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Grand canonical simulation of phase behaviour in highly size-asymmetrical binary

fluids 

Douglas J. Ashton1 and Nigel B. Wilding1 

1Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom. 

We describe a Monte Carlo scheme for the grand canonical simulation study of fluid phase equi
libria in highly size-asymmetrical binary mixtures. The method utilizes an expanded ensemble in 
which the insertion and deletion of large particles is accomplished gradually by traversing a series 
of states in which a large particle interacts only partially with the environment of small particles. 
Free energy barriers arising from interfacial coexistence states are surmounted with the aid of mul
ticanonical preweighting, the associated weights being determined from the transition matrix. As 
an illustration, we present results for the liquid-vapour coexistence properties of a Lennard-Jones 
binary mixture having a 10 : 1 size ratio. 

I. INTRODUCTION 

Fluid mixtures comprising two or more particle species 
of disparate sizes are common in soft condensed mat
ter [1]. A prime example is a colloidal dispersion to 
which much smaller particles have been added such as 
non-absorbing polymers [2–4] or charged nanoparticles 
[5]. Interest in such systems stems from the fact that 
by judicious choice of the small component, one can po
tentially control the equilibrium and dynamical proper
ties of the large component, giving rise to a rich assort
ment of novel phenomena and material properties [2, 6]. 
Given, however, the wide variety of small particles that 
one might conceivably choose to add, the experimental 
task of characterizing the range of possible behaviour is 
considerable. With this in mind there has been much 
interest in deploying statistical mechanics and computer 
simulation to predict the properties of such mixtures. 

In this paper we shall focus on the problem of obtain
ing the equilibrium phase behaviour of models of highly 
size-asymmetrical mixtures. Direct analytical assaults 
on such systems are generally complicated by the dis
parity in particle length scales [7]. To make progress, 
a widely practiced simplifying strategy is to try to map 
the true two-component mixture onto a single component 
system comprising solely the colloid particles. These are 
assumed to interact via an effective potential which is 
supposed to represent the net effect of the bare colloid-
colloid interactions plus the additional interactions medi
ated by the small particles. Arguably the most successful 
example of such an approach pertains to particles that 
interact as hard spheres – a situation which can be real
ized experimentally to a good approximation in colloid-
polymer mixtures [8]. Here the effective interaction is 
the celebrated “depletion” potential describing the inter
action between two hard sphere colloids immersed in a 
“sea” of small hard spheres [9]. In seminal work, Bob 
Evans and coworkers have contributed much insight into 
this situation by tracing out the degrees of freedom as
sociated with the small particles in order to produce an 
explicit expression for the depletion potential parameter
ized by the particle size ratio and the volume fraction of 
small particles. This not only provides valuable infor

mation on the nature of the colloidal interactions, but 
also serves as a basis for theoretical and simulation in
vestigations of the phase behaviour of the effective one 
component system [10–12]. 

Whilst impressive progress has been made in obtaining 
accurate effective one-component potentials, at present 
they are largely limited to underlying interactions of the 
hard sphere form [1]. Moreover, because effective poten
tials are usually derived in the limit of low density of 
large particles, there are concerns about their accuracy 
at high densities where many body effects are significant. 
Ideally then, one should like to be able to tackle the full 
two component system and treat arbitrary interactions 
between the particle species. Achieving this analytically 
still seems some way off, making it tempting to appeal 
to computer simulation for help. Unfortunately, simula
tions of highly size asymmetric mixtures encounter their 
own problems: the relevant physics is controlled by the 
length scale of the large particles, but attempts to re
lax these particles are often frustrated by the presence 
of the small ones. For instance grand canonical Monte 
Carlo simulations – the method of choice for studies of 
fluid phase transitions [13] – suffer an unfeasibly small ac
ceptance rate for insertions of large particles. Similarly 
in Molecular Dynamics an impractically small timestep 
is mandated by the need to avoid high energy overlaps 
between large and small particles. 

