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Exponential asymptotics for steady parasitic
capillary ripples on steep gravity waves

Josh Shelton: and Philippe H. Trinh;

Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK

(Received xx; revised xx; accepted xx)

In this paper we develop an asymptotic theory for steadily travelling gravity-capillary
waves under the small-surface tension limit. In an accompanying work [Shelton et al.
2021, J. Fluid Mech., vol. 922] it was demonstrated that solutions associated with
a perturbation about a leading-order gravity wave (a Stokes wave) contain surface-
tension-driven parasitic ripples with an exponentially-small amplitude. Thus a naive
Poincaré expansion is insufficient for their description. Here, we shall develop specialised
methodologies in exponential asymptotics for derivation of the parasitic ripples on periodic
domains. The ripples are shown to arise in conjunction with Stokes lines and the Stokes
phenomenon. The resultant analysis associates the production of parasitic ripples to the
complex-valued singularities associated with the crest of a steep Stokes wave. A solvability
condition is derived, showing that solutions of this type do not exist at certain values of
the Bond number. The asymptotic results are compared to full numerical solutions and
show excellent agreement. The work provides corrections and insight of a seminal theory
on parasitic capillary waves first proposed by Longuet-Higgins [J. Fluid Mech., vol. 16
(1), 1963, pp. 138-159].

1. Introduction

Consider the situation of a steep gravity-driven Stokes wave—a two-dimensional periodic
surface wave of an inviscid and irrotational fluid travelling without change of shape or
form. If a small amount of surface tension is included, it is reasonable to expect that,
under certain conditions, the profile of the Stokes wave is modified or perturbed by a small
amount. Physically, such perturbations may manifest as small-amplitude capillary-driven
ripples concentrated near the crest of the wave. We shall refer to these perturbations as
parasitic ripples, an experimental observation of which appears in figure 1.

The purpose of this work is to develop a precise asymptotic theory for the parasitic
ripples that arise in the permanently progressive framework of a travelling water-wave. In
particular, we shall demonstrate that for small surface tension, the parasitic ripples are
described by an exponentially-small remainder to the base water-wave, which is given by a
typical asymptotic expansion in algebraic powers of the surface tension parameter. Their
description requires the use of exponential asymptotics, and indeed, it is this requirement
that distinguishes this work from the previous analytical treatments.

1.1. Steady parasitic solutions for small surface tension

Here, we shall provide a brief overview of how our treatment differs from previous works.
To begin, the water-wave problem can be formulated in terms of an unknown streamline
speed, q, and streamline angle, θ, considered as functions of the velocity potential, φ,
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2 Shelton and Trinh

Figure 1: Experimental picture showing parasitic ripples located near the crests of a
steep gravity-dominated wave. Note that the ripples appear in an asymmetric manner;
mechanisms that produce asymmetry are discussed in §10.2. Image used with permission
from Professor N. Ebuchi (Hokkaido University)

over the periodic domain ´ 1
2 ă φ ď 1

2 . The free-surface is then governed by Bernoulli’s
equation,

F 2q2 dq

dφ
` sin pθq ´Bq

d

dφ

ˆ

q
dθ

dφ

˙

“ 0, (1.1)

where F is the Froude number, and B is the (inverse)-Bond number. These non-dimensional
constants are given by

F “
c
?
gλ

and B “
σ

ρgλ2
, (1.2)

where c is the wave speed, g is the constant acceleration due to gravity, λ is the wavelength,
ρ is the fluid density, and σ is the coefficient of surface tension. The limit of small-surface
tension is given by B Ñ 0.

As it turns out, the structure of the solution space for the free-surface gravity-capillary
wave problem is remarkably sophisticated. Recently, a portion of this solution space
was investigated numerically by Shelton et al. (2021) for fixed energy, with a focus on
determining the small-surface tension limit of B Ñ 0. Multiple branches of solutions were
found, each of which can be indexed by the number of capillary-driven ripples that appear
in the periodic domain. This solution space is shown in figure 2 and the structure of
‘fingers’ (as introduced in the previous work) can be observed.

Two different asymptotic limits are visible in these solutions. The first limit is observed
from solutions pdq, peq, and pfq at the lower parts of each of the fingers, which are highly
oscillatory with some modulation across the domain. In this region, the solution can be
approximated by a multiple-scales framework, with

qpφq “
8
ÿ

n“0

Bnqnpφ, φ̂q, (1.3)

where φ̂ “ φ
B is the fast scale. Substitution of this ansatz into Bernoulli’s equation (1.1)

yields, at order 1{B, the pure-capillary equation of Crapper (1957) for the small-scale
ripples

F 2
0 q

2
0

Bq0

Bφ̂
´ q0

B

Bφ̂

ˆ

q0
Bθ0

Bφ̂

˙

“ 0. (1.4)

Thus for these multiple-scale solutions the highly oscillatory parasitic ripples appear in
the leading order term, q0pφ, φ̂q, of the expansion. We will focus upon this asymptotic
regime in future work.

The second asymptotic limit can be observed in subfigures paq, pbq, and pcq of figure 2.
As these solutions approach the pure-gravity (Stokes) solution with the same fixed value
of the energy as B Ñ 0, the leading order solution q0 contains no ripples. Moreover, a
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Symbol Notes

Dimensional c Wave speed
quantities g Constant acceleration due to gravity

ρ Fluid density
λ Wavelength
σ Constant coefficient of surface tension

Parameters q Streamline speed
θ Streamline angle

φ` iψ Complex potential comprised of velocity potential φ and streamfunction ψ
f Complex valued domain, relabeled from the analytically continued velocity

potential φc
a Direction of analytic continuation, where a “ ˘1
E Energy
B Bond number
F Froude number

Subscript xφ Partial derivative of x with respect to φ
notation qn nth order of the asymptotic series

ř8
n“0 B

nqn
Ehw Text, used for hw (highest wave), homog. (homogeneous), and phys. (physical)
Qa Direction of analytic continuation of the free-surface solution, Qpfq

Further xH Complex-valued Hilbert transform
notation f˚ Location of the principal singularity of the analytically continued Stokes wave.

q̄ Overbar, denoting the remainder to a truncated asymptotic series
q Frankerscript, denoting the combined solution q|a“´1 ` q|a“1

ξ Forcing terms which appear in the equation for the remainder, q̄
q̂ Hats denote an inner asymptotic solution within a boundary layer associated

with the singularity at f “ af˚

Table 1: List of variables, parameters, and notation used in the main text.

standard perturbative series of the form

qpφq “
8
ÿ

n“0

Bnqnpφq (1.5)

will also not contain the parasitic-ripples observed in the numerical solutions. This is
due to the exponential-smallness of the amplitude of these ripples, which was confirmed
numerically by Shelton et al. (2021) and is shown to form a straight line in the semi-log
plot in figure 3.

Thus, in the B Ñ 0 limit, the capillary-driven ripples exhibit different behaviours
according to two distinct asymptotic limits of:

(i) a multiple-scales solution, for which the ripples appear in the leading-order
approximation of the solution; and

(ii) a standard perturbative series about a Stokes wave, for which the parasitic ripples
appear beyond-all-orders.

It is this latter asymptotic regime that we will focus upon in this work.
In the context of the above second scenario, an early analytical theory for the generation

of these parasitic ripples was proposed by Longuet-Higgins (1963), who considered a small
surface-tension perturbation about a base Stokes wave. Although Longuet-Higgins’ seminal
work provides a crucial basis for our analysis in this paper, we shall also demonstrate
that there are a number of key asymptotic inconsistencies that appear in the historical
1963 work. These inconsistencies turn out to be connected with modern understanding of
exponential asymptotics (Berry 1989; Olde Daalhuis et al. 1995; Chapman et al. 1998),
and may have led to the poor agreement noted by Perlin et al. (1993) in comparison with
numerical solutions of the full nonlinear problem. One of the primary objectives of our
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Figure 2: The numerical (B,F ) solution space calculated by Shelton et al. (2021) is
shown for a fixed energy of E “ 0.3804. The insets (a, b, c) show the physical free-surface
for those cases corresponding to exponentially-small parasitic ripples on Stokes waves;
the insets (d, e, f) show a different multiple-scales regime.
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Figure 3: Our analytical prediction of the exponential-scaling of the parasitic ripple
magnitude, q̄, (line) is compared with numerical results of the full nonlinear equations
(circles). These results have both been calculated with an energy of E “ 0.3804, and the
gradient of the analytical result is ´0.0082.

work is to provide a critical re-examination of the seminal Longuet-Higgins (1963) paper,
which we perform in §3. Note that we shall provide a more complete literature review of
theories and research on the parasitic capillary problem in our discussion of §10.

As we shall demonstrate, the intricate difficulties involved in formulating a corrected
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theory for the B Ñ 0 limit are linked to the presence of singularities in the analytical
continuation of the leading-order gravity-wave solution. Due to the singularly-perturbed
nature of Bernoulli’s equation (1.1), successive terms in the asymptotic expansion of the
solution require repeated differentiation of the singularity in the leading-order solution.
This causes the expansion to diverge. In studying this divergence, a form for the
exponentially small correction terms to the asymptotic series is found by truncating
the series optimally and these corrections correspond to the anticipated parasitic ripples.

1.2. Outline of the paper

We begin in §2 with the mathematical formulation of the non-dimensional gravity-capillary
wave system, which is analytically continued into the complex potential plane. In §3 we
provide a detailed overview of the Longuet-Higgins (1963) analytical methodology. In §4,
we consider a perturbation expansion for small values of the surface tension, B. Subsequent
terms in this expansion rely on differentiation of the leading order gravity-wave solution.
Thus, singularities in the analytic continuation of the free-surface gravity-wave produce
a divergence in the asymptotic series as further terms are considered. The scaling of
the principal upper-half and lower-half singularities are derived in §5. The divergence of
the late-terms of the asymptotic expansion is then considered in §6. This allows us to
find the Stokes lines for our problem, which are shown in §7 to produce the switching
of exponentially-small terms of the solution via Stokes phenomenon. Application of the
periodicity conditions then yields an analytical solution for these parasitic ripples and
an accompanying solvability condition. These solutions and the solvability condition are
then compared to numerical solutions of the full nonlinear equations in §8. Our findings
are summarised in §9, and discussion of further work occurs in §10.

