KETONE MONOESTER INGESTION ALTERS METABOLISM AND SIMULATED RUGBY PERFORMANCE IN PROFESSIONAL PLAYERS

Oliver Peacock¹,², Javier Gonzalez¹,², Simon Roberts¹, Alan Smith¹,³, Scott Drawer³, Keith Stokes¹,⁴

AUTHOR AFFILIATIONS

¹Department for Health, University of Bath, Bath, United Kingdom
²Centre for Nutrition, Exercise and Metabolism, University of Bath, United Kingdom
³UK Sport Council, London, United Kingdom
⁴Rugby Football Union, Twickenham, United Kingdom

RUNNING HEAD

Ketones, metabolism, and elite rugby performance

CORRESPONDING AUTHOR

Oliver Peacock, PhD
Department for Health
University of Bath
Bath, BA2 7AY
United Kingdom
+44 (0)1225 383270
o.j.peacock@bath.ac.uk

WORD COUNT: 4021
ABSTRACT

Ketone ingestion can alter metabolism but effects on exercise performance are unclear, particularly with regard to the impact on intermittent-intensity exercise and team-sport performance. Nine professional male rugby union players each completed two trials in a double-blind, randomized, crossover design. Participants ingested either 90±9 g carbohydrate (CHO; 9% solution) or an energy matched solution containing 20±2 g carbohydrate (3% solution) and 590 mg/kg body mass β-hydroxybutyrate monoester (CHO+BHB-ME) before and during a simulated rugby union-specific match-play protocol, including repeated high-intensity, sprint and power-based performance tests. Mean time to complete the sustained high-intensity performance tests was reduced by 0.33±0.41 s (2.1%) with CHO+BHB-ME (15.53±0.52 s) compared to CHO (15.86 ± 0.80 s) placebo (p=0.04). Mean time to complete the sprint and power-based performance tests were not different between trials. CHO+BHB-ME resulted in blood BHB concentrations that remained >2 mmol·L⁻¹ during exercise (P<0.001). Serum lactate and glycerol concentrations were lower after CHO+BHB-ME than CHO (P<0.05). Co-ingestion of a β-hydroxybutyrate monoester with carbohydrate can alter fuel metabolism (attenuate circulating lactate and glycerol concentrations) and may improve high-intensity running performance during a simulated rugby match-play protocol, without improving shorter-duration sprint and power-based efforts.

Keywords: β-hydroxybutyrate, lactate, glycerol, athletes, team sport, exercise performance
INTRODUCTION

Ketone bodies comprise acetyl-CoA-derived compounds produced by the liver during low carbohydrate availability (Cahill 2006). The principal ketone body is β-hydroxybutyrate (BHB), which displays the highest systemic concentrations and utilization by the brain and skeletal muscle (Cahill 2006; Mikkelsen et al. 2015). High systemic BHB availability suppresses hepatic glucose production and whole-body glycerol release (Mikkelsen et al. 2015) suggesting sparing of liver glycogen and a suppression of lipolysis. The suppression of lipolysis may act via both direct and indirect (e.g. insulin) mechanisms (Mikkelsen et al. 2015). The metabolic properties of BHB has led to growing interest in methods of raising systemic BHB availability with the putative potential to influence human health and performance.

One of the most effective, practical methods to increase systematic BHB availability without compromising endogenous carbohydrate stores is the oral ingestion of the BHB monoester (BHB-ME), (R)-3-Hydroxybutyl (R)-3-hydroxybutyrate (Cox et al. 2016). When compared to carbohydrate ingestion alone, the co-ingestion of carbohydrate and BHB-ME before and during exercise can potently alter whole-body and skeletal muscle metabolism. BHB-ME-carbohydrate co-ingestion has been shown to increase plasma BHB availability and net intramuscular triglyceride utilization, whilst suppressing plasma non-esterified fatty acid availability, glycolysis and net intramuscular glycogen utilization during moderate-intensity exercise (Cox et al. 2016). Although it should be noted that glycogen sparing has not been reported in all studies (Poffe et al. 2020). Furthermore, an increase in resting skeletal muscle carnitine content, and a reduction in blood pH during exercise have also been observed with acute BHB-ME ingestion (Cox et al. 2016; Dearlove et al. 2019; Poffe et al. 2021a). It is unclear what implications these metabolic responses have for exercise performance, as some of these changes may be beneficial (e.g. increased free carnitine content with potential to buffer acetyl-CoA during high-intensity exercise (Wall et al. 2011)), but others detrimental (e.g. reduced
blood pH and glycogenolysis potentially impairing high-intensity performance (Poffe et al. 2020, 2021a; Poffe et al. 2021b; Stellingwerff et al. 2006). BHB-ME ingestion, therefore, produces a relatively unique metabolic milieu, with the potential effects on exercise performance currently unclear.