In this paper we describe a tailored Monte Carlo simu
lation scheme that circumvents the principal drawbacks 
of traditional approaches. The essential idea is to treat 
both species grand canonically, but to ease the sampling 
bottleneck for insertions (and deletions) of large parti
cles by performing these – not in a single Monte Carlo 
step – but gradually. In practice this is achieved by per
mitting the system to traverse (in a stochastic fashion) 
a prescribed set of states (or “stages”) that interpolate 
between the limits of a large particle being fully present 
and fully absent from the system. This idea of staged 
insertion has been around for some time, principally in 
the context of chemical potential measurements for dense 
fluids and complex molecules using the Widom formula 
[14–19]. It has been recently revisited in the context of 
optimizing expanded open ensembles by Escobedo [20] 
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and by Shi and Maginn [21]. However, to our knowledge 
it has not been used to calculate the phase behaviour of 
a model asymmetric mixture at large ratios of the com
ponent sizes. 

Whilst our method is quite capable of treating both 
large and small particles on an equal footing when deter
mining the phase behaviour of the mixture, the perspec
tive we adopt in the present paper is one inspired by the 
colloidal systems discussed above. Specifically, we shall 
focus primarily on the phase coexistence properties of the 
large species (colloids), the role of the small particles be
ing assumed to modify the effective interactions between 
the large ones. Hence the phase diagram that we shall 
present is a single component (large species) projection 
of the full phase diagram, this being obtained at constant 
reservoir volume fraction of the small species. 

II. METHOD 

In this section we begin by outlining the statistical 
mechanical basis to the staged insertion method for a 
highly size asymmetric binary mixture. Thereafter we 
discuss implementation issues, taking as an example the 
case of a Lennard-Jones (LJ) mixture. 

A. Statistical mechanics 

Consider a binary mixture comprising N particles, Nl 

of which are ‘large’ (l) and Ns of which are ‘small’ (s), 
all contained in a volume V at temperature T . Particles 
are identified via an index 1 ≤ i ≤ N , and a species label 
γi = l, s, and we write the internal energy as 

N N

Φ = φγi,γj (qi, qj ) , (1) 
i=1 j=i+1 

where φγi,γj is the pair potential for particles i and j of 
species γi and γj , located at position vectors qi, and qj 

respectively. 
Let us now augment this system with an additional 

‘ghost’ (G) large particle having position vector qG. The 
ghost particle is taken to interact normally with other 
large particles, but differently with small particles. To 
deal with this, it is more convenient to associate separate 
indices k and m with the Nl large and Ns small parti
cles respectively, and write the interaction of the ghost 
particle as 

Nl Ns

ΦG = φll(qk, qG) + φ̃ls 
(n)(qm, qG) . (2) 

k=1 m=1 

Here φ̃ls 
(n) describes the interaction between the ghost 

large particle and a small particle. This is modified 

with respect to the standard large-small interaction by 
the dependence on a discrete stochastic macrovariable 
n = 0 . . .M − 1. The role of n is to index the stages 
that specify the degree of coupling between the ghost 
and the small particles. Fluctuations in n forwards or 
backwards across its range result in the gradual inser
tion or deletion of a large particle (Fig 1). To be more 
specific, we let n = 0 correspond to Nl large particles, 
while n = M corresponds to Nl + 1. Intermediate values 
of n = 1 . . .M − 1 represent a system of Nl large parti
cles plus a ghost particle. Thus transitions n = 1 0→
correspond to the deletion of the ghost particle from the 
system, while n = M − 1 M correspond to it turning 
into a fully interacting (ie. 

→
standard) large particle. In 

this sense the n = M state for a system of Nl large par
ticles and the n = 0 state for a system of Nl + 1 large 
particles are equivalent. 

1 2 M!1 1 2 M!1

0 1 2

,n =

Nl =

, Æ Æ Æ0 0 0

FIG. 1: Schematic showing how each integer value of the large 
particle number Nl is expanded into M stages, each of which 
is indexed by the macrovariable n. 

The internal energy of the augmented system is 
Φ�({q}l, {q}s, qG, n) = Φ + ΦG and the associated ‘ex
panded’ [22] canonical ensemble has the partition func
tion Z �(Nl, Ns, V, T, n), where 

Nl Ns � � � 
Z � = dqk dqm dqG exp[−βΦ�], (3) 

k=1 m=1 

with β = 1/kB T . In the present work, we shall be con
cerned with the measured form of the grand canonical 
(GC) ensemble probability distribution of the fluctuat
ing number of large particles, p(Nl|µl, µs, V, T ), where 
µs and µl are the chemical potentials of the small and 
large species respectively. This is obtainable from mea
surements of the joint distribution p(Nl, n|µl, µs, V, T ) 
conducted within the expanded GC ensemble, which is 
defined via a weighted sum of the expanded canonical 
ensemble partition function Z �: 