2. Mathematical formulation

We begin by considering the two-dimensional free-surface flow of an inviscid, irrotational,
and incompressible fluid of infinite depth. The effects of gravity and surface tension are
included. We assume the free-surface to be periodic with wavelength λ, and it is chosen
to move to the right with wave speed c. Imposing a sub-flow within the fluid in the
opposite direction cancels out the lateral movement; this results in a steady free-surface
when Bt “ 0, now assumed to be located at y “ ηpxq. A typical configuration is shown
in figure 4. The system is non-dimensionalised using λ and c for the units of length and

x φ

y ψ

f = φ+ iψ

z = x+ iy

(a) (b)

Figure 4: The conformal map from paq, the physical z “ x` iy-plane, to pbq, the complex
f “ φ` iψ-plane, is shown. The boundary, y “ ηpxq, is mapped to the line ψ “ 0.

velocity, respectively, and the set of governing equations is taken to be the same as those
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considered by Shelton et al. (2021):

φxx ` φyy “ 0 for y ď η, (2.1a)

φy “ ηxφx at y “ η, (2.1b)

F 2

2
pφ2
x ` φ

2
yq ` y ´B

ηxx

p1` η2
xq

3
2

“
F 2

2
at y “ η, (2.1c)

φy Ñ 0 and φx Ñ ´1 as y Ñ ´8. (2.1d)

Thus the flow is governed by Laplace’s equation (2.1a), kinematic and dynamic boundary
conditions in (2.1b) and (2.1c) respectively at the free-surface, and the deep-water
condition (2.1d). The constants F and B are the Froude and Bond numbers, introduced
earlier in equation (1.2). Periodicity of the flow and wave profile is specified by enforcing

∇φ
`

x´ 1
2 , y

˘

“ ∇φ
`

x` 1
2 , y

˘

and η
`

x´ 1
2

˘

“ η
`

x` 1
2

˘

. (2.1e)

In addition to the governing equations in (2.1), we also enforce an amplitude parameter
as a measure of nonlinearity of the solution. This is derived from the physical bulk energy
of the wave via Appendix A of Shelton et al. (2021). This yields

E “
1

Ehw

ˆ 1
2

´ 1
2

„

F 2

2
ypxφ ´ 1q `B

´b

px2
φ ` y

2
φq ´ xφ

¯

`
1

2
y2xφ



dφ, (2.2)

where the three groupings of terms correspond to the kinetic, capillary, and gravitational
potential energies. In (2.2) we have rescaled with the energy of the limiting classical Stokes
wave, Ehw « 0.00184. A central idea in Shelton et al. (2021) concerned the importance of
choosing an amplitude condition on the water waves, and we refer readers to §2.2 of that
work for further discussion.

Finally, based on the previous study in Shelton et al. (2021), we note that once the
energy condition (2.2) is imposed, there is only a single degree of freedom in specifying
either F or B. We typically consider the Bond number as a free parameter, which results
in the Froude number as an eigenvalue that must be determined via the system (2.1).

2.1. The pq, θq formulation

In this section, we repose the two-dimensional governing system (2.1) as a one-dimensional
boundary-integral formulation in terms of the free-surface speed and angle. Following the
traditional treatment of potential free-surface flows, we introduce the complex potential
f “ φ` iψ. Rather than consider f “ fpzq, we instead consider z “ zpfq, and hence the
flow region is known in the potential plane. The complex potential plane is shown in
figure 4. From this definition, the complex velocity can be found to be df{dz “ u´ iv,
where pu, vq are the horizontal and vertical velocities.

Introducing q as the streamline speed and θ as the streamline angle by the relationship
qe´iθ “ u´ iv then yields

df

dz
“ qe´iθ. (2.3)

In this form, Bernoulli’s equation (2.1c) is written as

F 2q2 dq

dφ
` sin pθq ´Bq

d

dφ

ˆ

q
dθ

dφ

˙

“ 0. (2.4a)

By the analyticity of log q´ iθ, we introduce the boundary-integral equation which relates
q to the Hilbert transform of θ operating over the free-surface. For our periodic domain
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from ´1{2 to 1{2, we integrate log q ´ iθ using Cauchy’s theorem and use the periodicity
conditions

q
`

φ´ 1
2

˘

“ q
`

φ` 1
2

˘

and θ
`

φ´ 1
2

˘

“ θ
`

φ` 1
2

˘

, (2.4b)

which follow from (2.1e), and the deep water conditions (2.1d) to derive the periodic
Hilbert transform given by

log pqq “Hrθspφq “ ´

ˆ 1
2

´ 1
2

θpφ1q cot rπpφ1 ´ φqsdφ1. (2.4c)

In the above, ´́ is the Cauchy principal-value integral. The above provides the crucial
relationship between the components q and θ, and further details on the derivation of the
boundary-integral relations can be found in chapter 6 of Vanden-Broeck (2010).

Finally, the energy expression (2.2) is also considered in terms of pq, θq. Noting that
xφ “ q´1 cospθq and yφ “ q´1 sin θ, we substitute y “ pF 2{2qp1 ´ q2q ` Bqθφ from
Bernoulli’s equation to find

E “
1

Ehw

ˆ 1
2

´ 1
2

”

G0pφq `BG1pφq `B
2G2pφq

ı

dφ, (2.4d)

where we have defined components

G0pφq “
F 4

8q
p1´ q2qp3 cos θ ´ 2q ´ q2 cos θq,

G1pφq “
p1´ cos θq

q
`
F 2θφ

2
p2 cos θ ´ q ´ q2 cos θq,

G2pφq “
qθ2
φ cos θ

2
.

(2.5)

In summary, the water-wave problem, as formulated for q and θ, involves the solution
of equations (2.4a)–(2.4d). Note that the above sets of equations all involve the evaluation
of q and θ on the streamline ψ “ 0.

2.2. Analytic continuation

As we shall see, the exponential asymptotics procedure of §7 will require the continuation
of the free-surface solutions, qpφ` 0iq and θpφ` 0iq, into the complex plane, where φ P C.
This free-surface continuation procedure is depicted in figure 6. Hence we shall analytically
continue Bernoulli’s equation (2.4a) and the boundary-integral equation (2.4c) into the
complex φ-plane. The independent variable φ is complexified by considering φ ÞÑ φc P C
and hence q and θ are analytically continued. For convenience, we re-label φc as f . Thus
Bernoulli’s equation remains in an identical form to (2.4a), but with the variable φ
replaced by f .

For the boundary-integral equation (2.4c), we must consider the complexification of
the Hilbert transform. Let us write

Hrθs “ xHrθs ´ aiθ, (2.6)

where xHrθs is the complex-valued Hilbert transform,

xHrθspfq “

ˆ 1
2

´ 1
2

θpφ1q cot rπpφ1 ´ fqs dφ1.

Note that the integral above is only evaluated along the physical free-surface, parameterised
in terms of φ1, where θ takes real-values.
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-0.5 0 0.5
x

y

ψ = 0

ψ = 0.01

ψ = 0.02

ψ = 0.03

ψ = 0.04

ψ = 0.05

ψ = 0.06

ψ = 0.07

Figure 5: The analytic continuation into the upper-half plane is calculated numerically
for two solutions of equations (2.1) with ψ “ 0. The first is a gravity-wave with B “ 0,
F “ 0.4104, and E “ 0.3804 (thin gray lines) and the second a gravity-capillary wave with
B “ 0.001, F “ 0.4188, and E “ 0.3804 (bold lines). The solutions with ψ ą 0 satisfy the
analytically continued equations (2.8) and Rerxs vs Rerys is shown. This image can be
compared with figure 11 of Longuet-Higgins & Fox (1978), which provides a streamline
plot of the pure-gravity solution in the analytically continued plane.

In (2.6), we have also introduced the parameter, a, which is defined by

a “

$

&

%

`1 for Impfq ą 0,

´1 for Impfq ă 0.
(2.7)

When the Hilbert transform relationship is extended into the upper half-f -plane, a “ 1,
whereas a “ ´1 for continuation into the lower half-f -plane. The validity of (2.6) as a
legitimate complexification of the Hilbert transform is verified by taking Impfq Ñ 0 on

the right hand-side. Then xHrθs yields a principal value integral and residue. The residue
contribution changes sign between Impfq Ñ 0` and Impfq Ñ 0´, yielding the constant a.

In summary, the governing equations for the analytically continued q and θ values are
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Figure 6: A schematic of our analytic continuation procedure demonstrates the difference
between the physical φ ` iψ plane and our complexified φc space. The location of the
principle upper- and lower-half singularities at f˚ and ´f˚ of the leading order flow field
are shown by circles, and the main Stokes line from §7 is shown dashed.

given by

F 2q2q1 ` sin pθq ´Bq
`

qθ1
˘1
“ 0, (2.8a)

log pqq ` aiθ “ xHrθs, (2.8b)

E “
1

Ehw

ˆ 1
2

´ 1
2

”

G0pφq `BG1pφq `B
2G2pφq

ı

dφ, (2.8c)

qp´ 1
2 q “ qp 1

2 q and q1p´ 1
2 q “ q1p 1

2 q. (2.8d)

Note that while (2.8a) and (2.8b) are evaluated through complex f -space, the energy
condition is most easily evaluated on the physical free-surface. Here and henceforth, we
use primes (1) to denote differentiation in f . This system will be solved in §4 with an
expansion holding under the limit of B Ñ 0.

3. A critical examination of the Longuet-Higgins (1963) theory

In his 1963 work, Longuet-Higgins (1963) proposed a theory for the generation of steady
parasitic ripples by considering an asymptotic expansion for small surface tension such that
a gravity wave was obtained at leading order. In §3 he wrote the following perturbative
form for the solutions,

qpφ, ψq “ q0 ` q̄, θpφ, ψq “ θ0 ` θ̄, ypφ, ψq “ y0 ` ȳ, (3.1)

with y denoting the wave-height. All quantities are dimensional and functions of the
potential, φ, and stream function, ψ. Let us introduce the logarithm of the speed by
τ “ log pq{cq, where c is the wave speed. In writing τ “ τ0 ` τ̄ , this yields q0 “ ceτ0 and
q̄ “ q0τ̄ for τ̄ assumed small.

The expression that Longuet-Higgins produced for the capillary ripples was [cf. equation
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(5.18) in Longuet-Higgins (1963)]

τ̄ ´ iθ̄ „ F pφqe´icαpφq{T 1 for φ ą 0, (3.2a)

where the functional prefactor, F pφq, and exponent, αpφq, are given by

F pφq “ 4i exp

ˆ

i

ˆ φ

0

Bτ0
Bψ

dφ

˙ˆ 8
0

ˆ

Bτ0
Bψ

cos pαc{T 1q

˙

dφ, (3.2b)

αpφq “

ˆ φ

0

eτ0 dφ. (3.2c)

Here, T 1 is the dimensional surface tension coefficient, assumed to be small. Note that
αpφq involves integration of a real-valued eτ0 over real-valued φ and hence α is also real.

One of the main contributions of our work is to provide an improvement on the above
formulae, which contains a number of problems related to the capture of small ripples.
The three most important issues are:

(i) The functional form of the prefactor, F pφq, in (3.2c) is incorrect; the form written
above emerges as a consequence of certain asymptotic inconsistencies in the
derivation.

