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Abstract

Lightning is an extremely energetic electric discharge process in our atmo-

sphere. Lightning activity is used as an indicator for the nowcasting of severe

weather, signi�cantly a�ects atmospheric chemistry, and threatens electrical

and electronic devices. Yet, our fundamental understanding of atmospheric

electricity is far from complete. For example, new processes above thun-

derclouds have been discovered which are collectively known as Transient

Luminous Events (TLEs) and Terrestrial Gamma ray Flashes (TGFs). This

PhD project aims to characterize and improve on a thunderstorm detector

recently developed by private industry to warn of local lightning activity at

airports. Most existing lightning location systems rely on sub-ionospheric

propagating radio waves. The new technique measures the displacement cur-

rents induced on an electrode exposed to changes in the atmosphere's electric

�eld between 1-45 Hz, associated with all forms of lightning and wind-blown

space charge. The unique dataset provided by this instrument has been in-

vestigated to (1) design a noise rejection and waveform recognition algorithm

based on machine learning methods; (2) identify the source of anomalously

strong current transients detected in fair-weather and their link to TLEs;

(3) provide the �rst multi-instrumental analysis of thunderstorms producing

superbolts and TLEs in the UK and northern Europe; (4) study the contribu-

tion of global lightning activity and associated Schumann Resonances (SR)

on the quasi-electrostatic currents measured at Portishead (UK) during a

5-year period. This work indicates that the technique can be pro�tably used

to prevent the risk posed to humans and infrastructures by intense lightning

discharges, and additionally suggests a broad range of new applications for

this method in atmospheric electricity research.
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Chapter 1

Introduction to the thesis

From the dawn of mankind, lightning has been one the most evident and

awesome events among natural phenomena. It inspired myths and supersti-

tions for ages as well as arts and poetry, but it is only recently, after the mid

18th century, that a rigorous scienti�c investigation was taken. Lightning is

currently referred as the optical perceptible part of an electrostatic discharge,

originating from an electri�ed cloud, which produces a burst of electromag-

netic radiation over a wide frequency range along with shock-waves, related

to the typical acoustic manifestation known as thunder.

Lightning detection is an important tool for nowcasting of severe weather

and harmful e�ects associated with thunderstorms (Yair, 2018). The light-

ning density rate across Europe is of the order of 0.1 to 4 �ashes/km2 per

year, showing a signi�cant seasonal and geographical variability (Anderson

and Klugmann, 2014). The British Isles and Scandinavia, along with sur-

rounding seas, typically experience the lowest density with respect to the

rest of Europe, with a peak between July and August. The highest densi-

ties are instead associated with continental Europe during spring/summer

season in proximity to mountainous areas. The winter season is dominated

by thunderstorm activity across the Mediterranean sea, due to heat reservoir

from the preceding summer which is e�ective in triggering convection. Given

the low �ash density, lightning risk to UK inhabitants is relatively small and

decreased signi�cantly during the last century (Elsom, 2015). An analysis of

1
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the 9-year period (2008-2016) estimated the risk of lightning causing a fatal-

ity to be 0.016 per million population per year, corresponding to one person

killed for nearly 59,000 lightning counts in the same period when considering

only the UK land area (Elsom et al., 2018). The risk of being struck by

lightning and injured is markedly higher than that of being killed, as many

more people are injured than die. Hence, the found value rises to one person

killed or injured for approximately 4,000-5,000 lightning counts in the same

period of time (Elsom et al., 2018). Such risk must be seriously taken into

account when carrying out outdoor activities either for work, i.e. airport

refueling operations or handling explosives, or leisure. In addition to the

threat to public safety, lightning is frequently the cause of major disruption

to power lines and other infrastructure. Aircraft and tall structures, such as

wind turbines, are reputedly able to initiate lightning discharges, potentially

causing important damage (Montanyà et al., 2016).

The present PhD develops in the broader context of the Marie Skªodowska-

Curie action H2020 SAINT (Science And INnovation with Thunderstorms,

https://www.saint-h2020.eu/), a research program supported by the Eu-

ropean Commission that involves both academic institutions and industrial

partners. The project uses data from a unique standalone thunderstorm

detector (BTD-300) recently developed by Biral, a UK meteorological in-

struments manufacturer. The system provides early warning of imminent

thunderstorm activity and lightning �ash location within a range of about 90

km (Bennett, 2018). The technique employs a novel method of discriminat-

ing between lightning and non-lightning sources, by comparison of the signal

strength measured simultaneously on three co-located electrodes, which is a

function of their di�erent geometry and exposure to changes in the atmo-

spheric electric �eld (AEF) in the range 1-45 Hz (Bennett, 2013; Bennett,

2017). The method achieves a detection e�ciency larger than 95% for a sin-

gle lightning �ash (any type) within 56 km and a false alarm rate lower than

2% (Biral, 2018). This PhD aims at further reducing the false alarm rate. A

method for discriminating between true and false positive is thus described

that may be eventually implemented for real-time analysis.

https://www.saint-h2020.eu/
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Equally the project aims at broadening the research scope of the BTD-300.

With this regard, the detection of anomalously strong signals from powerful

lightning sources several hundred kilometers away, usually cloud-to-ground

(CG) exceeding peak currents of 200 kA in absolute value, is of particular

interest since these �eld changes are not consistent with the inverse cube

law of the electrostatic �eld change at ground after a lightning �ash (Ben-

nett and Harrison, 2013; Bennett, 2014). In addition, the link to such kind

of intense sources is relevant, as they are often the cause of major damage

to buildings and infrastructure and given their impact on the upper atmo-

sphere including transient luminous events (TLEs). The �rst scienti�c goal

of this research is then to unveil the physical mechanism behind such strong

transients and clarify if they are directly related to the lightning source or

indirectly, through the interaction of the electromagnetic pulse (EMP) on

the lower ionosphere. This is made by combining concurrent electromagnetic

and optical observations together with numerical simulations of return stroke

(RS) and EMP processes (Pizzuti et al., 2021; Kolma²ová et al., 2021). An

unambiguous interpretation of these transient signals would potentially o�er

a new technique for monitoring the phenomena occurring in the mesosphere,

without the need of clear skies and dark nights necessary for optical obser-

vations. Likewise this study is expected to �ll the existing gap in knowledge

about small scale winter thunderstorms around the British Isles and their

potential ability to produce intense discharges, related to elves and other

TLEs, as already predicted in analogy to winter storms in Japan (Takahashi

et al., 2003). The distribution of these sources is fundamental to assess the

area of risk for aviation and maritime companies operating in the region

(Wilkinson et al., 2012; Montanyà et al., 2016). The measurements may be

also bene�cial for the Atmosphere-Space Interactions Monitor (ASIM) and

future spaceborne observatories, being complementary to other ground-based

observations.

Variations of air conductivity and accordingly the AEF occur on a broad

range of timescales in response to turbulent space charge and di�erent weather

conditions, along with the diurnal and seasonal variation of global thunder-

storm activity and near-surface aerosol concentration (Bennett and Harrison,
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2007; Bennett and Harrison, 2008). As a consequence, the variability of the

AEF in fair weather can be e�ectively used to study either the global electric

circuit (GEC) or emphasize local e�ects due to anthropogenic sources or dust

over speci�c areas (Nicoll et al., 2019a; Tacza et al., 2020). In addition to

detection of all types of lightning discharges within range, the BTD-300 is

sensitive to these secondary sources of electric �eld change and the use of

low noise internal circuitry enables it to measure also the AC component of

GEC, linked to the Schumann resonances (SR). One of this sensors operated

continuously over 5-year period (2015-2020) in Portishead, southwest Eng-

land (51.483° N, 2.769° W). The second scienti�c goal is thus to process and

analyze this dataset, otherwise unused by the scienti�c community, in order

to investigate the diurnal, seasonal and interannual SR variability. Data are

�ltered to separate local e�ects (1-5 Hz) from contribution of the SR back-

ground (10-45 Hz), related to global lightning activity (Price and Melnikov,

2004; Price, 2016). The method proves hence suitable for further applica-

tions in atmospheric electricity and climate studies, including monitoring of

volcanic environments (Nicoll et al., 2019b; Vossen et al., 2021) and extend-

ing the capabilities of more commonly used electric �eld mills (EFM).

1.1 Thesis structure

This thesis is submitted in the alternative format, where the main scienti�c

�ndings are presented in the form of published/publishable academic papers

linked together with contextualizing and commentary text. Besides this, the

thesis is accompanied by traditional chapters. The next chapter contains a

review of general topics in atmospheric electricity relevant to this research

work, including a discussion on the various thunderstorm-related phenom-

ena in the lower ionosphere. Chapter 3 provides a detailed discussion on the

measurement technique used, that is essential for the interpretation of the

results obtained in the following sections. A description of the signal pro-

cessing methods is also given, with additional details included in the papers

attached. Chapter 4 describes the false positive rejection algorithm devel-
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oped, along with a statistical analysis of its performance when applied to new

data. The following sections are organized in three papers, each preceded by

a commentary. The papers are:

1. �Signatures of large peak current lightning strokes during an unusually

intense sprite-producing thunderstorm in southern England� (published

in Atmospheric Research, https://doi.org/10.1016/j.atmosres.2020.

105357).

2. �On the relationship between lightning superbolts and TLEs in North-

ern Europe� (published in Atmospheric Research, https://doi.org/

10.1016/j.atmosres.2022.106047).

3. �Long-term observations of Schumann resonances at Portishead (UK)�

(published in Atmosphere, https://doi.org/10.3390/atmos13010038).

Additional work from the candidate that is cited but not included in this the-

sis, includes poster/conference presentations and a fourth paper to which he

originally contributed with ideas and data. This is �First observations of elves

and their causative very strong lightning discharges in an unusual small-scale

continental spring-time thunderstorm� by Kolma²ová et al. (2021), published

in JGR Atmospheres https://doi.org/10.1029/2020JD032825. Conclud-

ing remarks are given in the �nal section of this thesis, with a summary of

main achievements and suggestions for future work.

https://doi.org/10.1016/j.atmosres.2020.105357
https://doi.org/10.1016/j.atmosres.2020.105357
https://doi.org/10.1016/j.atmosres.2022.106047
https://doi.org/10.1016/j.atmosres.2022.106047
https://doi.org/10.3390/atmos13010038
https://doi.org/10.1029/2020JD032825


Chapter 2

Overview of Atmospheric

Electricity

This chapter introduces the general background of this research project, re-

porting brie�y on the historical development of atmospheric electricity stud-

ies and lightning research. Hence the basic principles of cloud electri�cation

and lightning types are presented. Lightning discharges emit electromagnetic

radiation over a wide frequency band, which is commonly used for source ge-

olocation from local to global scale by various lightning location systems. A

wide variety of transient optical phenomena in the upper atmosphere above

thunderstorm activity has been discovered in the last few decades; a summary

of such observations and the theory behind them is reviewed.

2.1 Historical background

Lightning is amongst the most spectacular natural phenomena on this planet,

yet a familiar sight for nearly all inhabitants. It is well known for the po-

tential destructive e�ects when hitting objects or people. Yet, it may even

have played a key role in prebiotic synthesis and emergence of life on Earth.

Lightning data from the space-based Optical Transient Detector (OTD), as

seen in �g. 2.1, revealed that about 1.4 billion �ashes occur each year over

the entire Earth, meaning an average of 44�5 lightning �ashes every second

6
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(Christian et al., 2003).

Even with such large rate of events, it was only in the 18th century that

Figure 2.1: Global annual lightning density map as observed during 5 years
operation of OTD. Reprinted from "Global frequency and distribution of
lightning as observed from space by the Optical Transient Detector", by
Christian H. J. et al., 2003, Copyright by American Geophysical Union.

scienti�c investigation on lightning has begun, thanks to the groundbreaking

work carried out by Benjamin Franklin. In 1746 he started conducting ex-

periments on electricity, aware of triboelectric e�ect, a type of electri�cation

process due to frictional contact between two di�erent materials. At the same

time, he took advantage of the newly introduced Leiden jar, a prototype of

a modern charge capacitor. During his experiments, Franklin observed the

similarities between lightning and sparks created in the lab and hence sug-

gested a method to demonstrate thunderstorms electricity, by means of an

iron rod exposed to the atmosphere (Franklin and Cohen, 1941; Dwyer and

Uman, 2014). The experiment was successfully performed in France in 1752,

when sparks were observed to originate from the insulated rod, and in the

same year Franklin himself conducted the famous kite experiment, in which

he observed a spark discharge from the moist string, extended to the electric

�eld of the cloud and acting as a conductor, to the ground. Such observa-

tions led him also to propose the lightning rod as a protection system from



CHAPTER 2. OVERVIEW OF ATMOSPHERIC ELECTRICITY 8

hazardous e�ects of lightning discharges, providing a preferential attachment

point and a safer transmission line to ground for high currents from light-

ning.

