A Mechanistic Insight into the Synthesis of Enantiopure β-Amino Acids using the Enamido Ireland Claisen Rearrangement

Wesley R. R. Harker

A Thesis Submitted for the Degree of Doctor of Philosophy

University of Bath

Department of Chemistry

March 2011

COPYRIGHT

Attention is drawn to the fact that the copyright of this thesis rests with its author. A copy of this thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and they must not copy it or use material from it except as permitted by law or with the consent of the author.

This thesis may be made available for consultation within the University Library and may be photocopied or lent to other libraries for the purpose of consultation.

.. ..
Wesley R. R. Harker Date
‘Just make and rearrange 9 arylacetates and we’ll get a quick communication in a fortnight’
ABSTRACT

The Ireland-Claisen rearrangement is a powerful synthetic technique allowing predictable diastereocontrol and chirality transfer within the synthesis of γ,δ-unsaturated carboxylic acids. The Carbery group has recently disclosed a novel enamido-Ireland-Claisen rearrangement (EICR) allowing access to β2,3-amino acid precursors, where a strong dependency between diastereoselectivity and the substrate acyl moiety was noted. Development of this seminal work in terms of mechanistic rationale and synthetic utility subsequently ensued.

Initial focus, covered in Chapter 2, began with a thorough optimisation of rearrangement conditions and resulted in a desire to probe the electronic dependency of the diastereoselective phenylacetate EICR. With this in mind, rearrangement of a range of electronically differentiated arylacetates demonstrated that diastereoselectivity is profoundly susceptible to electronic perturbation as shown by a non-linear Hammett type plot involving that of para-substituents.

In order to evaluate the origins of this free energy relationship, Chapter 3 covers the in-situ ¹H- and ¹³C-NMR mechanistic studies undertaken, involving model silyl ketene acetal (SKA) formation and EICR monitoring. These studies demonstrated that poor E/Z-SKA generation and rearrangement through a chair transition state may be operative in the case of electron rich aryl substitution; however selective formation of the E-SKA and subsequent rearrangement via competing chair and boat transition states may be operative for electron poor aryl substitution. A useful synthetic transformation brought about by these mechanistic studies was seen to be the isolation of phenylacetate derived SKAs in excellent yield and far superior E-geometric control to that currently published.

Finally, Chapter 4 involves investigations into improving the diastereoselectivity of the non-α-arylacetates and results in the rearrangement of alkyl- and arylacetate-N-allylsulfonamides in high diastereoselectivity and utilisation of an optically enriched substrate demonstrated good chirality transfer (>88% e.e.). Utilisation of these products has been shown within the synthesis of β-proline analogues.
ABSTRACT

CONTENTS

ACKNOWLEDGEMENTS

ABBREVIATIONS

1. Introduction

1.1. β Amino Acids

1.2. Preparation of Enantiopure β-Amino Acids

1.2.1. Homologation of α-Amino Acids

1.2.2. Hydrogenation of β-Amino Acrylates

1.2.3. Conjugate Addition Reactions

1.2.4. Catalytic Mannich Reactions

1.2.5. Organocatalytic Conjugate Addition Reactions

1.2.6. Enolate Additions to N-t-Butyl Sulfinyl Imines

1.3. Pericyclic Reactions

1.4. The Claisen Rearrangement

1.5. The Ireland-Claisen Rearrangement

1.5.1. Stereochemical Aspects of the Ireland-Claisen Rearrangement

1.6. Other Variants of the Claisen Rearrangement

1.7. Enamides

2. The Enamido-Ireland-Claisen Rearrangement

2.1. Background

2.2. Initial Aim

2.3. Retrosynthesis

2.4. Synthesis of Racemic Allylic Enamido Esters

2.5. Optimisation of Phenylacetate EICR

2.6. EICR of Electronically Differentiated Arylacetates

2.7. Further Investigation into Electronic Nature of p-Substitution
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8. Hammett Relationship</td>
<td>62</td>
</tr>
<tr>
<td>2.9. Hammett Relationship & EICR</td>
<td>68</td>
</tr>
<tr>
<td>2.10. Conclusions</td>
<td>71</td>
</tr>
<tr>
<td>3. Mechanisitic Studies into EICR of Arylacetates</td>
<td>72</td>
</tr>
<tr>
<td>3.1. Model SKA Studies</td>
<td>73</td>
</tr>
<tr>
<td>3.2. In-Situ EICR Reaction Monitoring</td>
<td>87</td>
</tr>
<tr>
<td>3.2.1. EICR Reaction Monitoring by 1H-NMR Spectroscopy</td>
<td>89</td>
</tr>
<tr>
<td>3.2.2. EICR Reaction Monitoring by 2H-NMR Spectroscopy</td>
<td>92</td>
</tr>
<tr>
<td>3.2.3. EICR Reaction Monitoring by 13C-NMR Spectroscopy</td>
<td>95</td>
</tr>
<tr>
<td>3.3. Conclusions</td>
<td>128</td>
</tr>
<tr>
<td>4. Alternative N-Protection in the EICR</td>
<td>130</td>
</tr>
<tr>
<td>4.1. Propionate EICR</td>
<td>130</td>
</tr>
<tr>
<td>4.2. Investigation in to Alternative N-Protection</td>
<td>142</td>
</tr>
<tr>
<td>4.2.1. Enecarbamates</td>
<td>144</td>
</tr>
<tr>
<td>4.2.2. Enesulfonamides</td>
<td>145</td>
</tr>
<tr>
<td>4.2.3. EICR Optimisation of Propionate- &</td>
<td></td>
</tr>
<tr>
<td>Phenylacetate N-Allylsulfonamides</td>
<td>147</td>
</tr>
<tr>
<td>4.2.4. EICR of Alkyl- & Arylacetate N-Allylsulfonamides</td>
<td>150</td>
</tr>
<tr>
<td>4.2.5. Derivatisation of N-Allylsulfonamide EICR Products</td>
<td>156</td>
</tr>
<tr>
<td>4.2.6. EICR of N-Benzylsulfonamides</td>
<td>158</td>
</tr>
<tr>
<td>4.2.7. Chirality Transfer within EICR of N-Allylsulfonamides</td>
<td>159</td>
</tr>
<tr>
<td>4.3. Conclusions</td>
<td>162</td>
</tr>
<tr>
<td>5. Conclusions & Future Work</td>
<td>163</td>
</tr>
<tr>
<td>6. Experimental</td>
<td>169</td>
</tr>
<tr>
<td>6.1. General Experimental Information</td>
<td>169</td>
</tr>
<tr>
<td>6.2. General Experimental Procedures</td>
<td>170</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

Throughout my PhD studies there has been a large support network, both within the Carbery group and external to it, which has allowed me to get to the stage that I am at today.

First and foremost I thank Dr. David R. Carbery for his constant and unwavering resilience in coping with my paranoid tendencies and always being there for the problem solving discussions and counsel. The mechanistic direction my research pursued has been challenging and the ability to face demand- ing topics has demonstrated that adaptation is the key to personal growth and success. Cheers Dave!

Thanks go out to Dr. Emma L. Carswell for her support and willingness to sign ridiculously awkward order forms involving $^2\text{H}^{13}\text{C}$-labelled materials and also for all the ‘5 minute phone calls’ and advice.

Special thanks go out to Dr. John P. Lowe for showing me the power of NMR and also to Dr. Samantha Rutherford and Mr. Ross Lennen from M.S.D, as without their friendly and knowledgeable guidance the mechanistic studies would not have been achievable. Further analytical thanks go to Dr. Anneke T. Lubben for all the manual injections into the mass spectrometer and also to Dr. Mary F. Mahon for XRD analysis.

In addition I also thank Prof. Ian H. Williams and Dr. Ian R. Greig for discussions surrounding in-silico modelling and physical organic chemistry.

Penultimately I thank Dr. Morwenna S. M. Pearson-Long, Dr. Barrie J. Marsh, Dr. James P. Tellam, Dr. Andrew C. Silvanus, Mr Stephen J. Heffernan and Mr. Matthew R. Crittall. In addition I am eternally grateful to Mr. Nathan W. G. Fairhurst for acting as an un-official I.T-guru. Team work really works!

I finally thank Trixie Stirling, Rexie Shaw & Misty Mirtle.

Cheers!
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACPC</td>
<td>trans-2-aminocyclopentanecarboxylic acid</td>
</tr>
<tr>
<td>APC</td>
<td>trans-3-aminopyrrolidine-4-carboxylic acid</td>
</tr>
<tr>
<td>ADHD</td>
<td>Attention Deficit Hyperactivity Disorder</td>
</tr>
<tr>
<td>Adda</td>
<td>(2S,3S,8S,9S)-3-Amino-9-methoxy-2,8-dimethyl-10-phenyl-deca-4,6-dienoic acid</td>
</tr>
<tr>
<td>Amha</td>
<td>3-Amino-2-methylhex-enoic acid</td>
</tr>
<tr>
<td>app</td>
<td>Apparent</td>
</tr>
<tr>
<td>Bn</td>
<td>Benzyl</td>
</tr>
<tr>
<td>Boc</td>
<td>Butoxycarbonyl</td>
</tr>
<tr>
<td>bs</td>
<td>Broad singlet</td>
</tr>
<tr>
<td>CAN</td>
<td>Ceric(IV)ammonium nitrate</td>
</tr>
<tr>
<td>Cat</td>
<td>Catalytic</td>
</tr>
<tr>
<td>Cbz</td>
<td>Carbobenzyloxy</td>
</tr>
<tr>
<td>Conform</td>
<td>Conformation</td>
</tr>
<tr>
<td>Cp</td>
<td>Cycopentadienyl</td>
</tr>
<tr>
<td>DCC</td>
<td>1,3-Dicyclohexylcarbodiimide</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>DIPA</td>
<td>Diisopropylamine</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethylformamide</td>
</tr>
<tr>
<td>DMP</td>
<td>Dess-Martin Periodinane</td>
</tr>
<tr>
<td>DPPA</td>
<td>Diphenylphosphoryl azide</td>
</tr>
<tr>
<td>d</td>
<td>Doublet</td>
</tr>
<tr>
<td>d.r.</td>
<td>Diasteriometric ratio</td>
</tr>
<tr>
<td>EDCi</td>
<td>1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide</td>
</tr>
<tr>
<td>EDG</td>
<td>Electron Donating Group</td>
</tr>
<tr>
<td>e.e.</td>
<td>Enantiomeric excess</td>
</tr>
<tr>
<td>Eg</td>
<td>Examples</td>
</tr>
<tr>
<td>EICR</td>
<td>Enamido Ireland-Claisen Rearrangement</td>
</tr>
<tr>
<td>eq</td>
<td>Mole equivalents</td>
</tr>
<tr>
<td>EWG</td>
<td>Electron Withdrawing Group</td>
</tr>
<tr>
<td>HMPA</td>
<td>Hexamethylphosphoramidé</td>
</tr>
</tbody>
</table>
ICR .. Ireland-Claisen Rearrangement
KHMDS Potassium Hexamethyl Disilazide
LAH Lithium Aluminium Hydride
LDA Lithium Diisopropyl Amide
LiCA Lithium Cyclohexylisopropylamide
LiHMDS Lithium Hexamethyl Disilazide
m ... Multiplet
MHMDS Metal Hexamethyl Disilazide
MS ... Molecular sieves
na ... Non-Applicable
pent Pentet
PG ... Protecting Group
PIVCl Pivaloyl chloride
PhMe Toluene
PMP 4-Methoxyphenyl
‘Pr ... IsoPropyl
Pyr ... Pyridine
q ... Quartet
qn .. Quintet
RSA Retro Synthetic Analysis
RT ... Room temperature
s .. Singlet
SKA Silyl Ketene Acetal
t ... Triplet
Taddol 4,5-Bis(diphenylhydroxymethyl)-2,2-
dimethylidioxolane
TBAF Tetrabutylammonium fluoride
TBDPS ‘Butyl Diphenyl Silyl
TBS .. ‘Butyl Dimethyl Silyl
TBSCl ‘Butyl Dimethyl Silyl Chloride
Tf .. Triflyl
TFA ... Trifluoroacetic Acid
THF Tetrahydrofuran
TIPSOTf Triisopropylsilyl-trifluoromethanesulfonate
1. Introduction

1.1. β–Amino Acids

An amino acid is a compound that contains both an amine and a carboxylic acid functional group. β-amino acids differ from the more common proteinogenic α-amino acids in that a two carbon chain separates these functional groups as opposed to a one carbon link. In order to distinguish positional isomers of β-substituted amino acids, Seebach has proposed the terms β²- and β³-amino acid, where the superscripts indicate the α– or β–substitution with respect to the carboxyl group. Seebach’s notation shall be used throughout this report.

![α-Amino Acid](image1) ![β-Amino Acid](image2)

Fig. 1. α- & β-Amino Acids.

There are three general types of β-amino acids:

1) **Acyclic** – Where substitution takes place at the carbon bearing the carboxyl group (β²-amino acid) e.g. (R)-β²-homovaline 1, the carbon bearing the amino portion (β³-amino acid) e.g. ituric acid 2, or at both positions (β²³-amino acid) e.g. Amha (3) an important precursor to the Adda fragment in cytotoxic microcystins and nodularins.

2) **Carbocyclic** – Where the β²³-amino acid substitution is presented in a carbocyclic ring, for example the antifungal antibiotic cispentacin 4.

3) **Heterocyclic** – Where the amino group is incorporated in a heterocyclic ring, for example methylphenidate (Ritalin®) 5, which is used in the treatment of attention deficit hyperactivity disorder (ADHD) and narcolepsy.
To date there are eight natural occurring β-amino acids that are directly derived from the corresponding proteinogenic α-amino acids, either in free form, or as part of a larger molecule. These are: β-alanine 6, β-leucine 7, β-lysine 8, β-glutamate 9, β-glutamine 10, β-arginine 11, β-phenylalanine 12 and β-tyrosine 13. Other β-amino acids that are not related to proteinogenic α-amino acids are classified as unusual β-amino acids. There are several classes of unusual β-amino acids, these being aliphatic, aliphatic hydroxyl, aliphatic with oxo groups, amino, alicyclic and heterocyclic.

Fig. 2. General Types of β-Amino Acids.

Fig. 3. Natural β-Amino Acids.
In general β-amino acids occur in all five kingdoms of living organisms, which are animals, plants, fungi, bacteria and protista. Contrary to all other β-amino acids, β-alanine and β-aminoisobutyric acid are present in all living organisms since they are directly involved in primary metabolism. To date it is thought that animals are not able to synthesise any β-amino acids except β-alanine 6 and β-aminoisobutyric acid 14.7

Contrary to proteinogenic α-amino acids which are constituents of all enzymes controlling the metabolism in living matter and hence an essential prerequisite for life, most β-amino acids occur as constituents of distinct natural products, such as peptides, alkaloids or terpenoids.8 Bacteria, cyanobacteria, fungi and plants often incorporate β-amino acids into secondary metabolites that serve as tools to secure their survival in competition with other organisms.9-10 Therefore these compounds are often characterised by potent biological and physiological activities that are often crucially based on their β-amino acid substructures.11 Moreover, the incorporation of β-amino acids into peptides as opposed to α-amino acids increases their stability against degradation by mammalian peptidases, caused by a lack of enzymes which allow cleavage of peptidic bonds between α-amino acids and β-amino acids.12 Therefore β-amino acids are an important tool in the development of drugs capable of withstanding hydrolytic degradation for prolonged periods of time.

As a consequence, many natural products with a β-amino acid moiety are potential lead structures for the development of pharmaceutical and agro-chemicals and this still remains an area of extensive research. For instance, the disease lathyrism characterised by crippling of the bones is caused by consumption of seeds derived from plants such as the grass pea (Lathyrus sativus) that contain 3N-oxalyl-2,3-diamino propanoic acid (L-β-ODAP) 15.13 On the other hand, the outstanding cytotoxic effects of the cryptophycins 16 or the nodularins 19 might result in the development of new
anticancer drugs. Taxol® 17 and the derivative taxotere® 18 have already become important anticancer drugs, whereas penicillins such as 20 and related β-lactams have served for decades as prominent antibiotics.14-19

In recent years β-peptide foldamers constructed from constrained carbocyclic β-amino acids like trans-2-aminocyclopentanecarboxylic acid (ACPC) 21 and trans-3-aminopyrrolidine-4-carboxylic acid (APC) 22 have gained significant interest as they adopt a robust helical conformation in aqueous solution with as few as six residues. This property makes these oligomers attractive scaffolds and antimicrobial activity paralleling that of host-defense peptides have been reported for a 12-helical β-peptide composed of ACPC and APC.20-21

Fig. 5. β-Amino Acid Moiety in Natural Products.
1.2. Preparation of Enantiopure \(\beta \)-Amino Acids

1.2.1 Homologation of \(\alpha \)-Amino Acids

Historically \(\alpha \)-amino acids have been shown as excellent starting materials for the preparation of \(\beta \)-amino acids. This is not only due to the fact that there are a plethora of methods available for their synthesis, but also that there is a stereogenic centre present in these compounds that can be transferred to the homologated \(\beta \)-amino acid without significant racemisation.\(^{22}\) There are two classical methods used for the homologation of \(\alpha \)-amino acids to \(\beta \)-amino acids and these are-

1) Arndt-Eistert Homologation

In the late 1920’s a method for the homologation of carboxylic acids was developed by Arndt, Eistert and Partale.\(^6\) This procedure includes activation of the parent \(\alpha \)-amino acid to either the acid chloride or the mixed anhydride, followed by treatment with diazomethane to give the diazoketone. Subsequent photolysis, thermolysis or treatment with catalytic amounts of silver salts in the presence of protic nucleophiles leads to a Wolff rearrangement resulting in loss of nitrogen and homologation of the starting substrate.\(^{23,24}\) The original Arndt-Eistert homologation was subsequently adapted by Balenovic in 1947, allowing the formation of \(\beta \)-amino acids.\(^{25}\) Initially, activation of the carboxylic acid was pursued with thionyl chloride, but later developments allowed milder activation methods utilising more suitable protecting groups for the amino function. \(\alpha \)-Amino acids protected as carbamates 23 can be used as starting materials producing \(\beta \)^3 amino acids 24 in good yields (Scheme 1).\(^{26-27}\)
2) Homologation of Amino Acids Using Cyanohydrins

Although the Wolff rearrangement is the most popular approach for the homologation of α-amino acids, another approach involves the transformation of amino acids 25 to β2-hydroxy-amino acid derivatives 28, via amino aldehydes 26, which are converted to cyanohydrins 27 and subsequently hydrolysed. A major disadvantage with this approach are selectivities in cyanide addition are usually poor, resulting in mixtures of diastereoisomers (Scheme 2).28,29
1.2.2. Hydrogenation of β-Amino Acrylates

Noyori was the first to publish an enantioselective route to β₁-amino acids via an asymmetric hydrogenation of N-acyl-β-(amino)acrylates utilising ruthenium complexes and (R)-BINAP, producing e.e.’s of >90%. Since this initial report there have been countless publications based on improving yield and enantioselectivities with ruthenium and rhodium catalysed homogenous hydrogenations. An important breakthrough was presented by Hsiao in the realisation that chiral-ferrocenylphosphine ligand 30 could be used in the hydrogenation of unprotected (Z)-enamine esters 29 to yield the corresponding β₁-amino esters 31 with excellent yields and enantioselectivities.

Holz has subsequently shown that MalPhos 32 is an effective ligand in the asymmetric hydrogenation of (E)- and (Z)-β-amino acrylates 31 providing β₂-amino acids 33 with enantioselectivities up to 99% and 90% respectively.

Although the synthesis of multisubstituted β-amino acids by ruthenium or rhodium catalysis has yet to be accomplished, Zhang has reported the use of (S)-C3-TunaPhos 34 in the ruthenium catalysed synthesis of the $\beta^{2,3}$ carbocyclic amino acid derivative 35 of cispentacin 4.33

\[\text{Scheme 5. Hydrogenation of β-Amino Acrylates using Zhang’s Protocol.} \]

1.2.3. Conjugate Addition

When applied to the synthesis of β-amino acids the catalytic asymmetric conjugate addition can be achieved by either the addition of carbon based nucleophiles, such as organometallics, cyanide and Michael donors, or by the addition of nitrogen nucleophiles such as amines, hydroxylamines and carbamates.34

The conjugate addition of carbon nucleophiles to a variety of α,β-unsaturated acceptors is an important C-C bond forming reaction, and in the context of synthesising β-amino acids, nitroolefins are versatile acceptors. Wendisch has shown the copper catalysed conjugate additions of organozinc species to nitropropenoates 36 utilising phosphoramidite 37 proceeds with excellent regio- and stereo-selectivities.35 These β^{2}-amino acid precursors 38 can then be subjected to hydrogenation and saponification conditions to yield the required β^{2}-amino acids 39.
Scheme 6. Wendisch’s Route to β^2-Aliphatic Amino Acids.

Jacobsen has utilised the aluminium salen catalyst 41 for the conjugate addition of cyanide to α,β-unsaturated imides 40.36 The imide of the hydrocyanation adducts 42 are hydrolysed and subsequent Curtius rearrangement of acid 43 yields N-Boc protected cyano amides 44. Subsequent hydrolysis of the nitrile in hydrochloric acid affords the β^2-amino acid 45, with only a small degree of racemisation (Scheme 7).

Scheme 7. Jacobsen Route to β^2-Aliphatic Amino Acids.

Fillion has recently shown that Meldrum’s acid derivatives 46 can be utilised with phosphoramidite 37 in synthesising β^3-amino precursors 48, post deprotection of adduct 47 and followed by a Curtius rearrangement.37
Jacobsen has also reported the use of the salen catalyst 41 in the catalytic enantioselective conjugate addition of hydrazoic acid to α,β-unsaturated imides 49, yielding the corresponding azides 50. Conversion to the corresponding β-amino acid was performed by a one pot azide hydrogenolysis/N-Boc protection sequence followed by regioselective cleavage of the imide group, allowing access to β3-aliphatic amino acids 51 with excellent yields and enantioselectivities.

Scheme 8. Fillion’s Route to β3-Aliphatic Amino Acids.

Scheme 9. Jacobsen Route to β3-Amino Acids.

1.2.4. Catalytic Mannich Reactions

Asymmetric Mannich reactions provide useful direct routes for the synthesis of optically active β-amino acids. Two key features that render the Mannich reaction and its products very attractive, are that the reaction tolerates a large diversity of functionality and in cases where β-amino carbonyl products are formed, these can be
readily transformed into β-amino acids. Catalytic Mannich reactions rely on the utilisation of various Lewis and Brønsted acid catalysts.

Kobayashi has shown that Mannich reactions of imines 52 and silyl ketene acetics 53/54 in the presence of zirconium-based Lewis acid 55, allows the synthesis of syn- 56 and anti-β2,3-disubstituted-amino acids precursors 57, in excellent yields, diastereoselectivities and enantioselectivities.40,41 Full deprotection has been shown to yield the syn-β2,3-amino acid 58 as the hydrochloride salt.

Scheme 10. Kobayashi’s Route to syn- and anti-β2,3-Amino Acids.

Hoveyda has shown the use of silver catalysed asymmetric additions of silyl ketene acetics 59 to alkynyl imines 60 in the presence of a Schiff base 61, allows the synthesis of β3-alkynyl amino esters 62, in good yields and enantioselectivities.42

Scheme 11. Hoveyda’s Route to β3-Alkynyl Amino Acids.
Chapter 1

The use of chiral Brønsted acids is ubiquitous in organocatalytic Mannich reactions and also allows a direct entry to the β-amino carbonyl moiety. There are two general types of Brønsted acid, these being thiourea or (L)-proline derivatives, and stronger Brønsted acids such as binol or phosphoric acid derivatives. The mode of organocatalytic reaction follows a generic protocol, in which the electrophile becomes activated by hydrogen bond formation to the organocatalyst and a transition state ordering occurs prior to nucleophilic attack in a stereocontrolled fashion.

Jacobsen has shown that access to β\(^3\)-aryl-amino acids 66 is possible via an asymmetric Mannich reaction of silyl ketene acetals 64 and imines 63, catalysed by thiourea derivative 65.

