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3 Abstract

For several decades, chemical modelling methods have underpinned the rapidly expanding

and important field of computational chemistry. These methods have provided invaluable

contributions to the understanding of asymmetric and catalytic reactions, in turn allowing

the rational design of improved catalysts and reactions. However, recent developments in

machine learning (ML) applied to reaction modelling are changing the shape of computa-

tional chemistry. ML models, once trained, could allow for much more rapid screening of

chemical reactions. In this thesis, research into two distinct approaches to understanding

organic reactions, modelling and ML, are presented. Several examples of the successful

application of conventional density functional theory modelling are provided, followed by

details of a new ML methodology which improves on current standards for the prediction

of reaction barriers, whilst also providing mechanistic insights. A particular emphasis is

placed on the advantages of each approach with respect to modelling asymmetric and cat-

alytic reactions, and their subsequent application to drug discovery and natural product

synthesis.
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6 Nomenclature

Abbreviations

AM1 Austin model 1

AMBER Assisted model building with energy re�nement family of force�elds

BHCA BINOL-derived hydroxyl carboxylic acid

BINOL 1,10-bi-2-naphthol

BJ Becke-Johnson damping

BLR Bayesian linear regression

BPA BINOL-derived phosphoric acid

BSSE Basis set superposition error

CNDO Complete neglect of di�erential overlap

CSD3 Cambridge service for data driven discovery

CV Cross-validation

DFT Density functional theory

DFTB Density functional tight binding

DiRAC Distributed research utilising advanced computing

DMSO Dimethyl sulfoxide

DNA Deoxyribonucleic acid

DOI Digital object identi�er

ENR Elastic net regression

EPSRC Engineering and physical sciences research council

EState Electrotopological state

GAMESS General atomic and molecular electronic structure system

GBR Gradient boosting regression

GFN-xTB Geometries, frequencies, and non-covalent interactions, eXtended tight binding

GGA Generalised gradient approximation

GPR Gaussian process regression

GTO Gaussian-type orbital

HF Hartree-Fock method

HOMO Highest occupied molecular orbital

HPC High-performance computing

HPLC High-performance liquid chromatography

IEFPCM Integral equation formalism version of the polarisable continuum model

InChI International chemical identi�er

INDO Intermediate neglect of di�erential overlap

IUPAC International union of pure and applied chemistry
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KRR Kernel ridge regression

KRR(poly) Kernel ridge regression with a polynomial kernel

KRR(RBF) Kernel ridge regression with a radial basis function kernel

LASSO Least absolute shrinkages and selection operator regression

LDA Local-density approximation

LMCS Low-mode conformational searching method

LogP Partition coe�cient

LPOCV Leave-p-out cross-validation

LSDA Local-spin density approximation

LUMO Lowest unoccupied molecular orbital

MA Michael acceptor

MAE Mean absolute error

MCMM Monte Carlo multiple minimum torsional sampling method

ML Machine learning

MLP Multi-layer perceptron regression

MLR Multivariate linear regression

Mlxtend Machine learning extensions python package

MM Molecular mechanics

MNDO Modi�ed neglect of diatomic overlap

MOPAC Molecular orbital package

MP M�ller-Plesset pertubation theory

MR Molar refractivity

MRA Mineralocorticoid receptor antagonist

MW Molecular weight

NAO Natural atomic orbital

NBO Natural bond orbital

NCI Non-covalent interaction

NDDO Neglect of diatomic di�erential overlap

NHO Natural hybrid orbital

NLMO Natural localised molecular orbital

NMR Nuclear magnetic resonance spectroscopy

NNR K -nearest neighbours regression

NOE Nuclear Overhauser e�ect spectroscopy

NTOB N -sulfonylated tryptophan-derived oxazaborolidinone

OPLS Optimised potential for liquid simulations family of force�elds

ORCA Ab initio, DFT, and semi-empirical electronic structure package

Pint Universal quantitative dispersion descriptor
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PBV Percent buried volume

PCM Polarisable continuum model

PEOE Partial equalisation of orbital electronegativities

PES Potential energy surface

PM3 Parameterisation method 3

PM6 Parameterisation method 6

PM7 Parameterisation method 7

QM Quantum mechanics

RBF Radial basis function (or squared exponential or Gaussian) kernel

RDS Rate-determining step

RFECV Recursive feature elimination with k -fold cross-validation

RFR Random forest regression

RM1 Recife model 1

RMSD Root-mean-square deviation of atomic positions

RMSE Root-mean-square error

RRHO Rigid-rotor-harmonic oscillator approximation

SAM1 Semi-empirical ab initio model 1

SASA Solvent accessible surface area

SCF Self-consistent �eld

SFSCV Sequential forward selection with k -fold cross-validation

Sklearn Scikit-learn python package

SMD Solvent model based on density

SMILES Simpli�ed molecular-input line-entry system

SPE Single point energy

SQM Semi-empirical quantum mechanics

STO Slater-type orbital

SVC Support vector classi�cation

SVM Support vector machine

SVR Support vector regression

SVR(poly) Support vector regression with a polynomial kernel

SVR(RBF) Support vector regression with a radial basis function kernel

TADDOL �,�,�0,�0-tetraaryl-2,2-disubstituted 1,3-dioxolane-4,5-dimethanol

TRIP 3,30-bis(2,4,6-triisopropylphenyl)-2,20-binaphtholate

TS Transition structure

UFF Universal force �eld

VMD Visual molecular dynamics

ZDO Zero-di�erential overlap
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Symbols, units, and mathematical terms

�i Model coe�cient of feature i

� Relative permattivity (dielectric constant) for implicit solvent models or error term (loss func-
tion) for ML models

�n Individual error of data point n

�i ith eigenvalue

r Nabla operator

r2 Laplace operator

� Mathematical constant, equal to the ratio of a circles circumference to its diameter

	 Wavefunction

� Electron density

�n Slack variable representing the error of data point n in a SVM

� The number of basis functions per orbital in a basis set

�A �Angstr�om

Cij Element of a Coulomb matrix representing the electrostatic (Coulombic) interaction between
atoms i and j

E Energy

EC Electron correlation energy

EEE Coulombic electron-electron repulsion energy

ENE Coulombic nuclear-electron attraction energy

ENN Coulombic nuclear-nuclear repulsion energy

ET Kinetic energy

EX Electron exchange energy

EXC Exchange-correlation energy

T approx Kohn-Sham kinetic energy

T di� Portion of kinetic energy not accounted for by the Kohn-Sham method

ee Enantiomeric excess

G Gibbs free energy

�h Reduced Planck’s constant, equal to Planck’s constant, h, divinded by 2�

K Kelvin

kcal Kilocalorie

m Mass

mol Mole

r Pearson’s correlation coe�cient (or the spatial position of a particle)

r2 Squared Pearson’s correlation coe�cient

rij Interatomic separation between atoms i and j

R2 Coe�cient of determination
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s Reduced electron density

V Potential energy

Zi Atomic number of atom i

�y Mean value of target y

yn Observed value of target y for data point n

ŷn Predicted value of target y for data point n

xn Value of input feature x for data point n

Machine learning hyperparameters

� Regularisation parameter (denoted C for Kernel-based ML algorithims) controlling the size of
the penalty applied to the coe�cient of each feature during minimisation of a loss function


 Parameter controlling the in
uence of individual train points in KRR (larger values result in
a higher in
uence of each point)

Coef0 Parameter controlling the in
uence of high-degree terms in polynomial kernels

Degree Degree of a polynomial function or kernel

Leaf size Parameter controlling which algorithm is used to identify the k nearest neighbours in NNR,
depending on the number of data points provided to the model

Max depth Maximum depth of each decision tree in RFR or GBR

N estimators Number of trees in the forest for RFR or number of boosting stages for GBR

N neighbours Number of neighbours used for prediction in NNR

p Power parameter de�ning the distance metric in NNR

Weights Distance weighting method for neighbours in NNR

Miscellaneous

(50,194) Atom-centered integration grid with 50 radial shells and 194 angular points (pruned version
known as SG1 integration grid by Gaussian users)

(75,302) Atom-centered integration grid with 75 radial shells and 302 angular points (pruned version
known as Fine integration grid by Gaussian users)

(99,590) Atom-centered integration grid with 99 radial shells and 590 angular points (pruned version
known as UltraFine integration grid by Gaussian users)

(250,770) Atom-centered integration grid with 250 radial shells and 770 angular points

(500,974) Atom-centered integration grid with 500 radial shells and 974 angular points

6-31G(d) Double-� valence quality Pople basis set (six primitive gaussian functions for the core elec-
trons and 3+1 primitive gaussian functions for the valence electrons) with additional d-type
polarisation functions (heavy atoms)

6-31G(d,p) Double-� valence quality Pople basis set (six primitive gaussian functions for the core electrons
and 3+1 primitive gaussian functions for the valence electrons) with additional d-type and p-
type polarisation functions (heavy and light atoms)

6-311G(d,p) Triple-� valence quality Pople basis set (six primitive gaussian functions for the core electrons
and 3+1+1 primitive gaussian functions for the valence electrons) with additional d-type and
p-type polarisation functions (heavy and light atoms)

wB97X-D Long-range dispersion-corrected hybrid GGA density functional
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B3LYP Becke, 3-parameter, Lee-Yang-Parr semi-empirical hybrid LDA-GGA density functional

B3LYP-D3(BJ) B3LYP density functional, dispersion-corrected with the D3 version of Grimme’s model with
Becke-Johnson damping

cc-pVTZ Triple-� valence quality Dunning (correlation-consistent) basis set

def2-TZVP Triple-� valence quality Karlsruhe basis set with additional d-type polarisation functions
(heavy atoms)

def2-TZVPP Triple-� valence quality Karlsruhe basis set with additional d-type and p-type polarisation
functions (heavy and light atoms)

L1 norm Sum of the absolute di�erences between data points

L2 norm Square root of the sum of the squared di�erences between data points

M06-2X Minnesota 2006 dispersion-corrected semi-empirical hybrid meta-GGA density functional

OPLS 2005 A force �eld for small drug-like molecules and proteins

OPLS3 A force �eld for small drug-like molecules and proteins

OPLS3e An enhanced force �eld for small drug-like molecules and proteins

STO-nG Minimal basis set composed of n primitive Gaussian functions per atom
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7 Introduction

7.1 Chirality in drug molecules

Chirality is an important consideration in the preparation of flavours,1 fragrances,2 cata-

lysts,3,4 materials,5 agricultural chemicals,6 and particularly pharmaceutical drugs;7 due to

this fundamental geometric property many chemical compounds exist in two enantiomeric

forms. Because enzymes are also chiral, they can often distinguish between the different

enantiomers of a molecule, and thus enantiomers of the same molecule sometimes elicit

markedly different biological responses. As a result, many medicinally useful drugs have

corresponding enantiomers that are either pharmacologically inert or produce undesirable

and potentially adverse effects. Two classic examples of this are Thalomid (Figure 7.1),8

and ethambutol (Figure 7.2).9 For this reason, regulatory bodies impose strict regulations

on the marketing of drugs as racemates, for example the US Food and Drug Administra-

tion dictate that any drug sold as a racemate must have both enantiomers characterised

individually.10 Consequently, the prevalence of drugs being marketed as single enantiomers

is high.

Figure 7.1 (R)- and (S)-enantiomers of Thalomid. Sold as a racemate in the 1950s and early 1960s.
Both enantiomers of Thalomid can rapidly interconvert in the body, so even when a pure form of
the (R)-enantiomer is administered the effects of the (S)-enantiomer are not avoided. Thalomid has
also been used to treat cancer and leprosy.

Figure 7.2 (R,R)- and (S,S)-forms of ethambutol.

Today, over one third of drugs marketed worldwide are chiral products,11 and so the

development of methods by which enantiomeric purity can be obtained is essential. One

approach is to first produce the chemicals as a racemate, followed by separation into the

two chiral forms. This may be achieved either by chiral chromatography methods, such

as high-performance liquid chromatography (HPLC), or resolution via diastereomeric salt

formation.7 However, these methods are not atom-efficient or practical on a large scale. In
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contrast, asymmetric synthesis allows the highly selective formation of the desired enan-

tiomer of a particular compound, which is often cheaper and provides better yields.

7.2 Asymmetric catalysis

Asymmetric catalysis involves the use of a chiral catalyst to transform a prochiral substrate

into an enantiomerically pure sample of the chiral product. The interaction between the

catalyst and the reaction substrate leads to the formation of two diastereomeric transition

structures (TSs), each of which leads to a different enantiomer of the product. One of these

TSs is lower in energy than the other, and thus the enantiomer corresponding to the lower

energy TS is the favoured enantiomer of the product (Figure 7.3).

Figure 7.3 Simplified energy diagram for asymmetric catalysis; the lower energy TS leads to the
favoured enantiomer of the product.

Transition metal catalysis has historically been the most successful and prevalent

method for achieving asymmetry in synthetic chemistry,12,13 however many of the most use-

ful transition metals are expensive, toxic, difficult to obtain, or difficult to handle (air- and

moisture-sensitive). Although examples of organocatalysis have been reported throughout

the history of synthetic chemistry, the recent discovery of several new activation modes and

other general benefits over transition metal species has led to a resurgence in this field.3,4

Today, organocatalysis remains at the forefront of drug discovery and natural product

synthesis, and a wide variety of organic asymmetric catalysts have been developed, includ-

ing phosphines,14 amines,15,16 imidazolidinones,17 �,�,�0,�0-tetraaryl-2,2-disubstituted 1,3-

dioxolane-4,5-dimethanols (TADDOLs),18 thioureas,19 phosphoric acids,20{23 carboxylic

acids,24 and oxazaborolidinones.25{42 Within organocatalysis, catalysts can be defined de-

pending on whether they activate the reaction substrate via covalent or non-covalent inter-

actions. However, whilst covalent catalysis is a historically important and rapidly develop-

ing field,43 this thesis will focus on non-covalent asymmetric organocatalysis, which more

closely mimics the typical mechanisms by which enzymes control selectivity in nature.44

Due to the weaker and less directional nature of non-covalent interactions (NCIs), the TSs

of non-covalent organocatalytic reactions tend to be more flexible than in transition metal
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and covalent organocatalysis. Thus, a defining feature of non-covalent organocatalysis is

the formation of several NCIs that operate together to provide rigidity to the TS complex.45

7.3 Governing factors in asymmetric organocatalysis

Asymmetry in non-covalent organocatalysis is governed by the relative energies of the com-

peting diastereomeric TSs, which are themselves determined by the balance of NCIs and

other effects that occur between the substrate and catalyst. Although it is difficult to effi-

ciently categorise all of these distinct interactions and effects, this section will summarise

those that are most common and relevant to this thesis.

7.3.1 Electrostatic interactions

Most NCIs in chemistry are of an electrostatic nature, i.e., determined by the Coulomb

force, including attraction between oppositely charged species or repulsion between like-

charged species. Attractive electrostatic (or Coulombic) interactions may occur either be-

tween two charged or polar species, i.e., charge-charge, charge-dipole, and dipole-dipole

(Keesom) interactions, or when one species induces a temporary (induced) dipole in the

electron cloud of another nearby species, i.e., charge-induced dipole, dipole-induced dipole

(Debye), and instantaneous dipole-induced dipole (London dispersion) interactions (Figure

7.4). Together, the Keesom, Debye, and London dispersion interactions make up the van

der Waals interactions, a subset of forces that occur between uncharged atoms or molecules

via permanent or induced dipoles. In addition to their electrostatic character, these inter-

actions also have a partially quantum mechanical (QM) character grounded in the electron

correlation interaction, which describes the spatial interaction between electrons due to

Coulombic forces.46 Repulsive electrostatic interactions include those between like-charged

ions, as well as steric interactions (see section 7.3.4).

Figure 7.4 Several classes of attractive electrostatic interactions; interactions involving uncharged
species and induced dipoles make up the van der Waals interactions (Keesom, Debye and London
dispersion forces).

Because electrostatic interactions are determined by long-range Coulombic forces, their

strength depends strongly on distance, as well as the extent of polarisation of the interacting

species. For example, charge-charge interactions, such as between an NH3
+ and CO2

- , will

typically be stronger than the permanent dipole-dipole interactions between neutral polar
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molecules, such as HF or water. Furthermore, dipole-induced dipole interactions, such as

those between HF and alkanes, are expected to be even weaker.

The weakest electrostatic interaction are the London dispersion interactions. Unlike

other induced dipole interactions, these occur between uncharged and electronically sym-

metrical atoms and molecules, and thus rely on random fluctuations in electron density to

create temporary (or instantaneous) dipoles. For example, dispersion is responsible for the

attractive interactions that occur between apolar hexane molecules, explaining its liquid

state at room temperature. Because dispersion interactions do not depend on any existing

charge or dipole, they are the most common electrostatic interaction and the dominant

contributor to the van der Waals interactions. Additionally, dispersion interactions be-

come more important as the size of atoms or molecules (and thus the number of electrons)

increases. As a result, dispersion interactions are key to determining the structure and

conformation of all chemical structures.

7.3.2 Hydrogen bonding interactions

Hydrogen bonding (Figure 7.5) is a special case of dipole-dipole (Keesom) interaction which,

alongside ion-pairing (charge-charge interactions),47,48 constitutes one of the most impor-

tant asymmetry-determining NCIs.49,50 Hydrogen bonding, which despite its name borders

on being classed as an actual bond, occurs when a highly polarised hydrogen bond donor

(electron acceptor), X-H, interacts with a suitably electron-rich hydrogen bond acceptor, A.

Commonly, X = A = N, O, F, however the acceptor, A, may be any suitably electron-rich

anion, atom, or molecule. In addition to determining the structure, function, and behaviour

of many chemical structures, classical hydrogen bonding is also important in solid state con-

formation,51 molecular communication,52 and deoxyribonucleic acid (DNA) base pairing in

the genetic code.53,54

Figure 7.5 Classical (X-H···A) and non-classical (Y-H···X) hydrogen bonds; these interactions are
directional and generally exhibit close H···A distances. Halogen bonding occurs when the partially
positive hydrogen is replaced by a halogen atom.

Throughout the last century, much evidence has also been found for hydrogen bonds en-

compassing either weak hydrogen bond acceptors, such as sulfur, phosphorus, or p-systems,

or weak hydrogen bond donors, such as C-H or B-H (Figure 7.5).55{59 Although energeti-

cally less stable than classical hydrogen bonds, these “non-classical” interactions maintain

directionality and H···A distances well below the classical sum of the van der Waals radii.

A similar concept of halogen bonding has also been reported, whereby a halogen atom re-

places the partially positive hydrogen and accepts electron density from a suitable electron

donor.60 Today, non-classical hydrogen bonding is a widely accepted concept, frequently

invoked as a key stereocontrolling element in asymmetric organocatalytic reactions,45,61 as

well as playing an important role in DNA base pairing62 and protein structure.63
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Although there is no strict definition for their exact geometric criteria, van der Waals

radii can be used as an approximate guide for identifying hydrogen bonds.64 Previous gen-

eralisations have defined hydrogen bonds as any interaction between a polarised hydrogen

(X-H) and suitably electron-rich acceptor (A) that is below the sum of the H···A van der

Waals radii and where the X-H···A angle is above approximately 110°.65,66 However, hy-

drogen bonds are primarily electrostatic, and thus determined by long-range Coulombic

forces that extend beyond van der Waals separations. Thus, hydrogen bonding has also

been known to constitute larger X-H···A angles and H···A distances, particularly for the

weaker non-classical variety. Indeed, C-H distances of around 3.1 Å have been reported for

such interactions.67

7.3.3 p interactions

In the previous section, the concept of non-classical hydrogen bonding with p-systems was

introduced, constituting edge-to-face C-H···p arrangements (Figure 7.6a).68 Additionally,

p-systems can also be involved in face-centered and displaced parallel p-p arrangements

(sometimes termed p-stacking) (Figure 7.6b).68,69 Studies of the benzene-benzene dimer

have shown that parallel face-centered p-p arrangements are generally disfavoured relative

to parallel displaced and edge-to-face arrangements,70 except where aromatic systems are

substituted with electron-withdrawing or electron-donating groups.71{73 Nevertheless, both

types of interaction are common in many organic and biological systems, for example in

the aggregation of porphyrins,74,75 the structure and molecular recognition of proteins,76,77

DNA base pairing,78,79 and various catalytic asymmetric reactions.80{82 In general, parallel

p-p interactions can be defined as any situation where two p-systems lie in parallel planes,

no more than 20° out of alignment, with a maximum perpendicular distance of 4 Å between

the two planes, and a maximum distance of 6 Å between the ring centroids (Figure 7.6b).83

Figure 7.6 (a) Edge-to-face C-H···p interactions; (b) face-centered and displaced parallel p-p inter-
actions (p-stacking).

Over the years, the exact nature of these p interactions has been disputed. In the long-

standing Hunter-Sanders model, each atom is treated as a local quadrupole, consisting of the

positively charged nucleus and a region of negative p-charge above and below the plane of
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the ring.84 Thus, the energy of interaction is determined by electrostatic attraction between

the negative p-electrons and the positive nuclei, attractive contact-dependent dispersion in-

teractions, and repulsion between the negative p-electrons. However, whilst derivations of

this model allow qualitative predictions of most p-p geometries in line with experimental

trends (Figure 7.7ab),85,86 they fail to totally account for the effects of substitutions on

the involved p-systems. More recent reports have rationalised these substituent effects on

the basis of direct through-space electrostatic interactions between the highly polarised

substituent and closest region of the complementary aromatic system (Figure 7.7c),87{89

allowing extension of these concepts outside of the specific situation of interaction between

an electron-rich and an electron-poor aromatic. Indeed, computations have shown that all

substituted benzene dimers have more favourable binding interactions than their unsubsti-

tuted cases, whether the substituents are electron-donating or electron-withdrawing.71{73

Additionally, these concepts can also be extended to cation-p90 and anion-p interactions.91

Figure 7.7 (a, b) Derivations of the Hunter-Sanders model allows rationalisation of some p-p
interactions; (c) direct substituent effects allow rationalisation of all p-p interaction.

7.3.4 Steric e�ects

Steric effects are repulsive non-bonding interactions that occur when the electron clouds of

neighbouring atoms overlap. This repulsion has both an electrostatic character, as the like

charged electrons repel one another, as well as some QM character grounded in the electron

exchange interaction, which states that two or more identical electrons cannot occupy the

same space.92 These effects can have a strong influence on molecular conformation; all

chemical structures prefer to adopt a conformation in which steric interactions, and thus the

potential energy of the structure, are minimised. For example, the most stable conformation

of ethane adopts a staggered conformation, avoiding the unfavourable steric interactions

that occur between the nearby CH3 groups when they are eclipsed (Figure 7.8).

Steric effects can also influence reactivity. For example, in the context of asymmetric

catalysis, these interactions often arise when portions of the substrate and chiral catalyst
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Figure 7.8 Staggered and eclipsed conformations of ethane; the more stable staggered arrangement
avoids unfavourable steric interactions between the nearby CH3 groups.

become close to one another upon binding. Thus, varying extents of steric interaction be-

tween the competing diastereomeric TSs can induce selectivity in the reaction. Accordingly,

many examples of asymmetric catalytic reactions have reported sterics as a key selectivity-

driving factor, such as the amine-catalysed indole alkylation,15 phosphoric acid-catalysed

aldehyde allylboration and propargylation,93{95 and oxazaborolidine-catalysed Diels-Alder

reaction.27,28,34 Steric effects are also important in many other areas of chemistry and bi-

ology, for example in determining the structures of crystalline materials96 and protecting

host DNA against self-digestion.97

Like for hydrogen bonding, there is no strict definition for the exact geometric criteria

defining steric interactions, however van der Waals interactions can be used as a reasonable

guide.64 For example, steric interactions are more likely to occur when two atoms approach

each other within a distance less than 90% of the sum of their van der Waals radii without

forming a bond.

7.3.5 Electronic e�ects

In addition to the non-covalent and non-bonding interactions discussed so far, electronic

effects, such as induction, p-conjugation, and hyperconjugation (s-conjugation) (Figure

7.9) can also have a substantial impact on molecular conformation and selectivity. These

effects play a particularly vital role in stabilising structures with charges, which can have

implications on the relative stabilities of TSs that develop charge over the course of a

reaction, often leading to selectivity.

7.3.6 Distortion e�ects

Finally, distortion (or strain) effects are another vital component of selectivity in many

organocatalytic reactions. Distortions occur when the geometries of chemical structures

move away from their equilibrium geometry, giving rise to bond, angle, and torsional strains

that increase the potential energy of the system via internal strain. The most common origin

of distortion is during formation of the TS complex; when reactants come together they

must move away from their equilibrium geometry and into the geometries required in the

TS complex. Thus, an energy cost is associated with the structural distortions that each
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Figure 7.9 (a) Induction; redistribution of electron density through s-bonds due to differences in
electronegativity; (b) conjugation; delocalisation of p-electrons to create stabilising p-systems; (c)
hyperconjugation; delocalisation of s-electrons to create stabilising extended molecular orbitals.

species must undergo during the reaction. This distortion energy (or reaction strain) is

incorporated into the total energy barrier for reaction.98 As a result, some reaction barriers

can be rationalised based on the extent of predistortion of the reactants. For example, a

more predistorted reactant will incur a smaller energy cost of distortion, and thus a lower

barrier (Figure 7.10).99

Figure 7.10 (a) Cycloaddition of an acyclic alkyne is slow and requires harsher conditions due
to the additional energy cost of distorting the linear alkyne substrate to the non-linear strained
geometry required in the TS; (b) the cyclic alkyne is predistorted, with bond angles closer to that
in the TS, and thus reaction is more facile.
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In some chemical systems, distortion can also occur to avoid unfavourable steric inter-

actions, which can also lead to selectivity. For example, in the phosphoric acid-catalysed

oxetane ring-opening, the phosphoric acid distorts away from its equilibrium geometry to

avoid unfavourable substrate-catalyst interactions. As a result, the lowest energy TSs lead-

ing to the major and minor products have very similar steric environments.98 However,

the resulting geometry for the minor TS is substantially more distorted compared to the

equilibrium isolated catalyst geometry than for the major TS. Thus, the resulting energy

difference between the two TSs translates into selectivity in the reaction. This type of

structural reorganisation is particularly common in non-covalent organocatalysis due to the

weaker and less directional nature of NCIs, which can be rearranged at a relatively small

energetic cost. In contrast, TSs in transition metal and covalent organocatalysis tend to be

more rigid and conformationally restricted, and more commonly rely on direct steric effects

to induce selectivity.

7.3.7 Distortion/interaction model

According to Bickelhaupt and Houk’s distortion/interaction (or activation strain) model,

the total energy barrier of a reaction can be decomposed into two contributions; the distor-

tion energy (or reaction strain) associated with the structural distortions that each reactant

and the catalyst must undergo during reaction, and the interaction energy arising from any

interactions that form between the reactants and catalyst, including electrostatic interac-

tions, hydrogen bonding, p interactions, sterics, or any other interaction type.98 Thus, the

energies of the competing diastereomeric TSs that form upon binding of a chiral catalyst

with a reaction substrate can be understood in terms of a balance of each of the factors

discussed in this chapter. Selectivity arises when there are substantial differences between

the competing TSs, for example when an interaction is stronger or only exists in the major

TS, or when the minor TS is more distorted or involves unfavourable steric or electrostatic

interactions.

7.4 Investigating asymmetric organocatalytic reaction mechanisms

The investigation of the competing diastereomeric TSs of asymmetric reactions is an im-

portant task in drug discovery and natural product synthesis. These investigations can

provide detailed insights into the mechanisms and governing factors of asymmetric reac-

tions, and thus enable the rational design of improved catalysts and reactions and allow

greater control of the asymmetric process.61 Numerous analytical methods, such as X-ray

crystallography,100{102 nuclear Overhauser effect (NOE) spectroscopy,28,31,35 and nuclear

magnetic resonance (NMR) spectroscopy103,104 allow the efficient probing of catalytic and

asymmetric reaction mechanisms. However, due to the extremely short lifetimes of TSs,

typically on the order of 30-60 fs,105 even the most advanced experimental methods cannot

capture true pictures of TSs, placing a natural limit on the mechanistic information that

can be revealed by such techniques.

In contrast, QM calculations, in combination with practical techniques such as confor-

mational searching and geometry optimisation, can be used to directly locate and determine

the energy and structure of TSs, providing a highly accurate and efficient method for the

analysis of catalytic and asymmetric reactions. In some cases, high-level QM calculations
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have even raised concerns about the results of experimental NOE/NMR studies.106,107

Thirty years ago, such analyses were a much more difficult prospect; computational meth-

ods were more approximate, and generally allowed only the study of largely truncated sys-

tems to generate simplified qualitative models,108 for example using molecular mechanics

(MM)109 or the Hartree-Fock (HF) method.110{114 However, significant developments in the

1980s and 1990s in the accuracy and efficiency of QM methods, such as density functional

theory (DFT),115,116 have provided the necessary toolset for quantitative calculations on

many complex organic systems.117{122 Additionally, methods such as semi-empirical quan-

tum mechanics (SQM), that make a useful compromise between accuracy and efficiency,

have also seen significant development. Improvements in computing power and chemical

software have further aided the implementation of these theories. Today, these QM ap-

proaches remain state-of-the-art methods in computational chemical modelling, allowing

for the relatively inexpensive and efficient calculation of highly accurate chemical geome-

tries, energies, frequencies, and other thermochemical data.
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8 Computational theory and methods

Chemical modelling methods, such as MM, HF, SQM, and DFT, can allow the calculation

of important chemical information, such as energies, frequencies, and other thermochemical

data. However, to maximise the insights that can be afforded into chemical reactions, these

methods are typically combined with practical techniques, such as conformational search-

ing and geometry optimisation. In this chapter, the theory underlying these key chemical

modelling techniques, as well as their incorporation into a typical chemical modelling in-

vestigation and several common analytical techniques, will be discussed.