The evidence to date of ketone body ester ingestion on exercise performance demonstrates positive (Cox et al. 2016), neutral (Evans et al. 2019; Poffe et al. 2020, 2021a), and negative (Leckey et al. 2017; Poffe et al. 2021b) effects during continuous, endurance-type exercise. Only one study to date has examined the effect of BHB-ME ingestion on intermittent running capacity, using a test originally designed to test soccer performance (Evans and Egan 2018). The addition of ketone ester to carbohydrate ingestion did not influence time-to-exhaustion or 15-m sprint times. However, any potential performance advantage due to the metabolic effects of ketone ester co-ingestion could have been counteracted by a higher prevalence of gastrointestinal issues with the addition of ketone compared with carbohydrate alone (Evans and Egan 2018). Rugby Union is a team sport characterized by periods of low-speed running interspersed with bouts of high-intensity activity, some of which can be prolonged in duration and comprise physical contact and sprinting elements (Austin et al. 2011; Read et al. 2018). The distinct physical demands and characteristics of rugby limit the ability to translate evidence from previous work involving endurance-type exercise, with some short sprints, to nutritional practices in rugby. It remains unknown whether isocaloric ingestion of ketone ester and carbohydrate influences intermittent exercise performance relevant to team sports, and no study has examined the effects of BHB-ME ingestion in professional rugby players during simulated match play.

Accordingly, the aim of this study was to assess the effect of ketone body ester plus carbohydrate co-ingestion on simulated rugby union match play performance, compared to isocaloric carbohydrate ingestion alone. It was hypothesised that ketone ester-carbohydrate co-
ingestion would augment simulated rugby union performance, when compared to isocaloric carbohydrate ingestion.

METHODS

Participants

Seventeen professional male players (age, 20±1 years; body mass, 97.8±5.3 kg; playing experience 11±4 years) recruited from an English Premiership rugby union club consented to participate. Of the players originally recruited, eight dropped out of the study due to illness or injury and a total of nine participants (5 forwards and 4 backs) completed the study. Experimental procedures were approved by the University of Bath Research Ethics Approval Committee for Health and conducted according to the Declaration of Helsinki.

Experimental Design

The study adopted a double-blind, placebo-controlled, randomised crossover design comprising a preliminary session and two experimental trials, each separated by at least 6 days. Supplements were prepared by an individual unconnected to the study and provided in unmarked containers to those who interacted with participants. Sessions took place during the players’ off-season and on an indoor athletics training facility. One week prior to main trials, participants completed a preliminary session to familiarise with the protocol (described below). Prior to trials, habitual training was standardised for one week. Over the 48-h preceding the first trial, each participant recorded their diet (estimated record) and replicated this diet before the second trial. Participants refrained from high intensity exercise, caffeine, and alcohol for 24-h before sessions. Main trials required participants to complete the match-play protocol ingesting either carbohydrate (CHO) or an energy matched drink containing carbohydrate and β-hydroxybutyrate monoester (CHO+BHB-ME) before and at the mid-point of exercise.
Performance testing was integrated as part of the validated match-play protocol and included repeat assessment of high-intensity running, sprint and power-based performance.