∞

p(Nl, n) � Z � exp [β(Nlµl + Nsµs)] . (4) 
Ns =0 

Here � means up to an arbitrary normalization constant 
and (for brevity) we have omitted combinatorical and 
volume factors. p(Nl|µl, µs, V, T ) follows from Eq. 4 by 
picking out those macrostates from the expanded ensem
ble having n = 0, ie. that correspond to the physical 
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states in which no ghost particles are present in the sys
tem: 

� M�−11 
∞

p(Nl) = Z � exp [β(Nlµl + Nsµs)] δn,0 (5) 
Z 

Ns=0 n=0 

where 

�∞ ∞ M�−1 

Z = Z � exp [β(Nlµl + Nsµs)] δn,0 (6) 
Nl=0 Ns=0 n=0 

is the grand partition function. 
In the present work we shall seek to obtain p(Nl, n) at 

state points (µl, µs, T ) for which its form may vary over 
many decades. Variations on such a scale preclude di
rect measurements of p(Nl, n) unless special biasing tech
niques are deployed to facilitate sampling of the regions 
of intrinsically low probability. To this end we utilize 
multicanonical preweighting [23], specifying a sampling 
distribution 

p̂(Nl, n|w) � p(Nl, n) exp[w(Nl, n)], (7) 

where w(Nl, n) represents a set of weights defined on the 
discrete combinations {Nl, n}. As shall be described in 
Sec. II B, these weights are chosen such as to ensure 
approximately uniform sampling on the set. The de
sired form of p(Nl) is regained from the measured form 
of p̂(Nl, n) by first using Eq. 7 to unfold the effects of 
the weights, then picking out those macrostates having 
n = 0. 

B.	 Implementation for a binary Lennard-Jones 
mixture 

In order to illustrate how the above formalism can be 
implemented in practice, we consider the case of a binary 
mixture of Lennard-Jones particles. Pairs of particles 
labelled i and j (having respective species labels γi and 
γj ) interact via the potential 

�� σγiγj 
�12 � σγiγj 

�6 
� 

φij (r) = 4εγiγj r 
− 

r
. (8) 

Here εγi γj is the well depth of the interaction, while σγiγj 

sets the range of the interaction based on the additive 
mixing rule σγiγj = (σγi + σγj )/2, where σγi and σγj 

are the particle diameters. Interactions are truncated at 
rc = 2.5σγiγj and we take σl as our unit length scale. 

We shall be concerned with state points in which the 
small particles occupy a relatively small fraction of the 
overall volume and act as a quasi-homogeneous back
ground to the large ones. Under these circumstances, 
configurations of small particles can readily be sampled 

using a standard GC algorithm at constant chemical po
tential, µs. As is customary (in order to make contact 
with experimental scenarios), we choose µs to yield a 
prescribed volume fraction, ηs

r, of small particles in the 
reservoir [24]. Since we seek a quasi-uniform density of 
small particles, we set εss = εls = εll/10, which ensures 
that the small particle reservoir fluid lies well above its 
own (liquid-vapour) critical temperature. In the results 
of Sec. III we refer to a dimensionless temperature which 
is defined as T � = 1/(βεll). 

For highly size-asymmetric mixtures, a large number 
of small particles are typically found within the cutoff 
radius 2.5σls of each large particle. In order to locate 
efficiently these particles, we partition our cubic simula
tion box of volume V = L3 into cubic cells of linear ex
tent 2.5σls, and maintain a list of cell occupancies. Simi
lar cells structures were employed to identify small-small 
and large-large interactions [25]. 

As described in Sec. II A, a large particle is inserted 
or deleted in stages by modifying its interaction with the 
small particles. Accordingly one must specify in advance 
the form of the ghost particle interaction for each stage 
n. Obvious candidate strategies include varying the well 
depth of the interaction, or its range. However, we have 
found that neither of these approaches operates particu
larly effectively in practice because of the rapid increase 
of the potential for distances less than that of the poten
tial minimum. Specifically, particles whose separation is 
such that the interaction energy is small at one value of 
n can incur a very high energy penalty at a neighbouring 
stage. This impacts adversely on the acceptance rate, 
a difficulty which can only be mitigated by employing a 
large total number of stages M . 