8.1 Fundamental forces

To best approximate the multi-electron system, chemical modelling methods must account

for three fundamental forces: the Coulomb force, the electron exchange interaction, and

the electron correlation interaction. The Coulomb force is a classical interaction that de-

scribes interactions between charged bodies, i.e., nuclear-nuclear repulsion, nuclear-electron

attraction, and electron-electron repulsion, and is thus responsible for several important

electrostatic interactions such as those discussed in the previous chapter. In contrast, the

latter two forces are non-classical (QM) in nature; electron exchange treats the relationship

between electrons with the same spin, and is important, for example, in governing steric

interactions, whilst electron correlation describes the spatial interaction between electrons,

whose positions are not random but are determined by the positions of other surrounding

electrons due to Coulombic forces. Thus, electron correlation is an important component

of the van der Waals interactions, including the chemically important dispersion interac-

tions.46 To effectively model non-covalent asymmetric organocatalytic reactions, all three

fundamental forces should be accounted for by the chosen chemical modelling method.

8.2 Molecular mechanics

MM is a chemical modelling method that uses classical mechanics to describe molecules.109

Under the Born-Oppenheimer approximation the movement of nuclei and electrons can be

treated separately,123 and thus MM can describe a chemical system in a purely atomistic

sense, not unlike the traditional ball-and-stick model of bonding. Accordingly, molecules

are modelled as a system of balls connected by springs, and classical mechanics expressions

are used to account for structural distortions, i.e., bond stretching, bending, and torsions,

as well as NCIs, such as those discussed in the previous chapter. For example, expressions

for bond stretching and bending can be based on Hooke’s law, whilst those for the NCIs are

more complex. Together these expressions can define a potential energy function (Equations

8.1-8.3) that depends on deviations away from the optimum properties of the system. In

this way, the potential energy of a chemical system can be minimised with MM.

Etotal = Ecovalent + Enon-covalent (8.1)

Ecovalent = Ebond + Eangle + Edihedral (8.2)

Enon-covalent = Eelectrostatic + Evan der Waals + Eother (8.3)
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The specific functional form and numerical parameters in an MM potential energy ex-

pression can be defined by force fields and are typically derived from experimental findings.

Force fields are highly generalised, and thus largely transferable between distinct chemi-

cal bonding environments. Of the large variety of force fields that exist today, many are

tailored for specific purposes. For example, the assisted model building with energy refine-

ment (AMBER) family of force fields are best suited to the modelling of biomolecules,124

whilst optimised potential for liquid simulations (OPLS) force fields, such as OPLS 2005125

and OPLS3,126,127 are optimised to fit the experimental properties of liquids. OPLS3 is

generally considered to be one of the most extensively parameterised force fields and is

hence recommended for a wide range of applications.126 Additionally, a recent comparison

of several force fields found OPLS3e to perform the best when predicting the ordering of

conformations of organic molecules based on their DFT energy.128

MM is a widely used and efficient chemical modelling method that is approximately

three orders of magnitude faster than typical SQM methods and six orders of magnitude

faster than modest-level DFT.129 However, due to its classical nature, MM cannot account

for quantum effects such as electron exchange or electron correlation, limiting its use in the

study of non-covalent asymmetric organocatalytic reactions.

8.3 Hartree-Fock theory

The HF method, sometimes referred to as the self-consistent field (SCF) method, is a pure

ab initio QM modelling method that allows approximation of the wavefunction and energy

of multi-electron quantum systems.110{114 HF theory is based on solving the multi-body

electronic time-independent Schrödinger equation (Equation 8.4) by assuming that the total

wavefunction of the multi-electron system can be approximated as a series of one-electron

wavefunctions that are independent of one another.

�
�h̄2

2m
r2 + V(r)

�
Ψ(r) = E Ψ(r) (8.4)

In contrast to MM, the HF method accounts for both the Coulomb force and electron

exchange. However, it neglects to fully treat electron correlation,130 which can lead to

significant inconsistencies compared to experimental results, particularly when modelling

NCIs. Several more sophisticated approaches can improve on the incorporation of elec-

tron correlation in HF theory. These are collectively referred to as post-HF methods,131

and include Møller-Plesset (MP) perturbation theory,132 configuration interaction,133 and

coupled-cluster techniques.134 However, whilst these methods tend to lead to more accurate

results, they also come at a significant computational cost, making them unfeasible for use

on large or especially complex chemical systems, such as those in organocatalysis. Although

not explicitly used in this thesis, HF theory plays a fundamental role in picture of the SQM

and DFT methods that will be discussed in subsequent sections.

8.4 Density functional theory

DFT is a QM modelling method that, like HF, is based on solving the multi-body electronic

time-independent Schrödinger equation (Equation 8.4).115,116 In addition to the Coulomb

force, DFT accounts well for both electron exchange and electron correlation, providing a

good compromise between the computational cost of basic HF methods and the accuracy
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of post-HF methods that better describe electron correlation. The fundamental princi-

ple of DFT is the assertion that a multi-electron system’s ground state electronic energy

is determined completely by its electron density. Thus, within the Born-Oppenheimer ap-

proximation,123 the electronic energy of the multi-electron system can be written as a linear

combination of functionals (functions of functions) of the electron density, � (Equation 8.5).

Etotal (�) = ENN (�) + ENE (�) + EEE (�) + ET (�) + EX (�) + EC (�) (8.5)

Within this expression, the first three terms are the classical Coulombic terms: the

nuclear-nuclear repulsion, nuclear-electron attraction, and electron-electron repulsion ener-

gies. These can be calculated ab initio, in the same way as in the HF method. The fourth

term, ET (�), represents the kinetic energy of the electrons, which can be approximated as

Tapprox (�) using the Kohn-Sham method.116 This iteration of DFT is known as Kohn-Sham

DFT, and is usually what is referred to today simply by DFT. However, as the Kohn-Sham

method is not exact, a small portion of the kinetic energy, Tdi� (�), is left unaccounted for

(Equation 8.6).

ET (�) = Tapprox (�) + Tdi� (�) (8.6)

This leaves Tdi� (�) and the final two terms of Equation 8.5, the non-classical elec-

tron exchange energy, EX (�), and the non-classical electron correlation energy, EC (�),

as the only unknowns. These contributions are generally combined to define a single un-

known exchange-correlation energy term, EXC (�) (Equation 8.7), meaning Equation 8.5

can be simplified to a linear combination of four known terms and the unknown exchange-

correlation functional, EXC (�) (Equation 8.8).

EXC (�) = Tdi� (�) + EX (�) + EC (�) (8.7)

Etotal (�) = ENN (�) + ENE (�) + EEE (�) + Tapprox (�) + EXC (�) (8.8)

Thus, the objective of DFT is to approximate as well as possible the unknown exchange-

correlation functional, and hence account for both electron exchange and electron corre-

lation. This unknown exchange-correlation functional is usually referred to as the density

functional, of which hundreds of varieties exist. In addition to the choice of density func-

tional, selection of an appropriate basis set, solvation model, and integration grid can

determine the accuracy of a particular DFT method. These considerations, which also ap-

ply to other QM modelling methods, such as HF or SQM, will be discussed in subsequent

sections.

8.4.1 Density functionals

Most functionals used in modern DFT are hybrid density functionals, meaning they ac-

count for the exchange-correlation energy by combining a portion of exact exchange energy

from HF theory with ab initio approximations or empirically determined terms.135 When

empirical terms are used, the functional can be described as a semi-empirical DFT method

(not to be confused with the SQM methods described in section 8.5). However, whilst use

of semi-empirical hybrid functionals generally improves the calculation of many molecular
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properties compared to pure ab initio methods,136 some can be relatively niche in their use,

and often fall short when used outside of the chemical systems they were derived from.137

The three main classes of ab initio approximation to the exchange-correlation energy in

DFT are the local-density approximation (LDA), the generalised gradient approximation,

and the meta-generalised gradient approximation (meta-GGA). LDA density functionals

depend only on local electron density, i.e., the electron density at the coordinate where

the functional is evaluated,116 and are usually derived from the homogeneous electron gas

model, which assumes a homogenous electron density within the multi-electron system. This

approximation can also be extended to spin polarised systems by the local-spin-density ap-

proximation (LSDA).138 However, the electron density of the true multi-electron system

is non-homogeneous, and thus LDA and LSDA functionals often lead to a systematic un-

derestimation and overestimation of the electron exchange and correlation energies, respec-

tively.139 Accordingly, GGA functionals, such as M06-2X,140 include the first derivative of

the electron density in the exchange-correlation functional, whilst meta-GGA functionals,

such as wB97X-D,141 additionally include the second derivative of the electron density.142

Correction for the non-homogeneity of the electron density in multi-electron systems results

in more precise electron densities at the coordinates away from where the functional is eval-

uated.118,143{145 Some functionals also use portions of more than one approximation. For

example B3LYP,118,121 one of the most widely and consistently used density functionals in

modern DFT,146 incorporates aspects of both the LDA and GGA approximations, with the

relative weighting of each determined by empirical fitting to a test set of small molecules.

However, whilst both GGA and meta-GGA functionals tend to outperform the more

rudimentary methods based on the LDA and LSDA,136 none of these common ab initio ap-

proximations are perfect; the assumption that the exchange-correlation term is dependent

on only the local electron density or its gradient means that only local contributions to these

effects are accounted for. As a result, important long-range interactions, such as the van der

Waals interactions, and particularly dispersion, are often neglected by DFT.147,148 This can

have significant implications on the accuracy of these methods, especially when modelling

systems heavily dependent on NCIs. Some modern density functionals, including the Min-

nesota functionals of the Truhlar group (e.g., M05149 and M06140) and the wB97150 family

of functionals, attempt to correct for this by including empirically determined parame-

ters optimised using dispersion-heavy systems. Alternatively, additive dispersion-correcting

terms can be included outside of the functional. For example Grimme’s D2151 or D3 mod-

els152 incorporate both empirical and ab initio parameters into the exchange-correlation

term. These additive terms are often applied with Becke-Johnson (BJ) damping153{155

to reduce the effect of artificial repulsive forces that can occur at shorter interatomic dis-

tances. These methods are often used in combination with the B3LYP functional, which

can perform poorly when used to model dispersion-heavy or heavy-atom systems by itself.

Today, hundreds of density functionals of all types are readily available, with many more

in constant development, allowing computational chemists to tailor their choice of DFT

method precisely to their own specific needs.136 As more powerful methods are developed,

the accurate investigation of increasing large and more diverse chemical systems is likely to

become possible. The varying levels of sophistication of these methods can be conveniently

summarised by Perdew’s metaphorical Jacob’s ladder of functionals (Figure 8.1), ranging

from the rudimentary HF level of theory at the bottom to the hypothetical perfect chemical
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accuracy at the top.156 At time of writing, the highest rung of the ladder is occupied by

double hybrid functionals, which use both HF exact exchange and second-order perturbative

correlation to express the electron exchange and electron correlation terms.157 However,

whilst double hybrid methods have been shown to produce higher accuracies than hybrid

functionals, their use is limited by their significant computational cost.

Figure 8.1 Perdew’s Jacob’s ladder illustrating the varying levels of sophistication of QM methods.

8.4.2 Basis sets

QM modelling methods, such as HF, SQM, or DFT, require the use of a finite basis set;

that is, a finite set of basis functions (or basis orbitals), each of which is often themselves

a linear combination of other more primitive basis functions. In QM, these basis functions

are usually approximations for the atomic orbitals of a chemical system and can be linearly

combined to approximate its molecular orbitals. In this way, the basis set represents the

electronic wave function and helps to provide a mathematically tractable description of the

electrons in a chemical system. There are many different types of basis orbital, of which

Gaussian-type orbitals (GTOs)158 and Slater-type orbitals (STOs)159 are most common.

Whilst STOs better match the nature of real atomic orbitals, GTOs simplify the evaluation

of many of the integrals involved in electronic structure calculations (Figure 8.2). Most basis

sets today consist of linear combinations of several primitive Gaussian functions, the sum

of which is called a contracted Gaussian functional. By varying the exponential parameters

within each component primitive Gaussian function, contracted Gaussian functionals can

match the more realistic shape of Slater functions (Figure 8.2). This combination overcomes

the individual drawbacks of both STOs and GTOs and is generally considered the most

accurate and efficient method overall.

The most rudimentary basis sets are minimal basis sets, which consist of the minimum

number of basis functions needed to describe each atom.160 For example, a hydrogen atom

would have one basis function (to describe the 1s orbital), whilst a carbon atom would

consist of five basis functions (to describe the 1s, 2s, 2px , 2py , and 2pz orbitals). The basis
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Figure 8.2 Shape of a Slater function compared to a Gaussian function and a contracted Gaus-
sian functional consisting of three primitive Gaussian functions; the contracted Gaussian functional
matches the more realistic shape of the Slater function more closely.

functions in minimal basis sets are STOs, composed of n primitive Gaussian functions,

where the basis set is denoted by STO-nG. STO-3 G, STO-4 G and STO-6 G are common

examples. However, due to their minimal nature, these basis sets lack the required flexibility

to adapt to varying chemical environments. For example, orbitals that are chemically

inequivalent are treated as identical; the px and py orbitals in a homonuclear diatomic are

not equivalent to the pz orbital, which points along the internuclear axis, but are be treated

as such. As a result, minimal basis sets are generally not the most accurate.

The inclusion of additional basis functions to represent each of the atomic orbitals for an

atom adds flexibility to the approximation of the electronic wavefunction, allowing better

adaption to different chemical environments. A basis set containing twice as many basis

functions as required to describe an atom (for example, two for a hydrogen atom or ten for

a carbon) is called a double-z basis set, whilst a triple-z basis set contains three times as

many basis functions as required, a quadruple-z basis set four times as many, and so on.

Generally, a larger basis set can better approximate the electronic wavefunction, yielding

more accurate QM results.136 Additionally, since it is the valence electrons, rather than

the core electrons, of a chemical system that principally dictate bonding in molecules, it

is common to represent only the valence orbitals with more than one basis function each,

whilst the core orbitals are still described by a single basis function each. Such basis sets

are referred to as split-valence, and their use helps to limit the computational cost of using

multiple-z basis sets.

Another approach to achieve more flexible basis orbitals is the inclusion of additional

functions that describe the polarisation of the electron density around atoms.161 For exam-

ple, additional p-type orbitals can be added to s-type orbitals (hydrogens), d-type orbitals

to p-type orbitals, and f-type orbitals to d-type orbitals, and so on (Figure 8.3). These

polarisation functions prevent the electron density of a system being constrained to an

atomic-like charge distribution, aiding the description of real molecules and bonding, par-

ticularly in heavily polarised systems where NCIs are common. Basis sets with polarisation
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functions are usually denoted by several asterisks or a p, d or f symbol, depending on the

nature of the polarisation.

Figure 8.3 Basis set polarisation can provide a more realistic description of molecules and bonding;
(a) addition of x p-orbitals to an s-type orbital; (b) addition of y d-orbitals to a p-type orbital.

Similarly, diffuse functions can be incorporated into basis sets where a more accurate

description of anions, intramolecular and intermolecular bonding, or larger, softer chemical

systems is desired.161 The radial distribution functions in these diffuse functions decay

more slowly compared to standard GTOs, helping to describe regions further away from

the atomic nuclei of a chemical system. Basis sets with diffuse functions are described as

augmented, and in most cases are denoted by several of plus-signs, depending on the extent

of diffuseness, or an aug prefix.

A caveat of the use of a finite basis set is their proneness to the basis set superposition

error (BSSE), a consequence of the various basis functions of nearby atoms superimposing on

each other and effectively borrowing components from one another (Figure 8.4).162,163 This

can result in an artificial attraction between the two atoms involved, leading to systematic

errors in the calculation of many chemical properties. The BSSE is generally relieved as the

basis set size approaches infinity, however, as the use of an infinite basis set is not feasible

within typical QM modelling, other methods are usually employed to minimise the BSSE.

The most common approach is simply to use larger finite basis sets, many of which have been

shown to result in insignificant BSSEs.164 Alternative methods include the incorporation of

counterpoise corrections165,166 or the chemical Hamiltonian approach,167 although neither

technique is utilised in this thesis and so their further discussion is neglected.

Figure 8.4 Basis set superposition error; artificial attraction between atoms is caused by overlap
of nearby basis orbitals.

Several classes of basis sets are commonly used within QM electronic structure

calculations, including minimal,160 Pople,168,169 Karlsruhe,170 Dunning (correlation-

consistent),171 polarisation-consistent,172 and completeness-optimised173 basis sets. Among

the most frequently used Pople basis sets is 6-31G(d),168 where the 6-31 indicates that six

primitive Gaussian functions comprise one basis function for each core orbital, whilst the

valence orbitals are constructed from two basis functions (double-z ) consisting of three and

one primitive Gaussian orbitals, respectively. The (d) indicates that only polarisation of

the heavy atoms is accounted for. Alongside the B3LYP density functional, the 6-31G(d)
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basis set has become a staple method in modern DFT, providing a practical compromise

between accuracy and computational efficiency that is still widely used today.146 Of the

Karlsruhe basis sets, the larger valence triple-z def2-TZVPP170 set, which has two sets of

polarisation functions (heavy and light atoms), has been shown to provide an improved

description of NCIs and result in an insignificant BSSE.17

8.4.3 Solvent models

When modelling reactions in solution, solvent models must be used to account for the effect

of the solvent, else QM calculations are performed in the gas-phase. Three general classes

of solvent model exist: explicit, implicit, and hybrid models (Figure 8.5).

Figure 8.5 Explicit, implicit, and hybrid solvent models; e represents the degree of polarisability
of the implicit solvent, indicated by the blue region. C-H hydrogens omitted for clarity.

Explicit solvent models treat solvation by explicitly incorporating solvent molecules

into the chemical system being modelled. This approach provides a reasonably accurate

picture of the specific interactions taking place between the solvent and other chemical

species. However, the computational cost of chemical modelling methods scales non-linearly

and relatively severely with the addition of more atoms and molecules (and hence greater

conformational flexibility). As a result, the explicit inclusion of each solvent molecule is

only feasible for small systems.

In contrast, implicit solvent models represent the solvent system by a continuous

isotropic medium that attempts to approximate the bulk properties of the explicit sol-

vent molecules. Different solvents define unique sets of internal parameters within these

models, based on empirical results. The most important of these parameters is the rela-

tive permittivity (or dielectric constant), �, which defines the degree of polarisability of the

solvent being approximated. The polarisable continuum model (PCM)174 and the integral

equation formalism version of the polarisable continuum model (IEFPCM)175 are generally

considered the best performing implicit models,176 and see frequent use in literature.61 An-

other common implicit method is the solvent model based on density (SMD), an adapted

version of the IEFPCM developed by the Truhlar group.177 Although generally inferior to

the use of explicit models, implicit models have been shown to produce reasonable results,

with the additional benefit of a reduced computational cost. Implicit models tend to be

most effective when modelling apolar systems but can sometimes fall short for strongly

hydrogen bonded systems.

Finally, hybrid approaches utilise a layered structure of modelling, with different defined

regions of the system modelled by increasingly less costly solvent models away from the

core. For example, solvent might be modelled explicitly at the core of the system, but

implicitly away from it, thus striking a practical compromise between the two approaches.

Another common hybrid method involves the use of explicit QM modelling at the core,
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explicit MM modelling in a second layer, and implicit modelling for all further regions.

These methods are generally referred to as QM/MM methods. However, despite their

advantages, conformational searching of explicit molecules, even in a small region around

the core molecules, can be time-consuming and difficult.

8.4.4 Integration grids

QM calculations involve many expensive numerical integrations, and the choice of atom-

centered integration grid for a calculation can have severe implications on their accuracy

and efficiency, particularly in the modelling of NCIs.118 Integration grids vary significantly

in size, depending on the number of radial shells and angular points, with the most stan-

dard being the Ultrafine (99,590) grid (99 radial shells, 590 angular points). The recent

development of pruned grids, which use the minimum number of points required to achieve

a given accuracy, has led to marked improvements in computational cost with no significant

loss of accuracy.178 For the sufficient calculation of covalent and non-covalent interactions

with typical meta-GGA functionals, such as M06-2X, a (99,590) grid is recommended.136

Larger grids, such as the (250,770) and (500,974) varieties, tend to increase accuracy but

add a significant computational expense. For typical GGA functionals, such as B3LYP and

wB97X-D, smaller grids, such as the SG1 (50,194) and Fine (75,302) varieties, can allow

the accurate calculation of both covalent and non-covalent interactions. However, these

smaller grids are not recommended for general use.179 The Ultrafine (99,590) grid has been

shown to produce reasonable results for the wB97X-D functional, whilst B3LYP has been

shown to be relatively insensitive to grid choice altogether.136 Thus, the Ultrafine (99,590)

integration grid is the most general choice, appropriate for use with a wide variety of density

functionals.

8.5 Semi-empirical quantum mechanics

Although HF and DFT calculations are highly accurate, their cost oftens become a limiting

factor when performing large numbers of calculations or calculations on particularly large

or complex systems. SQM methods solve this issue by making a series of approximations

to the underlying theory of these QM methods, substantially reducing their theoretical and

computational complexity. As a result, most SQM calculations are approximately two to

three orders of magnitude faster than modest-level DFT (such as a GGA functional with

a double-z basis set),129 allowing calculations on substantially larger systems or in greater

numbers.

Among its common simplifications, SQM methods use minimal basis sets, assume that

basis functions do not overlap (and thus do not consider the BSSE), and only treat valence

electrons explicitly, with core electrons typically not considered or approximated by effective

core potentials. Further approximations made by SQM methods depend on the identity of

the parent method. For example, HF-based SQM methods are based on the zero-differential

overlap (ZDO) approximation, where information such as two-electron integrals, which con-

stitutes the most expensive and time-consuming portion of HF calculations, are simplified,

or completely omitted.180 Older ZDO approximations include the complete neglect of dif-

ferential overlap (CNDO) and intermediate neglect of differential overlap (INDO), however

these methods are rarely used today. In contrast, the neglect of diatomic differential over-
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lap (NDDO) approximation forms the basis for many of the most prevalent and successful

SQM methods, such as MNDO,181 AM1,182 SAM1,183,184 RM1,185 PM3,186 PM6,187 and

PM7.188

To account for loss of theoretical information from the approximations made by SQM

methods, results are generally parameterised to match either experimental results or high-

level ab initio reference calculations, with several different SQM methods defined depending

on how this parameterisation is performed. For example, MNDO and AM1 are largely

parameterised on spectroscopic data for isolated atoms, whilst PM3 is parameterised to

reproduce several molecular properties. As a result, SQM methods often perform poorly

when used outside of their intended chemical domain.

More recently, DFT-derived SQM methods such as density functional tight binding

(DFTB) have become popular.189,190 DFTB methods are derived from Taylor expansions

of the total DFT energy with respect to a reference electron density, �0. Thus, if the

ground state electron density, �, is written in terms of the reference electron density, �0,

and the difference, �� (Equation 8.9), the energy of the exchange-correlation functional can

be expanded in a Taylor series as per Equation 8.10.

� = �0 + �� (8.9)

EXC (�) = EXC
0(�0) + EXC

1(�0,��) + EXC
2(�0,(��)2) + EXC

3(�0,(��)3) (8.10)

Different DFTB methods can be defined depending on which terms of this expansion

are included. For example, DFTB1 models include the zeroth-order (EXC
0) and first-

order (EXC
1) terms,191 whilst DFTB2192,193 and DFTB3194{197 models additionally include

the second-order (EXC
2) and third-order (EXC

3) terms, respectively. For example, the

GFN-xTB method is a popular variant of the DFTB3 model that is parameterised for the

calculation of structures, vibrational frequencies, and NCIs.198

The ability of SQM methods to accurately model NCIs, such as hydrogen bonding and

van der Waals interactions, is limited by the integral approximations discussed above, the

use of minimal basis sets, and the ability of the parent method to treat electron correlation.

In contrast to DFT, HF lacks any treatment of electron correlation and thus HF-based

SQM methods typically perform worse than DFTB methods in this regard. However,

in the same way, DFTB methods inherit the implicit deficiencies of DFT, such as the

inability of the LDA, GGA, and meta-GGA approximations to totally account for long-

range interactions. Thus, in both cases, parameterisations are vital. For example, the use

of empirical parameters in HF-based methods allows for some treatment of the effects of

electron correlation, improving upon the pure ab initio HF method. Traditionally, SQM

methods have been parameterised with respect to accurate description of covalent bonding

and related molecular properties, such as isomerisation energies, enthalpies, and heats of

formation, with modelling of NCIs typically poorer.199{201 However, in more recent years

parameterisations and corrections to SQM methods that allow more accurate modelling of

NCIs, such as the GFN-xTB method,198 have emerged.202
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8.6 Modelling chemical reactions

A potential energy surface (PES) is a mathematical function that gives the energy of a

chemical system as a function of the positions of all the atoms within it (Figure 8.6).

Reactant, intermediate, and product structures are represented by minima on the PES,

whilst TSs are represented by saddle points. TSs are also associated with a single imaginary

frequency, whose vibration corresponds to the motion of the atoms during the transition

from reactant(s) to product(s).

Figure 8.6 An idealised potential energy surface for an SN2 reaction; a saddle point lies at the
highest energy point along the lowest energy pathway from the minimum to the global minimum.

The PES of a particular chemical system will usually consist of several minima, the

lowest of which is termed the global minimum. Saddle points (TSs) connect these minima,

corresponding to different transformations of reactants to products. In a computational

chemical modelling investigation, insights into reaction mechanisms are obtained by a thor-

ough exploration of their PES to identify the global minima, and thus the lowest energy

reactant, intermediate, and product structures, as well as the lowest energy saddle point

(TS) that connects them. This is usually achieved by combining chemical modelling meth-

ods, such as MM, HF, SQM, or DFT, with practical techniques such as conformational

searching and geometry optimisation.

8.6.1 Conformational searching

Chemical structures can exist in one of a potentially infinite number of atomic arrangements,

or conformers. Thus, when locating the lowest energy reactant, intermediate, product, and

transition structures on a PES, the conformational flexibility of each individual species must

be considered. Conformational searching is the process by which many possible conformers

for a particular chemical system are generated. Most conformational searching techniques

generate new conformers for a chemical species in a stepwise manner using a Monte Carlo

random sampling method to introduce random changes to the system (Figure 8.7).203,204
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For example, this may include bond stretching, bond bending, bond torsions, and molecular

translations (where multiple species are present). For transition structures, constraints are

often applied to prevent delicate bond-forming and bond-breaking distances from falling

apart. Each conformer generated is then stored as a new structure or rejected, depending

on its relative energy and root-mean-square deviation of atomic positions (RMSD) com-

pared to each previously stored conformer. By comparing the relative energies of each

stored conformer, the lowest energy arrangement of a particular chemical structure can be

identified.

Figure 8.7 A typical conformational searching process using a Monte-Carlo random sampling.

Some methods greatly enhance the efficiency of the Monte Carlo random sampling

by only making changes to previously stored low-energy conformers (Monte Carlo multiple

minimum (MCMM) method)205 or by generating conformers based on extended sampling of

the low frequency normal modes of the chemical system (low-mode conformational searching

(LMCS)).206 Mixed MCMM/LMCS methods are generally the most efficient technique for

total exploration of the conformational space of many complex chemical systems.207

Various methods can be used as the basis for energy calculations during conformational

searching. However, since conformational searching requires a considerable number of indi-

vidual calculations, cheaper methods, such as MM or SQM, are typically favoured. However,

the energies and geometries produced by these methods are significantly less accurate than

those produced by DFT. Accordingly, conformational searching typically constitutes one of

the earliest stages of a chemical modelling investigation and is often followed by geometry

optimisation of each conformer using higher-level chemical modelling methods.

8.6.2 Geometry optimisation

Geometry optimisation is the process by which the geometry of a particular chemical struc-

ture is optimised towards its lowest energy arrangement, and thus the closest stationary

point (minimum or saddle point) on the PES (Figure 8.8). This is particularly impor-

tant when initial structures are generated using lower-level chemical modelling methods.

A typical geometry optimisation algorithm considers the forces acting on each atom in

the structure to predict increasingly more favourable geometries, whose energies are calcu-

lated at each step using some chemical modelling method. After each optimisation step,

the changes in a set of criteria compared to the preceding step are compared against in-

37



built convergence thresholds. When these changes become lower than the threshold, the

structure is said to have converged to a minimum energy structure. The success of a geom-

etry optimisation calculation can be evaluated by an accompanying frequency calculation,

performed after the optimisation procedure locates a stationary point on the PES. These

calculations generate vibrational frequencies for the structure, based on the final geometry

from optimisation, which return a single imaginary frequency if the structure is a saddle

point, and zero imaginary frequencies if it is an energy minimum. Additionally, a further set

of stricter convergence checks is performed to confirm the structure’s nature as a stationary

point.

Figure 8.8 Geometry optimisation; an a,b-unsaturated amide is gradually optimised towards its
s-cis conformation. C-H hydrogens omitted for clarity.

Several criteria can be set by the user during a typical geometry optimisation, among

which the optimisation step size can have important implications on the success of the

procedure. Step size refers to the maximum deviation that the atoms of a structure can

make in a single optimisation step. Thus, a smaller step size forces the system to make

smaller changes between each step. Whilst this means more steps in total will be required

to reach a stationary point, this is sometimes necessary to locate tricky stationary points.

For example, for a TS with a delicate bond-forming distance, a large step size may re-

sult in optimisation towards a nearby reactant, intermediate, or product structure, rather

than the desired TS. Additionally, a smaller step size is sometimes a requirement to satisfy

strict convergence criteria. This is generally the case for larger and more complex systems.

Thus, the geometry optimisation of a single structure often takes place over several sepa-

rate iterations, with a gradually decreasing step size usually considered the most efficient

approach.

8.6.3 Single point energy corrections

Following successful optimisation of a chemical structure, it is common to perform an

additional calculation, known as a single point energy (SPE) correction, on the final ge-

ometry from optimisation. By using a more sophisticated chemical modelling method in
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this calculation, the energies derived from lower-level optimisation calculations can be cor-

rected.146 For example, energies resulting from a DFT optimisation with the B3LYP/6-

31G(d) method could be corrected by an SPE calculation performed with the higher-level

B3LYP-D3(BJ)/def2-TZVPP method. SPE corrections are also commonly used to incor-

porate the effect of solvent in chemical systems; whilst solvent can be accounted for during

optimisation by use of an appropriate solvent model, even the most rudimentary solvent

models can add substantially to the cost of calculation. As such, it is common to per-

form optimisations in the gas phase and apply a solvent model retrospectively via an SPE

correction.