Simulated Rugby Union Match-play Protocol

The Bath University Rugby Shuttle Test (BURST) is a rugby union-specific match-play protocol based on physical demands data for elite rugby union (Roberts et al. 2010; Roberts et al. 2008). The exercise requirements have been described in detail elsewhere (Roberts et al. 2010). In brief, the protocol involves 16 exercise periods (~5 min each) arranged into 4 x 21-min blocks (**Figure 1**). Blocks 1 and 3 are followed by 4-min active recovery. A 10-min “half-time” break follows block 2, comprising 7 min rest and 3 min active recovery. Within each exercise period, participants perform shuttles of walking, cruising and jogging interspersed with two bouts of simulated scrummaging and rucking, and one bout of mauling. Timing is maintained by verbal instruction from an audio file. A Performance Test (described below) and 15-m sprint are also completed within each exercise block and on 16 occasions in total. Power-based performance was assessed during bouts of scrummaging using an explosive sled-push (described below) and on 32 occasions. Performance test data are expressed as the mean performance across the BURST protocol. Distance travelled during the BURST (7078 m) has been validated against match-play demands derived from time-motion analysis (6418 m), and time spent performing contact events (9.9%) is consistent with actual match play (Roberts et al. 2010).

Performance Testing

The high-intensity performance test was designed to replicate a sustained high-intensity exercise bout specific to rugby union competition, and combined aspects of resistance work, sprinting, and agility. Testing required participants to pass through an initial infrared timing gate (Smartspeed, Fusion Sport, Australia) and carry one 20-kg tackle bag over 9 m, followed by a second bag over the same distance, pick up a ball and sprint 14 m before completing an
unanticipated rapid change in direction (prompted by a flashing beacon), and then sprint through a final timing gate. Time taken between the timing gates was recorded as the performance test time. Participants had 25 s to return to the start and then perform a single 15-m sprint between two timing gates. There were no significant differences in the time taken to complete the high-intensity performance test and 15-m sprint between two preliminary tests, with a mean coefficient of variation (CV) of 1.4% and 1.8%, respectively.

The power-based sled push was performed on a custom-built machine designed to simulate the demands of rugby scrummaging. The machine (RJF Design, Surrey) incorporates a steel frame with a horizontal sled that runs along the frame. Participants adopt a semi-crouched position with flexion at the knees and hips and with their shoulders resting against the sled. Participants used an explosive leg drive to push the sled with maximal force through a distance of ~3.5 m. Timing gates (Brower Speed Trap 2, USA) assess sled movement times with the first set placed 10 cm in front of the sled and then 3 m from the first set. Based on pilot testing, the runner angle was set at an incline of 3°, and additional resistance was provided by loading 100-kg onto the 80-kg sled. There was no significant difference in the time to complete the sled push between two preliminary tests, with a CV of 0.6%.

Experimental Trials

Each participant began trials in the morning following a 10-h overnight fast and having consumed their normal high-carbohydrate breakfast 3 h before exercise (providing a mean total of 165 g of carbohydrate) and at least 500 mL of water. On arrival, participants provided a urine sample, and were weighed in underwear and shorts using a digital balance scale accurate to 0.05 kg (Avery Ltd., UK). Thereafter, a resting 500-μL fingertip capillary blood sample was obtained (Softclix Pro, Roche, Switzerland) and subjective ratings of thirst, hunger and overall gastrointestinal symptoms recorded (scale 1-15). Participants then began a standardized 10-min warm-up that consisted of stretching, jogging, sprinting, one period of the BURST and
baseline performance tests. Participants consumed an initial bolus of test drinks 25 mins pre-
exercise and rated drink pleasantness and acceptability using a 100-mm scale (Bartoshuk et al.
2004). After a second blood sample, participants then began the BURST. Blood samples and
subjective ratings were obtained after each exercise block. Participants received a further half-
bolus of test drinks at the midpoint of exercise and provided further ratings. Water was
permitted ad libitum during participants’ first trials and then matched in subsequent trials. Body
mass was recorded post-exercise once participants had removed excess moisture from the skin.
Ambient temperature (20±3°C) and humidity (40±7%) was not different between trials.