![Scheme 12. Jacobsen’s Route to β\(^3\)-Aryl-Amino Acids.](image)

Barbas and Hayashi have shown that syn-β\(^2,3\)-aminoaldehydes 69 can be synthesised using the classical organocatalyst (L)-proline 68. This organocatalyst reacts with aldehyde 67 to form chiral nucleophilic enamines in-situ, which then react with electrophiles, such as aldimines and ketimines in a stereocontrolled manner. Advantages associated with this reaction are that it is atom economical, utilises relatively inexpensive readily available starting materials and preactivation of aldehydes (for example as silyl enol ethers) or preformation of enamines are not required. Higher yields, diastereoselectivities (syn selective) and enantioselectivities are often obtained when a three component reaction using aldehyde donors is utilised.
Barbas has subsequently shown that all carbon quaternary stereocentres can be synthesised utilising the (L)-proline catalyst 68 and α,α–disubstituted aldehydes 70, yielding β-formyl substituted α-amino acid derivatives 71 in excellent yield, diastereoselectivities and enantioselectivities. Synthesis of spiro lactam 72 was accomplished by oxidation of the corresponding precursor 71 followed by a simple acid and base treatment.

Scheme 14. Barbas’s Route to syn-β²⁻³-Lactam.
The mechanism for the direct asymmetric \((L)\)-proline catalysed Mannich reaction has been extensively investigated by Houk.\(^9\) The proposed transition state 73 explains the preferential formation of the syn-diastereomer, where \((L)\)-proline directs the reaction between the \(Si\) face of the \((E)\)-enamine of aldehyde and the \(Si\) face of the \((E)\)-PMP-imine. The carboxylic acid proton is completely transferred to the imine and it is hypothesised that the interaction between the newly formed iminium and the carboxylate anion is retained even when water is present.

![Fig. 7. \((L)\)-Proline Catalysed Transition State.](image)

Akiyama has shown that Taddol-derived phosphoric acid 76 can be used to catalyse the addition of silyl ketene acetals 75 to aromatic aldimines 74, yielding \(\beta^{2,2,3}\)-amino acids 77 with good yields and excellent enantioselectivities.\(^{50}\) Unfortunately, this chemistry was limited to the use of symmetric isobutyric derived silyl ketene acetals.

![Scheme 15. Akiyama’s Route to \(\beta^{2,2,3}\)Amino Acids](image)
1.2.5. Organocatalytic Conjugate Addition

The synthesis of β-amino acids via organocatalytic C-N bond forming conjugate additions are a relatively recent development within the synthetic community and represent a fast and atom economic entry.

MacMillan’s use of his second generation imidazolinone catalyst 80 with α,β-unsaturated aldehydes 78, allows conjugate addition of his purpose designed nitrogen nucleophile 79, to the in-situ formed α,β-unsaturated iminium ion. The β²-amino aldehyde products 81 were obtained in high yields and enantioselectivities, and were subsequently oxidised to N-protected amino acids 82.

Scheme 16. Macmillan’s Route to β²-Amino Acids.

Córdova has subsequently followed a similar approach to synthesising analogous compounds to MacMillan, utilising a prolinol catalyst, producing the corresponding β³-amino acids in lower yields but similar enantioselectivities. These current results demonstrate that further optimization of the organocatalytic conjugate addition of nitrogen nucleophiles to α,β-unsaturated carbonyl compounds is required.
1.2.6. Enolate Addition to \(N\text{-}^\text{t}\text{Butylsulfinyl Imines}

Davis has shown the synthesis of \(\beta^{3,3}\)-amino acids 84 are possible by the addition of acetate ester enolates to a limited set of \(N\text{-}p\text{-toluenesulfinyl imines 83 with good yields and excellent enantioselectivities.}^{53\text{-}55}

![Scheme 17. Davis’s Route to \(\beta^{3,3}\)-Amino Acids.](image)

Prompted by this methodology, Ellman has extended this protocol to the more suitable \(N\text{-}^\text{t}\text{Butylsulfinyl imines 85.}^{56\text{-}57}\) The additions of titanium enolates to various substituted-\(N\text{-}^\text{t}\text{Butanesulfinyl aldimines and ketimines were shown to proceed in good to excellent yields allowing access to \(N\text{-}^\text{t}\text{Butanesulfinyl-protected \(\beta^{3}\), \(\beta^{2,3}\), \(\beta^{3,3}\), \(\beta^{2,2,3}\), \(\beta^{2,3,3}\) and \(\beta^{2,2,3,3}\)-amino esters 86 with diastereoselectivities of \(anti\text{-}syn\) between 9:1 and 99:1 with excellent enantioselectivities.}

![Scheme 18. Enolate Additions to \(N\text{-}^\text{t}\text{Butylsulfinyl Imines.}](image)

The observed diastereoselectivity in the syntheses of these \(\beta\)-amino esters, regardless of substitution pattern, can be explained through a six-membered transition state 87, where enolate addition occurs from the least hindered face of the imine.
In addition to the N^η-butylsulfinyl protecting group directing the reaction, it also serves as a versatile protecting group that parallels the reactivity of the Boc group. It is stable to basic conditions and is easily cleaved with one equivalent of HCl.

1.3. Pericyclic reactions

Pericyclic reactions are a distinct class of reactions which possess cyclic transition structures, and in which all bond making and breaking occurs with a concerted movement of electrons, lacking formation of intermediates. There are four distinct subclasses of pericyclic reactions and these are:

Cycloadditions

Cycloadditions are ring forming reactions between two conjugated π-systems and are classified by the net formation or loss (in the case of a retro-cycloaddition) of two σ-bonds. Diels–Alder reactions are ubiquitous in organic chemistry and the 6 π electron dimerization of cyclopentadiene via a $[4+2]$-cycloaddition is a common example, however the inherent reversibility is demonstrated by heating the dimer to afford the retro-cycloaddition products.
Electrocyclic Reactions-
Electrocyclic reactions are invariably unimolecular ring forming reactions, derived from an open chain conjugated π-system. Electrocyclisations are classified by the net formation of a new σ-bond and the loss of 2π-orbitals or vice-versa in the case of an electrocyclic ring opening.

![Scheme 21. Electroyclic Ring Formation & Ring Opening.](image)

Group Transfer Reactions-
Group transfer reactions are bimolecular reactions between an allylic group (ene) and a π-bond (enophile), and are classified by the formation of a new σ-bond with the migration of a hydrogen atom.

![Scheme 22. Ene Reaction.](image)

Sigmatropic Reactions-
Sigmatropic reactions are unimolecular reactions which involve the formation and simultaneous loss of a σ-bond, exemplified by the [3,3]-Cope rearrangement, where the [x,n] nomenclature refers to the number of carbon atoms on each fragment that the σ-bond migrates.

![Scheme 23. Cope [3,3]-Rearrangement.](image)
1.4. The Claisen Rearrangement

The Claisen [3,3] rearrangement was the first example of a sigmatropic rearrangement and was published in 1912 by Ludwig Claisen. Historically the Claisen rearrangement is the thermal rearrangement of aliphatic 88 and aromatic allyl vinyl ethers 90 which occur through a suprafacial pericyclic process via a chair like transition state, to produce γ,δ-unsaturated aldehydes 89 and substituted phenols 91 (post rearomatisation) respectively.

![Scheme 24. Historical Claisen Rearrangements.]

Since its introduction to the synthetic community the Claisen rearrangement has been utilised within the synthesis of a magnitude of carbon skeletons, for instance in the total synthesis of (-)-furoysinin, where a tandem Claisen rearrangement and an intramolecular ene reaction affords the bicyclic alcohol 92 in excellent yield and enantioselectivity.

![Scheme 25. Utilisation of Claisen Rearrangement in Natural Product Synthesis.]

1.5. The Ireland–Claisen Rearrangement

The Ireland–Claisen [3,3]-sigmatropic rearrangement is the Ireland variant of the Claisen rearrangement and was first introduced to the synthetic community in 1972.61 The reaction proceeds via the low temperature deprotonation of an allylic ester 93 by treatment with a lithium dialkylamide base in the presence of a silylating agent. The silyl ketene acetal 94 formed \textit{in-situ} undergoes the [3,3]-sigmatropic rearrangement via a chair transition state 95 to generate the γ,δ-unsaturated carboxylic acid 96 in excellent yield, after acidic workup. Although the rearrangement was presumed to be diastereoselective, the diastereoselectivity was not reported in Ireland’s seminal paper.

\begin{center}
\includegraphics[width=\textwidth]{scheme26.png}
\end{center}

\textit{Scheme 26. The Ireland–Claisen Rearrangement. Relative Stereochemistry not Initially Reported.}

Although Ireland reported the first successful rearrangement of allylic ester reactants, Wang reported the very first ester enolate Claisen rearrangement in 1937.62 This protocol produced pent-4-enoic acid 98 in low yield, upon attempted acetoacetic ester 97 condensation using sodium metal.

\begin{center}
\includegraphics[width=0.5\textwidth]{scheme27.png}
\end{center}

\textit{Scheme 27. First Ester Enolate Rearrangement.}
There were subsequent scattered reports of ester enolate Claisen rearrangements that employed sodium metal, sodium hydride, mesityl-magnesium bromide and diethylamine magnesium bromide up to the point of Ireland’s first publication, however these reactions all suffered low yields and high reaction temperatures. Ireland’s major contribution to this chemistry was the discovery that silylation of the ester enolate suppressed any side reactions, such as decomposition via the ketene pathway and Claisen type condensations.

Since Ireland’s seminal work the Ireland-Claisen rearrangement has been incorporated into a wide variety of target-orientated syntheses and Ireland first exemplified his own chemistry within the synthesis of dihydrojasmine 99.

![Scheme 28. Ireland–Claisen Rearrangement in the Synthesis of Dihydrojasmine.](image)

Other examples of the inclusion of the Ireland-Claisen rearrangement have been seen within Angle’s synthesis of the Pharoah’ ant food trail pheromone (+)-monomorine I 100, and within Zakarian’s synthesis of the E-ring 101 of a spirolide C 102, a marine toxin.
1.5.1. Stereochemical Aspects of the Ireland Claisen Rearrangement

An attractive feature of the Ireland-Claisen rearrangement lies in the ability to reliably transfer stereochemistry from appropriately substituted allyl silyl ketene acetals to either of the newly formed sp³ stereocenters and the alkene, leading to the formation of syn or anti pentenoic acids. The stereochemical outcome of the reaction is determined by two features: (1) the geometry of the silyl ketene acetal and the allylic alkene, and (2) whether the rearrangement proceeds via a chair-like or boat-like transition state.
Enolate and Silyl Ketene Acetal Geometry-

In 1975 Ireland reported ester enolates of propionates and related esters 103 could be stereoselectively generated to give either the (E)-104 or the (Z)-silyl ketene acetal 105, once trapped with TBSCI. When THF was used as the solvent, the (E)-silyl ketene acetal 104 predominates and selectivities were high, with the exception of the phenyl acetates, however when 23% HMPA/THF was used, (Z)-silyl ketene acetal 105 predominates.

![Diagram]

<table>
<thead>
<tr>
<th>Entry</th>
<th>R¹</th>
<th>R²</th>
<th>(E)-104:(Z)-105</th>
<th>(E)-104:(Z)-105</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Et</td>
<td>Me</td>
<td>91:9</td>
<td>16:84</td>
</tr>
<tr>
<td>2</td>
<td>'Bu</td>
<td>Me</td>
<td>97:3</td>
<td>9:91</td>
</tr>
<tr>
<td>3</td>
<td>Et</td>
<td>'Bu</td>
<td>95:5</td>
<td>23:77</td>
</tr>
<tr>
<td>4</td>
<td>Ph</td>
<td>Me</td>
<td>29:71</td>
<td>5:95</td>
</tr>
</tbody>
</table>

Table 1. Silyl Ketene Acetal Geometries

Acyclic Allyl Silyl Ketene Acetals-

Ireland demonstrated that relative diastereocotrol could be imparted into the synthesis of *anti*-2,3-dimethyl pentenoic acid 109 by rearrangement of the (E)-silyl ketene acetal 107 of (E)-crotyl propionate 106 or with the (Z)-silyl ketene acetal 111 of the (Z)-crotyl propionate 113 at comparable levels of diastereoselectivity. 61, 67-69 The analogous results for the *syn*-pentenoic acid 110 could be obtained using the (Z)-silyl ketene acetal 108 of (E)-crotyl propionate 106, or with the (E)-silyl ketene acetal 112 with (Z)-crotyl propionate 113, with diastereoselectivities varying from 5:1 to 8:1.
The stereochemical outcome of these rearrangements are consistent with preferential rearrangement via a chair like transition state, and computational analysis has confirmed that chair like transition states are favoured over the boat by 2-3 kcal/mol.70

Cyclic Allyl Silyl Ketene Acetals

Ireland and others have shown that the rearrangement of cyclic substrates can preferentially rearrange via chair or boat transition states, however this is highly dependant on ring size, ring constitution and ring substituent stereochemistry.71-72 Bartlett has also shown that the treatment of cyclohexenyl propionates under conditions for generation of (E)- or (Z)-silyl ketene acetals results in the formation of the same diastereoisomer \textbf{115} (Scheme 31).73-74 It was subsequently concluded that the (E)-silyl ketene acetal \textbf{114} rearranges preferentially via a chair transition state, whereas the (Z)-silyl ketene acetal \textbf{116} rearranges via a boat transition state, a conclusion that was later supported by computational analysis.70
However, in the case of dihydropyran- and dihydrofuran-derived allylic esters the boat transition state is favoured, irrespective of the silyl ketene acetal geometry. Ireland has subsequently provided a pertinent explanation for this observation and this is based on the effect of the pyran/furan oxygen, which increases the level of C-O bond cleavage leading to a transition state that has more product like geometry.\(^{71-72}\) This shift in the transition state relative to carbocyclic systems, leads to a more polarized transition state structure, which is better stabilised by the overlap of the two allyl moieties, hence rearrangement via a boat transition state is favoured (Scheme 32), however this postulation has yet to be computationally supported.

Scheme 31. Cyclic Allyl Silyl Ketene Acetals.

Scheme 32. Geometries of Dihydropyran Allylic Silyl Ketene Acetals.
Alkene Stereochemistry-

The rearrangement of allylic esters derived from primary alcohols affords terminal alkenes, however if the allylic ester is derived from secondary or tertiary alcohols, then the formation of geometrical alkene isomers may be an issue with the rearrangement. As acyclic systems possess a strong preference for chair-like transition states, the stereochemistry of the product alkene is highly predictable in the case of secondary carbinol derived esters. This is because the substituent is placed in a pseudo-equatorial position. This is exemplified in the synthesis of the butterfly pheromone 118, in which the \((E)\)-alkene 117 is selectively formed during the rearrangement.\(^{75}\)

\[\text{Scheme 33. Predictability of Alkene Geometry in Ireland-Claisen Rearrangement.}\]

Allylic Esters Possessing One Stereocentre: Absolute Control-

Absolute stereocontrol in the Ireland-Claisen rearrangement can be accomplished through incorporating an enantiopure secondary carbinol derived allylic ester, which will allow transfer of chirality to the newly formed stereocenter(s) at the \(\alpha\)- and/or \(\beta\)-position of the pentenoic acid product. Ireland first demonstrated this by use of a bulky TBS crotyl propionate 119.\(^{76}\)
1.6. Other Variants of the Claisen Rearrangement

There are many other variations of the Claisen rearrangement, all of which have subclasses of their own present in the literature. The most popular examples are:

Meerwein–Eschenmoser–Claisen Rearrangement

This rearrangement involves the conversion of allylic, benzyllic, propargylic and allenyl carbinol systems to a ketene N,O-acetal, by treatment with dimethylacetamide dimethyl acetal under refluxing conditions, followed by a rapid [3,3]-sigmatropic rearrangement forming γ,δ-unsaturated amides (Scheme 35).\(^{77-80}\)

Scheme 35. Meerwein–Eschenmoser–Claisen Rearrangement.

Compared to the Ireland–Claisen, the Meerwein-Eschenmoser version is often found to proceed with higher yields and the neutral conditions required allows the use of sensitive substrates, provided they are not thermally labile.
The Johnson–Claisen Rearrangement-

This rearrangement proceeds via condensation of an ortho-ester and an allylic or propargylic alcohol, producing a mixed ortho-ester, which forms a ketene acetal by elimination of a low boiling alcohol.81–82 The ketene acetal intermediate then rearranges via a [3,3]-sigmatropic process to produce γ,δ-unsaturated esters (Scheme 36).

\begin{center}
\includegraphics[width=0.5\textwidth]{scheme36.png}
\end{center}

\textit{Scheme 36. The Johnson–Claisen Rearrangement.}

The Overman Rearrangement-

This rearrangement involves the thermal or mercuric or palladium catalysed rearrangement of allylic trichloroacetimidates to afford the corresponding trichloroacetamides via a [3,3]-sigmatropic rearrangement.83–84 The allylic trichloroacetimidates are easily prepared from reacting allylic alcohols with trichloroacetonitrile in the presence of catalytic amounts of base. Good levels of enantioselectivity have been accomplished through utilisation of chiral palladium sources (Scheme 37).

\begin{center}
\includegraphics[width=0.5\textwidth]{scheme37.png}
\end{center}

\textit{Scheme 37. The Overman Rearrangement.}

The Carroll Rearrangement-

This involves the thermal or anionic [3,3]-sigmatropic rearrangement of β–keto-allylic esters to β-keto acids, which upon decarboxylation provides the corresponding γ,δ-unsaturated ketones. The overall transformation is equivalent to a Claisen rearrangement, but at the ketone oxidation state (Scheme 38).67, 85
Chapter 1 Introduction

Craig has also reported a variant of the Carroll rearrangement, in which α-tosyl silyl ketene acetals formed from allylic tosylacetates or malonates, by bis(trimethylsilyl) acetamide (BSA) and catalytic potassium acetate undergo a [3,3]-sigmatropic rearrangement.\(^{86-87}\) Subsequent acetate-induced desilylation-decarboxylation provides homoallylic sulfones or α-tosyl-γ,δ-unsaturated esters (Scheme 39).

Scheme 39. The Craig Variant of the Carroll Rearrangement.

Aza–Claisen Rearrangement

This sees the replacement of the oxygen atom in a simple Claisen rearrangement by a nitrogen atom. The rearrangement is a thermal process and incorporates the use of aliphatic and aromatic substrates, however product distributions may arise involving a subsequent Cope rearrangement on the aza–Claisen product (Scheme 40).\(^{88}\)

Scheme 40. Aza-Claisen Rearrangement.
A disadvantage of the aza-Claisen rearrangement is the high reaction temperatures that are required. However, introduction of zwitterionic Aza-Claisen rearrangements allows the reduction of these reaction temperatures to a more amenable range, through charge-accelerated ammonium or amide enolates (Scheme 41).

Scheme 41. The Zwitterionic Aza-Claisen Rearrangement

Thio–Claisen Rearrangement

This sees the replacement of the oxygen atom in a simple Claisen rearrangement by a sulfur atom. The rearrangement is a thermal process and incorporates the use of aliphatic and aromatic substrates, but historically has been plagued by low yields due to product distributions and product instability. Considering the rearrangement of allyl phenyl sulfide, product distributions are seen to arise from the desired [3,3]-sigmatropic rearrangement, followed by prototropy and subsequent cyclization in 5-exo-trig 6-endo-trig fashion to yield 5 and 6 membered heterocycles (Scheme 42).

Scheme 42. The Thio–Claisen Rearrangement.

Bellus–Claisen Rearrangement

The Bellus–Claisen rearrangement sees the reaction of allylic ethers, amines and thioethers with ketenes, which form a zwitterionic intermediate that subsequently undergoes a [3,3]-sigmatropic rearrangement, allowing the synthesis of γ,δ-unsaturated esters, amides and thioesters, after zinc dechlorination (Scheme 43).
Chapter 1 Introduction

Scheme 43. The Bellus-Claisen Rearrangement.

Enamido–Claisen Rearrangement-
Recently Clive has published an enamido Claisen rearrangement in the synthesis of the marine alkaloid halichlorine 122, where the distal terminus of the allylic double bond carries a protected Cbz-nitrogen fragment. The rearrangement proceeds in one pot from the secondary cyclic alcohol 120 and butyl vinyl ether under mercuric catalysis to generate the β-amino-γ,δ-unsaturated aldehyde 121.

Scheme 44. The Enamido-Claisen Rearrangement.
1.7. Enamides

Enamides are tempered enamines which display significant chemical stability and nucleophilic reactivity, and are controlled by the electron withdrawing functionality upon the nitrogen centre. These molecules often react akin to simple olefins and allow N-functionality to be incorporated into complex systems. There are several classes of enamide 123 and an increasing level of interest in using these compounds has developed over the past decade, possibly due to the plethora of syntheses available offering substrate versatility and E/Z control.95

There are a plethora of reactions involving the use of enamides within the literature, however some examples of each reaction type include:

Enamides as Nucleophiles-

As enamides can be viewed as tempered enamines, their nucleophilic properties are no surprise. The first enantioselective use of enamides as nucleophiles with aldimines using copper catalysis was reported by Kobayashi.96 This use of enamides allows the synthesis of interesting α-amino acid precursor building blocks in excellent yield and enantioselectivities (Scheme 45).

![Scheme 45. Enamides Acting as Nucleophiles.](image-url)
Gong has reported the H$_8$-BINOL derived phosphoric acid 124 catalysed alkylation of enamides with indolyl alcohols, allowing synthesis of β-aryl 3-(3-indolyl)propanones in excellent yields and enantioselectivities (Scheme 46).97

Scheme 46. Gong’s Use of Enamides as Nucleophiles.

Enamides as Electrophiles-

The Tareda and Zhou groups have independently reported that chiral Brønsted acids 125 can promote the conversion of enamides to chiral iminium ion electrophiles, which can subsequently undergo Friedel-Crafts reactions (Scheme 47).98,99

Scheme 47. Tareda & Zhou’s Use of Enamides as Electrophiles.

Tsogoeva has shown that the BINOL phosphoric acid 126 can catalyse the formation of a quaternary carbon centre bearing a nitrogen atom, through the self coupling of enamides.100 The β-amino ketone products are subsequently isolated in good yield and enantioselectivity (Scheme 48).
Scheme 48. Tsogoeva’s Use of Enamides as a Simultaneous Electrophile & Nucleophile.

Enamides in Organocatalytic Reductions-
Carbery has reported the first use of a bridged flavinium organocatalyst 128 in the diimide reduction of enamide 127 with excellent conversion.101

Scheme 49. Enamides in Organocatalytic Hydrogenation Reactions.

Antilla has also reported the highly enantioselective reduction of enamides catalysed by a dual chiral-achiral acid system. This sees catalytic amounts of chiral phosphoric acid 129 and acetic acid providing excellent yields and enantioselectivities of the reduction product.102

Scheme 50. Enamides in Organocatalytic Reductions.
Enamides in Transition Metal Catalysed Reactions-

Enamides can be viewed as attractive substrates in a number of transition metal mediated alkene transformations. The one reaction that is well developed for enamide substrates is alkene hydrogenation.\(^{95}\) In contexts where incorporation of nitrogen functionality is important, ring closing metathesis has been utilised allowing the synthesis of cyclic enamides (Scheme 51).\(^{103}\)

![Scheme 51. Enamides in Transition Metal Catalysed Reactions.]

Enamides in Pericyclic Reactions-

The use of enamide substrates in pericyclic reactions, such as cycloadditions, electrocyclisations and sigmatropic rearrangements has increased over the past several years.\(^{95}\) For instance a highly efficient and stereoselective Diels-Alder reaction using a conjugated enamide 130 as the reactive diene has been reported, in the presence of chromium-salen catalyst 131 (Scheme 52).\(^{104}\)

![Scheme 52. Enamide in a Cycloaddition.]

Funk has demonstrated the use of an enamide in the electrocyclisation of 2,3-pyrroline 132, to yield the 6π-electrocyclic ring closure product 133 in good yield, allowing access to indole framework seen within trikentrin alkaloids (Scheme 53).\(^{105}\)
Chapter 1

Introduction

Scheme 53. Enamides in Electrocyclic Reactions.

Meyer has reported the first use of an enamide 134 in a sigmatropic rearrangement, that sees formation of amino alcohols 135 in excellent yield and diastereoselectivity, via a [2,3]-Wittig rearrangement.\(^{106}\)

Scheme 54. Enamides in Sigmatropic Rearrangements.

Enamides in Radical Reactions-

The synthetic value of enamide substrates has recently been shown through the total synthesis of Lennoxamine 137, as enamide 136 is observed to undergo a regioselective 7-endo cyclisation followed by subsequent homolytic aromatic substitution (Scheme 55).\(^{107}\)
Enamides in Heterocycle Synthesis-

Movassaghi has demonstrated a new synthesis of pyridines, whereby enamides are converted to \(N \)-vinyl iminium triflates via treatment with triflic anhydride, subsequently reacting with electron rich hetero-substituted alkynes or alkenes to form pyridines (Scheme 56).\(^{108}\)

\[\text{Enamides in Heterocycle Synthesis.} \]
2. The Enamido-Ireland-Claisen Rearrangement

2.1. Background

In spite of high demand for their availability, synthetic access to enantiopure β-amino acids relies on a variety of methods which are unique to the type and position of substitution required. Currently there is no single synthetic protocol allowing the synthesis of β-amino acids ranging from β- to β²,³-amino acids. It was therefore envisaged that an Enamido-Ireland-Claisen rearrangement (EICR) could pose a versatile route, if the synthetic properties of the related Ireland-Claisen rearrangement (ICR) could be transposed. This EICR would allow the required substitution and stereochemical outcome of the β-amino acid be decided pre-reaction.