8.6.4 Thermochemical corrections and vibrational scaling

When performing QM calculations, the PES, which is anharmonic, is usually treated under

the harmonic approximation, meaning it can be approximated as a series of harmonic

oscillators, i.e., quadratic functions of the displacements of the atoms. This approximation

allows an exact solution to the Schrödinger equation (Equation 8.4), and hence simplifies

the QM calculations substantially. However, as a result, many of the thermochemical data

generated by these methods are made less accurate. To correct for this, several additional

corrections are often applied after QM calculations have been performed.

Temperature and concentration corrections are relatively straightforward, involving a

simple recalculation of any thermochemical quantity dependent on the physical property

in question. In contrast, quasiharmonic approximations, which can be used to correct for

both entropy and enthalpy, are more complex. Quasiharmonic entropy corrections allow

for the calculation of more accurate vibrational entropy, which can be calculated from the

vibrational normal modes of the system. These are normally described by the rigid-rotor-

harmonic oscillator (RRHO) approximation,208 however this only holds above a certain

frequency threshold, rendering frequencies below the threshold inaccurate. Quasiharmonic

approximations allow correction of these inaccurate low frequencies, for example by scaling

frequencies below the threshold, as per the Truhlar’s method,209 or by using a mixture of

the free-rotor approximation below the threshold and the RRHO approximation above it,

as per the Grimme’s method.210 Quasiharmonic enthalpy corrections, such as the Head-

Gordon approximation,211 apply a similar correction to the RRHO model, allowing for

more accurate calculation of the vibrational energies used in enthalpy calculations.

As well as being inaccurate beneath a particular threshold, vibrational frequencies cal-

culated by ab initio QM methods also tend to suffer from a systematic overestimation at

all values compared to experiment.212 The treatment of the PES as harmonic, as well as

the use of finite basis sets and the failure of density functionals to completely account for

electron correlation, all contribute to this shortcoming. To compensate for this overestima-

tion, vibrational scaling factors are usually applied to correct frequencies generated from

theory. Whilst this correction is distinct from the quasiharmonic correction applied to low

frequency normal modes, it does also affect the vibrational entropy. Scaling factors are

usually in the range of 0.8-1, and are derived based on comparison between theoretical and

experimental values.213 The extent of scaling required depends heavily on the exact QM

method used, and hence different scaling factors are usually required for different methods

and levels of theory.
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8.7 Analytical techniques

In the previous chapter, several classes of NCI were discussed that can govern asymmetry

in non-covalent organocatalysis. In addition to conformationally searching and optimising

the geometries of the various chemical species involved in a particular chemical reaction,

understanding, identifying, and quantifying these important NCIs is a crucial step of many

chemical modelling investigations. Whilst geometric criteria and van der Waals radii can

serve as useful and efficient guides for identification of NCIs,64 these metrics cannot account

for their true Coulombic and QM nature, and often lead to systematic errors.214 However,

more accurate descriptions of covalent and non-covalent interactions between atoms can be

obtained through consideration of the electron density of the system using several dedicated

analytical techniques. Two such techniques, natural bond orbital (NBO) and NCI analysis,

will be discussed in this section.

8.7.1 NCI analysis

NCI analysis is a technique that allows the identification of NCIs in a chemical system

based solely on the electron density and its derivatives (Figure 8.9).215,216 The main prin-

ciple of NCI analysis is that the reduced gradient of the electron density takes small values,

approaching zero, in regions where covalent or non-covalent interactions are present. Thus,

interactions can be identified by calculating and plotting the reduced electron density gra-

dient, s, against the electron density, �, as per Equation 8.11. These regions of low or zero

gradient define an isosurface, allowing the three-dimensional visualisation of interactions as

a continuous surface.

Figure 8.9 NCI analyses showing classical and non-classical hydrogen bonds in an adenine-thymine
DNA base pair, and p-interactions in a parallel displaced benzene-benzene dimer. Green, red, and
blue NCI surfaces represent weak, strong repulsive and strong attractive NCIs, respectively.

s =
1

2(3�2)1/3
jr�j
�4/3 (8.11)

Further analysis of the electron density of these low or zero gradient regions allows

quantification of the strength of the interactions. For example, weaker NCIs, such as dis-

persion, occur at low-density values, stronger NCIs, such as hydrogen bonding, occur at

high-density values, whilst the strongest covalent interactions occur at very high-density

values. Additionally, by considering the sign of the second eigenvalue, �2, of the Lapla-

cian of the electron density, r2� (Equation 8.12), NCI analysis can distinguish between

attractive and repulsive NCIs. This allows the isosurfaces corresponding to NCIs to be

colour-coordinated based on their strength and nature.
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r2� = �1 + �2 + �3 (8.12)

The properties required for NCI analysis, namely the electron density, its reduced gra-

dient, and contributions to its Laplacian, can be obtained through QM calculations, such

as HF, SQM, or DFT. However, use of promolecular estimates to the molecular electron

density, calculated by summing up the electron density contributions of each atom in the

system, requires only input of the molecular geometry, and thus allows expensive QM calcu-

lations to be avoided. Both approaches have been shown to produce qualitatively equivalent

results, allowing NCI analyses to be performed efficiently on large and complex chemical

and biological systems.

8.7.2 NBO analysis

NBO analysis is a technique that allows fundamental bonding information, and thus impor-

tant chemical insights, to be extracted from standard QM modelling methods by providing

a physical interpretation of the molecular wavefunction using localised orbitals.217 Gener-

ally, methods such as HF, SQM, and DFT are formalised to account for global interactions

and effects by describing the wavefunction using delocalised orbitals that extend over the

entire molecule. However, the use of such orbitals can be expensive, and for closed-shell

molecules an equivalent description of bonding can be achieved using localised orbitals,

such as natural orbitals.

Natural orbitals, including natural atomic orbitals (NAOs), natural hybrid orbitals

(NHOs), NBOs, and natural localised molecular orbitals (NLMOs), are a set of localised

orbitals that are intermediate between atomic orbitals and molecular orbitals. During NBO

analysis, atomic orbitals are first transformed into NAOs, then NHOs, and finally NBOs,

which contain the highest possible percentage of the electron density out of each. These

natural orbitals maximise electron occupancy such that the electrons in a system occupy the

space between two atoms (two-electron bonds) or on a single atom (lone pairs). Thus, by

describing the molecular wavefunction using NBOs, a chemical system can be interpreted

as a relatively understandable Lewis structure, and the distribution of electron density

in atoms and between bonds can be calculated. Overall, a relatively accurate picture of

chemical structures and bonding is provided, including Lewis structures, atomic charges,

bond orders, bond strengths, bond types (covalent, dative, ionic, s, p), hybridisation, res-

onance, and non-covalent interactions and effects, such as hydrogen bonding and sterics.

Additionally, using a deletion approach, the strength of the interaction between a specified

set of atoms can be approximated, allowing the quantification of covalent and non-covalent

interactions. Crucially, these analyses are more efficient than full treatment with the asso-

ciated QM method, as the localised nature of the NBOs simplifies many of the expensive

numerical integrations involved in calculation.

8.8 Computational chemical modelling investigations

A great deal of variance exists in the way in which the various computational methods

discussed in this chapter can be used and applied to chemical modelling investigations. For

example, each of the chemical modelling methods discussed differs substantially in their

underlying principles, their treatment of various molecular properties (including NCIs),
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and their computational cost. Additionally, these methods generally scale poorly as the

size and complexity of the chemical system increases. As a result, computational chemists

must select a careful balance of methods that accounts for the desired level of chemical

accuracy, the time and resources available to them, and the chemical system at hand.

Through a combination of these various methods, the lowest energy reactant, intermedi-

ate, product, and transition structures for a particular chemical reaction can be identified,

and accurate geometries, energies, frequencies, and other thermochemical data can be cal-

culated for each species. Insights into reaction mechanisms and selectivity are subsequently

afforded by comparison and inspection of this chemical information, for example by cal-

culating relative reaction barriers and Boltzmann weightings to predict enantioselectivity,

or identifying important bonds, interactions, or effects in the transition state to rationalise

selectivity. In some cases, additional analytical techniques may be used to gain further

insights into certain aspects of the chemical reaction. For example, the approximation

of bond strengths or the visualisation of NCIs through NBO and NCI analysis can both

contribute to the understanding of competing TSs. Overall, the results of these analyses

can be validated through successful comparison to experimental results. In this way, the

successful analysis of catalytic and asymmetric reactions can be achieved, allowing for the

rational design of improved catalysts and reactions.
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9 Examples of modelling catalytic and asymmetric reactions

In this previous chapter, computational methods that allow the efficient and accurate anal-

ysis of catalytic and asymmetric reactions were discussed. In this chapter, computational

modelling investigations of several such reactions are detailed, demonstrating the applica-

tion of these methods. The reactions under investigation encompass four crucial synthetic

methods to achieving C-C, C-H, and S-H bond formations, utilising several classes of chiral

catalyst. In each case, selectivity is rationalised based on the governing factors outlined

in chapter 7. Together, these investigations provide substantial insights for application to

the rational design of new asymmetric synthetic methods utilising similar reactions and

catalysts.

9.1 Hydroxyl carboxylic acid-catalysed allylboration of aldehydes

9.1.1 Statement of authorship

The contents of this section largely comprise figures, text, and captions reused and repro-

duced from the paper Computational Studies of Chiral Hydroxyl Carboxylic Acids: The
Allylboration of Aldehydes published in November 2020 in The Journal of Organic
Chemistry (DOI:10.1021/acs.joc.0c02226). I contributed entirely to the formula-

tion of ideas, design of methodology, computational work, and presentation of data and

results in journal format for this paper, which reports on original research conducted dur-

ing the period of my Higher Degree by Research candidature, with the exception of any

Gaussian09 calculations, which were performed at the University of Cambridge using re-

sources provided by the Cambridge Service for Data Driven Discovery (CSD3) operated by

the University of Cambridge Research Computing Service (http://www.csd3.cam.ac.uk),

provided by Dell EMC and Intel using Tier-2 funding from the Engineering and Physi-

cal Sciences Research Council (capital grant EP/ P020259/1), and Distributed Research

Utilising Advanced Computing (DiRAC) funding from the Science and Technology Fa-

cilities Council. The published work can be downloaded by the following link: http:
//pubs.acs.org/articlesonrequest/AOR-FMJQVE6MXSPMTU32ACED.

9.1.2 Introduction

Allylboration is an important class of stereoselective C-C bond-forming reactions; the re-

sulting homoallylic alcohol products are a versatile class of compounds whose residual

allyl group can be readily transformed into several other important functionalities, includ-

ing allylic metals (via oxidative addition),218{220 epoxides (via Sharpless epoxidation),221

indan-1-ols (via a Heck reaction),222 g- and d-lactones (via olefin metathesis),223 and several

other complex cyclic compounds.224 Accordingly, aldehyde allylboration has been involved

in the synthesis of a wide variety of natural products, including antibiotics,225 anticarcino-

gens,226,227 and other bioactive species.228

Asymmetric aldehyde allylboration is known to proceed via a cyclic, six-membered

chair-like TS, where the boronate acts as a Lewis acid and activates the electrophile by

its electron deficient boron atom (Figure 9.1).229,230 Since the foundations of this crucial

synthetic method were laid by Hoffmann and Brown,231{233 asymmetric allylboration meth-

ods have seen substantial development,234,235 and several Lewis acid and metal-catalysed
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approaches have emerged from Hall,236 Miyaura,237 Shibasaki,238 and Schaus.239 How-

ever, these methods each suffer from the production of toxic-by products, or the need for

stoichiometric chiral inductors, expensive metal catalysts, or sensitive and commercially

unavailable substrates.

Figure 9.1 Asymmetric aldehyde allylboration. In the lowest energy TS, the aldehyde substituent
prefers the equatorial position.

More recently, a high-yielding and highly asymmetric allylboration method was re-

ported using a chiral 1,10-bi-2-naphthol (BINOL)-derived phosphoric acid (BPA) catalyst

and a stable, non-toxic, commercially available boronate reagent.240 These conditions were

also shown to be applicable to a broad range of substrates, as well as to the related propar-

gylation and crotylation processes.241 Subsequent computational investigations of these

reactions have resulted in a widely accepted mechanism for the BPA-catalysed allylbora-

tion of aldehydes;93,94 upon addition of the BPA catalyst, the boronate ester oxygen bonds

to the aldehyde oxygen and becomes partially negatively charged, simultaneously enhanc-

ing the hydrogen bond accepting ability of the boronate oxygen and the hydrogen bond

donating ability of the formyl hydrogen.242 This allows the formation of a O-H···O inter-

action between the hydroxyl group of the catalyst and the pseudoaxial boronate oxygen,

and a non-classical P=O···H interaction between the P=O of the catalyst and the formyl

hydrogen (Figure 9.2, mode A). Indeed, these interactions have been shown to make a sig-

nificant contribution to stabilisation of the TS, with strengths calculated at 4.6 and 14.5

kcal mol-1 for the classical and non-classical hydrogen bonds, respectively (M06-2X/def2-

TZVPP//B3LYP/6-31G(d).242 An alternative mode has also been proposed where pro-

tonation occurs with the pseudoequatorial boronate oxygen at the expense of interaction

between the catalyst and formyl hydrogen (Figure 9.2, mode B).240 However, several DFT

studies have found mode A to be more favourable.94,95

Due to their metal-free nature, Brønsted acids, such as phosphoric acids, constitute

some of most practical and widely used catalysts in modern asymmetric organocataly-

sis.243 BINOL and its derivatives are one of the most popular groups of chiral Brønsted

acid catalysts,244{246 with N -triflyl phosphoramides,247,248 bis(sulfonyl)imides,249,250

bis(sulfuryl)imides,100 and dicarboxylic acids251 among several other common varieties.

More recently, BINOL-derived hydroxyl carboxylic acids (BHCAs) have emerged as a new

and potentially powerful class of chiral Brønsted acid catalyst. These catalysts have seen

increasing use in several important asymmetric synthetic processes, including the fluorolac-

tonisation of vinylbenzoic acids252 and the allylboration and propargylation of aldehydes.24

In the experimental report for BHCA-catalysed allylboration, the presence of the carboxyl
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Figure 9.2 Reaction models for the BPA-catalysed allylboration of aldehydes.

and alcohol groups at their respective positions of the catalyst were found to be essential

to enantioselectivity of the reaction, whilst hydrogen bonding between the two groups was

also determined to be important. However, unlike BPAs, no detailed computational studies

have been performed for any BHCA-catalysed reaction, leaving the exact mechanisms by

which these catalysts function unknown.

In this investigation, the BHCA-catalysed allylboration of aldehydes was modelled com-

putationally using the experimental conditions summarised in Figure 9.3.24 Possible con-

formations of the BHCA-catalysed reaction TS were explored to determine the origins of

selectivity and identify the roles of the alcohol group, carboxyl group, and hydrogen bond-

ing in the TS. Although a comparable ee (85%) and higher yield (73%) were achieved

under the experimentally optimised conditions, the chosen conditions significantly reduce

the computational complexity of the calculations through the use of a truncated catalyst.

Figure 9.3 Chosen conditions for computational modelling of the BHCA-catalysed allylboration of
aldehydes.

9.1.3 Computational details

Conformational searches were carried out for a model BHCA catalyst (Ar = Ph), a

model BPA catalyst (Ar = Ph), the full BHCA catalyst (Ar1), and the full BHCA-

catalysed reaction TS (Ar1), using the conformational search tool within Schrödinger’s

MacroModel (version 11.3)253,254 and the OPLS 2005 force field. A MCMM/LMCS ap-

proach was used to explore the possible conformations of each species. Conformations of
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the full BHCA catalyst (Ar1) and BHCA-catalysed reaction TS (Ar1) were subsequently

optimised with DFT using Gaussian09 (Revision D.01)255 at the B3LYP-D3(BJ)/def2-

TZVPP/IEFPCM(dichloromethane)//B3LYP/6-31G(d) level of theory. All conformers

of the catalyst, and all TS conformers within 8 kcal mol-1 of the lowest in energy,

were then reoptimised using Gaussian16 (Revision A.03)256 at the B3LYP-D3(BJ)/def2-

TZVPP/IEFPCM(dichloromethane)//B3LYP-D3(BJ)/6-31G(d,p) level of theory. Con-

formations of the BHCA-catalysed reaction TS (Ar2) were adapted from the lowest

3 kcal mol-1 of conformers of the BHCA-catalysed reaction TS (Ar1). These con-

formers, in addition to conformers of the model BHCA and BPA catalysts, were op-

timised only at the B3LYP-D3(BJ)/def2-TZVPP/IEFPCM(dichloromethane)//B3LYP-

D3(BJ)/6-31G(d,p) level of theory. All DFT calculations were performed using the

pruned version of the Ultrafine (99,590) integration grid. Temperature (195.15 K) and

concentration-corrected (1 mol/l) quasiharmonic (Grimme approximation) free energies

were calculated with GoodVibes257 with a vibrational scaling factor of 0.977.258 NBO

analyses were performed using Gaussian16 (Revision A.03) at the B3LYP-D3(BJ)/def2-

TZVPP/IEFPCM(dichloromethane) level of theory. Computed structures were illustrated

with CYLView,259 with C-H hydrogens omitted for clarity (except where involved in inter-

actions).

9.1.4 Results and discussion

Conformational searching of the BHCA-catalysed reaction TS (Ar1) was performed with

either the pseudoaxial or pseudoequatorial oxygen of the boronate bound to either the

alcohol or carboxyl hydroxyl group of the BHCA, allowing exploration of several possible

binding modes, including those resembling BPA-catalysed modes A and B (Figure 9.2).

For both BPA-catalysed allylboration and propargylation reactions, structures in which the

catalyst and substrate interact only via hydrogen bonding with the aldehyde oxygen (and

thus no interaction with either boronate oxygen) were consistently between 9 and 14.4 kcal

mol-1 higher in energy than mode A structures, and thus were not considered.93,94 In total,

145 unique TS conformers were produced, of which 47 selected low-energy conformers were

reoptimised at the higher level of theory. No qualitative differences were observed between

the lowest energy conformers derived at the two levels of theory. The lowest energy of

these, TS-1.1, which leads to the major product and resembles mode A, is 0.7 kcal mol-1

lower in energy than TS-1.2, the lowest energy TS leading to the minor product (Figure

9.4). Thus, based on a Boltzmann weighting at 195.15 K over all conformers within 3 kcal

mol-1 of TS-1.1, a computed ee of 79% was predicted, in excellent agreement with the

experimental ee of 86%.

Intramolecular hydrogen bonding was observed between the carboxyl and alcohol groups

of the catalyst for all TSs within 7.3 kcal mol-1 of TS-1.1. In the absence of such hydrogen

bonding (i.e., by considering only TSs without hydrogen bonding between the carboxyl and

alcohol groups), a 0.5 kcal mol-1 difference in energy was found between the lowest major

and minor TSs, corresponding to a computed ee of 57%. Thus, by reducing the degree of

rotational freedom about the bond connecting the catalyst acid functionality to the chiral

scaffold, this intramolecular hydrogen bonding allows a better transfer of chiral information

and hence higher asymmetric induction by the catalyst. The carboxyl group was found to

be the preferred hydrogen bond donor in favor of the alcohol group; TS-1.4, the lowest

46



Figure 9.4 Relative free energies of TS-1.1 and TS-1.2, the lowest energy major and minor TS
conformers, respectively, for the BHCA-catalysed allylboration of aldehydes (B3LYP-D3(BJ)/def2-
TZVPP/IEFPCM(dichloromethane)//B3LYP-D3(BJ)/6-31G(d,p)). Energies relative to TS-1.1.

energy TS where the alcohol group acts as the hydrogen bond donor, is 4.1 kcal mol-1

higher in energy than TS-1.1 (Figure 9.5). The same trend was observed in the lowest

energy structure of the isolated catalyst (Ar1), BHCA-1, where the carboxyl group also

acts as the hydrogen bond donor. The lowest energy catalyst structure where the alcohol

group acts as the hydrogen bond donor, BHCA-2, is 1.3 kcal mol-1 higher in energy than

BHCA-1 (Figure 9.6). This trend may be rationalised by the relative acidities of the two

groups, with the carboxyl group being more acidic and hence the better hydrogen bond

donor.

A mix of pseudoaxial and pseudoequatorial boronate oxygen protonation by the catalyst

was observed in the 47 unique conformers of the BHCA-catalysed reaction TS reoptimised

at the higher level of theory, with the protonating group determined by the type of in-

tramolecular bonding in the catalyst; when the carboxyl group acts as the hydrogen bond

donor the alcohol group is left free to protonate the boronate oxygen, and vice versa. Hence,

protonation of the boronate oxygen occurs via the alcohol group in all TSs within 4.1 kcal

mol-1 of TS-1.1, and all catalysts within 1.3 kcal mol-1 of BHCA-1. It may be expected

that protonation of the boronate oxygen by the more acidic carboxyl group, with the alcohol

group acting as the intramolecular hydrogen bond donor, as in TS-1.4 or TS-1.5 (Figure

9.5), the lowest energy mode B and mode A structures of this type, respectively, should be
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Figure 9.5 Relative free energies of TS-1.4 and TS-1.5, the lowest energy mode B and mode
A conformers where the alcohol and carboxyl groups act as the hydrogen bond donor and ac-
ceptor, respectively, for the BHCA-catalysed allylboration of aldehydes (B3LYP-D3(BJ)/def2-
TZVPP/IEFPCM(dichloromethane)//B3LYP-D3(BJ)/6-31G(d,p)). Energies relative to TS-1.1.

Figure 9.6 Relative free energies of BHCA-1 and BHCA-2, the lowest en-
ergy major and minor catalyst conformers, respectively (B3LYP-D3(BJ)/def2-
TZVPP/IEFPCM(dichloromethane)//B3LYP-D3(BJ)/6-31G(d,p)).

preferred, as this would activate the boronate more strongly and thus catalyse the reaction

more effectively. However, TSs of this nature were found to result in a significantly greater

distortion of the catalyst away from its optimum geometry, resulting in their higher energy.

The origins and effects of this catalyst distortion are discussed later. The magnitude of this

distortion is larger in the transition state than in the isolated catalyst, due to additional

distortion of the catalyst aryl groups to avoid steric clashing with the substrate, explaining
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why there is greater preference for the carboxyl group to act as the intramolecular hydrogen

bond donor in the transition state (4.1 kcal mol-1 and 6.6 kcal mol-1) than in the catalyst

(1.3 kcal mol-1).

In contrast to BPA-catalysed allylboration, where both the lowest energy major and

minor TSs were found to proceed via mode A,94 TS-1.1 and TS-1.2 are distinctly different

in their activation modes; whilst TS-1.1 resembles mode A, TS-1.2 corresponds to the

pseudoequatorial mode B. Indeed, the lowest energy mode A TS corresponding to formation

of the minor enantiomer of the product, TS-1.3, is 1.9 kcal mol-1 higher in energy than

TS-1.1 (Figure 9.7). Under mode A, enantioselectivity in the BPA-catalysed allylboration

was rationalised based on steric factors relating to the boronate pinacol ester methyl groups

and the aldehyde substituent, with the steric demand of the former found to outweigh that

of the latter.94 Hence, the major enantiomer of the product results from whichever TS is

able to place the pinacol ester methyl groups in the sterically less demanding pocket of

the catalyst at the expense of the aldehyde substituent. However, no H-H contacts were

found between the substrate and catalyst within 90% of the Van der Waals radii in TS-1.1,

TS-1.2 or TS-1.3, suggesting that there is no significant steric clash between the substrate

and catalyst in any case. As a result, it was not possible to rationalise the enantioselectivity

of the BHCA-catalysed allylboration based on steric factors.

Figure 9.7 Relative free energy of TS-1.3, the lowest energy mode A con-
former for the BHCA-catalysed allylboration of aldehydes (B3LYP-D3(BJ)/def2-
TZVPP/IEFPCM(dichloromethane)//B3LYP-D3(BJ)/6-31G(d,p)). Energy relative to TS-1.1.

Consequently, detailed conformational analyses of a model BHCA and BPA (Ar = Ph)

were performed, which found hydroxyl carboxylic acids to be significantly more flexible than

their phosphoric acid counterparts; 31 conformers were generated following DFT optimisa-

tion of the model BHCA catalyst, compared to only two for the corresponding BPA (Figure

9.8). Whilst both species possess a central atom (C and P, respectively) with a Brønsted

acidic site (carboxylic or phosphoric hydroxyl group, respectively) and a Lewis basic site

(double bond to an oxygen), BHCAs also possess an alternative Brønsted acidic site in the

alcohol group, which is not tethered to the same atom as the Lewis basic carbonyl oxygen,

as in BPAs, and is hence more conformationally flexible. As a result, the functional groups

of the BHCA can exhibit a larger range of positions, resulting in many unique conformers.

Conversely, the two BPA conformers result from rotation of the phenyl groups, with no

flexibility associated with the phosphoric acid functionality. Additionally, BHCAs possess
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a flexible hydrogen bonded structure,260 in contrast to the cyclic O-P-O covalent bonding

that rigidly links the phosphoric acid to the chiral scaffold in BPAs. This allows for a much

larger range of dihedral angles about the BINOL C-C single bond than in BPAs.

Figure 9.8 Major structural features and conformational analysis of (a) BPAs; (b) BHCAs (B3LYP-
D3(BJ)/def2-TZVPP/IEFPCM(dichloromethane)//B3LYP-D3(BJ)/6-31G(d,p)).

This additional flexibility is key to determining the mechanistic differences between the

BPA- and BHCA-catalysed allylboration of aldehydes. As a result of this flexibility, the

BHCA catalyst can adjust its structure and bind the substrate in such a way that allows

both the pinacol ester methyl groups and aldehyde substituent to avoid repulsive steric

interactions with the catalyst, whilst still forming tight interactions with the boronate

oxygen and formyl hydrogen. Such adaptation is not possible for the more rigid BPA

catalyst, where the Brønsted acidic and Lewis basic sites are covalently bound to one

another. However, the BHCA catalyst is destabilised relative to its optimum geometry

because of this distortion. Close inspection of TS-1.1, TS-1.2, TS-1.3, TS-1.4, and TS-
1.5 reveals that changes in the BINOL C-C dihedral angle of the catalyst structures are a

major source of this distortion, whilst SPE corrections of the isolated catalyst structures

from these TSs allows the relative extents of catalyst distortion to be quantified (Figure 9.9).

Additionally, the interaction lengths of any classical and non-classical hydrogen bonding

involved in each TS provide further insight into their energetic trends.

Overall, TS-1.2 was found to possess the least destabilised catalyst structure relative

to the optimum catalyst structure, likely due to the single point substrate-catalyst binding

in mode B, minimizing the potential for steric clashing and hence the extent of catalyst

distortion. For the mode A TSs, TS-1.5 possesses the most destabilised catalyst struc-

ture, followed by TS-1.3 and then TS-1.1. However, TS-1.1, despite possessing a more

destabilised catalyst structure than TS-1.2, is an overall lower energy TS. This may be
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Figure 9.9 Dihedral angle and energy of catalyst distortion for each of the catalyst struc-
tures within TS-1.1, TS-1.2, TS-1.3, TS-1.4, TS-1.5, and BHCA-1 (B3LYP-D3(BJ)/def2-
TZVPP/IEFPCM(dichloromethane)). Energies relative to BHCA-1, the lowest energy catalyst
conformer.

rationalised by the presence of the electronically stabilising non-classical C-H···O interac-

tion between the alcohol group of the catalyst and the formyl hydrogen (2.27 Å) and the

tighter binding of the boronate oxygen (1.58 Å vs 1.80 Å) in TS-1.1, which compensates

for the greater catalyst distortion relative to TS-1.2 (DDE = +1.6 kcal mol-1). Like TS-
1.1, TS-1.3 also exhibits an electronically stabilizing formyl interaction (2.48 Å) and a

tighter binding of the boronate oxygen compared to TS-1.2 (1.59 Å vs 1.80 Å) yet is a

higher energy TS than TS-1.2 for the formation of the minor enantiomer. This is partially

rationalised by the catalyst structure in TS-1.3 being significantly more distorted than

in TS-1.2 (DDE = +3.7 kcal mol-1). Furthermore, because of this additional distortion,
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the Brønsted acidic sites of the catalyst in TS-1.3 are positioned less optimally than in

TS-1.1. Thus, it is not possible for the alcohol group of the catalyst to protonate the

boronate oxygen and interact with the formyl hydrogen at the same time, as in TS-1.1,

and so interaction with the formyl hydrogen instead occurs via the carboxyl group, whilst

the alcohol group protonates the boronate. As a result, the electronically stabilizing formyl

interaction in TS-1.3 (2.48 Å, calculated at 0.7 kcal mol-1 by NBO analysis) is longer, and

thus less electronically stabilizing, than the corresponding interaction in TS-1.1 (2.27 Å,

calculated at 2.5 kcal mol-1 by NBO analysis). This further explains why TS-1.3 cannot

compensate for the greater catalyst distortion relative to TS-1.2. The significant catalyst

distortion in TS-1.4 and TS-1.5, where the carboxyl group protonates the boronate oxy-

gen and the alcohol group acts as the intramolecular hydrogen bond donor, results in the

significantly higher energy of TSs of this nature.