A superior strategy circumvents this problem by im
posing a minimum on the attractive part of the interac
tion potential and a maximum on the repulsive part: 

min(φls(r), φ̃
(n) )	 r < σls ˜(n)	 maxφls (r) = 

max(φls(r), φ̃
(n) ) r ≥ σls 

. (9) 
min

Each stage, n, is thus specified by a pair of parameters, 
(n) (n)	 (n)

φ̃min and φ̃max. The form of φ̃ls (r) for two such stages 
is compared schematically with the full potential φls(r) 
in fig. 2. 

Once the set of stages has been defined, a Monte Carlo 
scheme for sampling them can be implemented. Given 
a system of Nl large particles and a ghost particle at 
stage n, a proposal is made to perform a transition to 
an adjacent stage, n n�. This proposal is accepted or →
rejected according to a simple Metropolis criterion 

pacc = min 
� 
1, exp 

� 
−β(Φ(n�) − Φ(n)) + Δw 

�� 
, (10)G G 

where ΦG is given by Eq. (2) and Δw = w(Nl, n) − 
w(Nl, n

�) is the difference in multicanonical weights in the 
old and new states, the specification of which is discussed 
below. Note that special measures pertain to transitions 
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FIG. 2: Schematic form of the interaction between the ghost 
particle and a small particle, φ̃ls 

(n)
(r) (Eq. 9) for two values 

of n, compared to the full LJ interaction potential between 
large and small particles. 

that bring the ghost particle to the end of the range of 
n. Specifically, for a transition n = 1 0, the ghost par→
ticle is completely removed from the system; the reverse 
move entails a new ghost being added at a randomly cho
sen location. On the other hand, when a ghost particle 
undergoes a transition n = M − 1 → M , it becomes 
fully coupled to the rest of the system, φ̃ls(r) = φls(r), 
and Nl Nl + 1; the corresponding reverse move en→
tails nominating a randomly chosen large particle to be
come a ghost and setting Nl → Nl − 1. In such circum
stances the difference in weights appearing in Eq. 10 is 
Δw = w(Nl, n) − w(Nl

�, n�). 
In standard GC simulation, updates that insert 

or remove a particle usually incorporate a factor of 
eβµl V/(Nl +1) (insertion) or e−βµl Nl/V (deletion) in pacc 

to yield the correct GC equilibrium distribution. When 
operating in the expanded GC ensemble it is convenient 
(in the interests of obtaining a smooth weight function 
in the expanded space of Nl and n) to set the chemical 
potential µl = 0 and to ignore the volume and particle 
number factors for the time being. The neglected factors, 
as well as the unfolding of the multicanonical weights (cf. 
Eq. 7) are easily accounted for when extracting the final 
GC distribution from the measured form of p̂(Nl, n): 

log p(Nl|µl) � log p̂(Nl, n = 0|µl = 0) + βµlNl (11) 
−w(Nl, n = 0) + Nl log V − log(Nl!). 

We turn now to the matter of the choices for the num
ber of stages M and the associated values of the stage 

(n) (n)parameters φ̃min and φ̃max. This is governed by three 
main desiderata : 

(i) The	 rates for transitions between neighbouring 
stages should be roughly equal (in both directions) 
in order to avoid bottlenecks in the sampling. 

(ii) M should be sufficiently large to ensure a reason
ably high transition rate. 

(iii) The number of stages	 M should not be so large 
that the correlation time of the resulting random 
walk in {Nl, n} is excessive (bearing in mind that 
the time to cover a given number of steps grows like 
the square of the number of steps). 

With regard to (i), as we have chosen to implement 
it, staging solely influences the strength of interaction 
between the ghost large particle and the small particles. 
Hence it does nothing to ameliorate the decrease in ac
ceptance rate that accompanies an increase in the large 
particle density – a situation analogous to standard GC 
simulations of single component fluids. Thus even if the 
effects of the small particles were to be offset equally for 
all Nl, one would still expect the transition rate to fall 
with increasing Nl. In such a situation, one can at best 
aim to avoid bottlenecks in the sampling by ensuring that 
(i) is satisfied locally in {Nl, n}. With regard to (ii) and 
(iii), there is in practice a tradeoff to be realized here 
which (in parallel with satisfying (i)) may necessitate a 
degree of trial and error, although more systematic ap
proaches have been considered in the expanded ensemble 
literature [20]. In sec. III we consider factors affecting 
the choice for one practical situation. 

