{CHCl}_3)$; δ_H (500 MHz, CDCl$_3$) 5.08 (1H, dd, $J = 10.0, 6.0$ Hz, CH(OC=O)), 4.26 (1H, t, $J = 3.2$ Hz, CH(O)), 3.73 (3H, s, OCH$_3$), 3.24 (1H, s, OH), 2.06 – 2.24 (16H, m, CH), 1.50 (3H, s, CH$_3$), 1.35 (3H, s, CH$_3$); δ_C (125 MHz, CDCl$_3$) 175.3 (CO$_2$CH$_3$), 171.8 (C=O), 108.9 (C(CH$_3$)$_3$), 80.7, 75.6, 75.3, 74.9, 53.0 (OCH$_3$), 34.1, 32.2, 27.7, 26.1, 25.7, 25.6, 23.6, 20.2, 19.6, 18.3; ν_{max} (film) 3523, 2987, 2938, 2865, 1733, 1449, 1381, 1370, 1243, 1216, 1152, 1124, 1046, 1003, 874, 735 cm$^{-1}$; HRMS (ESI+) m/z calcd for (C$_{18}$H$_{28}$O$_7$+H)$^+$, 357.1908; found 357.1929.
9.5.5 (3aS,7aR)-2,2-dimethylhexahydrobenzo[d][1,3]dioxole-3a-carboxylic acid

and

9.5.6 (5S,6R)-6-hydroxy-2,2-dimethyl-1,3-dioxaspiro[4.5]decan-4-one

388 (253 mg, 1.18 mmol) was dissolved in THF (10 mL) and NaOH (6 mL, 2M in H₂O, 12 mmol, 10 equiv) and refluxed overnight. The resulting solution washed with EtOAc (3 x 10 mL) to remove any unreacted starting material, the remaining aqueous layer was acidified to pH 2.0 and extracted with EtOAC (3 x 10 mL) and combined organic layers were washed with saturated brine and dried over MgSO₄. The resulting oil was purified via flash column chromatography (50% EtOAc-petrol) to yield three compounds, acetonide migration product 390 (30 mg, 13%), acid 384 (20 mg, 8%) and diol acid 383 (40 mg, 21%).

Or

A stirred solution of benzyl ester 393 (32 mg, 0.11 mmol) and Pd/C (10 mg, 10 wt. % loading, matrix activated carbon support) in MeOH (20 mL) was exposed to a hydrogen atmosphere at room temperature. After 24 h the solution was filtered through a plug of celite and concentrated under reduced pressure. The resulting oil was purified via flash column chromatography (0-50 % EtOAc-petrol) to yield pure 384 (14 mg, 63 %) as a colourless oil.

384:

$R_f = 0.40$ (50% EtOAc-petrol); $[\alpha]_D^{25} -40.0$ (c 0.70, CHCl₃); δ_{H} (300 MHz, CDCl₃) 4.31 (1H, t, $J = 3.5$ Hz, CH(OC(CH₃)₂), 2.12-1.97 (2H, m, C-H), 1.90-1.78 (1H, m, C-H), 1.54 (3H, s, CH₃), 1.43 (3H, s, CH₃), 1.71-1.51 (4H, m, C-H), 1.28-1.21 (1H, m, C-H); δ_c (75 MHz, CDCl₃) 175.6 (C=O), 109.6 (C(CH₃)₂), 80.7 C(OC(CH₃)₂)(CO₂H), 74.9 (CH(OC(CH₃)₂), 32.3, 27.9, 25.9, 25.6, 20.7, 18.5; ν_{max} (film) 2994, 2939, 2873, 2714, 1450, 1371, 1383, 1217, 1174, 905, 725 cm⁻¹; HRMS (ESI-) m/z calcd for (C₁₀H₁₆O₄)⁻, 199.0970; found 199.0975.
390 rearrangement: R$_f$ = 0.83 (50% EtOAc-petrol); [α]$_D$25 +2.0 (c 1.5, CHCl$_3$); δ$_H$ (500 MHz, CDCl$_3$) 3.75 (1H, dd, J = 11.5, 4.6 Hz, CH(OH)), 1.95 – 1.93 (1H, m, CH), 1.92-1.89 (1H, m, CH), 1.88 (1H, brs, OH), 1.77-1.80 (1H, m, CH), 1.73 (1H, td, J = 14.0, 4.5 Hz, CH), 1.66 (3H, s, CH$_3$), 1.63 (1H, m, CH), 1.63 (3H, s, CH$_3$), 1.49 – 1.55 (1H, m, CH), 1.44 – 1.48 (1H, m, CH), 1.38 (1H, tt, J = 13.0, 3.5 Hz, CH); δ$_C$ (125 MHz, CDCl$_3$) 174.0 (C=O), 110.1 (C(CH$_3$)$_3$), 83.2 (C(O)(C=O), 70.9 (C(OH)H), 33.6 (CH$_2$), 30.6 (CH$_2$), 29.0 (C(CH$_3$)$_3$), 27.9 (C(CH$_3$)$_3$), 23.6 (CH$_2$), 20.1 (CH$_2$); ν_{max} (film) 3484, 2991, 2939, 2863, 2774, 1448, 1385, 1291, 1262, 1060, 1036, 908, 860, 626 cm$^{-1}$; HRMS (ESI+) m/z calcd for (C$_{10}$H$_{16}$O$_4$+H)$^+$, 201.1127; found 201.1113.
9.5.7 (1S,2R)-benzyl 1,2-dihydroxycyclohexanecarboxylate

To a stirred solution of **383** (43 mg, 0.26 mmol) and triethylamine (0.10 mL, 0.91 mmol, 3.4 equiv) dissolved in CH$_2$Cl$_2$ (10 mL), was added Benzyl Bromide (0.12 mL, 0.91 mmol, 3.4 equiv). Solution was stirred for 3 h. The resulting solution was washed with water (10 mL) then the aqueous layer extracted with EtOAc (3 x 20 mL). The combined organic layers were dried over MgSO$_4$ and concentrated under reduced pressure. The resulting oil was purified via flash column chromatography (10-50% EtOAc-petrol) to yield **392** a colourless oil (28 mg, 42%).

R$_f$ = 0.10 (30% EtOAc-petrol); [α]$_D^{25}$ -2.35 (c 0.4, CHCl$_3$); δ$_H$ (250 MHz, CDCl$_3$) 7.36 (5H, s, Ar-H), 5.27 (1H, d, J_{AB} = 12.0 Hz, CH$_2$), 5.21 (1H, d, J_{AB} = 12.0 Hz, CH$_2$), 3.86 (1H, dd, J = 11.3, 4.5, CH(OH)), 1.88 – 1.20 (8H, m, CH); δ$_C$ (75 MHz, CDCl$_3$) 176.0 (C=O), 125.3, 128.6, 128.4, 127.9 (Ar-C), 76.8 (C), 72.2 (C(OH)), 67.6 (OCH$_2$Bn), 34.2 (CH$_2$), 30.2 (CH$_2$), 23.9 (CH$_2$), 17.8 (CH$_2$); ν_{max} (film) 3465, 2937, 2860, 1728, 1498, 1449, 1232, 1148, 1066, 951, 909, 735 cm$^{-1}$; HRMS (ESI+) m/z calcd for (C$_{14}$H$_{17}$O$_4$+H)$^+$, 251.1283; found 251.1267.
Experimental

9.5.8 (3aS,7aR)-benzyl 2,2-dimethylhexahydrobenzo[d][1,3]dioxole-3a-carboxylate

To a stirred solution of 392 (28 mg, 0.11 mmol) dissolved in acetone (10 mL, freshly distilled), was added 2,2-Dimethoxypropane (0.16 mL, 1.34 mmol, 12 equiv) and para-toluenesulfonic acid (2 mg, 0.01 mmol, 10 mol %). The solution was stirred at room temperature under N$_2$ for 20 h. The resulting solution was diluted with EtOAc (10 mL) followed by the addition of water (20 mL). The biphasic system was extracted with EtOAc (4 \times 10 mL) and the organic layers combined and washed with saturated brine and dried over MgSO$_4$. The solution was concentrated under reduced pressure to obtain 393 (30 mg, 92%) as a colourless oil. Material was taken forward unpurified.

$R_f = 0.75$ (30% EtOAc-petrol); $[\alpha]_D^{25} = -23.3$ (c 1.25, CHCl$_3$); δ_H (300 MHz, CDCl$_3$) 7.36-7.33 (5H, m, Ar-H), 5.21 (2H, s, CH$_2$), 4.38 (1H, t, $J = 3.5$ Hz, CH(O)), 2.05-1.97 (2H, m, CH), 1.83-1.25 (6H, m, CH), 1.52 (3H, s, CH$_3$), 1.36 (3H, s, CH$_3$); δ_C (75 MHz, CDCl$_3$) 172.7 (C=O), 135.7, 128.7, 128.4, 128.2 (Ar-C), 109.1 (C(CH$_3$)$_2$), 81.0 C(OC(CH$_3$)$_2$)(CO$_2$Bn), 75.1 (CH(OC(CH$_3$)$_2$), 66.9 (CH$_2$), 32.2, 28.0, 25.9, 25.8, 20.3, 18.6; ν_{max} (film) 2994, 2935, 2865, 1731, 1498, 1455, 1337, 1244, 1215, 1021, 998, 874, 742, 696 cm$^{-1}$; HRMS (ESI+) m/z calcd for (C$_{17}$H$_{24}$O$_4$+H)$^+$, 291.1591; found 291.1574.
9.5.9 \((1S,6R)\)-benzyl 1,6-dihydroxycyclohexa-2,4-dienecarboxylate

Benzyl bromide (0.93 mL, 7.83 mmol, 1.1 equiv) was dissolved in acetone (50 mL) containing triethylamine (1.10 mL, 7.83 mmol, 1.1 equiv) to which was added dropwise a solution of microbial diol acid 30 (1.12 g, 7.12 mmol, 1 equiv) in acetone (50 mL). The resulting solution was stirred for 4 h. The resulting solution was diluted with EtOAc (50 mL), and extracted with LiCl (2 x 15 mL). The organic layer was dried over MgSO₄ to yield pure 394, a colourless oil (1.10 g, 61%).

\[R_f = 0.29 \text{ (40\% EtOAc-petrol); } [\alpha]_{D}^{25} = -135.6 \text{ (c 1.6, CH}_2\text{Cl}_2); \delta_H (300 \text{ MHz, CDCl}_3); 7.36 \text{ (5H, br.s, Bn), 6.13 (1H, dddd, J 9.5, 4.0, 1.0, 0.5 Hz C=CH), 5.94 (1H, dddd, J 9.5, 5.0, 2.5, 0.5 Hz, C=CH), 5.82 (1H, ddd, J 9.5, 2.0, 1.0 Hz, C=CH), 5.76 (1H, ddd, J 9.5, 2.0, 1.0 Hz, C=CH), 5.29 (1H, s, CO}_2\text{-CH}_2\text{-Ar), 4.87 (1H, m, C(O)H); } \delta_C (75 \text{ MHz, CDCl}_3); 175.0 \text{ (C=O), 134.9 (Ar), 131.9 (C=C), 128.7, 128.6, 128.1, (Ar) 126.8, 124.6, 122.7 (C=C), 74.0 (C(OH)C=O), 70.9 (C(OH)-H), 68.3 (O-CH}_2); \nu_{\text{max}} \text{ (film) 3451, 3038, 1731, 1660, 1455, 1378, 1234, 1168, 1077, 1020, 909, 753, 695 cm}^{-1}; \text{ HRMS (+ve ESI-TOF) m/z calculated for (C}_{14}H_{14}O_4+Na}^+, 269.0789; \text{ found 269.0863.} \]
9.5.10(3aS,7aR)-benzyl 2,2-dimethyl-3a,7a-dihydrobenzo[d][1,3]dioxole-3a-carboxylate

To a stirred solution of 394 (335 mg, 1.37 mmol) dissolved in acetone (10 mL, freshly distilled), was added 2,2-Dimethoxypropane (2.0 mL, 16.46 mmol, 12 equiv) and para-toluenesulfonic acid (26 mg, 0.03 mmol, 10 mol %). The solution was stirred for 20 h. The resulting solution was diluted with EtOAc (10 mL) followed by the addition of water (20 mL). The biphasic system was extracted with EtOAc (4 × 10 mL) and the organic layers combined and washed with saturated brine, dried over MgSO₄ and concentrated under reduced pressure. The resulting oil was purified via flash column chromatography (10-20% EtOAc-petrol) to yield 395 a colourless oil (358 mg, 92%).

395 has been reported previously; spectroscopic data are in agreement with published values.⁷⁶

R_f = 0.60 (30% EtOAc-petrol); δH (250 MHz, CDCl₃) 7.28 – 7.25 (5H, m, Ar-H), 6.08 – 5.94 (3H, m, C=CH), 5.86 – 5.79 (1H, m, C=CH), 5.18 (2H, s, CH₂), 4.97 (1H, d, J = 4.0 Hz, CH(O)), 1.38 (3H, s, CH₃), 1.37 (3H, s, CH₃).
9.5.11(3aS,7aR)-benzyl 2,2-di-tert-butyl-3a,7a-dihydrobenzo[d] [1,3,2]dioxasilole-3a-carboxylate

To a stirred solution of 394 (48 mg, 0.195 mmol) dissolved in CH₂Cl₂ (2 mL) was added triethylamine (60 μL, 0.46 mmol, 2.4 equiv) and tert-Butyldimethylsilyl trifluoromethanesulphonate (70 μL, 0.21 mmol, 1.1 equiv). The solution was stirred at room temperature for 9 h. The resulting solution was diluted with EtOAc (10 mL) followed by the addition of water (20 mL). The biphasic system was extracted with EtOAc (4 × 10 mL) and the organic layers combined and washed with saturated brine, dried over MgSO₄ and concentrated under reduced pressure. The resulting oil was purified via flash column chromatography (0-5% EtOAc-petrol) to yield 396 a colourless oil (61 mg, 81%).