To assess the validity of the proposed reaction model, and the effect on the TS

of changing the catalyst aryl groups, all 13 TSs within 3 kcal mol-1 of TS-1.1 were

reoptimised at the B3LYP-D3(BJ)/def2-TZVPP/IEFPCM(dichloromethane)//B3LYP-

D3(BJ)/6-31G(d,p) level of theory using Ar2, an alternative catalyst from the experimental

report (Figure 9.3).24 These conditions resulted in a slightly decreased ee of 77%, compared

to 86% with the original conditions. When the activation modes of the generated TSs were

analysed, low-energy TSs analogous to TS-1.1, TS-1.2, and TS-1.3, denoted by a prime,

were all identified (Figure 9.10). However, whilst TS-1.10 remained the major TS, TS-1.30

was found to be the lowest energy minor TS. A subsequent investigation into the extent of

catalyst distortion of each of these key TSs revealed that the new catalyst is less distorted

in mode A TSs, compared to the original catalyst, but more distorted in mode B TSs (Ta-

ble 9.1). Accordingly, the dihedral angle about the BINOL C-C single bond is closer to

its optimum for the new catalyst in mode A TSs, compared to the original catalyst, but

further away in mode B TSs. This is because the para-phenyl group of new catalyst is

less sterically demanding than the bulky meta-t-Bu substituents of the original catalyst.

In mode A TSs, this para-phenyl group lies away from the substrate and hence reduces

the potential for substrate-catalyst steric clashing and allows the catalyst to relax closer

to its optimum geometry. In accordance with these trends in catalyst distortion, TS-1.30

decreases by 1.1 kcal mol-1 in free energy for the new catalyst relative to TS-1.10 and be-

comes the dominant pathway for formation of the minor enantiomer of the product, whilst

TS-1.20 increases by 0.2 kcal mol-1 in free energy, compared to TS-1.10. Overall, these

energies result in a computed ee of 66% based on a Boltzmann weighting at 195.15 K over

all conformers. Thus, these changes correspond to the experimentally observed decrease

in enantioselectivity and help to reveal the crucial effect that changing the nature of the

catalyst aryl groups can have on overall selectivity.

9.1.5 Conclusions

A new reaction model for the BHCA-catalysed allylboration of aldehydes was proposed

whereby the lowest energy major TS proceeds via a pseudoaxial formyl hydrogen bonded

model (mode A) and the lowest energy minor TS via a pseudoequatorial TS model (mode

B). By providing significant rigidity to the TS structure, intramolecular hydrogen bonding

between the catalyst groups was found to be essential to inducing selectivity. Within this

hydrogen bonding, the more acidic carboxyl group was found to be the favoured hydrogen
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Figure 9.10 Relative free energies of TS-1.10, TS-1.20, TS-1.30 for the
alternative BHCA-catalysed allylboration of aldehydes (B3LYP-D3(BJ)/def2-
TZVPP/IEFPCM(dichloromethane)//B3LYP-D3(BJ)/6-31G(d,p)). Energies relative to TS-1.10.

TS Product Mode Catalyst
distortion (∆E)

BINOL
dihedral angle

Relative free
energy (DD G…)

TS-1.1 Major A 4.2 96.9 0.0

TS-1.2 Minor B 2.6 89.8 0.7

TS-1.3 Minor A 6.3 102.1 1.9

TS-1.10 Major A 2.9 92.8 0.0

TS-1.20 Minor B 3.7 95.3 0.9

TS-1.30 Minor A 4.9 99.6 0.8

Table 9.1 Dihedral angle and energy of catalyst distortion in TS-1.1, TS-1.2, TS-1.3 compared
to TS-1.10, TS-1.20, TS-1.30 (B3LYP-D3(BJ)/def2-TZVPP/IEFPCM(dichloromethane)). All en-
ergies in kcal mol-1 and relative to TS-1.1 (for Ar1) or TS-1.10 (for Ar2), the lowest energy TS
conformers.

bond donor in preference to the less acidic alcohol group, which was instead found to pro-

tonate a boronate oxygen. Thus, the importance and individual roles of the alcohol and

carboxyl groups of the catalyst were elucidated. Whilst substrate-catalyst steric clashes dic-

tated the selectivity of the BPA-catalysed allylboration, any such steric clashes are avoided

in the BHCA-catalysed reaction due to the more flexible catalyst. Instead, the difference in
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energy between the TSs is the result of weaker substrate-catalyst interactions and catalyst

distortion. An exploration of this TS system with an alternative catalyst (Ar2) revealed the

effect of changing the catalyst aryl groups; the relative extent of catalyst distortion remains

a vital factor in selectivity, thus validating the results of the original calculations (Ar1).
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9.2 Oxazaborolidinone-catalysed Mukaiyama aldol reactions

9.2.1 Statement of authorship

The contents of this section largely comprise figures, text, and captions reused and repro-

duced from the paper Noncovalent Interactions in the Oxazaborolidine-Catalyzed Enantios-
elective Mukaiyama Aldol published in July 2022 in The Journal of Organic Chem-
istry. I contributed entirely to the formulation of ideas, design of methodology, com-

putational work, and presentation of data and results in journal format for this paper,

which reports on original research conducted during the period of my Higher Degree by

Research candidature. The published work can be downloaded by the following link:

https://pubs.acs.org/articlesonrequest/AOR-WIIUNEHYYETWHX6VJVWS.

9.2.2 Introduction

The construction of C-C bonds with high selectivity is one of the most important chal-

lenges in modern organic synthesis. Of currently existing methods, the Mukaiyama al-

dol and Diels-Alder reactions represent two of the most synthetically useful C-C bond-

forming methods, facilitating the addition of structural and stereochemical complexity to

both cyclic and acyclic chemical systems.261,262 Whilst several methods exist that allow

successful and selective aldol transformations, it was Mukaiyama’s 1973 aldol reaction be-

tween a Lewis acid-activated aldehyde and a silyl enol ether derived from an aldehyde or

ketone that first addressed the prominent issue of self-condensation in aldol reactions.263

Meanwhile, the Diels-Alder reaction, an extremely atom economical and efficient transfor-

mation occurring between a diene and an electron-deficient dienophile, has remained one

of the most widely used chemical transformations since its discovery by Diels and Alder in

1928.264 Together, these methods have become some of the most powerful tools available in

modern organocatalysis and natural product synthesis,265,266 leading to the production of

several antibiotics,267{269 anticarcinogens,270,271 antioxidants,272 antifungal agents,273 and

steroids.274

Chiral Lewis acids, such as N -sulfonylated oxazaborolidinones (Figure 9.11), are some of

the most popular catalysts for these two crucial reaction classes; valine-derived oxazaboro-

lidinones have been used in both aldol29{32,36 and Diels-Alder33,37{41 reactions to achieve

high enantioselectivities and diastereoselectivities. Similar results have also been obtained

with N -sulfonylated tryptophan-derived oxazaborolidinone (NTOB) catalysts in both al-

dol28,42 and Diels-Alder25{27 reactions (Figure 9.12), methodologies that have been used in

several natural product syntheses.275{277

In 1992, the high selectivity obtained by NTOB catalysts was rationalised by Corey

on the basis of three major interactions;27,28 a donor-acceptor interaction between the car-

bonyl oxygen of the electrophile and electron deficient boron of the catalyst,39 a stabilising

non-classical C-H···O-B hydrogen bond between the formyl hydrogen of the electrophile and

the ring oxygen of the oxazaborolidinone catalyst,278{280 and an attractive p-p interaction

between the electrophile and electron-rich indole (Figure 9.13). Together these interactions

result in a rigid TS complex where one face of the electrophile, either an aldehyde (aldol)

or enal (Diels-Alder), is blocked by the steric bulk of the catalyst, resulting in preferential

nucleophilic attack from the opposite face of the aldehyde and consequently high enan-

tioselectivity. Through this reaction model, selectivity in the NTOB-catalysed Mukaiyama
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Figure 9.11 N -sulfonylated valine- and tryptophan-derived oxazaborolidinone catalysts.

Figure 9.12 Selective NTOB-catalysed Mukaiyama aldol and Diels-Alder reactions.

aldol reaction is well-explained. In the case of the Diels-Alder reaction, Corey assumed

an additional preference for the s-cis conformation of the dienophile species, which allows

for superior p-overlap between the electrophile and the indole.27 However, this assumption,

whilst validated by several studies with other catalysts,281,282 has been disputed.283 Addi-

tionally, the exo product is favoured as it avoids the steric interactions that occur with the

bulky boron substituent upon formation of the endo product.

In 2005, Wong proposed a modification to Corey’s model after ab initio and DFT studies

indicated that the sulfonyl oxygens of the N -sulfonyl group are the most electron-rich region

of the NTOB catalyst, and thus better hydrogen bond acceptors than the ring oxygen of the

oxazaborolidinone.34 Thus, the C-H···O interaction in Wong’s model forms with an S=O

oxygen of the N -sulfonyl group, rather than the ring oxygen (Figure 9.14). As a result of

this alteration, the opposite face of the electrophile is left exposed to nucleophilic attack,

corresponding to a prediction of inverted enantioselectivity. For the Diels-Alder reaction,

Wong accounted for this by assuming the enal nucleophile would prefer to adopt an s-trans

conformation, conserving the correct overall sense of selectivity. No such caveat, however,

can be made for the Mukaiyama aldol, for which the Wong model appears to predict the

incorrect product enantiomer. Accordingly, Corey’s model continues to be implicated in

NTOB-catalysed Mukaiyama aldols in the literature.42,277,284

Overall, a great deal of uncertainty persists regarding the exact mechanistic details

underpinning these crucial reaction types; in particular, selectivity in the oxazaborolidine-

catalysed Mukaiyama aldol cannot be fully rationalised using either of the current mod-
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Figure 9.13 Corey’s model applied to the NTOB-catalysed aldol and Diels-Alder reactions.

Figure 9.14 Wong’s model applied to the NTOB-catalysed aldol and Diels-Alder reactions.

els. Crucially, both the Corey and Wong models fail to account for interactions that may

stabilise the TS through binding of the nucleophile. In this investigation, the NTOB-

catalysed Mukaiyama aldol reaction between benzaldehyde and a trimethylsilyl enol ether

derived from acetophenone was modelled computationally using the experimental condi-

tions summarised in Figure 9.15.42 Possible conformations of the NTOB-aldehyde complex

and NTOB-catalysed reaction TS were explored to determine the origins of selectivity and

identify the roles of the several non-covalent C-H···O, C-H···p and p-p interactions between

the nucleophile, electrophile, and catalyst.
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Figure 9.15 Chosen conditions for computational modelling of the NTOB-catalysed Mukaiyama
aldol reaction.

9.2.3 Computational details

Conformational searches were carried out for the NTOB-aldehyde complex (R1) and

the full NTOB-catalysed reaction TS (R1 and R = Me) using the conformational

search tool within Schrödinger’s MacroModel (version 11.6)253,285 and the OPLS 2005

force field. A MCMM/LMCS approach was used to explore the possible confor-

mations of each species. Conformations of these structures were subsequently op-

timised with DFT using Gaussian16 (Revision A.03)256 at the B3LYP-D3(BJ)/def2-

TZVPP/IEFPCM(propanonitrile)//B3LYP/6-31G(d) level of theory. All conformers

within 6 kcal mol-1 of the lowest energy NTOB-aldehyde complex and within 5 kcal

mol-1 of each lowest energy TS conformer were then reoptimised using Gaussian16 (Re-

vision A.03)256 at the B3LYP-D3(BJ)/def2-TZVPP/IEFPCM(propanonitrile)//B3LYP-

D3(BJ)/6-31G(d,p) level of theory. SPEs were recalculated for the lowest energy conformers

of the NTOB-catalysed reaction TS (R1) with several other methods, including the wB97X-

D and M06-2X functionals, the 6-311G(d,p) and cc-pVTZ basis sets, and SMD. Confor-

mations of the NTOB-catalysed reaction TS (R2) were adapted from the lowest energy

conformers of the NTOB-catalysed reaction TS (R1) and optimised only at the B3LYP-

D3(BJ)/def2-TZVPP/IEFPCM(propanonitrile)//B3LYP-D3(BJ)/6-31G(d,p) level of the-

ory. All DFT calculations were performed using the pruned version of the Ultrafine (99,590)

integration grid. Temperature (195.15 K) and concentration-corrected (1 mol/l) quasihar-

monic (Grimme approximation) free energies were calculated with GoodVibes257 with a

vibrational scaling factor of 0.977.258 NBO analyses were performed using Gaussian16 (Re-

vision A.03) at the B3LYP-D3(BJ)/6-31G(d,p) level of theory. Computed structures were

illustrated with CYLView,259 with C-H hydrogens omitted for clarity (except where in-

volved in interactions). NCI analyses were performed using the NCIPLOT215 program and

illustrated using visual molecular dynamics (VMD).286
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9.2.4 Results and discussion

Conformational searching of the NTOB-aldehyde complex (R1) and Mukaiyama aldol TS

complex (R1 and R = Me) was performed with the C=O of the electrophile bound to the

boron of the NTOB catalyst, allowing exploration of six possible binding modes (Figure

9.16). These correspond to each combination of top or bottom-face binding of the aldehyde

and either a C-H···O-B, C-H···O=S, or no formyl interaction between the catalyst and

aldehyde. The A1 and B1 modes correspond to Corey and Wong-like binding, respectively.

Figure 9.16 Six possible binding modes for the NTOB-aldehyde complex with
relative energies of the lowest energy conformer for each (B3LYP-D3(BJ)/def2-
TZVPP/IEFPCM(propanonitrile)//B3LYP-D3(BJ)/6-31G(d,p)).

In total, 124 unique NTOB-aldehyde complex (R1) conformers were produced, of which

29 selected low-energy conformers were reoptimised at a higher level of theory. No qualita-

tive differences were observed between the lowest energy conformers derived at the two levels

of theory. Among the 29 selected conformers, all but the C2 binding mode were represented

(Figure 9.16). In most conformers, the N -sulfonyl group is located on the bottom face of the

NTOB catalyst due to steric shielding of the top face by the indole unit, in agreement with

previous analyses of these catalyst types;287,288 the lowest energy conformer that places the

N -sulfonyl group on the top face is 3.7 kcal mol-1 higher in energy than the overall lowest,

NTOB-E1. As a result, top-face binding of the aldehyde is generally preferred, due to

steric shielding of the bottom face by the N -sulfonyl group (Figure 9.17).288,289 The lowest

energy conformer, NTOB-E1, resembles the Wong model and is 1.8 kcal mol-1 lower in
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energy than NTOB-E2, the lowest energy conformer resembling the Corey model (Figure

9.18). Thus, if interactions to the nucleophile are neglected, these results predict the incor-

rect sense of enantioselectivity for Mukaiyama aldol reactions, suggesting that interactions

between the catalyst and nucleophile are essential in the TS reaction model. In contrast,

C-type binding modes are generally disfavoured due to the lack of stabilising C-H···O-B or

C-H···O=S formyl interaction.

Figure 9.17 Aldehyde binding from the top face is generally preferred due to steric shielding of
the bottom face by the N -sulfonyl group.

Figure 9.18 Relative free energies of NTOB-E1, the lowest energy NTOB-aldehyde complex (R1),
and NTOB-E2, the lowest energy conformer resembling the Corey model (B3LYP-D3(BJ)/def2-
TZVPP/IEFPCM(propanonitrile)//B3LYP-D3(BJ)/6-31G(d,p)) with NCI distances in Å. Energies
relative to NTOB-E1.

In addition to the six binding modes defined in Figure 9.16, a new mode (D) was located

upon analysis of the NTOB-catalysed reaction TS (Figure 9.19). In binding mode D, a C-

H···p interaction is formed between the formyl hydrogen of the aldehyde and the p-system of

the indole, at the expense of interaction with either the ring oxygen or N -sulfonyl oxygens.

In total, 328 unique TS conformers (R1) were produced, of which 47 selected low-energy

conformers were reoptimised at a higher level of theory. No qualitative differences were

observed between the lowest energy conformers derived at the two levels of theory. Among

the 47 selected conformers, all but the C1 binding mode were represented (Table 9.2), and

D binding modes made up the lowest seven conformers, including both TS-2.1 and TS-2.2,

the lowest energy TSs leading to the major and minor products, respectively (Figure 9.20).
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Overall, TS-2.1 is 2.5 kcal mol-1 lower in energy than TS-2.2, corresponding to a computed

ee of >99% based on a Boltzmann weighting at 195.15 K over all conformers within 3 kcal

mol-1 of TS-2.1, in good agreement with the experimental ee of 93%. To validate the

energy difference between TS-2.1 and TS-2.2, SPEs were recalculated at several levels of

theory and the free energy difference and computed ee, based on a Boltzmann weighting

at 195.15 K between TS-2.1 and TS-2.2, calculated (Table 9.3). In all cases, a strong

preference for TS-2.1 and a computed ee in good agreement with the experiment ee of

94% was obtained.

Figure 9.19 Additional NTOB-aldehyde binding mode involving a C-H···p interaction between the
aldehyde and indole.

Binding
mode

Number of
conformers

Relative free
energy of lowest

conformer (DD G…)

A1 5 2.7

A2 4 3.3

B1 2 6.5

B2 13 4.1

C1 0 n/a

C2 8 2.5

D 15 0

Table 9.2 Relative energy of the lowest energy conformer for each binding mode within the 47 reop-
timised conformers of the NTOB-catalysed Mukaiyama aldol reaction (R1) (B3LYP-D3(BJ)/def2-
TZVPP/IEFPCM(propanonitrile)//B3LYP-D3(BJ)/6-31G(d,p)). All energies in kcal mol-1 and
relative to TS-2.1, the lowest energy TS conformer.

Whilst binding mode D is clearly the most favourable mode for the NTOB-catalysed

reaction TS, no such modes were identified for the NTOB-aldehyde complex. For the

isolated complex, formyl interactions with either the ring oxygen or N -sulfonyl oxygens

are assumed to be more stabilising than with the p-system of the indole. However, with
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Figure 9.20 Relative free energies of TS-2.1 and TS-2.2, the lowest energy major and minor
TS conformers, respectively, for the NTOB-catalysed Mukaiyama aldol reaction (R1) (B3LYP-
D3(BJ)/def2-TZVPP/IEFPCM(propanonitrile)//B3LYP-D3(BJ)/6-31G(d,p)) with NCI distances
in Å and key NBO interaction strengths. Energies relative to TS-2.1. p interactions measured from
the relevant ring centroid. Green, red, and blue NCI surfaces represent weak, strong repulsive and
strong attractive NCIs, respectively.

the introduction of the nucleophile, additional interactions can be formed that stabilise

TSs of binding mode D; non-classical C-H···O hydrogen bonds are observed between the

vinyl and ortho-phenyl hydrogens of the silyl enol ether nucleophile with either the ring

oxygen (in TS-2.1) or an N -sulfonyl oxygen (in TS-2.2). Indeed, enal-catalyst vinyl

interactions like these were considered briefly by Corey in the oxazaborolidinium-catalysed

Diels-Alder.290 Furthermore, a weak C-H···p interaction is present between a vinyl hydrogen

of the silyl enol ether and the six-membered ring of the indole, fixing the indole into one

of two conformations, depending on which face the silyl enol ether is bound; analogous

structures to TS-2.1 and TS-2.2 with the indoles in their opposite conformations are both

higher in energy than their respective counterparts (Figure 9.21).

Thus, several important non-covalent C-H···O and C-H···p interactions between the
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SPE method Free energy
di�erence (G…)

Computed ee

B3LYP-D3(BJ)/def2-TZVPP/IEFPCM(propanonitrile) 2.5 >99%

B3LYP-D3(BJ)/6-311G(d,p)/IEFPCM(propanonitrile) 2.1 99%

B3LYP-D3(BJ)/cc-PVTZ/IEFPCM(propanonitrile) 4.1 >99%

B3LYP-D3(BJ)/def2-TZVPP/SMD(propanonitrile) 2.6 >99%

wB97X-D/def2-TZVPP/IEFPCM(propanonitrile) 4.0 >99%

wB97X-D/def2-TZVPP/SMD(propanonitrile) 4.1 >99%

M06-2X/def2-TZVPP/IEFPCM(propanonitrile) 3.3 >99%

M06-2X/def2-TZVPP/SMD(propanonitrile) 3.4 >99%

Table 9.3 Free energy difference and computed ee (based on a Boltzmann weighting at 195.15
K) between TS-2.1 and TS-2.2 with several SPE methods on the B3LYP-D3(BJ)/6-31G(d,p)
structures. All energies in kcal mol-1.

Figure 9.21 Relative free energies of TS-2.10 and TS-2.20, the lowest energy major and
minor TS conformers for the NTOB-catalysed Mukaiyama aldol reaction (R1) with the in-
dole conformations flipped relative to TS-1 and TS-2, respectively (B3LYP-D3(BJ)/def2-
TZVPP/IEFPCM(propanonitrile)//B3LYP-D3(BJ)/6-31G(d,p)) with NCI distances in Å. Energies
relative to TS-2.1. p interactions measured from the relevant ring centroid.

nucleophile, electrophile, and catalyst contribute to the overall stability of TSs of bind-

ing mode D, including TS-2.1 and TS-2.2, lowering their free energy compared to other

modes, including both A1 (Corey-like) and B1 (Wong-like) TSs. Accordingly, TS-2.3 and

TS-2.4, the lowest energy major TSs located representing Corey and Wong-like binding,

respectively, are found to be 2.7 kcal mol-1 and 6.5 kcal mol-1 higher in energy than TS-2.1
(Figure 9.22). Although TS-2.3 and TS-2.4 possess some nucleophile-catalyst interac-
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tions, they are fewer and longer than in TS-2.1 and TS-2.2, contributing to their higher

relative energies. Additionally, the nucleophilic binding in TS-2.4 results in steric clashing

between silyl enol ether and indole, raising the energy of this TS further.

Figure 9.22 Relative free energies of TS-2.3 and TS-2.4, the lowest energy Corey-like and Wong-
like TS conformers, respectively, for the NTOB-catalysed Mukaiyama aldol reaction (R1) (B3LYP-
D3(BJ)/def2-TZVPP/IEFPCM(propanonitrile)//B3LYP-D3(BJ)/6-31G(d,p)) with NCI distances
in Å. Energies relative to TS-2.1. p interactions measured from the relevant ring centroid. Green,
red, and blue NCI surfaces represent weak, strong repulsive and strong attractive NCIs, respectively.

Since TS-2.1 and TS-2.2 both share the same mode of electrophilic binding to the

catalyst, but with distinct nucleophilic bindings, differences between the two TSs are most

likely a consequence of the positioning of the nucleophile and any subsequent interactions

that occur as a result. Thus, the origins of selectivity are much less apparent than in the

Corey or Wong models, where one face of the aldehyde is blocked by the steric bulk of the

indole in only the major TS. As evidenced from TS-2.1 and TS-2.2, nucleophilic attack

is preferred when the silyl enol ether binds the backside of the catalyst-aldehyde complex.

However, no H-H contacts between the substrate and catalyst within 90% of the Van der

Waals radii are found in TS-2.1 or TS-2.2, confirming that steric factors are not a major

factor in selectivity.
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Crucially, NCI analyses on TS-2.1 and TS-2.2 (Figure 9.20) reveal the importance

of p-p interactions in the NTOB-catalysed reaction TS. The formation of attractive p-p
interactions between the aromatic aldehyde and the electron-rich indole was an important

element of Corey’s original model,280 however, in TS-2.1 and TS-2.2, the aldehyde is po-

sitioned perpendicular to the indole, removing the possibility of such interactions between

these components. Nonetheless, both TS-2.1 and TS-2.2 possess face-centered p-p inter-

actions between the N -sulfonyl aromatic and the electron-deficient boron substituent of

the catalyst. Additionally, in TS-2.1, there is a significant interaction of approximately 2

kcal mol-1 (calculated by NBO analysis) between the electron-deficient aromatic boron sub-

stituent and the electron-rich phenyl of the silyl enol ether. This interaction is geometrically

impossible in TS-2.2 due to the positioning of the silyl enol ether. This arrangement of

overlapping aromatics results in significant stabilisation of TS-2.1, lowering its free energy

with respect to TS-2.2 and inducing selectivity in the reaction. Accordingly, NCI analyses

for TS-2.3 and TS-2.4 also reveals the presence of p-p interactions between the indole,

aldehyde, and silyl enol ether in TS-2.3, between the indole and silyl enol ether in TS-2.4,

and between the N -sulfonyl and boron substituent in both. These findings are in line with

previous QM analyses on the oxazaborolidinium-catalysed cycloadditions of maleimides,

which found that NCIs between the substrate and aromatic catalyst were vital to inducing

selectivity, and that the importance of non-classical C-H···O hydrogen bonding had been

overstated by previous models.291

To further assess the impact of these nucleophile-catalyst p-p interactions on selectivity,

additional calculations were performed with alternative boron substituents (R2 and R3).

First, TS-2.1 and TS-2.2 were reoptimised with the boron substituent replaced by R2, a

non-substituted phenyl group (Figure 9.23). Consequently, the free energy difference be-

tween the structures dropped to 0.9 kcal mol-1, corresponding to a computed ee of 81%

based on a Boltzmann weighting at 195.15K between TS-2.1-Ph and TS-2.2-Ph, in excel-

lent agreement with the experimental value of 79% (Figure 9.3).42 Importantly, this trend

makes chemical sense with respect to the proposed reaction model and is supported by

both NCI and NBO analyses on TS-2.1-Ph and TS-2.2-Ph; the removal of the electron-

withdrawing CF3 groups from the boron substituent weakens the p-p interactions between

itself and the electron-rich phenyl of the silyl enol ether in TS-2.1-Ph, which are instead

calculated at 1.7 kcal mol-1 by NBO (compared to 2 kcal mol-1 in TS-2.1), whilst the same

interaction remains impossible in TS-2.2-Ph. As a result, TS-2.1-Ph increases in free

energy relative to TS-2.2-Ph, and selectivity becomes poorer.

Next, conformational searches were performed for the NTOB-catalysed reaction TS with

methyl (R = Me), a non-aromatic boron substituent chosen as an approximation for the n-

butyl (R2) used in the experimental study (Figure 9.15). In total, 74 unique TS conformers

(R = Me) were produced, of which 25 selected low-energy conformers were reoptimised

at a higher level of theory. No qualitative differences were observed between the lowest

energy conformers derived at the two levels of theory. In contrast to the previous two sets

of conditions modelled, no p-p interactions could form between the non-aromatic boron

substituent and either the silyl enol ether or N -sulfonyl group. Nevertheless, selectivity is

preserved in both experiment and DFT; TS-2.1-Me, the lowest energy major TS, is found

to be 1.5 kcal mol-1 lower in energy than TS-2.2-Me, the lowest energy minor TS (Figure

9.24), corresponding to a computed ee of 93% based on a Boltzmann weighting at 195.15K
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Figure 9.23 Relative free energies of TS-2.1-Ph and TS-2.2-Ph, the reoptimised phenyl-
substituted TS conformations of TS-2.1 and TS-2.2, respectively, for the NTOB-catalysed
Mukaiyama aldol reaction (R2) (B3LYP-D3(BJ)/def2-TZVPP/IEFPCM(propanonitrile)//B3LYP-
D3(BJ)/6-31G(d,p)) with NCI distances in Å and key NBO interaction strengths. Energies relative
to TS-2.1-Ph. p interactions measured from the relevant ring centroid. Green, red, and blue NCI
surfaces represent weak, strong repulsive and strong attractive NCIs, respectively.

over all conformers within 3 kcal mol-1 of TS-2.1-Me, in excellent agreement with the

experimental ee of 82% (R3).42 In lieu of p-p interactions between the silyl enol ether and

boron substituent, the N -sulfonyl group in TS-2.1-Me is able to direct itself towards the

top face of the oxazaborolidinone ring, allowing a p-p interaction with the phenyl of the

aldehyde of approximately 2.3 kcal mol-1 (NBO analysis). This kind of interaction is not

geometrically possible in TS-2.2-Me, where the alternative binding of the silyl enol ether

sterically screens the N -sulfonyl group from occupying any position on the top face of the

ring, resulting in its higher free energy. With the exclusion of p-p interactions, TS-2.2-Me
otherwise shares the reaction model as TS-2.2. Thus, selectivity is preserved, despite the

lack of aromatic boron substituent.
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Figure 9.24 Relative free energies of TS-2.1-Me and TS-2.2-Me, the lowest energy ma-
jor and minor TS conformers, respectively, for the NTOB-catalysed Mukaiyama aldol reaction
(R = Me) (B3LYP-D3(BJ)/def2-TZVPP/IEFPCM(propanonitrile)//B3LYP-D3(BJ)/6-31G(d,p))
with NCI distances in Å and key NBO interaction strengths. Energies relative to TS-2.1-Me. p
interactions measured from the relevant ring centroid. Green, red, and blue NCI surfaces represent
weak, strong repulsive and strong attractive NCIs, respectively.

9.2.5 Conclusions

A new reaction model for the NTOB-catalysed Mukaiyama aldol reaction was proposed

which matches experimental selectivity and is validated on systems with less polarised

(R2) and non-aromatic boron substituents (R3). Whilst previous models considered only

interactions between the catalyst and electrophile, nucleophile-catalyst interactions were

found to be vital in stabilising the TS complex and inducing selectivity. Several non-

classical C-H···O, C-H··· p and p-p interactions were found to be important in the model,

whilst traditional formyl C-H···O interactions, such as in the Corey and Wong models, were

absent. Selectivity was rationalised by the presence of p-p interactions in the major TS that

are not geometrically possible in the minor TS due to the direction of nucleophilic binding.
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9.3 Thiourea-catalysed S-H insertion of sulfoxonium ylides

9.3.1 Statement of authorship

The contents of this section largely comprise figures, text, and captions reused and re-

produced from the paper Enantioselective S-H insertion Reactions of a-Carbonyl Sulfoxo-
nium Ylides published in April 2020 in Angewandte Chemie International Edition
(DOI:10.1002/anie.202005563). I contributed solely to the computational work and

presentation of computational data and results in journal format for this paper, which re-

ports on original research conducted during the period of my Higher Degree by Research

candidature. Otherwise, formulation of ideas, design of methodology, experimental work,

and presentation of data and results in journal format for this paper, were performed by

the main authors.