As discussed in Sec. II A, the form of p(Nl, n) may span 
many decades of probability and in order to sample it ef
fectively, multicanonical preweighting is called for. This 
in turn requires knowledge of a set of weights, w(Nl, n), 
that facilitate the even-handed sampling of regions of 
high and low probability. One choice that ensures this is 
w(Nl, n) ≈ − log p(Nl, n) which results in a sampled dis
tribution p̂(Nl, n) that is approximately flat (cf. Eq. 7) 
[26]. However, since p(Nl, n) is just the distribution that 
we seek, the task of determining the weight function ap
pears –at first sight– to be circular. Fortunately though, 
the situation is saved by the observation that it is possible 
to build up a suitable estimate of w(Nl, n) from scratch 
via iterative means [29]. The approach we favour for 
doing so is based on the transition matrix Monte Carlo 
(TMMC) method [30–34]. 

TMMC works by monitoring the transitions between 
macrostates and using these to infer their relative proba
bility. Once sufficient transition statistics have been col
lected, it is possible to construct the entire probability 
distribution. The starting point is the macrostate bal
ance condition relating the equilibrium probability of two 
macrostates u and v to the transition rates between them: 

p(u)W (u v) = p(v)W (v u) , (12)→ → 

where u and v are taken to represent combinations of 
Nl and n. The equilibrium transition rate, W (u v)→
can be estimated in the course of a simulation by ac
cumulating the acceptance probabilities for macrostate 
transitions into a collection matrix, C(u v). For every →
proposed move, u v, the unbiased acceptance proba→
bility, a (calculated from Eq. 10 by assuming Δw = 0) is 
added to the collection matrix thus: 
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C(u v) C(u v) + a (13)→ → → 

C(u → u) → C(u → u) + (1 − a) . (14) 

This happens regardless of whether or not the move is 
accepted. 

The transition rates can be extracted from the collec
tion matrix via 

C(u v)
W (u v) = � 

→ 
, (15)→ 

C(u v�)v� → 

where the sum in the denominator on the right hand side 
runs over all possible values of the macrovariable. 

Putting the transition rates into equation (12) yields 
the macrostate probabilities 

p(v) W (u v)
= 

→ 
, (16) 

p(u) W (v u)→ 

from which the multicanonical weights follow as 

W (u v) 
w(u) − w(v) = − ln 

W (v 
→ 

u) 
. (17) 

→ 

Since the collection matrix is concerned solely with un
biased acceptance probabilities, one is free to apply an 
arbitrary bias during the simulation without affecting es
timates of equilibrium properties. This feature of TMMC 
can be exploited to provide an automated strategy for ob
taining a suitable multicanonical weight function. Start
ing with no knowledge of the weight function, one simply 
updates w(Nl, n) periodically via equation (17). This al
lows the sampling to gradually extend over the range of 
Nl, n, pushing progressively into regions of ever smaller 
probability [35]. Once the region of interest has been 
adequately sampled, the collection matrix provides an 
estimate of the requisite distribution p(Nl, n) via Eq. 16. 
During the simulation we also sample (in list form [37]) 
the instantaneous values of Nl, Ns, n, together with the 
configurational energy Φ. This permits extrapolation of 
the results for p(Nl, n) in temperature via standard his
togram reweighting techniques [36]. 

III. APPLICATION TO THE LIQUID-VAPOUR 
TRANSITION OF A BINARY LENNARD-JONES 

MIXTURE 

As a test of our method, we have applied it to the 
study of liquid-vapour phase coexistence in a LJ mixture 
having particle size ratio q ≡ σss/σll = 0.1 and reservoir 
volume fraction of the small particles ηs

r = 0.01. The sim
ulations were performed for a cubic periodic simulation 
box of side L = 7.5, which for this ηs

r would correspond 
to Ns ≈ 8000 in the absence of large particles. Since the 

0 ≤ Nl ≤ 130 Nl > 130 

Stage, n φ̃min φ̃max φ̃min φ̃max 

1 −0.5 7.5 2.7 0 0→ 

2 −0.8 20 16 −0.5 7.5→ 

3 −0.8 20 

(n) (n)
TABLE I: The stage parameters φ̃min and φ̃max (expressed in 
units of �ls) as used in the simulations. For 0 ≤ Nl ≤ 130, 
two intermediates stages (n = 1, 2) were used (ie. M = 3), 