Rᵣ = 0.65 (10% EtOAc-petrol); [α]ᵣ²⁵ -327.0 (c 3.31, CHCl₃); δₛ (300 MHz, CDCl₃) 7.35 – 7.31 (5H, m, Ar-H), 6.03 – 5.94 (3H, m, C=CH), 5.75 – 5.71 (1H, m, C=CH), 5.25 (1H, d, J = 12.0 Hz, Hₐ₉), 5.18 (1H, d, J = 12.0 Hz, Hₐ₉), 4.97 (1H, d, J = 1.8 Hz, CH(OSi)), 0.99 (9H, s, CH₃) 0.98 (9H, s, CH₃); δₛ (75 MHz, CDCl₃) 172.2 (C=O), 135.5, 128.6, 128.4, 128.3, 125.8, 123.8, 122.3, 78.6 (C(OSi)(C=O)), 71.5 (CH(OSi), 67.3 (CH₂), 27.0 (CH₃), 26.9 (CH₃), 21.1 (C(CH₃)₃), 20.2 (C(CH₃)₃); νₘₐₓ (film) 3045, 2966, 2934, 2891, 2859, 1733, 1473, 1229, 1091, 1031, 1012, 1000, 875, 825, 696 cm⁻¹; HRMS (ESI+) m/z calcd for (C₂₂H₃₀O₄Si+H)⁺, 387.1991; found 387.1993.
9.5.12(3aS,7aR)-2,2-di-tert-butylhexahydrobenzo[d][1,3,2]dioxasilole-3a-carboxylic acid

A stirred solution of 396 (61 mg, 0.16 mmol) and Pd/C (10 mg, 10 wt. % loading, matrix activated carbon support) in MeOH (20 mL) was exposed to a hydrogen atmosphere at room temperature. After 24 h the solution was filtered through a plug of celite and concentrated under reduced pressure. The resulting oil was purified via flash column chromatography (10-70% EtOAc-petrol) to yield pure 385 (25 mg, 53%) as a colourless oil.

R_f = 0.30 (30% EtOAc-petrol); [α]_D^{25} -17.0 (c 0.18, CHCl_3); δ_H (300 MHz, CDCl_3) 4.36 (1H, dd, J = 11.0, 4.5 Hz, CH(OSi)), 1.99 – 1.20 (8H, m, CH), 1.02 (9H, s, CH_3), 0.98 (9H, s, CH_3); δ_C (75 MHz, CDCl_3) 179.1 (C=O), 77.9 ((C(OSi)(C=O)), 73.9 (CH(OSi), 33.0 (CH_2), 30.1 (CH_2), 27.7 (CH_3), 27.5 (CH_3), 23.6, 20.5, 20.3, 19.6; ν_max (film) 3070, 2935, 2894, 2859, 1717, 1448, 1472, 1094, 827 cm^{-1}; HRMS (ESI+) m/z calcd for (C_{15}H_{28}O_4Si+H)^+ 301.1830; found 301.1830.
9.5.13(3aS,7aR)-methyl 2,2-di-tert-butylhexahydrobenzo[d][1,3,2]dioxasilole-3a-carboxylate

To a stirred solution of 387 (25 mg, 0.15 mmol) dissolved in CH₂Cl₂ (5 mL) was added triethylamine (50 μL, 0.34 mmol, 2.4 equiv) and tert-Butyldimethylsilyl trifluoromethanesulfonate (50 μL, 0.16 mmol, 1.1 equiv). The solution was stirred at room temperature under N₂ for 9 h. The resulting solution was diluted with EtOAc (10 mL) followed by the addition of water (20 mL). The biphasic system was extracted with EtOAc (4 × 10 mL) and the organic layers combined and washed with saturated brine, dried over MgSO₄ and concentrated under reduced pressure. The resulting oil was purified via flash column chromatography (0-5% EtOAc-petrol) to yield 397 a colourless oil (37 mg, 82%).

Rf = 0.50 (50% EtOAc-petrol); [α]D²⁵ -27.0 (c 0.14, CHCl₃); δH (250 MHz, CDCl₃) 4.26 (1H, dd, J = 9.0, 4.0 Hz), 3.74 (3H, s), 1.95-1.16 (8H, m), 0.99 (9H, s), 0.95 (9H, s); δC (75 MHz, CDCl₃) 176.8 (C=O), 77.6, 74.5, 52.5, 33.4, 30.1, 27.5, 27.4, 23.8, 20.5, 20.3, 19.6; νmax (film) 2934, 2892, 2858, 1731, 1472, 1438, 1278, 1092, 768 cm⁻¹; HRMS (ESI+) m/z calcd for (C₁₆H₃₀O₄Si+H)⁺, 315.1987; found 315.2045.
9.5.14(1S,2R)-methyl 1,2-dimethoxycyclohexanecarboxylate
and
(1S,2R)-methyl 2-methoxy-1-((trimethylsilyl)oxy)
cyclohexanecarboxylate

383 (133 mg, 0.83 mmol) dissolved in DMF (1 mL), was added dropwise to a suspension of NaH (109 mg, 2.74 mmols, 3.3 equiv of 60 % in mineral oil) in DMF (2 mL) at -22 °C. Mel (0.17 mL, 2.83 mmols, 3.4 mmols) was dropwise over 5 mins. The resulting solution was stirred at -22 °C and allowed to warm to room temperature over 19 h. The solution was cooled to -22 °C, NH₄Cl (aq) (10 mL) was added to the solution dropwise, then transferred into a separating funnel. EtOAc (20 mL) was added to the solution and the organic layers washed (3 × 10 mL) LiCl (aq), dried over MgSO₄ and concentrated under reduced pressure. The resulting oil was purified via flash column chromatography (5-20% EtOAc-petrol) to yield a mixture of two products 399 and 400 as a colorless oil (99 mg).

The inseparable mixture was dissolved in CH₂Cl₂ (3 mL), addition of triethylamine (40 μL, 0.32 mmol) followed by Trimethylsilyl trifluoromethanesulfonate (50 μL, 0.29 mmol) stirred at room temperature for 30 h. The resulting mixture was diluted with EtOAc (20 mL) and washed with saturated brine (20 mL) dried over MgSO₄ and concentrated under reduced pressure. The resulting oil was purified via flash column chromatography (1-20% EtOAc-petrol) to yield a mixture of two purified products 401 (20 mg, 18%) 399 (40 mg, 42%).

401: R_f = 0.85 (20% EtOAc-petrol); [α]_D⁺²⁵ = -1.4 (c 0.73, CHCl₃); δ_H (250 MHz, CDCl₃) 3.73 (3H, s, CO₂CH₃), 3.47 (1H, dd, J = 11.0, 4.5 Hz, CH(OCH₃)), 3.29 (3H, s, OCH₃), 1.85-0.84 (8H, m, CH), 0.15 (9H, s, Si(CH₃)₃); δ_C (75 MHz, CDCl₃) 175.6 (C=O), 82.2, 76.1, 56.7, 51.8, 36.2, 25.1, 24.0, 20.3, 2.2; ν_max (film) 2949, 2860, 1753, 1446, 1366, 1279, 1244, 1156, 1062, 1041, 837, 760, 734 cm⁻¹; HRMS (ESI+) m/z calcd for (C₁₂H₂₄O₄Si+H)⁺, 261.1522; found 261.1515.
399: \(R_f = 0.20 \) (20 % EtOAc-petrol); \([\alpha]_D^{25} = -26.9 \) (c 2.23, CHCl\(_3\)) ; \(\delta_H (250 \text{ MHz, CDCl}_3) \) 3.73 (3H, s, CO\(_2\)CH\(_3\)), 3.44 (1H, dd, \(J = 11.0, 4.0 \text{ Hz, CH(OCH}_3)\)), 3.36 (3H, s, OCH\(_3\)), 3.26 (3H, s, OCH\(_3\)), 2.04-0.80 (8H, m, CH); \(\delta_C (75 \text{ MHz, CDCl}_3) \) 174.1 (C=O), 82.9, 81.7, 57.0, 52.1, 51.8, 29.6, 24.7, 23.6, 20.3; \(\nu_{max} \) (film) 2938, 2861, 1730, 1446, 1373, 1275, 1227, 1099, 1061, 997 cm\(^{-1}\); HRMS (ESI+) m/z calcd for \((C_{10}H_{18}O_4+H)^+\), 203.1283; found 203.1289.
9.5.15(1S,2R)-1,2-dimethoxycyclohexanecarboxylic acid

399 (67 mg, 0.33 mmol) was dissolved in THF (1.0 mL) and NaOH (1.0 mL, 2M in H₂O, 20 μmol, 60 equiv) and refluxed overnight. The resulting solution extracted with EtOAC (3 x 10 mL) to remove any unreacted starting material, the remaining aqueous layer was acidified to pH 2.0 and extracted with EtOAC (3 x 10 mL), combined organic layers washed with saturated brine and dried over MgSO₄. The resulting oil was purified via flash column chromatography (50% EtOAc, 45% petrol, 2.5% AcOH, 2.5% H₂O) to yield 403 a colorless oil (22 mg, 35%).

Rf = 0.25 (50% EtOAc, 45% petrol, 2.5 % AcOH, 2.5% H₂O); [α]D⁻²⁵ -20.5 (c 0.73, CHCl₃); δH (500 MHz, CDCl₃) 3.40-3.37 (1H, m, CH(OCH₃)), 3.38 (3H, s, OCH₃), 3.35 (3H, s, OCH₃), 2.18 (1H, dd, J = 15.0, 2.0 Hz, CH), 1.96 (1H, m, CH), 1.82-1.81 (1H, m, CH), 1.68-1.53 (3H, m, CH), 1.37-1.25 (2H, m, CH); δc (125 MHz, CDCl₃) 175.3 (C=O), 82.7, 81.2, 57.1, 52.0, 28.1, 24.8, 23.7, 20.0; vₓ (film) 3143, 2940, 2860, 2838, 1721, 1464, 1448, 1308, 1196, 1099, 1077, 973, 939 cm⁻¹; HRMS (ESI-) m/z calcd for (C₁₀H₁₆O₄-H)⁻, 187.0970; found 187.0972.
Experimental

9.5.16(2S,3aS,7aR)-methyl 2-phenylhexahydrobenzo[d][1,3]
dioxole-3a-carboxylate

and

9.5.17(2R,3aS,7aR)-methyl 2-phenylhexahydrobenzo[d][1,3]
dioxole-3a-carboxylate

387 (30 mg, 0.27 mmol) dissolved in toluene (15 mL). Benzaldehyde (0.03 mL, 0.34 mmol, 2 equiv) and para-toluenesulfonic acid (4 mg, 0.02 mmol, 10 mol%) was added. The resulting solution was refluxed for 24 h and monitored by TLC. The resulting cooled solution was quenched with NaHCO$_3$ (15 mL) and extracted with EtOAC (3 × 10 mL). Combined organic layers were dried over MgSO$_4$. The resulting oil was purified via flash column chromatography (5-10% EtOAc-petrol) to yield both diastereoisomers 408 (10 mg, 24%) 408 + 409 (17 mg, 40%), 409 (15 mg, 35%). Overall 99% yield.

408: $R_f = 0.53$ (10% EtOAc-petrol); $[\alpha]^2_{D} -1.6$ (c 0.08, CHCl$_3$); δ_H (300 MHz, CDCl$_3$) 7.49–7.45 (2H, d, $J = 7.6$ Hz, Ar-H), 7.39–7.32 (3H, m, Ar-H), 6.21 (1H, s, CH(O)(O)), 4.53 (1H, t, $J = 5.5$ Hz, CH(O)), 3.70 (3H, s, OCH$_3$), 2.03–1.89 (4H, m, CH), 1.75 – 1.39 (4H, m, CH); δ_C (75 MHz, CDCl$_3$) 173.0 (C=O), 138.9, 129.0, 128.3, 126.4 (Ar-C), 102.8 (CH(O)(O)(Ar)), 81.9 (C(O)(C=O)), 75.9 (C(O)H), 52.3 (OCH$_3$), 30.6, 26.1, 20.8, 20.4; ν_{max} (film) 2938, 2863, 1735, 1451, 1247, 1162, 1093, 698 cm$^{-1}$; HRMS (ESI+) m/z calcd for (C$_{15}$H$_{18}$O$_4$+H)$^+$, 263.1283; found 263.1268.