9.3.2 Introduction

Organosulfurs constitute an important class of chemical compounds that includes anticar-

cinogens,292 antioxidants,293 antimicrobial and anti-inflammatory agents,294 and several

amino acids. Of these, b-Keto thioethers are particularly significant, being found in a sev-

eral pharmaceutically and synthetically relevant compounds with similar properties.295{299

In addition, b-keto thioethers act as precursors to several chemically useful species, includ-

ing benzothiophenes,300 Julia olefination reagents,301 gabosines, and anhydrogabosines.302

Traditional methods for the preparation of b-keto thioethers include either S-H inser-

tion of thiols into diazocarbonyl compounds,303{305 or nucleophilic substitution of thiols

into a-haloketones.306 However, these methods each suffer from either low selectivity or

yield, poor scale-up, or the need for expensive metal catalysts or commercially unavailable

substrates. More recently, a high-yielding catalyst-free synthesis of b-keto thioethers was

reported involving S-H insertion of sulfoxonium ylides into aryl thiols.307{312 In contrast

to traditional methods, sulfoxonium ylides are stable, scale-up well, and can be readily

obtained by several direct methods from commercially available starting materials.313{315

Accordingly, sulfoxonium ylides have seen use in a variety of insertion reactions,316{322

whilst other sulfur-based ylides have been utilised in carbene generation,323,324 olefination,

and several cyclisation and rearrangement methods.325

Experimental mechanistic studies into this catalyst-free S-H insertion reaction found

that reaction did not occur when the thiol was replaced with its sodium salt and that

changing the acidity of the thiol substantially affected yield, indicating that a protona-

tion step was important.308 Thus, a general reaction scheme was proposed consisting first

of protonation of the ylide double bond by the acidic aryl thiol, followed by nucleophilic

substitution of the thiolate into the ylide and release of dimethyl sulfoxide (DMSO) (Fig-

ure 9.25). Further kinetic isotope experiments on the thiol hydrogen have indicated that

this first step is the rate-determining step (RDS), whilst the second step, which did not

discriminate between nucleophiles with different reactivates, was found to be rapid.

In the paper on which this chapter is based, the main authors subsequently developed

and optimised the first example of an asymmetric catalytic (metal-free) variety of this S-H

insertion reaction by incorporating several classes of dual hydrogen bond donor (Brønsted

acid) catalysts into the catalyst-free approach.326 Overall, a thiourea-catalysed process re-

sulted in enantioselectivities and yields up to 95% and 97%, respectively. Furthermore,
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Figure 9.25 Proposed mechanism for the catalyst-free S-H insertion of sulfoxonium ylides into aryl
thiols.

1H NMR studies provided evidence for N-H hydrogen bonding between the thiourea and

the sulfoxonium ylide, but not between the thiourea and the thiophenol. Thus, the reac-

tion scheme in Figure 9.25 can be transformed into a catalytic cycle whereby the thiourea

catalyst hydrogen bonds to the sulfoxonium ylide to generate a pre-reaction ylide-catalyst

complex, which subsequently deprotonates the thiophenol in the RDS (Figure 9.26). Sub-

sequent nucleophilic substitution of the thiolate to the positive ylide-catalyst complex gives

rise to the b-keto thioether product, whilst simultaneously releasing the thiourea back into

the catalytic cycle. Thus, selectivity should be determined by the face of the ylide that is

protonated by the thiol.

Figure 9.26 Proposed catalytic cycle for the thiourea-catalysed S-H insertion of sulfoxonium ylides
into aryl thiols.

In this investigation, the thiourea-catalysed insertion of sulfoxonium ylides into aryl

thiols was modelled computationally using the experimental conditions in Figure 9.27.326
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Possible conformations of the selectivity-determining protonation step were explored to

determine the origins of selectivity. To reduce computational expense, the trifluoromethyl

and pyrene groups of the catalyst were truncated to fluorines and phenyl, respectively.

Superimposition of the lowest energy conformers of the full catalyst and model catalyst

over core atoms revealed an RMSD value of 0.095 Å, indicating that these truncations do

not have a significant impact on the conformation of the catalyst, and hence allow for a

reasonable approximation of the full TS (Figure 9.28).

Figure 9.27 Chosen conditions for computational modelling of the thiourea-catalysed insertion of
sulfoxonium ylides into aryl thiols.

Figure 9.28 Lowest free energy conformation of the full and model catalyst (B3LYP/6-31G(d)).
Highlighted atoms on the model catalyst indicate the core atoms over which RMSD was calculated
for both structures.

9.3.3 Computational details

Conformational searches were carried out for the model thiourea catalyst, the full thiourea

catalyst, and each possible binding mode of the model thiourea-catalysed reaction TS us-

ing the conformational search tool within Schrödinger’s MacroModel (version 11.6)253,285

and the OPLS 2005 force field. A MCMM/LMCS approach was used to explore the

possible conformations of each species. Conformations of these structures were subse-

quently optimised with DFT using Gaussian16 (Revision A.03)256 at the M06-2X/def2-

TZVPP/IEFPCM(chloroform)//B3LYP/6-31G(d) level of theory. All DFT calculations
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were performed using the pruned version of the Ultrafine (99,590) integration grid. Tem-

perature (245.15 K) and concentration-corrected (1 mol/l) quasiharmonic (Grimme approx-

imation) free energies were calculated with GoodVibes257 with a vibrational scaling factor

of 0.977.258 NBO analyses were performed using Gaussian16 (Revision A.03) at the M06-

2X/def2-TZVPP/IEFPCM(chloroform) level of theory. Similar methods have previously

been used for the successful modelling of ureas.107,327 Computed structures were illustrated

with CYLView,259 with C-H hydrogens omitted for clarity (except where involved in inter-

actions).

9.3.4 Results and discussion

Conformational searching of the thiourea-catalysed reaction TS was performed with either

the C=O or S=O of the sulfoxonium ylide bound to both N-H hydrogens of the thiourea. In

total, 151 unique TS conformers were produced. The lowest energy of these, TS-3.1, which

leads to the major product, is 1.1 kcal mol-1 lower in energy than TS-3.2, the lowest energy

TS leading to the minor product (Figure 9.29). Thus, based on a Boltzmann weighting at

245.15 K over all conformers within 3 kcal mol-1 of TS-3.1, a computed ee of 82% was

predicted, in excellent agreement with the experimental ee of 85%.

Figure 9.29 Relative free energies of TS-3.1, TS-3.2, TS-3.10, and TS-3.20 for
the thiourea-catalysed insertion of sulfoxonium ylides into aryl thiols (M06-2X/def2-
TZVPP/IEFPCM(chloroform)//B3LYP/6-31G-(d)). Energies relative to TS-3.1. Highlighted
atoms indicate measured dihedral angles. All distances in Å.
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In agreement with the NMR studies performed by the main authors, interactions were

observed between the thiourea and the sulfoxonium ylide, but not between the thiourea

and the thiophenol; in TS-3.1, the ylide S=O forms hydrogen bonds with the two acidic

hydrogens of the thiourea (2.04 Å and 2.04 Å), whilst a non-classical C-H···O interaction

is formed between the carbonyl oxygen and the 3,5-bisfluorophenyl ring (2.27 Å). A weak

C-H···O interaction also exists between an ylide methyl and the carbonyl of the catalyst. In

TS-3.2, the roles of the carbonyl and the S=O groups are reversed. However, as a result,

the combined strength of the ylide-catalyst hydrogen bond is found to be 2 kcal mol-1 weaker

(12.9 kcal mol-1 in TS-3.1, compared to 10.9 kcal mol-1 in TS-3.2). NBO analyses reveal

that the dominant contributor to this strength comes from the two classical hydrogen bonds

originating from the thiourea group, with the two non-classical interactions accounting for

only 2.7 kcal mol-1 and 2 kcal mol-1 in TS-3.1 and TS-3.2, respectively. Thus, the S=O

group is determined to be a better hydrogen bond acceptor than the carbonyl, contributing

partially to the overall preference for the binding mode in TS-3.1.

A more apparent difference between the TS-3.1 and TS-3.2 is the orientation of the

ylide; whilst parallel to the thiourea unit of the catalyst in TS-3.1, the two species are forced

to take an approximately perpendicular arrangement in TS-3.2 to avoid unfavourable steric

interactions between the ylide ester group and the t-butyl group of the catalyst. In addi-

tion, a stabilising C-H···O interaction is formed between the ylide methyl and the catalyst

carbonyl (2.22 Å). However, because of this ylide arrangement, the C-H···O interaction

between the ylide and 3,5-bisfluorophenyl ring in TS-3.2 is made longer and, according to

NBO analysis, 0.7 kcal mol-1 weaker than in TS-3.1 (2.27 Å vs 2.40 Å). Additionally, to

form this interaction, the 3,5-bisfluorophenyl ring must twist slightly out of plane, inducing

additional distortion relative to TS-3.1, as per the highlighted dihedral angle in Figure

9.29. Thus, the ylide arrangement in TS-3.1 is most favourable, contributing further to

its lower free energy. Due to their greater potential for steric interactions with the catalyst

t-butyl group, larger ester groups on the ylide, such as t-butyl and trichloroethyl, should

be expected to enhance both these effects, raising the energy of TS-3.2 relative to TS-3.1
and improving selectivity. Accordingly, enantioselectivities were generally above 90% for

reactions using these substituents, validating the experimental findings of the main authors.

Further insights into the selectivity of the reaction are obtained by inspection of TS-
3.10 and TS-3.20, the lowest energy TSs representing the same the same binding modes

as TS-3.1 and TS-3.2, respectively, but with the opposite approach of the thiophenol. In

these TSs, only one C-H···S interaction between the ylide and thiophenol can be formed,

compared to three in TS-3.1 and TS-3.2, accounting for their 3.8 kcal mol-1 and 3.4 kcal

mol-1 higher energy compared to TS-3.1 and TS-3.2, respectively. NBO analyses of these

C-H···S interactions in TS-3.1 revealed a combined strength of 5.3 kcal mol-1 for the three

interactions, compared to 1.6 kcal mol-1 for the single interaction in TS-3.10. Accordingly,

this 3.7 kcal mol-1 difference corresponds extremely well with the observed free energy

difference of 3.8 kcal mol-1 between TS-3.1 and TS-3.10.

9.3.5 Conclusions

By comparing computational results over several sets of experimental conditions, the re-

action model proposed by the main authors for the asymmetric thiourea-catalysed S-H

insertion reaction of sulfoxonium ylides into polar S-H bonds developed was validated.
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Two main binding modes were located, distinguished by the orientation of the ylide and

the respective roles of the ylide C=O and S=O groups in hydrogen bonding. Within these

binding modes, an arrangement of several classical and non-classical hydrogen bonds was

found to play a key role in determining selectivity.
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9.4 Phosphoric acid-catalysed transfer hydrogenation of naphthyridines

9.4.1 Statement of authorship

The contents of this section largely comprise figures, text, and captions reused and repro-

duced from the paper Enantioselective Total Synthesis of (-)-Finerenone using Asymmetric
Transfer Hydrogenation published in September 2020 in Angewandte Chemie Inter-
national Edition (DOI:10.1002/anie.202011256). I contributed solely to the com-

putational work and presentation of computational data and results in journal format for

this paper, which reports on original research conducted during the period of my Higher

Degree by Research candidature. Otherwise, formulation of ideas, design of methodology,

experimental work, and presentation of data and results in journal format for this paper

were performed by the main authors.

9.4.2 Introduction

Diabetes cases worldwide have more than doubled over the last 20 years, and are responsible

for approximately 1.5 million deaths each year.328 Among many other symptoms, diabetes

is the most common cause of chronic kidney diseases and kidney failure, which develops in

approximately 40% of diabetic patients.329 Accordingly, a recent study found kidney disease

to be present in 9.4% of individuals without type 2 diabetes, compared to 42.3% with, and

is primarily responsible for the association of type 2 diabetes with increased mortality.330

In the past two decades, steroidal mineralocorticoid receptor antagonists (MRAs) have

been identified as an effective treatment for diabetic kidney diseases,331,332 however their

clinical use has been limited due to low potency and the risk of substantial side effects.333,334

However, in 2012, Bayer identified finerenone, a non-steroidal, highly potent, MRA,335

which was not found to be limited by the same side effects as its predecessors.336,337 Fur-

thermore, in addition to its applications in treating kidney disease, finerenone has been

shown to reduce the risk of heart failure, cardiovascular death, and non-fatal heart attacks

and strokes in adults with chronic kidney disease associated with type 2 diabetes.338 Since

the research in this chapter was performed, finerenone has passed through phase III clinical

trials for the treatment of chronic kidney diseases in type 2 diabetes and been approved for

medical use in both the US and European Union under the brand name Kerendia.339,340

Like many drugs, finerenone is chiral, and only the (S)-enantiomer is biologically ac-

tive. However, current methods towards its synthesis result in a racemic form that must

be separated using HPLC, which is not practical on a large scale. Thus, development of an

asymmetric synthesis of finerenone is essential. Whilst there are no asymmetric methods to

dihydronaphthyridines, the core structure of finerenone, there are two known methods that

allow asymmetric synthesis of the structurally related dihydroquinolines, which can subse-

quently be reduced to finerenone. These are via a formal [4+2]-cyclisation of ortho-quinone

methide imines with b-keto amides341 or a partial transfer hydrogenation of a naphthyridine

using a Hantzsch ester derivative,342,343 both catalysed by chiral phosphoric acids. Thus,

the main authors of the paper on which this chapter is based performed an extensive screen-

ing of each method using a 3,30-bis(2,4,6-triisopropylphenyl)-2,20-binaphtholate (TRIP) (Ar

= 2,4,6-i -Pr3-C6H2) (Brønsted acid) catalyst to derive a short six-step asymmetric synthe-

sis of (-)-finerenone.344 Ultimately, the hydrogenation route was found to be most effective

(Figure 9.27), with the alternative cyclisation method producing a maximum ee of 15%.
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Figure 9.30 Chosen conditions for computational modelling of the TRIP-catalysed partial transfer
hydrogenation of naphthyridines with a Hantzsch ester.

During this experimental work, the main authors discovered that the naphthyridine

starting material existed as a mixture of two atropisomers, where one reacted approxi-

mately 30 times faster than the other (Figure 9.31). Following separation by chiral HPLC

and further investigation, the two atropisomers were also found to exhibit vastly different

selectivities, with the fast-reacting (S)-atropisomer producing an ee up to >99%, compared

to only around 22% with the slow-reacting (R)-atropisomer. Thus, to maximise the yield

and selectivity of the asymmetric process, a dynamic kinetic resolution was performed at

elevated temperatures whereby the slow-reacting and non-selective (R)-atropisomer could

isomerise into the fast-reacting and selective (S)-atropisomer prior to reaction. This racemi-

sation process occurs much faster than the entropically unfavourable reduction step, result-

ing in an ee as high as 96%.

Figure 9.31 Reactivities and selectivities of the two naphthyridine atropisomers in the TRIP-
catalysed partial transfer hydrogenation of naphthyridines with a Hantzsch ester; computed results
from this thesis match the experimental findings exceptionally well.
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In this investigation, the TRIP-catalysed partial transfer hydrogenation of naph-

thyridines with a Hantzsch ester was modelled computationally using the experimental

conditions in Figure 9.30.344 Possible conformations of the reduction step were explored to

determine the origins of selectivity and explain the reactivity of both atropisomers. To re-

duce computational expense, ethoxy groups on the Hantzsch ester and naphthyridine were

truncated to methoxy groups.

9.4.3 Computational details

Conformational searches were carried out for TRIP-catalysed reaction TS using the

conformational search tool within Schrödinger’s MacroModel (version 11.3)253,254 and

the OPLS3e force field. A MCMM/LMCS approach was used to explore the pos-

sible conformations of each species. Conformations of these structures were subse-

quently optimised with DFT using Gaussian16 (Revision A.03)256 at the M06-2X/6-

311G(d,p)/SMD(tetrahydrofuran)//B3LYP/6-31G(d) level of theory. All DFT calcula-

tions were performed using the pruned version of the Ultrafine (99,590) integration grid.

Temperature (313.15 K) and concentration-corrected (1 mol/l) quasiharmonic (Grimme

approximation) free energies were calculated with GoodVibes257 with a vibrational scaling

factor of 0.977.258 Similar methods have previously been used for the successful modelling

of chiral phosphoric acid-catalysed reactions.246,345 Computed structures were illustrated

with CYLView,259 with C-H hydrogens omitted for clarity (except where involved in inter-

actions).

9.4.4 Results and discussion

Conformational searching of the TRIP-catalysed reaction TS was performed with the phos-

phoric hydroxyl group of the catalyst bound to the nitrogen of the naphthyridine and the

P=O of the catalyst bound to the N-H hydrogen of the Hantzsch ester. In total, 40 unique

TS conformers were produced. The lowest energy of these, TS-4.1, which leads to the

major product via the fast-reacting (S)-atropisomer, is 2.2 kcal mol-1 lower in energy than

TS-4.2, which leads to the minor product via the slow-reacting (R)-atropisomer (Figure

9.32). Thus, based on a Boltzmann weighting at 313.15 K over all conformers within 5

kcal mol-1 of TS-4.1, a computed ee of 98% was predicted, in excellent agreement with the

experimental ee of 94%. In addition, when considering TS-4.10 and TS-4.20, the lowest en-

ergy TSs leading to the major and minor products via the opposite atropisomers to TS-4.1
and TS-4.2 (Figure 9.32), respectively, these calculations also match the observed selectiv-

ities of the individual atropisomers exceptionally closely; based on Boltzmann weightings at

313.15 K over all relevant conformers within 5 kcal mol-1 of TS-4.1, the (S)-atropisomer is

predicted to form the major product with a >99% ee (>99% experimentally), whilst 30%

is predicted for the (R)-atropisomer (22% experimentally).

The four main TSs located for the reaction are illustrated in Figure 9.32. In TS-4.1 and

TS-4.10, the catalyst is orientated such that the bulky anthracene groups are positioned

perpendicular to the naphthyridine. In this arrangement, the anthracene represented in

white imposes less on the naphthyridine than the anthracene represented in grey, thus cre-

ating an open pocket of space in which the bulk of the naphthyridine ring can be placed.

Thus, reactivity of the two atropisomers is easily explained; in TS-4.10, the inward facing
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Figure 9.32 Relative free energies of TS-4.1, TS-4.2, TS-4.10, and TS-4.20 for the TRIP-
catalysed partial transfer hydrogenation of naphthyridines with a Hantzsch ester (M06-2X/6-
311G(d,p)/SMD(chloroform)//B3LYP/6-31G-(d)). Energies relative to TS-4.1. Grey and white
boxes represent the anthracenes of the phosphoric acid catalyst.

methoxy group of the (R)-atropisomer (depicted in red) hinders the approach of the in-

coming Hantzsch ester, whilst addition to the (S)-atropisomer is unimpeded. Accordingly,

TS-4.1 is 2 kcal mol-1 lower in energy than TS-4.10.

To form the minor enantiomer of the product, the Hantzsch ester must approach the

opposite face of the naphthyridine. Thus, in TS-4.2 and TS-4.20, the naphthyridine is

rotated through 180°. However, in the TS arrangement of TS-4.1 and TS-4.10, this would

place the bulk of the naphthyridine ring in a closed pocket of space towards the anthracene

represented in grey, resulting in a significant steric clash. To avoid this, the catalyst in

TS-4.2 and TS-4.20 is rotated through 90° such that the bulky anthracene groups are

positioned parallel to the naphthyridine and do not interfere with either substrate. However,

as a result, the strength and directionality of the hydrogen bonds between the catalyst and
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substrates are compromised, and thus the energy of these TSs raised with respect to TS-4.1
and TS-4.10. Additionally, because the catalyst is not as tightly bound to the substrates,

the impact of the methoxy group of the (S)-atropisomer on the approach of the Hantzsch

ester is small, as the overall TS assembly is less rigid. As a result, both atropisomers react

at similar rates, and the difference in energy between TS-4.2 and TS-4.20 is small.

Overall, these computations verify the experiment data exceptionally well; the (R)-

atropisomer reacts slowly in both TS assemblies, whilst the (S)-atropisomer reacts slowly

in TS-4.20 but quickly in TS-4.1. Additionally, selectivity is individually poor via the (R)-

atropisomer, as exemplified by the small 0.2 kcal mol-1 difference in energy between TS-4.10

and TS-4.2, whilst the larger 2.2 kcal mol-1 difference between TS-4.1 and TS-4.20 leads

to high selectivity via the (S)-atropisomer. Thus, the (S)-atropisomer is fast-reacting and

selective, whilst the (R)-atropisomer is slow-reacting and less selective. Overall selectivity

in the reaction is dominated by TS-4.1.

9.4.5 Conclusions

A reaction model was proposed for the asymmetric TRIP-catalysed partial transfer hydro-

genation of a naphthyridine with a Hantzsch ester. Two main binding modes were located,

distinguished by the orientation of the phosphoric acid catalyst with respect to the naph-

thyridine. Within these binding modes, different atropisomers of the naphthyridine, which

react with different rates and selectivities, were found to result in different extents of steric

hindrance between the naphthyridine and Hantzsch ester. However, in some cases, weaker

hydrogen bonding between the substrates and catalysts results in a less rigid TS assem-

bly, alleviating this steric hindrance. Based on these observations, the proposed reaction

model is able to rationalise overall selectivity in the reaction, in addition to the individual

behaviours of the two naphthyridine atropisomers.
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9.5 Modelling summary

In this chapter, four examples of successful computational modelling investigations were

provided for several crucial C-C, C-H, and S-H bond-forming methods. These reactions

utilised several classes of popular chiral catalysts, including Brønsted acids, such as hy-

droxyl carboxylic acids, phosphoric acids, and thioureas, and Lewis acids, such as oxaz-

aborolidinones. These synthetic methodologies lie at the forefront of modern drug discovery

and natural product synthesis. For each reaction, a specific combination of computational

methods was chosen such that an accurate picture of the competing diastereomeric TSs for

the key selectivity-determining step could be obtained. In turn, detailed insights into the

mechanisms of each reaction and the factors (interactions, steric effects, functional groups,

etc.) that govern its reactivity and selectivity were obtained. Using additional analytical

techniques, such as NBO and NCI analysis, a quantitative and qualitative understanding

of the NCIs involved in each reaction were obtained. These interactions were essential in

rationalising the reactivity and selectivity of each reaction.

In each case, the results of the computational analyses were subsequently validated by

successful rationalisation of experimental results. In addition to an explanation of the ob-

served enantioselectivities based on calculated Boltzmann weightings, several other more

complicated effects were elucidated. For example, in the BHCA-catalysed allylboration and

NTOB-catalysed Mukaiyama aldol reactions, relatively minor changes to the catalyst were

shown to have a substantial impact on TS conformation, and thus selectivity. Addition-

ally, insights into the TRIP-catalysed partial transfer hydrogenation of naphthyridines was

able to rationalise the individual behaviours of the two atropisomers of the naphthyridine

starting material, which reacted with different rates and selectivities.

Whether the original motive for investigation was to understand selectivity for a new

class of catalyst, clarify mechanistic uncertainty concerning a well-explored reaction, or

contribute to the efficient and selective synthesis of pharmaceutically useful compounds,

the details provided by these studies allow a thorough understanding of the respective

reactions and the factors governing their asymmetry. In turn, this allows the rational design

of new asymmetric synthetic methods utilising these reaction and catalyst types, as well

as the further optimisation of their existing methods. Thus, the mechanistic investigations

presented in this chapter highlight the invaluable contribution of computational modelling

approaches to the efficiency and success of modern drug discovery and natural product

synthesis.
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10 Computational chemistry and machine learning

In modern drug discovery, there is an increasing demand for high-throughput reaction

screening (Figure 10.1). However, despite their high accuracy, experimental methods can

be slow, expensive, and wasteful. Thus, the previous chapter described four examples of

successful computational modelling investigations using a conventional workflow involving

conformational searching with MM and optimisations with DFT. These studies provided

chemical insights into each reaction that could be applied to the rational design of new

asymmetric reactions and catalysts. In particular, the most telling insights were obtained

from analysis of the relative reaction barriers and competing TS geometries, from which

key steric and electronic effects were identified.

Figure 10.1 Several approaches towards high-throughput reaction screening.

However, typical DFT calculations take on the order of hours to days and can be further

exacerbated by the exact combination of functional, basis set and solvation model used, the

number of atoms and complexity of the system in question, and the necessity, in most cases,

to optimise many distinct chemical species and multiple conformations of each to draw prac-

tical conclusions. This cost can inhibit the ability of DFT to rapidly screen large numbers

of substrates and catalysts in reaction discovery. Thus, in many cases, DFT calculations

simply cannot be performed on a reasonable timeframe, and therefore cannot compete with

the accuracy of high-throughput experimentation. Although numerous toolkits have been

developed to automate the location and subsequent optimisation of TS structures,346{348

the cost of these methods remains limited by the level of computational chemical modelling

method used in geometry optimisation and energy calculations. Thus, new methods are

needed to meet the demands of modern drug discovery.
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MM typically improves on DFT by around six orders of magnitude with respect to calcu-

lation time,129 but compromises on accuracy due to the neglection of electron exchange and

electron correlation. Nevertheless, several force field and force field-cost methods have been

developed that allow the successful approximation of various thermochemical properties,

including reaction barriers and selectivity349{359 However, some do not provide geometric

information, whilst others produce less accurate pictures of the TS, for example by treating

them as minima. Furthermore, force field methods are often parameterised on niche train-

ing domains with expensive reference calculations or experimental data or require complex

and lengthy parameterisation procedures to be effective, limiting their transferability and

making their implementation more difficult.

In contrast, most SQM methods are extensively parameterised, and thus widely ap-

plicable to many areas of chemistry.181{190 Additionally, many are embedded in widely

available software packages, such as Gaussian,256 GAMESS,360 Spartan,361 MOPAC,362

and ORCA,363 and are thus straightforward to implement. Like force fields, SQM methods

are several orders of magnitude faster than DFT, on the scale of seconds to minutes per cal-

culation,129 but compromise on accuracy as a result of several approximations to the under-

lying theory. Despite some reported disagreements with more accurate ab initio methods,

for example in the assignment of Diels-Alder reactions as either step-wise or concerted,364

SQM methods have been shown to produce reliable geometries for TSs of many reactions,

including nucleophilic substitutions, isomerisations, alkene epoxidations, metal-catalysed

oxidations, and even some cycloadditions.365{367 However, expensive, high-accuracy DFT

SPE corrections are often required to produce reliable barriers,365 and thus SQM data alone

is not of a sufficient quality for accurate reaction modelling.

One promising alternative to these cheaper computational modelling approaches is ma-

chine learning (ML), which allows hidden patterns to be identified in data. In recent years,

ML has become an increasingly prevalent tool in the field of chemistry,368,369 finding use

in the prediction of reaction rates and barriers derived from both experiment370{375 and

high-level reference calculations.376{385 However, many of the resulting models have errors

significantly above the accepted threshold for chemical accuracy of 1 kcal mol-1,386,387 and

offer little or no mechanistic insight, for example using molecular fingerprints or graph-

ical representations of molecules. Whilst several examples do make use of TSs in their

predictions, they use expensive DFT calculations to generate them, making the prediction

process time consuming.373,388 Thus, no current ML model enables the fast and accurate

predictions of reaction barriers whilst also providing mechanistic insight from TSs.

More recently, several studies have used ML as a tool to bridge the gap between lower-

level methods, such as SQM, and higher-level QM methods, allowing for the prediction

of various ground state thermochemical properties.389{393 By extending this SQM/ML ap-

proach to the prediction of TS properties, improvements to current standards in the pre-

diction of reaction barriers and mechanisms could potentially be obtained.
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11 Machine learning theory and methods

In the previous chapter, the concept of using ML to bridge the gap between distinct chemical

modelling methods was introduced. In this way, ML could potentially enable the rapid and

accurate prediction of DFT-quality reaction barriers, allowing efficient reaction screening

that meets the demands of modern drug discovery. In this chapter, the theory underlying

ML, as well as several important considerations for a typical ML study, will be discussed.

11.1 Machine learning

ML is a branch of artificial intelligence in which mathematical algorithms are used to iden-

tify hidden patterns in datasets. In supervised learning approaches, models are built using

known input and output values. Therefore, the goal of supervised learning is to learn a

function that can best approximate the relationship between a given set of inputs and out-

puts. Once a relationship is identified, the target property (outputs) can be predicted from

the features (inputs) of the model. In contrast, unsupervised learning deals with unlabelled

data, where there are no labelled outputs. Whilst supervised learning tends to involve

regression or classification, unsupervised learning typically performs clustering, where data

is divided into several groups. Other classes of learning include reinforcement learning,

where models learn systematically using trial-and-error to improve predictive performance,

and transfer learning, where pretrained models are partially retrained to make predictions

on data outside of the original training domain. In this thesis, models are built to learn

the relationship between SQM and DFT data using regression algorithms, and thus only

supervised ML algorithms will be discussed.

11.2 Dataset generation

The first stage of an ML study typically involves the generation and collection of data. In

the context of chemistry, this data should encode chemical information about the system

in question in a mathematically tractable way that the ML algorithm can process. Distinct

categories of data are typically referred to as features or descriptors.

Any features provided to an ML algorithm must be rotationally, translationally, and

permutationally invariant, meaning that they cannot change when the chemical structure

it represents is translated, rotated, or the ordering of the atoms is changed.394 As such,

Cartesian coordinates cannot be used as features in ML. Instead, chemical structures are

traditionally encoded via two-dimensional molecular representations, such as molecular

graphs,395 simplified molecular input line entry system (SMILES) strings,396,397 interna-

tional chemical identifier (InChI) keys,398 molecular fingerprints,399{401 Coulomb matri-

ces,402 Bag-of-bonds,403 and more (Figure 11.1a). For example, SMILES strings represent

structures by a series of atomic symbols and numbers, whilst molecular fingerprints are

generally formulated as bit strings, where each bit provides some information about the

structure, such as the presence or absence of a particular functional group or the count of

a particular atom type.