![Scheme 57. Proposed [3,3]-Rearrangement of Enamides.](image)

The key factors in making the EICR a useful transformation lie in:

1) A rapid preparation of enamido allylic ester substrates.
2) The potential to control the silyl ketene acetal (SKA) geometry and hence control relative stereochemistry in the product.
3) The potential for chirality transfer from the allylic stereocentre to the newly formed stereocenters in the product.
4) Alkene geometry of the allyl group can be built into synthesis of the substrate.
5) The rearrangements usually proceed at colder temperatures compared to the related Claisen rearrangement, hence allowing kinetic control to be achieved.
6) The predictability between chair and boat transition states.
Chapter 2 Results & Discussion

The Carbery group has recently published a direct and novel route to complex β\(^{2,3}\) -amino acid precursors.\(^{109}\) This new methodology was based upon the use of enamido allylic esters 138 for use in an EICR and has been shown to proceed under similar conditions to the generic ICR. From the several examples published moderate to good yields and poor diastereoselectivities were observed for the rearrangement of alkyl derived enamido ester substrates. However the phenyl substrate displayed a good yield and excellent diastereoselectivity of rearranged β-amino ester precursor 144.

![Reaction Scheme](138-144)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Product</th>
<th>Yield (%)</th>
<th>d.r. (anti:syn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me</td>
<td>139</td>
<td>55</td>
<td>2:1</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>140</td>
<td>Trace</td>
<td>na</td>
</tr>
<tr>
<td>3</td>
<td>(^{i})Pr</td>
<td>141</td>
<td>48</td>
<td>3:2</td>
</tr>
<tr>
<td>4</td>
<td>Allyl</td>
<td>142</td>
<td>79</td>
<td>3:2</td>
</tr>
<tr>
<td>5</td>
<td>OBn</td>
<td>143</td>
<td>62</td>
<td>2:1</td>
</tr>
<tr>
<td>6</td>
<td>Phenyl</td>
<td>144</td>
<td>69</td>
<td>>95:5</td>
</tr>
</tbody>
</table>

Table 2. The EICR.

At the time of publication, relative stereochemistry was tentatively assigned based on the observed coupling constants of the allylic methine signal, within \(^{1}\)H-NMR experiments. This proton was observed in both anti- and syn-diastereoisomers as a doublet of doublets, with the major diastereoisomer offering a larger coupling constant consistent with an anti-periplanar open chain of the product β-amino acid precursors and therefore assigned as the anti-diastereoisomer (Fig. 9.).
Whilst the diastereoselectivity in the alkyl examples was disappointing it was also noticeably lower than many Ireland-Claisen reactions of propionates, where diastereomeric ratios of the order of 85:15 or better are often observed. Several factors may be responsible for these observed reductions, including poor E/Z enolate geometry control, the enamide moiety affecting the preference of chair versus boat transition states and post-rearrangement enolisation all having deleterious effects.

2.2. Initial Aim

The high diastereoselection observed with the phenylacetate was indeed intriguing. Following on from these initial results it was decided to first look at optimising the EICR of the phenylacetate, prior to probing the diastereoselection of the EICR through perturbing the electronic nature of the acyl fragment. Any differences in the observed diastereoselectivity may then offer insight into the stability of enolates, SKAs and conformational considerations of chair/boat transition states. Secondly, the use of enantiopure secondary carbinol derived enamido allylic esters may also provide useful information on the effect of electronic perturbations, as traditional Ireland-Claisen rearrangements have been shown to rearrange enantiopure starting materials to >95% e.e.

2.3. Retrosynthesis

Two key requirements were identified for the synthesis of the desired enamido allylic ester substrates. Firstly, a cheap and simple synthesis that allows incorporation of the acyl moiety at late stage would be desirable, allowing multigram quantities of a key
intermediate to be synthesised. Secondly, investigations based on secondary allylic esters would offer potential for asymmetric control with enantiopure substrates during later studies. Retrosynthetic analysis (RSA) on enamido allylic ester 138, provides a key oxazolidinone derived enamido 145 via ester C-O bond cleavage (Scheme 58).

![Scheme 58. RSA of Generic Oxazolidinone Enamido Substrate.](image)

Access to key intermediate 145 could then be based on a racemic and an enantiomerically pure basis, in which:

1) Racemic 145 could be accessed from vinylogous amide 146 under reduction conditions, subsequently produced from a conjugate addition of 2-oxazolidinone 147 to ynene 148 generated from alcohol 149.

![Scheme 59. RSA of Key Vinylogous Hemiaminal 145.](image)

2) Enantiomerically pure (R)-150 could be accessed via a selective reduction of ynamide (R)-151, synthesised via an Ullmann type coupling of 2-oxazolidinone 147 and bromoalkyne (R)-152. Bromoalkyne (R)-152 could be synthesised from enantiomerically pure but-3-yn-2-ol (R)-153 via O-protection and bromination (Scheme 60).
2.4. Synthesis of Racemic Enamido Allylic Esters

The synthetic route undertaken to racemic alcohol 145 followed a procedure reported by Carbery and Janey. After further optimisation, the developed substrate synthesis is outlined in Scheme 61. Vinylogous amide 146 was synthesised in a markedly improved 58% yield, to that published. This was accomplished by a two step procedure involving Jones oxidation of 149, followed by the immediate conjugate addition of 2-oxazolidinone 147 in the presence of catalytic amounts of DABCO. Subsequent sodium borohydride reduction cleanly and chemoselectively reduced the ketone moiety to form the key intermediate 145, in quantitative yields and without the need for further purification.

Esterification of alcohol 145 was performed via the carbodiimide coupling reagent EDCi, and it is noted that significantly improved yields of phenylacetate 154 were observed to that published.
The use of EDCi has been found to be optimal, as all by-products of the reaction can be easily removed during a weak acid-base extraction cycle, with the product isolable without need for further purification. The use of other esterification protocols which are reliant on or generate acidic conditions in-situ, such as the hydrochloric acid (generated from methanol/acetyl chloride) catalysed esterification of alcohol 145 and phenylacetic acid, or esterification of alcohol 145 with phenylacetyl chloride in the presence of triethylamine, show complete degradation of 145 with no signs of product formation. Access to 154 via DCC was promising, however removal of the urea by-products by silica or alumina column chromatography was deleterious and degradation resulted. The degradation pathway for acid mediated esterification conditions can be envisaged to occur via dehydration of alcohol 145, and that seen within chromatographic purification of phenyl acetate 154 could be envisaged to occur via elimination of phenylacetic acid facilitated by activation of the ester and ejection by the enamide. Both degradation pathways yield the same common iminium ion intermediate 155, producing quantitative yields of 2-oxazolidinone 147 and phenyl acetic acid 156 after aqueous work up. Crotonaldehyde 157 has not been isolated post chromatographic separation, but its generation is based on 1H NMR analysis of crude reaction mixtures for esterifications and by treatment of phenyl acetate 154 to 2M hydrochloric acid, followed by organic extraction.
2.5. Optimisation of Phenylacetate EICR

Before investigation into the electronically differentiated phenylacetates, it was decided that optimisation of the EICR of the parent phenylacetate substrate 154 was required. This optimisation was envisaged to encompass all variables associated with this reaction and to compliment the published results.109 These variables included the type and equivalents of base, solvent, reaction temperature, order of addition, quench and workup conditions. From the outset, the methylation of the β2,3-amino acid precursors was accomplished by rapid treatment with diazomethane, as opposed to a published methanolic TMS diazomethane approach.109 This approach was based on a thorough mechanistic elucidation made by Lloyd-Jones into the TMS diazomethane methylation of carboxylic acids.116 This report highlighted product distributions seen using this protocol and exemplified the issues through the methylation of phenylacetic acid 156, whereby methylated acid 158 and unwanted TMS-methyl acetate 159 were generated. Reductions in 159 were seen through increasing the methanol concentration and by the addition of a Brønsted acid.

\begin{align*}
156 & \xrightarrow{TMSCHN_2, \text{MeOH (0.5 M)}} 158 + 159 \\
\text{PhMe} & \quad \text{No Catalyst} \quad 4 \quad 1 \\
& \quad 2 \text{ mol } % \text{ HBF}_4 \quad > 40 \quad < 1
\end{align*}

\textit{Scheme 64. Issues Observed with TMS Diazomethane Methylations.}
Although there is certain dogma based on the use of diazomethane, such as its toxicity and explosive properties, its generation under a controlled environment allows a quick, easy and relatively safe methylation protocol, in absence of any other complications potentially seen with TMS diazomethane.117

![Diagram](https://via.placeholder.com/150)

Table 3. Results from Optimisation of Phenylacetate EICR.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Base</th>
<th>Eq.</th>
<th>Eq. TMSCl</th>
<th>Yield 144 / (% d.r.a)</th>
<th>Yield 158 / %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LiHMDS</td>
<td>1.1</td>
<td>1.1</td>
<td>74 (16:1)bfj</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>LiHMDS</td>
<td>1.3</td>
<td>1.3</td>
<td>80 (16:1)bfj</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>LiHMDS</td>
<td>1.5</td>
<td>1.5</td>
<td>85 (9:1)bfj</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>LiHMDS</td>
<td>1.3</td>
<td>1.3</td>
<td>72 (44:1)cgij</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>LiHMDS</td>
<td>1.3</td>
<td>1.3</td>
<td>80 (32:1)chij</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>LiHMDS</td>
<td>1.5</td>
<td>1.5</td>
<td>66 (32:1)cgij</td>
<td>21</td>
</tr>
<tr>
<td>7</td>
<td>LiHMDS</td>
<td>1.3</td>
<td>1.3</td>
<td>65 (32:1)bgij</td>
<td>26</td>
</tr>
<tr>
<td>8</td>
<td>NaHMDS</td>
<td>1.3</td>
<td>1.3</td>
<td>34 (2:1)cgij</td>
<td>26</td>
</tr>
<tr>
<td>9</td>
<td>KHMDS</td>
<td>1.3</td>
<td>1.3</td>
<td>na (na)cgij</td>
<td>na</td>
</tr>
<tr>
<td>10</td>
<td>LDA</td>
<td>1.3</td>
<td>1.3</td>
<td>na (na)cgij</td>
<td>na</td>
</tr>
<tr>
<td>11</td>
<td>LiHMDS</td>
<td>1.3</td>
<td>1.3</td>
<td>na(32:1)cdgij</td>
<td>na</td>
</tr>
<tr>
<td>12</td>
<td>LiHMDS</td>
<td>1.3</td>
<td>1.3</td>
<td>59 (32:1)cdegi</td>
<td>21</td>
</tr>
<tr>
<td>13</td>
<td>LiHMDS</td>
<td>1.3</td>
<td>1.3</td>
<td>71 (41:1)cgk</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>LiHMDS</td>
<td>1.3</td>
<td>1.3</td>
<td>53 (32:1)cdi</td>
<td>27</td>
</tr>
<tr>
<td>15</td>
<td>LiHMDS</td>
<td>1.3</td>
<td>1.3</td>
<td>82 (32:1)cij</td>
<td>12</td>
</tr>
</tbody>
</table>

ad.r. measured by extended acquisition of crude on 500 MHz 1H NMR bReaction initiated at -78 °C
cReaction initiated at -95 °C dReaction quenched by 10% citric acid (aq) eReaction performed in toluene
fHand addition of substrate to base, TMSCl and THF gAddition of substrate at 4 ml/h to base and TMSCl and THF hAddition of substrate at 2 ml/h to base and TMSCl and THF iAddition of base at 4 ml/h to substrate, TMSCl and THF jWarm to RT over 1 h kReaction allowed to stir for 2 h lWarm to 0 °C over 1 h.

Table 3. Results from Optimisation of Phenylacetate EICR.
This optimisation has demonstrated that higher yields and diastereoselectivities are accomplished when reaction initiation was performed by slow addition of substrate to base and TMSCl (Entry 2, Table 3) and even better at the lower temperature of -95 °C (Entry 4, Table 3). The rearrangement displayed a striking dependence on the nature of the base used, where NaHMDS significantly reduced diastereocontrol (Entry 8, Table 3) and both KHMDS and LDA yielded intractable mixture of products (Entry 9 and 10, Table 3). The reaction was relatively insensitive to the choice of solvent, working well in toluene (Entry 12, Table 3). Furthermore, the manner of reaction quench was found to be important (Entry 11, Table 3), as methylation of residual citric acid present post work up was seen to co-elute with product during column chromatography leading to impure product. An inverse addition protocol was observed to have marginal reductions in diastereocontrol (Entry 15, Table 3).

To allow structural verification of the major diastereomer, 144 was successfully recrystallised allowing an X-ray structure be acquired (Figure 10). To ensure that the major diastereomer was correctly analysed, the single crystal and powder diffractions of bulk sample were compared (see appendix), verifying that the anti-relationship of these β2,3-amino acid precursors predominate.

![Fig. 10. ORTEP Plot of Phenylacetate 144 (Ellipsoids Shown at 30% Probability).](image)

A general observation from these rearrangements was seen to be the recovery of variable amounts of methylated phenylacetic acid 158 in addition to the desired β2,3-amino acid precursor, allowing near quantitative mass balance be accounted for. As the consumption of starting material can not be monitored by TLC, due to its inherent
sensitivity to acidic media, it was thought that the reaction may not be complete after 60 minutes and the acidic quench may play a deleterious effect by hydrolysing the unreacted enamido ester starting material. However, this was not considered to be a factor, as when the reaction time was increased (Entry 13, Table 3) comparable yields and diastereoselectivities were obtained. Other hypotheses for the generation of 158 are based on two possible degradation pathways involving the initial formation of the enolate 160, from the enamido allylic ester starting material. It is postulated that either degradation occurs via a ketene type pathway in which the enolate 160 ejects the alkoxy 161 (Pathway A, Scheme 65), or alternatively through an enamide facilitated pathway, involving ejection of a doubly deprotonated carboxylic acid (Iwanov reagent) 162 and yielding iminium ion 155. These intermediate degradation products would then yield the observed by-product 156, post protic quench via either degradation pathway prior to methylation.

![Scheme 65. Possible Degradation Pathways for Enolate 160.](image)

Observation analytically and/or isolation physically of the enamido alcohol 145 from the reaction mixtures has not been achieved, perhaps an aspect of its strong sensitivity to protic environments such as the reaction quench. However, potential indications of the presence of aldehydic signals in the 1H NMR spectra of crude reaction mixtures may allude to the presence of crotonaldehyde 157. This observation, however, does not prove either degradation pathway, as separate treatment of alcohol 145 with 1M HCl:brine solution yields a complex reaction profile alluding to the formation of 2-oxazolidinone 147 and crotonaldehyde 157.
2.6. Rearrangement of Electronically Differentiated Arylacettes

With improved rearrangement conditions in hand for the parent phenylacetate enamido ester, the level of diastereoselectivity relative to the electronic nature of the acyl moiety could now be investigated. A range of phenylacetates were prepared with electronically differentiated substituents, namely the electron rich methoxy, the electron poor nitro and the relatively electron neutral methyl group, each placed sequentially at the ortho-, meta- and para-positions. These substrates were synthesised utilising the now standard EDCi coupling conditions in excellent yields (Table 4).

![Diagram of reaction]

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>o-OMe</td>
<td>163</td>
<td>94</td>
</tr>
<tr>
<td>2</td>
<td>m-OMe</td>
<td>164</td>
<td>76</td>
</tr>
<tr>
<td>3</td>
<td>p-OMe</td>
<td>165</td>
<td>91</td>
</tr>
<tr>
<td>4</td>
<td>o-Me</td>
<td>166</td>
<td>71</td>
</tr>
<tr>
<td>5</td>
<td>m-Me</td>
<td>167</td>
<td>74</td>
</tr>
<tr>
<td>6</td>
<td>p-Me</td>
<td>168</td>
<td>88</td>
</tr>
<tr>
<td>7</td>
<td>o-NO$_2$</td>
<td>169</td>
<td>85</td>
</tr>
<tr>
<td>8</td>
<td>m-NO$_2$</td>
<td>170</td>
<td>92</td>
</tr>
<tr>
<td>9</td>
<td>p-NO$_2$</td>
<td>171</td>
<td>85</td>
</tr>
</tbody>
</table>

Table 4. Yields for EDCi Couplings.

Rearrangement and esterification of these substrates was then pursued using the newly optimised conditions, yielding the corresponding methyl esters in good yields and poor to excellent diastereoselectivities.
Chapter 2 Results & Discussion

![Chemical Reaction]

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Product</th>
<th>Yield (%)</th>
<th>d.r.(^a,b)</th>
<th>By-Product</th>
<th>Yield (%)(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>o-OMe</td>
<td>172</td>
<td>79</td>
<td>22:1</td>
<td>181</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>m-OMe</td>
<td>173</td>
<td>73</td>
<td>19:1</td>
<td>182</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>p-OMe</td>
<td>174</td>
<td>77</td>
<td>24:1</td>
<td>183</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>o-Me</td>
<td>175</td>
<td>71</td>
<td>19:1</td>
<td>184</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>m-Me</td>
<td>176</td>
<td>74</td>
<td>43:1</td>
<td>185</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>p-Me</td>
<td>177</td>
<td>70</td>
<td>54:1</td>
<td>186</td>
<td>21</td>
</tr>
<tr>
<td>7</td>
<td>o-NO(_2)</td>
<td>178</td>
<td>73</td>
<td>5:1</td>
<td>187</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>m-NO(_2)</td>
<td>179</td>
<td>75</td>
<td>16:1</td>
<td>188</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>p-NO(_2)</td>
<td>180</td>
<td>76</td>
<td>9:1</td>
<td>189</td>
<td>13</td>
</tr>
</tbody>
</table>

\(^a\) d.r. measured by extended acquisition of crude on 500 MHz \(^1\)H NMR. \(^b\) Triplicates have been performed in each case. Measured d.r. is reproducible and reported as an average. \(^c\) Yield based on amount of EICR product that degradation product corresponds to.

Table 5. Results for Arylacete EICR.

In all ortho-substituted systems a deterioration in diastereoselectivity was observed compared to the parent phenylacetate 144, with a significant reduction seen for the o-NO\(_2\) (Entry 9, Table 5). Consistent reductions in diastereoselectivity were seen for the meta-substituted analogues, however, the most interesting range of diastereoselectivities were observed for the para-substituted systems. Significant reductions in the diastereoselectivity were observed for the electron donating methoxy (Entry 3, Table 5) and the electron withdrawing nitro group (Entry 9, Table 5), but an increase in diastereoselectivity was observed for the relatively electron neutral methyl group (Entry 6, Table 5), compared to the parent phenylacetate 144.

With the ortho-variants, the diminished diastereoselectivity observed can be attributed to dual steric and electronic effects within the rearrangement transition state. However,
the para-variants can be viewed on deconvoluted steric and electronic effects, as these groups are structurally remote from the site of reaction. Within these EICR reactions there are several possibilities that could lead to the diminished diastereoselectivity observed. These are-

1) Non-Selective Enolisation
It is well known within the Ireland-Claisen rearrangement that the enolisation by lithium amide bases occurs under kinetic control, yielding formation of the more favourable Z-enolate.66-67 Therefore deprotonation of enamido allylic phenylacetate 144 would be expected to occur with a similar outcome through an analogous six-membered transition state, where 1,3-diaxial interactions predominate and a \textit{pseudo}-equatorial positioning of the phenyl ring is favoured generating Z-enolate 160.

\begin{center}
\textbf{Scheme 66. Enolisation Transition States.}
\end{center}
However, certainly in the presence of any ortho-arylsubstituents 190, a 1,2-
transannular effect may play a significant role, counteracting the strong 1,3-diaxial
effect (Scheme 67).

If this were the case, then poor E/Z-enolate control may be responsible for the poor
diastereoselectivity seen, assuming that the rearrangement occurs, post silylation,
through a reliable chair transition state. This argument is exemplified by the ortho- and
para-methyl systems (175 & 177), as a notable reduction in diastereoselectivity is seen
with the ortho-methyl variant, yet high diastereococontrol is observed with the para-
methyl variant. However, the near identical reductions in diastereococontrol seen with
the ortho- and para-nitro (178 & 180) and methoxy (172 & 174) systems respectively,
may allude to the presence of an alternative stronger effect outweighing steric issues in
these cases.
2) Enolate Isomerisation

An alternative to poor E/Z-enolate control via initial deprotonation could be seen through a post-enolisation isomerisation. This effect, perhaps most suited by the presence of a conjugated electron withdrawing or donating group, could mesomerically remove enolate character by either withdrawing electron density out of, or inserting electron density into the π-system. This mechanism, exemplified by the para-nitro 191 and methoxy 192 variants (Scheme 68), could subsequently erode any geometrical control of enolisation, as the enolate could isomerise prior to silylation and subsequent rearrangement.

![Scheme 68. Possible Explanation for Low d.r. with para-Nitro- and para-Methoxy-Substrates.](image)

This argument may be more suited to electron withdrawing groups which can act as a resonance stabilised electron sink, exemplified in the above case through nitronate 191.

3) Silyl Ketene Acetal Isomerisation

Providing that formation of the E-silyl ketene acetal is kinetically favoured, another variable that could result in poor diastereoocontrol may be presented by silyl ketene acetal isomerisation. Dauben has computationally supported observed experimental results on E/Z silyl ketene acetal ratios of propionate derived systems, however inconsistencies are observed between the calculated E/Z ratios of phenylacetate
The E/Z silyl ketene acetal ratios for the parent phenylacetate were calculated to be kinetically favoured and are in stark contrast to the observed ratio of 29:71 (E:Z) seen by Ireland.66,67,68 Corset and Tanaka have both separately shown that Dauben’s calculation for the selective formation of the E-silyl ketene acetal was correct.119,120 The predominant formation of the Z-geometrical isomer is the result of a thermodynamic equilibration between the E- and Z-silyl ketene acetals under the reaction conditions and/or work up procedures, implying that silylation may be a poor technique for maintaining high E/Z ester enolate ratios. With these considerations in mind the thermodynamic isomerisation of the silyl ketene acetal may be responsible for the poor diastereoselectivity observed within the electron donating and withdrawing variants of the EICR.

\begin{center}
\includegraphics[width=\textwidth]{scheme69.png}
\end{center}

\textit{Scheme 69. Possible Thermodynamic Isomerisation of SKA.}

4) \textbf{Competition Amongst Alternative Transition States}

Another consideration which may result in the observed diastereoselectivity could be energetically similar chair and boat transition states prior to rearrangement.3 This factor combined with any thermodynamic aspects of SKA isomerisation could lead to a very complex situation where four diastereomeric transition states may coexist (Figure 11).119,120 The formation of the \textit{anti}-diastereomer is then not only consistent with an E-SKA rearranging via chair transition state 193, but also a Z-SKA rearranging via boat transition state 194. Simultaneously the \textit{syn}-diastereomer could be accessed through rearrangement of a Z-SKA via chair transition state 196 or an E-SKA through boat transition state 195.
5) Non-Concerted Character

The potential for pericyclic reactions to possess chameleonic transition states, where the mechanism skirts between a concerted intramolecular and a non-concerted intermolecular reaction, have proved an area of much discussion within the physical organic community. A possible explanation for the observed trends in diastereoselectivity within the EICR may be presented by such a change in mechanism. A truly concerted, selective, one step mechanism may exist for the highly diastereoselective phenyl- and tolylacates; however a non-concerted, non-selective, two step mechanism may result for the nitro- and methoxyacetates.

The formation of intimate ion pairs could be facilitated by the enamide, causing cleavage of the C-Oσ ester bond and yielding iminium ion intermediate in both
electron withdrawing nitro- and electron donating methoxy-cases. The recombination of these ion pairs could then occur via the nitronate 197, or by the Iwanov reagent 198, producing aldol type selectivity.

6) Post Rearrangement Epimerisation

Post rearrangement enolisation was first reported in Ireland’s seminal paper, where it was noted that 6% of C-silylated pentenoic acid 199 was isolated in addition to the desired product 96.61

The issue surrounding post rearrangement enolisation relies on the retention of a second enolisable proton within the pentenoic acid product. McIntosh has subsequently reported deleterious effects seen with post rearrangement epimerisation, in that, albeit
no C-silylation was noted, anomalously low yields and variable diastereoselectivities were observed in the formation of 200 as a function of time. These issues were circumvented via a cold quench with acetic acid, halting post rearrangement enolisation.