Drink Composition

(R)-3-Hydroxybutyl (R)-3-hydroxybutyrate was synthesized at the University of
Oxford as a colourless oil comprising ethyl-(R)-3-hydroxybutyrate (~1%) and (R)-1,3-
butanediol (~1%), which were the starting materials, (R)-3-hydroxybutyl (R)-3-
hydroxybutyrate (94%), 3-betahydroxybutryl 1,3-butanediol monoester (~1%), and di-b-
hydroxybutyrate 1,3-butanediol diester (~3%).

Participants received either carbohydrate (CHO) or carbohydrate with a β-
hydroxybutyrate monoester (CHO+BHB-ME) in equal drink volumes for each trial (629±60
mL in total) divided into an initial pre-exercise bolus (419 mL) and a smaller mid-exercise
bolus (210 mL). Drinks were isocaloric and both made an estimated 16 kJ/kgBM available for
metabolism (total energy intake 1528±145 kJ). The ketone monoester was provided at a total
dose of 590 mg/kgBM based on pilot data showing that this dosing level induces a sustained
moderate ketosis (blood β-hydroxybutyrate of ~2-3mmol/L) that was generally well-tolerated
and within the physiological response observed during fasting in humans (Clarke et al. 2012).
The total amount of carbohydrate ingested was 90±9 g in CHO trials (3% solution) and 20±2
g in CHO+BHB-ME trials (14% solution) and equates to ingestion rates of ~1.1 and ~0.3 g/min,
respectively. These intake rates ensured that the CHO trial matched guidance for supporting
exercise performance i.e. equal to or above 1 g/min (Jeukendrup 2004). Some carbohydrate was added to the ketone monoester to enhance drink palatability and given that carbohydrate in the mouth may have a central effect on performance (Carter et al. 2004; Chambers et al. 2009). The carbohydrate content of CHO+BHB-ME was 100% glucose and was achieved by adding a commercially available sports drink (Glacoeau, Vitamin Water). The CHO solution included exactly the same volume of this ‘base drink’, while additional carbohydrate in the form of 35% sucrose and 65% maltodextrin was added as liquid gel (MaxiNutrition, ViperActive) with the primary intention of matching solutions for consistency, texture and mouthfeel. Given that the raw ketone monoester is bitter in taste, pre-testing was conducted to ensure the best possible matching of drinks. To make the taste comparable, CHO was flavoured by adding 10 mL/L bitters and CHO+BHB-ME by adding 100 ng/L sweetener (Symrise, UK). Four out of 9 participants (44%) correctly guessed the order in which they received test drinks.

Sampling and Analysis

Capillary fingertip blood samples were assessed for blood levels of BHB using a portable analyser (Abbott Medisense Precision Xtra Advanced Diabetes Monitoring System, Abbott). Blood was collected into serum Microvette 500 collection tubes (Sarstedt Ltd., UK) and allowed to clot for 15 min at room temperature before being centrifuged at 3000 g for 10 min at 4°C (Biofuge Primo R, Heraeus). The serum fraction was extracted into 1.5-mL tubes (Eppendorf Ltd., UK) and frozen at -80°C. Immunoassays were used to measure serum lactate, glucose, myoglobin, glycerol (Randox, Ireland) and free fatty acids (Wako Chemical GmbH, Germany) in duplicate using an automated spectrophotometer (Cobas Mira, Roche Diagnostics, Burgess Hill, UK). The CV was less than 5% for all parameters. Urine samples were measured for urine specific gravity using a handheld refractometer (Atago, Model A300, USA).

Statistical Analysis
A sample size estimation was performed based on data from (Cox et al. 2016), whereby CHO+BHB-ME improved time trial performance by 411±458 s compared with CHO. Using this effect size ($d=0.90$), 12 participants should provide greater than 80% power to detect such a difference with a two-tailed t-test and an alpha-level of 0.05.