Again in 1752, the French scientist Lemonnier discovered that the atmo-

sphere is weakly positively charged in fair-weather conditions, resulting in a

persistent electric �eld (E) of about 100 V=m pointing downward (Le Mon-

nier, 1752). This was later con�rmed by Canton (1753) and Beccaria (1775),

who also reported a change in the polarity when thunderstorms were over-

head and a general variability related to di�erent meteorological phenomena

(MacGorman et al., 1998).

Steps forward to the understanding of lightning physics were made possible

in the following century, after the introduction of photography and spec-

troscopy. Notable results were obtained by Schuster (1880), who provided

the �rst complete identi�cation of lines in the optical spectrum of lightning,

and Slipher (1917), who found that lightning spectrum is characterized also

by continuum emission. A wide description of such results is reported in

(Rakov and Uman, 2003). In addition, the invention of high-speed photog-

raphy resulted in the discovery of multiple strokes within the same lightning

�ash and enabled Schonland to observe that a typical negative CG lightning

consists of a so-called stepped leader moving downward and a subsequent

upward return stroke (Schonland et al., 1956).

At the same time, the �rst attempts to obtain an electromagnetic charac-

terization of lightning and thunderclouds were also made. At the beginning

of the 20th century, Pockels (1900) inferred for the �rst time lightning peak

current from residual magnetization in basalt pieces, placed in the vicinity

of a striken lightning rod (Uman, 2012). An important contribution in un-

derstanding the charge structure of lightning-producing clouds, came from

the Nobel Prize winner C. T. R. Wilson (Wilson, 1921), who estimated the

amount of charge transferred during a �ash. Wilson played a remarkable role

also in developing the concept of a global electric circuit (GEC), which links

diurnal variations in atmospheric electric current to global lightning activity,

after he measured in 1906 the fair-weather air-Earth current density which

has a value of approximately 2� 10�12 A=m2 (Rycroft et al., 2012).
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During 1940s and 1950s, the �rst direct ground measurements of electromag-

netic �elds radiated from lightning were performed, e.g. the extensive and

signi�cant datasets on lightning current waveforms from an instrumented

tower in Switzerland (Rakov and Uman, 2003).

A systematic study of lightning related topics begun in the 1970s, when high-

time resolution instruments became available and ground observations were

promptly complemented by concurrent space-based detectors.

2.2 Cloud electri�cation

Thundercloud is the primary source of lightning activity and develops as a

result of atmospheric instability, which leads warm and moist air parcels to

move upward adiabatically due to convection (Rakov and Uman, 2003; Soula,

2012). When rising air parcels reach the condensation level, which depends

on relative humidity at ground level and determines the height of cloud base,

a visible cloud is formed, referred to as a cumulus. At this stage, a condition

may occur for which the moist-air temperature lapse rate is lower than the

vertical atmospheric dry-air temperature gradient. As a consequence, such

air parcels remain unstable and continue to rise, leading potentially to tow-

ering Cumulonimbus (Cb). In that case, if condensed water particles exceed

the 0 °C level, they begin to freeze; however it is not until the �40 °C that all

particles can be considered frozen. This 0 °C to �40 °C mixed-phase convec-

tive region, within a Cb, is where commonly cloud electri�cation processes

are supposed to occur (Rakov and Uman, 2003; Deierling et al., 2008).

A fast-growing Cb cloud (or thundercell) is the underlying structure of a

single-cell thunderstorm. Typically, a single thundercell lasts for approxi-

mately 15-60 minutes, covering an area with a radius between 6 and 10 km,

and evolves through three main stages: 1) growth stage, as towering cumu-

lus when only updraft is present; 2) mature stage, when both updraft and

downdraft coexist, typically coinciding with strong precipitations and peak

in lightning activity; 3) dissipating stage, with downdraft only (Soula, 2012).

In some cases, a thundercell may also exhibit a mesocyclonic circulation:

this is the so-called supercell, often associated with tornadoes and extremely
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hazardous winds. Large thunderstorms are commonly formed by several cells

in di�erent development stages. Multicell thunderstorms usually persist for

many hours and are responsible for heavy precipitation, strong wind gusts

and �oods. Moreover, such type of thunderstorms can cluster into an orga-

nized Mesoscale Convective System (MCS) (Fritsch and Forbes, 2001). The

thundercloud charging process implies two main mechanisms capable of elec-

trifying individual hydrometeors (e.g. liquid or solid water particles in the

atmosphere with fall speed � 0:3 m=s ) and explain the layered charge struc-

ture of di�erent regions in the cloud. Currently, a widely accepted theory is

the non-inductive graupel-ice collisional mechanism in the presence of water

droplets (Rakov and Uman, 2003), which can reproduce the classical tripole

charge distribution shown in �g. 2.2, where a main positive layer is at the

top (+40 C), main negative in the middle (�40 C) and lower positive at the

bottom (+3 C). The large-scale separation between charged layers is due

to the action of gravity (Saunders, 2008). Balloon measurements suggest

that additional charge layers can be present in thunderclouds. Based upon

E soundings through di�erent clouds, Stolzenburg et al. (1998) identi�ed

four charge regions in the convective updraft and at least six charge regions

are seen outside the updraft. The derived conceptual model of the charge

structure within an idealized isolated, mature, thunderstorm is shown in �g.

2.2. Marshall and Rust (1991) inferred charge densities between 0.2 and

13 nC m�3 in charge regions of active storms, where all charge resides on ei-

ther precipitation or cloud particles. Several studies investigated also the role

played by pollution and atmospheric aerosol-loading on cloud microphysics,

suggesting a convective invigoration e�ect leading to heavier precipitation

and enhanced lightning density around highly polluted urban areas (Yuan

et al., 2011; Altaratz et al., 2017, and references therein).
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Figure 2.2: The basic charge structures in ideal, mature, midlatitude thun-
derstorm convective regions. Adapted from "Charge Structure and Dynamics
in Thunderstorms", by Stolzenburg M. et al., 2008, Copyright by Springer
Science+Business Media B.V.

2.3 Types of lightning

Once the charge structure within a thundercloud is established, as explained

in section 2.2, the electric potential di�erence between two distinct regions

of opposite polarity in the cloud may lead to electrical breakdown resulting

in a lightning discharge. This term indicates the series of electric processes

taking place within a time interval generally shorter than 1 s (but up to

nearly 8 s for a single �ash in rare cases (Lang et al., 2017)) by which charge

is transferred along a highly conductive channel between two charge layers

of opposite sign within the same thundercloud or between di�erent clouds

(intra-cloud or inter-cloud, respectively, or equally cloud pulse), between a

cloud charge centre and the Earth's surface (cloud-to-ground), or between a

cloud charge layer and surrounding air (cloud-to-air).

A single lightning discharge is commonly referred to as a cloud-to-ground

(CG) �ash if it contains one or multiple return strokes (RS) (i.e. main
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microsecond-scale pulse of electric current in a lightning channel connect-

ing to ground) usually occurring in rapid succession and most following the

same lightning channel, thus being more dangerous to lives and property

(Dwyer and Uman, 2014). On the other hand, a lightning discharge that

only consists of cloud pulses and does not attach to ground (i.e. no return

stroke exists) is called IC or cloud �ash. It is widely accepted that similar

processes are involved in lightning initiation and its subsequent development

in both IC and CG �ashes, the main di�erence consisting only in the regions

of the cloud where initiation occurs and the direction of progressing lead-

ers. The application of VHF interferometry allowed mapping of lightning

radiation sources in the cloud for the �rst time, otherwise visually unavail-

able to ground observers. VHF measurements con�rmed the concept that

all types of �ashes develop bidirectionally like a two-ended zero-net-charge

bipolar tree, one end of the tree consisting of the branching negative leader

(i.e. hot plasma channel self-propagating towards space charge regions of

opposite polarity) and the other of the branching positive leader progress-

ing in opposite direction (Mazur, 2016). Once the lightning tree is formed,

the development of a typical IC �ash consists of two main phases: 1) the

initial active stage, during which negative and positive leaders co-exist and

propagates outward with respect to �ash origin point, the former being the

dominant VHF radiation source; 2) the later stage (or junction stage), during

which the negative leader is terminated by a current cut-o� in the intermedi-

ate channel connecting positive and negative parts of lightning tree and �ash

continues to evolve only in the positive end of the tree, with the positive

leader and negative recoil leaders, that retrace the pre-ionized branches of

the positive leader towards the point of �ash origin. IC �ashes tend to out-

number the CGs in typical thunderstorms, but the actual proportion strongly

depends on various factors, including the seasonality (Medici et al., 2017).

Multi-stroke negative CG �ashes accounts for the majority of lightning that

reach the ground. The dynamics of negative CG �ash development, prior to

ground attachment, is essentially the same as IC �ashes. After the initial

breakdown, normally occurring between the bottom of the main negative

charge region and the small lower positive charge region, the negative leader
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in this case starts propagating downward. On timescales measured in frac-

tions of a second, the negative leader moves beyond the lower positive charge

region and continues to progress in virgin air outside the cloud, becoming vis-

ible as a faint luminous process that descends in branching pattern, referred

to as the stepped leader. The stepped leader progress towards the ground at

an average speed of about 2� 105 m=s along a non-continuous path due to the
variable conductivity of surrounding medium, until it reaches the proximity

of the ground in about 20 ms. At this stage, the substantial �ow of negative

charge attracts positive charges from a ground electrode and leads to the de-

velopment of an upward positive leader that initiates the attachment process.

The attachment culminates in the connection between downward and upward

leaders, establishing the primary lightning current channel between the cloud

and the ground and determining the return stroke (RS), which propagates up

the channel neutralising the negative leader charge and causing rapid heating

of surrounding air up to 30,000 K (Rakov and Uman, 2003). When the entire

RS process is completed in a few tens of microseconds, about 80% of negative

CG exhibits also subsequent return strokes initiated by dart leaders, that are

negative recoil leaders propagating downward along the pre-existing channel,

unlike the stepped-leader.

About 10% of CG �ashes are initiated by positive downward stepped leaders,

either from the main upper positive charge region of the cloud or from the

small lower positive charge region. Direct current measurements by Berger

(1975) revealed that positive CGs tend to reach higher peak currents values

than negative CGs, despite similar median peak currents of about 35 kA and

30 kA, respectively. Positive CG �ashes normally exhibit a single RS, as a

result of the absence of recoil leaders during negative leader progression after

channel cuto� that follows the �rst RS. The RS is almost always followed

by a relatively long period (> 40 ms) of continuing current which can last

up to some hundreds of milliseconds (Rakov and Uman, 2003). The overall

charge transfer in positive CGs can be signi�cantly larger on average that in

negative �ashes, making them a favorable source for generating red sprites,

as discussed later in section 2.5. Although positive CGs are less common,

they can be predominant during winter storms and the dissipating stage of
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thunderstorms. Yet, the potentially larger peak current and charge transfer

make them particularly dangerous in terms of lightning protection (Dwyer

and Uman, 2014).

2.4 Electromagnetic methods of lightning de-

tection

In the previous section, it was observed that a lightning �ash, lasting up

to 1 second or more, is the complex result of subsequent electric processes

which act on very di�erent timescales, from a few hundred milliseconds to a

few microseconds or less. Each process generates a characteristic electromag-

netic �eld signature, which vary from below 1 Hz to tens of MHz, with the

maximum radiated energy con�ned in ELF and VLF frequency band, domi-

nating for distances larger than about 50 km from the source (Rakov, 2013).

At closer range, additional electromagnetic radiation is detectable at higher

frequencies, for instance in the microwave band from 300 MHz to 300 GHz

(Petersen and Beasley, 2014), and more manifestly in visible light. Lightning

is also known to produce X-rays (up to 10� 1020 Hz or more) (Dwyer et al.,
2003; Dwyer et al., 2004), detectable at ground level in close proximity to the

source, as well as gamma ray emission (Gurevich et al., 2011; Abbasi et al.,

2018). This wide variety of processes within a �ash, along with frequencies

and amplitudes involved, determines the design of lightning location systems

(LLS) and their relative spatial coverage.

The most common ground-based LLS networks can geolocate lightning up to

several thousands of kilometers, operating in VLF-LF to detect radio atmo-

spheric signals (�sferics�), caused primarily by CG return strokes or by strong

IC current surges in later stages of the �ash, whose peak current magnitude

is generally one order of magnitude less with respect to the RS. These sferics

will propagate by the process of multiple re�ections through the boundaries of

Earth-ionosphere waveguide (sky waves), travelling very long distances with

low attenuation rate (2-3 db/1,000 km) (Wait, 1957), as well as along the sur-

face (ground wave), but with greater attenuation. Because the attenuation
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rate of lightning emitted signals increases with frequency, lightning sensors

that are intended to measure local activity around individual thunderstorms

are typically VHF, which detect leader emission with high spatial and tempo-

ral accuracy and have an IC/CG stroke detection e�ciency exceeding 95%.