(n)
and φ̃max was varied linearly as a function of Nl between the 
limits shown (see text). For Nl > 130, three intermediate 
stages were used (M = 4) with no variation of parameters. 

coexistence properties of this system are known already 
on the basis of simulation studies using a very different 
approach (previously proposed by one of us [39]), there 
exists a convenient baseline for comparison. 

(n) (n)The choice of the stage parameters φ̃min and φ̃max was 
guided by the criteria set out in Sec. II B. For small 
values of Nl ≤ 130, only two intermediate stages were 
required (ie. M = 3) to obtain a fairly high transition 
rate. However, in order to maintain a roughly constant 
transition rate across intermediate stages for different Nl, 

(n)it was found necessary to vary φ̃max linearly as a function 
of Nl between the limits shown in Table I. For Nl > 130 
the overlap of the ghost with large particles becomes the 
principal ground for rejecting an insertion, and we chose 
to mitigate this by the introduction of an additional stage 

(1) (1) (assigned to n = 1) with parameters φ̃min = φ̃max = 0, 
thus making M = 4. No variation of the other stage pa
rameters was deemed necessary in this regime, whose val

(n) (n)ues for φ̃min and φ̃max are included in Table I. Across the 
entire range of Nl studied, the acceptance rate for transi
tions varied from � 30% at small densities of large parti
cle to � 5% at liquid-like densities. The principal source 
of this variation is overlaps between the ghost particle 
and large particles; its magnitude compares favourably 
with that occurring in grand canonical studies of single 
component fluids over the same density range. 

The simulations were initialized at the temperature 
T � = 1.047, close to the known critical temperature of 
the model [39]. At this temperature the TMMC method 
was used to obtain a suitable form for the multicanon
ical weight function and thence an estimate of the his
togram p(Nl, n) for Nl = [0 : 300]. This histogram was 
then reweighted in µl such as to satisfy the equal area 
criterion [38] for the two peaks in the near-coexistence 
form of p(Nl), thereby yielding an estimate of the coex
istence value of µl. Of course, the coexistence condition 
of equal pressures of the phases actually implies equal 
a-priori probabilities of the two phases in the space of 
both components i.e. equal integrated weight of the two 
peaks in the joint distribution p(Nl, Ns). However, this is 
equivalent to equal areas under the double peaked form 
of either p(Nl) or p(Ns) that results when p(Nl, Ns) is 
projected onto either axis. Given our viewpoint, inspired 
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by colloidal systems (see Sec. I), that the small particles 
act to modify the effective single component phase be
haviour of the large ones, we focus on the forms of p(Nl) 
at constant ηr .s 

The data accumulated at T � = 1.047 was subsequently 
extrapolated to the lower temperature T � = 1.0 by means 
of histogram reweighting, maintaining the reservoir vol
ume fraction ηs

r = 0.01 constant in the process (which ne
cessitates a concommitant re-tuning of µs). The result
ing form of p(Nl, n) provided a suitable multicanonical 
weight function for a new run at this lower temperature. 
By iterating this process we were able to step along the 
coexistence curve without the need to ever recalculate 
a multicanonical weight function from scratch. Further 
details of this strategy for mapping liquid-vapour coexis
tence lines are described in ref. [37]. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
ρl

0

5
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20

P
(ρ

l )

T=1.047
T=1.00
T=0.95
T=0.90
T=0.85

(a)
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0
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(ρ
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(b)

FIG. 3: (a) Estimates of the coexistence forms of P (ρl) 
for ηs

r = 0.01 obtained using the methods described in 
the text. Data are shown for T � = 1.047 (criticality), 
1.0, 0.95, 0.90, 0.85. (b) The same data expressed on a log 
scale. 