409: $R_f = 0.49$ (10% EtOAc-petrol); $[\alpha]^2_{D} -31$ (c 0.7, CHCl$_3$); δ_H (300 MHz, CDCl$_3$) 7.56 – 7.52 (2H, m, Ar-H), 7.40 – 7.37 (3H, m, Ar-H), 5.97 (1H, s, CH(O)(O)), 4.41 (1H, t, $J = 4.0$ Hz, CH(O)), 3.82 (3H, s, OCH$_3$), 2.13 – 1.81 (4H, m, CH), 1.76 – 1.45 (4H, m, CH); δ_C (75 MHz, CDCl$_3$) 173.4 (C=O), 137.2, 129.3, 128.3, 126.6 (Ar-C), 103.2 (CH(O)(O)(Ar)), 81.4 (C(O)(C=O)), 77.3 (C(O)H), 52.5 (OCH$_3$), 31.1, 26.1, 19.4, 18.5; ν_{max} (film) 2951, 2869, 1734, 1451, 1247, 1163, 1088, 1024, 697 cm$^{-1}$; HRMS (ESI+) m/z calcd for (C$_{15}$H$_{18}$O$_4$+H)$^+$, 263.1283; found 263.1267.
9.6 Chapter 6: Shi like catalysts experimental

9.6.1 (S)-2,2-dimethyl-1,3-dioxa[4.5]decane-4,6-dione

A stirred solution of 390 (25 mg, 0.12 mmol) in CH$_2$Cl$_2$ (10 mL) was added Dess Martin Periodinane (131 mg, 0.31 mmol, 2.5 equiv). The resulting solution was heated to reflux for 24 h. To the cooled solution was added NaHCO$_3$ (aq) (20 mL). The biphasic system was extracted with EtOAc (4 × 10 mL) and the organic layers combined and washed with saturated brine, dried over MgSO$_4$ and concentrated under reduced pressure. The resulting oil was purified via flash column chromatography (0-20% EtOAc-petrol) to yield 422 a colourless oil (15 mg, 60%).

$R_f = 0.25$ (10% EtOAc-petrol); $[\alpha]_{D}^{25} -50.0$ (c 2.2, CHCl$_3$); δ_H (500 MHz, CDCl$_3$) 2.81 (1H, ddd, $J = 13.9, 10.9, 5.5$ Hz), 2.63 (1H, ddd, $J = 13.9, 10.9, 5.5$ Hz), 2.32-2.17 (2H, m), 2.08 – 1.97 (2H, m), 1.86 – 1.73 (2H, m), 1.62 (3H, s, CH$_3$), 1.57 (3H, s, CH$_3$); δ_C (125 MHz, CDCl$_3$) 203.1 (C=O), 169.3 (C=O), 111.4 (C(CH$_3$)$_2$), 85.2, 39.5, 38.7, 28.4, 27.5, 26.5, 21.0; ν_{max} (film) 2996, 2941, 2921, 2872, 2851, 1784, 1732, 1394, 1380, 1283, 1254, 1130, 1077, 1045, 930 cm$^{-1}$; HRMS (ESI+) m/z calcd for (C$_{10}$H$_{14}$O$_4$+Na)$^+$, 221.0789; found 221.0787.
9.6.2 (1S,6R)-benzyl 1,6-bis((tert-butyldimethylsilyl)oxy)cyclohexa-2,4-dienecarboxylate

and

9.6.3 (1S,6R)-benzyl 1,6-bis((tert-butyldimethylsilyl)oxy)cyclohexa-2,4-dienecarboxylate

To a stirred solution of 394 (170 mg, 0.69 mmol) dissolved in CH$_2$Cl$_2$ (10 mL) was added triethylamine (0.07 mL, 0.47 mmol, 1.1 equiv) and tert-Butyldimethylsilyl trifluoromethanesulfonate (0.17 mL, 0.76 mmol, 1.1 equiv). The solution was stirred at room temperature for 4 h. The resulting solution was diluted with EtOAc (10 mL) followed by the addition of water (20 mL). The biphasic system was extracted with EtOAc (4 × 10 mL) and the organic layers combined and washed with saturated brine, dried over MgSO$_4$ and concentrated under reduced pressure. The resulting oil was purified via flash column chromatography (1-10% EtOAc-petrol) to yield a colourless oil 423 (68 mg, 21%), 424 (195 mg, 78%).

423: R$_f$ = 0.80 (10% EtOAc-petrol); [α]$_D^{25}$ +41.4 (c 2.1, CHCl$_3$); δ$_H$ (300 MHz, CDCl$_3$) 7.38 – 7.32 (5H, m, Ar-H), 6.02 (1H, ddd, J = 9.5, 4.5, 1.0 Hz), 5.88 – 5.82 (1H, m, C=CH), 5.79-5.75 (2H, m, C=CH), 5.22 (1H, d, J$_{AB}$ = 12.0 Hz), 5.13 (1H, d, J$_{AB}$ = 12.0 Hz), 5.08 (1H, m), 0.88 (9H, s, CH$_3$), 0.82 (9H, s, CH$_3$), 0.08 (9H, s, CH$_3$), 0.01 (9H, s, CH$_3$), -0.01 (3H, s, CH$_3$), -0.02 (3H, s, CH$_3$); δ$_c$ (75 MHz, CDCl$_3$) 174.3 (C=O), 135.5 (Ar-C), 135.2 (C=C), 128.6, 128.5, 128.3 (Ar-C), 127.0, 125.9, 121.6 (C=C), 77.7 (COSi), 73.8 (CH(OSi)), 67.3 (CH$_2$), 25.7, 25.7 (Si(CH$_3$)$_3$), 18.7, 17.9 (Si(CH$_3$)$_3$), -3.0, -3.1, -4.4, -4.9 (SiCH$_3$); ν$_{max}$ (film) 2954, 2929, 2893, 2856, 2752, 1462, 1361, 1250, 1138, 1058, 905, 836, 777, 696 cm$^{-1}$; HRMS (ESI+) m/z calcd for (C$_{26}$H$_{42}$O$_4$Si$_2$+Na)$^+$, 497.2515; found 497.2580.

424: R$_f$ = 0.45 (10% EtOAc-petrol); [α]$_D^{25}$ -84.6 (c 6.3, CHCl$_3$); δ$_H$ (300 MHz, CDCl$_3$) 7.39 – 7.32 (5H, m, Ar-H), 6.12 (1H, dd, J = 9.5, 5.5 Hz), 5.92 (1H, dddd, J = 9.8, 5.5,
2.5, 1.0 Hz), 5.80 (1H, dd, J = 9.5, 1.0 Hz), 5.69 (1H, dt, J = 9.8, 1.0 Hz), 5.28 (1H, d,
J = 12.0 Hz, H Ab), 5.15 (1H, d, J = 12.0 Hz, H Ab), 5.00 (1H, t, J = 2.5 Hz), 0.88 (9H, s,
CH3), 0.09 (3H, s, CH3), -0.01 (3H, s, CH3); δc (75 MHz, CDCl3) 174.5 (C=O), 135.1
(Ar-C), 131.7 (C=C), 128.6, 128.4, 128.3 (Ar-C), 126.5, 124.7, 122.5 (C=C), 74.5 (COH),
72.5 (CH(OSi)), 67.6 (CH2), 25.6 (SiC(CH3)3), 17.8 (SiC(CH3)3), -4.4, -5.3 (SiCH3); νmax
(film) 3546, 3050, 2954, 2929, 2886, 1737, 1498, 1408, 1250, 1106, 1044, 1026, 939,
886, 777 cm−1; HRMS (ESI+) m/z calcd for (C20H28O4Si+Na)+, 383.1650; found 383.1691.
9.6.4 (1S,2R)-2-((tert-butyldimethylsilyl)oxy)-1-hydroxycyclohexanecarboxylic acid

A stirred solution of 424 (177 mg, 0.49 mmol) and Pd/C (20 mg, 10 wt.% loading, matrix activated carbon support) in MeOH (20 mL) was exposed to a hydrogen atmosphere. After 24 h the solution was filtered through a plug of celite and concentrated under reduced pressure. The resulting oil was pure 425 (136 mg, 99%) as a colourless oil.

$R_f = 0.20$ (50 % EtOAc-petrol); $[\alpha]_D^{25} -19.5$ (c 4.5, CHCl$_3$); δ_H (300 MHz, CDCl$_3$) 4.05 (1H, dd, $J = 11.0$, 4.5 Hz), 1.91 (1H, dq, $J = 14.0$, 3.0 Hz), 1.78-1.67 (3H, m), 1.58-1.45 (3H, m), 1.37-1.21 (3H, m), 0.84 (9H, s, SiC(CH$_3$)$_3$), 0.06 (3H, s, SiCH$_3$), 0.02 (3H, s, SiCH$_3$); δ_C (75 MHz, CDCl$_3$) 179.4 (C=O), 77.8 (C(OH)), 73.9 (CH(OSi)), 32.8, 30.3 (CH), 25.6 (SiC(CH$_3$)$_3$), 23.6, 19.5 (CH$_2$), 17.8 (SiC(CH$_3$)$_3$), -4.3, -5.2 (SiCH$_3$); ν_{max} (film) 3546, 2957, 2930, 2887, 2857, 1735, 1498, 1472, 1462, 1251, 1099, 1045, 896, 835, 777, 695 cm$^{-1}$; HRMS (ESI+) m/z calcd for (C$_{13}$H$_{26}$O$_4$Si+Na)$^+$, 298.1492; found 297.1519.
9.6.5 (1S,6R)-methyl 1,6-bis((tert-butyldimethylsilyl)oxy) cyclohexa-2,4-dienecarboxylate

and

9.6.6 (1S,6R)-methyl 6-((tert-butyldimethylsilyl)oxy)-1-hydroxy cyclohexa-2,4-dienecarboxylate

To a stirred solution of 121 (639 mg, 3.7 mmol) dissolved in CH$_2$Cl$_2$ (20 mL) was added triethylamine (0.71 mL, 5.8 mmol, 1.4 equiv) and tert-Butyldimethylsilyl trifluoromethanesulphonate (0.86 mL, 3.7 mmol, 1 equiv). The solution was stirred at room temperature for 4 h. The resulting solution was diluted with EtOAc (10 mL) followed by the addition of water (20 mL). The biphasic system was extracted with EtOAc (4 × 10 mL) and the organic layers combined and washed with saturated brine, dried over MgSO$_4$ and concentrated under reduced pressure. The resulting oil was purified via flash column chromatography (10-20% EtOAc-petrol) to yield a colourless oil 432 (40 mg, 3%), 431 (1.00 g, 95%).

432: $R_f = 0.85$ (20 % EtOAc-petrol); $[\alpha]_D^{25} +54$ (c 1.62, CHCl$_3$); δ_H (250 MHz, CDCl$_3$) 6.03 (1H, ddd, $J = 9.5, 4.5, 1.0$ Hz), 5.74 – 5.89 (3H, m), 5.01 (1H, t, $J = 1.0$ Hz), 3.75 (3H, s), 0.88 (9H, s), 0.85 (9H, s), 0.08 (3H, s), 0.06 (3H, s), 0.01 (3H, s), 0.00 (3H, s); δ_C (75 MHz, CDCl$_3$) 175.1 (C=O), 135.2, 127.1, 125.8, 121.6 (C=C), 77.6 (COSi), 73.9 (CH(OSi)), 52.1 (OCH$_3$), 25.7, 25.6, 18.7, 17.9, -3.10, -3.15, -4.39, -5.05 (SiCH$_3$); ν_{max} (film) 2953, 2929, 2890, 2850, 1756, 1472, 1389, 1250, 1134, 1060, 1039, 809, 834, 775 cm$^{-1}$; HRMS (ESI+) m/z calcd for (C$_{20}$H$_{38}$O$_4$Si$_2$+Na)$^+$, 421.2201; found 421.2265.

431: $R_f = 0.50$ (20 % EtOAc-petrol); $[\alpha]_D^{25} -46$ (c 1.3, CHCl$_3$); δ_H (250 MHz, CDCl$_3$) 6.14 (1H, dd, $J = 9.5$, 5.0 Hz), 5.93 (1H, dddd, $J = 6.0$, 5.0, 4.0, 2.5 Hz), 5.81 (1H, dd, $J = 9.5$, 1.0 Hz), 5.69 (1H, dquint, $J = 9.5$, 1.0 Hz), 4.97 (1H, quint, $J = 2.0$ Hz), 3.81 (3H, s), 3.41 (1H, s), 0.90 (9H, s), 0.12 (3H, s), 0.03 (3H, s); δ_C (75 MHz, CDCl$_3$) 175.3 (C=O), 131.9, 126.4, 124.8, 122.6 (C=C), 74.6 (COH), 72.7 (CH(OSi)), 52.9 (OCH$_3$), 25.6 (Si(CH$_3$)$_3$), 17.9(Si(CH$_3$)$_3$), -4.4, -5.2 (SiCH$_3$); ν_{max} (film) 3516, 2959, 2929, 2863, 1736, 1494, 1453, 1252, 1111, 889, 777, 698 cm$^{-1}$; HRMS (ESI+) m/z calcd for (C$_{14}$H$_{24}$O$_4$Si+Na)$^+$, 307.1337; found 307.1389.
9.6.7 (1S,2R)-methyl 2-((tert-butyldimethylsilyl)oxy)-1-hydroxycyclohexanecarboxylate

A stirred solution of \(431\) (1.00 g, 3.5 mmol) and Pd/C (50 mg, 10 wt.% loading, matrix activated carbon support) in MeOH (50 mL) was exposed to a hydrogen atmosphere at room temperature. After 24 h the solution was filtered through a plug of celite and concentrated under reduced pressure. The resulting oil was purified via flash column chromatography (10-50% EtOAc-petrol) to yield a colourless oil \(433\) (375 mg, 42%), \(387\) (360 mg, 58%).