It is �nally possible to achieve a global coverage by using single ELF band

sensors, but at the cost of poor location accuracy (typically 500-1,000 km)

and detection e�ciency (Price, 2008). The low attenuation rate actually lets

lightning electromagnetic waves in the ELF band to propagate a number of

times in the Earth's waveguide before decaying into the background noise,

making them detectable at global level. Constructive interference between

these waves excites the Earth-ionosphere cavity which resonates at the fun-

damental frequency and its harmonics, known as Schumann resonances (SR)

(Price, 2016). SR appear as well-de�ned spectral peaks approximately be-

tween 5 and 50 Hz. The amplitude of SR measured at a given location is

primarily a function of the source-observer distance, but it can be modu-

lated along with each mode frequency by various geophysical e�ects (e.g. the

solar cycle). A wider discussion on SR is reported in chapter 7. The mea-

surement of individual ELF waveforms at large distances from the source is

widely used to derive relevant information about the causative RS and even-

tually associated TLEs, as the charge moment change (CMC) (the product

of the thundercloud charge transfer and its altitude), assuming a numerical

propagation model and knowing the detector transfer function (Kuªak and

Mªynarczyk, 2011; Kuªak et al., 2014). In addition to ground-based detec-

tors, the last few decades have seen a rapid development of low-Earth orbiting

satellites using optical observations in the near infrared or VHF antennas for

global lightning monitoring (Nag et al., 2015).

LLS rely on a number of multiple measurement stations, whose data are then

combined using di�erent methodologies as direction �nding (DF) , time-of-

arrival (TOA) techniques, or a combination of these two, and interferometry

(IF) methods. The magnetic direction �nding technique consists of two or-

thogonal loop antennas which measure the magnetic �eld waveform produced

by a lightning event. The amplitude ratio of a selected waveform feature (gen-

erally the peak) measured by each loop can be used to calculate the source
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azimuth with respect to a sensor location (Nag et al., 2015). The intersection

of two or more such direction vectors from additional sensors measuring the

same event simultaneously determines its location. Three-axis magnetic �eld

sensors are required to also estimate the event altitude. The TOA method

uses the small di�erences in the arrival times of the lightning waveform at

multiple stations. A constant di�erence of the times at which a speci�c fea-

ture occurs at two di�erent sensors de�nes a hyperbola, and intersections of

hyperbolas from four or more other sensors let to identify unambiguously a

lightning event location. IF does not require the identi�cation of individ-

ual pulses, instead it uses the phase di�erence of bursts of electromagnetic

radiation, arriving at di�erent antennas for determining both the azimuth

and elevation of the radiation emitted from the lightning channel. VHF net-

works typically consist of 10-20 stations separated by a few tens of meters

(very-short baseline) to few tens of kilometers (short baseline), all within

approximately 60 km of the center of the network. They are sensitive to

frequencies from 30 to 300 MHz, which are known to be associated with air

breakdown processes (Rakov and Uman, 2003), and can be based on both

TOA and IF technique. Long baseline networks based on VLF and LF fre-

quencies, ranging from 3 to 300 kHz, measure the sferics from currents �owing

into existing lightning channels, and both DF and TOA methods can be used

to locate the source of VLF sferics with reasonable resolution.

2.5 Upper-Atmospheric Electric Phenomena

In the last decades, observations from space and ground observers revealed

the existence of a wide range of optical phenomena in the upper atmosphere

(�g. 2.3), from the cloud top to the lower ionosphere, powered by active

thunderstorms (Neubert et al., 2008; Pasko, Yair, and Kuo, 2012; Siingh et

al., 2012). Commonly referred to as transient luminous events (TLE) as a

whole, they exhibit very diverse morphologies and characteristics, depending

on the underlying physical mechanism, and can typically last from less than

1 ms to up to tens of milliseconds.

Red sprites are a manifestation of electrical breakdown at mesospheric alti-
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Figure 2.3: Ideal representation of TLEs and TGFs occurring above
thunderstorm. Reprinted from NASA, Available online: https://www.nasa.
gov/image-feature/upper-atmosphere-phenomena-caused-by-thunderstorms,
2018, accessed on October 1, 2020.

tude, roughly between 80 and 50 km, and are mostly associated with posi-

tive cloud-to-ground (+CG) lightning discharges, lowering large amounts of

charge to ground (Boccippio et al., 1995). Sprites are commonly observed

during the dissipating stage of continental mid-latitude MCS, typically in

the trailing stratiform region (Siingh et al., 2012). The reason is the horizon-

tal dipole lightning pattern distribution of CG occurrence in a MCS, with

negative strokes normally located in the area of active convection (Rutledge

and MacGorman, 1988). Yet, smaller spatial extent and cloud height winter

thunderstorms can generate sprites, as recurrently observed in Japan (Taka-

hashi et al., 2003; Hayakawa et al., 2004; Adachi et al., 2005).

In general, there are three main regions in sprites: an upper di�usive region,

the bright transition region and lower streamer region (Pasko, Inan, and Bell,

1998). However they can exhibit di�erent shapes, the most common of which

are "carrot" sprites, "columniform" sprites or "jelly�sh" sprites (Bór, 2013).

Sprites also tend to occur in clusters of two or more short lived (tens of ms)
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elements, distributed over a horizontal distance of 50-100 km and with a

separation between the elements of about 10 km (Neubert et al., 2005). The

reddish optical emission is primarily due to the neutral molecular nitrogen

N2 emissions, which is the major constituent (about 80 %) of the atmosphere

in the 20-90 km region; observations of weak ionized molecular nitrogen emis-

sions indicate also the possible presence of higher energy processes (Heavner

et al., 2000). High-speed imaging of sprites, faster than 10,000 fps, led to the

discovery of additional concurrent features as streamers propagating both

downward and upward and halos (Stenbaek-Nielsen et al., 2013).

The main commonly accepted mechanism for sprite production is electron

heating by the quasi-electrostatic (QE) �eld onset in the upper atmosphere

and conventional air breakdown (Pasko, 2010), originally theorized by C. T.

R. Wilson (1925), as a result of the rapid change in charge con�guration of

the thundercloud following the large charge removal of a positive CG stroke.

A proposed alternative is the runaway breakdown mechanism (Gurevich and

Zybin, 2001), in which seed relativistic electrons with energies greater than

1 MeV are accelerated by the thunderstorm QE �eld, producing ions and ad-

ditional secondary free electrons through collisions; if the QE is greater than

a certain threshold, a cascade process makes the number of energetic elec-

trons grow exponentially and optical emissions possible through collisional

excitation between the relativistic electrons and the lower-energy secondary

electrons. The continuing currents �owing into the body of sprites are re-

sponsible for the signi�cant ELF content of a typical sprite-associated wave-

form, exhibiting a secondary peak, following the +CG return stroke current

impulse, which coincides with the optical brightness peak (Cummer et al.,

1998). The apparent polarity asymmetry in sprite-producing CG has been

extensively faced in the last few years. Williams (Williams et al., 2012) sug-

gested that negative cloud-to-ground are more often associated with halos,

rounded visible reddish spots of light sometimes preceding sprites and pro-

duced by the same physical process, but for which the ionization is too weak

for streamer development. More recently Lu (2017) reported a number of

sprites related to negative CG, distributed mainly above the ocean where

negative CG are expected to be more intense (Said, Cohen, and Inan, 2013),
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observing also a higher CMC threshold for sprite initiation respect to posi-

tive CG.

ELVES (Emission of Light and Very low frequency perturbations due to EMP

Sources) are red donut-shaped transient luminous events occurring above

thunderstorms at an altitude of about 90 km, either individually or in con-

junction with sprites. They can reach an extension of 500 km in diameter

and develop on time scales of less than 1 ms, hence much faster than sprites

(Fukunishi et al., 1996). The rapid onset is the direct result of lightning EMP

coupling to the lower ionosphere (90-100 km), through electron Joule heating

(Inan, Bell, and Rodriguez, 1991) which determines the di�use luminosity.

Elves can be triggered by both positive and negative CG strokes, as long

their related peak currents exceed a given threshold. For example, Blaes et

al. (2016) found a 50% elve probability for peak currents above 88 kA.

Other types of transient optical phenomena occur much less frequently dur-

ing a thunderstorm. These include: 1) the gigantic jets (GJ), which move

upward connecting the cloud top to the ionosphere; 2) the blue jets (BJ),

developing upward from cloud top to altitudes of about 40 km at speeds of

100 km=s and showing a blue conical shape; 3) blue starters (BS), closely

related to BJ but with a smaller extent terminating at an altitude of about

25 km (Pasko, 2008).

Thunderstorms have been found to act like an e�ective particle accelera-

tor, capable of producing high energy emission up to tens of MeV in the

form of gamma rays and energetic particles (Tavani et al., 2011; Dwyer, Liu,

and Rassoul, 2013). In addition to TLEs observed at visible wavelengths

above active thunderclouds, satellite observations detected intense bursts of

gamma-rays, referred to as Terrestrial Gamma-ray Flashes (TGF), lasting

from a few tens of microseconds to a few milliseconds. TGFs develop at an

altitude of 15-20 km, comparable to thundercloud tops, and are relatively

common (i.e. thousands of events each day). Timing and spatial correlation

studies showed an association with the initial stage of positive IC lightning

activity within the cloud. The initial explanation proposed for TGF pro-

duction was the bremsstrahlung emission from a population of high energy

electrons, resulting from the relativistic runaway electron avalanche (RREA)
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process (Fishman et al., 1994), although the observed features in TGF spec-

trum involved other secondary mechanisms. More recent satellite measure-

ments (Tavani et al., 2011) have shown that RREA is actually not needed

for TGFs production and the main mechanism, now widely accepted, con-

sists in the creation of energetic runaway electrons (up to 100 keV) in limited

regions of space by streamer tip and their further direct acceleration in the

electric �eld produced by a lightning leader tip, increasing their energies to

tens of MeV (Celestin and Pasko, 2011). Longer events (20-30 ms), detected

by satellites and exhibiting multiple peaks, are interpreted as energetic elec-

tron bunches moving along the geomagnetic lines and produced by Compton

scattering and pair production induced by TGF photons above the source

region (Carlson, Lehtinen, and Inan, 2009). Other observed signatures, as

the annihilation line at 511 keV, revealed the presence of positrons in the

particles bunch (Marisaldi et al., 2013). Some models and ground measure-

ments suggest also an enhancement in neutron photo-production by TGFs

(Carlson, Lehtinen, and Inan, 2010; Chilingarian, Bostanjyan, and Vanyan,

2012).



Chapter 3

Instrumentation: the BTD-300

sensor

In this chapter the basics of electrostatic lightning detection and thunder-

storm warning systems are introduced. A detailed description of the method

used for this research is then provided. The advantages and di�erences of

this technique with respect to other electrostatic sensors are described, along

with further details on the sensor output.

3.1 Lightning early warning systems

Automated lightning warning systems are a critical component of many sen-

sitive operations. This is especially true at airports but the same applies to

some industrial processes, such those involved with explosives and chemicals

processes or mining and power plants (i.e. nuclear plants, wind farms). Out-

door areas which are often congested with people and lack su�cient shelter,

such as sport complexes and leisure parks, are also particularly vulnerable

during thunderstorms. In most cases, distant lightning detection will warn

of an approaching storm with su�cient lead time (Bennett, 2018). How-

ever, in a minority of cases the �rst �ash may occur either nearby or at the

place that is most vulnerable, representing the most dangerous situations. A

lightning early-warning system, therefore, is a device that determines when

21
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atmospheric conditions are likely to produce lightning strikes and sounds an

alarm, warning those nearby that lightning is imminent and allowing them

to take action with su�cient lead time before the storm arrives in the area.

Prediction systems are naturally prone to false alarms as they respond to

conditions that are not always attributed to a developing thunderstorm.

E�cient alarm methods have been developed using total lightning activity

detected by regional VLF-LF lightning networks in combination with meteo-

rological satellite and radar information about the re�ectivity and location of

convective cells (Murphy and Holle, 2006), though requiring multiple costly

sensors and complex algorithms for processing the large amount of data col-

lected. The charging ability of deep convective clouds generates a strong

electric �eld at ground level, that can be detected prior to the onset of light-

ning activity. As a consequence, other lightning warning methods take into

account the increased strenght of the AEF as measured by electric �eld mill

(EFM) sensors (Montanya, Bergas, and Hermoso, 2004) to automatically

warn of a nearby Cb. A typical �eld mill consists of an insulated sensing

plate, which is alternatively exposed and shielded from the incident ambient

electric �eld under an earthed rotating shutter (MacGorman et al., 1998;

Harrison, 2015), as shown in �g. 3.1.