Data that required a single comparison of two means was tested for normality of distribution using the Shapiro-Wilk test. A paired two-tailed t-test was used to identify differences between means. A two-way repeated-measures analysis of variance (ANOVA) was used to identify differences over time. Where significant interactions were observed, multiple t-tests were applied to determine the location of variance both between treatments at each time point and between time points within each treatment relative to baseline, with both methods subject to a Holm-Bonferroni correction (Atkinson 2001). Statistical tests were conducted using GraphPad Prism version 8.2.1 (San Diego, CA). The p value was converted into 95% confidence intervals to derive a mechanistic inference about the true value of the effect statistic (Hopkins 2007). Effects sizes were calculated for performance data using Cohen’s d_z. Data are expressed as means ± SD in text and means ±95% confidence interval (CI) in figures. Data for performance tests are presented as the mean overall difference between trials. For all comparisons, α was set at .05.

RESULTS

Exercise Performance

Mean overall time to complete the sustained high-intensity performance test was 0.33±0.41 s (2.1%) faster with CHO+BHB-ME (15.53±0.52 s) compared to the energy-matched CHO (15.86±0.80 s) placebo ($p=0.04$, $d_z = 0.80$, Figure 2A). Subsequent 15-m sprint performance was not different between trials (CHO = 2.57±0.15, CHO+BHB-ME= 2.56±0.11 s, $p=0.80$). No differences were detected in mean time to complete the power-based sled push
between trials \((p=0.12, \text{ C} = 0.58, \text{ Figure 2B})\). No trial order effects were observed for any of
the performance tests \((p\geq 0.11)\) and no baseline differences were identified for any performance
measure \((p=0.26–0.76)\).

Blood β-hydroxybutyrate

Pre-supplementation concentrations of blood β-hydroxybutyrate were similar between
trials (Figure 3A). There was a marked increase in β-hydroxybutyrate concentrations 20 min
after CHO+BHB-ME \((2.53\pm 0.85 \text{ mmol L}^{-1})\) compared with CHO \((0.01\pm 0.03 \text{ mmol L}^{-1})\). Blood
β-hydroxybutyrate concentrations following CHO+BHB-ME remained elevated above CHO
throughout the entire trial \((treatment: F=570, p<0.001)\), with significant differences observed
between trials pre-exercise and at all successive time-points \((treatment x time: F=44, p<0.001)\).
A second slight increase in β-hydroxybutyrate concentrations was observed from 40 to 80 min
from ~2 to ~2.6 mmol L\(^{-1}\) (Figure 3A).

Serum Variables

Glucose concentrations increased from baseline to the end of the warm-up before
decreasing over the ensuing 20 min to near pre-supplementation values. Concentrations then
increased over the subsequent 25 min before gradually decreasing \((time: F=11, p<0.001)\).
Glucose concentrations were higher after CHO than CHO+BHB-ME \((treatment: F=8, p<0.05)\)
and were significantly different between trials pre-exercise \((p=0.02; \text{ Figure 3B})\). Lactate
concentrations increased markedly from the onset of exercise and remained relatively stable
thereafter \((time: F=62, p<0.001)\), with significantly lower concentrations after CHO+BHB-ME
than CHO \((treatment: F=10, p<0.05; \text{ Figure 3C})\). Serum non-esterified fatty acid
concentrations remained near basal levels up to 20 min into exercise and gradually increased
thereafter with CHO but remained at or below pre-exercise values with CHO+BHB-ME
(Figure 3D). Neither the time course nor the magnitude of the response was significantly
different between trials, although there was a trend for an interaction \((treatment x time: F=4,\)
whereby concentrations were lower 45 min into exercise with CHO+BHB-ME than CHO \((p<0.01)\). A similar pattern of response was identified for serum glycerol (time: \(F=20, p<0.001\)), although concentrations were significantly lower after CHO+BHB-ME than CHO (treatment: \(F=8, p<0.05\); Figure 3E). There was a progressive rise in serum myoglobin concentrations throughout the exercise irrespective of trial (time: \(F=19, p<0.05\); Figure 3F).

Subjective Ratings

Ratings of perceived exertion increased throughout the exercise protocol irrespective of trial (Figure 4A), from initial values of 13±1 (“fairly hard”) to 15±2 (“hard”). As the time-course of response was not different for ratings of gastrointestinal distress as well as drink pleasantness and acceptability, data were combined across these time periods. Results showed a trend for gastrointestinal upset to be greater after CHO+BHB-ME (10±2) than CHO (8±1) trials \((T=2, p=0.08\); Figure 4B), while ratings of drink palatability were higher for CHO (47±7) compared with CHO+BHB-ME (21±9) trials \((T=2, p<0.001\).