Post rearrangement epimerisation may therefore be responsible for the low diastereoselectivities seen within the EICR and in order to discount this variable a number of test reactions were performed. In order to test whether epimerisation of the product silyl ester was an issue, the rearrangement of 154 was monitored over 24 hours by extracting aliquots after 1, 3, 5, 11 and 24 hours. After treatment by diazomethane, the observed diastereoselectivity from these aliquots was seen to remain identical, subsequently demonstrating that erosions in diastereoselectivity are independent of reaction time. Also, the treatment of the isolated methyl ester 144 with LiHMDS and TMSCl lead to quantitative return of diene 201 via E1cB elimination of 2-oxazolidinone 147.

Scheme 73. McIntosh’s Solution to Post Rearrange ment Epimerisation.

Scheme 74. Time Study on EICR of Phenylacetate 154.
During the course of the EICR, the formation of by-products such as hexamethyldisilazane (HMDS) from enolisation, or lithium chloride from silylation of the enolate may prove important.

These by-products may be responsible for the low diastereoselectivity seen with the nitro-arylacetate silyl ester products, as these would be envisaged to be more susceptible to soft enolisation by the secondary amine HMDS in the presence of the Lewis acid, lithium chloride. In order to test this hypothesis, \textit{syn-}180 and \textit{anti-}180 were separately treated with HMDS and LiCl in THF at room temperature over 24 hours, no erosion of diastereomeric purity was observed in this experiment.
2.7. Further Investigation into the Electronic Nature of para-Substitution

The striking range of diastereoselectivity observed with the para-nitro, methoxy and tolylarylacetates, strongly suggest that stereoelectronic effects play an important role in determining the diastereochemical outcome of the EICR. The sharp reductions in diastereoselectivity observed for the strongly electron withdrawing 180 and donating analogues 174, compared to the relatively electron neutral tolyl 177 system, indicate that a fine balance between stereoelectronics and diastereoselectivity may exist. In order to probe this relationship a more comprehensive investigation into the nature of para-substitution was pursued, based on varying levels of electron withdrawing and donating capabilities. With this in mind seven other para-substituted arylacetate substrates were synthesised in high yields 202-208. Additionally, the synthesis of the electron rich 2,4-dimethoxy arylacetate 209 was also accomplished in a high yield. Other substrates synthesised in high yields included the styryl 210, 3-methylindolyl 211 and dioxolane 212 arylacetates, with the intention of probing electronics of substitution indirectly.
With these eleven other aryl acetates in hand, the rearrangement under optimised conditions provided the corresponding β2,3-amino acid precursors in high yields and a range of diastereoselectivities.

Table 6. Yields for EDC\textsubscript{i} Couplings.
Results & Discussion

![Chemical Reaction Diagram](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Product</th>
<th>Yield (%)</th>
<th>d.r.</th>
<th>By-Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\text{Me}_3\text{N})</td>
<td>213(^d)</td>
<td>58</td>
<td>6:1</td>
<td>224</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>(\text{I}^\text{N})</td>
<td>214</td>
<td>77</td>
<td>60:1</td>
<td>225</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>(\text{F}^\text{N})</td>
<td>215</td>
<td>73</td>
<td>23:1</td>
<td>226</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>(\text{Cl}^\text{N})</td>
<td>216</td>
<td>72</td>
<td>46:1</td>
<td>227</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>(\text{F}_3\text{C}^\text{N})</td>
<td>217</td>
<td>71</td>
<td>21:1</td>
<td>228</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>(\text{NC}^\text{N})</td>
<td>218</td>
<td>63</td>
<td>17:1</td>
<td>229</td>
<td>0(^f)</td>
</tr>
<tr>
<td>7</td>
<td>(\text{MeO}_2\text{S}^\text{N})</td>
<td>219(^e)</td>
<td>67</td>
<td>>25:1</td>
<td>230</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>(\text{O}^\text{Me}^\text{N})</td>
<td>220</td>
<td>57</td>
<td>6:1</td>
<td>231</td>
<td>29</td>
</tr>
<tr>
<td>9</td>
<td>(\text{O}^\text{Me}^\text{N})</td>
<td>221</td>
<td>68</td>
<td>>25:1</td>
<td>232</td>
<td>19</td>
</tr>
<tr>
<td>10</td>
<td>(\text{Me}_3\text{N}^\text{N})</td>
<td>222</td>
<td>50</td>
<td>10:1</td>
<td>233</td>
<td>29</td>
</tr>
<tr>
<td>11</td>
<td>(\text{O}^\text{Me}^\text{N})</td>
<td>223</td>
<td>58</td>
<td>32:1</td>
<td>234</td>
<td>27</td>
</tr>
</tbody>
</table>

\(^a\) d.r. measured by extended acquisition of crude on 500 MHz \(^1\)H NMR NMR. \(^b\) Triplicates have been performed in each case. Measured dr is reproducible and reported as an average. \(^c\) Yield based on amount of EICR product that degradation product corresponds to. \(^d\) LiHMDS added to a solution of substrate and TMSCl. \(^e\) Substrate added as a solution in THF at 20 mg/mL, as opposed to standard 100 mg/mL. \(^f\) Clean isolation not accomplished.

Table 7. Results for Substituted Arylacetate Substrate Rearrangements.
Over all eleven examples of *para*-substituted arylacetate rearrangements, capricious levels of diastereochemical control are observed varying from 6:1 for the electron rich *para*-dimethylamino 213, to 60:1 for the *para*-iodo 214 and finally 9:1 for the *para*-nitro 180. Whilst all *para*-arylacetate rearrangements seemed to fit into a scale of diastereoselectivity based on electron donating/withdrawing capability, it is worth while noting that the *para*-dimethylamino 213 and *para*-sulfone 219 could not be rearranged via the optimised protocol and thus cannot reliably be included in any discussions based around mechanistic evaluations. Issues surrounding injecting a solution of the *para*-dimethylamino substrate 202 to LiHMDS and TMSCl in THF were problematic, based on the substrate blocking the injection needle. This problem was circumvented by an inverse rearrangement protocol, in which a solution of LiHMDS was added to a solution of 202 and TMSCl in THF. Issues with the *para*-sulfone 208 were seen to be a general insolubility of the substrate. Following a modified procedure the rearrangement was accomplished via addition of sulfone 208 as a solution in THF at 20 mg/ml, as opposed to the standard 100 mg/ml, subsequently yielding an unexpectedly high diastereoselectivity based on its electron withdrawing capability. Rearrangement of the 2,4-*ortho*-dimethoxy arylacetate 220 was seen to occur with reduced diastereocountrol to that of even the *ortho*- 172 and *para*-methoxy arylacetate 174, presumably a combination of increased electron density and the presence of *ortho*-substitution. The rearrangement of the vinylogous phenylacetate, to give styryl product 221 and also the incorporation of electron donating groups in the form of the dioxolane rearrangement 223 were seen to proceed with excellent levels of diastereocountrol. Marginal increase in diastereocountrol was noted for the rearrangement of the electron rich 3-methyl indole 222. Again, nearly complete mass balance was recovered with the corresponding methylated arylacetates retrieved during column chromatography.
2.8. Hammett Relationship

The Hammett relationship and its extended forms have been one of the most widely used means for the study and interpretation of organic reaction mechanisms.124 The relationship was developed by Hammett empirically, from the ionization equilibria of \textit{meta}- and \textit{para}-substituted benzoic acids in water at 25 °C.125-128

\[
\text{Scheme 77. Ionization of para-Substituted Benzoic Acids.}
\]

These values led Hammett to note the existence of a linear free energy relationship between the acidities of substituted benzoic acid derivatives and the rates of many chemical reactions through a simple formula-129,130

\[
\log \frac{k}{k_0} = \sigma \rho = \log \frac{K}{K_0}
\]

\textit{Equation 1. Hammett Equation.}

From this, \(k\) and \(K\) refer to the rate constant and equilibrium constant respectively for a substituted reactant, \(k_0\) and \(K_0\) are the corresponding quantity for the unsubstituted reactant. The substituent constant, \(\sigma\), is a value unique to the type of substituent and is a reflection on how electron-donating (-\(\sigma\)) or electron-withdrawing (+\(\sigma\)) that substituent is relative to hydrogen. The substituent constant \(\sigma\), represents the sum of the total electrical effects of resonance \(R\) and field \(F\), considerations of a substituent. The reaction constant, \(\rho\), is dependant upon the reaction type but not on the substituent used and measures the susceptibility of the reaction to electronic effects. Graphical representation of the Hammett relationship allows clear indication of \(\rho\), where a build
up of electrons towards (+\(\rho\)) or removal of electrons away from the aromatic ring (-\(\rho\)) may occur with in the rate determining step of the reaction.

Reactions that generate a positive \(\rho\) value typically involve nucleophilic attack on a carbonyl group, such as in the case of the alkaline hydrolysis of a variety of meta- and para-substituted ethyl benzoates where \(\rho = +2.5\).\(^{129}\) This value indicates that the reaction responds to substituent effects in the same way as the ionization of the corresponding benzoic acids, but is enhanced by a factor of 2.5. When \(\rho\) is positive the overall rate of reaction reduces with electron donating substituents. Reactions that generate a negative \(\rho\) value typically involve loss of electron density from the aryl ring and the overall rate of reaction decreases by the presence of electron withdrawing substituents. The S\(_N\)2 alkylation of meta- and para-substituted phenoxides with ethyl iodide leads to a \(\rho\) value of -1.0.\(^{129}\)

In addition to linear Hammett plots, non-linear Hammett plots can also provide information about the mode of reaction through curvature of the plot. Generally a "concave-up" curve alludes to a change in the mechanism or transition state of the
reaction, however, the “concave-down” curve alludes to a single mechanism with a change in the rate determining step.131

\[
\begin{align*}
\text{Concave Up Hammett Plot} \\
\text{Concave Down Hammett Plot}
\end{align*}
\]

\[
\begin{align*}
\sigma = \text{Negative} & \quad \text{Electron Donating Groups} \\
\sigma = \text{Positive} & \quad \text{Electron Withdrawing Groups}
\end{align*}
\]

Fig. 12. Typical Non-Linear Hammett Plot.

Examples of a concave up Hammett plot include that of displacement reactions, involving a change between S_N1 and S_N2 for tertiary amine substitutions of \textit{para}-substituted benzylhalides.132

\[
\begin{align*}
\text{Scheme 78. Change in Mechanism between } S_N1 \text{ and } S_N2 \text{ Displacements, Concave Up Hammett Plots.}
\end{align*}
\]
Examples of a concave down Hammett plot have been observed in the intramolecular Friedel-Crafts alkylation of 2-phenyltriarylcarbinols 235. Here, formation of carbocation 236 is observed to be the rate determining step for electron withdrawing para-substitution and Friedel-Crafts alkylation is observed to be the rate determining step for electron donating para-substitution.133

![Scheme 79. Change in Rate Determining Step, Concave Down Hammett Plots.](image)

Modifications to the Hammett Equation

Hammett noted that deviations from his equation were seen for certain substituents within reactions producing a large value of \(\rho \).125,129,130 Notably, the para-nitro substituent was the most troublesome when combined with a reaction centre or group having a much stronger tendency than the carboxylate ion to supply electrons, such as aniline and phenol derivatives. It was noted that a unique \(\sigma \) value could not be used for this substituent and this led to the development of modified \(\sigma \) values for this, and other substituents that can enter into direct resonance with the reaction site in the transition state. From this two new sets of parameters were devised namely \(\sigma^- \), developed by Hammett and \(\sigma^+ \) values developed by Brown.125,129,130,134-135 For cases where an electron withdrawing group interacts with a developing negative charge in the transition state, the \(\sigma^- \) value would be best suited, and for cases where an electron donating group interacts with a developing positive charge in the transition state, the \(\sigma^+ \) value would suffice.

There have been a variety of further modifications to the Hammett equation, however the most pertinent are the Taft, Yukawa-Tsuno and the Swain-Lupton equations.136-141 The Taft equation correlates field effects in the absence of resonance effects and was
generated from the assumption that steric and resonance effects were equal within the hydrolysis of propionate esters, catalysed by acid or base conditions.\(^{136-138}\) This assumption led to the conclusion that rate differences would only be caused by the field effects of substitution of a propionate derived ester and the nature of the corresponding alcohol it is derived from. The field effects of substituents could therefore be determined by measuring the rates of acid- and base-catalysed hydrolysis of a series of propionate derived esters, providing the alcohol constituent remains constant. The observed rate constants lead to a new form of the Hammett equation based on a redefinition of \(\sigma\) as \(\sigma_l\). Here \((k/k_0)_B\) is the rate constant for basic hydrolysis of the substituted propionate ester, divided by the unsubstituted propionate ester and \((k/k_0)_A\) is the rate constant for acidic hydrolysis of the substituted propionate ester divided by the unsubstituted propionate ester.

\[
\log \frac{k}{k_0} = \sigma_l \rho_l
\]

where, \(\sigma_l = 0.181 \left[\log \frac{k}{k_0}_B - \frac{k}{k_0}_A \right]\)

Equation 2. The Taft Equation.

The major disadvantage of the Taft equation, even though it considers propionate esters in addition to the benzoic systems, are that steric and resonance effects (if possible) are not considered and if these are present then the equation fails. Taft has subsequently been able to isolate steric effects, \(E_s\), but again only in cases where resonance interactions are absent, leading to a value that is proportional to the size of substituent. The modified Taft equation is –

\[
\log \frac{k}{k_0} = E_s
\]

Equation 3. Modified Taft Equation.
The Yukawa-Tsuno modification incorporates an enhanced resonance parameter r, that provides a measure of resonance stabilisation for positive or negative charge build up within the transition state structure.141 The Yukawa-Tsuno equation independently utilises both σ^+ and σ^- values, depending on which substituent constant is under consideration.

\[
\log \frac{k}{k_0} = \rho(\sigma + r(\sigma^+ - \sigma)) = \log \frac{K}{K_0}
\]

Equation 4. Yukawa-Tsuno Modified Hammet Equation.

The enhanced resonance parameter r, is determined via the ρ value for a given reaction. Calculation of r then allows the resonance considerations of a particular reaction be inferred. When $r = 0$ there are no resonance differences seen compared to that of the unsubstituted compound, however when $r > 0$ the reaction is more sensitive to resonance effects and when $r < 0$ the reaction is less sensitive to resonance effects than the unsubstituted compound.

The Swain-Lupton equation retains the idea of a practical distinction between the field, F and resonance, R contributions.139-140 The substituent constant is therefore a combination of a numerical constant, F and R, which are independent of reaction, solvent and temperature.

\[
\log \frac{k}{k_0} = \sigma \rho = \log \frac{K}{K_0}
\]

\[
\text{where } \sigma = 0.921F + R
\]

Equation 5. Swain-Lupton Modified Hammet Equation.

Further modifications to the resonance parameter have been made in order to fully account for instances where strong resonance interaction occurs between reaction centre and substituent, of which R has been further optimised into R^+ and R^-, to coincide with σ^+ and σ^- constants.
2.9. Hammett Relationship & EICR

The Hammett relationship is an important tool that allows information about the mode and transition state structure of individual types of reactions be inferred. In order to explain the varied diastereoselectivity observed in the EICR of the electronically differentiated para-substituted arylacetates, we turned to the Hammett relationship. As rate constants for the EICR were lacking, utilisation of the observed diastereoselectivities were pursued in order to perform a Hammett type analysis. Although the use of diastereoselectivity is not purely Hammett based, its use has seen success within various types of reactions, including radical reactions, aminohydroxylations and Diels-Alder reactions.142,143,144 It is important to note that log(d.r.) is under conditions of kinetic control and is proportional to the free energy difference between the two alternative transition states for formation of anti- and syn-diastereomers and is therefore considered a ratio of rate constants. Taking this in to account the Hammett equation takes the following form-

\[
\log \left(\frac{\text{d.r.}_\text{anti}}{\text{d.r.}_\text{syn}} \right) = (\rho_\text{anti} - \rho_\text{syn})\sigma
\]

Equation 6. Hammett Equation in Terms of d.r.

In order to examine any Hammett type relationships present, the log(d.r.) for all para-substituted rearrangements, except the para-dimethylamino 213 and the para-sulfone 219 were plotted against substituent constants σ, σ^+ and σ^- (see appendix). As these plots revealed no visible correlation, further investigation into the nature of the substituent constant σ, led us to probe the resonance R parameters, based on the Swain-Lupton modification.124 Again poor correlations were observed with R and R^+ (see appendix), however utilisation of R^- demonstrated excellent correlation (Graph 1). Perhaps this result demonstrates that the diastereoselectivity of the EICR is purely dependant on the electron withdrawing resonance effects of substitution, independent of field effects, hence why poor correlations were observed for previous plots.
The significance behind a non-linear Hammett plot arises when the mechanism of a reaction changes or when the measured rate constant is a combined quantity depending on the rate and equilibrium constant of several reaction steps. In the case of the varying diastereocontrol observed within the EICR, the non-linear relationship arises from the relative rates of reaction producing both the syn- and anti- diastereomers. This however, may arise from either a change in rate-determining step or a change in mechanism occurring for a particular diastereomer. Several viable scenarios are available to explain this break in Hammett type plot (Fig 13-17).
Fig. 13. No change in RDS or mechanism occurs for the reaction producing the anti-diastereomer across the range of substituents considered; a change in mechanism occurs for electron withdrawing groups in the reaction producing the syn-diastereomer.

Fig. 14. Change in mechanism occurs for reactions producing both syn- and anti-diastereomers.

Fig. 15. Change in RDS occurs for the mechanism producing the anti-diastereomer across the range of substituents considered; no change in RDS or mechanism occurs for the reaction producing the syn-diastereomer.

Fig. 16. Change in RDS occurs for reactions producing both syn- and anti-diastereomers.

Fig. 17. Change in RDS occurs for the reaction producing the anti-diastereomer; change in mechanism occurs for the reaction producing the syn-diastereomer.

Perhaps the least likely scenarios are that resulting in figures 13, 15 and 17, as these require that diastereomeric transition states respond in fundamentally different fashions to electronic perturbations. Consequently we suppose that either a dual change in either the reaction mechanism (Fig. 14) or the rate-determining step (Fig. 16) for both diastereomeric transition states occurs. Assuming that we thus exclude scenarios resulting in figure 13, 15 and 17 from consideration then, in principle, we may distinguish between scenarios in figure 14 and 16 on the basis of absolute rate studies.
Chapter 2 Results & Discussion

It is seen from the Hammett type plot (Graph 6.), that the overall preference of formation of the anti- over the syn-diastereomer decreases with increasing electron withdrawing substituents and is consistent with an observation made by Houk in studying similar effects in the related Claisen rearrangement. If the absolute rates of reaction tended toward an increase with increasing electron withdrawing substituents on the aryl group, a change from a concerted mechanism to one involving the formation of an intimate ion pair may represent the change in mechanism giving rise to figure 14. However, it has been shown that electron withdrawing aryl groups in the related Claisen rearrangement retard the reaction, therefore the scenario in figure 16 may be best suited, reconfirming that a change in rate determining step of the EICR occurs.85, 146-148

2.10. Conclusions

From the experimental observations, the Enamido-Ireland-Claisen-Rearrangement of a range of electronically differentiated arylacetate enamido esters has proven intriguing. The conspicuous range of diastereoselectivities observed, certainly in the case of the para-substituents, has been postulated to be caused by a variety of factors, including issues surrounding initial enolisation, isomerisation of the enolate once formed, isomerisation of the silyl ketene acetal, chair/boat considerations of transition state structure, non-concerted character and post-rearrangement epimerization issues. The issues surrounding post-rearrangement epimerization have subsequently been discounted based on a range of control experiments performed. On consolidation of the residual factors which may be responsible for the observed diastereoselectivity, this may be seen by thermodynamic issues of E/Z-silyl ketene acetal control, thus causing the observed diastereoselectivity assuming that the rearrangement occurs via a predictable chair transition state. A more complicated possibility may also involve contributions from all four diastereomic transition states (Scheme 70). In addition, the caveat observed by the concave down Hammett plot may be the result of a change in mechanism or a change in rate determining step. A change in mechanism may involve that of a concerted one-step mechanism for electron donating substituents and a non-concerted two-step mechanism for electron withdrawing substituents, whereas a change in the rate determining step may be due to either SKA formation or a diastereoselective rearrangement. Discussions surrounding the mechanistic evaluation of the EICR are to be focussed in Chapter 3.
3. Mechanistic Insight into the EICR of Arylacates

With the intriguing range of diastereoselection observed for the electronically differentiated arylacetates, a range of mechanistic studies were performed in order to determine the origin of diastereoselection.

These mechanistic studies were focussed on determining whether diastereoselection is an aspect of:

1) Initial formation of variable isomeric E- and Z-SKA mixtures, which rearrange through a chair transition state, or,

2) Rearrangement through competing chair and boat transition states, assuming selective E-SKA formation.

To probe these considerations, in-situ NMR studies were conducted. Initially, these studies involved the generation and E/Z monitoring of electronically differentiated model SKA’s, designed to mimic the enamido ester substrate. Further studies then involved in-situ rearrangement monitoring of strongly electron deficient, electron rich and electron neutral enamido arylacetate substrates. It was envisaged that rearrangement monitoring would allow E/Z-SKA and anti/syn product distributions to be observed throughout the course of reaction and provide a rationale for the varied diastereoselectivities observed.
Other studies have included an in-house computational collaboration where-by the full range of electronically differentiated arylacetates have been modelled within the EICR, to examine the theoretical origins of diastereoselectivity.

3.1. Model SKA Studies

Silylketene acetals (SKAs) are themselves valuable nucleophiles and find widespread use within a broad range of C-C bond forming synthetic chemistry. In addition to use in the Ireland-Claisen rearrangement, they are frequently seen in a range of other reactions including the Mannich and aldol reactions, of which their geometric purity can affect the diastereo- and/or enantioselectivity obtained within the reaction (Scheme 81). 149-150

Recently, the Leighton group has demonstrated the use of an enantio- and diastereoselective Mannich reaction involving phenylacetate derived SKA 237. This protocol allows synthesis of the β-amino acid precursor 238 in good yield with excellent enantio- and diastereoselectivity. 151

Scheme 81. Stereoselective & Enantioselective Reactions Involving SKAs.
To examine the issue of E/Z control during formation of arylacetate SKAs within our enamide substrates, efforts were focussed on the *in-situ* monitoring of model SKAs. Initial attempts were based on utilisation of the commercially available isopropyl phenylacetate 239, as the EICR of the corresponding phenylacetate 154 was shown to produce high levels of diastereoselectivity and presumably generate high E/Z-SKA purity. Also, the secondary ester motif was chosen to mimic the secondary carbinol-derived center within enamido ester substrate.

In order to follow the *in-situ* generation of SKAs by 1H-NMR spectroscopy, it was important that this experimental protocol mirrored the standard laboratory procedure for the EICR as closely as possible. Initiation of these *in-situ* experiments therefore
relayed on the use of an oven dried Young’s tap NMR tube with the dropwise addition of a solution of substrate to LiHMDS and TMSCl at -95 °C, under 1 atmosphere of nitrogen. Once the NMR tube was sealed, it was then transferred to the 400 MHz spectrometer, precooled to -95 °C, prior to NMR experimentation.

As the consumption of 239 and formation of E/Z-SKA’s were the main aim of this experiment, a range of temperatures for data acquisition were decided. As data were to be recorded at the intiation temperature (-95 °C) and room temperature (25 °C), an intermediary temperature was also required. Ideally, this intermediate temperature would represent the onset of rearrangement within the EICR and correspond to the stage where a ratio of generated E/Z-SKA’s will be transferred to the observed diastereoselectivity in the product. In order to determine this temperature, several experiments were performed to estimate the onset of rearrangement of phenylacetate 154. This was achieved by initiation of several phenylacetate EICR’s prior to warming to a variety of temperatures over 1 hour. Quenching at these cryogenic temperatures was accomplished by methanol.