The time-varying charge induced by the ambient electric �eld on the sens-

ing plate is converted to a voltage by a charge ampli�er. Changes in this

observed voltage level correspond to changes which take place in the atmo-

sphere due to di�erent weather conditions, from 120 V/m (fair-weather) to

about 20 kV/m (intense thunderstorm overhead). As the observed values

increase, so does the likelihood of lightning to be present in the area of con-

cern. Depending on the charge magnitude and its location with respect to

the sensor, the e�ective detection range varies from a few km up to about

20 km. The necessity for moving parts and the need to mantain electrical

insulation makes this instrument relatively high power consuming compared

with other sensors and subject to maintenance. Also, it can only be installed

where there is a clear view of the overhead sky (e.g. no overhanging tree

branches, cables, snow cover etc.) and as far from taller objects as possible,

as these will distort the electric �eld.
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Figure 3.1: Basic design and signal conditioning inside a �eld mill. 1 Chopper
wheel; 2 sensor plates; 3 base plate; 4 rotary encoder; 5 drive; 6 ampli�er;
7 multiplier; 8 low-pass; 9 display. Adapted from Wikimedia Commons,
Available online: https://commons.wikimedia.org, accessed on January 19,
2021.

The AEF magnitude and polarity changes, related to charge layers in a de-

veloped thundercloud, are the main indicators of storm evolution useful for

warning, once calibrated thresholds are de�ned (i.e. commonly used stan-

dard values are 1.5 or 2 kV/m). The EFM method is suitable for warning

of imminent threat at short range (less than 10 km) with typical lead times

lower than 10 min, but it is characterised by a relatively low probability of

detection (POD=30-40%) and a high false alarm rate (FAR=75-80%) (Mur-

phy, Holle, and Demetriades, 2008; Aranguren et al., 2009). Some �eld mill-

based warning systems also detect nearby lightning by the abrupt change in

electric �eld it produces, as illustrated in �g. 3.2. Whilst the di�erence in

background electric �eld measured by a �eld mill before and after a �ash

can be used to broadly estimate its proximity up to few tens of km away,

determination that the sharp change in �eld was generated by a lightning

�ash can be challenging to do, especially during heavy precipitation where

background noise increases substantially. EFM are thus often complemented

with other sensors using a di�erent detection method (e.g. optical, acoustic)

to verify the presence of lightning and cannot be considered as stand-alone
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for lightning detection.

Figure 3.2: Electric Field mill operation. Reprinted from Wikimedia Com-
mons, Available online: https://commons.wikimedia.org, accessed on Jan-
uary 19, 2021.

3.2 The BTD-300 thunderstorm detector

An alternative method to detect the slow (<50 Hz) �eld changes resulting

from thunderstorm activity relies on the unique and still little-explored ap-

proach based upon measurement of displacement currents induced on grounded

electrodes exposed to air (Bennett, 2013; Bennett, 2017). The BTD-300 (Bi-

ral Thunderstorm Detector) has been developed speci�cally for use as a com-

plete stand-alone thunderstorm warning system, with an emphasis on aiding

operational decisions on lightning critical activities. The sensor is currently

the only commercially available sensor of this kind working as a single-site

thunderstorm detector and is designed to monitor conditions where a thun-

derstorm may develop overhead, as well as detecting and locating lightning

from local active thunderstorms in the area of concern, achieving a detec-

tion e�ciency exceeding 95% for a single lightning �ash (any type) within
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56 km and low FAR (<2%), in compliance with aviation authorities require-

ments (Biral, 2018). Lightning location uncertainty is speci�ed by the man-

ufacturer as ±5 km for <20 km range, otherwise ±10 km due to natural

variability of lightning strength. The combination of lightning and in situ

atmospheric electrical parameters signi�cantly increases the chance of early

warning before the �rst strike of a storm, succeeding in about 77% of cases

for nearby storms(<19 km) and 91% for storms which produced overhead

lightning (<9.3 km) and ensuring longer mean lead times with respect to

�eld mills(Bennett, 2018). Fig. 3.3 shows a typical example of early warning

of the �rst overhead �ash, provided by the BTD.

Figure 3.3: Warning messages sent by a BTD-300 as a storm intensi�ed
around the area of concern. The system ensured 15 min early warning before
overhead lightning onset and in a context in which other distant lighnting
were absent.
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3.2.1 Design and operation principle

In general, the electrostatic �eld change from lightning, �Es, at a horizon-

tal distance D on perfectly conducting ground due to removal of a single

spherically symmetric charge, �Q, from height H is given by:

�Es =
1

2��0

�QH

(H2 +D2)
3
2
; (3.1)

where �0 is the electric permittivity of free space. Eq. 3.1 is valid for distances

larger than lightning vertical channel H, typically beyond 9-10 km as seen

in �g. 3.4. Deviations from the inverse cube law increase with increasing

distances (>50 km), when ionospheric e�ects are not negligible and act to

further reduce the electrostatic �eld magnitude produced by lightning with

distance. This concept is explained by Perez-Invernon et al. (2016) and

Hager et al. (2012), using a more general formula for the vertical component

of the electric �eld in terms of multiple charge images between the ionosphere

and the ground:

Ez(r) = �
Q

2��0

+1X

n=�1

h+ 2nL
[(h+ 2nL)2 + r2]3=2 ; (3.2)

where Q is the total charge in the thundercloud, located at an altitude h
above ground, L is the ground-ionosphere separation and r the plane distance
from the thundercloud.

Given that all lightning �ashes generate an appreciable electrostatic �eld

change at close range, this can be used to measure total lightning activity

around a speci�c site, including weak cloud pulses and upward streamers

initiated from tips of wind turbine blades and tall masts, typically only a few

hundred amperes and thus occasionally missed by other VLF-LF lightning

location networks. The BTD-300 infers the value �Es by sampling the charge

�ow on its 3 co-located passive antennas (a spherical primary antenna on

top plus two toroidal ones just below), consisting of stainless steel grounded

sensing electrodes of approximately 0:28 m2, about 20 times larger than that

of a typical EFM, which allows a signal to noise ratio su�cient to reliably
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Figure 3.4: Electrostatic �eld magnitude produced by lightning at ground
level with distance. The inverse cube dependence is invalid at short distances
(<10 km), when the channel length can no longer be assumed small compared
to the receiver-source separation. The ionospheric screening contribution
becomes relevant at distances >50 km, acting to further reduce the E-�eld
magnitude.

detect lightning up to 83 km away. Each antenna works independently from

the others and generates a displacement current I in response to the dynamic
AEF, depending on the time derivative of the experienced electric �eld as
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follows:

I = �0AF
dE
dt
; (3.3)

where A is the antenna surface area and F is the amplication factor of E due

to the antenna geometry. The input current from the antenna is ampli�ed

and measured with a sensitive ammeter embedded in an electrical insulation

block, which is the key to the BTD reliability integrated with heaters and

wind/rain shields to ensure proper insulation during all weather conditions.

The insulation block unique design is presented in �g. 3.5, which shows the

PTFE (an excellent thermal and electrical insulator, heat and UV resistant,

hygrophobic and non-stick) rain shield and the grooved insulator, embedding

the ammeter and integrated with heaters. This particular shape maximises

the insulating surface area and add additional shielding. The ampli�er is

Figure 3.5: Antenna insulator unit, showing the location of the unheated
outer rain shield and inner heated grooved insulator block. Reprinted from
"BTD-300 user manual", by Biral, 2018, Copyright by Biral.

based upon a transimpedance circuit for current to voltage conversion (�g.
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3.6), using a single resistor with parallel capacitance and an opamp stage

(Harrison, 2015). The output voltage is related to the input current by

Figure 3.6: Basic elements of a transimpedance ampli�er. Adapted from
Wikimedia Commons, Available online: https://commons.wikimedia.org, ac-
cessed on August 6, 2021.

Vout = �iRf : For currents of nA or larger, as those associated with lightning,

Rf �M
 will give voltages in the mV level (1 nA=22 mV for Rf = 22M
,
the actual value used on the BTD-300). The output signal is continuously

sampled at 100 Hz, corresponding to 10 ms resolution, which is su�cient to

capture the entire waveform of a lightning �ash, including �rst and subse-

quent RS in case the �ash multiplicity exceeds 1. Unlike individual lightning

strokes, the total charge neutralisation by lightning �ash usually takes sev-

eral hundreds of milliseconds. Flash durations measured by the BTD-300

and reported in �g. 3.7 indicate a median of 0.2 s and 95% are within 0.9 s.

The sensor time resolution provides reasonably rapid measurement to cap-

ture the induced currents from all lightning �ashes in a storm, even in the

presence of high �ash rates, without saturation. The maximum cumulative
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Figure 3.7: Histogram of �ash durations measured by the BTD-300.

sum (time integral) of antenna output over the �ash duration is proportional

to the electrostatic �eld change in eq. 3.1 produced by the �ash, which is

in turn used to estimate the distance between the lightning and the sensor,

assuming a CMC of 50 C km (typical range is 20-160 C km) (�g. 3.8).

The largest source of range uncertainty is therefore the natural variability in

lightning charge moment. The error in range estimation if a �xed value for

the lightning charge moment is chosen is shown in �g. 3.9. The range uncer-

tainty was estimated by determining the theoretical electric �eld change with

distance for a typical lightning �ash with a charge moment of 70 C km, com-

pared to a �ash with 20 and 160 C km. These limits encompass the majority

of charge moments found during a typical thunderstorm. A suitable integra-

tion period (>0.2 s) needs to be used to ensure the total charge moment is

captured. It is important to use only the electrostatic component of the total
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Figure 3.8: BTD-300 lightning ranging principle. The integrated antenna
output during a lightning �ash is proportional to the total electric �eld
change, which in turn depends upon the charge moment change and the
inverse cube of distance.

�eld change, since the radiation and induction �eld components scales di�er-

ently with distance. These components can be neglected for propagation dis-

tances shorter than about 80 km by limiting the antenna frequency response

to below 100 Hz. The proportion of current induced on a conductor due to
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Figure 3.9: Di�erence in range estimation if a lightning charge moment
change of 70 C km is assumed compared to an actual value between 20
and 160 C km, for a lightning channel length of 3km.

the electrostatic component of the lightning signal compared to the radiated

electromagnetic component can be approximately expressed as function of

the distance from the �ash according to: �ES=�ER = (c=(2�fmaxD))2. Fig-

ure 3.10 shows qualitatively that 97% of the current induced on the antenna

80 km from the �ash is due to the slow-varying �eld change (<100 Hz) (only

29% if <1 kHz); the electromagnetic component dominates beyond 50 km if

the max frequency response is increased to 1 kHz. The BTD antenna out-

put is therefore �ltered and only changes in the electric �eld between 1-45

Hz are used, which is a considerably lower frequency than signals produced

by electromagnetic (radio) waves used for wireless communication or emit-

ted by electronic equipment. Whilst signals in 1-45 Hz are produced by the



CHAPTER 3. INSTRUMENTATION: THE BTD-300 SENSOR 33

Figure 3.10: Proportion of current induced on a conductor due to the elec-
trostatic component of the lightning signal compared to the electromagnetic
component for di�erent frequency response of the sensing device, with dis-
tance from �ash.

relatively slow changes in electrostatic �elds, the 1 Hz high pass �ltering of

the BTD-300 prevents direct measurement of the atmosphere's background

(DC) electrostatic �eld. The BTD-300 measurement technique is therefore

referred to as �quasi-electrostatic�. This technique has the distinct advantage

of removing noise from slow changes in the electric �eld below 1 Hz, which

are not associated with lightning.

In addition to lightning detection, the BTD-300 is sensitive to other sources

of electrosatic �eld change that are related to the presence of convective

clouds and used to promptly warn of overhead lightning risk. Charged pre-

cipitation represents a natural signal with similar characteristics to distant

lightning. The source of the displacement current on the antennas is from

direct impact or very close (few centimetres) movement of charged hydrom-
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eteors or hailstones. Measurement does not re�ect the actual net charge

on the drop, but rather the dipole induced on the falling particles by the

AEF. Increased background variability in displacement current in the pres-

ence of strong electric �elds under Cb is generated by wind-blown ions, or

space charge, moving by the sensor and released at ground level by corona

emission from prominent structures. The di�erent sources can be clearly

separated on the BTD using an innovative method described by Bennett

(2013) and based upon the antenna ratios, determined by the relative signal

amplitude measured on the 3 channels. The method is also bene�cial in low-

ering the false alarm rate, by the automatic identi�cation of non-lightning

sources. 3D electric �eld simulations taking advantage of the axial sym-

metry of the BTD-300 using Finite Element Method Magnetics (FEMM,

https://www.femm.info/wiki/HomePage), allowed the estimation of theo-

retical antenna ratios for di�erent charge con�gurations, emulating for in-

stance �eld changes from lightning or falling charged particles, and high-

lighted the necessity of installing the BTD away from nearby obstacles in

order to keep such values unaltered. Ideally, the thunderstorm detector will

be installed at distances of at least 3 times the height of any nearby objects

without overhead obstructions, to avoid reduction in performance, and no

regular movement of people or vehicles within 10 m is recommended. The

relative magnitude of the electric �eld surrounding the BTD-300 when in-

stalled on �at, open ground is shown in �g. 3.11. A cross-section of the

BTD-300 is superimposed, showing the spherical antenna at the top, with

the two toroidal antennas below. The strength and orientation of the elec-

tric �eld is indicated by the lines of equipotential (e.g. voltage of the air

compared to the ground). The equipotential lines are horizontal over a �at

site, but are perturbed in the vicinity of a grounded object such as the BTD-

300. The increase of the electric �eld magnitude surrounding the antennas of

the BTD-300 can be seen, with warmer colours and closer equipotential lines.