Initial hydration Status and Fluid Balance

Adequate hydration status was shown by similar pre-testing values for urine specific gravity in both trials \((CHO = 1.018±0.009, CHO+BHB-ME = 1.021±0.005)\). Total fluid intake (i.e. prescribed and that consumed \textit{ad libitum}) was not different between trials \((CHO = 1675±728 \text{ mL}, \text{CHO+BHB-ME} = 1777±743 \text{ mL})\). There was no significant difference between trials in estimated fluid losses through sweat \((CHO = 2462±563 \text{ mL}, \text{CHO+BHB-ME} = 2573±642 \text{ mL})\) or for total urine production \((CHO = 198±135 \text{ mL}, \text{CHO+BHB-ME} = 226±220 \text{ mL})\). Body mass loss was apparent post-exercise \((CHO = 984±482 \text{ g}, \text{CHO+BHB-ME} = 1022±420 \text{ g})\) and equivalent to ~1% dehydration in both trials.
DISCUSSION

The present study demonstrates that co-ingestion of ketone body ester with carbohydrate suppresses circulating glycerol and lactate concentrations during exercise, and may improve certain aspects of rugby union performance, when compared to isocaloric carbohydrate ingestion. The data suggest that ingestion of ketone monoester improved simulated rugby union match play performance, without improving shorter duration sprint and power-based performance. These performance effects were observed in the presence of marginally higher ratings of gastrointestinal distress.

Co-ingestion of CHO+BHB-ME resulted in blood BHB concentrations remaining above a mean of 2 mmol·L\(^{-1}\) throughout exercise, compared to negligible BHB concentrations with isocaloric carbohydrate ingestion. β-hydroxybutyrate concentrations above \(\sim 1.5 \text{ mmol·L}^{-1}\) can suppress hepatic glucose output and muscle glycogenolysis (Cox et al. 2016; Mikkelsen et al. 2015). Although it should be noted that one recent study reported no difference in plasma lactate concentrations or muscle glycogen breakdown with substantial and sustained increases in β-hydroxybutyrate concentrations during continuous cycling (Dearlove et al. 2021; Poffe et al. 2021a). It is therefore possible that circulating β-hydroxybutyrate concentrations above 1.5 mmol·L\(^{-1}\) combined with intermittent high-intensity exercise is required to detect meaningful metabolic effects. The present study reports marked metabolic effects with BHB-ME plus carbohydrate co-ingestion, as serum lactate, non-esterified fatty acid, and glycerol concentrations were lower with co-ingestion of CHO+BHB-ME, compared to isocaloric carbohydrate ingestion alone. Lower glycerol concentrations suggest a suppression of adipose tissue lipolysis. Whilst lower lactate concentrations could theoretically be due to an increase in lactate clearance rates, a reduction in lactate appearance rate is more likely, as this would be consistent with previous reports (Cox et al. 2016) of a suppression of glycolysis and/or better matching of glycolytic to pyruvate dehydrogenase flux.
The present study demonstrates that co-ingestion of CHO+BHB-ME may enhance high-intensity intermittent performance, without affecting sprint or power-type performance. It is noteworthy that lactate concentrations were higher in the present study than in many of the other endurance-type studies on ketone supplementation and thus the potential metabolic effects of ketones could be accentuated within our protocol i.e., during high-intensity rugby-related performance. While there was no improvement in very short duration maximal intensity sprints or power-based performance throughout the BURST protocol, there was also no negative impact, and therefore ketone ester-carbohydrate co-ingestion may represent an effective nutritional strategy for actual match play in professional Rugby Union players.