\(433\): \(R_f = 0.60\) (20% EtOAc-petrol); \([\alpha]_D^{25} = -7.0\) (c 1.3, CHCl\(_3\)); \(\delta_H\) (250 MHz, CDCl\(_3\)) 3.94 (1H, dd, \(J = 10.5, 5.0\) Hz), 3.72 (3H, s), 3.05 (1H, d, \(J = 1.5\) Hz), 1.91 – 1.14 (8H, m), 0.83 (9H, s) 0.04 (3H, s), -0.03 (3H, s); \(\delta_C\) (75 MHz, CDCl\(_3\)) 176.1 (C=O), 77.5 (C(OH)), 73.8 (CH(OSi)), 33.1, 30.1 (CH), 25.6 (Si(C(CH\(_3\))\(_3\))), 23.8, 19.6 (CH), 17.8 (Si(C(CH\(_3\))\(_3\))), -4.1, -5.2 (Si(CH\(_3\))); \(\nu_{\text{max}}\) (film) 3555, 3027, 2928, 1705, 1494, 1453, 1281, 908, 732, 699 cm\(^{-1}\); HRMS (ESI+) m/z calcd for \((C_{14}H_{28}O_4Si+H)^+\), 289.1835; found 289.1831.
9.6.8 (1R,2R)-1-(((tert-butyldimethylsilyl)oxy)methyl)cyclohexane-1,2-diol

and

9.6.9 (1R,2R)-2-(((tert-butyldimethylsilyl)oxy)-1-(hydroxymethyl)cyclohexanol

To a stirred solution of 433 (375 mg, 1.3 mmol) in THF at -78 °C was added dropwise LiAlH₄ (0.54 mL, 2.4 M solution, 1.3 mmol, 1 equiv) over 20 mins. The resulting solution was left to warm to room temperature for 12 h. Solution was quenched with addition of H₂O (0.05 mL) followed by NaOH (10% aq. sol. 0.09 mL) followed by H₂O (0.14 mL). The solution was filtered through MgSO₄ and concentrated under reduced pressure. The resulting oil was purified via flash column chromatography (5-20% EtOAc-petrol) to yield a colourless oil 434 (19 mg, 5%), 430 (45 mg, 13%).

To a stirred solution of 433 (465 mg, 1.6 mmol) in THF at -78 °C was added dropwise LiBH₄ (0.8 mL, 4.0 M solution, 3.22 mmol, 2 equiv) over 20 mins. The resulting solution was left to warm to room temperature for 12 h. Solution was quenched with addition of Et₂O (10 mL) followed by H₂O (10 mL). The mixture was separated, and the aqueous layer extracted with EtOAc (4 × 10 mL), the organic layers were combined and dried with MgSO₄ and concentrated under reduced pressure. The resulting oil was purified via flash column chromatography (5-20% EtOAc-petrol) to yield a 430 (400 mg, 91%).

434: Rⱼ = 0.55 (20 % EtOAc-petrol); [α]D₂⁵ +10 (c 0.5, CHCl₃); δ_H (500 MHz, CDCl₃) 3.66 (1H, d, J = 10.0, Hz), 3.64 (1H, dd, J = 10.0, 4.5 Hz), 3.52 (1H, d, J = 10.0 Hz), 1.73-1.63 (3H, m), 1.60-1.50 (2H, m), 1.45-1.39 (1H, m), 1.22-1.08 (2H, m), 0.90 (9H, s), 0.09 (3H, s), 0.08 (3H, s); δ_C (125 MHz, CDCl₃) 73.7, 71.9, 71.8, 31.8, 29.5, 25.8 (SiC(CH₃)₃), 23.5, 20.3, 18.1 (SiC(CH₃)₃), -5.5, -5.6 (SiCH₃); ν_max (film) 3555, 3027, 2929, 1494, 1453, 1218, 908, 732, 699 cm⁻¹; HRMS (ESI⁺) m/z calcd for (C₁₃H₂₈O₃Si+H)⁺, 261.1886; found 261.1858.
430: Rf = 0.45 (20 % EtOAc-petrol); [α]D25 -18 (c 0.5, CHCl3); δH (500 MHz, CDCl3) 3.65 (1H, br s), 3.56 (1H, d, J = 10.0 Hz), 3.37 (1H, d, J = 10.0 Hz), 2.51 (2H, br s, OH), 1.82 (1H, d, J = 13.0 Hz), 1.63 (3H, m), 1.52 (1H, m), 1.40 (1H, m), 1.29 (1H, m), 1.19-1.14 (1H, m); δC (125 MHz, CDCl3) 73.2, 72.9 (CH), 68.3 (OCH3), 31.7, 30.7, 25.8 (SiC(CH3)3), 23.1, 20.7, 17.9 (SiC(CH3)3), -4.0, -4.9 (SiCH3); νmax (film) 3443, 2930, 2857, 1463, 1389, 1261, 1252, 1079, 835, 777 cm⁻¹; HRMS (ESI+) m/z calcd for (C13H28O3Si+H)+, 261.1886; found 261.1886.
9.6.10 tert-butyl(((5R,6R)-2,2-dimethyl-1,3-dioxaspiro[4.5]decan-6-yl)oxy)dimethylsilane

To a stirred solution of 430 (1.81 g, 6.59 mmol) dissolved in acetone (10 mL, freshly distilled), was added 2,2-Dimethoxypropane (12 mL, 100 mmol) and para-toluenesulfonic acid (13 mg, 0.06 mmol, 10 mol %). The solution was stirred at room temperature for 20 h. The resulting solution was diluted with EtOAc (10 mL) followed by the addition of water (20 mL). The biphasic system was extracted with EtOAc (4 × 10 mL) and the organic layers combined and washed with saturated brine, dried over MgSO₄ and concentrated under reduced pressure. The resulting oil was purified via flash column chromatography (10-20% EtOAc-petrol) to yield 435 a colourless oil (1.72 g, 86%).

R_f = 0.80 (10% EtOAc-petrol); [α]_D^{25} -20 (c 0.3, CHCl₃); δ_H (300 MHz, CDCl₃) 3.88 (1H, d, J = 8.0 Hz), 3.70 (1H, d J = 8.0 Hz), 3.53 (1H, dd, J = 7.0, 3.0 Hz), 1.95-1.86 (1H, m), 1.75-1.56 (3H, m), 1.51-1.18 (4H, m) 1.39 (6H, s, CH₃), 0.90 (9H, s), 0.07 (3H, s), 0.05 (3H, s); δ_C (75 MHz, CDCl₃) 109.2, 83.4, 72.8, 70.8, 34.0, 32.3, 27.8, 26.9, 25.9, 22.6, 21.6, 18.2, -4.5, -4.6; ν_max (film) 2988, 2933, 2894, 2856, 1472, 1462, 1377, 1368, 1251, 1212, 1141, 1094, 1056, 988, 898, 773 cm⁻¹; HRMS (ESI+) m/z calcd for (C₁₆H₃₂O₃Si+Na)^+, 323.2018; found 323.2015.
9.6.11\((5R,6R)\)-2,2-dimethyl-1,3-dioxaspiro[4.5]decan-6-ol

To a stirred solution of 435 (1.72 g, 5.72 mmol) in THF (50 mL) at -78 °C, was added dropwise Tetrabutylammonium fluoride hydrate (1M solution in THF, 5.72 mL, 2 equiv) over 5 mins. The resulting solution was allowed to warm to room temperature over 16 h. The resulting solution was quenched with Et\(_2\)O (10 mL) and NH\(_3\)Cl\(_{\text{aq}}\) (10 mL). The organic layer was extracted with EtOAc (4 × 10 mL) and the organic layers combined and washed with saturated brine, dried over MgSO\(_4\) and concentrated under reduced pressure. The resulting oil was purified via flash column chromatography (5% EtOAc-petrol) to yield 436 a colourless oil (591 mg, 55%).

\(R_f = 0.30\) (20% EtOAc-petrol); \([\alpha]_D^{25} -4.0\) (c 0.9, CHCl\(_3\)); \(\delta_H\) (250 MHz, CDCl\(_3\)) 3.99 (1H, d, \(J = 8.5\) Hz), 3.71 (1H, d, \(J = 8.5\) Hz), 3.49 (1H, m), 2.11 (1H, br s, OH), 1.99 – 1.23 (8H, m), 1.40 (3H, s), 1.39 (3H, s); \(\delta_C\) (100 MHz, CDCl\(_3\)) 109.4, 83.2, 71.5, 71.3, 33.7, 33.2, 29.7, 27.2, 27.1, 22.6; \(\nu_{\text{max}}\) (film) 3204, 2930, 2855, 1563, 1406, 1371, 1184, 903, 729 cm\(^{-1}\); HRMS (ESI+) m/z calcd for \((\text{C}_{10}\text{H}_{18}\text{O}_3\text{Na})^+\), 209.1149; found 209.1104.
9.6.12(\(R\))-2,2-dimethyl-1,3-dioxaspiro[4.5]decan-6-one

Oxaly chloride (0.10 mL, 1.18 mmol, 2 equiv) followed by Dimethyl sulfoxide (0.08 mL, 1.18 mmol, 2 equiv) was added to a flask containing CH\(_2\)Cl\(_2\) (2 mL) and stirred at -78 °C for 15 mins. Alcohol 436 (110 mg, 0.59 mmol) dissolved in CH\(_2\)Cl\(_2\) (5 mL) was added dropwise to the cooled solution and left to stir at -78 °C for 1 h. Triethylamine (0.5 mL, 3.54 mmol, 6 equiv) was added dropwise at -78 °C and left to stir for 20 mins, before allowing to slowly warm to room temperature. The reaction was quenched with the addition of water (20 mL) and EtOAc (20 mL). The aqueous layer was extracted with EtOAc (4 x 10 mL) and the organic layers combined and washed with saturated brine, dried over MgSO\(_4\) and concentrated under reduced pressure. The resulting oil was purified via flash column chromatography (5% EtOAc-petrol) to yield 429 a colourless oil (32 mg, 30%).

Or

To alcohol 436 (591 mg, 3.17 mmol) dissolved in CH\(_2\)Cl\(_2\) (50 mL) was added Dess–Martin periodinane (2.69 g, 6.3 mmol, 2 equiv) the solution and left to stir at room temperature for 72 h. The reaction was quenched with the addition of water (20 mL) and EtOAc (50 mL). The aqueous layer was extracted with EtOAc (5 x 10 mL) and the organic layers combined and washed with saturated brine, dried over MgSO\(_4\) and concentrated under reduced pressure. The resulting oil was purified via flash column chromatography (10% EtOAc-petrol) to yield 429 a colourless oil (517 mg, 86%).

\(R_f = 0.50\) (20% EtOAc-petrol); \([\alpha]_D^{25} -6.0\) (c 1.6, CHCl\(_3\)); \(\delta_H\) (400 MHz, CDCl\(_3\)) 4.42 (1H, d, \(J = 8.5\) Hz), 3.65 (1H, d, \(J = 8.5\) Hz), 2.78 (1H, ddd, \(J = 15.0, 9.0, 5.0\) Hz), 2.34 – 2.27 (1H, m), 2.04 – 1.86 (3H, m), 1.80 – 1.59 (3H, m), 1.40 (3H, s), 1.33 (3H, s); \(\delta_C\) (100 MHz, CDCl\(_3\)) 209.1, 110.5, 85.6, 69.1, 39.7, 28.5, 27.4, 26.9, 26.1, 22.3; \(\nu_{\text{max}}\) (film) 2986, 2937, 2865, 1723, 1452, 1431, 1380, 1371, 1050, 858, 811 cm\(^{-1}\); HRMS (ESI+) m/z calcd for (C\(_{10}\)H\(_{16}\)O\(_3\)+Na\(^+\))\(^+\), 207.0997; found 207.0995.
9.7 Chapter 6 Experimental.

9.7.1 General Method for epoxidation of styrene.

Any variations from this general procedure, reaction optimisation etc, are detailed in Chapter 6.

Styrene (0.1 mL, 0.87 mmol, 1 equiv) in CH₃CN (0.8 mL) was added N,N-Dimethylpyridin-4-amine (18 mg, 0.16 mmol, 20 mol%), H₂O₂ (1.0 mL, 35 wt%, 12 equiv), N,N’-Diisopropylcarbodiimide (219 mg, 1.74 mmol, 2 equiv) and acid catalyst (0.1 equiv). The resulting solution was stirred at r.t, for 20 h. At this point the reaction was quench with the addition of Na₂S₂O₃ (10 mL) and extracted with EtOAc (3 × 20 mL). The combined organic layers were dried over MgSO₄ and concentrated under reduced pressure. The crude mixture was analysed via NMR spectroscopy to obtain conversion to styrene oxide, and chiral HPLC to calculate any enantioselectivity.

Chiral HPLC methods were developed for styrene oxide: Method 1: Chiralpak AS. 0.2 mlmin⁻¹. 0.6% IPA/Hexane, 254nm. t₁ = 30 mins and t₂ = 35 mins. Method 2: Chiralpak AS. 0.8 mlmin⁻¹. 0.2% IPA/Hexane, 254nm. t₁ = 9.9 mins and t₂ = 12.4 mins.

9.7.2 Sulfide oxidation to test for presence of peracid

Experiment 1: Benzoic acid (94 mg, 0.78 mmol, 1 equiv), DIC (0.24 mL, 1.54 mmol, 2 equiv), DMAP (19 mg, 0.16 mmol, 10 mol%) H₂O₂ (35 wt%, 0.79 mL, 12 equiv), thioanisole (484 mg, 3.9mmol, 5 equiv) MeCN (0.8 mL). Stirred r.t., 15 mins. Workup, add ice (5 mL), add NaHCO₃(aq) extract CHCl₃ (3 × 10 mL), dry MgSO₄ concentrate under reduced pressure.