This increase helps the instrument to detect small changes in the background

electric �eld associated with distant or weak lightning. On the other hand,

the electric �eld magnitude enhancement on the antenna surfaces requires

their geometry to be round and smooth su�ciently to avoid corona initia-

https://www.femm.info/wiki/HomePage
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tion, that could seriously undermine the measurement process. In particular,

the special geometry of BTD-300 antennas allows the detector to operate un-

der intense electric �elds (up to about 150 kV/m) without initiating corona

interference.

A key bene�t in using the BTD-300 is given by the possibility to estimate

Figure 3.11: Relative electric �eld magnitude (colours) and equipotential
lines surrounding the BTD-300, modelled in FEMM. Background �eld is 100
V/m, with equipotential lines every 10 V.

both proximity and bearing of a lightning �ash. The radio emission from

lightning is used to determine its direction by the magnetic direction �nding

(MDF) technique (Rafalsky et al., 1995). The BTD-300 is then equipped

with a MDF module, with a peak sensitivity at 80 kHz in the low frequency

(LF) radio band between 30 kHz and 2 MHz, optimized to detect both CG

and IC �ashes, and consisting of three co-located radio antennas, respectively

sensitive to the NS and EW horizontal magnetic �eld components and to the

vertical electric �eld component. The relative magnitudes and polarities of

these RF components, associated with the highest amplitude stroke within a

�ash, are used to compute the direction of the source with a maximum uncer-

tainty of about 5 degrees, up to nearly 300 km from the sensor. Di�erently

from other stand-alone RF antennas used for lightning detection, the BTD-

300 reports a lightning �ash only in the case of simultaneous trigger of both

quasi-electrostatic antennas and MDF module, thus lowering the false alarm
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rate from spurious radio waves. The combination of electrostatic ranging and

radio direction �nding allows thunderstorms to be located and tracked in a

radius of up to 100 km around the site of interest using a single sensor. An

example of �ashes located by the BTD-300 during an active thunderstorm

is illustrated in �gure 2.5, in relation to spread heavy thundery showers in

Southern UK on April 21, 2018, following an unusual early spring heatwave.

Figure 3.12: Realtime storm tracking and �ash ranging provided by the BTD-
300 during the 21 April 2018 thunderstorms in South West UK. The two plots
show the time and spatial distribution of �ash locations around Portishead
(UK), by combining both MDF and quasi-electrostatic estimation of bearing
and distance, respectively.

3.3 BTD-300 data output

The data examined for this thesis covers the period 2015-2020, during which

a statistically signi�cant database was built up by continuous operation of

a BTD-300 installed at Biral headquarters in Portishead, UK. The database

consists of two data streams: 1) the BTD processed output consisting of

a message sent automatically every 2 seconds via a serial data connection

and containing details of any lightning �ash, the warning status and the

system status determined over the previous 2 seconds, used to identify all

thunderstorm warnings issued; 2) the 100 Hz sampled antenna current raw
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time series, actually used to perform calculations and statistics and fed into

the BTD inner processor. The processed dataset is the one normally avail-

able to users and used by the Biral Control software, which among the other

functions provides a real time display of any lightning occurrence within

83 km of the site and any warning of potential local thunderstorm activity.

Default warning levels are de�ned in compliance with the Federal Aviation

Administration (FAA) standards, as speci�ed in the user manual; in addi-

tion, reporting of a numerical �ag clari�es the nature of warning issued. The

warning �ag is a 2 character integer where individual bits have been set to

correspond to certain warnings (i.e. distant �ash, corona, charged precipita-

tion, etc...) and can be eventually combined. By contrast, the raw data are

made only optionally available (i.e. for research application) to the host PC

connected to the BTD-300 via serial connection. Data are stored in binary

format, each �le containing 15 min recordings by default. For the purpose of

this research project, this latter time series is generally used. The data pro-

cessing and analysis is performed in Python. Details of tools and techniques

used are provided later, in the relative sections.



Chapter 4

ML classi�cation of BTD

waveforms

This chapter addresses the issue of occasional transient signals misinterpreted

as local �ashes by the BTD-300 and consequently leading to false alarms. Af-

ter brie�y introducing the main goals to be achieved, a description of common

noise sources and relative signatures is presented, with an emphasis on tran-

sient signals induced by remote lightning �ashes occurring hundreds of km

outside the area of concern but whose amplitude is comparable to that of

local �ashes. The di�erent features with respect to genuine �ashes suggested

the possibility of using waveform recognition based on a machine learning

(ML) classi�cation algorithm in order to correctly classify each detection.

The steps of the newly developed method are introduced along with an anal-

ysis of performance on unseen data. Possible optimisations are also discussed

that would make it applicable to the BTD real-time data processing.

4.1 Goals

As previously described in section 3.2, the BTD-300 uses an innovative

method of discriminating between uniform, vertical �eld changes generated

by lightning and non-uniform, non-lightning sources of quasi-electrostatic

�eld change by comparison of the signal strength on its 3 co-located an-

38
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tennas, which is a function of their di�erent geometry and exposure to the

AEF. This discrimination is of fundamental importance to achieve the de-

tection e�ciency and low false alarm rates required by strict aviation safety

regulations, hardly attainable on single �eld mills or radio sensors. Occa-

sional transient signals may however mimic the antenna ratio and strength

of genuine �ashes, leading to potential false alarms being issued by the BTD

in case the estimated range falls within the de�ned warning sectors. Com-

mon sources of ambiguity in local �ash identi�cation are usually related to

either intense CG �ashes occurring outside the area of concern, up to some

hundreds of km from the sensor, or other local transient electric �eld changes

on the same time scale as a lightning �ash such as from birds �ying by the

detector.

In accordance with the SAINT proposal for this PhD project (i.e. design of

improved short-range lightning detection system for airport safety), a new

approach has been developed and tested aiming at improving the ability of

the �ash �nder algorithm in identifying and rejecting unwanted signals. The

main goal is hence to extend the current algorithm by introducing a clas-

si�cation based upon not just the antenna ratio but also on the waveform

shape recognition. The core of this approach is the combination of already

available �ash features (described in section 4.2) and newly added spectral

analysis, that are subsequently used to feed a ML classi�cation model. The

main advantage is the great versatility of the algorithm, being easily cus-

tomizable to identify speci�c features in the time series and leading the way

to new research applications for the BTD-300. In particular, the improved

characterization of spike transients detected by the BTD in association with

remote large peak current CG strokes proved bene�cial for the wider Atmo-

spheric Electricity research community, as shown in the following chapters.

A second goal is the algortihm optimisation through the analysis of input

features importance in signal discrimination and data pre-processing, which

would allow better performance in terms of computational time and possible

integration into the current BTD real-time data processing algorithm.
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4.2 BTD �ash �nder algorithm

Discrimination of sources of displacement current on the BTD-300, necessary

for issuing speci�c alerts, is normally achieved by processing the 100 Hz sam-

pled output from its 3 channels. The operation is automatically performed

on the data �ow in near real-time using a half second bu�er by the BTD

internal processor which communicates with a PC, hosting the Biral BTD

Control Software, or an external sounder via a dedicated relay. In particular,

the focus of this section is on the BTD �ash identi�cation work�ow, which

is emulated in a Python script to facilitate further analysis. Discussion is

henceforth referred to this latter procedure.

Those steps in the procedure which where found relevant are set out be-

low. Once recorded data for a speci�ed interval of time are loaded and

stored in 3 arrays, one for each channel, the preliminary step is the ADC to

voltage values conversion and o�set correction. Each point in the arrays is

then examined to identify eventual values that exceed a predetermined SNR

(Signal-to-Noise Ratio) threshold. In particular, for a given data point i:
1) the mean and standard deviation (SD) antenna value in the previous N

samples are determined along with the SNR, as follows

SNR = (antennaout[i]�MEAN [i�N�1 : i�1])=SD[i�N�1 : i�1]; (4.1)

2) the relative antenna ratios are calculated between Primary/Secondary and

Primary/Tertiary antennas, respectively; 3) the covariance based on n < N
samples is calculated for the window [i�n�1 : i+1], since �ash �eld changes
are expected to induce concordant sign current variations on the antennas

(COV > 0). The data points that satisfy the following conditions:

8
>>><

>>>:

SNR > SNRthreshold

min < P=S < max min < P=T < max

COV > 0

(4.2)



CHAPTER 4. ML CLASSIFICATION OF BTD WAVEFORMS 41

are classi�ed as �ash events and grouped into the same �ash if the time di�er-

ence between the last and next sample, which meets the same requirements,

is less than or equal to 500 ms. The min/max antenna ratios above have been

optimised by the manufacturer following electrostatic simulations and direct

�ash measurements. The need of value initialisation implies that a small

fraction of the original dataset is used for this purpose. For all the events

identi�ed, additional features are determined and stored as for instance peak

amplitude, �ash duration and the max/mean ratio that characterise each

�ash. In addition, the primary antenna current is integrated over the �ash

duration, allowing range estimation through Eq. 3.1. The relevant informa-

tion about each �ash are hence stored in a CSV �le, containing time, date

and features previously obtained. Flash relative waveforms can be optionally

saved as image format for visual inspections. Examples of extracted �ash sig-

nals are shown in �g. 4.1.

Figure 4.1: Two �ashes recorded by the BTD at di�erent distances: an
overhead �ash, in which the induced current reaches the saturation level
(left); a distant (70 km) multi-stroke -CG �ash. In both cases, it is evident
that lightning generated �eld changes produce concordant currents on the 3
antennas (i.e. positive covariance).

4.3 Noise sources

Although the method described proved succesful in most cases, as widely

demonstrated by the BTD performance, it does not allow automatic recog-

nition of eventual not genuine signals that accidentally meet the previous set
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of conditions. Such events could be easily identi�ed by visual inspection of

related waveforms. However, the raw data output is not generally available

to users and the manual identi�cation is not practicable, given that the BTD

technology is intended to deliver automatic thunderstorm alerts with mini-

mal supervision. Hence the need to automate this process.

The data examined for the purpose covers the period 2017-2020, during which

a large database was built up by continuous operation of a BTD-300 installed

at Biral headquarters in Portishead, UK. The database consists of two data

streams: 1) the 100 Hz sampled antenna raw time series, stored as binary

�les containing 15 min recordings each, feeding �ash �nder algorithm and

actually used to perform calculations and statistics; 2) the BTD processed

output consisting of a message sent every 2 seconds and containing details

of any lightning �ash, the warning status and the system status determined

over the previous 2 seconds, used to identify all �ash warning issued. For

the period considered, the raw data have been processed using the algorithm

in section 4.2 and approximately 18,000 events were classi�ed as lightning,

whose range is estimated to be less than 100 km. An event is tagged as false

warning/detection either if a combination of satellite imagery and lightning

data from the GLD360 Global Lightning Dataset (providing information on

lightning stroke time and location plus additional parameters as the peak

current and polarity) indicates that no active thunderstorms were present

in the area of concern at the time of warning trigger, or in case of a match

with a genuine distant �ash, if the actual distance from the detector is larger

than 100 km. Also, a concurrent visual inspection is carried out on suspected

false detection associated waveforms, extracted from the time series. This

preliminary selection allowed the identi�cation of not-genuine detections and

the generation of a catalogue of recurrent waveforms, whose shape depends

on the actual causative source, as shown later. It must be pointed out that

such false detections led only to �distant lightning� (i.e. >20 km) warnings,

the lowest BTD alert level, leaving the accuracy in nowcasting vicinity or

overhead thunderstorm risk unaltered. Aviation authorities, in fact, require

the interruption of outdoor activities, including �ight departures and arrivals,

only when lightning is detected at aerodromes within a critical distance of
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about 5 NM (9 km).

Most commonly observed classes of occasional non-stationary transient sig-

nals determining false detections are grouped into 3 main categories: 1)

unipolar spikes, caused generally by intense CG �ashes occurring outside the

area of concern (i.e. FAA lightning reporting range is 30 NM, corresponding

to about 56 km); 2) sinusoidal signals, resulting from birds �ying above or

nearby the sensor; 3) burst signals, generated from high voltage transients

in nearby electrical devices/switches, which are the least frequent and unlike

the previous two categories can be completely removed complying with site

installation requirements. Type 1 and type 2 sources exhibit a characteristic

diurnal and seasonal pattern. The former type is predominant in wintertime

and more evenly distributed during the day (see section 4.3.1). The latter

is largely dominant during Spring and in a lesser extent in Summer months,

with related warnings occurring almost exclusively in daylight. The observed

shape di�erences with respect to genuine �ashes are also re�ected in a spe-

ci�c spectral content, that is therefore included in the list of features used for

event classi�cation through ML, as decribed in section 4.4. The advantage of

including the time-frequency representation is evidenced in �g. 4.2, in which,

using for instance the continuous wavelet transform (CWT) ((Percival and

Walden, 2000; Kristeková, Kristek, and Moczo, 2009)) of BTD signal on the

primary antenna, it is immediately obvious the dominant frequency compo-

nents in the case of a spike and a bird false positive. The CWT captures the

impulsive events at the same times they occur in the time series, revealing

a superposition of di�erent frequencies on the latter signal, characterised by

a dominant peak at lower frequencies, just below 10 Hz, and followed by a

broader but weaker high frequency region concident with the positive peak

in the time series. The spike signal, conversely, is less resolved in frequency

domain, showing a distinct wide band region peaked at about 35 Hz.
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Figure 4.2: Time-amplitude and time-frequency representation of type 1 and
type 2 false positive signals.