If lower lactate concentrations reflect a lower rate of glycogenolysis, as has been reported during steady-state exercise (Cox et al. 2016), then the implications of glycogen sparing as a mechanism for performance enhancement in high-intensity exercise is unclear. Whilst the strong association between liver and muscle glycogen depletion with fatigue has led to speculation that sparing of glycogen stores may enhance endurance performance (Bergström et al. 1967; Gonzalez et al. 2016), it is also possible that the inability to access glycogen could impair the capacity for high-intensity exercise (Stellingwerff et al. 2006). Muscle glycogen is the most rapid fuel for ATP re-synthesis (Walter et al. 1999), and therefore is the most appropriate fuel for very high-intensity exercise (Gonzalez et al. 2017). Some nutritional strategies that spare glycogen by suppressing glycogenolysis and PDH activity, such as low-carbohydrate, high-fat diets, have been shown to impair sprint performance (Stellingwerff et al. 2006). However, other nutritional strategies (e.g. L-carnitine supplementation), have been shown to spare muscle glycogen utilisation at moderate exercise intensities (50% Wmax), but still allow for high rates of glycogenolysis at higher exercise intensities (80% Wmax) (Wall et al. 2011). Whether these responses are translatable to the exercise intensity in the present study, remains to be assessed. Glycogen data are not available in the present study, but prior work has
shown that BHB-ME potently suppresses muscle glycogenolysis at 70% VO₂max (Cox et al. 2016), albeit with some inconsistency (Poffe et al. 2020). It is currently unclear whether BHB-ME impairs the ability to access glycogen at very high exercise intensities. The intensity of exercise in the present study is very likely to have exceeded 70% VO₂max based on the blood lactate concentrations indicative of being well above lactate threshold.

An additional explanation for the lower lactate concentrations observed in the present study is a better matching of glycolytic to PDH flux (Stephens et al. 2007). If this is the case, it is currently the most likely explanation for a potential performance enhancement with co-ingestion of BHB-ME. During high-intensity exercise, the production of acetyl groups from high PDH flux can exceed utilisation by the TCA cycle, resulting in acetyl-CoA accumulation, depletion of the free CoA pool and, ultimately, inhibition of PDH and TCA flux (Stephens et al. 2007). Skeletal muscle carnitine can act as an acetyl group buffer by forming acetylcarnitine and thereby facilitate better matching of glycolytic, PDH and TCA flux during high-intensity exercise (Stephens et al. 2007; Wall et al. 2011). Acute CHO+BHB-ME co-ingestion has previously been shown to increase skeletal muscle carnitine content by up to ~50% within 25 mins of ingestion (Cox et al. 2016). Whilst this marked increase in muscle carnitine needs confirming, if acute BHB-ME ingestion is able to raise skeletal muscle free carnitine content, this could explain the improvement in performance observed in the present study. Future work will be required to establish whether this is indeed a plausible mechanism by which BHB-ME alters performance.

Any potentially advantageous metabolic effects of BHB-ME ingestion for performance could be negated by other metabolic or non-metabolic effects, such as a reduction in blood pH and/or an increase in gastrointestinal distress. The precise dose of BHB-ME to produce sufficient circulating BHB concentrations to influence metabolism, whilst limiting gastrointestinal distress and acidosis requires clarification. In the present study where there was
a suggestion of a ~2% (0.3 s) improvement in overall performance, the absolute dose of BHB-ME was ~58 g (590 mg/kgBM), which was co-ingested with 0.3 g/min of carbohydrate (as a glucose-fructose mixture), compared to 1.1 g/min of carbohydrate alone in the control group. The only previous study to have assessed the effects of ketone body ester ingestion in intermittent running found a neutral effect on time-to-exhaustion when ketone body ester (750 mg/kgBM; 59 g) was ingested in addition to glucose (~1.2 g/min) (Evans and Egan 2018). It was noted in that study that there was a greater prevalence of gastrointestinal distress with addition of ketone body ester to glucose ingestion, compared to glucose ingestion alone. This is consistent with other observations of gastrointestinal distress and impaired performance with the addition of acetoacetate diester to carbohydrate ingestion. Therefore, a consistent picture appears to be emerging, whereby the addition of ketone ester ingestion to relatively large carbohydrate intakes may result in sufficient gastrointestinal distress to impair or negate any potentially beneficial performance effects. However, the substitution of ketone ester for carbohydrate intake to result in isocaloric comparisons may explain the lesser prevalence of gastrointestinal complaints in the present study compared to prior work. It should still be noted that the difference in mean gastrointestinal symptoms score in the present study was 2 points higher (15-point scale) with CHO+BHB-ME compared to carbohydrate ingestion alone – with two participants reporting more severe gastrointestinal symptoms (scores >12) only with CHO+BHB-ME. Thus, the potential for gastrointestinal distress should be carefully considered if translating these findings into practice.