![Diagram of reaction](image)

Table 8. Temperature Investigation into EICR of 154.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Temperature (°C)</th>
<th>Yield (%)</th>
<th>d.r.(^a) (Anti:Syn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-95</td>
<td>12</td>
<td>n.d.(^b)</td>
</tr>
<tr>
<td>2</td>
<td>-80</td>
<td>27</td>
<td>n.d.(^b)</td>
</tr>
<tr>
<td>3</td>
<td>-60</td>
<td>40</td>
<td>41:1</td>
</tr>
<tr>
<td>4</td>
<td>-50</td>
<td>54</td>
<td>42:1</td>
</tr>
<tr>
<td>5</td>
<td>-40</td>
<td>56</td>
<td>39:1</td>
</tr>
<tr>
<td>6</td>
<td>-20</td>
<td>59</td>
<td>40:1</td>
</tr>
</tbody>
</table>

\(^a\)d.r. measured by extended acquisition of crude on 500 MHz \(^1\)H NMR.\(^b\)d.r. not determined due to broad spectra and low conversion to 144.
These results suggest that rearrangement is even observed at initiation temperature with diastereoselectivity relatively invariable across the quench temperatures tested (excluding Entries 1 & 2, Table 8). From the variety of temperatures tested, -50 °C was chosen for data acquisition, as this demonstrated an adequate temperature where >50% of EICR product 144 was isolated.

With the range of temperatures for data recordal set, utilisation of isopropyl phenylacetate 239 was pursued. Initial experiments monitoring the consumption of 239 and formation of E/Z-SKA’s 240 at -95 °C, -50 °C and 25 °C were shown to be entirely feasible. Furthermore, standard H$_2$-THF could be used within NMR experimentation. However, clean quantification of the minor Z-SKA became difficult due to its coincidence with the isopropyl methine signal as demonstrated in Scheme 84.

![Scheme 84. Initial Attempts at SKA Reaction Monitoring.](image)

It is noted that an increase in the loading of LiHMDS and TMSCl was required, as 40% of phenylacetate 239 remained when applying the standard 1.3 equivalents of base and silylating agent. Although an increase in the stoichiometry of reagents within the model SKA studies is in direct contravention to EICR conditions, the retrieval of methylated arylacetate degradation products post rearrangement (Chapter 2) may derive from an incomplete SKA formation and substrate hydrolysis on protic quench.

To counteract the problem of coincident 1H resonances, it was decided to examine the use of 2H$_1$-isopropyl phenylacetate 2H$_1$-239 instead, which was synthesised in good yield.
With 2H_1-239 in hand, *in-situ* SKA formation was pursued. The 2H_1 modification allowed successful monitoring of E- and Z-SKA, with formation of Li-enolate not detected using this NMR analysis. The data obtained from this experiment demonstrated that a single E-SKA is observed at -95 °C, however on warming to -50 °C and 25 °C erosion of the E/Z purity occurs ($E/Z = 61:1$ and 30:1, Figure. 18).

As complete formation of SKA was only observed at 25 °C, an investigation into the formation and time dependance of the E/Z ratio was pursued at -50 °C. Interestingly, an initial fast, yet partial consumption of 2H_1-239 was observed, associated with an intriguing inflexion, with 2H_1-239 accumulating within the reaction mixture prior to its further consumption (Graph 2).
During this reaction, high levels of E/Z-SKA purity are observed and a plateau is evident at -50 °C. On warming to room temperature a drastic reduction in E/Z ratio results and is attributed to thermodynamic E/Z-SKA generation.
These \textit{in-situ} observations concerning the high levels of E/Z-SKA purity obtained from phenylacetate $^2\text{H}_1$-239, are in stark contrast to that previously reported in the literature. Attempts involving phenylacetate 239 with LDA and an external TMSCl quench 30 minutes after initiation at -78 °C and that involving 158 with LiHMDS and an internal TMSCl quench, generate isolated E/Z-SKAs of no greater than 4:1.119-120, 152

![Scheme 86. Previous Attempts at Isolating Phenylacetate SKAs.](image)

Subsequent studies have demonstrated that enolisation under kinetic conditions selectively forms the Z-enolate, however, difficulties in enolate trapping results in the generation of SKAs with poor E/Z control.119-120, 152-155

This dogma presented in the literature is intriguing, as our \textit{in-situ} NMR experiments have clearly shown that SKA generation is accomplished with high E/Z purity. In order to discern the key factors associated with generating high levels of E-SKA purity, a number of variables involving the type of amide base, stoichiometry of TMSCl and the nature of enolate quench were investigated (Table 9).
SKA purity (entry 3) was even observed to retain a significant excess of the \(\text{E/Z} \) isomer at room temperature (10:1) 48 hours after its formation. The generation of high levels of SKA purity were seen to occur at -25 °C. \({^1} \text{H}-\text{NMR Integration of Appropriate SKA Signals.} \) initiated at -78 °C. \({^1} \text{H}-\text{NMR Integration of Appropriate SKA Signals.} \) observed at -65 °C for 60 mins. \({^2} \text{H} \)-NMR Integration of Appropriate SKA Signals. \({^1} \text{H}-\text{NMR Integration of Appropriate SKA Signals.} \) observed at -25 °C. \({^1} \text{H}-\text{NMR Integration of Appropriate SKA Signals.} \) external quench: TMSCl added to reaction mixture 30 minutes after initiation of enolate generation \({^1} \text{LDA Used as Base.} \)

Table 9. Control Experiments

These results clearly demonstrate that the manner of reaction initiation, temperature control and enolate lifetime are key parameters in accessing high levels of E/Z-SKA purity. Reduced E/Z control was observed with initiation at higher temperatures (entry 2), the use of an external quench (entry 5) and lower loadings of TMSCl (entry 6). However, increasing the levels of TMSCl led to a more rapid silylation and reduced E/Z interconversion (entries 4 & 5) and it is noted that complete silylation was observed after 20 minutes at -50 °C. Other drastic reductions in E/Z purity were seen to occur when the use of bulkier silylating agents (entries 8 & 9) and alternative amide bases including NaHMDS and LDA (entries 7 & 10) were used. The generation of high E/Z-SKA purity (entry 3) was even observed to retain a significant excess of the \(\text{E} \)-geometrical isomer at room temperature (10:1) 48 hours after its formation.
The successful observations associated with \(E/Z \)-SKA formation and interconversions prompted us to return to the primary aim of this model SKA study, associated with examining SKA formation for a range of electronically differentiated para-substituted arylacetates. As these studies were designed to mimic formation of the SKA during EICR, it was hoped that indications into whether similar or varied \(E/Z \)-selectivities would be generated and potentially allude to whether diastereoselection in our rearrangement is a function of generated \(E/Z \)-SKA ratio. With this in mind, synthesis of a variety of model para-substituted arylacetates was achieved in excellent yield, via the familiar EDCi coupling conditions and monitoring SKA formation by \textit{in-situ} NMR methods was subsequently pursued.

\[
\text{LiHMDS (1.7 eq.), Me_2SCl (1.7 eq.),}
\text{THF, -95 °C to 25 °C}
\]

\[\text{50 min}\]

\[E/Z\)

\[\text{d.r. from EICR (anti: syn)}\]

| Entry | Ester | R | SKA | \(|-95 °C|\) | \(|-50 °C|\) | \(|25 °C|\) | \(|\text{d.r.}|\) |
|-------|-------|---|-----|-----------|-----------|-----------|-----------|
| 1 | \(\text{H}_1\)-239 | H | \(\text{H}_1\)-240 | >100:1 | 61:1 | 30:1 | 44:1 |
| 2 | \(\text{H}_1\)-241 | OMe | \(\text{H}_1\)-245 | >100:1 | >100:1 | 21:1 | 24:1 |
| 3 | \(\text{H}_1\)-242 | Me | \(\text{H}_1\)-246 | >100:1 | >100:1 | 39:1 | 54:1 |
| 4 | \(\text{H}_1\)-243 | CF₂ | \(\text{H}_1\)-247 | >100:1 | >100:1 | 34:1 | 21:1 |
| 5 | \(\text{H}_1\)-244 | NO₂ | \(\text{H}_1\)-248 | >100:1 | 44:1 | 11:1 | 9:1 |

\(\text{a Ester Added to TMSCl (1.7 eq.) and LiHMDS (1.7 eq.) in THF at -95 °C & Subsequent Transferral to the Cooled 400 MHz Spectrometer.}\)

\(\text{b E} / \text{Z Ratio Measured by } \text{^1H NMR Integration of Appropriate Signals. }\)

\(\text{E/Z Geometrical Isomers Proven by 1D NOE Experiments on para-Tolyl } \text{^1H}_1\)-246 (See Appendix).\)

\textit{Table 10. Synthesis of para-Electronically Differentiated Ester Substrates}

\textit{and In-Situ Formation of Corresponding SKAs.}

At the initiation temperature all substrates demonstrated selective formation of the \(E \)-SKA. On warming to -50 °C similar selectivities were observed, however a significant drop in geometric purity was noted for the nitro-substituted substrate (entry 5). Subsequent warming to 25 °C demonstrates a global erosion of \(E/Z \)-SKA...
purities, all with varying levels. From these results it is obvious that the degree of E/Z-SKA purity generated depends strongly on the electronic nature of substitution. When comparing these *in-situ* SKA ratios to that of the diastereochemical outcome of the EICR for the same substituent, a similar ratio is observed, particularly so for the OMe and NO$_2$ substituents (entries 2 and 5). These results strongly suggest that E/Z-SKA formation may strongly influence the observed diastereomeric outcome of the associated EICR.

To further probe this electronic dependance of E/Z-SKA control we wanted to observe whether primary and tertiary derived arylacetates exhibited similar effects. With this in mind synthesis of a small range of model substrates based on electron withdrawing (-NO$_2$), electron donating (-OMe) and electron neutral (-Me) para-substitution was undertaken and subjection of these to *in-situ* SKA monitoring was pursued (Table 11). Interestingly, the range of methyl esters were seen to demonstrate similar dependancies to the isopropyl phenylacetates (entries 1-3). However, diminished E/Z purity was observed for the tertiary arylacetates (entries 4-6), with the p-NO$_2$ substrate offering no selectivity at room temperature (entry 6).
Chapter 3 Results & Discussion

Substituent, erosion of geometric purity could be facilitated by a reduction in C=C reaction warming to room temperature. In the case of the electron withdrawing nitro

Considering the results from the primary, secondary and tertiary arylacetate SKAs, the influence of the aromatic substituent is clear. Although initial E/Z-SKA selectivity is high, the presence of strongly electron withdrawing or donating substituents appears to enhance the magnitude of geometrical isomerisation as the reaction warms to room temperature. In the case of the electron withdrawing nitro substituent, erosion of geometric purity could be facilitated by a reduction in C=C bond character via mesomeric withdrawal of electrons out of the SKA. In the case of the electron donating methoxy substituent it may be conceivable that electron donation into the SKA may occur, subsequently reducing C=C bond order.

Table 11. Synthesis of para-Electronically Differentiated Methyl & 1-Butyl Ester Substrates and In-Situ Formation of Corresponding SKAs.
However, although significant reduction in \(E/Z \)-SKA geometric purity are observed for \textit{para}-nitro and \textit{para}-methoxy variants, their \textit{in-situ} preparation has still been shown to be significantly higher than currently published results.149, 156-159 As the utilisation of arylacetate SKA’s are hindered by their isolation with low \(E/Z \) purity (\(\leq 4:1 \)), the ability to isolate these compounds with the high levels of \(E/Z \)-control observed in our \textit{in-situ} studies may be synthetically beneficial. With this in mind, utilisation of phenylacetate 2H1-239 was further investigated (Table 14).

\begin{table}[h]
\begin{center}
\begin{tabular}{cccc}
Entry & Methoda & X eq. & \(E/Z \)b & Yield %c \\
\hline
1 & (A) & 1.7 & 68:1 & 81 \\
2 & (B) & 1.7 & 17:1 & 88 \\
3 & (C) & 6 & >100:1 & 82 \\
\end{tabular}
\end{center}
\caption{Isolation of 2H1-Phenylacetate-Derived SKA’s.}
\end{table}

aMethods: (A): Ester added to base and TMSCl via syringe pump before warming to room temperature. (B): Ester added to base and TMSCl by hand before warming to room temperature (C): Ester added to base and TMSCl, holding at -95 \(^\circ\)C for 30 minutes before warming to room temperature via syringe pump. b\textit{E/Z} ratio measured by 1H-NMR integration of appropriate SKA signals. cIsolated yield.
To demonstrate that slow addition of a solution of 2H$_1$-239 to LiHMDS and TMSCl was imperative for the generation of high E/Z-SKA selectivity, initiation by syringe pump and rapid injection was investigated. Isolation of the SKAs was achieved by rapid vacuum concentration of the reaction mixture and trituration with CDCl$_3$ subsequent to 1H-NMR spectroscopy. In both cases excellent yields were obtained, however as expected, a reduced E/Z-SKA purity was obtained for the rapid injection protocol (entry 2) than the controlled addition by syringe pump (Entry 1). This observation corresponds well to the optimisation of the phenylacetate EICR (Chapter 2, Table 3), where the difference in diastereoselection for rapid injection compared to syringe pump addition was 16:1 to 44:1. The final initiation method relied on utilising the increased stoichiometry of TMSCl, as this demonstrated the highest E/Z-SKA purity in-situ (Chapter 3, Table 9, Entry 3). Employing this method within the generation and isolation of 2H$_1$-240 demonstrated an excellent yield and by far the best E/Z-SKA selectivity (Entry 3).

With the successful isolation of the secondary phenylacetate ester SKA, isolation of primary and tertiary derived phenylacetate SKA’s were also pursued. The synthesis of 158 and 261 were accomplished in good to excellent yields via similar carbodiimide coupling conditions and isolation of the corresponding SKA’s were pursued utilising the increased stoichiometry of TMSCl (Table 13). In both instances, excellent yields were obtained, with excellent E/Z purity observed for the primary SKA (Entry 1) and good E/Z purity observed for the tertiary variant (Entry 2).

\[
\begin{array}{cccccc}
\text{Entry} & \text{Ester} & \text{R} & \text{Product} & (E/Z)^a & \text{Yield} \\
1 & 158 & \text{Me} & 262 & 67:1 & 80 \\
2 & 261 & \text{C(Me)}_3 & 263 & 25:1 & 76 \\
\end{array}
\]

aE/Z ratio measured by 1H-NMR integration of appropriate silylketene acetal signals. bIsolated yield.

Table 13. Synthesis of para-Substituted Arylacettes 158 & 261 and Isolation of Corresponding SKA’s.
The isolation of these primary, secondary and tertiary derived SKAs in excellent yields and E/Z geometrical purities far surpasses any current syntheses.160 The success observed with an increased loading of TMSCl are not to be ignored and would be expected to have a direct effect on increasing the rate of silylation, as viewed by in-situ 1H-NMR studies. This subsequently allows generation and isolation of SKA’s with enhanced E/Z purities, even compared to the high levels obtained by equimolar 1.7 equivalents of LiHMDS/TMSCl. With this in mind, the ability to improve the diastereomeric ratio of some EICR reactions may be possible. Indeed, subjection of the para-nitro and para-methoxy enamide substrates to rearrangement conditions involving 6 equivalents of TMSCl does significantly improve the diastereochemical outcome of the rearrangement reaction.

\[\text{Product} \]

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>TMSCl (X eq.)</th>
<th>Product</th>
<th>Yield (%)</th>
<th>d.r.a (anti:syn)</th>
<th>By-Product</th>
<th>Yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OMe</td>
<td>1.3</td>
<td>174</td>
<td>77</td>
<td>24:1</td>
<td>183</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>OMe</td>
<td>6</td>
<td></td>
<td>67</td>
<td>82:1</td>
<td>183</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>NO$_2$</td>
<td>1.3</td>
<td>180</td>
<td>76</td>
<td>9:1</td>
<td>189</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>OMe</td>
<td>6</td>
<td></td>
<td>66</td>
<td>16:1</td>
<td>189</td>
<td>13</td>
</tr>
</tbody>
</table>

ad.r. measured by extended acquisition of crude on 500 MHz 1H-NMR bYield based on amount of EICR product that degradation product corresponds to.

\[\text{Table 14. Results for Improved Arylacate EICR} \]
3.2. In-Situ EICR Reaction Monitoring

The results generated from the model SKA studies have been informative, as they allude to the presence of a relationship between E/Z-SKA ratio and diastereoselection based upon electronic perturbation within the EICR. However, in order to prove any such relationship we require the ability to monitor the complete rearrangement, including consumption of substrate, generation of E/Z-SKAs and the in-situ formation of anti- and syn-β-amino silyl esters. With this in mind, target substrates for investigation include phenylacetate 154, the strongly electron donating para-methoxy arylacetate 165 and the strongly electron withdrawing para-nitro arylacetate 171.

Scheme 88. EICR Reaction Monitoring: Following the α-H.

Reaction monitoring of the EICR by 1H-NMR spectroscopic analysis would prove logical, based on the successful model SKA studies and could be achieved by similar monitoring of the α-H in substrate, SKA and rearranged product. However, as a 2H1-modification was required for the model SKA substrates, the added structural complexity of the enamide substrates would also make tracking the α-H difficult due to coincident 1H-NMR resonances. This consideration is highlighted in Figure 19, exemplifying the key spectral regions associated with phenylacetate 154, model phenylacetate SKA 2H1-240 and β-amino ester 144.
With this issue in mind, three viable classes of bespoke enamide substrate were conceived, to allow in-situ reaction monitoring by 1H-, 2H- and 13C-NMR spectroscopic analysis.

Fig. 19. Overlapping Resonances in EICR Reaction Monitoring.

Fig. 20. Modified Enamido Substrates for EICR Reaction Monitoring.
3.2.1. EICR Reaction Monitoring by 1H-NMR Spectroscopy

To overcome the issues associated with coincident 1H-NMR resonances, access to correctly deuterium-labelled substrates were pursued, based on the synthesis of deuterated alcohol 2H$_3$-145.

From the outset, synthesis of 2H$_3$-145 focussed on developing the familiar conditions for the non-deuterated analogue 145. As formation of ketone 146 relies on a DABCO catalysed addition of 2-oxazolidinone 147 and ketone 148, it was envisaged that the synthesis of deuterated ketone 2H$_2$-146 could be achieved from deuterated ketone 2H$_1$-148 and N-deuterated 2-oxazolidinone 2H$_1$-147.

Access to deuterated ketone 2H$_2$-148 required synthesis of deuterated alcohol 2H$_1$-149 prior to Jones oxidation. Attempted synthesis of 2H$_1$-149 involved lithiation of
protected alcohol 264 and also double lithiation of alcohol 149, both followed by deuterium oxide quench. However, variable and unpredictable levels of deuterium incorporation were observed.

![Scheme 91. Attempted Route to Deuterated Acetylenic Alcohol.](image)

With facile acetylenic H/D exchange an issue, synthesis of deuterated ketone $^2\text{H}_1$-146 was pursued directly from ketone 148, by exchanging the solvent of the DABCO catalysed conjugate addition reaction for deuterium oxide. Analysis of the reaction by TLC demonstrated a complex reaction mixture, however careful column chromatography and recrystallisation allowed access to the required deuterated ketone $^2\text{H}_2$-146, but in poor yield.

![Scheme 92. Route to Deutero Ketone $^2\text{H}_1$-146.](image)

Subsequent reduction of $^2\text{H}_2$-146 was accomplished by NaBD₄ to yield the key deuterated alcohol $^2\text{H}_3$-145 in excellent yield and synthesis of phenylacetate $^2\text{H}_3$-154 was achieved under familiar EDCi coupling conditions, again in excellent yield.
With H_3H_{154} in hand, rearrangement was pursued under the normal laboratory protocol prior to in-situ ^1H-NMR studies and was observed to produce comparable yields and diastereoselectivities to that observed for the non-deuterated phenylacetate analogue.

Scheme 93. Synthesis of Deuterated Phenylacetate H_3H_{154}.

With successful rearrangement of H_3H_{154} observed, subjecting to reaction monitoring was pursued. Initiation of the rearrangement was performed under a similar protocol to the model SKA studies; however, the reaction was monitored at -50 °C over three hours prior to warming to 25 °C.

Scheme 94. EICR of H_3H_{154} Under Normal Laboratory Conditions.

Scheme 95. In-Situ Attempt at Monitoring EICR of H_3H_{154}.
Unfortunately, observation of substrate consumption through monitoring the disappearance of the α-H’s were masked by THF and formation of E/Z-SKAs were not cleanly observed due to signal broadening and coalescence. However, it is noted that an initial build-up of SKA was observed, which was rapidly consumed within the first 20 minutes of the experiment. Also, determination of the in-situ diastereoselectivity during EICR was not achievable as the 1H-NMR resonances used in the silylester product, namely the vinylic methyl group and the α-H were masked by low field silyl by-products and THF respectively.

\[
\text{LiHMDS (1.3 eq), TMSCl (1.3 eq), THF, -95 °C to -50 °C for 180 min to RT}
\]

Scheme 96. Reaction Monitoring Issues of 2H$_{154}$.

However, quenching and esterification of the in-situ reaction mixture yielded comparable diastereoselectivity to that observed with EICR of 154 however in a lower yield and clean isolation of methyl phenylacetate was not accomplished.

Although EICR reaction monitoring by 1H-NMR spectroscopy has not been successful, it has at least verified the feasibility of studying this reaction by NMR. This is demonstrated by the similarities in the diastereomeric ratio and yield between the generic laboratory-based protocol and that conducted in an NMR tube.

3.2.2. EICR Reaction Monitoring by 2H-NMR Spectroscopy

As subjection of phenylacetate 2H$_3$-154 to in-situ 1H-NMR studies was flawed by the inability to monitor the key α-H resonance in the substrate, E/Z-SKAs and the rearranged silylester, a solution to these issues may be found in 2H-NMR analysis. As the spectral width of 2H-NMR is identical to that of 1H-NMR, similar chemical shifts would be anticipated for an α-D incorporated substrate, SKA and silylester product, as
compared to the α-H analogue.161 As the chemical shifts of these three key signals are differentiated by at least 1 ppm, clean and distinguishable observation of these signals should be anticipated by 2H-NMR spectroscopy.

With this in mind, it was envisaged that synthesis of α,α-2H\textsubscript{2}-substrates via esterification of α,α-2H\textsubscript{2}-carboxylic acids and key intermediate 145, may provide a perfect solution to this issue, may also allow evaluation of alkylacetates. Initial focus therefore concentrated on utilisation of the commercially available α,α-2H\textsubscript{2}-phenylacetic- and α,α-2H\textsubscript{2}-propionic acids.

\begin{center}
\textit{Scheme 97. Access to α,α-2H\textsubscript{2}-Aryl- & Alkylacetates.}
\end{center}

Attempted synthesis of α,α-2H\textsubscript{2}-phenylacetate 2H\textsubscript{2}-154 proved problematic as substantial and unpredictable amounts of H/D exchange resulted. Efforts at limiting this exchange involved preparation of 2H\textsubscript{1}-145 utilisation of the free base of EDCi, performing the reaction in CD\textsubscript{2}Cl\textsubscript{2} and also performing reaction workup with D\textsubscript{2}O solutions of brine, citric acid and sodium bicarbonate, however to no avail.

\begin{center}
\textit{Scheme 98. Attempted Synthesis of α,α-2H\textsubscript{2}-Phenylacetate 2H\textsubscript{2}-154.}
\end{center}
With the unfavourable H/D exchange observed for synthesis of the α,α-2H$_2$-phenylacetate, synthesis of α,α-2H$_2$-propionate 2H$_2$-265 was accomplished in excellent yield and isolated with complete deuterium incorporation.

Scheme 99. Synthesis of Deuterated Propionate 2H$_2$-265.

With 2H$_2$-265 hand, rearrangement under normal laboratory protocols was attempted, however no reaction was observed and complete mass return of substrate resulted.

Scheme 100. EICR of 2H$_2$-265 Under Normal Laboratory Conditions.

The stability of 2H$_2$-265 to de-deuteration was demonstrated by an in-situ attempt at reaction monitoring of which the substrate remained intact in the reaction medium in excess of 40 days. This observed result is clearly an aspect of the kinetic isotope effect and it is unfortunate that the stability it confers on the substrate renders futile reaction monitoring by 2H-NMR.
3.2.3. EICR Reaction Monitoring by 13C-NMR Spectroscopy

With the unsuccessful monitoring of the EICR by both 1H- and 2H-NMR spectroscopy, monitoring by 13C-NMR was subsequently pursued. Initial investigations focussed on synthesis of ipso,α(γ,δ)-enriched phenylacetate 13C$_2$-154, accomplished in excellent yield under the familiar EDCi coupling conditions.

![Scheme 101. Synthesis of 13C Enriched Phenylacetate Substrate 13C$_2$-154.](image)

Utilisation of a doubly 13C enriched substrate possessing chemically and magnetically inequivalent carbon atoms, was envisaged to provide successful observation of E- and Z-SKA’s and also anti- and syn-diastereomers during the in-situ rearrangement studies. With 13C$_2$-154 in hand, rearrangement under optimised conditions (Chapter 2), prior to in-situ studies, demonstrated that β-amino ester 13C$_2$-144 was obtained in similar yield and diastereoselectivity to that of the non-enriched analogue.