However, whilst these molecular representations have historically performed well,378,404

particularly in the virtual screening of potential drug candidates,405,406 they can be ex-

pensive to fit and lack interpretability. As such, physical organic features, which generally

describe some electrostatic or steric characteristic of the chemical system, are becoming
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Figure 11.1 Several examples of (a) molecular representations; (b) molecular and atomic physical
organic features for acrolein calculated at the AM1 level of theory, where Zi represents the atomic
number of atom i and rij represents the interatomic separation between atoms i and j. Alkene
hydrogens omitted for clarity.

increasingly more prevalent in ML studies in chemistry (Figure 11.1b).373,407,408 Examples

of such features include measurements of atomic charge, electronegativity,409 partition co-

efficient (LogP),410 molar refractivity (MR),410 accessible surface area,411 percent buried

volume (PBV),412,413, sterimol parameters,414 dispersion descriptors (Pint),
415 and electro-

topological states (EState).416,417 In contrast to molecular representations, these features

are able to provide a more meaningful prediction of the target property that can also be

rationalised by chemical intuition.

11.3 Dataset splitting

Once data has been obtained, it must be split into several sets to properly fit a ML algorithm

and evaluate its predictive performance. A train-validation-test split is a common dataset

splitting (Figure 11.2); the train set is used to fit the data to the algorithm, including feature

selection and hyperparameter tuning that allow the model performance to be optimised (see

sections 11.5 and 11.6), whilst the validation set is used to obtain an unbiased evaluation

of the model performance during fitting, feature selection, and hyperparameter tuning

(internal validation). Finally, the test set is used to obtain an unbiased evaluation of the

final optimised model performance, allowing an assessment of the generalisability of the

model to unseen (out-of-sample) data points (external validation). In some cases, a further

set of data is defined that is entirely independent of the original dataset, for example derived

from some literature source. In contrast to the test set, this allows an assessment of the

generalisability of the model to data points not drawn from the original dataset (external

validation).
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Figure 11.2 A typical ML data structure using either a train-test or train-validation-test splitting.

The ratio of splitting is an important consideration; the train set must be large enough to

properly fit the algorithm to the data, whilst the test set must be large enough to represent

any underlying trends in the data. However, when there is not much data available, internal

validation can be replaced by cross-validation (CV). The general principles of CV are the

same; a train, validation, and test set are defined and used to fit, internally validate,

and externally validate the model. However, instead of defining a single validation set,

several unique train-validation splittings are made, allowing several rounds of validation to

be performed. In each round, the test set remains the same, and the train set consists of

whatever data is not included in the validation set. The results from each round of validation

are then averaged to give an overall estimate of model performance. This approach allows

the same set of data to be sampled as if it were several distinct datasets, reducing the

overall variability in the validation results.

Several common CV approaches exist, of which k -fold CV is one of the most popular

(Figure 11.3). In k -fold CV, the train set is randomly divided into k equally sized partitions.

Then, at each round, one of these partitions acts as the validation set whilst the remaining

partitions make up the train set. In contrast, in leave-p-out cross-validation (LPOCV)

approaches, a proportion of the data is selected as the validation set at each round. In

this way, partitions in the train set can be designed such that the validation set consists

of a particular set of data (i.e., that data is “left out” from the rest). This approach is

relatively common where data sets consist of complex data points, such as chemical reac-

tions, which include similar components within different data points.418{420 For example,

the same reactant or solvent may be present in two reactions. Thus, LPOCV ensures that

these similar components are not present in both the train and validation sets, preventing

artificially good predictions. For example, any reaction with a toluene solvent may be “left

out” in the validation set in one round, whilst another round might leave out any reaction

proceeding in dichloromethane.

One of the main benefits of performing internal or CV strategies is that they allow

crucial issues such as overfitting or selection bias to be identified. Overfitting occurs when

a model is fit too specifically to the train data and is thus unable to generalise well to the

prediction of unseen data points.421 For example, if internal or CV results are substantially
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Figure 11.3 k -fold and leave-p-out CV approaches; in the examples given, five rounds of CV are
performed with a different subsample of the data making up the validation set in each case. Thus,
five rounds of validation are performed, and results averaged to produce final CV scores.

better than external validation, it is likely that the model is overfit. To avoid overfitting, the

number of features used in a model should be reduced, for example using feature selection

algorithms (see section 11.5)), with the exact limit dependent on the specific ML algorithm

being used.

In contrast, selection bias is where the data is split such that improved predictions are

obtained on either the train or test set. For example, a model may either fortuitously

or intentionally perform disproportionately better on a specific subset of the dataset, and

thus not represent the actual predictive power of the model. For example, if internal or

CV results are substantially worse than external validation, it is likely that the model is

suffering from selection bias. To avoid selection bias, splittings should either be performed

randomly or in a controlled manner that avoids bias, for example via a leave-p-out approach.

Alternatively, double (or nested) CV can help to identify and avoid selection bias.422 This

involves making several unique splittings of the data, fitting and validating the models

individually within each, and averaging over their results. Thus, whilst standard CV helps

to reduce the variance in how the validation set is defined, double CV helps to reduce

variance in how the entire dataset is split. This approach can be particularly useful when

data is limited.
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11.4 Feature processing

Once the dataset has been appropriately split, the features in the train set usually require

some processing to make them suitable for the requirements of ML algorithms. For ex-

ample, most algorithms, particularly those with squared or polynomial terms of the input

features, require that data be standardised such that the individual features are approxi-

mately normally distributed with a zero mean and unit variance. This can be achieved in

several ways, including centering, where the mean value of each feature is subtracted, or

scaling, which subtracts the mean of each feature and then additionally divides by their

standard deviation. As a result, all features are transformed such that their units and scale

are the same, allowing direct comparison of features that are not normally comparable.

Importantly, these processing methods should always be performed solely on the train set,

and then the same transformations blindly applied to the test set. Otherwise, information

about the features in the test set are inadvertently included in the model, incorporating

bias into the predictions. This is referred to as data (or information) leakage.

11.5 Feature selection

In theory, ML algorithms can be trained with an infinite number of features. However,

whilst some algorithms may be robust to large numbers of features, many perform poorly.

This is referred to as the curse of dimensionality; that is, as the number of features (dimen-

sions) provided to an algorithm increases, the amount of data needed to provide reliable

performance increases exponentially.423 Additionally, including large numbers of features

increases the risk of overfitting, reduces model interpretability, and increases the computa-

tional expense of fitting and predicting.

As such, ML algorithms are commonly trained using feature selection algorithms, which

help to reduce the number of features by identifying the best combination of features from

the data provided for that model. There are several classes of feature selection methods,

including filter methods, wrapper methods, and embedded methods. As for feature pro-

cessing, these algorithms should only be performed on the train set to prevent data leakage

to the test set.

Filter methods are the most rudimentary feature selection approach, removing features

based on their performance in statistical tests. For example, any feature with a correlation

below a specific threshold with the target property may be removed. Filter methods can

also be used to account for multicollinearity by removing features that are highly correlated

with each other.

In contrast, wrapper methods train ML algorithms with several different combinations

of features and calculate their performances via internal or cross-validation (Figure 11.4).

Although considerably more expensive than filter methods, since the data must be fit to

the algorithm several times, this allows for the best and worst performing features to be

more reliably identified. For example, sequential feature selection is an exhaustive approach

that starts by fitting the algorithm with either all or one of the given features and then

sequentially adds or removes the best or worst feature at each stage, based on CV scores.

In contrast, recursive feature elimination starts by fitting the algorithm with all the data,

ranks all features based on their importance, and removes the least important at each stage.

These algorithms repeat either until no further improvement in model performance can be
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obtained, or until a specified number of features is reached. Whilst sequential feature

selection is generally more expensive, recursive feature elimination can only be applied

to algorithms that implicitly assign coefficients of importances to features, such as linear

regression or decision tree algorithms (see section 11.7)).

Figure 11.4 Common wrapper feature selection methods; reducing the number of features provided
to an ML algorithm helps to prevent overfitting and produces cheaper and more interpretable models.

Finally, embedded methods refer to ML algorithms with their own built-in feature se-

lection methods. For example, linear algorithms such as Ridge, LASSO, and elastic net

regression implicitly reduce the number of features by penalizing their coefficients (see sec-

tion 11.7.1).

11.6 Hyperparameter tuning

Another crucial stage of ML studies involves tuning of the hyperparameters of the ML

algorithm. An algorithm’s hyperparameters control exactly how it functions and learns the

data provided, and can have a substantial impact on predictive performance. For example,

the parameter, a, controls the strength of regularisation in many ML algorithms, whilst

several hyperparameters control the exact nature of the decision trees used in random

forest and gradient boosting algorithms (see section 11.7).

Several methods can be used for hyperparameter tuning, the most basic of which is

the grid search, in which algorithms are fit and validated with every possible combination

of a given set of hyperparameters. However, as an exhaustive method, the grid search
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can be expensive, especially when large numbers of hyperparameters or many possible

values are provided. Alternatively, tuning can be performed via a random search, in which

algorithms are fit with hyperparameters randomly selected from a statistical distribution.

Finally, tuning can also be performed via Bayesian optimisation, which sequentially builds

models utilising prior knowledge from the previous iteration to identify the best possible

hyperparameters, as per Bayes’ theorem (see section 11.7.5)). This process can be repeated

until the optimum hyperparameters for the model are identified.

11.7 Model selection

The final, and arguably most important, consideration to be discussed is the choice of

ML algorithm. A variety of different supervised algorithms exist, ranging from simple

algorithms, like linear regression, to more complex algorithms, such as those based on the

kernel trick (see section 11.7.4). Each algorithm makes its own assumptions about the data

and identifies relationships in different ways. Parametric algorithms are those that attempt

to fit the data to a known functional form, for example linear regression. These methods

tend to be simpler, more efficient, and do not require as much train data. However, the

resulting models are constrained by the specific functional form chosen and thus restricted in

terms of complexity. Additionally, some data simply may not fit the chosen functional form

well when assumptions made about the data are not true. Thus, parametric algorithms are

said to exhibit high bias and low variance. In contrast, non-parametric algorithms, such as

GPR, do not make any significant assumptions about the data, and are thus free to learn the

functional form that best approximates the relationship between the features and targets,

i.e., low bias, high variance. Although this can result in improved predictive performance

compared to parametric algorithms, non-parametric algorithms typically require more data,

and are less interpretable, more expensive to train, and more prone to overfitting.

Ultimately, the goal of ML is to find the algorithm that best suits the given data

and therefore enables the most accurate and generalisable predictions to be made. In the

subsequent sections, a summary of the underlying principles of several ML methods used

in this thesis are provided.

11.7.1 Linear algorithms

Linear regression algorithms are parametric tests that assume input features are normally

distributed, linearly correlated with the target property, and independent of one another.424

Thus the target, y, is expressed as a linear combination of i input features, xi, with coeffi-

cients, �i , a y-intercept, �0 , and an error term (or loss function), � (Equation 11.1).

y = �0 +
X

i

�ixi + � (11.1)

When linear algorithms are fitted to data, the coefficients of each feature are adjusted

such that the loss function, and thus the individual errors of each data point, are minimised.

There are several ways in which the loss function can be defined, with the most common

being the least squares approach. In the least squares loss function, the individual error of

each data point, �n , is defined as the sum of the squared errors between the observed target

value, yn , and the predicted target value, ŷn (Equation 11.2).
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� =
X

n

�n =
X

n

(yn � ŷn)2 (11.2)

Although linear regression can be performed with only a single input feature (Figure

11.5), for ML applications it is more common for there to be several features, termed

multivariate linear regression (MLR) (Figure 11.6). However, issues can arise when these

features are highly correlated with each other (multicollinearity) or when the number of

features exceeds more than one third the number of data points,425 leading to overfitting.421

To avoid these issues, regularisation can be employed in the loss function.

Figure 11.5 Linear regression with one feature (i = 1) and n data points. Error terms, �n , shown
here for one data point only, are defined for each data point from the line-of-best-fit and incorporated
into a loss function which is minimised during fitting.

Regularisation imposes a penalty (whose magnitude is generally controlled by a param-

eter, a) to the size of the coefficient of each feature during minimisation of the errors via the

loss function. There are several different linear regression algorithms that are commonly

used in ML, with each employing a distinct method of regularisation. Ridge regression

uses L2 regularisation, which applies the same penalty to each coefficient depending on the

square of its magnitude (the L2 norm), thus shrinking all coefficients equally.426 When a =

0, Ridge regression is equivalent to the ordinary least squares approach, whilst a = 1 cor-

responds to all coefficients being shrunk to zero and thus removed from the model entirely.

As such, Ridge regression is not able to remove specific features, and thus is not best suited

for feature reduction. In contrast, least absolute shrinkages and selection operator (LASSO)

regression uses L1 regularisation, where each coefficient is instead penalised depending on

its absolute magnitude (the L1 norm).427,428 As a result, the least important features may

have their coefficients shrunk to zero and be removed entirely, resulting in sparse models

with fewer variables. A third alternative, elastic net regression (ENR), combines the L1

and L2 penalties of both Ridge and LASSO, introducing a Ridge-like nature to LASSO

regression. Whilst both LASSO and ENR improve on ordinary least squares MLR when

large numbers of features or multicollinearity exist, ENR has been shown to perform better

than LASSO.429
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Figure 11.6 MLR with two features (i = 2) and n data points. Error terms, �n , defined as the
distance from each point to the plane-of-best-fit, are incorporated into a loss function which is
minimised during fitting.

Conceptually, linear algorithms result in the simplest ML models, and are typically

the most efficient to generate. Additionally, where input features have the same scale, or

have been scaled prior to fitting, they allow for a direct analysis of the importance of each

feature by consideration of the magnitude of its coefficient, which can be interpreted as

a measure of their importance in predicting the target property. Thus, by varying the

coefficient of one feature and keeping all others the same, the variation of the target with

respect to that feature can be understood. MLR models have successfully been applied to

the virtual screening of catalysts, the prediction of experimental DFT-derived free energies,

and understanding of reaction mechanisms.368 Nevertheless, much of chemistry in its nature

is non-linear,369 especially when considering relationships with reaction barriers. Without

applying any kind of transformation to data to make it linear, use of linear regression

algorithms should not be expected to produce the best ML models in many cases. As

such, several more complex non-linear, non-parametric algorithms will be discussed in the

subsequent sections.

11.7.2 Neighbours algorithms

In k -nearest neighbours regression (NNR), predictions are made by considering the k closest

data points in the train set to a given input feature.430 Thus, the predicted value for the

target property is the average of the target values for those k points (Figure 11.7). In most

NNR algorithms, additional weightings are assigned to each point such that closer points

contribute more to the predicted value than points that are further away. Several different

distance metrics exist for this purpose, including Euclidean (Pythagorean) distances, the

squared difference between two points (L2 norm), Manhattan distances, the absolute dif-

ference between two points (L1 norm), and Hamming distances, a categorical measurement

of the number of pieces of data that would need to change for two points to be identical.
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Whilst Euclidean distances are more common and penalize outliers more heavily due to the

use of squared terms, Manhattan differences can be more appropriate for high-dimensional

data.431

Figure 11.7 The k -nearest neighbours algorithm with k = 5 and one feature; the predicted target
for the new input is the distance-weighted average of target values for the five points (circled) closest
to the new input.

Overall, NNR is a conceptually simple ML algorithm that learns quickly and often pro-

duces reasonable performance. However, NNR is very sensitive to the number of neighbours

chosen. For example, with only one neighbour (k = 1), NNR algorithms tend to overfit the

train data and generalise poorly. In contrast, when k is chosen to be too large, targets are

calculated using a substantial proportion of the train data, leading to similar predictions for

each input. Thus, thorough tuning of the hyperparameters is essential for the generation

of accurate NNR models.

11.7.3 Decision tree algorithms

Random forest regression (RFR) and gradient boosting regression (GBR) are both algo-

rithms that fit data using decision trees, which are renowned for their simplicity and in-

terpretability. A decision tree is essentially a flowchart for categorising data, consisting of

several internal nodes, at which data is split based on some criteria, and leaf nodes, at which

the tree terminates (Figure 11.8). Thus, data passed through a decision tree encounters

many individual nodes that work in combination to classify the data into several distinct

sets.

In RFR, data is passed simultaneously through several distinct and uncorrelated decision

trees, and the predicted value of the target is the average prediction of the individual trees

(Figure 11.9).432,433 The fundamental principle of the random forest is that the sum of

predictions of several trees improves on the performance of any individual tree; whilst some

individual trees may make poor predictions, their errors are cancelled out when all other

trees are considered. Therefore, overall predictions are accurate.

In contrast, GBR constructs decision trees systematically such that each tree minimises

the error from the previous tree (Figure 11.10).434 This process continues until the gradient
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Figure 11.8 A two-depth decision tree for classifying a,b-unsaturated carbonyls.

Figure 11.9 Random forest regression; predictions are made based on the average value of several
uncorrelated decision trees.

of the error is reduced below some convergence threshold. Data is then passed sequentially,

rather than simultaneously, through all trees in the final model to make predictions. This

process typically results in better performance than RFR.435,436

By their very nature, these decision tree-based models generally lend themselves to the

prediction of discrete data, such as reaction selectivities, rather than continuous variables,

such as reaction barriers. Nevertheless, there have been several examples of their successful

application to the prediction of chemical properties.380,388,407

11.7.4 Kernel algorithms: Support vector and kernel ridge

There are many examples of the successful application of kernelized ML algorithms to the

prediction of chemical properties, including support vector regression (SVR),437,438 kernel

ridge regression (KRR),389,439,440 and Gaussian process regression (GPR).373,404 These al-
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Figure 11.10 Gradient boosting regression; a new decision tree is added at each stage that min-
imises the error from the previous tree.

gorithms employ the Kernel trick,441 where the original features provided to a model are

mapped into a higher dimensional feature space. This is performed in such a way that

the coordinates of the data in that space do not need to be explicitly calculated, allowing

highly complex models to be generated at a relatively low computational cost. Common

kernels including linear, polynomial, sigmoid, Laplacian, and radial basis function (RBF)

(also known as squared exponential or Gaussian) kernels.

The kernel trick originates from support vector machines (SVM),433 which are typically

used for classification problems. For example, in support vector classification (SVC), an

SVM is used to classify data into two categories by constructing a line (decision boundary)

that separates the two classes (Figure 11.11). An error margin, �, whose magnitude is

specified as an input to the SVM, defines two further boundary lines that are constructed

+� and �� from the decision boundary, with data points closest to these lines referred to as

support vectors. Thus, the goal of the SVM is to maximise the error margin by constructing

the decision boundary such that the distance to the support vectors is maximised. SVMs

are typically �-insensitive, meaning that data outside of the boundary lines is not penalized,

and thus not required in the model. Thus, the SVM solution is sparse, consisting of several

support vectors, but not the complete set of train data. Predictions can then be made based

on whether new data points lie on the positive or negative side of the decision boundary;

the larger the error margin between the decision boundary and support vectors, the better

the SVM will generalise to unseen data.

In practice, however, most data cannot be separated into two classes by a straight line,

and so the data must be mapped into a higher dimensional feature space via the kernel

trick. By adding additional dimensions to the data in this way, a decision boundary that

separates each class can eventually be constructed as a hyperplane, in addition to two

boundary planes defined by the value of � (Figure 11.12).

SVMs can also be used for regression problems using mostly the same principles.442

However, for support vector regression (SVR), the SVM is constructed such that the data

is fitted within the boundary lines (or planes), rather than separating them into distinct
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Figure 11.11 e-insensitive hard margin SVMs for classification and regression in a linear space;
their solutions are sparse and consist of several support vectors, i.e., those data points closest to the
boundary lines. SVMs are generally constructed in a higher dimensional space via the kernel trick.

categories. Thus, the goal of SVR is to construct the decision boundary such that the

distance to the support vectors is minimised, rather than maximised. The resulting decision

boundary functions as a line (or hyperplane)-of-best-fit to the data. As for classification,

this is often achieved using the kernel trick. Similarly, SVR is also typically �-insensitive,

meaning that data within the boundary lines is not penalized, and thus a sparse solution

is produced.

SVMs can be applied to data with either a hard or soft margin for both regression

and classification. Using a hard margin, no tolerance is allowed in terms of data falling

within (classification) or outside of (regression) the boundary lines (or planes). In contrast,

a soft margin allows a degree of tolerance with respect to these points if it leads to the

construction of a decision boundary that better generalises to unseen data (Figure 11.13).

This degree of tolerance is defined by the regularisation parameter, which is denoted by C
in the context of SVMs; the larger C, the more the algorithm is penalized when data points

fall on the wrong side of the boundary lines (or planes). In such a case, data falling within

(classification) or outside of (regression) the boundary lines (or planes), as well as the points

on them, are referred to as the support vectors. However, to minimise the errors of these

additional support vectors, a loss function must be constructed; for any data point, xn , that

falls on the wrong side of the boundary lines, a slack variable, �n , is defined. Together, all

the slack variables are incorporated into this loss function which can then be optimised as

the data is fitted to the SVM. SVMs generally use a hinge loss function (which considers

distances from margins) with L1 or L2 regularisation to help prevent overfitting (i.e., data

points are penalized based on their magnitude (L1) or on the square of their magnitude

(L2)).

KRR is a special case of SVR which replaces the hinge loss function with an ordinary

least squares loss with L2 regularisation, equivalent to that from Ridge regression.443 Thus,

once the data has been mapped into a higher dimensional space via the kernel trick, Ridge

regression is performed in that space, bridging the gap between linearity and non-linearity.

However, whilst the solutions to SVMs are sparse, consisting of several support vectors,
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Figure 11.12 The kernel trick; two linearly inseparable input features are mapped into a three-
dimensional feature space, allowing definition of a decision boundary as a hyperplane.

KRR algorithms must be trained with the entire train set. As a result, KRR models are

typically slower at prediction for modestly sized datasets compared to SVMs.

11.7.5 Kernel algorithms: Gaussian process

Unlike SVR and KRR, GPR444 takes a probabilistic approach to fitting data to an algorithm

via application of Bayes’ theorem, which describes the probability of an event based on prior

knowledge that might affect its probability. Bayes’ theorem is summarised by Equation 11.3,

where P(AjB) is the posterior probability, describing the probability of A occurring given

B, and P(A) and P(B) are the prior probabilities, describing the respective probabilities of

A or B occurring with no given conditions.
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Figure 11.13 e-insensitive soft margin SVMs for classification and regression in a linear space;
their solutions are sparse and consist of several support vectors, i.e., those data points closest to,
within (classification), or outside (regression) the boundary lines. Slack variables, x, shown here for
one data point only, are defined for each support vector and incorporated into a loss function which
is minimised during fitting.

P (AjB) =
P (BjA)P (A)

P (B)
(11.3)

In the context of regression, Bayes’ theorem can be applied to determine the posterior

distribution of parameters or functions for a ML algorithm, provided with information

from the data about their prior distributions. For example, in the simplest case, Bayes’

theorem can be applied to linear regression, giving rise to Bayesian linear regression (BLR).

Unlike ordinary linear regression, where the goal is to identify the intercept and feature

coefficients that best fit the data, BLR considers a prior distribution of these parameters.

Passing new data points to this linear model allows the calculation of the probability of one

parameter taking a particular value given that another parameter also takes that value. As

per Bayes’ theorem, this probability can then be used, in addition to the prior probabilities

of the individual parameters taking that value with no prior information, to derive the

posterior probability, i.e., the probability of the second parameter taking that value. Thus,

whenever the linear model observes new data points, the prior distributions can be updated

to a posterior distribution of the parameters. This process is repeated until the optimal

parameters for the linear model are identified.

However, in contrast to linear algorithms, GPR is a non-parametric approach, meaning

that the exact functional form of the data is unknown. Thus, GPR must consider prior

distributions of the possible functions, f(x), that may define the model rather than just the

parameters of these functions. However, to avoid the unrealistic situation in which every

possible mathematical function is considered in these distributions, several constraints can

be applied. For example, the range of the data is constrained to a particular domain, de-

pending on the values of the inputs, and any data sampled by the functions is constrained

to produce a mean within a particular distribution, depending on the values of the outputs.

Finally, data points that are close together in input are constrained to be close together in

output through definition of a covariance function. This covariance function, together with
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the constraint for the mean of the data, defines a Gaussian process. Additionally, when data

is passed through this covariance function, and thus through the sampled functions, f(x),

the kernel trick is applied to transform the data into a higher dimensional space. Thus,

different kernels specify different covariance functions, including linear, rational quadratic,

RBF, and Matérn functions). Although the Matérn kernel is conceptually similar to the

RBF kernel, it generally results in smoother functions due to an additional smoothing pa-

rameter, n; as n approaches 1, the Matérn kernel becomes identical to the RBF kernel.

Thus, the choice of covariance function is a crucial aspect of GPR, enforcing several con-

straints on the data and determining the shape of the prior and posterior distributions of

the model. Therefore, in the same way as described for BLR, the prior distributions of the

functions of the model can be updated to posterior distributions when data is provided to

the model through the covariance function (Figure 11.14). This process is repeated until

the optimal functional form and parameters of the model are identified.

Figure 11.14 An example of GPR using an RBF covariance function; the prior functions represent
initial predictions of the target data, which are updated to more accurate posterior functions upon
observation of some train data. This data is passed through the covariance function and constraints
on the mean and similarity of points applied. For example, similarity is evaluated based on the
squared distance between points, as per the RBF covariance function. Over several rounds of this
process the model learns the unknown target function (in this case, a sin wave).

Like KRR, GPR algorithms must be trained with the entire train data, generally re-

sulting in slower predictions for modestly sized datasets. However, GPR models have the

benefit of being able to perform reasonably well with smaller datasets.444,445 In the context
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of chemical property prediction, several ML studies have found GPR models to perform

the best.373,404

11.8 Model analysis

Once an ML algorithm has been fitted and optimised via feature selection and hyperparam-

eter tuning, attention can then be turned to interpreting and evaluating the performance

of the resulting model. The predictive power of an ML model is typically assessed through

calculation of error and correlation metrics between observed and predicted target values

obtained through external validation to unseen data.

Errors in prediction can be calculated in several ways. The mean absolute error (MAE)

is a measure of the mean of the absolute differences between the observed and predicted

target values (residuals) of a model (L1 norm), and thus does not consider the direction of

errors. In contrast, the root-mean-square error (RMSE) is the square root of the mean of

the squared differences between the observed and predicted target values (L2 norm). Thus,

by squaring the individual errors, the RMSE considers the direction of errors, as well as

imposing a heavier penalty on outliers. However, this can also make interpretation more

difficult, and does not allow for comparison of RMSEs across datasets of different sizes.

For the prediction of thermochemical properties, such as reaction barriers, a threshold of 1

kcal mol-1 is generally considered as chemical accuracy, and thus a good target for any ML

model with this purpose.386,387

Like errors, correlations between sets of data can also be calculated in several ways.

Pearson’s correlation coefficient, r, provides a statistical measurement of the linear corre-

lations between two sets of one-dimensional data, with values ranging between -1 and +1.

Whilst -1 and +1 describe a perfect negative and perfect positive correlation, respectively,

a value of 0 indicates that no linear correlation exists between the two sets of data. As a

rule-of-thumb, a value of 0.7 typically defines the threshold for significant linear correla-

tion.446 In practice, Pearson’s correlation coefficient is often squared, leading to the squared

Pearson’s correlation coefficient, r2, which ranges between 0 and 1 and provides a measure-

ment of the amount of variation in one set of data that can be explained by another. For

example, an r2 value of 0.5 between a feature, X, and target, y, indicates that 50% of the

variation in the target can be explained by that feature (and vice versa). In the same way,

correlations can be measured between the observed and predicted target values of a model.

The coefficient of determination, R2, is another metric that measures correlations be-

tween sets of data, and itself can be defined in several ways. In this thesis, the coefficient

of determination is defined as per Equation 11.4, where yn , ŷn , and ȳ, correspond to the

observed target value, predicted target value, and mean of the target, respectively, for data

point n.

R2 = 1�

X

n

(yn � ŷn)2

X

n

(yn � ȳ)2
(11.4)

Thus, unlike Pearson’s correlation coefficient, the coefficient of determination can be

calculated between several sets of data (or features) and the target, indicating the amount

of variation in the target that can be explained by some linear combination of the features.
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Despite being denoted by R2, values for the coefficient of determination range between

-1 and 1, where 1 indicates a perfect prediction and increasingly negative values indicate

increasingly poor predictions. Like for RMSE, the use of squared terms does not allow for

comparison of R2 across datasets of different sizes. Additionally, R2 scores are particularly

sensitive to the amount of data, and thus their use is not recommended on smaller sample

sizes.447

A particular useful exercise when analysing a ML model is the calculation of learning

curves. This is achieved by refitting the model using increasingly smaller subsamples of

the train data and evaluating its performance on a constant test set. Learning curves are

then generated by plotting the resulting error and correlation metrics against the size of

the train set. This can provide crucial information on the data requirements of the model.

For example, if the learning curves do not appear to be tending towards an asymptote, it

is likely that the model can be substantially improved by increasing the size of the train

data (Figure 11.15a). Conversely, if errors and correlations are just as good with half of the

train data as with all of it, an equally predictive (but more efficient) model could be built

with less data (Figure 11.15b).

Figure 11.15 Examples of learning curves for a ML model with an (a) insufficient quantity of data;
(b) sufficient quantity of data.

Finally, one may wish to consider those features that make the largest contribution

towards prediction of the target property. In the context of chemistry, this can provide

detailed insights into the underlying chemical principles that determine the target property

and thus govern prediction. For example, in a reaction driven by electrostatics, the charge
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of the reacting species should contribute substantially towards prediction of its reaction

barrier. Whilst some ML algorithms, such as MLR, implicitly include coefficients for each

feature that allow direct interpretation of its importance, alternative approaches must be

taken for most other algorithms. The permutation feature importance method is one such

approach whereby algorithms are systematically refit with each feature removed. Thus, by

evaluating the performance of the model at every stage, a picture of the overall importance

of each feature can be obtained. By repeating this analysis for both the train set (via

internal or cross-validation) and the test set (external validation), redundant features, as

well as those that contribute most to the generalisability of the model, can be identified. For

example, features that are important only in the train set are more likely to be redundant

and cause overfitting, whilst those that are most important in the test set usually contribute

the most to predictions of unseen data. However, care must be taken when features in a

model are highly correlated with each other; in this situation, the importance of these

features may be masked as other similar features will still be available to the model when

they are removed.