Some limitations with the present study are worthy of acknowledgment. First, there is potential for the study to be underpowered based on the dropout rate, and having not achieved the desired sample size. This could both inflate any effect size observed or increase the chance of a type II error. Furthermore, due to the nature of the protocol and the athletes recruited, there is a lack of mechanistic insight and therefore the proposed mechanisms remain speculative.
Future work should aim to establish the mechanisms underpinning any potential alterations in metabolism or performance with β-hydroxybutyrate monoester ingestion during high-intensity intermittent activity.

In summary, the present study demonstrates that co-ingestion of a β-hydroxybutyrate monoester with carbohydrate can alter metabolism (reduce circulating lactate and glycerol concentrations) and may improve high-intensity intermittent performance during a rugby simulation protocol in professional players, without altering shorter-duration sprint and power-type efforts. Some evidence of gastrointestinal distress was also prevalent. Therefore, Rugby Union players may consider consuming β-hydroxybutyrate monoester with carbohydrate before and during competition, although individual tolerance should first be tested in training prior to competition due to the potential for gastrointestinal problems.

ACKNOWLEDGEMENTS

This research was partly supported by the UK Sport Council. The authors thank Matt Middleton and Will Owen for their assistance with supervision of trials. They also thank Nikolai Böhlke and Dr Pete Cox for supporting aspects of study concept/design. The ketone monoester studied in this work was provided in kind by TdeltaS®. TdeltaS had no role in the implementation, interpretation, or dissemination of this work. OP, SR, AS, SD and KS contributed towards the design of the study. OP led study co-ordination and data collection. OP and JG undertook data analysis and interpretation. OP and JG drafted the manuscript with critical input from all authors. All authors have read and approved the final version of the article. JG is an investigator on research grants funded by BBSRC, MRC, British Heart Foundation, Lucozade Ribena Suntory, ARLA Food Ingredients and Kenniscentrum Suiker and Voeding; and has completed paid consultancy for PepsiCo and SVGC.
REFERENCES

FIGURE CAPTIONS

Figure 1. A schematic representation of the study protocol.

Figure 2. Time to complete the simulated match-play performance (A) and 3-m sled push (B), following acute supplementation with carbohydrate alone (CHO ONLY) or co-ingestion of carbohydrate with β-hydroxybutyrate monoester (CHO+BHB-ME). Forwards are solid circles and backs are open circles. Values are means ± 95%CI. *Significant difference between treatments (p=0.04).

Figure 3. Blood β-hydroxybutyrate (A), serum glucose (B), serum lactate (C), serum NEFA (D), serum glycerol (E), and serum myoglobin (F) concentrations before and after acute supplementation with carbohydrate alone (CHO ONLY) or isocaloric co-ingestion carbohydrate with β-hydroxybutyrate monoester (CHO+BHB-ME) during a simulated rugby union match-play protocol. Values are means ± 95%CI. *Significant difference between treatments (p<0.05). ***Significant difference between treatments (p<0.001). ****Significant difference between treatments (p<0.0001). Asterisks next to figure labels indicate a main effect of treatment.

Figure 4. Rating of perceived exertion (A), gastrointestinal discomfort ratings (B), thirst ratings (C) and hunger ratings (D) during a simulated rugby union match-play protocol following acute ingestion of carbohydrate alone (CHO ONLY) or isocaloric co-ingestion of carbohydrate with β-hydroxybutyrate monoester (CHO+BHB-ME). Values are means ± 95%CI. *Significant difference between treatments (p<0.05).