Experiment 2: Chiral acid 384 (68 mg, 0.34 mmol, 1 equiv), DIC (0.1 mL, 0.68 mmol, 2 equiv), DMAP (8 mg, 0.06 mmol, 10 mol%) H₂O₂ (35 wt%, 0.35 mL, 12 equiv), thioanisole (217 mg, 1.75mmol, 5 equiv) MeCN (0.35 mL). Stirred r.t., 60mins. Standard workup.

Experiment 3: DIC (0.1 mL, 0.68 mmol, 2 equiv), DMAP (8 mg, 0.06 mmol, 10 mol%) H₂O₂ (35 wt%, 0.35 mL, 12 equiv), thioanisole (217 mg, 1.75mmol, 5 equiv) MeCN (0.35 mL). Stirred r.t., 60mins. Standard workup.
Experiment 4: Benzoic acid (94 mg, 0.78 mmol, 1 equiv), DIC (0.24 mL, 1.54 mmol, 2 equiv), DMAP (19 mg, 0.16 mmol, 10 mol%) H$_2$O$_2$ (35 wt%, 0.79 mL, 12 equiv), thioanisole (484 mg, 3.9 mmol, 5 equiv) MeCN (0.8 mL). Stirred r.t., 15 mins. Standard workup.

9.8 Epoxidation conditions Chapter 7.

![Epoxidation reaction](image)

Epoxidation of trans-stilbene with chiral ketone 422. trans-stilbene (90 mg, 0.5 mmol), ketone 422 (14 mg, 10 mol%), and tetrabutylammonium hydrogen sulfate (0.01 g, 0.03 mmol) in MeCN-DMM (v/v, 1/2) (9 mL) was added buffer (0.05 M aq Na$_2$HPO$_4$-0.05 M aq KH$_2$PO$_4$, pH 7.0) (3 mL) with stirring. Upon cooling to 0 °C, a solution of Oxone (0.212 M in 4 × 10$^{-4}$ M aq EDTA, 4.8 mL) and a solution of K$_2$CO$_3$ (0.42 M in 4 × 10$^{-4}$ M aq EDTA, 4.8 mL) were added dropwise over 1 h. The reaction was quenched by addition of pentane and extracted with pentane. The combined organic layers were dried over MgSO$_4$, filtered and concentrated under reduced pressure.

![Method A](image)

Method A: trans-stilbene (180 mg, 1.0 mmol), cyclohexanone (0.03 mL, 30 mol%), and tetrabutylammonium hydrogen sulfate (0.01 g, 0.04 mmol) in MeCN-DMM (v/v, 1:2) (15 mL) was added buffer (10 mL, 0.05 M aq Na$_2$B$_4$O$_7$·10H$_2$O in 4 × 10$^{-4}$ M aq Na$_2$(EDTA)). The mixture was cooled to 0 °C in an ice bath. A solution of Oxone (1.0 g, 1.6 mmol in 6.5 mL 4 × 10$^{-4}$ M aq Na$_2$(EDTA)), and a solution of K$_2$CO$_3$ (0.93 g, 6.74
mmol H₂O 6.5 mL), were added dropwise separately and simultaneously via syringe pump over 2 h. The reaction was quenched by addition of pentane and extracted with pentane (4 × 10 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure.

Method B: To a solution of trans-stilbene (180 mg, 1.0 mmol) and cyclohexanone (0.03 mL, 30 mol%) in MeCN-DMM (v/v, 1:2) (6 mL) was added buffer solution (1.5 mL, 2.0 M K₂CO₃ in 4 × 10⁻⁴ M aq Na₂(EDTA)). Followed by H₂O₂ (30%, 0.25 mL, 3 mmol) at 0 °C. The reaction was left to room temperature over 48 h. Reaction was quenched and extracted as per Method A.

Method C: To a solution of trans-stilbene (180 mg, 1.0 mmol), cyclohexanone (0.03 mL, 30 mol%), MeCN (0.2 mL, 3.8 mmol), n-BuOH (3.0 mL) was added buffer solution (3.5 mL, 0.3 M K₂CO₃ in 4 × 10⁻⁴ M aq Na₂(EDTA)). Followed by H₂O₂ (35%, 0.25 mL, 3 mmol) at 0 °C and left to warm to room temperature over 24 h. Reaction was quenched and extracted as per Method A.

Method D: To a solution of trans-stilbene (180 mg, 1.0 mmol) and cyclohexanone (0.03 mL, 30 mol%) in MeCN-EtOH-CH₂Cl₂ (v/v, 1:1:2) (2.0 mL) was added buffer solution (1.5 mL, 2.0 M K₂CO₃ in 4 × 10⁻⁴ M aq Na₂(EDTA)). Followed by H₂O₂ (30%, 0.25 mL, 3 mmol) at 0 °C for 24h. Reaction was quenched and extracted as Method A.

Method E: To a solution of trans-stilbene (180 mg, 1.0 mmol) and catalyst (15 mol%) in MeCN-EtOH-CH₂Cl₂ (v/v, 1:1:2) (2.0 mL) was added buffer solution (1.5 mL, 2.0 M K₂CO₃ in 4 × 10⁻⁴ M aq Na₂(EDTA)). Followed by H₂O₂ (30%, 0.25 mL, 3 mmol) at 0 °C for 24h. Reaction was quenched and extracted as Method A.

Method F: To a solution of trans-stilbene (180 mg, 1.0 mmol) and catalyst (1 equiv) in MeCN-EtOH-CH₂Cl₂ (v/v, 1:1:2) (2.0 mL) was added buffer solution (1.5 mL, 2.0 M K₂CO₃ in 4 × 10⁻⁴ M aq Na₂(EDTA)). Followed by H₂O₂ (30%, 0.25 mL, 3 mmol) at 0 °C for 72 h. Reaction was quenched and extracted as Method A.
References

(2) Hudlicky, T.; Reed, J. W. Synlett 2009, 5, 685.
References

(63) Parker, M. H.; Maryanoff, B. E.; Reitz, A. B. Synlett 2004, 12, 2095.
(152) Wendeborn, S.; De Mesmaeker, A.; Brill, W. K. D. Synlett 1998, 8, 865
References

Appendix

224

HMOC

Jass 150 C
290A

\[
\begin{align*}
R^1 &= H, \ R^2 = \text{Ac} \\
or \\
R^1 &= \text{Ac}, \ R^2 = H
\end{align*}
\]
290A. HSQC

$R^1 = H, R^2 = Ac$

or

$R^1 = Ac, R^2 = H$

290A. H2BC

$R^1 = H, R^2 = Ac$

or

$R^1 = Ac, R^2 = H$
R1 = H, R2 = Ac
or
R1 = Ac, R2 = H

\[(OC)_3Fe\]

Br

COOMe

Me

307 HMQC

\[
\begin{array}{c}
\text{ppm} \\
7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 \\
0 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 & 110 & \\
\end{array}
\]
Appendix

HMQC

[Chemical structure image]

[2D NMR spectrum image]
1HMOC
388
HSQC
HSQC

403
Table S1. Crystal data and structure refinement for 55.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>h11sel3</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C_{11} H_{15} N_{7}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>273.24</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Orthorhombic, P2_1_2_1</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 5.88820(10) Å alpha = 90 deg.</td>
</tr>
<tr>
<td></td>
<td>b = 14.2027(3) Å beta = 90 deg.</td>
</tr>
<tr>
<td></td>
<td>c = 14.2431(2) Å gamma = 90 deg.</td>
</tr>
<tr>
<td>Volume</td>
<td>1191.13(4) Å^3</td>
</tr>
<tr>
<td>Z, Calculated density</td>
<td>4, 1.524 Mg/m^3</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.129 mm^-1</td>
</tr>
<tr>
<td>F(000)</td>
<td>576</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.60 x 0.50 x 0.50 mm</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>3.75 to 30.07 deg.</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>-8<=h<=8, -20<=k<=20, -20<=l<=20</td>
</tr>
<tr>
<td>Reflections collected / unique</td>
<td>25859 / 3476 [R(int) = 0.0511]</td>
</tr>
<tr>
<td>Completeness to theta = 30.07</td>
<td>99.3 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.9385 and 0.9268</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>3476 / 0 / 182</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.033</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0347, wR2 = 0.0801</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0454, wR2 = 0.0857</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>-0.1(7)</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.219 and -0.213 eÅ^-3</td>
</tr>
</tbody>
</table>
Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å^2 x 10^3) for h11sel3. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