Overall, these analyses provide a thorough interpretation and evaluation of several as-

pects of a given ML model. Such insights can allow further refinements to these models to

be made, allowing the most accurate possible predictions of important chemical properties

to be obtained. The resulting ML models could potentially be used as an alternative to

explicit computational modelling or experimental methods by enabling the highly efficient

high-throughput screening of chemical reactions.
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12 Machine learning reaction barriers

The previous chapter provided an overview of ML, which allows hidden patterns to be

identified in datasets. The resulting mathematical models can then be used to make pre-

dictions. In this chapter, these concepts are combined with SQM calculations and applied to

the rapid and accurate prediction of DFT-quality free energy reaction barriers and mech-

anisms, resulting in an efficient reaction screening approach that meets the demands of

modern drug discovery. As a proof-of-concept, these models are built for a diverse class of

C-C bond-forming nitro-Michael additions (Figure 12.1). Michael additions are one of the

most efficient and prevalent methods for formation of C-C bonds in organic and biosynthe-

sis,448 finding important applications in asymmetric catalysis327,449{451 and several natural

product syntheses.448,452{455 Among the many classes of these versatile reactions, the nitro-

Michael addition is one of the most useful;456{460 insertion of the nitro group into the organic

framework via Michael addition enables a variety of synthetically useful stereoselective re-

actions,461 and the resulting nitro compounds can be the precursor for an assortment of

highly useful chemical functionalities, including pyrrolidines, lactones, aminocarbonyls, and

aminoalkanes.462

Figure 12.1 The C-C bond-forming nitro-Michael additions used to generate the ML dataset.

12.1 Statement of authorship

The contents of this section largely comprise figures, text, and captions reused and re-

produced from the paper Machine learning and semi-empirical calculations: A synergistic
approach to rapid, accurate, and mechanism-based reaction barrier prediction published in

June 2022 in Chemical Science. I contributed entirely to the formulation of ideas, design

of methodology, computational work, and presentation of data and results in journal format

for this paper, which reports on original research conducted during the period of my Higher

Degree by Research candidature.
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12.2 Methodology

12.2.1 Dataset generation

Initial reactant and TS geometries were built for 1000 unique nitro-Michael addition re-

actions using the custom R-group enumeration feature of Schrödinger’s Maestro (release

2020-1)463 to vary four positions of a generic a,b-unsaturated carbonyl Michael acceptor

(MA) core with common organic fragments across synthesis,452 toxicology,464 and covalent

drug design (Figure 12.2).465 Thus, a total of 2001 structures were obtained; the nucle-

ophile (MW: 60), 1000 MAs (MW: 56-380.8), and 1000 TSs for reaction of the nucleophile

with each MA (MW: 116-440.8). Prior to fitting ML algorithms, these 1000 reactions were

randomly split into an 80% train set (800 reactions) and 20% test set (200 reactions) using

the Scikit-learn (sklearn) python package.466

A further 37 nitro-Michael addition reactions were generated using a set of MAs (alde-

hydes, ketones, and esters) from the toxicology literature (Figure 12.2), resulting in an

additional 37 MAs (MW: 80-156.1) and 37 TSs for reaction of the nucleophile with each

MA (MW: 142-216.1).464 Where two or more C=C double bonds were present, reactions

were always calculated at the b-carbon. In the original literature publication, 58 MAs were

selected due to the potential impact of their reactivity on toxicity. From these 58 structures,

12 that were already present in the enumerated dataset of 1000 reactions were removed to

avoid bias when performing external validation. An additional 9 structures bearing triple

bonds as part of the a,b-unsaturated carbonyl functionality were also removed, as these

represent a different form of reactivity that the ML models were not trained to predict.

A previous study on reactivity prediction of MAs with glutathione found that separating

a,b-unsaturated carbonyls with double bonds and triple bonds in this way is a valid ap-

proach.467 Among the remaining 37 MAs, two reactions, E5 and E7, contain alcohol groups

within their R-groups that allow intra- and intermolecular hydrogen bonding to take place

in their respective MA and TS geometries (Figure 12.3). As no such reactions were present

in the enumerated dataset, ML models cannot reasonably be expected to learn to account

for hydrogen bonding. Thus, the 37 literature reactions were divided into two distinct

sets to evaluate the predictive performance of the generated ML models with and without

hydrogen bonding:

� Literature set 1: 35 reactions (E5 and E7 removed).

� Literature set 2: 37 reactions (E5 and E7 included).

12.2.2 Computational details

Conformational searches were carried out for each of the 1037 MAs and TSs using the

conformational search tool within Schrödinger’s MacroModel (version 12.7)253,468 and the

OPLS3e force field. A MCMM/LMCS approach was used to explore the possible confor-

mations of each species. The lowest energy conformation of each structure, based on its

OPLS3e energy, was subsequently optimised with several baseline (MM and SQM) methods

and one targetline (DFT) method using Gaussian16 (Revision A.03).256 For the baseline

methods, the UFF,469 AM1, and PM6 levels of theory were used; these methods are widely

available in QM packages such as Gaussian, whilst AM1 and PM6 represent two of the
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Figure 12.2 The 58 MAs used to build reactions in the literature dataset; all blue structures, which
were already present in the enumerated dataset, and red structures, which contain triple bonds as
part of the a,b-unsaturated carbonyl functionality, were removed, leaving 37 structures in total.

Figure 12.3 Hydrogen bonding in the MA and TS for reactions of E5 and E7, which is not accounted
for by the generated ML models.

more modern and better parameterised general purpose SQM methods available.187,470

The newer PM7 method, when tested on a large subset of the enumerated structures, reg-

ularly failed to reach convergence. For the targetline method, the wB97X-D/def2-TZVP

level of theory was used; these types of functional have been found to perform well for pre-

diction of barrier heights,136 and similar methods have previously been used with success

in large scale generation of chemical reaction datasets.471 The 37 reactions from literature

were also reoptimised with AM1/IEFPCM(toluene), PM6/IEFPCM(toluene), and wB97X-

D/def2-TZVP/IEFPCM(toluene). SPE corrections were performed for all calculations with

the same method as the optimisation and the IEFPCM(toluene). Toluene is a widely used

solvent in hydrogen bonding catalysis and was thus selected for any calculations incorporat-

ing solvent.458,460 All calculations were performed using the pruned version of the Ultrafine

(99,590) integration grid on a high-performance computing (HPC) architecture using 12-24

cores and one node. Temperature (298.15 K) and concentration-corrected (1 mol/l) quasi-

harmonic (Grimme approximation) free energies were calculated with GoodVibes257 with a

vibrational scaling factor of 0.975 for wB97X-D/def2-TZVP and 1 for all other levels of the-

ory (Table 12.1, Figure 12.4).258 Computed structures were illustrated with CYLView,259

with C-H hydrogen omitted for clarity.
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Method Enumerated
dataset

Literature
dataset

AM1 7.83-42.38 12.04-22.26

PM6 2.54-42.01 12.95-21.92

DFT MA 3.17-39.35 9.56-16.47

Table 12.1 Barrier ranges in kcal mol-1 for each level of theory across the enumerated and literature
datasets.

Figure 12.4 Reaction barrier distribution for the enumerated and literature datasets; barriers
are approximately normally distributed for each level of theory according to D’Agostino-Pearson
tests.472,473

12.2.3 Feature extraction and processing

A variety of simple and interpretable molecular and atomic physical organic features were

extracted for the 1037 MAs and TSs at each level of theory using a series of python packages

(Table 12.2, Figure 12.5). To avoid data leakage, all subsequent feature processing was

performed only on the train set (800 reactions) and the same transformations then applied

to the test and literature sets. Prior to fitting, features were standardised by centering

and scaling (using sklearn’s StandardScaler) and those with no variance removed (using

sklearn’s VarianceThreshold feature selector). Where features exhibited collinearity above

a Pearson’s r threshold of 0.99, only features with the largest correlation with the DFT

barrier were kept, and the rest removed. From the remaining features, eight subsets were

defined consisting of UFF MA features, AM1 MA features, AM1 TS features, AM1 MA

and TS features, PM6 MA features, PM6 TS features, PM6 MA and TS features, and

DFT MA features (Table 12.3). The free energy reaction barrier for each level of theory

was included only in the combined MA and TS feature subsets, which are denoted All. To

further reduce the number of features in these combined subsets, equivalent MA and TS

features (for example, PBV (C1) for the MA vs PBV (C1) for the TS) with collinearity

above a Pearson’s r threshold of 0.84 were identified and only the feature with the largest

correlation with the DFT barrier kept. The choice of such lenient thresholds for Pearson’s

r was made to minimise the loss of information through the removal of collinear features

and thus maximise prediction accuracy.
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Feature notation Feature description Source

Distance Bond-forming distance (between C1 and C5) (TS feature only)

Reaction Barrier Quasiharmonic free energy reaction barrier (MA+TS feature only) Goodvibes257

Energy Electronic energy Goodvibes257

Energy (SPE) Electronic energy (with SPE correction) Goodvibes257

Enthalpy Enthalpy Goodvibes257

QH Entropy Quasiharmonic entropy Goodvibes257

ZPE Zero-point energy Goodvibes257

QH GFE (SPE) Quasiharmonic Gibbs free energy with SPE correction Goodvibes257

HB Acceptors Number of hydrogen bond acceptors Pybel474

HB Donors Number of hydrogen bond donors Pybel474

Amide Bonds Number of amide bonds RDKit475

*Chem. Pot. Global chemical potential HSAB476

*Electrophilicity Global electrophilicity HSAB476

*Hardness Global hardness HSAB476

*Softness Global softness HSAB476

*HOMO Highest occupied molecular orbital (HOMO) energy CCLIB477

*LUMO Lowest unoccupied molecular orbital (HOMO) energy CCLIB477

Vib. Freq. Lowest vibrational frequency (this is the imaginary frequency for TSs) CCLIB477

Vib. IR Lowest infrared intensity CCLIB477

*Mulliken (n) Mulliken atomic charge (for each atom n) CCLIB477

SASA (n) Solvent accessible surface area (for each atom n) Freesasa478

TPSA Global topological polar surface area RDKit411,475

Surface Area Global surface area Morfeus479

Surface Vol. Global surface volume Morfeus479

Pint (n) Universal quantitative dispersion descriptor, Pint (for each atom n) Morfeus415,479

PBV (n) Percent buried volume (3.5 Å radius) (for each atom n) Morfeus412,413,479

Sterimol B1, B5, L (Rn ) Sterimol Bmin, Bmax, or L parameter for R1-R4 substituents Morfeus414,479

PEOE (n) Partial equalisation of orbital electronegativities (for each atom n) RDKit409,475

LogP (n) Wildman-Crippen partition coefficient (for each atom n) RDKit410,475

MR (n) Wildman-Crippen molar refractivity (for each atom n) RDKit410,475

EState (n) Electrotopological state index (for each atom n) RDKit416,417,475

Table 12.2 All extracted molecular and atomic features. All features were extracted for both the
MA and TS and included in the respective feature subsets, except for the bond forming distance,
which was only available for the TS, and the reaction barrier, which was only included in the
combined MA and TS feature subsets. Atomic features denoted with n (n = C1, C2, C3, O4, C5,
H6, H7, N8, O9, O10, R1, R2, R3, R4) were extracted for all applicable atoms as per Figure 12.5.
Features marked with an asterisk (*) were not available for UFF.
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Figure 12.5 Atomic properties were extracted for the MA and TS for all applicable core atoms
(highlighted green), as well as the first connected atom of each substituent (highlighted red).

Feature subset Number of features

UFF MA 73

AM1 MA 87

AM1 TS 116

AM1 MA and TS (All) 138

PM6 MA 87

PM6 TS 116

PM6 MA and TS (All) 134

DFT MA 86

Table 12.3 Number of features in each feature subset.

12.2.4 Machine learning details

Each feature subset was trained on several sklearn regression algorithms using the 80% train

set to predict the DFT free energy reaction barrier (Table 12.4); all algorithms were trained

using their default sklearn parameters, except for ridge regression, where a large regulari-

sation strength (a = 50) was used to account for multicollinearity in the dataset. Both the

RBF and polynomial kernels were employed for KRR and SVR, whilst GPR algorithms

were trained using the Matérn kernel based on its previous success predicting reaction bar-

riers.373 Preliminary studies were also performed using ENR, LASSO regression, KRR and

SVR with linear and sigmoid kernels, GPR with a rational quadratic, RBF, and dot product

kernel, and a multi-layer perceptron (MLP) neural network regression algorithm, however

these produced either poor initial metrics or suffered from large computational costs. To

reduce the number of features in each model and prevent overfitting, feature selection al-

gorithms were employed within the train set prior to training each feature subset on each

regression algorithm; sklearn’s recursive feature elimination with 5-fold CV (RFECV) was

used for regression algorithms that are able to generate feature coefficients or feature impor-

tances, and Mlxtend’s sequential forward selection (SequentialFeatureSelector) with 5-fold
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CV (SFSCV) otherwise.480 To avoid the use of these expensive algorithms with GPR, each

GPR model was instead fit initially with all features and then refit excluding any features

with MAE-derived permutation feature importances below half of the mean importance of

the original model. Feature selection was performed for all algorithms with their default

sklearn hyperparameters, except for ridge regression, where a large regularisation strength

(a = 50) was used.

Regression algorithm Feature selection
method

Hyperparameter
tuning method

Ridge regression (Ridge) RFECV None

K -nearest neighbour regression (NNR) SFSCV Grid search

Random forest regression (RFR) RFECV Grid search

Gradient boosting regression (GBR) RFECV Grid search

Support vector regression: RBF (SVR(RBF)) SFSCV Grid search

Support vector regression: polynomial (SVR(poly)) SFSCV Grid search

Kernel ridge regression: RBF (KRR(RBF)) SFSCV Grid search

Kernel ridge regression: polynomial (KRR(poly)) SFSCV Grid search

Gaussian process regression: Matérn (GPR) Feature importances Grid search

Table 12.4 All regression algorithms, feature selection methods, and hyperparameter tuning meth-
ods used for ML.

For each combination of regression algorithm and optimised feature subset, hyperpa-

rameter tuning was performed within the train set using sklearn’s GridSearchCV to search

the hyperparameter space for the best 5-fold CV MAE scores. Each regression algorithm

was subsequently refit using its optimised feature subset and optimised hyperparameters;

the resulting models allow direct prediction of the DFT free energy reaction barrier. The

grid of sklearn hyperparameters searched for each regression algorithm are given in the

appendix.

12.2.5 Model evaluation

To check for potential overfitting of the models, sklearn was used to perform 5-fold CV

within the train set to generate MAE and R2 scores for each fitted model. To assess the

individual model performances, external validation was performed using the 20% test set

to calculate MAEs with standard errors and R2 scores between the observed and predicted

DFT barriers for each fitted model. Standard errors were calculated by dividing the stan-

dard deviation of the individual absolute errors by the square root of the number of samples.

To further assess the generalisability of the models, external validation was performed using

the two literature sets to calculate MAEs with standard errors between the observed and

predicted DFT barriers for each fitted model. R2 scores were not calculated for the litera-

ture sets due to their smaller size (n = 35 or 37) and incomparability with the respective

train and test scores (n = 200).447 Thus, model performance was evaluated primarily based
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on MAE scores, which are more comparable and better represent the prediction error.

To identify which features were most important to the models, MAE-derived permuta-

tion feature importances (with standard errors) were calculated with sklearn over 10 repeats

for each fitted model for both the train, test, and literature sets. To validate the size of

the train set, identify potential overfitting, and indicate whether the equivalent metrics

could be produced using less data, learning curves were generated for each fitted model by

removing 80 reactions from the train set at each stage and plotting the resulting train and

test MAEs for each train set size.

12.3 Results and discussion

The test MAEs and standard errors (external validation with the 20% test set) for each

model and feature subset are provided in Figure 12.6. Full metrics, features, and hyperpa-

rameters for each model are provided in the appendix (Tables 15.1-15.4). In general, train

(5-fold CV) MAEs closely match the test MAEs, indicating that no significant overfitting

takes place in the models.

Figure 12.6 Test MAEs and standard errors (20% test set) for each model and feature subset;
RBF = radial basis function kernel; poly = polynomial kernel. GPR used the Matérn kernel.

Impressive results were achieved by all models, with test MAEs quenched below 2 kcal

mol-1 for all feature subsets and each regression algorithm. However, the performances

of the kernel-based models (SVR, KRR, and GPR), are the most remarkable, with each

producing MAEs below the accepted threshold for chemical accuracy of 1 kcal mol-1.386,387

Indeed, examples of SVR,437,438 KRR,389,439,440 and GPR373,404 are prevalent in chemistry.

In contrast, NNR is a conceptually simple method, and so the complex relationship between

the features and targets cannot be captured as easily. For ridge regression and the decision

tree-based models (RFR and GBR), the general non-linearity and continuous nature of the

data presented does not appear to be of the most suitable form to deliver optimal perfor-

mance. For example, only three features across all levels of theory (the AM1 barrier and

PBV (C5) for AM1 and PM6) have linear correlations (Pearson’s r) with the DFT barrier

that are above 0.7, often quoted as the threshold for collinearity.446 However, despite their

apparent unsuitability, each of these models still produced MAEs approaching chemical

accuracy, demonstrating the overall success of this SQM to DFT ML approach.

Evaluation of the average performances of the SVR, KRR, and GPR models (Table

12.5) revealed that all feature subsets produce excellent train and test MAEs. In fact, the

predictive power of the MA-only and TS-only feature subsets were generally found to be
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comparable with the combined subsets. This is important because conformationally search-

ing and obtaining converged structures for reactant states is a more trivial task than for

TSs, typically requiring less user input and computational expense. This would give ML

users the opportunity to use purely MA-derived features and thus trade off a small amount

of accuracy for what could be a substantial amount of time when learning or predicting

over enough reactions. However, mechanistic insight from TSs would not be available in

such an approach. Additionally, both the MA-only and TS-only feature subsets were found

to perform relatively poorly for prediction of the literature structures, with TS features

performing slightly better but still worse than their respective train and test metrics. This

indicates that TS features are more important than MA features with respect to a model’s

ability to generalise. Furthermore, only when both MA and TS information were com-

bined with the reaction barrier from the SQM method do literature predictions begin to

approach the accuracy of the train and test metrics. By inclusion of the reaction barrier,

these combined feature subsets represent a version of the D-ML approach, in which algo-

rithms are trained to learn the difference between the SQM and DFT barriers, rather than

predicting the DFT barrier directly.389 This approach results in a smoother relationship

between the input features and target property that many ML algorithms can more easily

interpret. Accordingly, D-ML has previously been found to perform well for out-of-sample

predictions.376 Therefore, the use of feature subsets without both MA and TS information,

as well as the reaction barrier, is generally not recommended.

For the two literature sets, predictions are always best when E5 and E7 are omitted, a

trend that holds across all models and feature subsets. These results verify that the models

are not able to account for the hydrogen bonding that occurs in these reactions, as no such

structures are included in the train set. For example, with the GPR model with the AM1

All feature subset, absolute errors of 4.26 and 4.74 kcal mol-1 were obtained for reactions E5

and E7, respectively, compared to an MAE of 0.92 kcal mol-1 over the other 35 reactions.

Thus, herein, any reference to the literature structures refers strictly to literature set 1

(without E5 and E7).

Feature subset Train Test Lit. 1 Lit. 2

UFF MA 0.98 1.02 1.68 1.91

AM1 MA 0.99 1.04 1.44 1.63

AM1 TS 0.94 0.99 1.17 1.36

AM1 All 0.91 0.96 1.03 1.25

PM6 MA 0.98 1.05 1.43 1.63

PM6 TS 0.99 1.04 1.42 1.55

PM6 All 0.98 1.06 1.28 1.47

DFT MA 0.95 1.01 1.65 1.83

Table 12.5 MAEs in kcal mol-1 averaged over all SVR, KRR, and GPR models for each dataset.
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Comparing performances across the different levels of theory, the classical UFF method

was found to perform similarly to the AM1, PM6, and DFT MA-only subsets for the train

and test sets. However, with only MA information available, extension of UFF to the litera-

ture set was poor, whilst mechanistic insight from TSs was also not available. In addition to

these same drawbacks, the DFT MA subset also suffers from the relatively high cost of the

DFT calculations; on a 16-core node, the average DFT MA calculation took over an hour,

compared to 5, 14, and 32 seconds with UFF, AM1, and PM6, respectively (Table 12.6).

Furthermore, DFT calculations scale poorly as the size of the chemical structures become

larger. Thus, the use of either UFF or DFT MA features are not generally recommended.

Enumerated dataset Literature dataset

Feature subset Optimisation SPE Optimisation SPE

UFF MA 00:00:05 00:00:03 00:00:04 00:00:02

AM1 MA 00:00:14 00:00:02 00:00:09 00:00:03

AM1 TS 00:00:37 00:00:03 00:00:37 00:00:05

PM6 MA 00:00:32 00:00:05 00:00:11 00:00:04

PM6 TS 00:01:00 00:00:07 00:00:46 00:00:05

DFT MA 01:11:34 00:04:54 01:10:14 00:02:19

DFT TS 05:41:27 00:09:59 03:47:10 00:04:55

Table 12.6 Approximate average calculation times for each feature subset on a 16-core node
(hours:minutes:seconds).

Conceptually, AM1 and PM6 are similar methods; both are based on the NDDO for-

malism and share several fundamental approximations, although PM6 is more extensively

parameterised and makes several improvements to the core-core potentials.187 Accordingly,

the initial MAE between the PM6 barrier and DFT barriers (4.17 kcal mol-1) was found

to be slightly better than between the AM1 and DFT barriers (5.71 kcal mol-1) (Figure

12.7). Nevertheless, AM1 was found to perform marginally better after ML, particularly

when making predictions on the literature reactions; the AM1 All feature subset was the

best performing across the train, test, and literature sets.

Overall, the best model obtained was via GPR using the AM1 All feature subset with

101 features (GPR (AM1 All)), yielding train, test, and literature MAEs of 0.93, 0.96 ±

0.07, and 0.92 ± 0.18 kcal mol-1, respectively. Indeed, GPR was found to be the best model

in several other studies for the prediction of thermochemical properties,373,404 although

both KRR(RBF) and KRR(poly) also produced models using the same feature subset with

all MAEs below 1 kcal mol-1. By plotting the GPR (AM1 All)-predicted barriers against

the DFT barriers, the improvement gained over the untrained model via this ML approach

can be visualised (Figure 12.8).

To validate that the success of this GPR (AM1 All) model is genuine and not due

to any fortuitous test-train splitting, an extensive double CV approach was performed by

retraining the model at five additional random test-train splittings (Figure 12.9).422 These
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Figure 12.7 SQM and DFT barrier relationships with respect to the identity line (grey band
corresponds to ± 1 kcal mol-1). In each case, the (untrained) MAE between the SQM and DFT
barriers are substantially above the accepted threshold for chemical accuracy of 1 kcal mol-1. Lit.
set refers to literature set 1.

Figure 12.8 Relationship between the GPR (AM1 All)-predicted barriers and DFT barriers with
respect to the identity line (grey band corresponds to ± 1 kcal mol-1), highlighting the improvement
gained over the untrained model as a result of ML. Lit. set refers to literature set 1.

produced average train, test, and literature MAEs of 0.94, 0.89 ± 0.06, and 0.98 ± 0.18 kcal

mol-1, respectively, in line with the original metrics. Additionally, learning curves for the

model flatten out as the number of train points is increased towards the maximum of 800,

indicating that the size of the train set is acceptable and does not substantially limit the

accuracy of the model or its ability to make predictions (Figure 12.10). Finally, the train

and test scores tend to be very similar, indicating that no significant overfitting takes place

in the model at any point. Learning curves for the SVR and KRR models with the AM1

All feature subset were found to display the same trends (see appendix, Figures 15.1-15.4).

To ascertain which features make the largest contributions to determining the DFT

barrier, as well as the overall generalisability of the models, their permutation feature im-

portances were analysed. In general, consistency amongst the high-importance features in

each of the train, test, and literature sets was observed, indicating that the models are gen-

eralisable and not overfitted. For the GPR (AM1 All) model, the AM1 barrier was found

to rank highly in feature importance (Figure 12.11). The next most important feature, and

the most important for the literature set, was the Mulliken charge of the carbonyl oxygen.

The conjugated p-system of a,b-unsaturated carbonyls is soft and highly polarisable, whilst

oxygen is a highly electronegative atom.476 Thus, the charge of the oxygen is a good indi-

cator of the total electron density in the p-system of each MA. Accordingly, as the charge

of the oxygen becomes more negative, interaction between the MA and negatively charged
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Figure 12.9 Double CV results (test MAE and standard errors) for the enumerated and literature
(set 1) datasets for the GPR (AM1 All) at the original test-train splitting (yellow) and five additional
splittings (blue).

Figure 12.10 Train and test MAE learning curves for the GPR (AM1 All) model flatten out as
the number of train points is increased towards the maximum.

nucleophile becomes more difficult, and the reaction barrier increases. In addition, sev-

eral other features encoding electrostatic information for specific atoms (largely the R1-R4

substituents and core MA atoms, C1-O4) were found to be important, including orbital elec-

tronegativities (PEOE), dispersion descriptors (Pint), and electrotopological characteristics

(EState). Overall, these features account for a significant proportion of the electrostatic

component of the nitro-Michael addition reaction. Finally, several steric features, including

sterimol parameters, PBVs, and solvent accessible surface areas (SASA)), were found to

comprise a substantial proportion of the remaining high-importance features. This is in line

with previous findings that a significant extent of steric control exists in the rate of Michael

addition reactions with glutathione.467,481 For example, steric parameters in the vicinity

of the a,b-unsaturated carbonyl describe the steric accessibility of the b-carbon, where the

nucleophile needs to be for 1,4-Michael addition to occur, and thus correlate strongly with

the reaction barrier.

Overall, similar high-importance features were also calculated for GPR models built with

PM6 features, as well as SVR and KRR models built with AM1 features (see appendix,

Figures 15.5-15.9). However, whilst chemical insights can be drawn from these features,

allowing a subsequent understanding of their impact on the reaction mechanism, one of the

unique benefits of this new ML approach is that full SQM TS geometries are produced as

part of the feature generation process. In turn, this allows mechanistic insights into the

reaction to be obtained via visualisation of the geometries, without the need to analyse

individual feature importances. But how accurate are these SQM geometries, and can they
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Figure 12.11 Top 15 train, test, and literature (set 1) permutation features importances for the
GPR (AM1 All) model; the reaction barrier, in addition to several electrostatic and steric features,
comprise the majority of high-importance features.

be used as approximations for the DFT TS geometries?

To test this, the RMSD and difference in bond-forming distance between each of the TS

geometries at the AM1 and DFT levels of theory were calculated. All atoms of the structures

being compared were superimposed and RMSDs subsequently calculated via a quaternion-

based characteristic polynomial method482 with the spyrmsd python package.483 In the

context of molecular docking, an RMSD below 2 Å is considered successful when comparing

the conformations of organic ligands to their protein-bound conformation.484 Accordingly,

the average RMSD for the enumerated dataset of 1000 structures was calculated at 0.75

Å, with 99.2% of TSs falling below the 2 Å threshold (Figure 12.12). The bond-forming

distance was found to be 0.04 Å larger on average in the DFT structure than in the AM1

structure, with 96.4% of TSs having an absolute difference in bond-forming distance below
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0.3 Å (Figure 12.13). Similar distributions and average values were also calculated for the

literature structures (set 1). Figure 12.14 depicts the AM1 and DFT geometries of the TS

with the RMSD closest to the average of 0.75 Å, and hence represents the approximate

average deviation that would be expected between an AM1 and DFT geometry in the

enumerated dataset. Close inspection of these structures reveals that the major origin of

deviation results from the angle of approach of the nucleophile and the orientation of R-

groups, rather than any changes to the core structure of the MA. Accordingly, removing

the nucleophile or the R-groups from each structure and recalculating the RMSDs dropped

the averages to 0.6 Å and 0.45 Å, respectively, whilst removing both (leaving only the core

enone functionality) dropped it to 0.14 Å (see appendix, Figures 15.10-15.12). In fact,

even when the AM1 MA geometries were compared to the DFT TS geometries with the

nucleophile removed, an average RMSD of 1.35 Å was calculated, substantially below the

2 Å threshold (see appendix, Figure 15.13). Similar distributions and average values were

also calculated at each level of theory (see appendix, Figures 15.14-15.16); notably, UFF

and DFT MA geometries are comparable with DFT-derived TS geometries (nucleophile

removed), whilst PM6 was found be slightly worse at predicting DFT TS geometries than

AM1, with a larger average RMSD of 0.87 Å.

Figure 12.12 Distribution of RMSDs between each TS at its AM1 and wB97X-D/def2-TZVP
geometry for the enumerated and literature (set 1) datasets.

Figure 12.13 Distribution of bond distance difference between each TS at its AM1 and wB97X-
D/def2-TZVP geometry for the enumerated and literature (set 1) datasets.

The inclusion of solvent via SPE corrections results in highly flexible models that allow

different solvents to be incorporated without reoptimising every structure. However, to

examine the impact of solvent, AM1, PM6, and DFT TS optimisations with the IEFPCM

solvent model were performed on the literature set. Each pair of gas and solvent optimised
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Figure 12.14 AM1 and wB97X-D/def2-TZVP geometries of the TS with the RMSD closest to the
average of 0.75 Å; the major origin of deviation results from the angle of approach of the nucleophile
and the orientation of R-groups, rather than any changes to the core structure of the MA.

TSs were then superimposed and average RMSDs of 0.13 Å, 0.30 Å, and 0.16 Å calculated

for AM1, PM6, and DFT, respectively (see appendix, Figures 15.17-15.19). These low

RMSDs indicate that, for the nitro-Michael addition being investigated, the use of gas

phase optimised structures is a valid approximation.

