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Abstract—This paper introduces a new efficient algorithm to
approximate a solution of linear least squares problems subject to
box constraints. Starting from an equivalent reformulation of the
associated KKT conditions as a nonlinear system of equations,
the new approach formulates a fixed-point iteration scheme that
involves the solution of an adaptively preconditioned linear sys-
tem, which is handled by flexible CGLS. The resulting method is
dubbed ‘box-FCGLS’. Box-FCGLS is applied to solve large-scale
linear inverse problems arising in imaging applications, where
box constraints encode prior information about the solution. The
results of extensive numerical testings show the performance of
box-FCGLS that, when compared to accelerated gradient-based
optimization schemes for box-constrained least squares problems,
efficiently delivers results of equal or better quality.

Index Terms—box constraints, flexible Krylov methods, linear
inverse problems

I. INTRODUCTION

This paper is about the solution of

x� = arg min
x2Rn; l�x�u

kAx� bk; (1)

where A 2 Rp�n, b 2 Rp, and where l = [l; : : : ; l]>,
u = [u; : : : ; u]> 2 Rn; the inequalities are intended com-
ponentwise. Here k � k denotes the vectorial 2-norm, i.e.,
k�k = h�; �i1=2, where h�; �i denotes the Euclidean inner product.
If the matrix A has full column rank (an assumption that we
do not necessarily make here), then x� is unique; see, for
instance, [2, Chapter 5].

We are particularly interested in problems (1) arising from
the discretization of linear inverse problems in imaging; see
[6]. In this setting, the matrix A represents an often ill-
conditioned forward acquisition operator, x is an unknown
quantity of interest, and b are some measurements thereof,
which are corrupted by some unknown noise n 2 Rp (i.e.,
b = Ax+n). We assume that x is the column-major vectorial
representation of a 2D image, and that n is Gaussian white
noise. Some applications include image deblurring and/or
inpainting, where one seeks to restore an image corrupted by
blur and/or with missing pixels, and computed tomography,
where one seeks to reconstruct the image of an object given a
set of projections thereof. Since such problems are ill-posed,
x can be meaningfully recovered by employing some regular-
ization: the box-constrained least square problem (1) can be
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considered as a form of regularization, since it incorporates
information about the problem. Indeed, the bounds l and u
may encode a known dynamic range for the pixels of an
image (for instance, for 8-bit images, l = 0 and u = 255) or
physical variables that are only meaningful in a given interval.
Incorporating box constraints is also known to enhance the
performance of popular variational regularization methods,
such as total variation; see [3], [7]. Well-known approaches
for solving (1) include: the projected gradient descent method,
and accelerations thereof [1], whereby a projection onto the
fl � x � ug set is applied at each descent iteration; methods
that reformulate box constraints as quadratic constraints, which
are associated to unconstrained regularized least squares prob-
lems that may be solved directly [8]; active set-type methods,
whereby a sequence of linear systems (outer level) is solved
using CGLS (inner level) [9]; a locally quadratic reduced
Newton method for solving a nonlinear system of equations
linked to an interior-point formulation [10].

The starting point of the new box-FCGLS method is a
reformulation of the necessary and sufficient KKT conditions
associated to (1) as

(X� L)(U�X)A>(Ax� b) = 0;
l � x � u;
(X� L)A>(Ax� b) � 0;
(U�X)A>(Ax� b) � 0;

(2)

where (X� L) = diag(x� l) and (U�X) = diag(u� x).
Analogously to the NN-FCGLS method derived in [5], the
new box-FCGLS method is a computationally convenient
iterative scheme for the solution of the first nonlinear system
of equations in (2), whereby the unknown x appearing in
the diagonal factors (X � L) and (U � X) is replaced by
its approximation obtained at the previous iteration, so that
it acts as an iteration-dependent ‘preconditioner’ that can
be handled within the flexible CGLS Krylov method. The
word preconditioner has been quoted because the iteration-
dependent diagonal matrices considered in this setting are
included to enforce regularization (and to favourably modify
the approximation subspace for x), rather than to accelerate the
CGLS convergence (which is the traditional purpose of pre-
conditioning). The constraints appearing as second condition
in (2) are enforced at each FCGLS iteration. As extensively
explained in [5] for nonnegativity constraints, the third and



fourth conditions in (2) are discarded during the iterations.
More details about the new box-FCGLS method are unfolded
in the next section.