(ii) Longuet-Higgins correctly predicted that the capillary ripples would exhibit
wavelengths scaling with T 1, but in closer examination of (3.2a), the expression
predicts a wave-amplitude that is of Op1q and independent of T 1. We shall find
that for small values of the surface tension, the wave-amplitude is exponentially
small in T 1 (indeed this should be clear from figure 3).

(iii) The above formulation does not provide any restriction on the solution space (i.e.
the existence of a solvability condition observed in the full numerical simulations).
It particular, it does not capture any of the observed bifurcation structure seen in
figure 2.

Note that a portion of the Longuet-Higgins (1963) work is devoted to studying the addition
of viscosity and also incorporating the almost-highest wave theory of Longuet-Higgins
& Fox (1977) into (3.2). However, in the present authors’ view, the treatment following
§6 of the 1963 work becomes increasingly ad-hoc and difficult to analyse in view of the
fundamental issues with (3.2).

We will now discuss the key issues (i) to (iii) above in detail.

3.1. Asymptotic inconsistencies in Longuet-Higgins (1963)

Numerical evidence was provided by Shelton et al. (2021) (see figure 3) to demonstrate
that, for those solutions exhibiting small-scale ripples on an underlying gravity wave, the
amplitude of these parasitic ripples is exponentially-small as T 1 Ñ 0. Solutions that display
such exponentially-small behaviour cannot be described purely by a typical Poincaré
expansion which contains only algebraic powers of the small parameter; their description
will instead appear beyond-all-orders of the standard Poincaré expansion.

We now review Longuet-Higgins’ approach in our non-dimensional formulation (using
the Bond number, B, and Froude number, F , in (1.2) instead of T 1 and c). We start
with the integrated form of Bernoulli’s equation from (1.1) given in terms of y and the
streamline-speed, q, as

F 2

2
q2 ` y ´B

Bq

Bψ
“ constant, (3.3)

where the derivative in the ψ direction can be converted to a derivative the φ direction
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via the Cauchy-Riemann equations. In his §3 Longuet-Higgins considered a perturbation
pȳ, q̄q about the gravity-wave py0, q0q with the truncations from (3.1) to find

F 2

2
pq2

0 ` 2q0q̄ ` q̄
2q ` py0 ` ȳq ´B

ˆ

Bq0

Bψ
`
Bq̄

Bψ

˙

“ constant. (3.4)

Here, the Op1q terms, F
2

2 q
2
0 ` y0 “ const., are satisfied exactly as this is the gravity-wave

equation with solutions py0, q0q. Thus we obtain

F 2q0q̄ ` ȳ ´B
Bq0

Bψ
loooooooooomoooooooooon

OpBq

´ B
Bq̄

Bψ
loomoon

OpB2q

“ ´
F 2q̄2

2
loomoon

OpB2q

. (3.5)

The asymptotic behaviour indicated by the under-braced quantities follows by making the
standard assumption that the leading corrections, ȳ and q̄, are both of OpBq. Consequently,
q̄ ! q0, and so Longuet-Higgins neglected the nonlinear term q̄2 on the right-hand side of
this equation. However, the OpB2q term on the left-hand side was not neglected. This
assumption, which appears in his equation (5.1), is asymptotically inconsistent. In fact,
this inconsistency is how Longuet-Higgins was able to produce approximations to an a
priori exponentially-small capillary ripple, since otherwise, all corrections are ripple-free
and algebraic in B.

The above asymptotic inconsistency is somewhat typical in early models of many
exponential asymptotic problems. There are two (formally correct) methods to proceed
with (3.5):

(i) We may correctly treat ȳ and q̄ to both be of OpBq. The leading-order terms in
equation (3.5) are thus

F 2q0q̄ ` ȳ ´B
Bq0

Bψ
“ 0,

and would yield the OpBq capillary correction term. The procedure could be
continued to quadratic orders of B and higher, but the resultant perturbative
solution would never yield an exponentially-small ripple. In essence, this is a
derivation of the regular perturbative expansion and leads to the analysis of §4.

(ii) Alternatively, we may consider ȳ and q̄ to both scale as „ e´α{B , i.e. for solutions
to be of WKB type. Since differentiation of this ansatz yields a factor of 1{B, the
dominant terms in equation (3.5) change to

F 2q0q̄ ´B
Bq̄

Bψ
looooooomooooooon

Ope´α{Bq

“ Bq10
loomoon

OpBq

.

The form of the above equation would allow for the correct prediction of the WKB
phase, α, but not the correct prefactor (amplitude); this is on account of the fact
the right-hand side is the result of a one-term truncation of the Poincaré expansion
(3.1). Instead, the correct procedure must involve additional terms of the regular
expansion. In general, the right hand-side is of OpBN q with N Ñ8 as B Ñ 0. In
order to derive the exponentially-small ripples we must optimally truncate with
N chosen carefully (Chapman et al. 1998).

Longuet-Higgins had worked with the asymptotically inconsistent (3.5), with the right-
hand side set to zero, and this was used to derive the solution (3.2).
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It will be shown in §7.3 that the ripples have the analytical behaviour

qexppφq “ ΛFpφq exp
´

´
χpφq

B

¯

, (3.6)

where Λ is a constant coefficient, Fpφq is a functional prefactor, and χpφq is the
exponentially-small dependence of the solution, which is related to the quantity αpφq. These
components will be significantly different than those derived by Longuet-Higgins in (3.2).
In order to be correct, the above expression must be derived through optimal truncation
of the standard asymptotic expansion, rather than using the one-term truncation in (3.1).

We note that it is still nevertheless possible to capture exponentially-small behaviour
with the truncation (3.1) used by Longuet-Higgins. A comprehensive review of truncations
of this type, for the case of free-surface flows, is given by Trinh (2017) who, aided by the
use of exponential asymptotics, discusses how the functional form of the exponentially-
small waves changes when different truncations are made. The type utilised here by
Longuet-Higgins in (3.1) is an N “ 1 truncation as only one term of the asymptotic series
is included. While this truncation (if dealt with in an asymptotically consistent manner)
can predict the correct exponentially-small scaling of the solution, the functional form of
the prefactor and its magnitude [cf. (3.2b)] will be incorrect.

3.2. The choice of integration in the exponential argument

We now discuss the second issue with Longuet-Higgins’ analytical solution, which is that
(3.2) predicts an Op1q solution magnitude. For real values of φ, α takes purely real values.
Thus, as his solution contains e´icα{T 1 , only a rapidly-oscillating waveform of wavelength
Opεq is predicted. The issue is not precisely one related to the functional form of the
exponential argument, since modulo the scalings, it can be confirmed via our work that

´
1

B

dχ

dφ
9 ´

ic

T 1
dα

dφ
.

However, Longuet-Higgins restricts φ to take real values and forces the starting point
of integration in αpφq to be at φ “ 0. This is later matched to an ad-hoc simplification
near the crest of the wave. This misses a fundamental step in the determination of the
parasitic ripples since, as we shall see, their existence is intimately connected with the
singularities of χ1pφq in the analytic continuation of the free-surface. In order to correctly
resolve the Stokes phenomenon in §7, integration in our expression for χ must begin
from such singularities, and results in a path of integration through the complex-valued
domain. The final result produces a complex-valued qexp, which is paired with a conjugate
contribution to in order to produce a real-valued solution with both exponentially-small
phase and amplitude.

4. The expansion for small surface tension, B

In the limit of B Ñ 0, we consider the traditional series expansions for q and θ, given by

q “
8
ÿ

n“0

Bnqn and θ “
8
ÿ

n“0

Bnθn. (4.1)

These expansions will satisfy both Bernoulli’s equation (2.8a) and the boundary-integral
equation (2.8b) to each order in B. As noted in the discussion following (2.4d), specifying
B and enforcing the energy constraint requires that F be treated as an eigenvalue. Hence
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we also consider an expansion of the Froude number by

F “
8
ÿ

n“0

BnFn. (4.2)

At leading order in (2.8a), (2.8b), and (2.4d) this results in the gravity-wave equations

F 2
0 q

2
0

dq0

df
` sin pθ0q “ 0, (4.3a)

log pq0q ` aiθ0 “
xHrθ0s, (4.3b)

E “
1

Ehw

ˆ 1
2

´ 1
2

F 4
0

8q0
p1´ q2

0qp3 cos θ0 ´ 2q0 ´ q
2
0 cos θ0qdφ, (4.3c)

where we remind the reader that a “ ˘1 via the choice of analytic continuation into the
upper or lower half-planes, respectively [cf. (2.7)]. Here, the Hilbert transform in (4.3b)
acts on the free-surface for which f is real. The energy, E, is a specified Op1q constant,
which we take to be less than unity.

At OpBq, we have for Bernoulli’s equation,

F 2
0 q

2
0

dq1

df
` 2F 2

0 q0q
1
0q1 ` 2F0F1q

2
0q
1
0 ` θ1 cos θ0 ´ q0

`

q0θ
1
0

˘1
“ 0, (4.4a)

for the boundary-integral equation,

q1

q0
` aiθ1 “

xHrθ1s, (4.4b)

and finally for the energy constraint,

0 “

ˆ 1
2

´ 1
2

„

p1´ cos θ0q

q0
`
F 2

0 θ
1
0

2
p2 cos θ0 ´ q0 ´ q

2
0 cos θ0q ` . . .

p3 cos θ0 ´ 2q0 ´ q
2
0 cos θ0q

ˆ

F 3
0F1p1´ q

2
0q

2q0
´
F 4

0 q1

8q0
p1` q2

0q

˙

` . . .

F 4
0 p1´ q

2
0q

8q0
p´3θ1 sin θ0 ´ 2q1 ` q

2
0θ1 sin θ0 ´ 2q0q1 cos θ0q



dφ. (4.4c)

We now consider the OpBnq components of equations (2.8a) and (2.8b). The solutions
of these, qn, θn, and Fn, are denoted the late terms of the asymptotic expansions (4.1)
and (4.2). An important feature of these solutions is that they diverge as nÑ8. This is
a consequence of the singularities in the leading order solutions, q0 and θ0, which will
be derived in §5. Evidently, the OpBnq equations will contain an unbounded number of
terms as nÑ8. However, due the the divergent nature of the late-terms, only a few of
these terms will influence the leading order solution as nÑ8.

Starting with Bernoulli’s equation (2.8a), we retain the two leading orders in n, yielding

„

F 2
0

´

q2
0q
1
n ` 2q0q1q

1
n´1 ` 2q0q

1
0qn ` . . .

¯

` 2F0F1q
2
0q
1
n´1 ` 2F0Fnq

2
0q
1
0 ` . . .



`

„

θn cos θ0 ` . . .



´

„

q2
0θ
2
n´1 ` 2q0q1θ

2
n´2 ` q0θ

1
0q
1
n´1 ` q0q

1
0θ
1
n´1 ` . . .