Overall, these analyses indicate that SQM geometries of TSs, and even MAs to some

extent, can be considered good substitutes for the full DFT level geometries, on average,

allowing accurate mechanistic analysis of the TSs simply by their visualisation. Importantly,

no other current ML barrier model offers this level of mechanistic insight without the need

for time-consuming DFT calculations. For example, analysis of one TS structure at the

DFT level reveals how severe C-C steric interactions between the nucleophile and the R1

and R2 groups of the MA destabilise the structure, and these interactions are also captured

by the AM1 geometry (Figure 12.15). Whilst insights into the electronics and sterics of

the reaction were revealed by evaluation of the most important predictive features, direct

visualisation of the geometries and interactions improves upon this approach by identifying

which groups are directly involved in this steric clash and revealing more about their exact

nature. Such information helps to validate the predictions made by ML and can guide

rational reaction design.

Figure 12.15 AM1 and wB97X-D/def2-TZVP geometries of an example TS revealing steric inter-
actions between the nucleophile and the R1 (Me) and R2 (Me) groups of the MA; dotted red lines
represent C-C distances within 90% of the sum of the van der Waals radii (3.4 Å).

For the nitro-Michael addition reaction investigated here, the full DFT level of theory

took approximately 7 hours on a 16-core node to obtain each of the 1000 enumerated MA

and TS structures, compared to only 51 seconds for the respective AM1 calculations (Table

12.6). On a 1-core laptop, this corresponds to over 100 hours of calculation for DFT per

structure, compared to less than 15 minutes for AM1. Thus, the ease and efficiency of this

SQM/ML approach is demonstrated; with a prebuilt ML model, the user simply calcu-

lates a baseline barrier for a reaction (in seconds, using widely available SQM or force field
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approaches), applies a correction via ML (in seconds), and accurate DFT-quality barriers

and geometries can be obtained. Although users may be concerned that the deficiencies

of a particular baseline method, for example poor applicability to a particular chemical

domain, may inhibit a model’s ability to make accurate predictions, these results demon-

strate that feature subsets derived from both classical force field and SQM methods all lead

to comparable predictive performances. Thus, the user may simply select an appropriate

baseline method for the reaction in question and, by the same principles described above,

accurate predictions should be possible. Several reviews provide a more detailed account of

the applicability of SQM methods in modelling organic chemistry, for example by Thiel.485

12.4 Conclusions

By combining ML with SQM calculations, the fast and accurate prediction of DFT-quality

free energy reaction barriers was achieved using widely available computational techniques

and simple and highly interpretable chemical features. MAEs below the accepted chemical

accuracy threshold of 1 kcal mol-1 were achieved for several ML algorithms with a calcula-

tion time of seconds, even when making predictions on an unseen set of compounds from

the toxicology literature. Evaluation of the most predictive features provided clear insights

into important aspects of the nitro-Michael addition reaction mechanism. However, SQM

geometries of TSs, and to some extent MAs, were found to be excellent approximations

to the full DFT TS geometries and thus offer mechanistic insight with no additional work

required. Combination of these SQM geometries with highly accurate ML-derived ener-

gies allows the prediction of barriers and the screening of reactions at DFT level, without

the need for time-consuming DFT calculations. In turn, this enables the rapid prediction

of reaction barriers and delivers mechanistic insight for an essential class of nitro-Michael

additions, which could lead to much faster screening of these kinds of reactions, and thus

much more efficient design of new synthetic methodology. Importantly, no current ML

barrier models offer this combination of speed, accuracy, and mechanistic insight. The gen-

eralised nature of the study means the ML approach can be highly customised, for example

by choosing from various regression algorithms, features, and chemical modelling methods.

Using the same principles, the rapid prediction of reaction barriers and mechanisms for

other important classes of chemical reactions should be possible, paving the way for more

efficient drug discovery and rational reaction design.
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13 Final remarks

In this thesis, two distinct approaches for understanding organic reactions were discussed.

The first, more conventional approach, involves the explicit modelling of reactions by com-

bining practical techniques, such as conformational searching and geometry optimisation,

with chemical modelling methods, such as MM and DFT. Together, these methods provide

a description of the PES of the reaction, enabling the highly accurate calculation of ge-

ometries, energies, frequencies, and other thermochemical data. Crucially, by locating the

energies and structure of TSs explicitly, detailed insights into reaction mechanisms and se-

lectivity can be obtained, providing a highly accurate and efficient method for the analysis

of catalytic and asymmetric reactions. The potential of this explicit modelling approach

was demonstrated by its application to four crucial C-C, C-H, and S-H bond-forming meth-

ods utilising several popular chiral catalysts, allowing rationalisation of their selectivity as

well as several other important mechanistic factors (Figure 13.1).

Figure 13.1 Summary of the four asymmetric and catalytic organic reactions investigated in this
thesis. The lowest energy TS for each reaction is depicted. Relative free energies (DDG…) between
the lowest energy major and minor TSs located are given with the corresponding experimental
enantioselectivities for each reaction.
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However, in the context of modern drug discovery, DFT calculations are often too ex-

pensive. Whilst cheaper alternatives, such as MM, HF, and SQM, offer useful compromises

between accuracy and efficiency, in many cases they simply do not offer a sufficient level

of accuracy. Thus, in the second part of this thesis, an alternative data-driven approach

was developed and described that uses ML to bridge the gap between DFT and its cheaper

alternatives. Once ML models are trained, this approach enables a much faster prediction

of DFT-quality reaction barriers with mechanistic insights provided via SQM geometries

of TSs, allowing the high-throughput screening of reactions at a speed that meets the de-

mands of modern drug discovery. A proof-of-concept example of this SQM/ML approach

was provided for a diverse class of C-C bond-forming nitro-Michael additions (Figure 13.2).

Importantly, the models built in this thesis represent an improvement over current stan-

dards for reaction barrier prediction, which typically compromise on either accuracy, speed,

or mechanistic insights.

Figure 13.2 Summary of the SQM to DFT ML approach developed in this thesis.

Through both approaches, important insights into organic reactions can be obtained,

allowing the rational design of improved synthetic methodologies. However, as stressed

throughout this thesis, the understanding of asymmetric and catalytic reactions is an es-

sential part of drug discovery and natural product synthesis. Whilst ML has the benefit

of speed and efficiency, the models built in this thesis were applied only to uncatalysed

reactions. Therefore, on this front, the conventional modelling approach is a clear winner.

However, ML is a rapidly developing field, whose potential applications to chemical reac-

tion modelling are only just beginning to take shape. Indeed, using the models built in this

thesis, crucial mechanistic details into the chosen nitro-Michael addition reaction were ob-

tained through evaluation of feature importances and analysis of SQM geometries, allowing

important steric and electrostatic factors to be identified. By the continued development

of ML for chemical modelling, for example using more complex transfer, reinforcement, or

deep learning approaches, it is envisaged that significant improvements to this methodology
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could be achieved. Eventually, this should allow the same principles to be applied to the

modelling of asymmetric and catalytic reactions, such as those presented in the first part of

this thesis, on a level comparable to conventional modelling techniques. Whilst this clearly

represents a much bigger challenge, it is easy to forget that it is only in the last thirty

years that DFT itself has become widely applicable to such systems. Thus, with continu-

ing advances in computing power, chemical software, and ML, a new era of computational

chemistry is expected in which conventional modelling approaches can be used in tandem

with efficient and widely available ML models applicable to both asymmetric and catalytic

reactions. In this way, computational chemistry will continue to have a substantial impact

on drug discovery and natural product synthesis for the foreseeable future.
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son, N. J.; Rzepa, H. S. The Houk-List transition states for organocatalytic mecha-

nisms revisited. Chemical Science 2014, 5, 2057–2071.

131



[165] Boys, S. F.; Bernardi, F. The calculation of small molecular interactions by the dif-

ferences of separate total energies. Some procedures with reduced errors. Molecular
Physics 1970, 19, 553–566.

[166] van Duijneveldt, F. B.; van de Rijdt, J. G. D.; van Lenthe, J. H. State of the Art in

Counterpoise Theory. Chemical Reviews 1994, 94, 1873–1885.

[167] Mayer, I.; Valiron, P. Second order Møller–Plesset perturbation theory without basis

set superposition error. The Journal of Chemical Physics 1998, 109, 3360–3373.

[168] Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self-consistent molecular orbital methods.

XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies

of organic molecules. The Journal of Chemical Physics 1972, 56, 2257–2261.

[169] Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-consistent molecular orbital

methods. XX. A basis set for correlated wave functions. The Journal of Chemical
Physics 1980, 72, 650–654.

[170] Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence

and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy.

Physical Chemistry Chemical Physics 2005, 7, 3297.

[171] Woon, D. E.; Dunning, T. H. Gaussian basis sets for use in correlated molecular cal-

culations. V. Core-valence basis sets for boron through neon. The Journal of Chemical
Physics 1995, 103, 4572–4585.

[172] Jensen, F. Polarization consistent basis sets: Principles. Journal of Chemical Physics
2001, 115, 9113–9125.

[173] Manninen, P.; Vaara, J. Systematic Gaussian basis-set limit using completeness-

optimized primitive sets. A case for magnetic properties. Journal of Computational
Chemistry 2006, 27, 434–445.
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Lorenzo, J. M.; Bursać Kovačević, D. An overview of organosulfur compounds from

Allium spp.: From processing and preservation to evaluation of their bioavailability,

antimicrobial, and anti-inflammatory properties. Food Chemistry 2019, 276, 680–691.

[295] Chen, H. Y.; Kim, S.; Wu, J. Y.; Birzin, E. T.; Chan, W.; Yang, Y. T.; Dahllund, J.;

DiNinno, F.; Rohrer, S. P.; Schaeffer, J. M.; Hammond, M. L. Estrogen receptor

ligands. Part 3: The SAR of dihydrobenzoxathiin SERMs. Bioorganic and Medicinal
Chemistry Letters 2004, 14, 2551–2554.

[296] Hartman, I.; Gillies, A. R.; Arora, S.; Andaya, C.; Royapet, N.; Welsh, W. J.;

Wood, D. W.; Zauhar, R. J. Application of screening methods, shape signatures

and engineered biosensors in early drug discovery process. Pharmaceutical Research
2009, 26, 2247–2258.

[297] Huang, K.; Ortiz-Marciales, M.; Stepanenko, V.; De Jesús, M.; Correa, W. A Practical
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Iglesias, J.; Kuczynski, J.; Tritz, K.; Thoma, M.; Newville, M.; Kümmerer, M.;
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15 Appendix

Gaussian09 and Gaussian16 output files for all computed structures in chapters 9 and

11 and a complete list of all metrics, features, and hyperparameters for all ML models

in chapter 11 are openly available in Dataset for "Computational Modelling and Machine
Learning Approaches Towards Understanding Asymmetric Catalytic Organic Reactions" in

the University of Bath Research Data Archive at https://doi.org/10.15125/BATH-011
48. The grid of sklearn hyperparameters searched for each regression algorithm in chapter

11 are given below:

� NNR:

� N neighbours = 1, 2, 3, 5, 10

� Weights = uniform, distance

� Leaf size = 1, 5, 10, 30, 50, 100

� p = 1, 2

� RFR and GBR:

� N estimators = 10, 50, 100, 250, 500

� Max depth = 1, 5, 10, 50, 100

� SVR(RBF):

� C = 0.1, 0.5, 1, 2, 5, 10

� � = 0.1, 0.25, 0.5, 0.75, 1

� SVR(Poly):

� C = 0.1, 0.5, 1, 2, 5, 10

� � = 0.25, 0.5, 0.75, 1

� Coef0 = 1, 2, 3, 4, 5

� Degree = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

� KRR(RBF):

� � = 0.01, 0.1, 0.25, 0.5, 1, 2, 5, 10, 25, 50, 100

� 
 = none, 0.01, 0.05, 0.1, 0.5, 1

� KRR(Poly):

� � = 0.01, 0.1, 0.25, 0.5, 1, 2, 5, 10, 25, 50, 100

� 
 = 0.01, 0.05, 0.1, 0.5, 1

� Coef0 = 1, 2, 3, 4, 5

� Degree = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

� GPR:

� � = 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 0.01, 0.1, 1
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Model AM1 MA AM1 TS AM1 All

Ridge 1.431 / 0.878 (87) 1.431 / 0.878 (87) 1.431 / 0.878 (87)

NNR 1.261 / 0.893 (16) 1.261 / 0.893 (16) 1.261 / 0.893 (16)

RFR 1.288 / 0.894 (49) 1.288 / 0.894 (49) 1.288 / 0.894 (49)

GBR 1.147 / 0.911 (40) 1.147 / 0.911 (40) 1.147 / 0.911 (40)

SVR(RBF) 0.956 / 0.935 (36) 0.956 / 0.935 (36) 0.956 / 0.935 (36)

SVR(poly) 1.027 / 0.931 (29) 1.027 / 0.931 (29) 1.027 / 0.931 (29)

KRR(RBF) 0.993 / 0.934 (35) 0.993 / 0.934 (35) 0.993 / 0.934 (35)

KRR(poly) 0.963 / 0.938 (21) 0.963 / 0.938 (21) 0.963 / 0.938 (21)

GPR 0.994 / 0.935 (72) 0.994 / 0.935 (72) 0.994 / 0.935 (72)

Model PM6 MA PM6 TS PM6 All

Ridge 1.482 / 0.868 (67) 1.482 / 0.868 (67) 1.482 / 0.868 (67)

NNR 1.221 / 0.894 (41) 1.221 / 0.894 (41) 1.221 / 0.894 (41)

RFR 1.355 / 0.882 (28) 1.355 / 0.882 (28) 1.355 / 0.882 (28)

GBR 1.274 / 0.894 (61) 1.274 / 0.894 (61) 1.274 / 0.894 (61)

SVR(RBF) 0.968 / 0.929 (20) 0.968 / 0.929 (20) 0.968 / 0.929 (20)

SVR(poly) 0.993 / 0.932 (23) 0.993 / 0.932 (23) 0.993 / 0.932 (23)

KRR(RBF) 0.998 / 0.931 (42) 0.998 / 0.931 (42) 0.998 / 0.931 (42)

KRR(poly) 0.96 / 0.936 (31) 0.96 / 0.936 (31) 0.96 / 0.936 (31)

GPR 1.0 / 0.931 (78) 1.0 / 0.931 (78) 1.0 / 0.931 (78)

Model UFF MA DFT MA AM1 + PM6 All

Ridge 1.557 / 0.855 (58) 1.557 / 0.855 (58) 1.557 / 0.855 (58)

NNR 1.235 / 0.899 (26) 1.235 / 0.899 (26) 1.235 / 0.899 (26)

RFR 1.282 / 0.895 (20) 1.282 / 0.895 (20) 1.282 / 0.895 (20)

GBR 1.168 / 0.909 (48) 1.168 / 0.909 (48) 1.168 / 0.909 (48)

SVR(RBF) 0.945 / 0.935 (30) 0.945 / 0.935 (30) 0.945 / 0.935 (30)

SVR(poly) 1.034 / 0.929 (22) 1.034 / 0.929 (22) 1.034 / 0.929 (22)

KRR(RBF) 0.975 / 0.933 (25) 0.975 / 0.933 (25) 0.975 / 0.933 (25)

KRR(poly) 0.943 / 0.941 (28) 0.943 / 0.941 (28) 0.943 / 0.941 (28)

GPR 0.986 / 0.932 (66) 0.986 / 0.932 (66) 0.986 / 0.932 (66)

Table 15.1 5-fold CV train MAE / 5-fold CV train R2 (number of features) for each regression
algorithm and feature subset.
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Model AM1 MA AM1 TS AM1 All

Ridge 1.531 ± 0.09 / 0.853 (87) 1.531 ± 0.09 / 0.853 (87) 1.531 ± 0.09 / 0.853 (87)

NNR 1.427 ± 0.09 / 0.862 (16) 1.427 ± 0.09 / 0.862 (16) 1.427 ± 0.09 / 0.862 (16)

RFR 1.361 ± 0.08 / 0.878 (49) 1.361 ± 0.08 / 0.878 (49) 1.361 ± 0.08 / 0.878 (49)

GBR 1.176 ± 0.08 / 0.903 (40) 1.176 ± 0.08 / 0.903 (40) 1.176 ± 0.08 / 0.903 (40)

SVR(RBF) 0.952 ± 0.08 / 0.922 (36) 0.952 ± 0.08 / 0.922 (36) 0.952 ± 0.08 / 0.922 (36)

SVR(poly) 1.117 ± 0.07 / 0.914 (29) 1.117 ± 0.07 / 0.914 (29) 1.117 ± 0.07 / 0.914 (29)

KRR(RBF) 1.002 ± 0.07 / 0.925 (35) 1.002 ± 0.07 / 0.925 (35) 1.002 ± 0.07 / 0.925 (35)

KRR(poly) 1.115 ± 0.07 / 0.914 (21) 1.115 ± 0.07 / 0.914 (21) 1.115 ± 0.07 / 0.914 (21)

GPR 1.018 ± 0.07 / 0.918 (72) 1.018 ± 0.07 / 0.918 (72) 1.018 ± 0.07 / 0.918 (72)

Model PM6 MA PM6 TS PM6 All

Ridge 1.553 ± 0.09 / 0.849 (67) 1.553 ± 0.09 / 0.849 (67) 1.553 ± 0.09 / 0.849 (67)

NNR 1.361 ± 0.09 / 0.866 (41) 1.361 ± 0.09 / 0.866 (41) 1.361 ± 0.09 / 0.866 (41)

RFR 1.355 ± 0.08 / 0.881 (28) 1.355 ± 0.08 / 0.881 (28) 1.355 ± 0.08 / 0.881 (28)

GBR 1.267 ± 0.08 / 0.887 (61) 1.267 ± 0.08 / 0.887 (61) 1.267 ± 0.08 / 0.887 (61)

SVR(RBF) 1.021 ± 0.08 / 0.91 (20) 1.021 ± 0.08 / 0.91 (20) 1.021 ± 0.08 / 0.91 (20)

SVR(poly) 1.113 ± 0.08 / 0.907 (23) 1.113 ± 0.08 / 0.907 (23) 1.113 ± 0.08 / 0.907 (23)

KRR(RBF) 1.008 ± 0.07 / 0.922 (42) 1.008 ± 0.07 / 0.922 (42) 1.008 ± 0.07 / 0.922 (42)

KRR(poly) 1.042 ± 0.07 / 0.921 (31) 1.042 ± 0.07 / 0.921 (31) 1.042 ± 0.07 / 0.921 (31)

GPR 1.048 ± 0.08 / 0.912 (78) 1.048 ± 0.08 / 0.912 (78) 1.048 ± 0.08 / 0.912 (78)

Model UFF MA DFT MA AM1 + PM6 All

Ridge 1.616 ± 0.09 / 0.837 (58) 1.616 ± 0.09 / 0.837 (58) 1.616 ± 0.09 / 0.837 (58)

NNR 1.361 ± 0.08 / 0.877 (26) 1.361 ± 0.08 / 0.877 (26) 1.361 ± 0.08 / 0.877 (26)

RFR 1.304 ± 0.09 / 0.878 (20) 1.304 ± 0.09 / 0.878 (20) 1.304 ± 0.09 / 0.878 (20)

GBR 1.146 ± 0.08 / 0.9 (48) 1.146 ± 0.08 / 0.9 (48) 1.146 ± 0.08 / 0.9 (48)

SVR(RBF) 0.975 ± 0.07 / 0.925 (30) 0.975 ± 0.07 / 0.925 (30) 0.975 ± 0.07 / 0.925 (30)

SVR(poly) 1.053 ± 0.07 / 0.922 (22) 1.053 ± 0.07 / 0.922 (22) 1.053 ± 0.07 / 0.922 (22)

KRR(RBF) 1.005 ± 0.07 / 0.921 (25) 1.005 ± 0.07 / 0.921 (25) 1.005 ± 0.07 / 0.921 (25)

KRR(poly) 1.057 ± 0.07 / 0.923 (28) 1.057 ± 0.07 / 0.923 (28) 1.057 ± 0.07 / 0.923 (28)

GPR 1.002 ± 0.08 / 0.918 (66) 1.002 ± 0.08 / 0.918 (66) 1.002 ± 0.08 / 0.918 (66)

Table 15.2 Test MAE ± standard error / test R2 (number of features) for each regression algorithm
and feature subset.
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Model AM1 MA AM1 TS AM1 All

Ridge 1.456 ± 0.26 (87) 1.456 ± 0.26 (87) 1.456 ± 0.26 (87)

NNR 1.577 ± 0.17 (16) 1.577 ± 0.17 (16) 1.577 ± 0.17 (16)

RFR 0.983 ± 0.12 (49) 0.983 ± 0.12 (49) 0.983 ± 0.12 (49)

GBR 1.083 ± 0.13 (40) 1.083 ± 0.13 (40) 1.083 ± 0.13 (40)

SVR(RBF) 1.272 ± 0.16 (36) 1.272 ± 0.16 (36) 1.272 ± 0.16 (36)

SVR(poly) 1.512 ± 0.2 (29) 1.512 ± 0.2 (29) 1.512 ± 0.2 (29)

KRR(RBF) 1.577 ± 0.24 (35) 1.577 ± 0.24 (35) 1.577 ± 0.24 (35)

KRR(poly) 1.622 ± 0.26 (21) 1.622 ± 0.26 (21) 1.622 ± 0.26 (21)

GPR 1.21 ± 0.17 (72) 1.21 ± 0.17 (72) 1.21 ± 0.17 (72)

Model PM6 MA PM6 TS PM6 All

Ridge 1.27 ± 0.22 (67) 1.27 ± 0.22 (67) 1.27 ± 0.22 (67)

NNR 1.127 ± 0.15 (41) 1.127 ± 0.15 (41) 1.127 ± 0.15 (41)

RFR 1.035 ± 0.13 (28) 1.035 ± 0.13 (28) 1.035 ± 0.13 (28)

GBR 1.219 ± 0.14 (61) 1.219 ± 0.14 (61) 1.219 ± 0.14 (61)

SVR(RBF) 1.553 ± 0.23 (20) 1.553 ± 0.23 (20) 1.553 ± 0.23 (20)

SVR(poly) 1.685 ± 0.23 (23) 1.685 ± 0.23 (23) 1.685 ± 0.23 (23)

KRR(RBF) 1.314 ± 0.23 (42) 1.314 ± 0.23 (42) 1.314 ± 0.23 (42)

KRR(poly) 1.541 ± 0.18 (31) 1.541 ± 0.18 (31) 1.541 ± 0.18 (31)

GPR 1.061 ± 0.15 (78) 1.061 ± 0.15 (78) 1.061 ± 0.15 (78)

Model UFF MA DFT MA AM1 + PM6 All

Ridge 1.671 ± 0.21 (58) 1.671 ± 0.21 (58) 1.671 ± 0.21 (58)

NNR 1.371 ± 0.16 (26) 1.371 ± 0.16 (26) 1.371 ± 0.16 (26)

RFR 1.119 ± 0.12 (20) 1.119 ± 0.12 (20) 1.119 ± 0.12 (20)

GBR 1.083 ± 0.14 (48) 1.083 ± 0.14 (48) 1.083 ± 0.14 (48)

SVR(RBF) 1.26 ± 0.17 (30) 1.26 ± 0.17 (30) 1.26 ± 0.17 (30)

SVR(poly) 1.959 ± 0.23 (22) 1.959 ± 0.23 (22) 1.959 ± 0.23 (22)

KRR(RBF) 1.767 ± 0.29 (25) 1.767 ± 0.29 (25) 1.767 ± 0.29 (25)

KRR(poly) 2.199 ± 0.3 (28) 2.199 ± 0.3 (28) 2.199 ± 0.3 (28)

GPR 1.202 ± 0.18 (66) 1.202 ± 0.18 (66) 1.202 ± 0.18 (66)

Table 15.3 Literature (set 1) MAE ± standard error (number of features) for each regression
algorithm and feature subset.

161



Model AM1 MA AM1 TS AM1 All

Ridge 1.653 ± 0.28 (87) 1.653 ± 0.28 (87) 1.653 ± 0.28 (87)

NNR 1.889 ± 0.27 (16) 1.889 ± 0.27 (16) 1.889 ± 0.27 (16)

RFR 1.261 ± 0.22 (49) 1.261 ± 0.22 (49) 1.261 ± 0.22 (49)

GBR 1.31 ± 0.2 (40) 1.31 ± 0.2 (40) 1.31 ± 0.2 (40)

SVR(RBF) 1.541 ± 0.24 (36) 1.541 ± 0.24 (36) 1.541 ± 0.24 (36)

SVR(poly) 1.805 ± 0.27 (29) 1.805 ± 0.27 (29) 1.805 ± 0.27 (29)

KRR(RBF) 1.638 ± 0.24 (35) 1.638 ± 0.24 (35) 1.638 ± 0.24 (35)

KRR(poly) 1.784 ± 0.27 (21) 1.784 ± 0.27 (21) 1.784 ± 0.27 (21)

GPR 1.389 ± 0.21 (72) 1.389 ± 0.21 (72) 1.389 ± 0.21 (72)

Model PM6 MA PM6 TS PM6 All

Ridge 1.459 ± 0.25 (67) 1.459 ± 0.25 (67) 1.459 ± 0.25 (67)

NNR 1.456 ± 0.27 (41) 1.456 ± 0.27 (41) 1.456 ± 0.27 (41)

RFR 1.308 ± 0.22 (28) 1.308 ± 0.22 (28) 1.308 ± 0.22 (28)

GBR 1.473 ± 0.22 (61) 1.473 ± 0.22 (61) 1.473 ± 0.22 (61)

SVR(RBF) 1.872 ± 0.31 (20) 1.872 ± 0.31 (20) 1.872 ± 0.31 (20)

SVR(poly) 1.842 ± 0.25 (23) 1.842 ± 0.25 (23) 1.842 ± 0.25 (23)

KRR(RBF) 1.4 ± 0.23 (42) 1.4 ± 0.23 (42) 1.4 ± 0.23 (42)

KRR(poly) 1.732 ± 0.21 (31) 1.732 ± 0.21 (31) 1.732 ± 0.21 (31)

GPR 1.288 ± 0.21 (78) 1.288 ± 0.21 (78) 1.288 ± 0.21 (78)

Model UFF MA DFT MA AM1 + PM6 All

Ridge 1.747 ± 0.21 (58) 1.747 ± 0.21 (58) 1.747 ± 0.21 (58)

NNR 1.692 ± 0.27 (26) 1.692 ± 0.27 (26) 1.692 ± 0.27 (26)

RFR 1.378 ± 0.21 (20) 1.378 ± 0.21 (20) 1.378 ± 0.21 (20)

GBR 1.326 ± 0.21 (48) 1.326 ± 0.21 (48) 1.326 ± 0.21 (48)

SVR(RBF) 1.557 ± 0.26 (30) 1.557 ± 0.26 (30) 1.557 ± 0.26 (30)

SVR(poly) 2.28 ± 0.31 (22) 2.28 ± 0.31 (22) 2.28 ± 0.31 (22)

KRR(RBF) 1.889 ± 0.29 (25) 1.889 ± 0.29 (25) 1.889 ± 0.29 (25)

KRR(poly) 2.414 ± 0.32 (28) 2.414 ± 0.32 (28) 2.414 ± 0.32 (28)

GPR 1.421 ± 0.23 (66) 1.421 ± 0.23 (66) 1.421 ± 0.23 (66)

Table 15.4 Literature (set 2) MAE ± standard error (number of features) for each regression
algorithm and feature subset.
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Figure 15.1 Train and test MAE learning curves for the SVR(RBF) (AM1 All) model.

Figure 15.2 Train and test MAE learning curves for the SVR(Poly) (AM1 All) model.

Figure 15.3 Train and test MAE learning curves for the KRR(RBF) (AM1 All) model.
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Figure 15.4 Train and test MAE learning curves for the KRR(Poly) (AM1 All) model.

Figure 15.5 Top 15 train, test, and literature (set 1) permutation features importances for the
GPR (PM6 All) model.
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Figure 15.6 Top 15 train, test, and literature (set 1) permutation features importances for the
SVR(RBF) (AM1 All) model.
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Figure 15.7 Top 15 train, test, and literature (set 1) permutation features importances for the
SVR(Poly) (AM1 All) model.
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Figure 15.8 Top 15 train, test, and literature (set 1) permutation features importances for the
KRR(RBF) (AM1 All) model.
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Figure 15.9 Top 15 train, test, and literature (set 1) permutation features importances for the
KRR(Poly) (AM1 All) model.

Figure 15.10 Distribution of RMSDs between each TS (nucleophile removed) at its AM1 and
wB97X-D/def2-TZVP for the enumerated and literature (set 1) datasets.
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Figure 15.11 Distribution of RMSDs between each TS (R-groups removed) at its AM1 and wB97X-
D/def2-TZVP for the enumerated and literature (set 1) datasets.

Figure 15.12 Distribution of RMSDs between each TS (nucleophile and R-groups removed) at its
AM1 and wB97X-D/def2-TZVP geometries for the enumerated and literature (set 1) datasets.

Figure 15.13 Distribution of RMSDs between each MA at its AM1 geometry and each TS (nu-
cleophile removed) at its wB97X-D/def2-TZVP geometry for the enumerated and literature (set 1)
datasets.
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Figure 15.14 Distribution of RMSDs between each MA at its UFF geometry and each TS (nu-
cleophile removed) at its wB97X-D/def2-TZVP geometry for the enumerated and literature (set 1)
datasets.

Figure 15.15 Distribution of RMSDs between each MA at its wB97X-D/def2-TZVP geometry
and each TS (nucleophile removed) at its wB97X-D/def2-TZVP geometry for the enumerated and
literature (set 1) datasets.

Figure 15.16 Distribution of RMSDs between each TS at its PM6 and wB97X-D/def2-TZVP
geometries for the enumerated and literature (set 1) datasets.
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Figure 15.17 Distribution of RMSDs between each literature (set 1) TS at its AM1 and
AM1/IEFPCM(toluene) geometries.

Figure 15.18 Distribution of RMSDs between each literature (set 1) TS at its PM6 and
PM6/IEFPCM(toluene) geometries.

Figure 15.19 Distribution of RMSDs between each literature (set 1) TS at its wB97X-D/def2-
TZVP and wB97X-D/def2-TZVP /IEFPCM(toluene) geometries.
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