4.3.1 Properties of CG �ashes associated with spike false

warnings

Unlike other sources of false warning, detection of BTD spikes has scienti�c

relevance and potential impact on lightning superbolts and TLEs research

(see chapters 5 and 6). Based upon the false warning selection method in sec-

tion 4.3, about 150 events of identi�ed false belong to the spike category. The

information about causative CG, retrieved from GLD360 database, shows a

signi�cant bias towards large peak currents (> 100 kA) but a predominance

of +CG as seen in the histogram in �g. 4.3, with a median of +235 kA. De-

spite the lower proportion of negative �ashes, -CG are stronger on average

with a median of -514 kA (by contrast, the average peak current of �rst RS in

negative �ashes is -30 kA (Rakov and Uman, 2003)). Table 4.1 summarizes

the main properties of spike associated CGs.
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Table 4.1: CG average properties and proportion summary (*available from
Nov 2018)

-CG +CG

Peak current (kA) -470 +254

RiseTime* (�s) 20.5 19.6

Peak-to-Zero* (�s) 17.0 16.1

Proportion 28% 72%

Figure 4.3: Peak current distribution of spike-causative CG �ashes retrieved
from GLD360.

The geographical distribution of spike sources in �g. 4.4 shows a polarity

asimmetry, with -CGs tending to be exclusively con�ned to sea and coastal

areas such as Irish/Celtic sea and the English Channel. +CGs appear more

uniformly distributed but with a higher density along the western coast of

the UK.
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Figure 4.4: Location of �ashes that triggered spikes on the BTD. The grey
area indicates a radius of 100 km around the sensor at Portishead. Innermost
yellow area represents the lightning area of concern (<56 km) for airport
safety according to FAA regulations.

On the other hand, their seasonal distribution highlights a peak activity

for DJF quarter, when the maximum number of days (19) with spike-related

warnings is found, which corresponds to about 50% of the total as shown in

�g. 4.5.
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Figure 4.5: Spike-warnings seasonal distribution by quarters.

This period of the year is typically dominated by arctic and polar mar-

itime air which often produces scattered thunderstorms around the British

Isles. The occurrence of intense CG �ashes during winter thunderstorms is

widely discussed in later chapters, along with the increased risk of damage to

properties and power lines. Summer spike false warnings are by contrast sig-

ni�cantly less frequent, with a minimum of 5 days for JJA quarter, and tend

to be concentrated in periods of widespread lightning activity, as large MCS

and multicellular thunderstorms whose development is boosted by summer

weather patterns such as the Spanish Plume.

4.4 ML classi�cation algorithm

Machine learning (ML) generally indicates the study of techniques that gives

computer algorithms the ability to learn from data and improve automati-

cally to perform tasks without being explicitly programmed to do so (Géron,

2019). ML algorithms are used in a wide variety of applications, where con-

ventional algorithms are too complex (or not known) and require a lot of

hand-tuning or long lists of rules. ML techniques are also widely used in

many areas to dig into large amounts of data and discover eventual patterns

otherwise not immediately apparent in the so-called data-mining.
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Figure 4.6: ML work�ow architecture.

A basic ML algorithm build a model based on sample data, known as

training set, in order to make predictions or decisions whose accuracy is

later evaluated. The typical work�ow process is described in �g. 4.6. The

next subsections cover the di�erent steps of ML approach applied to the

BTD data, which extends the functionality and prediction capability of the

method in section 4.2. The new algorithm is alike implemented in Python

3 and the main libraries used are NumPy, Pandas, SciPy and scikit-learn, a

free ML library, featuring among the other functions various classi�cation,

regression and clustering models.

4.4.1 Problem de�nition and data preparation

As anticipated in section 4.1, the main goal of the new algorithm is to cor-

rectly �ag the events selected using the method in section 4.2, in order to

distinguish genuine �ashes from other transient signals that produce sim-

ilar antenna ratios. The task is therefore a typical classi�cation problem

for which ML o�ers a viable/practical and versatile solution. A traditional

approach would by contrast require several hand-tuned thresholds for each

category and imply an a priori knowledge of waveform features, not adapting

to �uctuating environments as previously unseen noise signals.

ML algorithms can be di�erentiated depending upon the type of supervision

they get during training. Supervised learning is used in this speci�c case,
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meaning that the training set fed into the algorithm includes the desired

class or label for each entry. In order to perform a classi�cation task, a ML

algorithm should be able to predict the label of a new instance it has never

seen before, given a number of examples contained in the training data. The

approach used herein is the model-based learning, in which a model is built

from the training set and later used to make predictions on unseen events

(�g. 4.7).

Figure 4.7: Model-based learning. Adapted from Hands-On Machine Learn-
ing with Scikit-Learn and TensorFlow, p. 18, by A. Géron, 2017, O'Reilly.
Copyright 2017 by Aurélien Géron. All rights reserved.

The preliminary step in the algorithm development is forming the database.

As already mentioned in section 4.3, data in this study are gathered by pro-

cessing the BTD raw output through the �ash �nder algorithm in 4.2, mod-

i�ed to include FFT calculations, and partitioned in 2 data sets: (i) Data

Part 1, including events from 2017 to May 2019 and used to de�ne the train-

ing set and search/optimise the best model; (ii) Data Part 2, from June

2019 to August 2020, used as an independent data set to perform the �nal

performance evaluation of selected model. As the data corresponding to a

single event are high dimensional and multivariant, each part is structured

in tabular format and stored in a multi-column CSV �le, whose columns
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correspond to the attributes or features. The �le structure must be carefully

considered as shape and size of the training dataset signi�cantly contribute

to the algorithm performance. In particular, a disproportionate number of

rows would slow the training process as well as large feature dimensionality

could introduce noise in some algorithms and cause poor performance. A

�le row speci�es the characteristics of a given event including information

about 18 attributes such as peak amplitude, SNR, antenna ratios, statistics

(i.e. maxovermean, Primary/Secondary antennas covariance, . . . ) and signal

band power derived by the FFT spectrogram amplitude as de�ned in section

4.5. FFT calculations have been speci�cally added to the new algorithm

and are performed only in the case of events complying with SNR and ratio

thresholds. Further to this, an additional column is added to the training

set, after each sample is labelled to di�erentiate event type. Both binary and

multiclass classi�cation have been implemented and tested. A sample of 6

input attributes training subset is reported below, showing the �rst 10 rows:

The choice of the 6 attributes is made in order to include some of the

parameters that have an higher importance in the decision process, as shown

later in section 4.4.5, and to help with the algorithm decision steps visual-

ization. The categorical variables in type column identify spikes (0), �ashes

(1) and noise (2), respectively. The 3 classes are highly imbalanced due the

relatively low false alarm rate of the BTD, determining a lot more observa-

tions for �ash class than others. This requires a careful model search process

and special handling in the data preparation to select the most appropriate

ML classi�er, as described in section 4.4.3.

The 6 features training subset can be visualized in �g. 4.8a using a parallel
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coordinate plot. The plot maps each row of data as a line, whose colour

depends upon type, and highlights eventual relationships between the at-

tributes. Looking at the distribution of the 3 classes in each of the attributes,

the plot shows that the 3 classes are highly mixed in most attributes but some

explicit distinction is already found, the most evident being in the bandFFT1

coordinate for spike type. A smoothed version of the parallel coordinate plot

is shown in �g. 4.8b using Andrews plot, which enables to visualize structures

in high-dimensional data. The Andrews curve is de�ned as a �nite Fourier

series that is plotted between -� and +� for each row in the data set. It is

easy to see an underlying structure in this data set and a di�erent behaviour

for the 3 classes that is evident looking at the median curves. The observed

structure implies that a ML algorithm might help to �gure out the pattern

and understand the equation that goes behind it.
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Figure 4.8: Parallel coordinate plot(a) and Andrews curve (b) from the 6
features data subset. The values of each attribute are pre-processed with
standard scaling in order that the mean is set to zero and the attributes are
scaled by their standard deviations. Each line represents a data set row and
is labeled with di�erent colours according to event type. Thicker lines in (b)
correspond to median values for each class.
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In �g. 4.9, the multi-dimensional data subset is projected onto 2D space

using Radviz plot (Ho�man, Grinstein, and Pinkney, 1999). In this rep-

resentation, each dimension in the data set is represented as a dimensional

anchor, distributed evenly on a unit circle. A row of the data set corresponds

to a point in the projection that is linked to every dimensional anchor by a

spring. The position of the point is de�ned as the point in the 2D space that

minimizes the spring's tension and thus represents the balance between the

in�uence of all dimensions. In this speci�c case, it shows that a 6 features

model is already good for spike identi�cation but the large overlap between

noise and �ashes indicates that additional parameters may be needed.

Figure 4.9: Radviz 2D projection of 6 features training subset.
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4.4.2 Data overview

Given that all input attributes in this study are �oating-point numerical type,

descriptive statistics and visualization tools are useful to better understand

the available data and distribution of each attribute used, as this in�uences

the choice of best model and eventual data pre-processing needed. A sum-

mary of the main statistical properties of the 6 input attributes subset, that

is representative of the full dataset, is listed below for each class:

Type 0 (spikes)

Type 1 (�ashes)

Type 2 (noise)

A quick view of the data shows already some initial di�erencies between

the classes, despite the limited numbers of attributes considered. In par-

ticular, the spike class shows the largest di�erence with respect to genuine



CHAPTER 4. ML CLASSIFICATION OF BTD WAVEFORMS 55

�ashes in correspondence of bandFFT1, bandFFT2 and durationP. The noise

class, by contrast is more overlapped to �ash features, the main di�erences

being observed in the SNR_P, durationP and ratio_PST. Such di�erences

are easily recognized by looking at boxplots in �g. 4.10, in which outliers

have been removed.
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Figure 4.10: Boxplots of the 6 attributes for each type.

Fig. 4.11 zooms in on the attributes that exhibit the largest skew, showing

the boxplots for each attribute by type.
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Figure 4.11: Boxplots by type for attributes with maximum skew.

Histograms help to visualize the distribution of the attributes that maxi-

mize di�erences between the classes as shown in �g. 4.12. Given the limited

spread of attribute values for spikes, this class is the most easily discernible

among the others considering duration and power bands, while the antenna

ratio is the individual feature that contribute most to separate the 3 classes.
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Figure 4.12: Histograms distribution by type of 4 attributes (bandFFT1,
bandFFT2, durationP, ratioPST).

The scatter plot matrix in �g. 4.13 includes the entire data subset and

allows to look at the pairwise relationships between the attributes and spot

eventual correlations. Subplots along the diagonal line shows the kernel den-

sity estimation (KDE) by type, that extends what previuosly observed using

histograms.
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Figure 4.13: Scatter plot matrix for data subset.

In order to quantify the degree of correlation between attributes, the

Pearson's correlation matrix is calculated and reported below:

Some values indicate a moderate degree of correlation between the vari-

ables (i.e. 0.5-0.7 in absolute value), as also shown in the correlation matrix

plot displayed in �g. 4.14. Depending on the ML algorithm, strongly corre-

lated attributes may in�uence its performance.
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Figure 4.14: Correlation matrix plot.

4.4.3 Best model selection

In this section, an extensive search of the ML algorithm that is best suited to

the classi�cation problem is carried out. Scikit-learn library provides various

classi�ers that can be adapted to both binary and multiclass problems, such

as:

� Logistic Regression (LR)

� Linear Discriminant Analysis (LDA)

� k-Nearest Neighbors (KNN)

� Naive Bayes (NB)

� Classi�cation and Regression Trees (CART)

� Support Vector Machines (SVM)
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� Random Forest (RF, not to be confused with previously de�ned acronym

for Radio Frequency)

The accuracy of each classi�er is strongly in�uenced by the data character-

istics and data pre-processing is needed in most cases to achieve acceptable

performance. Additional complexity arises when dealing with highly imbal-

anced dataset. This is the case for the data used in this study in which the

�ash class is largely more frequent than other classes.

The choice of most suitable ML algorithm for the data structure de�ned in

the previous sections is done using 18 unscaled features in Data Part 1. The

eventual advantages of using data-scaling and pre-processing are discussed

later in optimisation section 4.4.5.