“ 0. (4.5a)

At OpBnq, we expand the logarithm in the boundary-integral equation (2.8b) in order to
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obtain
qn
q0
´
q1qn´1

q2
0

` . . .` aiθn “ xHrθns. (4.5b)

5. On the singularities of the leading-order flow

A crucial element of the exponential asymptotics analysis relies upon the understanding
that the series (4.1) will diverge on account of singularities (such as poles or branch
points) in the analytic continuation of q and θ. More specifically, we shall find that the
leading-order solution, q0, which corresponds to the pure Stokes gravity wave via (4.3),
contains branch points in the complex plane. Since the determination of each subsequent
order generally relies upon differentiating the previous, the result is that the order of the
singularity increases as nÑ8. This will be shown in §6.

On the assumption that the leading-order Stokes wave possesses a singularity in the
complex plane, previously Grant (1973) derived the local asymptotic behaviour using a
dominant balance. That is, by considering the complex-velocity df

dz from equation (2.3),
he showed that near to a point f˚ P C directly ‘above’ the wave-crest

df

dz
„ pf ´ f˚q

1
2 . (5.1)

In the exponential asymptotics to follow, we require the singular behaviour of the
individual components of q0 and θ0. This is derived below, along with a discussion of the
difference between Grant’s singularity in df{dz and those of pq0, θ0q.

5.1. Singularities in the analytic continuation of q0 and θ0

The singular scaling of q0 and θ0 is now considered. We let f˚ denote the ‘crest’ singularity
in the upper half-f -plane. We leave the constant, a, unspecified and take the limit of
f Ñ af˚. First, it can be verified a posteriori that as f Ñ af˚, | Im θ0| Ñ 8 and

sin θ0 “
1

2i

”

eiθ0 ´ e´iθ0
ı

„
a

2i
eaiθ0 .

We multiply Bernoulli’s equation (4.3a) by q0, and use the above scaling for sin θ0 to find

F 2
0 q

3
0

dq0

df
“ ´q0 sin θ0 „ ´

a

2i
q0eaiθ0 . (5.2)

However, in taking the exponential of the boundary-integral equation (4.3b), we have

q0eaiθ0 “ e
xHrθ0s. (5.3)

Note that the complex Hilbert transform is applied to θ0 and integrated over the free-
surface, where θ0 “ Op1q. Thus q0eaiθ0 is also of order unity and we conclude from (5.2)
that q3

0q
1
0 tends to a constant as f Ñ af˚. Integration then yields the following singular

behaviour for q0,

q0 „ capf ´ af
˚q

1
4 . (5.4)

In addition, the scaling for eaiθ0 is found from equation (5.2), giving

eaiθ0 „
´aiF 2

0 c
3
a

2
pf ´ af˚q´

1
4 . (5.5)

Combining these results for q0 in (5.4) and θ0 in (5.5) gives the scaling for the complex
velocity,

df

dz
„ ca

´

´aiF 2
0 c

3
a

2

¯´a

pf ´ af˚q
a`1
4 . (5.6)
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Note that a “ 1 recovers the same singular behaviour of Grant (1973) in the upper half
plane, shown in equation (5.1).

5.2. The apparent paradox of a singularity in the lower half-plane

We see from equation (5.4) for q0 that a singularity exists ‘within the fluid’ in the lower
half plane at f “ ´f˚. This is in contrast to the regular behaviour near the same location
provided by Grant’s result. Our apparent prediction of singular behaviour in the flow-field
can readily be resolved by noting that this singularity is for the analytically continued
variable, originally relabelled from qc Ñ q in §2.2. It is thus important to distinguish
between the complexified and ‘physical’ streamline speeds qc and qphys., and angles θc
and θphys.. These physical variables are found by taking the magnitude and argument of
the complex velocity q0e´iθ0 as in equation (5.6), which is regular for a “ ´1, yielding

qphys. “

∣∣∣qce´iθc
∣∣∣ and θphys. “ Arg

´

qce
´iθc

¯

. (5.7)

Thus as f Ñ ´f˚ these physical values are regular for the leading-order Stokes wave
solution. Only by recombining q0e´iθ0 to find the physical values within the fluid have
these singular terms cancelled out.

6. Exponential asymptotics

As we shall show in §7, the exponentially-small ripples are intimately connected with the
later term divergence of the asymptotic series (4.1). In this section, we seek to characterise
this divergence.

As we have noted in the previous section, the leading-order solution, q0 and θ0, which
represents a pure gravity wave, contains singularities at the points f “ af˚, where a “ ˘1,
(and further singularities on subsequent Riemann sheets—cf. Crew & Trinh 2016). Since
later orders depend on successive differentiation of the previous orders, we intuit that as
nÑ8, the late terms of qn and θn diverge. In this limit of nÑ8, the divergence can
be described by a factorial-over-power ansatz of

qn „
QpfqΓpn` γq

χpfqn`γ
and θn „

ΘpfqΓpn` γq

χpfqn`γ
. (6.1)

Here, Q, Θ, and χ are all functions of f , and γ is assumed to be constant. Note that that
more generally, there is a summation of contributions of factorial-over-power type—one for
each singularity in f P C. Typically, the nearest singularities determine the leading-order
divergence. Since the late terms are determined through a linear perturbative procedure,
it is sufficient to consider the general ansatz (6.1) and add the appropriate contributions
once the general forms of Q, Θ, and χ are derived.

A consequence of enforcing the OpBnq energy condition with these solutions is that
the Froude number, Fn, is determined as an eigenvalue of the system. Thus Fn in (4.2)
will also diverge in a similar factorial-over-power manner, given by

Fn „
δpnqΓpn` γq

∆n`γ
. (6.2)

This unusual divergent form arises from satisfying the boundary conditions on the complete
solution. The presence of a divergent eigenvalue is a feature typically neglected in similar
studies and it will not affect the solvability condition we shall derive in this work. However,
we shall discuss some subtle considerations of this property in §10.

The OpBnq component of Bernoulli’s equation (4.5a) is a linear differential equation for
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qn and θn, where terms containing the divergent Froude number, Fn, appear as a forcing
term. We solve the homogeneous Bernoulli equation, for which the divergent eigenvalue
Fn does not appear. In the discussion of §10 we provide a more detailed justification
of why it is sufficient to neglect the divergent eigenvalue, Fn, and the OpBnq energy
condition. This yields

F 2
0

´

q2
0q
1
n ` 2q0q1q

1
n´1 ` 2q0q

1
0qn ` . . .

¯

` 2F0F1q
2
0q
1
n´1 ` . . .

` θn cos θ0 ´ q
2
0θ
2
n´1 ´ 2q0q1θ

2
n´2 ´ q0θ

1
0q
1
n´1 ´ q0q

1
0θ
1
n´1 ` . . . “ 0. (6.3a)

In the above equation, we have explicitly written those terms that are necessary to correctly
determine the leading and first order analysis of the late terms as nÑ8. In particular,
notice that if the ansatz (6.1) is differentiated once, then since pn`γqΓpn`γq “ Γpn`γ`1q,
the order in n increases by one. Thus for example q1n´1 “ Opqnq as nÑ8.

Next, we use the boundary-integral equation, (4.5b) to substitute for θn in (6.3a).
A key idea here, used in previous works on exponential asymptotics and water waves

is that the term that involves the complex Hilbert transform, xHrθns, is evaluated on
the real axis, and hence away from the singularities f “ af˚. As a consequence, the
contribution is exponentially subdominant to the left hand-side of (4.5b) as nÑ8. This

idea of neglecting xHrθns is a classic step in exponential asymptotics applications of many
boundary-integral problems in interfacial flows (cf. §3 of Chapman 1999, §5.3 of Trinh
et al. 2011 and Trinh 2017) and can be rigorously justified in such cases (Tanveer & Xie
2003).

With this in mind, we re-arrange the boundary-integral equation (4.5b) to find

θn „
aiqn
q0

´
aiq1qn´1

q2
0

` . . . . (6.3b)

From this form, θ2n´1, θ2n´2, and θ1n´1 are found in terms of qn and its derivatives. Next,
we substitute these into Bernoulli’s equation (6.3a) and consider the divergent ansatz
(6.1). The leading order in n, which comes from the terms q1n and q2n´1, is seen to be of
order Γpn` γ ` 1q{χn`γ`1. Dividing out by this divergence yields terms that are of Op1q,
Op1{nq, and so on as nÑ8.

Combining (6.3a) and (6.3b), we obtain at leading order

χ1pq0F
2
0 ` aiχ1q “ 0. (6.4)

We seek the non-trivial function χ that forces the divergence of the asymptotic expansion
and hence takes the value of χ “ 0 at the singularities in f . Assuming that χ1 ‰ 0, we
integrate to find

χpfq “ χapfq “ aiF 2
0

ˆ f

af˚
q0pf

1q df 1. (6.5)

Here, we have chosen the starting point of integration to be the upper/lower-half singularity
at f “ af˚ where a “ ˘1. The function χ, denoted the singulant, plays a pivotal role in
the form of the exponentially-small terms and the associated Stokes smoothing procedure
of §7. It will be convenient to distinguish the two singulants using the sub-index a.

At the next order in Bernoulli’s equation, Op1{nq, we use χ1 “ aiF 2
0 q0 and χ2 “ aiF 2

0 q
1
0

to find

Q1

Q
“ 2

q10
q0
´ aiF 2

0 q1 ´ 2aiF0F1q0 ` aiθ10 `
ai cos θ0

F 2
0 q

3
0

. (6.6)
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Thus by integration, we find

Qpfq “ Qapfq “ Λaq
2
0 exp

ˆ

aiθ0 ` ai

ˆ f

0

”cos θ0

F 2
0 q

3
0

´ F 2
0 q1 ´ 2F0F1q0

ı

df 1
˙

. (6.7)

The starting point of integration has been chosen to be on the free-surface at f “ 0 for
convenience. Other points may be chosen, which alters the value of the constant Λa. We
note that this constant may take different values for a “ 1 and a “ ´1. Similarly, the
form of Θ is found using (6.3b) and thus

Θpfq “ Θapfq “
aiQapfq

q0pfq
. (6.8)

Substitution of this solution for Qpfq into ansatz (6.1) then yields

qnpfq „ Λaq
2
0 exp

ˆ

aiθ0 ` ai

ˆ f

0

”cos θ0

F 2
0 q

3
0

´ F 2
0 q1 ´ 2F0F1q0

ı

df 1
˙

Γpn` γq

χn`γ
, (6.9)

with χ given by (6.5). A similar form for θn may also be found by using the expression
for Θ given in (6.8).

6.1. Determination of γ and Λ

At this point, we have determined the key components, Q, Θ, and χ, that appear in the
factorial-over-power ansatz (6.1). This leaves the value of the constants γ and Λa. Note
that our asymptotic series (4.1) reorders as f Ñ af˚ (for which q0 “ OpBq1q for instance)
and the matched asymptotics procedure that results in investigating this limit yields γ
and Λa.