<table>
<thead>
<tr>
<th>U(eq)</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1)</td>
<td>1931(2)</td>
<td>5240(1)</td>
<td>3519(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>4539(2)</td>
<td>6665(1)</td>
<td>1634(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>7757(1)</td>
<td>5897(1)</td>
<td>2052(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>8245(2)</td>
<td>3890(1)</td>
<td>2293(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>4072(2)</td>
<td>4759(1)</td>
<td>3783(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>5879(2)</td>
<td>6169(1)</td>
<td>4883(1)</td>
</tr>
<tr>
<td>O(6)</td>
<td>2764(2)</td>
<td>6936(1)</td>
<td>4464(1)</td>
</tr>
<tr>
<td>O(7)</td>
<td>3396(2)</td>
<td>6626(1)</td>
<td>5977(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>6861(2)</td>
<td>6548(1)</td>
<td>1373(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>8082(3)</td>
<td>7479(1)</td>
<td>1495(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>7059(3)</td>
<td>6160(1)</td>
<td>384(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>5970(2)</td>
<td>5301(1)</td>
<td>2376(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>6188(2)</td>
<td>4312(1)</td>
<td>1972(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>6036(2)</td>
<td>5248(1)</td>
<td>3453(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>6067(2)</td>
<td>6229(1)</td>
<td>3872(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>3963(2)</td>
<td>6576(1)</td>
<td>5169(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>3884(2)</td>
<td>6739(1)</td>
<td>3580(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>2451(2)</td>
<td>6087(1)</td>
<td>2978(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>3784(2)</td>
<td>5831(1)</td>
<td>2090(1)</td>
</tr>
</tbody>
</table>
Table 3. Bond lengths [Å] for h11sel3.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1)-C(10)</td>
<td>1.4614(18)</td>
</tr>
<tr>
<td>N(1)-O(4)</td>
<td>1.4820(16)</td>
</tr>
<tr>
<td>N(1)-H(1)</td>
<td>0.93(2)</td>
</tr>
<tr>
<td>O(1)-C(11)</td>
<td>1.4217(16)</td>
</tr>
<tr>
<td>O(1)-C(1)</td>
<td>1.4264(16)</td>
</tr>
<tr>
<td>O(2)-C(4)</td>
<td>1.4277(14)</td>
</tr>
<tr>
<td>O(2)-C(1)</td>
<td>1.4373(15)</td>
</tr>
<tr>
<td>O(3)-C(5)</td>
<td>1.4268(18)</td>
</tr>
<tr>
<td>O(3)-H(3)</td>
<td>0.88(3)</td>
</tr>
<tr>
<td>O(4)-C(6)</td>
<td>1.4284(15)</td>
</tr>
<tr>
<td>O(5)-C(8)</td>
<td>1.3310(16)</td>
</tr>
<tr>
<td>O(5)-C(7)</td>
<td>1.4478(14)</td>
</tr>
<tr>
<td>O(6)-C(8)</td>
<td>1.3304(17)</td>
</tr>
<tr>
<td>O(6)-C(9)</td>
<td>1.4482(15)</td>
</tr>
<tr>
<td>O(7)-C(8)</td>
<td>1.2000(17)</td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.5147(19)</td>
</tr>
<tr>
<td>C(1)-C(3)</td>
<td>1.5174(18)</td>
</tr>
<tr>
<td>C(2)-H(2A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(2)-H(2B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(2)-H(2C)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(3)-H(3A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(3)-H(3B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(3)-H(3C)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.5241(16)</td>
</tr>
<tr>
<td>C(4)-C(6)</td>
<td>1.5353(16)</td>
</tr>
<tr>
<td>C(4)-C(11)</td>
<td>1.5461(17)</td>
</tr>
<tr>
<td>C(5)-H(5A)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(5)-H(5B)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(6)-C(7)</td>
<td>1.5161(16)</td>
</tr>
<tr>
<td>C(6)-H(6)</td>
<td>1.0000</td>
</tr>
<tr>
<td>C(7)-C(9)</td>
<td>1.5329(17)</td>
</tr>
<tr>
<td>C(7)-H(7)</td>
<td>1.0000</td>
</tr>
<tr>
<td>C(9)-C(10)</td>
<td>1.5178(18)</td>
</tr>
<tr>
<td>C(9)-H(9)</td>
<td>1.0000</td>
</tr>
<tr>
<td>C(10)-C(11)</td>
<td>1.5328(18)</td>
</tr>
<tr>
<td>C(10)-H(10)</td>
<td>1.0000</td>
</tr>
<tr>
<td>C(11)-H(11)</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Table 4. Bond angles [deg] for h11sel3.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle [deg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(10)-N(1)-O(4)</td>
<td>109.56(9)</td>
</tr>
<tr>
<td>C(10)-N(1)-H(1)</td>
<td>107.7(12)</td>
</tr>
<tr>
<td>O(4)-N(1)-H(1)</td>
<td>101.4(13)</td>
</tr>
<tr>
<td>C(11)-O(1)-C(1)</td>
<td>108.79(10)</td>
</tr>
<tr>
<td>C(4)-O(2)-C(1)</td>
<td>109.18(9)</td>
</tr>
<tr>
<td>C(5)-O(3)-H(3)</td>
<td>111.7(15)</td>
</tr>
<tr>
<td>C(6)-O(4)-N(1)</td>
<td>112.42(8)</td>
</tr>
<tr>
<td>C(8)-O(5)-C(7)</td>
<td>110.10(10)</td>
</tr>
<tr>
<td>C(8)-O(6)-C(9)</td>
<td>109.93(10)</td>
</tr>
<tr>
<td>O(1)-C(1)-O(2)</td>
<td>104.56(10)</td>
</tr>
<tr>
<td>O(1)-C(1)-C(2)</td>
<td>108.88(11)</td>
</tr>
<tr>
<td>O(2)-C(1)-C(2)</td>
<td>108.06(11)</td>
</tr>
<tr>
<td>O(1)-C(1)-C(3)</td>
<td>110.97(11)</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle (°)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>O(2) - C(1) - C(3)</td>
<td>111.23(11)</td>
</tr>
<tr>
<td>C(2) - C(1) - C(3)</td>
<td>112.77(12)</td>
</tr>
<tr>
<td>C(1) - C(2) - H(2A)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(1) - C(2) - H(2B)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(2A) - C(2) - H(2B)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(1) - C(2) - H(2C)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(2A) - C(2) - H(2C)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(1) - C(3) - H(3A)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(1) - C(3) - H(3B)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(3A) - C(3) - H(3B)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(1) - C(3) - H(3C)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(3A) - C(3) - H(3C)</td>
<td>109.5</td>
</tr>
<tr>
<td>O(2) - C(4) - C(5)</td>
<td>111.23(10)</td>
</tr>
<tr>
<td>O(2) - C(4) - C(6)</td>
<td>109.52(9)</td>
</tr>
<tr>
<td>C(5) - C(4) - C(6)</td>
<td>109.27(9)</td>
</tr>
<tr>
<td>O(2) - C(4) - C(11)</td>
<td>103.86(9)</td>
</tr>
<tr>
<td>C(5) - C(4) - C(11)</td>
<td>114.76(10)</td>
</tr>
<tr>
<td>C(6) - C(4) - C(11)</td>
<td>107.99(10)</td>
</tr>
<tr>
<td>O(3) - C(5) - C(4)</td>
<td>109.75(10)</td>
</tr>
<tr>
<td>O(3) - C(5) - H(5A)</td>
<td>109.7</td>
</tr>
<tr>
<td>C(4) - C(5) - H(5A)</td>
<td>109.7</td>
</tr>
<tr>
<td>O(3) - C(5) - H(5B)</td>
<td>109.7</td>
</tr>
<tr>
<td>C(4) - C(5) - H(5B)</td>
<td>109.7</td>
</tr>
<tr>
<td>H(5A) - C(5) - H(5B)</td>
<td>108.2</td>
</tr>
<tr>
<td>O(4) - C(6) - C(7)</td>
<td>109.06(9)</td>
</tr>
<tr>
<td>O(4) - C(6) - C(4)</td>
<td>109.40(10)</td>
</tr>
<tr>
<td>C(7) - C(6) - C(4)</td>
<td>110.37(9)</td>
</tr>
<tr>
<td>O(4) - C(6) - H(6)</td>
<td>109.3</td>
</tr>
<tr>
<td>C(7) - C(6) - H(6)</td>
<td>109.3</td>
</tr>
<tr>
<td>C(4) - C(6) - H(6)</td>
<td>109.3</td>
</tr>
<tr>
<td>O(5) - C(7) - C(6)</td>
<td>109.69(9)</td>
</tr>
<tr>
<td>O(5) - C(7) - C(9)</td>
<td>103.51(9)</td>
</tr>
<tr>
<td>C(6) - C(7) - C(9)</td>
<td>108.53(10)</td>
</tr>
<tr>
<td>O(5) - C(7) - H(7)</td>
<td>111.6</td>
</tr>
<tr>
<td>C(6) - C(7) - H(7)</td>
<td>111.6</td>
</tr>
<tr>
<td>C(9) - C(7) - H(7)</td>
<td>111.6</td>
</tr>
<tr>
<td>O(7) - C(8) - O(6)</td>
<td>123.62(13)</td>
</tr>
<tr>
<td>O(7) - C(8) - O(5)</td>
<td>123.70(13)</td>
</tr>
<tr>
<td>O(6) - C(8) - O(5)</td>
<td>112.67(11)</td>
</tr>
<tr>
<td>O(6) - C(9) - C(10)</td>
<td>110.83(11)</td>
</tr>
<tr>
<td>O(6) - C(9) - C(7)</td>
<td>103.72(9)</td>
</tr>
<tr>
<td>C(10) - C(9) - C(7)</td>
<td>109.31(10)</td>
</tr>
<tr>
<td>O(6) - C(9) - H(9)</td>
<td>110.9</td>
</tr>
<tr>
<td>C(10) - C(9) - H(9)</td>
<td>110.9</td>
</tr>
<tr>
<td>C(7) - C(9) - H(9)</td>
<td>110.9</td>
</tr>
<tr>
<td>N(1) - C(10) - C(9)</td>
<td>108.74(11)</td>
</tr>
<tr>
<td>N(1) - C(10) - C(11)</td>
<td>110.30(11)</td>
</tr>
<tr>
<td>C(9) - C(10) - C(11)</td>
<td>109.07(10)</td>
</tr>
<tr>
<td>N(1) - C(10) - H(10)</td>
<td>109.6</td>
</tr>
<tr>
<td>C(9) - C(10) - H(10)</td>
<td>109.6</td>
</tr>
<tr>
<td>C(11) - C(10) - H(10)</td>
<td>109.6</td>
</tr>
<tr>
<td>O(1) - C(11) - C(10)</td>
<td>109.83(11)</td>
</tr>
<tr>
<td>O(1) - C(11) - C(4)</td>
<td>105.38(9)</td>
</tr>
<tr>
<td>C(10) - C(11) - C(4)</td>
<td>108.88(10)</td>
</tr>
<tr>
<td>O(1) - C(11) - H(11)</td>
<td>110.9</td>
</tr>
<tr>
<td>C(10) - C(11) - H(11)</td>
<td>110.9</td>
</tr>
<tr>
<td>C(4) - C(11) - H(11)</td>
<td>110.9</td>
</tr>
</tbody>
</table>
Table 5. Anisotropic displacement parameters (A^2 x 10^3) for h11sel3.

The anisotropic displacement factor exponent takes the form:
\[-2 \pi^2 \left[h^2 a^* a^2 U11 + \ldots + 2 h k a^* b^* U12 \right]\]

<table>
<thead>
<tr>
<th></th>
<th>U11</th>
<th>U22</th>
<th>U33</th>
<th>U23</th>
<th>U13</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1)</td>
<td>22(1)</td>
<td>41(1)</td>
<td>38(1)</td>
<td>-3(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>29(1)</td>
<td>37(1)</td>
<td>34(1)</td>
<td>8(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>21(1)</td>
<td>24(1)</td>
<td>25(1)</td>
<td>3(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>56(1)</td>
<td>33(1)</td>
<td>37(1)</td>
<td>-1(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>28(1)</td>
<td>26(1)</td>
<td>37(1)</td>
<td>3(1)</td>
<td>5(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>27(1)</td>
<td>36(1)</td>
<td>22(1)</td>
<td>-5(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>O(6)</td>
<td>36(1)</td>
<td>44(1)</td>
<td>31(1)</td>
<td>-7(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>O(7)</td>
<td>40(1)</td>
<td>50(1)</td>
<td>28(1)</td>
<td>-6(1)</td>
<td>9(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>29(1)</td>
<td>28(1)</td>
<td>24(1)</td>
<td>3(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>47(1)</td>
<td>27(1)</td>
<td>39(1)</td>
<td>6(1)</td>
<td>6(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>51(1)</td>
<td>44(1)</td>
<td>23(1)</td>
<td>1(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>21(1)</td>
<td>21(1)</td>
<td>24(1)</td>
<td>-2(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>39(1)</td>
<td>24(1)</td>
<td>32(1)</td>
<td>-7(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>20(1)</td>
<td>21(1)</td>
<td>24(1)</td>
<td>0(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>22(1)</td>
<td>25(1)</td>
<td>21(1)</td>
<td>-3(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>28(1)</td>
<td>28(1)</td>
<td>31(1)</td>
<td>-4(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>31(1)</td>
<td>25(1)</td>
<td>26(1)</td>
<td>-1(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>18(1)</td>
<td>38(1)</td>
<td>30(1)</td>
<td>-2(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>22(1)</td>
<td>33(1)</td>
<td>25(1)</td>
<td>-2(1)</td>
<td>-4(1)</td>
</tr>
</tbody>
</table>
Table 6. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å$^2 \times 10^3$) for h11sel3.

<table>
<thead>
<tr>
<th>U(eq)</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 (6)</td>
<td>1290 (40)</td>
<td>4803 (13)</td>
<td>3110 (14)</td>
</tr>
<tr>
<td>70 (7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H(1)</td>
<td>7945</td>
<td>7687</td>
<td>2149</td>
</tr>
<tr>
<td>H(2B)</td>
<td>7399</td>
<td>7951</td>
<td>1080</td>
</tr>
<tr>
<td>H(2C)</td>
<td>9690</td>
<td>7401</td>
<td>1336</td>
</tr>
<tr>
<td>H(3A)</td>
<td>6074</td>
<td>5608</td>
<td>319</td>
</tr>
<tr>
<td>H(3B)</td>
<td>8637</td>
<td>5978</td>
<td>262</td>
</tr>
<tr>
<td>H(3C)</td>
<td>6595</td>
<td>6643</td>
<td>-68</td>
</tr>
<tr>
<td>H(5A)</td>
<td>4875</td>
<td>3925</td>
<td>2171</td>
</tr>
<tr>
<td>H(5B)</td>
<td>6190</td>
<td>4343</td>
<td>1277</td>
</tr>
<tr>
<td>H(6)</td>
<td>7431</td>
<td>4901</td>
<td>3654</td>
</tr>
<tr>
<td>H(7)</td>
<td>7451</td>
<td>6587</td>
<td>3677</td>
</tr>
<tr>
<td>H(9)</td>
<td>4239</td>
<td>7335</td>
<td>3237</td>
</tr>
<tr>
<td>H(10)</td>
<td>1007</td>
<td>6411</td>
<td>2800</td>
</tr>
<tr>
<td>H(11)</td>
<td>2838</td>
<td>5439</td>
<td>1656</td>
</tr>
</tbody>
</table>
Table 1. Crystal data and structure refinement for h10sel3.

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>h10sel3</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C14 H13 Br Fe O7</td>
</tr>
<tr>
<td>Formula weight</td>
<td>429.00</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 A</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Orthorhombic, $P \ 2_1 \ 2_1 \ 2_1$</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>$a = 8.6252(3)$ A, $\alpha = 90$ deg.</td>
</tr>
<tr>
<td></td>
<td>$b = 8.6773(3)$ A, $\beta = 90$ deg.</td>
</tr>
<tr>
<td></td>
<td>$c = 43.7286(16)$ A, $\gamma = 90$ deg.</td>
</tr>
<tr>
<td>Volume</td>
<td>3272.8(2) Å³</td>
</tr>
<tr>
<td>Z, Calculated density</td>
<td>8, 1.741 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>3.394 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>1712</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.45 x 0.30 x 0.15 mm</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>3.31 to 27.56 deg.</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>-11 <= h <= 11, -10 <= k <= 11, -56 <= l <= 56</td>
</tr>
<tr>
<td>Reflections collected / unique</td>
<td>25844 / 6937 [R(int) = 0.0663]</td>
</tr>
<tr>
<td>Completeness to theta = 27.56</td>
<td>95.8 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.6300 and 0.3104</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>6937 / 0 / 429</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.063</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>$R_1 = 0.0437$, $wR_2 = 0.0788$</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>$R_1 = 0.0677$, $wR_2 = 0.0860$</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>0.011(9)</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.554 and -0.567 e.Å⁻³</td>
</tr>
</tbody>
</table>
Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for h10sel3.