II. THE NEW BOX-FCGLS METHOD
FOR THE SOLUTION OF (1)

As hinted above, given an initial guess l � x0 � u for
a solution of (1), the kth iteration, k � 1, of the new box-
FCGLS scheme takes

Lk�1 := (Xk�1 � L) = diag(xk�1 � l) ;
Uk�1 := (U�Xk�1) = diag(u� xk�1) ;

and applies flexible CGLS [5] (i.e., a version of flexi-
ble CG [11] that efficiently handles the normal equations
A>Ax = A>b) to the iteration-dependent preconditioned
system

Lk�1Uk�1A>(Ax� b) = 0 : (3)

The main steps of FCGLS are summarized in Algorithm 1,
lines 4–13.

Algorithm 1 box-FCGLS method for (1)
1: Input: A, b, l � x0

0 � u
2: for m = 1; : : : ; till a stopping criterion is satisfied do
3: Take

rm�1
0 = b�Axm�1

0 ;
�zm�1

0 = L0U0A>rm�1
0 ;

dm�1
0 =�zm�1

0 ;
wm�1

0 =A�zm�1
0 :

4: for k = 1; : : : till ��k�1 = 0
5: or a stopping criterion is satisfied do
6: Compute ��k�1 as in (4).
7: Update xm�1

k = xm�1
k�1 + ��k�1dm�1

k�1 .
8: Update rm�1

k = rm�1
k�1 � ��k�1wm�1

k�1 .
9: Update

Lk = diag
�
xm�1

k � l
�
;

Uk = diag
�
u� xm�1

k

�
:

10: Compute

zm�1
k = A>rm�1

k ;
�zm�1

k = LkUkzm�1
k :

11: Compute

�
(k�1)
j = �hA�zm�1

k ;wm�1
j i=hwm�1

j ;wm�1
j i;

j = 0; : : : ; k � 1:

12: Update

dm�1
k = �zm�1

k +
Pk�1

j=0 �
(k�1)
j dm�1

j ;

wk = Adm�1
k :

13: end for
14: Take xm

0 = xm�1
k , L0 = Lk, U0 = Uk.

15: end for

A few remarks are in order here. First of all, an admissible
initial guess x0 should be set; typical choices for x0 are the

projections of b or A>b onto the feasible set fl � x � ug.
Secondly, in order to satisfy the second KKT condition in
(2), one should properly bound the FCGLS stepsize along the
search direction dk�1. It is immediate to prove that this is
done by taking

��k�1 = min
i=1;2;3

f�(i)
k�1g ; where (4)

�
(1)
k�1 =

(rk�1;wk�1)

(wk�1;wk�1)
;

�
(2)
k�1 = min

�
(l� xk�1)[dk�1 < 0]

dk�1[dk�1 < 0]

�
;

�
(3)
k�1 = min

�
(u� xk�1)[dk�1 > 0]

dk�1[dk�1 > 0]

�
;

and where the MATLAB-like notations e[f < 0] and
e[f > 0] mean that only the components of the vec-
tors e 2 Rn corresponding to negative and positive val-
ues of f 2 Rn are evaluated, respectively. The scalar
�

(1)
k�1 is the stepsize to be employed within FCGLS to

guarantee the optimality property for the (unconstrained)
residual norm kAxk � bk, so that enforcing the condition
l � x � u may result in a restricted stepsize and slower
decrease of the objective function in (1) with respect to the
unconstrained case. Moreover, enforcing such bounds is likely
to lead to stagnation of FCGLS: indeed, ��k�1 = 0 (i.e., no
update happens) as soon as the ith component [xk�1]i = l
when [dk�1] < 0, or [xk�1]i = u when [dk�1] > 0, for
some i = 1; : : : ; n. In order to overcome stagnation, box-
FCGLS is restarted as soon ��k = 0 or as soon as a maximum
number of inner iterations is performed. Because of restarts,
the majority of the quantities appearing in Algorithm 1 are
denoted by double indices, the lower index k counting the
FCGLS iterations and the upper index m counting the restarts.
The (outer) iterations are stopped as soon as a stopping
criterion (e.g., the discrepancy principle krkk � knk if a
reliable estimate of knk is available) or when a maximum
number of iterations is performed. Finally, we note that the
full recursion for the update of the search direction dk (line
12 of Algorithm 1) is necessary to maintain orthogonality
of vectors Adi, i = 0; : : : ; k: since this requirement comes
with an increasing storage cost as the iterations proceed,
one may apply truncation; see [5], [11] for more details.
The computational cost of each iteration of Algorithm 1 is
dominated by a matrix-vector product with A, and a matrix-
vector product with AT , as the cost of computing Lk and Uk

is negligible. Therefore, the computational cost of one box-
FCGLS iteration is comparable to the cost of one projected
gradient descent or FISTA iteration.