In order to determine the constant γ, we take the limit f Ñ af˚ and match the order
of the singularity of the divergent ansatz, valid for n large, to the low-order behaviour.
Setting n “ 0 in (6.9) and taking the limit of f Ñ af˚ yields

qn

∣∣∣
n“0

“ O

˜

q2
0

χγ
exp

ˆ

aiθ0 ` ai

ˆ f

0

”cos θ0

F 2
0 q

3
0

´ F 2
0 q1 ´ 2F0F1q0

ı

df 1
˙

¸

. (6.10)

From the scalings of q0 and θ0 in §5.1, and the scaling of q1 in Appendix A we find that

χγ “ O

ˆ

pf ´ af˚q
5γ
4

˙

,

q2
0 exp

ˆ

ai

ˆ f

0

”cos θ0

F 2
0 q

3
0

´ F 2
0 q1 ´ 2F0F1q0

ı

df

˙

“ O

ˆ

pf ´ af˚q
5
4

˙

.

(6.11)

We substitute the above into (6.10) and match to q0 “ Opf ´ af˚q1{4 to find

γ “
4

5
. (6.12)

As is the case in many exponential asymptotic analyses, the determination of the
constant prefactor, Λa, is often the most troublesome aspect of the procedure. For our
purposes, it will be sufficient to know that Λa is a non-zero constant, and can be determined
via the solution of a numerical recursion relation. Specifically, it is found by matching
the ‘inner’ limit of qn from the divergent form (6.9) with the ‘outer’ limit of the inner
solution for q near f “ af˚. This analysis is performed in Appendix B, yielding

Λa “ ´
2if˚

F 2
0 c

4
a

e´Ppaf˚q
ˆ

4aiF 2
0 ca

5

˙

4
5

lim
nÑ8

q̂n
Γpn` γq

. (6.13)
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Here, q̂n is the nth term of the outer-limit of an inner solution holding near f “ af˚, and
can be determined by recurrence relation (B 14). The constant ca is the prefactor of the
singular scaling of q0 from (5.5) while Ppaf˚q is given in (A 7). We will not need to work
with the precise value of Λa; however, later in §6.2 and §7.3, the fact that Λ1 and Λ´1

are complex conjugates will be crucial to obtain a real-valued solution on the free-surface.
Since the prefactor, Λa, only has a scaling effect on the solutions (and is independent of
B), it will be convenient to choose a specific value for visualisation purposes in §8.

6.2. The divergence along the free-surface

In order to capture the divergence of qn along the free-surface, Imrf s “ 0, we must include
the effects of the two symmetrically-placed crest singularities indexed by a “ ˘1. We
shall thus write

qn “ qn|a“1 ` qn|a“´1.

By the results of §B.3, the constants Λ1 and Λ´1 are the complex conjugates of one
another. In regards to the two singulants, χ1 and χ´1, we may split the path of integration
via

χapφq “ aiF 2
0

„ˆ 0

af˚
`

ˆ φ

0



q0pf
1q df 1, (6.14)

for f “ φ along the real axis. As q0 takes real values on the free-surface, Imrf s “ 0, the
second integral above is seen to take purely imaginary values. By the Schwarz reflection
principle, q0 evaluated on the imaginary axis between ´af˚ and af˚ is purely real and
symmetric about the origin. Therefore the first integral on the right-hand side of (6.14)
is purely real and takes the same value regardless of the choice of a. Thus, χ´1 and χ1

are also the complex-conjugate of one another on the free-surface.
Due to this behaviour of Λa and χa, we write

Λa “ |Λ1|eai argΛ1 and χapφq “ |χ1pφq|eai argχ1pφq, (6.15)

which upon substitution into qn “ qn|a“1 ` qn|a“´1 yields

qnpφq “
2|Λ1|q2

0Γpn` γq

|χ1pφq|n`γ
cos

„

argΛ1 ´ pn` γq argχ1pφq ` θ0 ` Ipφq



, (6.16)

where we have defined

Ipφq “

ˆ φ

0

´cos θ0

F 2
0 q

3
0

´ F 2
0 q1 ´ 2F0F1q0

¯

dφ1. (6.17)

Thus the above form (6.16) captures the real-valued divergence on the free-surface.
We have successfully derived an expression for the late term divergence on the axis in

(6.16) and off the axis in (6.9).

7. Stokes line smoothing

One of the key ideas of exponential asymptotics is that there exists a link between the
factorial-over-power form of the divergences, given (6.1) and (6.16), and the exponentially-
small terms we wish to derive. Following the work of Dingle (1973), Stokes lines are
contours in the f -plane for which both

Imrχapfqs “ 0 and Rerχapfqs ě 0. (7.1)

Across and in the vicinity of these contours, exponentially small terms in the solution
smoothly change in magnitude across a boundary layer. This is known as the Stokes
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phenomenon. In this section, we discuss the configuration of Stokes lines, and then
perform the optimal truncation and Stokes-line-smoothing procedures needed to derive
the exponentially small capillary ripples.

7.1. Analysis of the Stokes lines

To find the Stokes lines for our problem, we apply conditions (7.1) to our expression for
the singulant, χa, given in (6.5) as

χapfq “ aiF 2
0

ˆ f

af˚
q0pf

1qdf 1.

Here, integration begins at the principal singularity, f 1 “ af˚, that lies in the analytic
continuation of the free-surface. Note that unlike many traditional studies in exponential
asymptotics, the determination of the singulant function requires the leading-order solution,
q0, for which there does not exist a closed-form analytical solution. We will use numerical
values of q0 to evaluate the singulant, χa.

The procedure is as follows. Given a fixed value of the energy, we obtain numerical
values of q0 and θ0 along the free-surface Imrf s “ 0 using the numerical computations of
Shelton et al. (2021) or any standard procedure for calculating gravity Stokes waves (cf.
Vanden-Broeck 1986). Next, the analytic continuation method of Crew & Trinh (2016)
is used to find q0 and θ0 in the complex f -plane. Values for χa are then found across
the domain by integrating q0 along paths originating at either singularity. Graphs of
the critical contours of Imrχas and Rerχas are given in figure 7 for the two choices of

-0.1 0 0.1
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

-0.1 0 0.1
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Im[f ]

Re[f ]

Im[f ]

Re[f ]

f∗

−f∗

Re[χ] > 0Re[χ] < 0 Re[χ] = 0 Im[χ] = 0

(a) (b)

Figure 7: Values of the singulant, χa, are shown from the upper half singularity in paq,
with a “ 1, and from the lower half singularity in pbq, with a “ ´1. The Stokes lines,
which satisfy conditions (7.1), are shown by the thick lines in the grey-shaded regions.
This configuration corresponds to the energy E “ 0.3804 for which the upper half-plane
singularity is at f˚ « 0.07776i. The chosen branch cuts for each of these singularities are
shown by dashed lines.

a “ 1 and a “ ´1. We see that there are two Stokes lines along the imaginary axis from
f “ ´f˚ to f “ f˚, one for a “ 1 and another for a “ ´1, which intersect with the
free-surface at the wave-crest φ “ 0.
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Note that only the Stokes lines that intersect with the free-surface, Imrf s “ 0, are
considered; other Stokes lines would indicate a switching-on or switching-off of exponentials
in the general complex plane, but are not associated with the physical production of
surface ripples.

7.2. Optimal truncation

In order to capture the exponentially-small components of the solution, which do not
appear in the Poincaré series (4.1), we truncate the series at n “ N ´ 1 by considering

q “
N´1
ÿ

n“0

Bnqn
loooomoooon

qr

`q̄, θ “
N´1
ÿ

n“0

Bnθn
loooomoooon

θr

`θ̄, and F “
N´1
ÿ

n“0

BnFn
loooomoooon

Fr

`F̄ , (7.2)

and thus we have introduced the notations of qr, θr, and Fr for the truncated regular
expansions of the solutions and eigenvalue.

We will demonstrate that when truncated optimally at the point where two consecutive
terms are of the same order, that is choose N such that

∣∣BNqN ∣∣ „ ∣∣BN`1qN`1

∣∣, the
remainders q̄, θ̄, and F̄ will be exponentially small. This point of optimal truncation is
given by

N “
|χa|
B

` ρ, (7.3)

where ρ P r0, 1q is a bounded number to ensure N is an integer.
Substituting these into the boundary-integral equation (2.8b) yields a relationship

between θ̄ and q̄, given by

θ̄ “
aiq̄

qr
´ aiξint ´ aixHrθ̄s `Opq̄2q. (7.4)

Similarly we can insert the truncations (7.2) into Bernoulli’s equation (2.8a). This gives a
second-order differential equation for q̄ and θ̄. Upon substituting for θ̄ from (7.4), this is
reduced down to an equation for q̄ only. Furthermore, we neglect the Hilbert transform of

the remainder, xHrθ̄s, as this is anticipated to be exponentially subdominant. This yields

„

aiBqr



q̄2`

„

´F 2
r q

2
r´aiBq1r`Bqrθ

1
r´aiBqrξ

1
int



q̄1`

„

´
ai cos θr
qr

´2F 2
r qrq

1
r`

aiBpq1rq
2

qr

`Bq1rθ
1
r ´ aiBq2r ` 2Bqrθ

2
r ´ aiBq1rξ

1
int ´ 2aiBqrξ

2
int



q̄ ´ 2Frq
2
rq
1
rF̄ “ R`Opq̄2q.

(7.5)

This is a second order differential equation for q̄, in which the forcing terms on the right
hand side are of OpBN q. A similar equation was derived by Trinh (2017) for the low-Froude
limit of gravity waves. Here, we have introduced the forcing terms ξint and ξbern arising
from the Poincaré expansion in the boundary-integral and Bernoulli’s equations as

ξint “
xHrθrs ´ aiθr ´ log qr, (7.6a)

ξbern “ F 2
r q

2
rq
1
r ` sin pθrq ´Bpq

2
rθ
2
r ` θ

1
rq
1
rqrq, (7.6b)

R “ ξbern ´ ai cos θrξint ` aiBqrq
1
rξ
1
int ` aiBq2

rξ
2
int. (7.6c)

Due to the truncation at n “ N ´ 1, the equation (7.5) is satisfied exactly for every order
up to and including BN´1 since ξint “ OpBN q and ξbern “ OpBN q.
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7.3. Stokes line smoothing

We now seek a closed-form asymptotic expression for q̄ and the terms switched-on across
Stokes lines. We start with the homogeneous form of equation (7.5), in which the terms
on the right-hand side and F̄ are neglected. Following the exponential asymptotics
methodology established in e.g. §4 of Chapman & Vanden-Broeck (2006), we note that
the homogeneous problem has solutions of the form,

q̄homog. „ Qapfq exp
´

´
χapfq

B

¯

, (7.7)

where χapfq and Qapfq satisfy those same equations as found for the late-term ansatz via
(6.4) and (6.6). To observe the Stokes phenomenon and the switching of exponentials, we
now include the forcing terms on the right-hand side of equation (7.5) for q̄. We consider
a solution of the form

q̄pfq “ AapfqQapfq exp
´

´
χapfq

B

¯

, (7.8)

where the Stokes multiplier Aapfq is introduced to capture the switching behaviour that
occurs across the Stokes lines. When the truncation point, N , is chosen optimally as in
(7.3), q̄ will be seen to be exponentially small and will change in magnitude across the
lines where Imrχas “ 0 and Rerχas ě 0.