![Scheme 102. EICR of 13C Enriched Phenylacetate 13C$_2$-154 under Standard Laboratory Conditions.](image)

With the successful rearrangement of 13C$_2$-154 observed, subjection to in-situ reaction monitoring was pursued. The reaction was initiated in the reported fashion, injected into a pre-cooled 400 MHz NMR spectrometer at -95 °C and subsequently warmed to -65 °C where it was monitored in excess of 800 minutes prior to warming to 25 °C.
During the reaction monitoring, consumption of 13C$_2$-154, formation and consumption of E/Z-SKAs and formation of silyl ester product 13C$_2$-266 were observed. The intermediary temperature of -65 °C was chosen, as the ability to clearly monitor SKAs at -50 °C was troublesome due to facile rearrangement at this temperature. Unfortunately, resolution of the anti- and syn-diastereomers of the silyl ester product were not observed, as the ipso-(t-) and alpha-(α-)carbon resonances are coincidental in THF. However comparable diastereoselectivity was observed post reaction quench and esterification to that observed with the laboratory protocol. Plotting relative concentrations of species consumed and formed versus time demonstrates the progress of this in-situ reaction.

Graph 4. Consumption of 13C$_2$-154 & Formation of E/Z-SKA & Product 13C$_2$-266/% vs. Time/min at -65 °C (Condition 1 - 1.3 eq. LiHMDS & 1.3 eq. TMSCl).
These intriguing results display certain resemblances to the model phenylacetate SKA studies (Graph 2). These include an initial return of starting material (SM) $^{13}\text{C}_2$-154 prior to its further consumption, an initial fast, yet partial formation and subsequent consumption of the E-SKA and a constant low level concentration of the Z-SKA. This reaction also clearly demonstrates 2 key time regions. At $t < 180$ minutes, trends in the observed rates of phenylacetate $^{13}\text{C}_2$-154 consumption (after 60 minutes) and product $^{13}\text{C}_2$-266 formation are greater than when $t > 180$ minutes. This initial higher rate of product $^{13}\text{C}_2$-266 formation is presumably based on consumption of the built-up E-SKA over this time period. It is noted that 50% consumption/formation of phenylacetate $^{13}\text{C}_2$-154/silylester $^{13}\text{C}_2$-266 was observed after 900 minutes. As a mechanistic tool used to evaluate the origins of diastereoselection throughout the course of the EICR, the inability to monitor the formation of anti- and syn-silylesters $^{13}\text{C}_2$-266 is unfortunate. However, the formation of high levels of E-SKA and subsequent consumption of the E-SKA strongly allude to this geometrical isomer rearranging, inferring the anti-diastereoselectivity observed in the rearrangement.

To further investigate the effects of reagent stoichiometry on the rearrangement of $^{13}\text{C}_2$-154, treatment with equimolar 1.7 equivalents of LiHMDS/TMSCl, and 1.3 equivalents LiHMDS and 6 equivalents of TMSCl was pursued. These conditions were chosen to compliment the findings from the earlier model phenylacetate SKA studies using $^2\text{H}_1$-239.

Condition 2 – Equimolar 1.7 Equivalents of LiHMDS/TMSCl

\[
\begin{align*}
\text{LiHMDS (1.7 eq.),} & \quad \text{TMSCl (1.7 eq.),} \\
\text{THF, -95 °C} & \quad \text{to -65 °C (17 h)} \\
\text{to RT} & \quad \text{to RT}
\end{align*}
\]

\[
\text{Yield = 56%} \\
d.r. = 38:1
\]

Graph 5. Consumption of \(^{13}\text{C}_2\text{-154}\) & Formation of E/Z-SKA & Product \(^{13}\text{C}_2\text{-266}\) % vs. Time/min

On subjecting \(^{13}\text{C}_2\text{-154}\) to equimolar 1.7 equivalents of LiHMDS and TMSCl it is noted that familiar trends are again observed, in that a similar inflection of SM \(^{13}\text{C}_2\text{-154}\) is seen and observation of the E-SKA is not detected post 180 minutes. There are 3 distinct time regions to consider, at \(t < 180\) minutes the rate of formation of silylester \(^{13}\text{C}_2\text{-266}\) is highest, in concordance with consumption of E-SKA. Then reductions in the observed rate of \(^{13}\text{C}_2\text{-154}\) consumption and silylester \(^{13}\text{C}_2\text{-266}\) formation are seen to occur at \(180 < t < 320\) minutes and at \(t > 320\) minutes. It is noted that 50% consumption/formation of phenylacetate \(^{13}\text{C}_2\text{-154}\)/silylester \(^{13}\text{C}_2\text{-266}\) is quicker, occurring under 230 minutes.
Condition 3 – 1.3 Equivalents of LiHMDS & 6 Equivalents TMSCl-

![Chemical Reaction Diagram]

Relative Concentration SM 13C$_2$-154, E- & Z-SKA & Product 13C$_2$-266/% vs. Time/min (Condition 3 - 1.3 eq. LiHMDS & 6 eq. TMSCl)

Graph 6. Consumption of 13C$_2$-154 & Formation of E/Z-SKA & Product 13C$_2$-154/% vs. Time/min at -65 °C (Condition 3 - 1.3 eq. LiHMDS & 6 eq. TMSCl).

Interestingly, no inflection in the relative concentration of substrate 13C$_2$-154 is observed in this instance. The time taken for 50% 13C$_2$-154 consumption/silylester 13C$_2$-266 formation is reduced relative to Condition 1, occurring after 190 minutes. The E-SKA is detected up to 280 minutes, after which trends in the observed relative rates of consumption 13C$_2$-154/formation 13C$_2$-266 are again reduced.

As the model SKA studies had demonstrated that equimolar loadings of LiHMDS and TMSCl (1.3 equivalents) would not facilitate complete conversion of phenylacetate to SKA, these results demonstrate that higher concentrations of the silylester product 13C$_2$-266 can be achieved by varying the stoichiometry of TMSCl. Although full conversion to the SKA has not been observed from the outset of these in-situ reactions, it was
decided to ascertain whether complete SKA formation would lead to full conversion to silylster 13C$_2$-266. As the results from Condition 1 demonstrated an initial formation of ca. 25% E-SKA, it was postulated that equimolar 5.2 equivalents LiHMDS/TMSCl may provide complete SKA formation and was thus pursued.

Condition 4 – Equimolar 5.2 Equivalents of LiHMDS/TMSCl-

![Condition 4 - Equimolar 5.2 Equivalents of LiHMDS/TMSCl](image)

Relative Concentration SM 13C$_2$-154, E- & Z-SKA & Product 13C$_2$-266% vs. Time/min (Condition 4 - 5.2 eq. LiHMDS & 5.2 eq. TMSCl)

Graph 7. Consumption of 13C$_2$-154 & Formation of E/Z-SKA & Product 13C$_2$-266%/ vs. Time/min at -65 °C (Condition 4 - 5.2 eq. LiHMDS & 5.2 eq. TMSCl).

The results from this experiment are perhaps the most intriguing. As predicted, increasing the amount of LiHMDS and TMSCl leads to a higher initial concentration of the E-SKA which is consumed over a similar time period to the other experiments discussed (t = 220 minutes). Although full conversion to SKA is still not observed, a more rapid formation of silylster 13C$_2$-266 results with 50% formation seen after 60 minutes and plateauing noted after 100 minutes. Curiously a reduction in 13C$_2$-266 and
increase in $^{13}\text{C}_2\text{-154}$ is noted at $t = 250$ minutes. Although E1cB elimination of $^{13}\text{C}_2\text{-266}$ would not account for the sharp increase in $^{13}\text{C}_2\text{-154}$ observed, another explanation may be a retro [3,3]-rearrangement. Unlike the other studied conditions, the trend in consumption of $^{13}\text{C}_2\text{-154}$ was unexpected, as a prolonged inflection was observed throughout the course of reaction. It is also noted that recovery of \(\beta\)-amino ester $^{13}\text{C}_2\text{-144}$ is markedly reduced as compared to previous \textit{in-situ} experiments; this observation is in accordance with the results from the initial phenylacetate optimisation discussed in Chapter 2 (Table 3).

All though each reaction profile is different all are observed to possess the same generic trends-

\textit{Phenylacetate $^{13}\text{C}_2\text{-154 Consumption}$-}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{graph8.png}
\caption{Consumption of $^{13}\text{C}_2\text{-154}$ vs. Time/min at -65 °C.}
\end{figure}

With the exception of Condition 3, an inflection in the plot of $^{13}\text{C}_2\text{-154}$ is observed prior to subsequent consumption, however all reactions tend toward a plateau at late stage indicating that the reaction is stalling. Although an inflection is observed for condition 2 and no inflection is observed for Condition 3, similar end-point conversions are observed. Condition 1 is observed to produce the lowest conversion, however Condition
4 demonstrates that increases in the stoichiometry of base and silylating agent does not ensure higher conversions.

E-SKA Formation/Consumption

![Graph 9. Consumption of E-SKA vs. Time/min at -65 °C.](image)

From the outset of each reaction there is a high relative concentration of the \(E \)-SKA, with a markedly high initial concentration seen with Condition 4. Furthermore, it is noted that consumption of \(E \)-SKA occurs at \(180 < t < 280 \) minutes, irrespective of the initial conditions.
Z-SKA Formation/Consumption

Graph 10. Consumption of Z-SKA vs. Time/min at -65 °C.

There remains a low yet steady relative concentration of the Z-SKA for condition 1 and 3, with an initial observation up to 140 minutes for Condition 4. However, it is noted that no Z-SKA is observed with condition 2.
Product Silylester 13C$_2$-266 Formation-

There are two key regions in the observed relative rates of product formation and involves a steep initial rise which tends towards plateau once the available E-SKA present has been consumed. For the first stage of reaction it is noted that the relative rate of product formation is by far the greatest for condition 4, where 50% is observed after 60 minutes. Curiously, Condition 3 appears to bear resemblance from the initial stage of Condition 1 and that of the late stage of condition 3. Here it is seen that the initial observed rate of product formation matches that of Condition 1, however although the reaction for Condition 2 appears slower, the end-point conversion is similar to that of Condition 3.
These observations are indeed intriguing and allude to important mechanistic ramifications. Although full consumption of 13C$_2$-154 and formation of 13C$_2$-266 is not obtained under any condition, the observed inflection of 13C$_2$-154 and the formation of silyl derived by-products may not only provide an answer as to why complete conversion is not seen, but also the observed diastereoselectivity.

Inflection in Phenylacetate 13C$_2$-154

It has been known from the beginning of the Li-amide era, that the secondary amine generated from the enolisation of a carbonyl compound has an effect upon the reactivity of the newly formed enolate.162 This maverick enolate reactivity in the presence of _in-situ_ generated secondary amines, is highlighted by the addition of a deuterating reagent (MeOD) to the LDA generated enolate 267.163 From this, it is shown that the desired α-deutero ester 268 is recovered in minimal amounts, with the majority being that of diisopropylamine mediated re-protonated ester. In order to circumvent this scenario of ‘Internal Proton Return (IPR)’, it has been shown that addition of 4butyllithium prior to addition of the electrophile allows isolation of the desired deuterated species in high yield.

![Scheme 104. Internal Proton Return (IPR) in LDA Mediated Enolisations.](image)

With this in mind it was reasoned that the observed return of phenylacetate 13C$_2$-154 may be due to HMDS mediated IPR to the enolate, the SKA or perhaps both. As detection of enolate is not observed during these NMR experiments, possibly an aspect of rapid silylation, it was felt that monitoring enolate formation would be highly desirable in order to distinguish the origins of IPR. Subjection of 13C$_2$-154 to EICR conditions, excluding TMSCl did in fact allow us to observe the formation of enolate 13C$_2$-160, of which an initial inflection in the amount of phenylacetate 13C$_2$-154 was detected.119 On warming the reaction mixture to room temperature, complete
degadation of unreacted phenylacetate $^{13}C_2\text{154}$ and enolate $^{13}C_2\text{160}$ occurred, with no signs of Li-enolate [3,3]-rearrangement occurring.

It is noted that due to peak broadness, resolution of the E- and Z-enolate was not observed and evidence for enolate aggregates including monomeric and dimeric species were also detected, based on the reported monomeric 269 and dimeric 270 enolate species (Figure 21).119
Although IPR to the SKA cannot be ruled out, this study demonstrates that initial IPR to the enolate by HMDS may be responsible for the inflections associated with the observed return of phenylacetate $^{13}C_2-154$. This consideration is demonstrated with dimeric enolate species in Scheme 105.162

Scheme 105. Internal Proton Return (IPR) to Enolate by in-Situ Generated HMDS.

However, as no plateau is observed during late stage of enolate formation, reaction retardation within the \textit{in-situ} EICR studies may be an aspect of deleterious effects associated with the formation of silyl by-products.
Silyl By-Products-

During the course of the EICR the expected by-products include HMDS and LiCl from enolisation and subsequent silylation. A re-examination of the *in-situ* reaction studies has allowed an insight into the formation of various silicon based species, by virtue of their α-silicon 13C resonances, including TMSCl, HMDS, SKA and silylester product. It is noted that the TMS signals of E- and Z-SKA’s appear coincidental as do the *syn*- and *anti*-silylester products. More importantly, observation of LiHMDS was not detected, however the formation of silanamine 271 is noted during these rearrangements.

This re-evaluation of the 13C-NMR data in the context of mapping the distribution of silicon within these reactions, has allowed additional understanding of components not in the initial remit. To exemplify the silicon distribution in a typical reaction, it is shown from Condition 1 that product 13C$_2$-266 only constitutes around 19% of total silicon. It is also demonstrated that there is a slight reduction of TMSCl during the course of reaction, presumably an aspect of SKA and silanamine formation; however the relative concentration of HMDS appears to remain constant. Although silanamine formation is only small its formation is deemed to be important.
Although different stoichiometries of LiHMDS/TMSCl are used within the other three reactions, similar trends in silicon distribution are undoubtedly observed. TMSCl is observed to be the major component followed by HMDS and although initial relative concentrations of product silylester and silanamine are different, these tend toward similar relative concentrations toward the end of reaction.
Relative Concentration Silanamine, TMSCl, HMDS, SKA & Prod/% vs. Time/min
(Condition 2 - 1.7 eq. LiHMDS & 1.7 eq. TMSCl)

Graph 14. Silicon Distribution/% vs. Time/min at -65 °C
(Condition 2 - 1.7 eq. LiHMDS & 1.7 eq. TMSCl).

Relative Concentration Silanamine, TMSCl, HMDS, SKA & Prod/% vs. Time/min
(Condition 3 - 1.3 eq. LiHMDS & 6 eq. TMSCl)

Graph 15. Silicon Distribution/% vs. Time/min at -65 °C
(Condition 3 - 1.3 eq. LiHMDS & 6 eq. TMSCl).
Graph 16. Silicon Distribution/% vs. Time/min at -65 °C
(Condition 4 - 5.2 eq. LiHMDS & 5.2 eq. TMSCI).

On further consideration of the relative concentration of TMSCI, HMDS and silanamine within these 4 reactions, it is seen from-
TMSCI- A small degree of TMSCI consumption is observed (ca. 10%), which is more pronounced for condition 2 (ca. 20%). It is noted for condition 4 that an initial return of TMSCI is noted at t < 250 minutes, before its apparent consumption.

Graph 17. Relative Concentration of TMSCI vs. Time/min at -65 °C.

HMDS- The relative concentration of HMDS is observed to remain constant throughout each reaction, however a small negative inflection is observed for condition 2 (time < 50 minutes) with an elongated shallow inflection observed for condition 4. These negative inflections correspond to the time intervals associated with the inflections previously discussed with phenylacetate 13C$_2$-154.
Chapter 3 Results & Discussion

This observed removal of HMDS from the system is proposed to be due to IPR to the SKA. As the largest degree of phenylacetate $^{13}C_2-154$ return is observed for rearrangement under condition 4, deviations in the large relative concentrations of silyl species are easier to observe. It is noted that IPR to the SKA may also be facilitated by LiCl, as judged by coincidental TMSCl regeneration as HMDS is consumed during condition 4.

Silanamine - The changes in the observed trends of silanamine formation throughout each reaction are observed to vary the most. In most cases, detection of silanamine occurs after $t = 100$ minutes and once E-SKA is no longer detected, however in Condition 4 a sharp initial formation is observed which plateaus after $t =$
100 minutes. Interestingly the highest relative concentration of silanamine formation is observed with Condition 2 and the lowest is observed with Condition 3.

The formation of silanamine is indeed intriguing and may originate from compatibility issues between HMDS and TMSCl, or between LiHMDS and TMSCl. As silanamine formation has no effect on the relative concentration of HMDS, its formation via this by-product is not thought to occur. However, Lipshutz has demonstrated that premixes of LDA and TMSCl at -78 °C generate silylated amine 272 and LiCl quantitatively.164

In order to test Lipshutz’s observation, control experiments conducted with LiHMDS and TMSCl have subsequently demonstrated complete formation of silanamine 271 in-

\begin{equation}
\text{THF} \quad \text{iPr}_2\text{N} \quad \text{TMSiCl} \quad \text{THF} \\
\text{iPr}_2\text{N} \quad \text{THF} \quad \text{iPr}_2\text{N} \quad \text{TMSiCl} \quad \text{THF} \quad \text{iPr}_2\text{N} \quad \text{TMSiCl} \quad \text{THF}
\end{equation}

\textbf{Scheme. 107. LDA & TMSCl Compatibility.}
and it was also shown that combinations of HMDS and TMSCl yielded no reaction.

\[\text{Scheme 108. LiHMDS- & HMDS-TMSCl Compatibility} \]

The added benefit of being able to track the silicon content in addition to the pre-planned \(\alpha^{13}C \) of phenylacetate \(^{13}C_{2-154} \), \(E/Z \)-SKA and silylster product \(^{13}C_{2-266} \) has been mechanistically beneficial, as a more thorough insight into the EICR has been gained. One major drawback to this study has been the inability to observe formation of both the syn- and anti-diastereomers via the \(^{13}C \) labels or the TMS signals. However, in order to rationalize this data in the context of examining the origins of diastereoselectivity within the EICR a number of key mechanistic observations can be made-

1) Throughout each reaction a large relative concentration of the \(E \)-SKA and rearranged product is observed from the outset of reaction monitoring. This observation alludes to a large initial formation of the \(E \)-SKA between initiation temperature (\(-95 \) °C) and whence reaction monitoring occurs (\(-65 \) °C), with rearrangement also being facile. Isolation of the \textit{in-situ} rearranged products as the methyl esters yield similar diastereoselectivities to the standard laboratory based protocol and this initial high formation of the \(E \)-SKA may be responsible for the high diastereoselectivity observed.

2) Once the \(E \)-SKA is no longer detected, the trends in the observed relative rates of product \(^{13}C_{2-266} \) formation are much reduced and all tend toward plateau, indicating that phenylacetate \(^{13}C_{2-154} \) consumption and product \(^{13}C_{2-266} \) formation are stalling. It is noted throughout each reaction low concentrations of \(Z \)-SKA are present and are attributed to the observed diastereocchemical outcome of the rearrangement, post quench and methylation.
3) Although detection of the Li-enolate $^{13}\text{C}_2$-160 has not been observed during in-situ studies, it has been shown that IPR plays a role within the initial stages of enolate formation (Graph 12). As an inflection in phenylacetate $^{13}\text{C}_2$-154 is observed for all rearrangements, bar Condition 3, IPR to the SKA is envisaged to be facilitated by LiCl and HMDS.

Although the formation of LiCl has not been followed experimentally, the in-situ generation of this salt is thought to exert strong underlying effects within the EICR. As the reaction proceeds, increases in the relative concentration of LiCl are expected due to SKA formation and silanamine formation. The presence of LiCl is known to exhibit an auto-catalytic effect within lithium amide enolisations and the pure LDA dimer 273 has been shown to form the more reactive mixed aggregate 274 upon exposure to LiCl.165

![Scheme 109. Origins of LiCl Auto-Catalysis.](image)

Although formation of more reactive LiCl mixed aggregates can be advantageous in speeding up enolisations, the efficiency of Li-amide mediated reactions are known to be highly sensitive to varying concentrations of in-situ generated LiCl. It is known that E/Z-enolate selectivities are improved up to the addition of 0.3 equivalents of LiCl but are subsequently reduced with larger amounts.165-168 It has also been shown that the presence of mixed halogen aggregates brings about facile N-alkylation of Li-amide bases, which becomes more favourable with increasing concentrations of Li-halide salt present.17

As there are 2 separate mechanisms allowing for LiCl production within the EICR, auto-catalysis may account for the observed inflection of phenylacetate $^{13}\text{C}_2$-154. From this concept it is reasoned that the apparent return of $^{13}\text{C}_2$-154 is an aspect of an induction period allowing LiHMDS/LiCl mixed aggregates to form, in which time IPR
to the SKA is a faster process. The subsequent consumption of $^{13}\text{C}_2-154$ is then observed once the relative rate of SKA formation begins to outweigh the relative rate of IPR. As silanamine formation is generally observed after observation of the E-SKA, the apparent stalling of phenylacetate $^{13}\text{C}_2-154$ consumption/product $^{13}\text{C}_2-266$ formation is attributed to a more favourable LiCl catalysed silanation of LiHMDS.

With these considerations in mind it is then possible to construct a reaction scheme considering the effects of by-products within the enamido Ireland-Claisen rearrangement (Scheme 110). Within this scheme there are three key mechanistic stages that would purport to the observed general trends observed with $^{13}\text{C}_2-154$ consumption and $^{13}\text{C}_2-266$ formation-

Stage 1 - The first pathway gives rise to the inflection in $^{13}\text{C}_2-154$ concentration, in that enolisation by pure LiHMDS dimer 275 is expected to produce enolate $^{13}\text{C}_2-160$. As various aggregation states were observed in the enolisation studies (Graph 12), attempts at classifying the structure of enolate will not be pursued and a generic enolate shall be drawn. From the enolate IPR by HMDS may then regenerate $^{13}\text{C}_2-154$. However if enolate $^{13}\text{C}_2-160$ is trapped as SKA $^{13}\text{C}_2-277$, it is envisaged that consumption is either by LiCl/HMDS facilitated IPR or rearrangement to product $^{13}\text{C}_2-266$.

Stage 2 - The onset of a new stage within the reaction is thought to occur when $^{13}\text{C}_2-154$ consumption resumes. This is attributed to the start of LiCl autocatalysis, in that formation of mixed LiHMDS dimer 276 occurs, sequestering the use of LiCl within IPR and allowing rearrangement to occur. As formation of product $^{13}\text{C}_2-266$ is still observed after E-SKA is no longer observable, enolisation via pure LiHMDS 275 or mixed aggregate 276 may occur, but it is thought that as the reaction proceeds increases in LiCl concentration will cause an increase in formation of mixed aggregate 276. As Collum has demonstrated enolisation selectivities are compromised post 0.3 equivalents LiCl, reduction in diastereoselectivity may result in rearrangement from the Z-SKA.
Stage 3- The third stage of the reaction is seen to occur by the onset of silanamine formation and reduction in the observed rates of phenylacetate $^{13}\text{C}_2$-154 consumption/product $^{13}\text{C}_2$-266 formation.

Scheme 110. Three Postulated Stages within the EICR.
Synthesis & In-Situ Studies of Electronically Perturbed Phenylacetates

As the main aim of the *in-situ* studies was to investigate the dependency of electronic perturbation on diastereoselectivity, efforts were redirected on synthesising a 13C-incorporated electron donating (-methoxy) and withdrawing (-nitro) para-substituted enamido arylacetate. However, due to the lack of commercial availability for the corresponding 13C enriched arylacetic acids, synthesis of these intermediate compounds was therefore required.

![Scheme 111. Required 13C Enriched para-Substituted Arylacetates.](image)

Access to both para-methoxy and -nitro phenylacetic acids were based on the use of a common 13C labelled starting material. Utilisation of α-bromo ester 278 in procedures reported by Gooßen and also by Hartwig has demonstrated a route to both methoxy-280 and nitro-substituted 281 phenylacetates.\(^{169-170}\) It was therefore envisaged that utilisation of an appropriately 13C labelled α-bromo ester would allow similar access, generating the required α-labelled carboxylic acids post saponification. It is noted that mono-labelled 13C$_1$-278 was used due to commercial availability.