The box-FCGLS method enjoys theoretical properties that
generalize the ones proved in [5] for NN-FCGLS. In particular,
the following holds.

Proposition 1. Assume that the ith entry of xm�1
0 satisfies

[xm�1
0 ]i = l or [xm�1

0 ]i = u for some i = 1; : : : ; n, and that
nm FCGLS iterations are performed at the mth outer cycle of



Algorithm 1. Then [xm�1
k ]i = l or [xm�1

k ]i = u, respectively,
for all k = 1; : : : ; nm.

Proof. Analogous to Proposition 3.3 in [5].

Note that the above result can be easily extended across the
outer iterations, since xm

0 = xm�1
nm

. This property guarantees
that no oscillations occur around the newly recovered entries
of x laying at the boundary of the feasible set.

It should be highlighted that, although box-CGLS has been
introduced for simple box constraints (1), it can be straightfor-
wardly extended to handle constraints of the form l̂ � x � û,
l̂ = [l1; : : : ; ln]>, û = [u1; : : : ; un]>, with li 6= lj , ui 6= uj if
i 6= j.

III. NUMERICAL EXPERIMENTS

We present some numerical examples showing the perfor-
mance of the new box-FCGLS method, including comparisons
with the standard CGLS method for linear least squares prob-
lems, the NN-FCGLS method for nonnegatively constrained
least squares problems [5], and FISTA for box constrained
least squares problems [1]. All the simulations are obtained
running MATLAB R2019b on a single processor 2.4 GHz
Intel Core i5. MATLAB implementations of all the codes are
available on github1: these are compatible with IR Tools [4].

All the test problems considered here are concerned with the
recovery of 256�256 pixel images so that, in (1), x 2 R2562

.
Moreover, we assume that 0 � x � 1. The quality of the
computed solution xk at the kth iteration of each solver is
evaluated using the 2-norm relative reconstruction error

RREk =
kxk � xtruek
kxtruek

; where Axtrue = btrue = b� n :

A. Image deblurring and inpainting

We consider an image deblurring problem involving the
Hubble Space Telescope test image, corrupted by severe
shaking blur. This test problem can be easily gererated within
IR Tools [4] using the commands
optnblur = PRset(’BlurLevel’, ’severe’);

[A, b, x, ProbInfo] = PRblurshake(256, optnblur);

A first instance of this problem (deblurring) only involves the
recovery of the blurry and noisy image. A second instance of
this test problem also involves an inpainting task, i.e., about
40% of the pixels of the blurred image are corrupted (i.e.,
set to zero) at random. In both cases, Gaussian white noise
n of level knk=kbtruek = 10�2 is added to the data. The exact
solution and available data are displayed in Fig. 1.

Fig. 2 compares the behavior of the relative reconstruction
errors at each iteration of the considered methods, for both
test problems. Looking at the graphs in the upper frame
of Fig. 2 (deblurring only) it is clear that all the methods
display some more or less pronounced ‘semi-convergence’,
i.e., the relative reconstruction error keeps increasing after an
initial decrease. This is very evident when adopting CGLS,
as expected: indeed, CGLS does not enforce any physical

1https://github.com/silviagazzola/box-constrained-LS
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Fig. 1. Image deblurring and inpainting test problem. Both data are corrupted
by a severe shaking blur and Gaussian white noise n of level 10�2; when
performing inpainting, about 40% of the pixels of the blurred image dropped
at random.

constraint on the solution and purely regularizes by stopping
the iterations early (i.e., around iteration 20 for this test prob-
lem). Incorporating inequality constraints greatly improves
the quality of the reconstructions and somewhat mitigates
semiconvergence. Looking at the behavior of NN-FCGLS and
box-FCGLS we can conclude that imposing box constraints
allows to compute reconstructions of greater quality than
just imposing nonnegativity constraints. This is something
that can be observed in all the performed tests. FISTA with
box-constraints performs worse that NN-FCGLS for this test
problem. Looking at the graphs in the lower frame of Fig.
2 (joint deblurring and inpainting), FISTA performs sensibly
better (it slightly outperforms box-FCGLS), the difference
between NN-FCGLS and box-FCGLS is more evident, and
semi-convergence is less pronounced. Fig. 3 displays the best
reconstructions computed by each solver.