Fig. 3 presents our resulting estimates of the coexis
tence forms of p(ρl) with (ρl = Nl/V ) at various tem
peratures. Not surprisingly, the distributions exhibit be

haviour which is qualitatively similar to that of a single 
component fluid [13]. An estimate of the corresponding 
liquid-vapour binodal can be extracted from the distri
butions (by averaging the density under each peak) and 
is shown in Fig. 4(a). Also included in Fig. 4(a) is the 
binodal for the single component LJ fluid determined in 
a previous study [13]; the comparison reveals that the 
presence of the small particles in the mixture depresses 
the critical temperature significantly. Estimates of the 
phase boundary in µl − T space are shown in Fig. 4(b). 

As regards the validation of our methodology, we have 
checked it by generating coexistence data for the same 
model using a simulation technique that operates along 
fundamentally different lines, namely the “GCA-RGE” 
simulation method of ref. [39]. Data for the coexistence 
densities of large particles were obtained for T = 0.85 and 
T = 0.90 and are included on Fig. 4 (crosses). Clearly 
the level of agreement is very high, which supports the 
correctness of our implementation. 

We point out that obtaining this phase diagram in a 
reasonable timescale would not have been feasible with
out the staged insertion/deletion approach. Our tests 
show that the wall clock correlation time in the absence 
of staging is too large to be reliably estimated. Never
theless, a lower bound on the ratio of correlation times 
with and without staging can be estimated via a compar
ison of the transition acceptance rates. For ηs

r = 0.01, 
the insertion/deletion rate without staging is ∼ 10−6 at 
liquid-like densities of the large particles. This very low 
acceptance rate is of course attributable to the high like
lihood that a randomly chosen large particle insertion 
results in overlaps with one or more small particles – a 
visual impression of the difficulty is provided by config
urational snapshots of the coexisting phases as shown in 
Fig. 5. Use of staging increases the transition acceptance 
rate to ∼ 10−2 for M = 4 stages. The cost overhead is 
an increases in the (round trip) random walk length in 
Nl by a factor of M , thereby increasing the correlation 
time by a factor M2 ∼ 10. Hence we believe that in the 
present case our method is more efficient than standard 
grand canonical sampling by a net factor of ∼ 103 . 

Notwithstanding the impressive scale of this speedup, 
the net computational expenditure incurred by our study 
remained significant. This is primarily due to the large 
number of small particles in the system, even for the rel
atively low volume fractions of small particles that we 
considered. To be more quantitative, the task of ob
taining the initial multicanonical weight function con
sumed about a week of CPU time on a 32-core 3 GHz 
machine, while data collection for each subsequent coex
istence state point also took about a week. 

IV. CONCLUSIONS 

In summary, we have described a grand canonical 
Monte Carlo simulation scheme for the study of fluid 
phase transitions in highly size-asymmetrical binary mix
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FIG. 4: (a) Coexistence densities (circles) as determined from 
the peak positions of Fig. 3; dots interpolate between the 
measured coexistence densities, and are determined via his
togram reweighting. Squares show the binodal for the single 
component LJ fluid obtained in Ref. [13]. Critical points are 
marked (*). Crosses (×) are coexistence densities obtained 
using the GCA-RGE technique [39] as discussed in the text. 
Statistical uncertainties do not exceed the symbol sizes. (b) 
Corresponding coexistence points in the µl − T plane, with 
additional points (dots) obtained via histogram extrapolation. 

FIG. 5: Configuration snapshots of the coexisting vapour 
phase (upper panel) and liquid phase (lower panel) at T � = 
0.95. 

As regards the outlook for this approach, we see no 
reason why it shouldn’t be effective at larger reservoir 
volume fractions of the small particles, or indeed for 
multicomponent mixtures. The principal computational 
overhead associated with higher values of ηr

s will be the 
larger number of interactions with small particles. The 
number of stages M necessary to maintain a reasonable 

tures. The method overcomes the low acceptance rate 
for large particle transfers that plagues standard GC ap
proaches. This is achieved via a staged insertion scheme 
whereby insertion (deletion) of a large particle proceeds 
stochastically via a set of intermediate states in which the 
coupling to the environment of small particles is switched 
on (off) gradually in stages. Once a suitable set of stages 
and associated multicanonical weights has been deter
mined, the system essentially performs a random walk 
in the density of the large particles. We have applied 
the method to a particular binary Lennard-Jones mix-

acceptance rate will presumably increase too. We hope 
to investigate and report on these issues in future work. 
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