![Scheme 112. Required 13C Enriched para-Substituted Arylacetates.](image)

Prior to using 13C$_1$-278, all initial reactions involved that of the non-labelled 278. Initial attempts at synthesising methoxy-280 were met with complex reaction mixtures with crude 1H-NMR alluding to the formation of homocoupled 279. However, after a
short optimisation synthesis of 13C-para-methoxy phenylacetic acid 13C-282 was accomplished in moderate yield over two steps and subsequent EDCi coupling allowed access to 13C-para-methoxy phenylacetate 13C-165 in excellent yield.

![Scheme 113. Synthesis of 13C Enriched para-Methoxy Phenylacetate Substrate 13C-165.](image)

With para-methoxy phenylacetate 13C-165 in hand synthesis of the electron withdrawn para-nitrophenylacetate 13C-281 was pursued. However, attempts at following Hartwig’s Reformatsky protocol were unsuccessful affording quantitative return of unreacted starting materials.

![Scheme 114. Attempt at Hartwig’s Route to para-Nitro Phenylacetate.](image)

Other routes to 13C-281, involved utilisation of Gooßen’s Suzuki protocol and after several attempts involving the required boronic acid and trifluoroborate salt, no coupling was subsequently observed. As synthesis of para-nitrophenylacetate 13C-281 was problematic, the nature of the electron withdrawing substituent was reconsidered. Subsequently, studies involving the trifluoromethyl substituent were envisaged to create a better mechanistic compliment to the methoxy variant, based on similar diastereoselectivities (p-OMe d.r. = 24:1, p-CF$_3$ d.r. = 21:1). With this in mind synthesis of 13C-283 was accomplished in moderate yield over two steps and
subsequent EDCi coupling allowed synthesis of the labelled p-trifluoromethylphenylacetate 13C$_{1}$-206 in excellent yield.

![Scheme 115. Synthesis of 13C Enriched para-Trifluoromethyl Phenylacetate 13C$_{7}$-206.](image)

With only a limited amount of para-methoxy 13C$_{1}$-165 and para-trifluoromethyl phenylacetate 13C$_{1}$-206 available, subjection to in-situ rearrangement was subsequently pursued.
In-Situ Rearrangement of \(^{13} \text{C}_{\text{1-165}} \)

\[
\begin{align*}
\text{O} & \quad \text{Me} & \quad \text{O} \\
\text{N} & \quad \text{O} & \quad \text{OMe} \quad \text{OMe} \\
13^\text{C}_{\text{1-165}} & \quad \text{LiHMDS (1.3 eq.), TMSCl (1.3 eq.), THF, } -95^\circ\text{C} \quad \text{to } -65^\circ\text{C (17 h)} \quad \text{to } 25^\circ\text{C} \\
\text{Me} & \quad \text{CO}_2\text{TMS} \\
13^\text{C}_{\text{1-284}} & \quad \text{Me} \\
\text{N} & \quad \text{2Me} \\
\text{O} & \quad \text{OMe} \\
13^\text{C}_{\text{1-174}} & \quad \text{Yield } = 52\% \\
\text{d.r. } = 25:1
\end{align*}
\]

Relative Concentration SM \(^{13} \text{C}_{\text{1-165}} \), E- & Z-SKA & Product \(^{13} \text{C}_{\text{1-284}} \)% vs. Time/min

(Condition 1 - 1.3 eq. LiHMDS & 1.3 eq. TMSCl)

Graph 20. In-Situ EICR of \(^{13} \text{C}_{\text{1-165}} \); Equimolar 1.3 eq. LiHMDS & TMSCl.

Consumption of \(^{13} \text{C}_{\text{1-165}} \) & Formation of E/Z-SKA & Product \(^{13} \text{C}_{\text{1-284}} \)% vs. Time/min at -65 °C.

From this study it is shown that-

1) A large inflection of \textit{para}-methoxy \(^{13} \text{C}_{\text{1-165}} \) occurs.

2) There is a large initial concentration of SKA, of which it is noted that the E/Z geometric purity is reduced compared to the phenylacetate \(^{13} \text{C}_{\text{2-154}} \) studies.

3) Throughout the experiment there remains a significant proportion of detectable \textit{E}- and \textit{Z}-SKA, unlike the \textit{in situ} phenylacetate \(^{13} \text{C}_{\text{2-154}} \) studies.

4) There are 3 distinct regions of product \(^{13} \text{C}_{\text{1-284}} \) formation. Similar to the previous studies there is a fast initial relative rate of product formation which is mirrored by \textit{E}-SKA consumption (\(t < 50 \) minutes). A plateau is later observed at \(50 < t < 500 \) minutes prior to its subsequent production at \(t > 500 \) minutes.

5) At \(50 < t < 500 \) minutes consumption of SKA is solely attributed to IPR.
Chapter 3 Results & Discussion

In-Situ Rearrangement of para-Trifluoromethyl Phenylacetate

\[^{13}C_{1-206} \]

LiHMDS (1.3 eq.), TMSCl (1.3 eq.), THF, -95 °C to -65 °C (17 h) to 25 °C

Yield = 48%
d.r. = >25:1

\[^{13}C_{1-285} \]

Graph 21. In-Situ EICR of

\[^{13}C_{1-206} \]; Equimolar 1.3 eq. LiHMDS & TMSCl.

Consumption of \[^{13}C_{1-206} \] & Formation of E/Z-SKA & Product \[^{13}C_{1-285} \]% vs. Time/min at -65 °C.

From this study it is shown that –

1) There is a shallow elongated inflection of para-trifluoromethyl \[^{13}C_{1-206} \] return.

2) Similar to the phenylacetate \[^{13}C_{2-154} \] studies there is a large initial formation of the E-SKA which is consumed either through IPR or via rearrangement.

3) There is a low steady relative concentration of the Z-SKA throughout and is similar to the *in-situ* phenylacetate \[^{13}C_{2-154} \] studies.

4) The observed relative rate of product formation is initially high followed by a plateau, mirroring E-SKA consumption at t < 100 minutes.

5) The reaction appears to stall after E-SKA is no longer detected.
Unfortunately, the ability to monitor the formation of the syn- and anti-diastereomers within the rearrangement of para-methoxy $^{13}\text{C}_1$-165 and para-trifluoromethyl $^{13}\text{C}_1$-206 are again plagued by coincident resonances. Also due to an electrical fault within the NMR, analysis of the silyl by-products during these reactions was not achievable. However, in order to rationalise the acquired data in the context of explaining our structure-diastereoselectivity trend, significant insights into the mechanism have been gained. Comparisons of SM, SKA and product concentrations for the EICR of phenylacetate $^{13}\text{C}_2$-154, para-methoxy $^{13}\text{C}_1$-165 and para-trifluoromethyl $^{13}\text{C}_1$-206 allude to the electronic dependencies responsible for varied diastereoselection-

SM (Ph-$^{13}\text{C}_2$-154/p-MeO-$^{13}\text{C}_1$-165/p-CF$_3$-$^{13}\text{C}_1$-206) Consumption

It is seen that the greatest consumption of SM is observed for the para-methoxy substrate, with the lowest levels observed with the para-trifluoromethyl system. An inflection in SM return is observed for all substrates; however these are more extreme for p-OMe and p-CF$_3$ insinuating that IPR is a major issue in the EICR of these substrates.

Graph 22. Consumption of $^{13}\text{C}_7$-154, $^{13}\text{C}_7$-165 & $^{13}\text{C}_7$-206 % vs. Time/min at -65 °C

(Condition 1 - 1.3 eq. LiHMDS & 1.3 eq. TMSCl)
From the outset of the reaction, most starting material consumption is seen for para-methoxy $^{13}C_1$-165 which also demonstrates the largest inflection. It is rationalised that IPR to the SKA may be more facile as electron density on the α-carbon will be further enhanced by the electron donating substituent and the larger, longer inflection is the result of a fierce competition of SKA consumption via IPR and rearrangement. Intriguingly a shallow, longer inflection with the least SM consumption is observed for the para-trifluoromethyl $^{13}C_1$-206. At first consideration this appears counterintuitive as a greater degree of enolisation would be anticipated for systems which possess lower pK_a values. However, although enolisation isn’t a consideration in the associated Claisen rearrangement, mechanistic studies have demonstrated that electron withdrawing groups retard substrate consumption, whilst electron donating groups speed it up.85, 146-148

E-SKA Formation/Consumption (Ph-/MeO-/CF$_3$-)

A large presence of the E-SKA is observed from the outset of each reaction, of which similarities in relative concentrations and consumption times are present for phenylacetate and para-trifluoromethyl. Intriguingly a marked increase for the initial concentration of para-methoxy is noted where its consumption is rapid at $t < 70$ minutes and gradual consumption of the residual E-SKA is observed until $t < 750$ minutes.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{graph23.png}
\caption{Consumption of E-SKA from $^{13}C_1$-154, $^{13}C_1$-165 & $^{13}C_1$-206\% vs. Time/min at -65 °C (Condition 1 - 1.3 eq. LiHMDS & 1.3 eq. TMSCl).}
\end{figure}
Z-SKA Formation/Consumption (Ph-/MeO-/CF$_3$)-

Again similarities are present for phenylacetate and para-trifluoromethyl in that a low steady concentration of Z-SKA is observed. However a marked increase is observed for the para-methoxy.

Graph 24. Consumption of Z-SKA from 13C$_2$-154, 13C$_r$-165 & 13C$_r$-206/% vs. Time/min at -65 °C (Condition 1 - 1.3 eq. LiHMDS & 1.3 eq. TMSCI).

These results concerning SKA formation may pertain to the origins of diastereoselection within the EICR and explain the change in rate determining step as alluded to by the Hammett type plot (Chapter 2). As phenylacetate 13C$_2$-154 and para-trifluoromethyl 13C$_r$-206 display similar trends in SKA formation/consumption and the para-methoxy 13C$_r$-165 demonstrates a significantly different profile, perhaps this change in rate determining step between electron donating and withdrawing substitution is based on –

1) A reduced geometric selectivity of E/Z-SKA generation for electron donating substitution, which subsequently rearranges through a chair transition state.

2) A selective formation of the E-SKA for electron withdrawing substitution, which subsequently rearranges through chair and boat transition states.
Product (Ph-13C\textsubscript{2}-266/p-MeO-13C\textsubscript{1}-284/p-CF\textsubscript{3}-13C\textsubscript{1}-285) Formation

Similarities are yet again present between phenylacetate and para-trifluoromethyl in that a sharp initial formation is followed by a plateau, in which higher concentrations are ultimately observed for phenylacetate over para-trifluoromethyl. The para-methoxy displays the most intriguing behaviour in that the highest relative rate of formation is observed (t < 50 minutes) before the reaction appears to stall (50 < t < 500 minutes) and product formation resumes (t > 500 minutes). This curious behaviour associated with the mid plateau in formation of para-methoxy 13C\textsubscript{2}-284 is attributed to the selective IPR to the SKA, as observed through the extreme inflection in para-methoxy 13C\textsubscript{2}-165 return.

It is shown that the relative concentrations of product formation are observed to be higher for para-methoxy with the lowest obtained for para-trifluoromethyl. This observation corresponds well to computational studies involving the related Claisen rearrangement, as product formation is reduced with electron withdrawing substitution on the terminal vinyl position of allyl vinyl ether reactants.85, 146-148
3.4. Conclusions

These mechanistic studies have allowed an in-depth insight into the electronic dependance of aryl substitution upon diastereoselection within the enamido-Ireland-Claisen rearrangement. Initial studies focussed on the *in-situ* formation and monitoring of E/Z-SKA selectivity derived from electronically perturbed phenylacetate esters. Their formation was found to be highly E-selective but geometrical interconversion was facile under duress of remote electronic effects and the nature of the ester alkoxy moiety. These model SKA studies demonstrated that E/Z-SKA geometry may be responsible for diastereoselectivity within the associated EICR. In addition it has been shown that isolation of phenyl derived SKA’s are now obtainable with high levels of E-geometric purity and eclipse all current methodologies for their synthesis.

With a greater understanding of phenylacetate SKA’s, the *in-situ* monitoring of the EICR by 13C-NMR was pursued and involved the prior synthesis of 13C-labelled phenylacetate 13C$_2$-154, para-methoxy 13C$_1$-165 and para-trifluoromethyl 13C$_1$-206 substrates. Although these *in-situ* studies have allowed a significant understanding into the EICR based on data associated with the 13C label and also the silyl by-products, all reactions were plagued by the inability to monitor the formation of the *anti-* and *syn*-diastereomers of the silyester products as they are formed. However, diastereoselection within the *in-situ* rearrangements was found to correspond to the non-labelled analogues, post quench and methylation of the reaction mixture. These studies have demonstrated the complexity of the EICR through complications involving internal proton return to the enolate and SKA, and also interferences from other by-products including LiCl *auto*-catalysis and silanamine formation. The studies involving para-methoxy 13C$_1$-165 and para-trifluoromethyl 13C$_1$-206 substrates have aided the understanding of the varied diastereoselectivity based upon electronic perturbation. It is thought that the Hammett plot alludes to, the occurrence of a single mechanism with a change in rate determining step and it is postulated that reductions in diastereoselectivity observed for –
1) Electron donating substitution, are brought about via generation of poor E/Z-SKA geometric purity which subsequently rearranges through a chair transition state, and

2) Electron withdrawing substitution, are brought about via competing chair and boat transition states from the selectively formed E-SKA.

In addition to the NMR studies a computational collaboration has been initiated in-house, in order to corroborate the origins of diastereoselection. These in-silico studies have involved modelling the rearrangement for the 9 para-substituted substrates, assuming that they proceed from either the E- or Z-SKA or if a rapid interconversion of the E/Z-SKA’s occurs. Initial results from this study have indicated that correspondence to experimental results are best suited to the occurrence of an E/Z-SKA interconversion and rate studies have alluded to faster rates of rearrangement for electron rich substitution.
4. Alternative \(N\)-Protection in the EICR

As thorough investigations into the EICR of arylacetate enamides have been conducted, attention was now redirected towards alkylacetate substrates, as previous results have shown that their rearrangement occurs with poor diastereoselectivity.\(^{109}\)

4.1. Propionate EICR

Initial investigation focussed on the EICR of the propionate \(265\), synthesised in good yield \textit{via} the standard EDCi coupling of \(145\) with propionic acid.

\[
\begin{array}{c}
\text{O} \quad \text{N} \quad \text{Me} \\
\text{Me} \quad \text{CH} \\
\text{145} \\
\end{array}
\rightarrow
\begin{array}{c}
\text{N} \quad \text{O} \quad \text{Me} \\
\text{Me} \quad \text{CO}_2\text{H} (2 \text{ eq}) \\
\text{EDCI (2 eq), TEA (2 eq)} \\
\text{DMAP (0.2 eq)} \\
\text{DCM} \\
0 \text{°C} \text{ to RT} \\
\text{265} \\
\text{Yield = 94\%} \\
\text{(Published 88\%)} \\
\end{array}
\]

\textit{Scheme 116. Synthesis of Propionate 265.}

Initial investigations with propionate \(265\) focussed on utilising the optimised conditions developed for the phenylacetate EICR (Chapter 2) and that involving the increased loading of TMSCl (Chapter 3). Utilisation of these conditions produced \(139\) with an improved yield, however no improvement in diastereocontrol was observed (Entry 1 and 2, Table 15). Recovery of mass balance through isolation of methylated propionic acid \(286\) was not accomplished due to volatility, however \(^1\text{H}-\text{NMR}\) analysis of crude reaction mixtures alludes to its presence.
Chapter 4 Results & Discussion

Scheme 117. Subjection of 265 to NaHMDS Mediated EICR.

Further investigations involved probing the effect of amide base used, where utilisation of NaHMDS resulted in a quantitative return of alcohol 145, however KHMDS, Mg(HMDS)$_2$ and LDA all yielded intractable mixtures of products.

Scheme 118. Angle’s Soft Enolisation Conditions.

Alternative investigations have involved the use of soft enolisation conditions as that reported by Angle in the synthesis of $\Delta^{4,5}$-piperolic esters, which saw the Ireland-Claisen rearrangement of lactone 287 by triethylamine and triisopropylsilyl triflate.171
Unfortunately, subjection of propionate 265 to these reaction conditions resulted in the formation of intractable mixtures of products.

Scheme 119. Application of Angle’s Soft Enolisation Conditions.

Other alternatives have included investigations into alternative enolate trapping agents. Funk reported the use of diethoxyphosphinyl chloride, allowing generation of enol phosphates 288 after LDA deprotonation. Subsequent rearrangement of 288 generates the mixed carboxylic diethoxyphosphoric anhydrides 289, which have been shown to be useful acylating agents allowing generation of esters and Weinreb reagents 290. Funk noted that the diastereoselection obtained matched that of the traditional Ireland-Claisen protocol.

Scheme 120. Funk’s Alternative Trapping Reagent.
Unfortunately, treatment of propionate 265 yielded intractable mixtures of products.

Although Funk’s protocol proved to have detrimental effects on the rearrangement of 265, the use of HMPA in this context was intriguing. It is well known that the geometrical outcome of SKA generation via traditional Ireland-Claisen protocols can be controlled by the presence or absence of certain additives and HMPA is classically used to allow selective formation of the Li-(E)-enolate and subsequently the Z-SKA.\(^{66}\) The mechanism in which the E-enolate is formed relies on premixing the lithium base and HMPA, allowing the Lewis basic HMPA to co-ordinate to lithium subsequently reducing its Lewis acidity, prior to addition of substrate. The reduction in the electrophilicity of lithium yields a looser six-membered transition state for enolisation, of which 1,2-transannular effects become more important than 1,3-diaxial effects, resulting in the E-enolate. This aspect of enolate control is highlighted by Ireland-Claisen rearrangement of 119 in Scheme 122.\(^{76}\)
As the selective formation of either E- or Z-SKA’s offers diastereocntrol, this prompted us to ascertain whether the syn-diastereomer could be formed using the EICR protocol. Subjection of propionate 265 to rearrangement conditions containing 23 vol% HMPA/THF yielded an intractable mixture of products. However repeating the reaction and replacing the hydrochloric acid quench with methanol, allowed the quantitative isolation of the alcohol 145. Isolation of 145 by this modified quench protocol insinuates that the presence of HMPA may favour decomposition of the
enolate formed, possibly resulting in a degradation via a ketene pathway (Chapter 2, Scheme 65).

Scheme 123. Attempt at syn-Selective EICR

Whilst studies concerning 265 where ongoing, Collum reported the first example of a TMSCl-free, LiHMDS-mediated Ireland-Claisen rearrangement. The key to the success of this reaction was replacement of the Lewis basic solvent, THF, for a toluene/triethylamine solvent mixture. Collum reported that the LiHMDS/triethylamine mediated enolisation of 291 affords 292 rapidly and selectively, with subsequent rearrangement producing 293 in excellent yield, diastereoselectivity and was also twenty times faster than the corresponding reaction conducted in THF.

Scheme 124. Collum’s LiHMDS/TEA Ireland-Claisen Rearrangement Protocol.

Unfortunately, mechanistic studies involving the nature of LiHMDS/triethylamine ester enolisation and subsequent Ireland–Claisen rearrangement are reported to be published in due course. However, Collum has currently proposed an explanation for the rapid and selective enolisation observed, through analytical techniques such as
React-IR and 6Li- and 15N-NMR spectroscopic studies involving enolisation of ketone 294.173

![Diagram of ketone enolisation mechanism](image)

Scheme 125. Ketone Used for Collum’s Enolisation Mechanistic Studies.

Primarily the reaction proceeds under kinetic control, however, the analytical observations revealed some interesting subtleties (Scheme 126). Notably the toluene/triethylamine mediated enolisation occurs via a dimer based mechanism 298 in contrast to a monomer based mechanism associated with THF 299.174,175 Subjection of ketone 294 to LiHMDS/triethylamine (3:30 equivalents) revealed the lithium enolate-LiHMDS mixed dimer 300 with an E/Z selectivity of 100:1. However, when the equivalents of LiHMDS are lowered (<2) significant reductions in E/Z-enolate purity are observed, resulting from a facile equilibration and consequent formation of mixed E/Z-300 dimers. When LiHMDS loading is lowered to 1 equivalent, enolisation is not observed and the substrate autoinhibits the reaction, leading to the formation of the unreactive bis-complexed dimer 297.

![Diagram of solvation structures](image)

Scheme 126. Solvation Structures of Reactant, Transition Structures & Enolates.
The excellent geometric selectivity associated with the triethylamine mediated enolisation, stems from the selective stabilisation of the rate-limiting transition structures, relative to the reactants. Therefore solvents which display little or no affinity for the reactants and a high affinity for the transition structure maximise structures, relative to the reactants. Therefore solvents which display little or no enolisation, stems from the selective stabilisation of the rate-limiting transition structure

150 times faster than when performed in neat THF. This rate acceleration derives from the destabilising steric affects associated with solvation of the LiHMDS dimer 295, producing 296. Alleviation of these unfavourable steric interactions is subsequently accomplished through generation of dimeric transition structure 298 allowing enolisation. With this exciting protocol reported by Collum in hand, rearrangement of propionate 265 was attempted using this procedure.

![Scheme 126. EICR Using Collum’s Protocol.](image)

Encouragingly, the isolation of 139 in moderate yield and excellent diastereoselectivity is in stark contrast to previous attempts. However, accounting for mass balance of this reaction became difficult. Analysis of the crude reaction mixture by 1H-NMR pre-methylation, alluded to the selective formation of the anti-diastereomer 301 and 302, presumably generated by an E1cB type elimination of the rearranged lithium carboxylate. Methylation of the crude reaction mixture was pursued and although isolation of 139 was accomplished, isolation of 303 was not. Attempts at isolating 302 was subsequently attempted by column chromatography and recrystallisation post rearrangement, however co-elution and recrystallisation with 301 resulted in both cases.
To rationalise the generation of 302, it was reasoned its formation may occur via post-rearrangement enolisation of Li-carboxylate 304 by either the presence of excess LiHMDS and/or the 1N NaOH reaction quench.

Quenching the rearrangement with the non-nucleophilic NaHCO₃ resulted in identical product distributions to that seen with the 1N NaOH quench. The generation of 302 was subsequently attributed to the large excess of LiHMDS required with Collum’s protocol and is in conjunction with observations previously reported (Chapter 2).

The use of LiHMDS/triethylamine (3 eq./30 eq.) has been found to be optimal for enolisations of esters and ketones. However, in order to ascertain whether Collum’s protocol can be adapted to the EICR, optimisation of this procedure was pursued. In order to counteract the issue of excess LiHMDS within the reaction protocol, any attempts at reducing the amount of LiHMDS and triethylamine resulted in complex
intractable reaction mixtures, with limited if any signs of product or by-product formation by 1H-NMR. Unsurprisingly, increasing the amount of LiHMDS (4 eq.) led to a reduced yield of 301 with an increase in 302.

![Scheme 129. Increasing LiHMDS in Propionate EICR.](image)

Investigations into solvent exchange demonstrated the importance of a non-Lewis basic media. Hexane displayed analogous results to toluene; however the use of THF and butylmethylether displayed complex and intractable reaction mixtures, with no product 301 or by-product 302 observed.

![Scheme 130. Solvent Exchange in Propionate EICR.](image)

Investigations into alternative bases including NaHMDS and KHMDS yielded varying amounts of unreacted starting propionate 265 (Entries 1 & 2, Table 16) with no signs of any rearrangement occurring.
Chapter 4 Results & Discussion

Table 16. Amide Base Exchange in Propionate EICR.

In order to improve the reaction efficiency, the addition of TMSCI was pursued, following in-situ (Entry 1, Table 17) and ex-situ (Entry 2, Table 17) quench protocols. Incorporation of this additive demonstrated near complete formation of the E1cB by-product 302, with trace amounts of product 301 being observed. Presumably this enhanced degradation arises from generation of the Lewis acid, LiCl within the reaction mixture.

Table 17. Additive Effects in Propionate EICR.

As these initial optimisation attempts were shown to be unfavourable, attention was now turned to product 301 and by-product 302 distributions. A notable observation was that formation of 301 was never achieved in a yield >45%, with mass balance being accounted for by formation of 302. Further to this, the addition of TMSCI (Table 20) yielded near quantitative formation of 302, presumably caused by the formation of the familiar Lewis acid, LiCl (as discussed in Chapter 3). In relation to our enamido
ICR, the in-situ formation of LiCl could either allow E1cB degradation to occur on a diastereoselective or a non-diastereoselective rearrangement product. It was subsequently realised that a non-diastereoselective rearrangement may be occurring under Collum’s protocol and the formation of a single diastereomer in 45% yield may be the result of a pseudo-kinetic resolution of one diastereomer (syn-) compared to the other (anti-). In order to determine if this is the case, quenching the reaction prior to the onset of E1cB elimination would be advantageous. It is noted that during warming of the reaction a colour change was noted at 0 °C and was ascribed to the possible onset of E1cB elimination. With this in mind the reaction was repeated and an arbitrary temperature of -10 °C was chosen to warm the reaction to, where it was subsequently quenched after an identical reaction time. Analysis of the crude reaction mixture by \(^1\)H-NMR alluded to no formation of \(302\) with \(139\) generated in a non-diastereoselective fashion. Although the yield for this reaction was low the majority of the mass balance was obtained by re-isolation of the starting propionate \(265\).