In the �rst instance, a number of classi�ers has been evaluated by manually

initialising the relative hyperparameters. To do so the Data Part 1 is split

into two subsets: the training set and the validation set, that is �xed at 20%

of the entire dataset. The subsets are generated by randomly shu�ing Data

Part 1 using a �xed random number generator's seed for reproducibility and

ensuring that the subsets are representative of the whole population. The

training set is later used to optimize the model's parameter values and com-

pare the accuracy of di�erent models by means of strati�ed cross-validation.

The Strati�edKFold class, using 5-fold in this speci�c case, repeatedly split

the training set in 5 groups to produce folds that contain a representative

ratio of each type. At each step, the 7 models selected are trained on four of

�ve groups (training set) and evaluated on the remaining group (validation

set), until each group has been assigned once as the validation set. At the

end, the results from all �ve runs are summarized to give the overall classi�-

cation skill of the various models tested. The mean accuracy scores achieved

are reported in table 4.2:
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Table 4.2: Models average accuracy comparison after 5-folds cross-validation.

Model Binary 3-class

LR 0.953 0.963

LDA 0.955 0.965

KNN 0.939 0.935

NB 0.410 0.598

CART 0.982 0.981

SVM 0.959 0.950

RF 0.988 0.988

The accuracy of a model quanti�es the ratio of correct predictions by

matching the set of predicted labels for a sample with the corresponding

true labels. The RF classi�er performs as the best-�t model on the unscaled

data and reached the highest score in both binary and 3-classes classsi�ca-

tion, along with the CART algorithm that also operates by building a series

of decision trees during training (Géron, 2019). A decision tree is a com-

monly used classi�cation method in which a single target class is generalized

by recursively partitioning the data depending on input features based rules.

Each node in the tree split the structure in two children nodes by setting

a conditional if on a speci�c feature threshold, starting from the �rst root

node. Nodes that do not further split into children nodes are denoted as

leafs, which provides the actual predicted class for that node. Branches are

indicated as arrows connecting the nodes, showing the �ow from question to

answer. The classi�cation tree can be optimised by de�ning, for instance,

its maximum depth hyperparameter, whose value determines the number of

nodes in the tree. An example of decision tree built on a 6 input features

subset extracted from Data Part 1 is presented in �g. 4.15. In this exam-

ple, the classes are perfectly balanced and the maximum depth of the tree

is set to 3 for ease of visualization. Following the decision path from top to

bottom, it is found, for example, that 100 training instances (or samples)

have a bandFFT1 greater than 0.673 (depth 1, left), among which 51 have
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a SNR_P smaller than about 37 (depth 2, left). By convention the �True�

branch is on the left, the �False� branch on the right. A node's value attribute

speci�es how samples are distributed by class in the node, indicating number

of spikes, �ashes and noise, respectively. The Decision Tree model uses Gini

impurity as a measure of the probability of misclassifying a sample to decide

the optimal split from a node. Gini index is de�ned as: Gi = 1�
nP

k=1
p2

i;k,

where pi;k is the ratio of class k values among the samples in the ith node. A

node is pure if gini = 0, as seen for example in the depth-1 right leaf node,

in which all samples belong to spike class. In �g. 4.16 the Decision Tree's

decision boundaries with maximum depth 3 are shown, using selected pair of

features. Looking at SNR_P-bandFFT1 subplot, the root node (depth=0)

split corresponds to bandFFT1 threshold 0.673. Since the upper red area is

pure (only spikes), it cannot be split any further. However, the lower area

is impure, so it splits at SNR_P=37 at depth-1 left node and further at

bandFFT1=0.438 at depth-2 left node.
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Figure 4.15: Classi�cation tree structure using Decision Tree model on a 6
input features Data Part 1 subset.

Given the similar performance and the minimum data preparation re-

quired with respect to other models, RF and CART are choosen for imple-

mentation in the �ash classi�cation algorithm. Unlike single classi�ers, RF

consists of a large number of individual and uncorrelated decision trees that

operate as an ensemble. Each individual tree in the random forest generates

a class prediction and the class with the majority occurrences is assumed as

the model's prediction (�g. 4.17).
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Figure 4.16: Decision Tree's decision boundaries.

Figure 4.17: Random Forest ensemble classi�er.

RF learners create independent base models using the bootstrap aggre-

gation (bagging) algorithm, based on bootstrap samples of the original data

(Breiman, 1996), and use feature randomness. By contrast, in a normal de-

cision tree every possible feature is considered for node splitting but only

the one that maximizes the separation between instances in children nodes

is used. This make the single classi�er more prone to error in individual tree
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even for small changes in the features. The chances of making correct pre-

dictions increase with the number of uncorrelated trees in the model, that is

controlled by the n_estimators hyperparameter. Additional parameters can

be tuned for the speci�c problem to be addressed. Their choice naturally

in�uences performance and training time. While having usually better per-

formance, ensemble classi�ers as the RF are generally referred to as black

box methods, meaning that the internal functioning of the model is either

hidden or too complicated to be analyzed. White box models as Decision

Tree, on the contrary, produces simpler and intuitive structures that can be

easily analyzed in detail. Decision Trees in the classi�cation problem in this

study can hence provide simple classi�cation rules that can in principle be

applied manually in the BTD internal processor for real-time noise rejection.

A search for best tuning of the hyperparameters in both models has been im-

plemented using the RandomizedSearchCV class, in order to to improve the

summarized cross validation scores. The Random Search Parameter Tuning

method evaluates the classi�er accuracy for di�erent combination of hyper-

parameters. The grid of possible combinations is generated by recursively

returning n-times random integers from a discrete uniform distribution in a

manually selected interval, depending on the span of each parameter. Model

tuning proves especially bene�cial for CART algorithm by slightly increas-

ing the classi�cation score with respect to default initialisation and further

reducing the training time to less than 100 ms. As an example, the opti-

mal models found with 100 iterations for CART are DecisionTreeClassi�er

(max_depth=6, max_features=15, min_samples_leaf=7, min_samples_split=3)

for binary problem and DecisionTreeClassi�er (max_depth=7, max_features=11,

min_samples_leaf=2, min_samples_split=4) for 3-classes problem, respec-

tively.

A comparison of the speci�c ability in class predicition by the two models is

obtained on the independent validation set that was previously set apart by

splitting Data Part 1. This minimizes the possibility of leakage of correlated

data between the training set and test set and avoids over�tting. The two

models are �tted on the same training set used for model selection and then

applied for predicting labels. Table 4.3 summarizes the overall accuracy and
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training time relative to the classi�ers.

Table 4.3: CART and RF overall accuracy and training time on the validation
set.

Binary CART RF Multiclass CART RF

Accuracy 0.984 0.992 0.981 0.992

Training time (s) 0.053 4.10 0.046 3.88

The values indicate that the ensemble classi�er, as expected, achieves bet-

ter performance in terms of prediction accuracy. However, CART method

outperforms RF when considering time required for training. Considering

the class imbalance in the available data, the confusion matrix provides a

better evaluation of model classi�cation performance in each class by plot-

ting true classes as rows and predicted classes as columns. It therefore allows

to count the number of times instances of class A are classi�ed as class B.

Values obtained on the validation set are shown in �g. 4.18 for both CART

and RF.
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Figure 4.18: Confusion matrices with normalized values.

Matrix elements are normalized over the true class instances. RF model

reached the best score in both binary and multiclass classi�cation; in partic-

ular, looking at the 3-classes RF confusion matrix it emerges that spikes and

noise are correctly labelled in 95% and 90% of cases, respectively. By con-

trast, true �ashes are correctly identi�ed in the majority of cases and missed

�ashes represent less than 0.5% of total samples. Taking into account the

advantage of reduced training time, CART binary reaches satisfying perfor-

mance by correctly labelling noise signals (including spikes) in 90% of cases

while keeping the number of missed �ashes below 0.8%. Precision and recall

(or sensitivity in binary classi�cation) are additional metrics useful to eval-

uate success of prediction in very imbalanced data. Precision is de�ned as

the ratio T P
T P +F P , where TP is the number of true positives and FP is the

number of false positives, while recall is de�ned as T P
T P +F N , with FN meaning

the number of false negatives. High values for both show that the classi�er is

returning accurate results (high precision), as well as returning a majority of
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all positive and correctly labelled results (high recall). The harmonic mean

of the two values calculated as 2 precision�recall
precision+recall is referred to as F1-score and

a value close to 1 indicates perfect precision and recall. The obtained values

are reported in table 4.4, indicating the high level of classi�cation accuracy

reached.

Table 4.4: Precision and recall values on the validation set for both classi�-
cations.

BINARY

CART Precision Recall F1-score RF Precision Recall F1-score

Noise 0.82 0.91 0.86 0.94 0.91 0.92

Flash 0.99 0.99 0.99 0.99 1 1

MULTICLASS

CART Precision Recall F1-score RF Precision Recall F1-score

Spike 0.86 1.00 0.93 0.90 0.95 0.92

Flash 0.99 0.99 0.99 0.99 1 1

Noise 0.90 0.81 0.85 0.94 0.90 0.92

4.4.4 Validation on Data Part 2

In this section, the binary classi�er is applied and its predictions evaluated

on the unseen Data Part 2, which contains around 10000 rows. This dataset

is independent of Data Part 1 and its instances were not previously used

for training. Binary classi�cation (�ash/no-�ash) is the best suited method

for general lightning safety applications of the BTD-300, when the sensor is

intended to work with minimum supervision. Yet, the possibility of further

distinguish spikes among the noise class is left as an option in the �nal al-

gorithm, depending on speci�c user needs, as explained in section 4.5. The

ML based approach success is evaluated in two ways: (i) By measuring how

accurately it can classify the data into two distinct classes (�ashes or noise),

and, (ii) by investigating how it can improve upon current �ash �nder algo-

rihtm.

The �nal training set is built upon a subset of Data Part 1, representative of



CHAPTER 4. ML CLASSIFICATION OF BTD WAVEFORMS 70

the two classes and containing approximately 2300 rows. At this stage, the

search of optimal hyperparameters is repeated, leading to the following mod-

els: (i) CART: DecisionTreeClassi�er (max_depth=5, max_features=15,

min_samples_leaf=4, min_samples_split=3); (ii) RF: RandomForestClas-

si�er (max_depth=11, max_features=5, n_estimators=190).

The predictive skills on unseen data are evaluated through the performance

metrics de�ned in the table 4.5, which refers to a binary classi�cation prob-

lem.

Table 4.5: Parameters (with acronyms and de�nitions) used in performance
evaluations of models

The variables used to calculate the evaluation metrics are derived from

the confusion matrix, after �tting the new models on the training set. Pre-

dictions made on new instances in Data Part 2 are therefore compared with

the relative true labels, identi�ed by manually checking the accuracy of each

prediction. A direct comparison between the two models is shown in �g. 4.19,

highlighting the similar ability in false positive rejection but a higher per-

centage of missed true positives in CART. Tables 4.6 and 4.7 summarize the

found values for both variables in the 2x2 contingency table and subsequent

evaluation metrics.
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Figure 4.19: Confusion matrices with normalized values for CART and RF
on unseen instances in Data Part 2.

Table 4.6: Variables in the contingency table

Model H M FA C

CART 10186 141 36 215

RF 10239 88 16 235

no ML 10326 - 251 -

Table 4.7: Predictive skill evaluation metrics (�for storms with 3 �ashes and
within 56 km)

Model POD FAR CSI HSS

CART 0.986 0.0035 0.983 0.70

RF 0.991 0.0017 0.990 0.81

no ML 0.999� 0.024 - -

It can be seen from the previous tables that RF provides the best per-

formance on new data, as demonstrated by the combination of POD, FAR

and CSI, that measures the fraction of all predicted events that were cor-

rect. By contrast, CART shows a slightly higher proportion of missed �ashes

(+53) and false alarms (+20), but a still acceptable value for FAR. The HSS

is a skill score for categorical predictions where the proportion correct (i.e.



CHAPTER 4. ML CLASSIFICATION OF BTD WAVEFORMS 72

H+C
H+M+F A+C ) measure is scaled with the reference value from correct predic-

tions due to chance. The range of the HSS is -1 to 1, where negative values

indicate that the chance prediction is better, 0 means no skill, and a perfect

predictive skill obtains a HSS of 1. In both cases, obtained values for CART

and RF are indicative of the ML approach reliability in the classi�cation

task.

A direct comparison with the �ash �nder algorithm without ML is shown

in �g. 4.20. The new approach allows to signi�cantly reduce the number

of false alarms, which dropped from about 2% in the current �ash �nder

algorithm to less than 0.2% using the RF classi�er, but equally to preserve

a comparably high POD.

Figure 4.20: POD and FAR values obtained on Data Part 2 using RF, CART
and �ash �nder algorithm without ML.