B. Computed Tomography
We consider two instances of an X-ray tomography test

problem with a true phantom image called “threephasess-
mooth”. The matrix A simulates the ray trace forward oper-
ator, assuming a parallel beam X-ray transmission, with data
collected at angles

angles = 0:2:120 and angles = 0:1:90 :

Both instances model a situation where the acquisition uses a
limited range of angles, with the latter being a more severe
limitation. This test problem can be easily generated within
IR Tools [4] using the commands
optntomo = PRset(’angles’, angles, ’phantomImage’,

’threephasessmooth’);

[A, b, x, ProbInfo] = PRtomo(256, optntomo);



deblurring

50 100 150
iterations k

10-1

100

R
R

E k

CGLS
NN-FCGLS
box-FCGLS
FISTA

inpainting

20 40 60 80 100
iterations k

0.2

0.4

0.6

0.8

1

R
R

E k

CGLS
NN-FCGLS
box-FCGLS
FISTA

Fig. 2. Image deblurring and inpainting test problem. Relative error history
for the considered methods.

Gaussian white noise n of level knk=kbtruek = 10�2 is added to
the data. The exact solution and available data are displayed
in Fig. 4.

Fig. 5 compares the behavior of the relative reconstruction
errors at each iteration of the considered methods, and Fig.
6 displays the best reconstructions computed by each solver.
Comparing the information displayed in both figures, it is
evident that the reconstruction problem is more challenging in
the presence of very limited angles. In both (limited and very
limited angles) instances, box-FCGLS seems to outperform
the other methods in terms of iteration count and quality of
the reconstructions. Indeed, in the limited angles case, both
NN-FCGLS and FISTA take more than double the amount of
box-FCGLS iterations to deliver reconstructions of comparable
quality. The difference in the reconstruction quality among
the different methods is more pronounced in the more limited
angles case. Interestingly enough, for both the tomography
test problems, NN-FCGLS takes about 50 iterations to start
delivering meaningful approximations.

IV. CONCLUSIONS AND OUTLOOK

This paper introduced box-FCGLS, a new efficient algo-
rithm that approximates a solution of box-constrained linear
least squares problems (1). Box-FCGLS solves an adaptively
‘preconditioned’ linear system of equations, which is related
to a nonlinear system of equations appearing within the
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Fig. 3. Image deblurring and inpainting test problems. Best reconstructions
obtained within 150 iterations by the considered methods (# denotes the
iteration delivering the corresponding optimal relative error RRE).

KKT conditions for (1). Box-FCGLS is validated through
an extensive numerical experimentation, some of which is
reported in Section III.

A number of possible research directions related to box-
FCGLS still stand. For instance, a more careful theoretical
analysis of box-FCGLS should be performed to infer conver-
gence properties and to investigate connections with solvers
for (1) other than gradient descent, focussing in particular
on the method presented in [10]. Moreover, similarly to
NN-FCGLS, an extension of box-FCGLS can be devised to
handle problems where the data are affected by both Gaussian
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methods.

limited more limited
# 20, RRE 0.1156 # 19, RRE 0.2641

C
G

L
S

0

0.2

0.4

0.6

0.8

1

-0.2

0

0.2

0.4

0.6

0.8

1

# 76, RRE 0.1772 # 105, RRE 0.3057

N
N

-C
G

L
S

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

# 31, RRE 0.1769 # 36, RRE 0.2763

bo
x-

FC
G

L
S

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

# 65, RRE 0.1818 # 84, RRE 0.2862

FI
ST

A

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

Fig. 6. Tomography test problems. Best reconstructions obtained within 150
iterations by the considered methods (# denotes the iteration delivering the
corresponding optimal relative error RRE).

and Poisson noise. Other potential extensions of box-FCGLS
include incorporating box constraints within a Tikhonov-
regularized least squares problem, where the Tikhonov reg-
ularization paremeter may be set on the fly.
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