The algebra for this procedure follows very similarly to e.g. Chapman et al. (1998);
Chapman & Vanden-Broeck (2006); Trinh (2017). Thus, when the exponential form of
(7.8) for q̄ is substituted into (7.5), the dominant balance at leading-order is identically
satisfied by our choice of χ determined in (6.4). The first non-trivial balance occurs at
Ope´χ{Bq which also involves the forcing terms on the right-hand side. We extract the
OpBN q terms from R in (7.6c), and this yields R „ ´q2

0θ
2
N´1B

N . The governing equation
for Aa is then given by

”

F 2
0 q

2
0Qae´

χa
B

ı dAa
df

„ ´aiq0q
2
N´1B

N , (7.9)

where we have used θ2N´1 „ aiq´1
0 q2N´1 from the boundary-integral equation (6.3b).

By substituting in the factorial-over-power form for q2N´1 from (6.1), and using the
chain rule to change differentiation to be in terms of χa, we find

dAa
dχa

“
BNeχa{BΓpN ` 1` γq

χN`1`γ
a

. (7.10)

This is now of an equivalent form to that found by Chapman & Vanden-Broeck (2006) for
the low-Froude limit of gravity waves [cf. their equation (4.4)]. In brief, the procedure is as
follows. First, we write χa “ raeiϑa and truncate optimally via (7.3) with N “ ra{B ` ρ.
Examination of the differential equation (7.10) shows that there exists a boundary layer at
ϑa “ 0 and indeed this is the anticipated Stokes line where Imrχas “ 0. The appropriate
inner variable near the Stokes line is ϑa “ B1{2ϑ̄a and (7.10) can then be integrated to
show

Aapfq “ Ca `

?
2πi

Bγ

ˆ ϑ̄a
?
ra

´8

exp p´t2{2q dt, (7.11)

where Ca is constant. Taking the outer limit of ϑ̄Ñ8, we then see that across the Stokes
line, there is a jump of

Aapϑa Ñ 0´q ´Aapϑa Ñ 0`q “
2πi

Bγ
. (7.12)
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As it concerns the relationship between Stokes-line contributions from f “ f˚ and
f “ ´f˚, note that as χ1 is the complex-conjugate of χ´1, we have ϑ1 “ ´ϑ´1. Thus we
anticipate that C1 switches to C1 ` 2πi{Bγ as one proceeds from left-to-right across the
Stokes line from f “ f˚. This is shown in figure 8(a). On the other hand, C´1 switches
to C´1 ` 2πi{Bγ proceeding from right-to-left across the Stokes line from f “ ´f˚. This
is shown in figure 8(b). We emphasise that the above Stokes smoothing procedure only
provides the local change of the prefactor, Aa, across the Stokes line. Determination of
the constant, Ca, will follow from imposition of the boundary-conditions.

f∗

−f∗

ϑ1 < 0 ϑ1 > 0 ϑ−1 > 0 ϑ−1 < 0

C1 C1 +
2πi
Bγ C−1 +

2πi
Bγ C−1

(a) (b) a = −1a = 1

Figure 8: The Stokes smoothing procedure is visualised for a “ 1 in paq and for a “ ´1
in pbq.

Returning now to (7.8), we write the leading-order exponentials on the axis, Imrf s “ 0,
via q̄ “ q̄|a“1 ` q̄|a“´1, either as an inner solution

q̄pφq “ A1pφqQ1pφq exp

ˆ

´
χ1pφq

B

˙

`A´1pφqQ´1pφq exp

ˆ

´
χ´1pφq

B

˙

, (7.13a)

for which Apφq is given by (7.11), or as an outer-solution by

q̄pφq „

$

’

’

’

&

’

’

’

%

C1

´

Qae´
χa
B

¯

∣∣∣∣
a“1

`

"

C´1 `
2πi

Bγ

*

´

Qae´
χa
B

¯

∣∣∣∣
a“´1

for φ ă 0,

"

C1 `
2πi

Bγ

*

´

Qae´
χa
B

¯

∣∣∣∣
a“1

` C´1

´

Qae´
χa
B

¯

∣∣∣∣
a“1

for φ ą 0.

(7.13b)

In (7.13b), the constants, C1 and C´1, will be determined by enforcing periodicity on q̄
and q̄1, as given by

q̄p´1{2q “ q̄p1{2q and q̄1p´1{2q “ q̄1p1{2q. (7.14)

The second relation above arose by evaluating the derivative of periodicity condition
(2.4b) at φ “ 0. In writing C1 “ CR1 ` iCI1 and C´1 “ CR´1 ` iCI´1, we have four
unknowns balancing the four equations from the real and imaginary parts of (7.14). Using
Λa “ |Λ1|eai argΛ1 from equation (6.15) and χa “ Rerχ1s ` ai Imrχ1s then yields the
solutions

CI1 “´
π

Bγ
, CR1 “ ´

π

Bγ
cos rGp1{2qs

sin rGp1{2qs
,

CI´1 “´
π

Bγ
, CR´1 “ ´

π

Bγ
cos rGp1{2sq

sin rGp1{2qs
,

(7.15)
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where

Gpφq “ θ0pφq `

ˆ φ

0

„

cos θ0

F 2
0 q

3
0

´ F 2
0 q1 ´ 2F0F1q0 ´

F 2
0 q0

B



dφ. (7.16)

Solutions are not possible when sinrGp1{2qs “ 0, from which we obtain the following
discrete set of values of B,

Bn “
F 2

0

´ 1{2

0
q0 dφ

θ0p1{2q `
´ 1{2

0

“

cos θ0
F 2

0 q
3
0
´ F 2

0 q1 ´ 2F0F1q0

‰

dφ` nπ
for n P Z`. (7.17)

The above formula (7.17) provides the crucial eigenvalue condition for the non-existence
of solutions. Recall that the “parameters” in this formula, e.g. tF0, F1, q0, q1, θ0u, are
dependent on the chosen energy, E, in (2.8c). Note that θ0p1{2q “ 0 and in addition,
only solutions with positive integer values of n correspond to positive values of the Bond
number. Thus for instance, it is predicted that solutions do not exist at a countably
infinite set of discrete values,

B1pEq ą B2pEq ą B3pEq ą . . . ą BnpEq ą . . . ą 0. (7.18)

In the next section, we will show that these values of B are associated with points between
adjacent ‘fingers’ of solutions in the bifurcation diagram.

Substitution of (7.15) for C1 and C´1 into (7.13b) then gives a real-valued solution on
the free-surface. Firstly for φ ă 0, we have

q̄pφq “ ´
2π

Bγ
|Λ1|q2

0e´
Rerχ1s

B

„

cos pGp1{2qq

sinpGp1{2qq
cos

“

argΛ1 `Gpφq
‰

´ sin
“

argΛ1 `Gpφq
‰



,

(7.19a)
while for values on the the positive real axis φ ą 0,

q̄pφq “ ´
2π

Bγ
|Λ1|q2

0e´
Rerχ1s

B

„

cos pGp1{2qq

sinpGp1{2qq
cos

“

argΛ1 `Gpφq
‰

` sin
“

argΛ1 `Gpφq
‰



.

(7.19b)
Note that the above forms for q̄ are valid away from the boundary layer surrounding the
Stokes line at φ “ 0.

8. Numerical comparisons with the full water-wave model

We will now compare the asymptotic results of §7.3 to the numerical solutions of the
fully nonlinear equations (2.1a)–(2.1d) found by Shelton et al. (2021). These numerical
solutions were calculated using a spectral method on a domain, φ, uniformly discretised
with N “ 1024 points [cf. §4 of Shelton et al. 2021 for details].

8.1. Finding values for our analytical solution

To obtain precise values for our analytical solution, q̄, across the domain, we use the form
given in equation (7.13a). This form includes the local change across the boundary layer
at φ “ 0 and requires known values of q0, θ0, F0, q1, and F1 for a specified value of the
energy, E.

In order to calculate values for these nonlinear solutions, we employ Newton iteration
on the Op1q and OpBq equations (4.3) and (4.4) with an even discretisation of the domain,
φ. With these values known, the three components of q̄, the Stokes-prefactor, Aapφq, the
functional pre-factor, Qapφq, and the singulant, χapφq, may then be calculated individually
with a specified value of B:
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Figure 9: A comparison between the numerical solution branches of Shelton et al. (2021)
(shown solid) and the analytical approximations of Bn from (7.17) (shown as black circles).
The insets (a)–(d). These smaller insets show the exponentially-small ripples, q̄, from
equation (7.19) for the four locations of B “ 0.001876, B “ 0.001264, B “ 0.0009527,
and B “ 0.0004978 (shown as crosses in the main inset). The solutions are all computed
at E “ 0.3804. A value of |Λa| “ 1 has been used for the constant prefactor.

(i) For Qapφq given in equation (6.7), we take the previously-computed values for θ0,
q0, F0, q1, and F1 and employ numerical integration across the domain. As noted
in §6.1, it is convenient to choose a value of |Λa| in order to facilitate visualisation
of the ripples. In figures 9 and 11, we plot q̄ with |Λa| “ 1. In figure 10, in order to
compare between asymptotic and numerical solutions, we have chosen |Λa| “ 0.006,
which is estimated by numerical fitting. It can be verified that fitting to other
fingers changes the constant by only a small amount.

(ii) To determine χapφq, we split the range of integration as in (6.14). This allows for
Rerχas to be calculated by integrating q0 through the complex-valued domain from
the singularity at f “ af˚ to the wave crest at f “ 0. Next, Imrχas is found by
integrating q0 over the free-surface from f “ 0 to f “ φ. Values for the integrand,
q0, are found with the analytic continuation method from Crew & Trinh (2016)
described in §7.1.
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(iii) To find the Stokes prefactor, Aapφq, from equation (7.11), the upper limit of the
integral is determined by using ra “ |χa| and ϑ̄ “ argχa

B from the known values of
χa. The integral is then calculated with known values of the error function. The
constants Ca are then found by calculating Gp1{2q from (7.16).

This process yields values for our exponentially-small component of the solution, q̄, for
specified values of B and E. The values of Bn where the solvability condition fails from
equation (7.17) are also found with the same method used for Qa above.