4.4.5 Feature importance and dimensionality reduction

In general, data pre-processing and feature dimensionality signi�cantly con-

tribute to the success of a ML based algorithm in terms of both accuracy

and computational cost, especially when both the input numerical attributes

have very di�erent scales and their number is particularly large. The models

used in this case do not require speci�c pre-processing, however an analysis

of the relevance of each attribute would allow a deeper understanding of the

problem itself and help possibly removing redundant features through fea-

ture selection and dimensionality reduction.
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Feature importances based on the mean decrease in Gini impurity are com-

puted for RF and CART using the feature_importances_ variable, that pro-

vides the relative importance score for each input attribute by evaluating the

average depth at which it appears across all trees in the forest. The scores

assigned to the attributes quantify how useful they are at predicting a target

label. Fig. 4.21 displays the importance scores obtained by each model and

the larger values indicates those attributes that actually matter most in the

classi�cation task.

Figure 4.21: Feature importance scores by selected classi�er.

In particular, results suggest that only a limited subset of the 18 input fea-

tures e�ectively contributes to the predictions, especially evident for CART.

Also, it shows that the attributes reaching the highest score are consistent

between the models (i.e. antenna ratios and bandFFT) and further con�rms

the advantage of including spectral information in the algorithm. Feature

importance can be thus used as a basis for dimensionality reduction. The



CHAPTER 4. ML CLASSIFICATION OF BTD WAVEFORMS 74

simplest method is to discard features below a default score threshold and

then train the model on those remaining. This can be achieved, for example,

using SelectFromModel meta-transformer in scikit-learn, which require the

estimator and the threshold as input. An alternative is the recursive feature

elimination (RFE) that if applied to a given estimator allows to select n-

features in descending order of importance, where n is speci�ed by the user,

returning a model on those attributes only and dropping the least important

ones.

A di�erent approach of dimensionality reduction is the Principal Compo-

nents Analysis (PCA) (Géron, 2019). PCA is a widely used unsupervised

technique that uses linear combinations of the original features to project

the training set into a lower-dimension hyperplane. The new axis (i.e. prin-

cipal components) are selected in order to account for the largest amount of

variance in the training set. As PCA requires data to be centered, a standard

scaling transform is applied to the training set before �tting the PCA. Fig.

4.22 shows the proportion of variance associated with each PC.
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Figure 4.22: Principal Component Analysis (PCA) applied to the training
set.

It is evident that the �rst 10 principal components account for more

than 95% percent of variance, with remaining ones contributing minimally

to predictions. This threshold can be thus set to compress the training

dataset while still preserving most variance in the data, reducing memory

and computational time but mantaining good level of classi�cation accuracy

(i.e. comparable to CART performance without feature reduction).

Such techniques of dimensionality reduction can be eventually applied to

future implementations of the ML based �ash �nder algorithm, especially if

intended for realtime BTD data processing. Pipeline methods are readily

available to e�ciently perform data scaling, PCA/RFE and model �t.
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4.5 Summary of �nal algorithm with ML

Application of ML methods proved suitable for the BTD-300 �ash signals

recognition and classi�cation, showing a greatly improved ability to reject

false positives otherwise leading to unwanted warnings being issued. The

procedure developed is particularly ideal for new research applications, look-

ing at speci�c waveform features in the time-series, and can be easily adapted

for this purpose. On the other hand, focusing on time critical applications

like real-time monitoring of thunderstorm development in a limited area of

concern for aviation safety, the deeper investigation of features associated

with false positive signals allowed the identi�cation of new threshold values

for their recognition. These were in addition to the established discrimina-

tion parameters of antenna ratio and SNR to distinguish the spikes and at

least some recurrent local noise sources, with immediate impact on the BTD-

300 performance. Most calculations are in fact already routinely performed

by the BTD processor and no signi�cant software modi�cations are required

aside from basic spectral analysis by the onboard processor.

The �nal script, embedding the predictive ML models, is built on the basis of

the current �ash �nder algorithm, described in section 4.2. Newly introduced

changes in the work�ow are summarized below:

Loading scikit-learn ML libraries and training set: the training set used in

the �nal script is the same used for the evaluation in 4.4.4. The data

are loaded as a multicolumn array and splitted into features, contain-

ing the input attributes of each event, and target, which speci�es the

corresponding class label. Once one of the two best model found is

chosen, this is �tted on the above data in order to be ready to use for

predictions on new instances.

Bandpower calculations: in the case of a signal that satis�es the SNR and

antenna ratios criterion, the relative average power in two speci�c fre-

quency bands (i.e. high: greater than 25 Hz; low: between 1 and 15

Hz) is computed with scipy.signal.spectrogram class. The calculation

is performed on the primary antenna output only and in a 2 s sym-
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metrical around centered on the SNR peak. Spectrogram amplitudes

are then used to de�ne the two attributes used in by the ML classi�er:

(i) bandFFT1, de�ned as the ratio between max amplitude in the high

and low band; (ii) bandFFT2, that represents the actual average power

of the low band. The previous attributes are found to be the optimal

choice that maximizes variance between the classes and their relevance

is also highlighted by the feature importance analysis in 4.4.5.

Predicting classes: a row is generated for each event identi�ed, containing

all the input features. If the estimated range is found to be less than

100 km, the row is fed into the model and the relative class prediction

is made.

Spikes identi�cation (optional): depending on user needs, it is possibile to

automatically classify the spikes (otherwise included in noise) by means

of one of the multiclass model described or by setting speci�c thresh-

olds. These can be easily determined, for instance, by the decision tree

diagram.

Final classi�cation �le with label: events properties for the selected period

of interest are written to disk into a �nal CSV �ash �le, in analogy to

�ash �nder algorithm, containing now a new column with a categorical

label that identify the speci�c class. Corresponding tags are 0 (noise)

and 1 (�ash).



Chapter 5

Signatures of large peak current

lightning strokes during an

unusually intense

sprite-producing thunderstorm in

southern England

Commentary

The previous chapter reviewed the main sources of occasional disturbances

on the novel BTD detector, including transient spikes induced by distant

(>100 km) lightning. However, given the basic operation principle of this

technology relies on the electrostatic �eld change caused by a lightning �ash

and its rapid decay with the inverse cube of distance from the source, the

sensor ideally should be insensitive to direct lightning generated signals be-

yond that distance.

Early investigations on this particular type of detectable signal on a proto-

type BTD led Bennett and Harrison (2013) to formulate a simple electrostatic

model that explained the �spikes� in terms of charge sheets of enhanced con-

ductivity above the thunderstorm as a result of a distant �ash. This would

enable the quasi-electrostatic signal to be detected from a longer range than
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expected. Bennett (2014) also proposed that such regions of increased ion-

isation could be associated with the optical emission of halos, a well-known

type of transient luminous event (TLE).

In the following manuscript the improved and more sensitive BTD-300 data,

collected during an unusual sprite-producing thunderstorm in the UK in 2017,

are used to verify this assumption and clarify the physical mechanism respon-

sible for spikes experimentally by comparison with simultaneous optical and

electromagnetic measurements.

























Chapter 6

On the relationship between

lightning superbolts and TLEs in

Northern Europe

Commentary

Various studies highlighted that the most intense lightning on Earth typically

occur in areas that experience signi�cantly less lightning activity than the

major equatorial lightning centres, and surprisingly during the cold season of

northern hemisphere. One of such superbolt hotspot is found in the northeast

Atlantic region. This paper presents the �rst detailed study about this region,

in a domain centred on the UK, providing new �ndings about the climatology

of superbolts in the area for the 10-year period 2010/2020. It additionally in-

vestigates the coupling between superbolts and mesosphere/lower ionosphere,

showing that TLEs may be triggered by superbolts at these latitudes in con-

texts that are uncharacteristics of typical TLE-producing thunderstorms in

the rest of Europe, such as nearly absent electrical activity. The original

�ndings in this manuscript provide a basis for further research in the region,

along with possible explanations for the largest cluster located on the English

Channel.
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Chapter 7

Long-term observations of

Schumann resonances at

Portishead (UK)

Commentary

The aim of this paper is to extend the BTD-300 scope to other areas of

research in atmospheric electricity, such as the Schumann resonances (SR)

recorded at ELF frequencies (<50 Hz). The introduction of a new signal

processing technique enabled the SR to be extracted from the BTD output

in fair-weather and separated from lower frequency sources of displacement

current (i.e. space charge). Such technique has been succesfully applied to

5-year of collected data (2015/2020) in an urban environment in the SW of

England. The study provides unprecedented results achieved in this �eld

from the UK, con�rming the diurnal and seasonal trend expected in the SR

intensity. It also presents new evidence of a potential link between inter-

annual changes in the SR intensity and variability of global climate drivers,

such as ocean surface temperature. Finally, since the measurements have

been carried out at a site far from the ideal, additional comparisons between

working days and weekend data are valuable to reveal manmade interference

impact on the SR measurements during working hours.
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Chapter 8

Concluding remarks

This PhD thesis introduces new insights on the detection of lightning gener-

ated signals in the range 1-45 Hz using a novel quasi-electrostatic detection

method. An original waveform classi�cation algorithm based on machine

learning has been described that enables to accurately distinguish lightning

signals from noise, starting from a large number of input attributes for each

selected event. If implemented, it would reduce the number of detected false

positives and in turn the related warnings even further with respect to the

currently used �ash �nder algorithm of the BTD-300. Various optimisations

are also suggested to achieve a good balance between classi�cation accuracy

and computational cost, that is fundamental in real-time data processing for

time critical applications such those at airports and vulnerable sites. The

ease-of-use and versatility of the new method make it potentially adaptable

in the future to introduce additional abilities in the BTD-300, such as the

classi�cation of cloud/ground �ashes and the identi�cation of volcanic light-

ning when the sensor is used to monitor electrical activity in ash clouds of

active volcanoes.

An in-depth analysis of BTD current spikes, responsible for occasional

misclassi�cation and subsequent false warning, has provided new evidence

towards the correct interpretation of the physical process at the basis of this

type of signals. The new data suggest that the spikes represent the BTD
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response to ELF radio bursts at frequencies <50 Hz, radiated by strong CG

return strokes (i.e. being thus detectable several hundreds of km away from

the BTD, unlike electrostatic �eld changes), and in larger proportion by very

large peak current (>100 kA) +CG, even though surprisingly less sensitive to

the total charge moment change. This indicates that long continuing currents

(>20 ms) do not contribute signi�cantly to the spike onset but may even-

tually only alter the overall waveform observed. The consistence between

the BTD output and magnetic measurements with induction coils magne-

tometers operating in the same bandwidth and using an identical sampling

frequency (100 Hz) further supports this idea. This investigation has sparked

wide interest in the possible association between spikes and TLEs, which has

been veri�ed by �nding a one-to-one correlation between night-time spikes

and intense +CG that triggered elves and were located at distances of the

order of 1,000 km from the BTD (Pizzuti et al., 2019; Kolmasova et al.,

2021). The regular recording of spikes can thus be applied to estimate the

regional rate of elves in a speci�c area, avoiding the limitations imposed by

optical observations, and to further look at a possible association with large

amplitude transients in the SR background (i.e. the Q-bursts). A necessary

hardware upgrade in this regard would be the integration of a GPS receiver

in the BTD, that would allow ms precision in the recorded sample times-

tamp. Preliminary work has been already done in the course of this PhD by

developing a low-cost Raspberry Pi data logger for the BTD-300 raw data

and can be further re�ned with some software changes, suggested by data

collected during �eld work in southern France.

Additional work in this study led to �ll the gap in the knowledge about

the occurrence of extremely powerful lightning superbolts at the higher lat-

itudes of nortwestern Europe, providing the �rst detailed climatology of su-

perbolts in this area and investigating their association with TLEs under

speci�c weather patterns. In particular, it is suggested that convergence and

aerosols advection from sea surface and busy shipping lanes may favour deep

convection and cloud electri�cation on the English Channel with respect to

surrounding areas. Inherent di�erences in cloud charge structure of sea based
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storms could lead to faster negative leader velocity on average than for storms

over land, and hence in larger peak currents, determining the winter peak of

negative superbolts in the area. The identi�ed areas occupied by the most

populated superbolt clusters can be thereby used (1) as a natural physical

laboratory to conduct future research in the region, aimed at better charac-

terising microphysical properties of thunderclouds generating superbolts and

the speci�c properties of lightning inception and leader propagation charac-

teristics. This would potentially bring a signi�cant contribution in better

understanding the origin of intense oceanic lightning; (2) to assess the vul-

nerability of infrastructures, such as o�shore wind farms around the UK, to

superbolts and promote the development of new adequate lightning protec-

tion systems.

An original technique has been �nally described to monitor SR at a sin-

gle site, demonstrating the suitability of the BTD to also monitor the e�ect

global lightning activity with reasonable accuracy. Despite some basic ques-

tions about the topics covered are still open and require further data and

investigation, such as the long-term trend and its link to climate drivers, this

research has established a solid foundation and a benchmark for an extensive

use of this method in future atmospheric electricity studies. The ongoing

data collection would certainly be bene�cial in consolidating these �ndings,

especially if additional comparisons with other observatories will be made

and future measurements will be conducted at best suited sites (i.e. less

a�ected by cultural noise).
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