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe(1)</td>
<td>10630(1)</td>
<td>3004(1)</td>
<td>1789(1)</td>
<td>29(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>11952(6)</td>
<td>4506(7)</td>
<td>1691(1)</td>
<td>37(1)</td>
</tr>
<tr>
<td>O(10)</td>
<td>12725(4)</td>
<td>5543(5)</td>
<td>1637(1)</td>
<td>55(1)</td>
</tr>
<tr>
<td>C(20)</td>
<td>9414(5)</td>
<td>3129(5)</td>
<td>1460(1)</td>
<td>33(1)</td>
</tr>
<tr>
<td>O(20)</td>
<td>8621(4)</td>
<td>3203(5)</td>
<td>1252(1)</td>
<td>48(1)</td>
</tr>
<tr>
<td>C(30)</td>
<td>11935(7)</td>
<td>1555(7)</td>
<td>1656(1)</td>
<td>49(1)</td>
</tr>
<tr>
<td>O(30)</td>
<td>12798(6)</td>
<td>659(6)</td>
<td>1564(1)</td>
<td>82(2)</td>
</tr>
<tr>
<td>Br(1)</td>
<td>9092(1)</td>
<td>-631(1)</td>
<td>1945(1)</td>
<td>40(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>5849(4)</td>
<td>4037(4)</td>
<td>1661(1)</td>
<td>45(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>7164(4)</td>
<td>6167(4)</td>
<td>1767(1)</td>
<td>34(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>6991(3)</td>
<td>4460(4)</td>
<td>2354(1)</td>
<td>26(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>7042(3)</td>
<td>1862(4)</td>
<td>2372(1)</td>
<td>32(1)</td>
</tr>
<tr>
<td>Fe(2)</td>
<td>10537(1)</td>
<td>8236(1)</td>
<td>709(1)</td>
<td>31(1)</td>
</tr>
<tr>
<td>C(40)</td>
<td>12113(8)</td>
<td>9453(7)</td>
<td>814(1)</td>
<td>49(1)</td>
</tr>
<tr>
<td>C(50)</td>
<td>10325(5)</td>
<td>7159(6)</td>
<td>1058(1)</td>
<td>34(1)</td>
</tr>
<tr>
<td>C(60)</td>
<td>9096(8)</td>
<td>9641(7)</td>
<td>804(1)</td>
<td>52(2)</td>
</tr>
<tr>
<td>O(40)</td>
<td>13210(6)</td>
<td>10130(5)</td>
<td>881(1)</td>
<td>80(2)</td>
</tr>
<tr>
<td>O(50)</td>
<td>10073(5)</td>
<td>6542(4)</td>
<td>1279(1)</td>
<td>54(1)</td>
</tr>
<tr>
<td>Br(2)</td>
<td>6891(1)</td>
<td>6719(1)</td>
<td>544(1)</td>
<td>39(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>11603(4)</td>
<td>3692(5)</td>
<td>904(1)</td>
<td>59(1)</td>
</tr>
<tr>
<td>O(6)</td>
<td>13814(4)</td>
<td>4496(4)</td>
<td>706(1)</td>
<td>36(1)</td>
</tr>
<tr>
<td>O(7)</td>
<td>11983(3)</td>
<td>4543(4)</td>
<td>163(1)</td>
<td>27(1)</td>
</tr>
<tr>
<td>O(8)</td>
<td>9357(4)</td>
<td>4498(4)</td>
<td>165(1)</td>
<td>34(1)</td>
</tr>
<tr>
<td>C(21)</td>
<td>9769(5)</td>
<td>5174(5)</td>
<td>451(1)</td>
<td>27(1)</td>
</tr>
<tr>
<td>C(22)</td>
<td>9099(5)</td>
<td>6770(5)</td>
<td>470(1)</td>
<td>29(1)</td>
</tr>
<tr>
<td>C(23)</td>
<td>9665(5)</td>
<td>7941(5)</td>
<td>278(1)</td>
<td>29(1)</td>
</tr>
<tr>
<td>C(24)</td>
<td>11290(6)</td>
<td>8018(5)</td>
<td>265(1)</td>
<td>32(1)</td>
</tr>
<tr>
<td>C(25)</td>
<td>12078(6)</td>
<td>6912(6)</td>
<td>448(1)</td>
<td>29(1)</td>
</tr>
<tr>
<td>C(26)</td>
<td>11539(5)</td>
<td>5273(5)</td>
<td>446(1)</td>
<td>24(1)</td>
</tr>
<tr>
<td>C(27)</td>
<td>12292(5)</td>
<td>4390(5)</td>
<td>715(1)</td>
<td>25(1)</td>
</tr>
<tr>
<td>C(28)</td>
<td>14656(6)</td>
<td>3757(6)</td>
<td>952(1)</td>
<td>37(1)</td>
</tr>
<tr>
<td>C(29)</td>
<td>10673(5)</td>
<td>3691(5)</td>
<td>53(1)</td>
<td>29(1)</td>
</tr>
<tr>
<td>C(31)</td>
<td>10679(7)</td>
<td>3765(6)</td>
<td>-290(1)</td>
<td>47(1)</td>
</tr>
<tr>
<td>C(32)</td>
<td>10713(6)</td>
<td>2062(5)</td>
<td>174(1)</td>
<td>44(1)</td>
</tr>
<tr>
<td>Bond</td>
<td>Length [Å]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe(1)–C(30)</td>
<td>1.785(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe(1)–C(10)</td>
<td>1.785(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe(1)–C(20)</td>
<td>1.785(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe(1)–C(4)</td>
<td>2.044(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe(1)–C(3)</td>
<td>2.054(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe(1)–C(2)</td>
<td>2.066(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe(1)–C(5)</td>
<td>2.079(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(10)–O(10)</td>
<td>1.143(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(20)–O(20)</td>
<td>1.141(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(30)–O(30)</td>
<td>1.149(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br(1)–C(2)</td>
<td>1.933(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)–C(7)</td>
<td>1.193(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(2)–C(7)</td>
<td>1.326(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(3)–C(6)</td>
<td>1.432(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(4)–C(9)</td>
<td>1.444(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(4)–C(1)</td>
<td>1.422(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1)–C(2)</td>
<td>1.487(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1)–C(6)</td>
<td>1.543(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(2)–C(3)</td>
<td>1.410(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(3)–C(4)</td>
<td>1.399(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(4)–C(5)</td>
<td>1.410(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(5)–C(6)</td>
<td>1.494(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(5)–H(5)</td>
<td>0.85(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(6)–C(7)</td>
<td>1.532(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(9)–C(11)</td>
<td>1.500(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(9)–C(12)</td>
<td>1.509(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe(2)–C(40)</td>
<td>1.782(7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe(2)–C(60)</td>
<td>1.790(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe(2)–C(50)</td>
<td>1.799(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe(2)–C(23)</td>
<td>2.042(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe(2)–C(24)</td>
<td>2.057(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe(2)–C(22)</td>
<td>2.061(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe(2)–C(25)</td>
<td>2.096(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(40)–O(40)</td>
<td>1.151(7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(50)–O(50)</td>
<td>1.125(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(60)–O(60)</td>
<td>1.139(7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br(2)–C(22)</td>
<td>1.933(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(5)–C(27)</td>
<td>1.184(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(6)–C(27)</td>
<td>1.317(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(6)–C(28)</td>
<td>1.447(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(7)–C(29)</td>
<td>1.433(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(7)–C(26)</td>
<td>1.441(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(8)–C(29)</td>
<td>1.421(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(8)–C(21)</td>
<td>1.426(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(21)–C(22)</td>
<td>1.503(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(21)–C(26)</td>
<td>1.528(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(22)–C(23)</td>
<td>1.404(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(23)–C(24)</td>
<td>1.405(7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(24)–C(25)</td>
<td>1.422(7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(25)–C(26)</td>
<td>1.496(7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(25)–H(25)</td>
<td>0.93(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(26)–C(27)</td>
<td>1.547(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(29)–C(31)</td>
<td>1.500(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(29)–C(32)</td>
<td>1.509(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Bond lengths [Å] and angles [deg] for h10sel3.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
<th>Angle (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(30) - Fe(1) - C(10)</td>
<td>91.9 (2)</td>
<td></td>
</tr>
<tr>
<td>C(30) - Fe(1) - C(20)</td>
<td>98.7 (2)</td>
<td></td>
</tr>
<tr>
<td>C(10) - Fe(1) - C(20)</td>
<td>97.8 (2)</td>
<td></td>
</tr>
<tr>
<td>C(30) - Fe(1) - C(4)</td>
<td>122.7 (2)</td>
<td></td>
</tr>
<tr>
<td>C(10) - Fe(1) - C(4)</td>
<td>93.3 (2)</td>
<td></td>
</tr>
<tr>
<td>C(20) - Fe(1) - C(4)</td>
<td>136.7 (2)</td>
<td></td>
</tr>
<tr>
<td>C(30) - Fe(1) - C(3)</td>
<td>94.1 (2)</td>
<td></td>
</tr>
<tr>
<td>C(10) - Fe(1) - C(3)</td>
<td>124.7 (2)</td>
<td></td>
</tr>
<tr>
<td>C(20) - Fe(1) - C(3)</td>
<td>135.03 (19)</td>
<td></td>
</tr>
<tr>
<td>C(4) - Fe(1) - C(3)</td>
<td>39.93 (17)</td>
<td></td>
</tr>
<tr>
<td>C(30) - Fe(1) - C(2)</td>
<td>96.8 (2)</td>
<td></td>
</tr>
<tr>
<td>C(10) - Fe(1) - C(2)</td>
<td>162.8 (2)</td>
<td></td>
</tr>
<tr>
<td>C(20) - Fe(1) - C(2)</td>
<td>95.5 (2)</td>
<td></td>
</tr>
<tr>
<td>C(4) - Fe(1) - C(2)</td>
<td>69.49 (17)</td>
<td></td>
</tr>
<tr>
<td>C(3) - Fe(1) - C(2)</td>
<td>40.01 (17)</td>
<td></td>
</tr>
<tr>
<td>C(30) - Fe(1) - C(5)</td>
<td>162.6 (2)</td>
<td></td>
</tr>
<tr>
<td>C(10) - Fe(1) - C(5)</td>
<td>91.1 (2)</td>
<td></td>
</tr>
<tr>
<td>C(20) - Fe(1) - C(5)</td>
<td>97.92 (19)</td>
<td></td>
</tr>
<tr>
<td>C(4) - Fe(1) - C(5)</td>
<td>39.97 (17)</td>
<td></td>
</tr>
<tr>
<td>C(3) - Fe(1) - C(5)</td>
<td>70.20 (18)</td>
<td></td>
</tr>
<tr>
<td>C(2) - Fe(1) - C(5)</td>
<td>76.24 (18)</td>
<td></td>
</tr>
<tr>
<td>O(10) - C(10) - Fe(1)</td>
<td>175.0 (5)</td>
<td></td>
</tr>
<tr>
<td>O(20) - C(20) - Fe(1)</td>
<td>179.1 (4)</td>
<td></td>
</tr>
<tr>
<td>O(30) - C(30) - Fe(1)</td>
<td>177.6 (5)</td>
<td></td>
</tr>
<tr>
<td>C(7) - O(2) - C(8)</td>
<td>115.8 (4)</td>
<td></td>
</tr>
<tr>
<td>C(6) - O(3) - C(9)</td>
<td>108.9 (3)</td>
<td></td>
</tr>
<tr>
<td>C(9) - O(4) - C(1)</td>
<td>108.1 (3)</td>
<td></td>
</tr>
<tr>
<td>O(4) - C(1) - C(2)</td>
<td>110.1 (3)</td>
<td></td>
</tr>
<tr>
<td>O(4) - C(1) - C(6)</td>
<td>104.3 (4)</td>
<td></td>
</tr>
<tr>
<td>C(2) - C(1) - C(6)</td>
<td>109.7 (4)</td>
<td></td>
</tr>
<tr>
<td>C(3) - C(2) - C(1)</td>
<td>119.4 (4)</td>
<td></td>
</tr>
<tr>
<td>C(3) - C(2) - Br(1)</td>
<td>116.6 (3)</td>
<td></td>
</tr>
<tr>
<td>C(1) - C(2) - Br(1)</td>
<td>112.1 (3)</td>
<td></td>
</tr>
<tr>
<td>C(3) - C(2) - Fe(1)</td>
<td>69.5 (3)</td>
<td></td>
</tr>
<tr>
<td>C(1) - C(2) - Fe(1)</td>
<td>112.0 (3)</td>
<td></td>
</tr>
<tr>
<td>Br(1) - C(2) - Fe(1)</td>
<td>121.4 (2)</td>
<td></td>
</tr>
<tr>
<td>C(4) - C(3) - C(2)</td>
<td>113.0 (4)</td>
<td></td>
</tr>
<tr>
<td>C(4) - C(3) - Fe(1)</td>
<td>69.6 (3)</td>
<td></td>
</tr>
<tr>
<td>C(2) - C(3) - Fe(1)</td>
<td>70.4 (3)</td>
<td></td>
</tr>
<tr>
<td>C(3) - C(4) - C(5)</td>
<td>115.6 (4)</td>
<td></td>
</tr>
<tr>
<td>C(3) - C(4) - Fe(1)</td>
<td>70.4 (3)</td>
<td></td>
</tr>
<tr>
<td>C(5) - C(4) - Fe(1)</td>
<td>71.4 (3)</td>
<td></td>
</tr>
<tr>
<td>C(4) - C(5) - C(6)</td>
<td>120.9 (4)</td>
<td></td>
</tr>
<tr>
<td>C(4) - C(5) - Fe(1)</td>
<td>68.7 (3)</td>
<td></td>
</tr>
<tr>
<td>C(6) - C(5) - Fe(1)</td>
<td>109.1 (3)</td>
<td></td>
</tr>
<tr>
<td>O(3) - C(6) - C(5)</td>
<td>110.9 (3)</td>
<td></td>
</tr>
<tr>
<td>O(3) - C(6) - C(7)</td>
<td>107.9 (3)</td>
<td></td>
</tr>
<tr>
<td>C(5) - C(6) - C(7)</td>
<td>112.4 (4)</td>
<td></td>
</tr>
<tr>
<td>O(3) - C(6) - C(1)</td>
<td>104.3 (4)</td>
<td></td>
</tr>
<tr>
<td>C(5) - C(6) - C(1)</td>
<td>109.9 (4)</td>
<td></td>
</tr>
<tr>
<td>C(7) - C(6) - C(1)</td>
<td>111.1 (4)</td>
<td></td>
</tr>
<tr>
<td>O(1) - C(7) - O(2)</td>
<td>123.3 (4)</td>
<td></td>
</tr>
<tr>
<td>O(1) - C(7) - C(6)</td>
<td>125.6 (4)</td>
<td></td>
</tr>
<tr>
<td>O(2) - C(7) - C(6)</td>
<td>111.1 (4)</td>
<td></td>
</tr>
<tr>
<td>O(4) - C(9) - O(3)</td>
<td>104.0 (3)</td>
<td></td>
</tr>
<tr>
<td>O(4) - C(9) - C(11)</td>
<td>109.0 (4)</td>
<td></td>
</tr>
<tr>
<td>Bond</td>
<td>Angle (°)</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>O(3) - C(9) - C(11)</td>
<td>108.3 (4)</td>
<td></td>
</tr>
<tr>
<td>O(4) - C(9) - C(12)</td>
<td>111.9 (4)</td>
<td></td>
</tr>
<tr>
<td>O(3) - C(9) - C(12)</td>
<td>110.7 (4)</td>
<td></td>
</tr>
<tr>
<td>C(11) - C(9) - C(12)</td>
<td>112.6 (4)</td>
<td></td>
</tr>
<tr>
<td>C(40) - Fe(2) - C(60)</td>
<td>93.8 (3)</td>
<td></td>
</tr>
<tr>
<td>C(40) - Fe(2) - C(50)</td>
<td>99.6 (2)</td>
<td></td>
</tr>
<tr>
<td>C(60) - Fe(2) - C(50)</td>
<td>95.0 (2)</td>
<td></td>
</tr>
<tr>
<td>C(40) - Fe(2) - C(23)</td>
<td>126.4 (2)</td>
<td></td>
</tr>
<tr>
<td>C(60) - Fe(2) - C(23)</td>
<td>92.5 (2)</td>
<td></td>
</tr>
<tr>
<td>C(50) - Fe(2) - C(23)</td>
<td>132.8 (2)</td>
<td></td>
</tr>
<tr>
<td>C(40) - Fe(2) - C(24)</td>
<td>93.3 (2)</td>
<td></td>
</tr>
<tr>
<td>C(60) - Fe(2) - C(24)</td>
<td>120.1 (2)</td>
<td></td>
</tr>
<tr>
<td>C(50) - Fe(2) - C(24)</td>
<td>141.8 (2)</td>
<td></td>
</tr>
<tr>
<td>C(23) - Fe(2) - C(24)</td>
<td>40.08 (18)</td>
<td></td>
</tr>
<tr>
<td>C(40) - Fe(2) - C(22)</td>
<td>96.9 (2)</td>
<td></td>
</tr>
<tr>
<td>C(60) - Fe(2) - C(22)</td>
<td>92.8 (2)</td>
<td></td>
</tr>
<tr>
<td>C(23) - Fe(2) - C(22)</td>
<td>40.00 (18)</td>
<td></td>
</tr>
<tr>
<td>C(24) - Fe(2) - C(22)</td>
<td>69.78 (18)</td>
<td></td>
</tr>
<tr>
<td>C(40) - Fe(2) - C(25)</td>
<td>88.9 (2)</td>
<td></td>
</tr>
<tr>
<td>C(60) - Fe(2) - C(25)</td>
<td>160.1 (2)</td>
<td></td>
</tr>
<tr>
<td>C(50) - Fe(2) - C(25)</td>
<td>104.0 (2)</td>
<td></td>
</tr>
<tr>
<td>C(23) - Fe(2) - C(25)</td>
<td>70.30 (18)</td>
<td></td>
</tr>
<tr>
<td>C(24) - Fe(2) - C(25)</td>
<td>40.04 (18)</td>
<td></td>
</tr>
<tr>
<td>C(22) - Fe(2) - C(25)</td>
<td>76.53 (17)</td>
<td></td>
</tr>
<tr>
<td>O(40) - C(40) - Fe(2)</td>
<td>174.2 (6)</td>
<td></td>
</tr>
<tr>
<td>O(50) - C(50) - Fe(2)</td>
<td>174.2 (4)</td>
<td></td>
</tr>
<tr>
<td>O(60) - C(60) - Fe(2)</td>
<td>178.4 (6)</td>
<td></td>
</tr>
<tr>
<td>C(27) - O(6) - C(28)</td>
<td>116.6 (4)</td>
<td></td>
</tr>
<tr>
<td>C(29) - O(7) - C(26)</td>
<td>107.8 (3)</td>
<td></td>
</tr>
<tr>
<td>C(29) - O(8) - C(21)</td>
<td>107.8 (3)</td>
<td></td>
</tr>
<tr>
<td>O(8) - C(21) - C(22)</td>
<td>109.3 (4)</td>
<td></td>
</tr>
<tr>
<td>O(8) - C(21) - C(26)</td>
<td>105.1 (4)</td>
<td></td>
</tr>
<tr>
<td>C(22) - C(21) - C(26)</td>
<td>109.5 (4)</td>
<td></td>
</tr>
<tr>
<td>C(23) - C(22) - C(21)</td>
<td>120.1 (4)</td>
<td></td>
</tr>
<tr>
<td>C(23) - C(22) - Br(2)</td>
<td>117.4 (3)</td>
<td></td>
</tr>
<tr>
<td>C(21) - C(22) - Br(2)</td>
<td>111.5 (3)</td>
<td></td>
</tr>
<tr>
<td>C(23) - C(22) - Fe(2)</td>
<td>69.3 (3)</td>
<td></td>
</tr>
<tr>
<td>C(21) - C(22) - Fe(2)</td>
<td>111.4 (3)</td>
<td></td>
</tr>
<tr>
<td>Br(2) - C(22) - Fe(2)</td>
<td>121.4 (2)</td>
<td></td>
</tr>
<tr>
<td>C(22) - C(23) - C(24)</td>
<td>114.0 (4)</td>
<td></td>
</tr>
<tr>
<td>C(22) - C(23) - Fe(2)</td>
<td>70.7 (3)</td>
<td></td>
</tr>
<tr>
<td>C(24) - C(23) - Fe(2)</td>
<td>70.5 (3)</td>
<td></td>
</tr>
<tr>
<td>C(23) - C(24) - C(25)</td>
<td>114.9 (4)</td>
<td></td>
</tr>
<tr>
<td>C(23) - C(24) - Fe(2)</td>
<td>69.4 (3)</td>
<td></td>
</tr>
<tr>
<td>C(25) - C(24) - Fe(2)</td>
<td>71.5 (3)</td>
<td></td>
</tr>
<tr>
<td>C(24) - C(25) - C(26)</td>
<td>119.3 (4)</td>
<td></td>
</tr>
<tr>
<td>C(24) - C(25) - Fe(2)</td>
<td>68.5 (3)</td>
<td></td>
</tr>
<tr>
<td>C(26) - C(25) - Fe(2)</td>
<td>109.0 (3)</td>
<td></td>
</tr>
<tr>
<td>O(7) - C(26) - C(25)</td>
<td>109.8 (3)</td>
<td></td>
</tr>
<tr>
<td>O(7) - C(26) - C(21)</td>
<td>104.7 (4)</td>
<td></td>
</tr>
<tr>
<td>C(25) - C(26) - C(21)</td>
<td>111.4 (4)</td>
<td></td>
</tr>
<tr>
<td>O(7) - C(26) - C(27)</td>
<td>108.9 (3)</td>
<td></td>
</tr>
<tr>
<td>C(25) - C(26) - C(27)</td>
<td>109.6 (4)</td>
<td></td>
</tr>
<tr>
<td>C(21) - C(26) - C(27)</td>
<td>112.3 (4)</td>
<td></td>
</tr>
<tr>
<td>O(5) - C(27) - O(6)</td>
<td>123.8 (4)</td>
<td></td>
</tr>
<tr>
<td>O(5) - C(27) - C(26)</td>
<td>125.0 (4)</td>
<td></td>
</tr>
<tr>
<td>O(6) - C(27) - C(26)</td>
<td>111.2 (4)</td>
<td></td>
</tr>
<tr>
<td>O(8) - C(29) - O(7)</td>
<td>105.1 (3)</td>
<td></td>
</tr>
<tr>
<td>O(8) - C(29) - C(31)</td>
<td>109.0 (4)</td>
<td></td>
</tr>
<tr>
<td>O(7) - C(29) - C(31)</td>
<td>108.1 (4)</td>
<td></td>
</tr>
</tbody>
</table>
Table 5. Anisotropic displacement parameters (Å² x 10³) for h10sel3. The anisotropic displacement factor exponent takes the form:
\[-2 \pi^2 \left(h^2 a^*^2 U11 + \ldots + 2 h k a^* b^* U12 \right) \]