8.2. Comparisons

We begin by comparing the values of Bn (where the solvability condition fails) to the (B,F )
bifurcation space computed numerically by Shelton et al. (2021). In taking the same value
of the energy, E “ 0.3804, we visualise these points in the pB,F q-plane by approximating
Fn by Fn « F0 `BnF1 (an error of OpB2q). This comparison is seen in figure 9. These
locations where perturbation solutions are non-existent show excellent agreement with
the points between adjacent branches of solutions where numerical solutions could not be
calculated.

Additionally, four of our analytical solution profiles, q̄, are shown in insets paq to pdq of
this figure. These solutions have been selected to lie in the midpoint of the solution branch,
with a Bond number of (B “ pBn `Bn`1q{2). They demonstrate that the ripples obtain
their greatest magnitude at the edge of the periodic domain. Note that these ripples are
plotted on a zero background state. These same solutions are also shown in figure 10,
which includes the first two terms of the asymptotic expansion, q0 ` Bq1. These have
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Figure 10: The analytical solution, q “ q0 `Bq1 ` q̄, is shown (line) for the four profiles
calculated in figure 9. For comparison, numerical solutions with the same value of B and
E are shown dashed in insets paq and pbq. A value of |Λa| “ 0.006 has been used for these
comparisons, estimated from numerical comparisons.

been provided to compare the magnitude of the ripples in relation to the leading-order
Stokes wave.

In our previous numerical work, we demonstrated that as one of the solution branches
was transversed, the solution develops an extra wavelength, and this was seen to occur
near the top of the solution branch. We observe that the same effect occurs with our
analytical solutions. This is demonstrated in figure 11, in which we provide eight solution
profiles equally-spaced in the Bond number between two adjacent values of Bn. From



26 Shelton and Trinh

these, we see that as we travel from right-to left across the solution branch by decreasing
the value of B, an additional ripple forms in the center of the domain.
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Figure 11: Here, for E “ 0.3804, we plot the exponentially-small solution, q̄, from
(7.19) between the two values of B29 “ 0.0009360 and B28 “ 0.0009694. Note that the
base gravity-wave is thus not shown. The eight chosen values of B (crosses) are equally
spaced between the values of B29 and B28. This corresponds to the finger G28Ñ29 found
numerically by Shelton et al. (2021). A value of |Λa| “ 1 has been used for the constant
prefactor.

8.3. The effects of changing the energy, E.

All of the above solutions have been computed for the same fixed value of the energy,
E “ 0.3804. We now relax this restriction by considering values of E between 0 and 0.9.
Note that the limiting Stokes wave is not the most energetic [cf. §6 of Longuet-Higgins &
Fox 1978] and for values of E very close to unity, there are multiple possible solutions
beyond the classical Stokes wave. We shall not consider solutions too close to the highest
wave (E ą 0.9) in this work.

In figure 12 we show how the locations where the solvability condition fails, BnpEq,
change with the energy for values of n ď 40. We note that as the energy deceases to
zero and we enter the linear regime, these lines tend towards the predictions by Wilton
(1915). These are the discrete values of the Bond number for which two linear solutions
of wave-numbers 1 and n also have the same Froude number. Thus, a single leading-order
gravity-wave of the type assumed in this work is insufficient for describing Wilton’s linear
solutions, and is why we recover his values under this limit.

We have also chosen to provide values of Rerχs for different values of E, as this controls
the exponential behaviour of the magnitude of our parasitic ripples. This is shown in
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Figure 12: Values for Bn, where the solvability condition fails, are shown for different
values of the energy, E. The small-E predictions by Wilton (1915) are shown by the black
dots at E “ 0 for n “ 20, 30, and 40.

figure 13, and shows that the constant controlling the exponential behavior of our solution
increases with the energy, E.
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Figure 13: The value of ´Rerχs from equation (6.14) is shown for different values of the
energy, E.

9. Conclusions

We have considered the small surface-tension limit of gravity capillary waves of infinite
depth. This results in gravity-wave solutions at leading order. The parasitic ripples, which
have a wavelength much smaller than that of the base gravity-wave, appear beyond all
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orders of the asymptotic expansion as their amplitude is exponentially-small in the Bond
number. The analytical solution for these from equation (7.19) has been found by:

(i) Observing the divergence of the Poincaré series q “ q0 `Bq1 ` . . ., a consequence
of singularities in the analytic continuation of the leading-order solution, q0.

(ii) Optimally truncating the divergent expansion at N „ 1{B and considering the
exponentially-small remainder q̄ by a solution of the form q “ q0 ` Bq1 ` . . .`
BNqN ` q̄.

(iii) Identifying the Stokes lines (which depend on q0) and calculating the effect of
Stokes phenomenon on the exponentially-small terms.

We have also found a solvability condition for our problem, which fails at discrete values
of the Bond number given by (7.17). These points were shown in figure 9 to coincide with
the discrete nature of the numerical solution branches. Moreover, we have demonstrated
that if the leading order gravity-wave is taken to be symmetric, these parasitic ripples
must also exhibit symmetry about the wave crest; presenting a fundamental improvement
in our understanding of the structure of these parasitic waves.

Our results provide an analytical theory and framework for the numerical solutions
detected in Shelton et al. (2021). Moreover, we have shown that, although certain details
of Longuet-Higgins (1963) theory of parasitic capillary ripples are correct, an exponential
asymptotics approach provides verifiable asymptotic predictions, corrected functional
relationships, and connection of the ripples to Stokes lines and the Stokes phenomenon.

10. Discussion

10.1. Open and resolved challenges in exponential asymptotics

Over the past twenty years, the application of exponential asymptotics to fluid mechanical
problems has been very successful in the discovery and development of new analytical
methodologies (Boyd 1998). However, there are a number of distinguishing features in
our treatment of the parasitic ripples problem that are particularly interesting.

First, the majority of preceding works in exponential asymptotics typically rely upon
the derivation of a crucial singulant function, χ, for which an exact analytical form is
known. In our analysis, however, the singulant in (6.5) requires the complex integration
of a nonlinear gravity-wave, which must be pre-computed. Moreover, the values of χ
and the associated Stokes lines must be determined in the complex plane, and this has
necessitated a separate study of the distribution and properties of the singularities of the
Stokes wave problem (Crew & Trinh 2016) as a precursor to the present work.

Second, there are a number of challenging steps in the exponential asymptotics analysis
that we highlight here. The reader should note two interesting features.

(i) The eigenvalues, Fn, are divergent, but we have not had to rely upon their form
in the derivation of qn in §6.

(ii) Our factorial-over-power expression for qn, valid only in the limit nÑ8, satisfies
neither the energy condition nor the periodicity conditions on qn and q1n. This is
because our approximation of this divergence is only valid in the vicinity of the
Stokes line about which the Stokes phenomenon occurs, rather than globally.

Through a more detailed analysis, it is possible to derive both a factorial-over-power ansatz
for Fn, as well as the additional terms necessary so that the late-term approximation
satisfies the energetic and periodicity conditions. We provide a brief comment on the
procedure, but some of these issues are more easily observed in a simpler eigenvalue
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problem exhibiting divergence; this will be the focus of future work by the current authors
(Shelton & Trinh 2022).

In essence, the eigenvalue divergence produces inhomogeneous contributions to
Bernoulli’s equation depending on Fn, Fn´1, . . . [compare (6.3a) to (4.5a)]. These
contributions, of the form (6.2), will force additional components in the late-term
representation of the solution. Both the periodicity and energy constraints can then
be satisfied with the inclusion of further components associated with χ1 “ 0, currently
neglected following (6.4). Once these additional divergences are included, a prediction for
the eigenvalue, Fn, is obtained.

As it turns out however, these additional components are subdominant to the divergent
ansatz (6.1) with χ “ χapfq given by (6.5) near the relevant Stokes lines. Consequently,
these components will not influence the Stokes smoothing procedure derived in §7. We

note that this is analogous to how the complex Hilbert transform, xHrθns, is neglected in
the discussion following (6.3a).

10.2. Asymmetry in steady and temporal water-waves

It is important to note that in this work, following Longuet-Higgins (1963), we have
focused on a fairly restricted view of parasitic ripples that correspond to the classical
potential flow formulation of a steadily travelling wave composed of a perturbation about a
symmetric nonlinear gravity wave. This assumption also follows from the class of solutions
first detected by Shelton et al. (2021).

We would expect that within this steady potential framework, it is possible to obtain
general asymmetric gravity-capillary solutions exhibiting small-scales ripples in the B Ñ 0
limit. Indeed, solutions resembling this anticipated structure have been calculated by
previous authors; for instance Zufiria (1987b) considered symmetry breaking in gravity-
capillary waves for moderately small values of the surface-tension coefficient. The properties
of the waves in that study match those presented in this paper, as some appear to be
perturbations about the asymmetric gravity waves found in Zufiria (1987a). The general
detection of asymmetric gravity-capillary waves remains a challenging problem (cf. Gao
& Vanden-Broeck 2017).

However it is likely that the above relaxation of symmetry in the solutions does not lead
to the typical distribution of asymmetric capillary ripples that appear on the forward-face
of a steep travelling wave. In order to produce the asymmetry viewed in experimental
results, it is likely necessary to consider further modifications to this theory (cf. Perlin &
Schultz 2000). Possible extensions include accounting for the additional effects of time
dependence, viscosity, or vorticity.

The problem of time-dependent parasitic waves has been studied numerically by
multiple authors, such as Hung & Tsai (2009), Murashige & Choi (2017), and Wilkening
& Zhao (2021). For instance, Hung & Tsai (2009) study a time-dependent formulation
that includes vortical effects; a pure gravity wave is chosen as the initial condition and
time-evolution results in the formation of parasitic ripples ahead of the wave-crest. Similar
methodologies have been implemented by e.g. Deike & Melville (2015) in order to study
the formation of time-dependent parasitic ripples in the full Navier-Stokes system using a
volume-of-fluid method. We note that small-scale ripples can also occur near the crest of
gravity-waves as they approach a limiting formulation, as shown by Chandler & Graham
(1993) for solutions close to the steady Stokes wave of extreme form and Mailybaev
& Nachbin (2019) for finite depth breaking waves. In our present work, the authors
are examining the application of exponential asymptotic techniques to the description
of time-dependent parasitic ripples. The inclusion of time-dependence in asymptotics
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beyond-all-orders remains a poorly understood problem, and very few authors including
Chapman & Mortimer (2005), Lustri (2013); Lustri et al. (2019), have considered such a
complication.