<table>
<thead>
<tr>
<th></th>
<th>U11</th>
<th>U22</th>
<th>U33</th>
<th>U23</th>
<th>U13</th>
<th>U12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe(1)</td>
<td>30(1)</td>
<td>36(1)</td>
<td>20(1)</td>
<td>-1(1)</td>
<td>1(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>29(3)</td>
<td>52(3)</td>
<td>32(3)</td>
<td>-6(3)</td>
<td>-4(2)</td>
<td>2(3)</td>
</tr>
<tr>
<td>O(10)</td>
<td>37(2)</td>
<td>68(3)</td>
<td>59(3)</td>
<td>3(2)</td>
<td>3(2)</td>
<td>-20(2)</td>
</tr>
<tr>
<td>C(20)</td>
<td>37(3)</td>
<td>30(3)</td>
<td>32(3)</td>
<td>-5(2)</td>
<td>11(2)</td>
<td>-6(3)</td>
</tr>
<tr>
<td>O(20)</td>
<td>48(2)</td>
<td>76(3)</td>
<td>19(2)</td>
<td>0(2)</td>
<td>-8(2)</td>
<td>-13(2)</td>
</tr>
<tr>
<td>C(30)</td>
<td>58(3)</td>
<td>61(4)</td>
<td>27(3)</td>
<td>6(3)</td>
<td>15(3)</td>
<td>19(3)</td>
</tr>
<tr>
<td>O(30)</td>
<td>109(4)</td>
<td>78(3)</td>
<td>58(3)</td>
<td>13(3)</td>
<td>42(3)</td>
<td>52(3)</td>
</tr>
</tbody>
</table>
Table 6. Hydrogen coordinates ($x \times 10^4$) and isotropic displacement parameters ($A^2 \times 10^3$) for h10se13.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1)</td>
<td>6883</td>
<td>1862</td>
<td>1913</td>
<td>30</td>
</tr>
<tr>
<td>H(3)</td>
<td>11108</td>
<td>1375</td>
<td>2319</td>
<td>33</td>
</tr>
<tr>
<td>H(4)</td>
<td>11291</td>
<td>4164</td>
<td>2355</td>
<td>33</td>
</tr>
<tr>
<td>H(8A)</td>
<td>6639</td>
<td>6388</td>
<td>1323</td>
<td>58</td>
</tr>
<tr>
<td>H(8B)</td>
<td>6753</td>
<td>7998</td>
<td>1500</td>
<td>58</td>
</tr>
<tr>
<td>H(8C)</td>
<td>5271</td>
<td>6914</td>
<td>1547</td>
<td>58</td>
</tr>
<tr>
<td>H(11A)</td>
<td>5835</td>
<td>2313</td>
<td>2913</td>
<td>65</td>
</tr>
<tr>
<td>H(11B)</td>
<td>5829</td>
<td>4155</td>
<td>2899</td>
<td>65</td>
</tr>
<tr>
<td>H(11C)</td>
<td>7433</td>
<td>3234</td>
<td>2880</td>
<td>65</td>
</tr>
<tr>
<td>H(12A)</td>
<td>4493</td>
<td>2989</td>
<td>2153</td>
<td>61</td>
</tr>
<tr>
<td>H(12B)</td>
<td>4012</td>
<td>4078</td>
<td>2433</td>
<td>61</td>
</tr>
<tr>
<td>H(12C)</td>
<td>3988</td>
<td>2244</td>
<td>2473</td>
<td>61</td>
</tr>
<tr>
<td>H(21)</td>
<td>9404</td>
<td>4523</td>
<td>625</td>
<td>33</td>
</tr>
<tr>
<td>H(23)</td>
<td>9008</td>
<td>8622</td>
<td>168</td>
<td>35</td>
</tr>
<tr>
<td>H(24)</td>
<td>11823</td>
<td>8752</td>
<td>142</td>
<td>38</td>
</tr>
<tr>
<td>H(28A)</td>
<td>14395</td>
<td>4257</td>
<td>1147</td>
<td>55</td>
</tr>
<tr>
<td>H(28B)</td>
<td>15772</td>
<td>3849</td>
<td>915</td>
<td>55</td>
</tr>
<tr>
<td>H(28C)</td>
<td>14370</td>
<td>2665</td>
<td>962</td>
<td>55</td>
</tr>
<tr>
<td>H(31A)</td>
<td>9735</td>
<td>3281</td>
<td>-369</td>
<td>71</td>
</tr>
<tr>
<td>H(31B)</td>
<td>11589</td>
<td>3218</td>
<td>-369</td>
<td>71</td>
</tr>
<tr>
<td>H(31C)</td>
<td>10717</td>
<td>4844</td>
<td>-355</td>
<td>71</td>
</tr>
<tr>
<td>H(32A)</td>
<td>10663</td>
<td>2080</td>
<td>397</td>
<td>66</td>
</tr>
<tr>
<td>H(32B)</td>
<td>11676</td>
<td>1561</td>
<td>109</td>
<td>66</td>
</tr>
<tr>
<td>H(32C)</td>
<td>9824</td>
<td>1487</td>
<td>93</td>
<td>66</td>
</tr>
<tr>
<td>H(25)</td>
<td>13140(50)</td>
<td>7050(50)</td>
<td>436(9)</td>
<td>17(10)</td>
</tr>
<tr>
<td>H(5)</td>
<td>9480(40)</td>
<td>5460(50)</td>
<td>2082(9)</td>
<td>13(11)</td>
</tr>
</tbody>
</table>