Analogously, the extension of models of gravity-capillary waves to include non-zero
viscosity, vorticity, or finite depth have been considered by various authors. For instance
Longuet-Higgins (1963, 1995) and Fedorov & Melville (1998) considered viscous gravity-
capillary waves which exhibit asymmetry. Furthermore we would expect that a similar
application of exponential asymptotics to the case of periodic finite-depth flows could be
achieved; in the shallow-water limit, the results would match those presented in seminal
works on generalised solitary waves in Kortewe-de Vries equations (see e.g. Yang & Akylas
1996, 1997 and chapter 10 of Boyd 1998). It is an interesting question to consider the
equivalent exponential asymptotic analysis for these more complex problems where we
expect similar phenomena to arise.
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Appendix A. Singular scaling of the order B quantities

In §6.1, the inner limit of qn as f Ñ af˚ relied on the singular behaviour of the OpBq term
q1. Taking the OpBq equations, we substitute θ1 from the boundary-integral equation
(4.4b) into Bernoulli’s equation (4.4a) to find

F 2
0 q

2
0

dq1

df
`

„

2F 2
0 q0q

1
0`

ai cos θ0

q0



q1` 2F0F1q
2
0q
1
0´ aixHrθ1s cos θ0´ q0

`

q0θ
1
0

˘1
“ 0. (A 1)

The singular scaling of cos θ0 can be found from equation (5.5) to be

cos θ0 „
1

2
eaiθ0 „

´aiF 2
0 c

3
a

4
pf ´ af˚q´

1
4 . (A 2)

Thus, the term involving the complex-valued Hilbert transform xHrθ1s, which acts on the
free-surface upon which θ1 „ Op1q, is subdominant in equation (A 1). The same is true
for the term containing 2F0F1q

2
0q
1
0. The singular scaling of the four remaining dominant

terms in equation (A 1) can then be found by the results of §5.1, yielding

F 2
0 q

2
0

dq1

df
„ F 2

0 c
2
apf ´ af

˚q
1
2

dq1

df
, 2F 2

0 q0q
1
0q1 „

F 2
0 c

2
a

2
pf ´ af˚q´

1
2 q1,

ai cos θ0

q0
q1 „

F 2
0 c

2
a

4
pf ´ af˚q´

1
2 q1, ´ q0pq0θ

1
0q
1 „

3aic2a
16

pf ´ af˚q´
3
2 .

(A 3)

In substituting the ansatz q1 „ Apf ´ af˚qn into equation (A 1), we then find

q1 „
3ai

4F 2
0

pf ´ af˚q´1. (A 4)

A.1. Inner limit of Qapfq

To determine the value of the constant Λa, the analysis of which is performed in appendix
B, we require the inner limit of the prefactor, Qapfq, of the naive solution. Taking Qapfq
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from equation (6.7), we consider the singular behaviour of q0 and eaiθ0 from equations
(5.4) and (5.5) to find

Qapfq „
´ΛaaiF 2

0 c
5
a

2
pf´af˚q

1
4 exp

ˆˆ f

0

ai
”cos θ0

F 2
0 q

3
0

´F 2
0 q1´2F0F1q0

ı

df

˙

as f Ñ af˚.

(A 5)
It remains to evaluate the integral in the above equation as f Ñ af˚. In considering the
singular behaviour of the integrand, we find

ai
”cos θ0

F 2
0 q

3
0

´ F 2
0 q1 ´ 2F0F1q0

ı

„ pf ´ af˚q´1 `Op1q. (A 6)

In writing

Ppfq “
ˆ f

0

ai
”cos θ0

F 2
0 q

3
0

´ F 2
0 q1 ´ 2F0F1q0

ı

´ pf ´ af˚q´1 df, (A 7)

and noting that q1 „
3ai
4F 2

0
pf ´ af˚q´1`Op1q, we see that Ppfq „ Op1q as f Ñ af˚. This

formulation yields
ˆ f

0

ai
”cos θ0

F 2
0 q

3
0

´ F 2
0 q1 ´ 2F0F1q0

ı

df “ Ppfq ` logpf ´ af˚q ´ logp´af˚q, (A 8)

from which we find the singular behaviour of Qapfq to be

Qapfq „
ΛaiF 2

0 c
5
a

2f˚
ePpaf

˚
qpf ´ af˚q

5
4 as f Ñ af˚. (A 9)

Appendix B. An inner soution at the principal singularities

The constant Λa appearing in the prefactor of qn in equation (6.9) is determined by
matching the inner limit of qn with the outer limit of a solution holding near the singularity
at f “ af˚. In the inner region near this point, Bernoulli’s equation (2.8a) holds,

F 2q2 dq

df
`

1

2i
peiθ ´ e´iθq ´Bq

d

df

ˆ

q
dθ

df

˙

“ 0. (B 1)

We also have the boundary-integral equation (2.8b) applying in this inner region. Since

the complex valued Hilbert transform xHrθs appearing in the right hand side of this
operates on values of θ from the free-surface in the outer region, away from the singularity,

we can use the outer expansion in powers of B. At each order in B, xHrθns is then related
to the outer solutions of qn and θn by evaluating the boundary-integral equation at this
order. This gives

log pqq ` aiθ “ xHrθs

“ xHrθ0s `BxHrθ1s `OpB
2q

“ plog q0 ` aiθ0q `Bpq1{q0 ` aiθ1q `OpB
2q.

(B 2)

To evaluate this in the inner region, we take the inner limit of f Ñ af˚ on the right hand
side. Exponentiating (B 2) and using the scaling of q0 and eaiθ0 from (5.4) and (5.5) gives

qeaiθ „ ´
aiF 2

0 c
4

2
`OpBq. (B 3)

From this, we find at leading order both eiθ´e´iθ “ 2q{piF 2
0 c

4q´piF 2
0 c

4q{2q and qθ1 “ aiq1.
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Substituting these into Bernoulli’s equation (B 1) then gives the inner equation

F 2q2 dq

df
´

q

F 2
0 c

4
´
F 2

0 c
4

4q
´ aiBq

d2q

df2
“ 0. (B 4)

B.1. Boundary layer scalings

The width of the boundary layer at the principal upper- and lower-half plane singularities
is determined by the reordering of the outer expansion qouter “ q0 ` Bq1 ` OpB2q

when consecutive terms become comparable. Balancing q0 „ Bq1 for simplicity, where
q0 „ capf ´ af

˚q1{4 from (5.4) and q1 „
3ai
4F 2

0
pf ´ af˚q´1 from (A 4), we find the width

of the boundary layer to be B4{5. Thus, we introduce the inner variable η by

pf ´ af˚q “ B
4
5 η. (B 5)

Additionally, in the inner region q̄inner „ q0. By incorporating the inner variable η with
our scaling for q0, we have q0 „ capf ´ af

˚q1{4 „ caB
1{5η1{4. This tells us how to rescale

qouter to produce an Op1q quantity, q̄inner, in the inner region, given by

qouter “ caB
1
5 η

1
4 q̄inner. (B 6)

To find the outer limit of q̄inner, we consider a series expansion as η Ñ 8. The form of
this series is determined by substituting the inner limit of the expansion for qouter into
(B 6), giving

qouter “

8
ÿ

n“0

Bnqn „
8
ÿ

n“0

BnQaΓpn` γq

χn`γa

„

8
ÿ

n“0

BnΛap
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5
4 Γpn` γq
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4aiF 2
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5 pf ´ af˚q5{4sn`γ

„

8
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n“0

ΛaB
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5 p

iF 2
0 c
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2f˚ qe
Ppaf˚qΓpn` γqη

1
4

p
4aiF 2

0 ca
5 η5{4qnp

4aiF 2
0 ca

5 q
4
5

.

(B 7)

Here, we have used χa „
4aiF 2

0 ca
5 pf ´ af˚q5{4, γ “ 4{5, the singular behaviour of Qa from

(A 9), and the inner variable η introduced in (B 5). In denoting the constant prefactor of
χa to be X “ 4aiF 2

0 ca{5, we find by (B 6) the expected series form for q̄inner,

q̄inner „

8
ÿ

n“0

Λap
iF 2

0 c
4
a

2f˚ qe
Ppaf˚qΓpn` γq

pXη5{4qnX
4
5

. (B 8)

This suggests that in taking

z “ Xη5{4, (B 9)

the anticipated series for q̄inner will be of the form

q̄inner “

8
ÿ

n“0

q̂n
zn
. (B 10)

B.2. Inner expansion

Substituting both the inner variable η from (B 5), and q̄inner from equation (B 6) into the
governing equation for the inner region (B 4) gives

caF
2
0 q̄

3

ˆ

η
dq̄

dη
`
q̄

4

˙

´
aiq̄2

η
5
4

ˆ

η2 d2q̄

dη2
`
η

2

dq̄

dη
´

3q̄

16

˙

“
caF

2
0

4
. (B 11)
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Using the substitution z “ 4aiF 2
0 caη

5{4{5 presented in (B 9) results in a more convenient
expansion in integer powers of 1{z. With this, equation (B 11) becomes

q̄3

ˆ

5z
dq̄

dz
` q̄

˙

`
q̄2

z

ˆ

5z2 d2q̄

dz2
` 3z

dq̄

dz
´

3q̄

5

˙

“ 1. (B 12)

The outer limit of the inner solution to this equation as z Ñ8 is considered by the series
(B 10). Substituting this into the inner equation (B 12) yields at leading order

q̂4
0 “ 1. (B 13)

By considering the Opz´nq term in (B 12), the following recurrence relation is found for
q̂n,

p5n´ 4qq̂3
0 q̂n “

n´1
ÿ

k“1

q̂n´k

„

q̂2
0 q̂k `

k
ÿ

p“1

q̂k´p

ˆ

p5p´ 6qp5p´ 2q

5
q̂p´1 `

p
ÿ

j“0

p1´ 5jqq̂j q̂p´j

˙

` q̂0

n´1
ÿ

p“1

q̂n´p

ˆ

p5p´ 6qp5p´ 2q

5
q̂p´1 `

p
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j“0

p1´ 5jqq̂j q̂p´j

˙

`
p5n´ 6qp5n´ 2q

5
q̂2
0 q̂n´1 ` q̂

2
0

n´1
ÿ

j“1

p1´ 5jqq̂j q̂n´j .

(B 14)

B.3. Determining the constant Λa

In comparing the nth term of q̄inner between representations (B 8) and (B 10), we find the
following expression for the constant Λa,

Λa “
´2if˚

F 2
0 c

4
a

e´Ppaf˚q
´4aiF 2

0 ca
5

¯4{5

lim
nÑ8

q̂n
Γpn` γq

. (B 15)

By applying Schwartz reflection principle to q0, which is real-valued on the free-surface,
Imrf s “ 0, we see that ca“1 and ca“´1 are the complex-conjugate of one another.

The recurrence relation (B 14) may then be solved numerically and yields
limnÑ8

q̂n
Γpn`γq « 1.4 ¨ 10´3. Once the secondary components of (B 15) are computed,

this gives a numerical value for Λa.
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