To demonstrate that the syn-diastereomer is more susceptible to E1cB type elimination than the anti-diastereomer, subjection of carboxylic acid \(301\) (d.r. = 2:1) to LiHMDS (3 eq.) and triethylamine (30 eq.) was pursued. The subjection of \(301\) to standard Collum protocols was envisaged to mirror post rearrangement concentrations of LiHMDS and triethylamine, as one equivalent of LiHMDS would generate a lithium carboxylate. This study demonstrated the selective elimination of syn- over the anti-diastereomer and it is noted that conversion to anti-\(301\) in 59% is marginally lower than that expected for a 2:1 mix of diastereomers, where 66% would be the theoretical maximum yield. It is therefore suggested that elimination of syn-\(301\) is more facile, but this does not mean that anti-\(301\) is completely unsusceptible.

Scheme 131. Investigating Diastereoselectivity of E1CR.
The utilisation of the Collum protocol in the EICR of propionate 265 allows clean access to a single anti-diastereomer in 45% yield. This contrasts favourably with our previous report. However the inherent issues associated with the unselective reaction and the reliance of a pseudo-kinetic resolution to generate high anti-diastereoselectivities are not ideal and led us to pursue alternative enamide nitrogen protection.

4.2. Investigation into Alternative N-Protection

The successful EICR of propionate and arylacetate enamido allylic esters in generating β-amino acid precursors would allow access to a wide variety of natural and non-natural targets. Such targets could involve the prescribed stimulant methylphenidate (Ritalin®) 5 and the antimicrobial β-peptide unit key to β-foldamers, such as trans-2-aminocyclpentane-carboxylic acid (ACPC) 21 and derivatives thereof. Other larger targets could involve that of the cytotoxic motuporin 19.
Access to any target molecule using the EICR strategy relies on the use of a suitable enamide with reliable protecting groups. In an attempt to enhance the utility of the EICR, alternative enamides were investigated to probe any structure-reactivity trends. A number of potential enamides were identified based on the ability to modulate the electron donating capability of the enamine nitrogen but also to serve as readily cleavable protecting groups. The use of p-tolylsulfonamide (cleaved by Mg/MeOH) the use of N-Boc (cleaved by trifluoroacetic acid) and N-phthalimide (cleaved by hydrazine) were chosen for investigation.177-179 Other orthogonal components, in addition to the required electron withdrawing group, could be satisfied by use of N-alkyl derivatives such as the allyl group (cleaved by Wilkinson's catalyst) or the benzyl group (cleaved by hydrogenolysis).180-181 With these protecting groups in mind several, target EICR substrates were identified, subsequently allowing synthesis of a variety of protected β-amino acid precursors, including the phthalimide 305, diBoc 306, allylBoc 307, benzylsulfonamide 308 and the allylsulfonamide 309.

\begin{center}
\textbf{Scheme 134. Enamide Substrates for Evaluation.}
\end{center}
4.2.1. Enecarbamates

Initial investigations surrounding the use of N-Phth and N-Boc protection proved problematic. Access to racemic N-Phth and N-Boc enamido secondary alcohols were attempted by the standard protocol, involving Jones oxidation of 149 and subsequent addition of the appropriate nitrogen nucleophile in good yields.

Scheme 134. Route to Alternative N-Protected Enamides.

Subsequent chemoselective reduction of the ketone proved to be problematic for the N-phthalimide 310, as competition between reduction of the imide functionality was seen in addition to reduction of the ketone. Reduction of 310 with 1 equivalent of NaBH₄ offered no advantage, with intractable mixtures of products resulting.

Scheme 135. Route to N-Phth Protected Enamides.

Reduction of the N-Boc systems 311 and 312 also appeared challenging as the alcohols 313 and 314 proved more facile to dehydration and observation of crotonaldehyde 157 and parent N-Boc amine 315 signals by ¹H-NMR spectroscopy resulted.

Scheme 136. Route to N-Boc Protected Enamides.
4.2.2. Enesulfonamides

With unsuccessful access to \(N\)-Boc and \(N\)-Phth secondary alcohols, attention was turned to the stereoselective synthesis of secondary sulfonamide alcohols adapted from a procedure reported by Meyer.\(^{106, 182}\) This approach was initially shown to allow selective access to primary propargylic \(E\)- and \(Z\)-enesulfonamides, via copper-catalysed coupling between sulfonamide 316 and bromoalkyne 317. Alkyne, 319 was then reduced with geometrical control to produce the \(E\)-322 or \(Z\)-321 isomer. Meyer has subsequently demonstrated that the synthesis can also be applied to generating the secondary \(N\)-benzylsulfonamide alcohol 323 in high yield.

![Scheme 137. Meyer’s Synthesis of N-Protected Vinylogous Alcohols.](image)

The added benefit of utilising Meyer’s protocol is that the synthesis can offer access to enantiomerically pure secondary enesulfonamide alcohols. This synthetic route should then allow chirality transfer within the EICR, providing rearrangement of the sulfonamide allylic ester substrates occurs efficiently. Therefore a unique entry into carbocyclic and heterocyclic \(\beta\)-amino acids, such as ACPC 21 and \(\beta\)-proline 324 or iminosugar analogues 325 should be possible.
To allow rapid investigation into the EICR of these enesulfonamides, the synthetic route undertaken again relied on the reported procedure by Carbery and Janey. The synthesis of racemic 329 and 323 involved the two step procedure involving Jones oxidation of 149, followed by the immediate conjugate addition of the appropriate sulfonamide 326 or 316 in the presence of catalytic amounts of DABCO. Reduction of ketone 327/328 was achieved by a modified protocol where higher loadings of sodium borohydride and a dual THF/MeOH solvent system were required. Key sulfonamides 329 and 323 were afforded in good yields and importantly, the acid sensitive compounds were isolated by simple aqueous work-up, without the need for further purification.
4.2.3. EICR Optimisation of Propionate & Phenylacetate N-Allylsulfonamides

With a rapid and efficient route to multigram quantities of both racemic N-allylsulfonamide 329 and racemic N-benzylsulfonamide 323 alcohols in hand, synthesis of rearrangement substrates was subsequently pursued. Initial investigations involved synthesis of the propionate-330 and phenylacetate-allylsulfonamide 331, both in excellent yields via the standard esterification protocol using EDCi.

![Scheme 140. Synthesis of Racemic Propionate & Phenylacetate Sulfonamide Substrates.](image)

With the required alkyl and phenylacetate substrates in hand, investigations surrounding the EICR of these substrates could now be pursued. Both substrates were subjected to optimised rearrangement conditions detailed in Chapter 3 (LiHMDS 1.3 eq., TMSCl 6 eq.). Subjection of the propionate allylsulfonamide 330 to these conditions led to quantitative return of the alcohol precursor 329, presumably resulting from instability of enolate or SKA. It is further noted that isolation of methyl propionate 332 would be expected, but due to volatility issues this was never accomplished. However subjection of phenylacetate 331 to rearrangement conditions was mildly successful, generating the rearranged β-amino acid precursor 333 in poor yield but excellent diastereoselectivity. Near quantitative mass balance for this rearrangement was recovered by isolation of methyl phenylacetate 158.
With encouraging results seen by the rearrangement of the phenylacetate 331, an optimisation of rearrangement conditions was performed on this substrate. A possible consideration as to why the reaction may produce a poor yield, is that lithiation of the N-allyl group and subsequent formation of a sulfonamide co-ordinated 5-membered ring may be a competing process.

If this were the case then simply increasing the number of equivalents of LiHMDS should circumvent this issue. With this in mind a small optimisation involving investigations into the equivalents of LiHMDS was pursued, with 2, 2.25, 2.5 and 3 equivalents all demonstrating increased yields of 333 and reductions in 158. As an optimal yield was obtained for use of 2.5 equivalents of LiHMDS (Entry 3, Table 18), all future rearrangements of arylacetate sulfonamides were subjected to this condition.
With the successful rearrangement of the phenylacetate 331 in hand, efforts were then redirected to the rearrangement of the propionate 330. Subjection of 330 to the newly optimised rearrangement conditions yielded an intractable mixture of products, however analysis of crude 1H-NMR spectra indicated limited signs of 334 with a diastereomeric ratio of 1:1.

With the EICR of the propionate 330 still being problematic, the use of Collum’s conditions was revisited. Subjection of 330 to the standard conditions involving 3 equivalents of LiHMDS and 30 equivalents of triethylamine led to the formation of intractable reaction mixtures. However, following a swift investigation into increasing the stoichiometry of the base and co-solvent, clean formation of 334 was only
observed with 4.5 equivalents of LiHMDS and 45 equivalents of triethylamine. In an attempt to account for mass balance, it is noted that formation of E1cB degradation product was not observed, but the presence of methyl propionate signals within the crude 1H-NMR alludes to the familiar degradation of enolate.

![Scheme 144: EICR of Racemic Propionate Allylsulfonamide Using Collum Conditions.]

4.2.4. EICR of Alkyl & Arylacetaete N-Allylsulfonamides

With the optimisation of the phenylacetate and propionate rearrangements completed, a number of alkyl- and aryl-substrates were synthesised using the standard EDCi coupling conditions in excellent yields. It is noted however, that heteroatom substitution (Entry 3 & 4, Table 19) was extremely sensitive and subject of these substrates to EICR conditions was required immediately. Synthesis of an N-phthalimide substrate (Entry 5, Table 19) was not accomplished as intractable mixtures of products resulted post work-up.
With several substrates in hand, rearrangement was then pursued using the newly optimised conditions. For alkyl derivatives the newly modified Collum conditions were utilised and for the aryl derivatives the newly optimised LiHMDS/TMSCl conditions were used. The heteroatom substrates, 337 and 338, were subjected to both sets of rearrangement conditions.

The rearrangement of the alkyl substrates (Entries 1-3, Table 20) were observed to proceed in moderate to good yields and excellent diastereoselectivities, with a reduction in diastereoselectivity seen for rearrangement of pentenoicacetate (Entry 3, Table 20). The results obtained from the successful rearrangement of these alkylacetate

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Product</th>
<th>Yield (%)</th>
<th>Entry</th>
<th>R</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>iPr</td>
<td>335</td>
<td>87</td>
<td>7</td>
<td></td>
<td>341</td>
<td>89</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>336</td>
<td>99</td>
<td>8</td>
<td></td>
<td>342</td>
<td>86</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>337</td>
<td>87</td>
<td>9</td>
<td></td>
<td>343</td>
<td>86</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>338</td>
<td>92</td>
<td>10</td>
<td></td>
<td>344</td>
<td>82</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>339</td>
<td>-</td>
<td>11</td>
<td></td>
<td>345</td>
<td>86</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>340</td>
<td>86</td>
<td>12</td>
<td></td>
<td>346</td>
<td>85</td>
</tr>
</tbody>
</table>

Table 19. Yields for EDCi Couplings.
sulfonamide rearrangements are in stark contrast to that observed for the propionate oxazolidinone system 256 seen previously. This result presumably signifies the onset of a selective enolisation and efficient rearrangement. It is also noted that no E1cB degradation product was observed during rearrangement of these alkylsulfonamides. Rearrangement of the heteroatom substrates (Entries 4 & 5, Table 20) under these conditions provided a different outcome, with complex reaction mixtures resulting. Analysis of crude 1H-NMR spectra alluded to no signs of desired rearrangement, however careful purification of these reaction mixtures allowed the isolation of the familiar E1cB degradation product 353 and 354.

![Chemical Structure](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Product</th>
<th>Yield (%)</th>
<th>d.r.ab (anti:syn)</th>
<th>By-Product</th>
<th>Yield (%)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me</td>
<td>334</td>
<td>51</td>
<td>>25:1</td>
<td>302</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>iPr</td>
<td>347</td>
<td>65</td>
<td>>25:1</td>
<td>351</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>\equiv</td>
<td>348</td>
<td>70</td>
<td>10:1</td>
<td>352</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>\equivS</td>
<td>349</td>
<td>0</td>
<td>na</td>
<td>353</td>
<td>41</td>
</tr>
<tr>
<td>5</td>
<td>\equivO</td>
<td>350</td>
<td>0</td>
<td>na</td>
<td>354</td>
<td>43</td>
</tr>
</tbody>
</table>

ad.r. measured of crude on 250 MHz 1H NMR bTriplicates have been performed in each case. Measured dr is reproducible and reported as an average cYield refers to product that E1cb product corresponds to.

Table 20. Results for Alkyl- & Heteroacetate E1CR.

Rearrangement of aryl substrates (Table 21) has also been shown to occur in good yield and generally excellent diastereoselectivities. A significant observation is that rearrangement of systems that have previously shown poor diastereoselectivity
(Chapter 2) including ortho-substituents and the electron withdrawing para-nitro and electron donating para-methoxy now possess excellent diastereoselectivity. Of notable interest is the reduced diastereomeric ratio observed with the p-CF$_3$ substrate (Entry 3, Table 21), which is now less than that obtained for the oxazolidinone variant (Chapter 2, 217, d.r. = 21:1). Near quantitative mass balance was returned by isolation of the corresponding methyl arylacetates. Attempted rearrangement of the heteroatom substrates 349 and 350 yielded complex intractable reaction mixtures.

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Product</th>
<th>Yield (%)</th>
<th>d.r.a,b (anti:syn)</th>
<th>By-Product</th>
<th>Yield (%)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>355</td>
<td>67</td>
<td>>25:1</td>
<td>362</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>356</td>
<td>73</td>
<td>>25:1</td>
<td>186</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>357</td>
<td>54</td>
<td>12:1</td>
<td>228</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>358</td>
<td>40</td>
<td>20:1</td>
<td>189</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>359</td>
<td>68</td>
<td>>25:1</td>
<td>363</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>360</td>
<td>72</td>
<td>20:1</td>
<td>231</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>361</td>
<td>55</td>
<td>>25:1</td>
<td>234</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

ad.r. measured by acquisition of crude on 250 MHz 1H NMR bDuplicates have been performed in each case. Measured d.r. is reproducible and reported as an average cYield refers to prod that by-prod corresponds to.

Table 21. Results for Arylacetate EICR
In order to rationalise the improved diastereoselectivity seen by rearrangement of alkyl- and arylsulfonamides compared to the oxazolidinone examples, considerations surrounding the electronic nature of these enamide substrates were pursued. Based on the observed 13C-NMR resonances it is seen that C1 in the sulfonamides are more deshielded than the corresponding carbamates. Whilst resonances are similar for C2 and C3, subtle differences are observed with C4 and C5 in that the sulfonamides are more shielded than the corresponding carbamates.

These differences in δC allude to the degree of nitrogen involvement within these substrates. The more deshielded C1 and more shielded C4 of the sulfonamides indicate that this N-protection allows a greater degree of electron release into the enamide, purporting to more iminium character and an elongated C-Oσ bond 364 as compared to the corresponding carbamate.
The increased diastereoselectivity observed with the more electron releasing sulfonamide substrates may be an aspect of a faster rearrangement, with issues such as Li-enolate and SKA isomerisation, or chair/boat interconversion no longer contributing to the diastereochemical outcome. It has been well documented in the related Cope rearrangement, that rate accelerations are observed with electron releasing terminal allyl substituents. 85, 146-148, 185

The successful rearrangement of alkyl sulfonamides under Collum’s protocol is markedly improved to that involving propionate oxazolidinone 256, in that a diastereoselective rearrangement occurs with no E1cB degradation. This apparent resistance may be due to conformational constraints and a steric in-accessibility of LiHMDS to the α-H of the rearranged Li-carboxylate. During rearrangement of the sulfonamide and oxazolidinone systems it is envisaged that each Li-carboxylate exists as a mixed dimer 365 and 366 respectively. However, steric considerations of the sulfonamide may possess another factor hindering post-rearrangement enolisation, anticipated to be the formation of the 5-membered lithiated-allylsulfonamide ring.

Fig. 22. In-Solution Considerations of Rearrangement Li-Carboxylates.
4.2.5. Derivatisation of N-Allylsulfonamide Rearrangement Products

With the successful rearrangement of alkyl- and arylacetate β-amino acid precursors of allylsulfonamide in hand, utilisation of the synthetic handles was pursued. Elaboration heavily focused on utilising the bis-olefin functionality present within the EICR products, with the sole aim of gaining access to heterocyclic β-amino acid precursors through means of a simple ring closing metathesis (RCM). In a similar protocol reported by Moreno-Mañas involving the RCM of bis-allylic sulfonamides, subjection of the sulfonamide EICR products to RCM conditions allowed access to the heterocyclic β-amino acid precursors in high to excellent yield.186 It is noted that substrates possessing ortho-substitution required a toluene solvent exchange and subjection to mild heating.

![Diagram of reaction](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Product</th>
<th>Yield (%)</th>
<th>Entry</th>
<th>R</th>
<th>Product</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me</td>
<td>367</td>
<td>71</td>
<td>6</td>
<td>F5C</td>
<td>372</td>
<td>91</td>
</tr>
<tr>
<td>2</td>
<td>(^{1}\text{Pr})</td>
<td>368</td>
<td>86</td>
<td>7</td>
<td>O3N</td>
<td>373</td>
<td>96</td>
</tr>
<tr>
<td>3</td>
<td>Ph</td>
<td>369</td>
<td>92</td>
<td>8</td>
<td>Cl</td>
<td>374</td>
<td>83(^{a})</td>
</tr>
<tr>
<td>4</td>
<td>I</td>
<td>370</td>
<td>51(^{a})</td>
<td>9</td>
<td>OMe</td>
<td>375</td>
<td>90(^{a})</td>
</tr>
<tr>
<td>5</td>
<td>MeO</td>
<td>371</td>
<td>89</td>
<td>10</td>
<td>O</td>
<td>376</td>
<td>89</td>
</tr>
</tbody>
</table>

\(^{a}\)Conducted in toluene at 65 °C

Table 23. Results for Grubbs I RCM of Sulfonamide EICR Products.
With a variety of heterocyclic β-amino acid precursors in hand, this opens up possible synthetic access to β-proline derivatives and may also allow access to iminosugar analogues. With this in mind a variety of transformations on 369 have been pursued, of which hydrogenation 377 and saponification 378 have successfully been achieved. Brief attempts at sulfonamide deprotection using Mg/MeOH and epoxide formation by treatment with mCPBA yielded intractable mixtures of products.

Scheme 146. Derivitisation of Phenylacetate Heterocyclic β-Amino Acid Precursor.

The synthetic handle presented by ortho-iodo heterocyclic β-amino acid precursor 370 provides an excellent substrate for the synthesis of an interesting 6,5,5-fused heterocyclic β-amino ester 379. Following a protocol reported by Fürstner for intramolecular Heck reactions, the synthesis of 379 was accomplished in an excellent yield.187
4.2.6. EICR of N-Benzylsulfonamides

With the success seen in derivatising N-allylsulfonamide rearrangement products as heterocyclic β-amino esters, it was hoped access to carbocyclic β-amino acids such as ACPC 21 could be achieved via rearrangement of N-benzyl protected sulfonamides. With this in mind esterification of 323 with pentenoic acid yielded 380 in excellent yield.

Rearrangement of 380 under modified Collum conditions yielded 381 in excellent diastereoselectivity but very poor yield, however with no indication of E1cB degradation.
Subsequent attempts at increasing the efficiency of this rearrangement have included varying the stoichiometry of the reagents used and performing cold reaction quenches, however these attempts have been unsuccessful. Subjection of 380 to LiHMDS and TMSCl rearrangement conditions yields similar results, however no diastereoselection is obtained in product 381. However, to demonstrate that carbocyclic β-amino acid precursors can be accessed from 381 (generated within scheme 149), subjection to RCM conditions produced 382 in excellent yield.

![Scheme 150. Generation of Carbocyclic β-Amino Acid Precursor 382.](image)

4.2.7. Chirality Transfer within the E1CR of N-Allylsulfonamides

With the success seen in the yield and diastereoselectivities of the E1CR of the alkyl- and aryl allylsulfonamides, it was decided to pursue an enantiopure synthesis of this class of substrate. It was hoped that rearrangement of an enantiopure substrate would allow the synthesis of optically active β-amino esters, *via* the reliable chirality transfer apparent in the Ireland-Claisen rearrangement.76 With this in mind, it was decided that this study shall focus on the synthesis and rearrangement of the (S)-phenylacetate (S)-331, based on an adaptation of Meyer’s reported synthesis.106, 182

![Fig. 23. (S)-Phenylacetate (S)-331.](image)

The synthesis of (S)-331 first involved silyl protection and bromination of alcohol (S)-149, followed by Ullmann coupling of (S)-383 with allylsulfonamide 326 to afford ynamide (S)-384 in good yield. Subsequent TBAF deprotection afforded (S)-385 in good yield, however reduction and isolation of (S)-329 proved problematic.
Meyer’s synthesis involved the reduction of an analogously N-benzylsulfonamide, with purification achieved by an aqueous Rochelle’s salt quench and subsequent column chromatography. The reduction of (S)-385 under Meyer’s protocol initially proved successful, however the purification of (S)-329 presented issues. Superficially the aqueous Rochelle’s salt quench appeared to cleanly provide (S)-329 without the need for column chromatography. However attempted esterification with phenylacetic acid led to unpurifiable mixtures of phenylacetate (S)-331 and unreacted alcohol (S)-329, possibly due to the presence of residual aluminium salt impurities.

Attempted purification of (S)-329 via column chromatography using silica or grade V alumina unfortunately led to degradation, with spectroscopic analysis alluding to the formation of familiar crotonaldehyde 157 and allylsulfonamide 326 dehydration products.
This difference in stability between the N-benzyl and N-allylsulfonamide alcohols to purification is indeed unfortunate. However, to allow clean synthesis of \((S)-329\) without recourse to column chromatography a number of variables were investigated. Investigations surrounding the stoichiometry of Red-Al® were initially pursued, where reduction to 1.5 equivalents allowed complete conversion to \((S)-329\), however issues with its subsequent esterification were still observed. Similar issues were also observed with the use of LiAlH\textsubscript{4}. In an attempt to solve the purification issues of \((S)-329\), an alternative work-up protocol was pursued. Tomooka noted that the use of a ‘pea crystal’ (\(\text{Na}_2\text{SO}_4.10\text{H}_2\text{O}\)) quench can efficiently remove aluminium hydrides and their by-products188. Reduction of \((S)-385\) following this protocol was found to be successful and subsequent esterification yielded \((S)-329\) in high yield.

With the desired enantiopure substrate \((S)-331\) in hand, subjection to rearrangement yielded the β-amino acid precursor \((2R,3R)-333\) in high yield and excellent diastereoselectivity. Importantly, excellent levels of enantiocontrol were observed within the rearrangement, however efforts at obtaining an absolute value of enantiomeric excess have not yet been successful, based on an inability to gain total baseline resolution by HPLC. An important observation associated with rearrangement of this enantiopure substrate has demonstrated that the minor Z-SKA appears to display no chirality transfer, as enantioselection is not observed in formation of the syn-product and may be attributed to a non-concerted bimolecular recombination reaction.
4.3. Conclusions

Although superficial improvements within the diastereoselectivity for rearrangement of N-oxazolidinone-propionate 265 were achieved by Collum’s protocol, poor yields resulted. Subsequent investigation demonstrated that the EICR under these conditions was non-selective and 2:1 mixtures of anti:syn diastereomers were generated. The superficial appearance of a selective rearrangement was the result of a more facile E1cB type elimination of the syn-diastereomer compared to the anti-.

In an attempt to observe successful rearrangement of both alkyl- and arylacetate substrates, investigations into the use of alternative N-protected enamides were pursued to probe any structure reactivity trends. The use of N-Phthalimide and N-Boc protection was non-profitable based on substrate instabilities, however the use of sulfonamide protection was observed to allow the successful rearrangement of both alkyl-and aryl-substrates. Further derivitisation of these N-allylsulfonamide rearrangement products was seen within the derivitisation as heterocyclic β-amino acid precursors. Also the synthesis of an enantiopure phenylacetate substrate allowed excellent chirality transfer within the EICR be demonstrated.
5. Conclusions & Future Work

The initial remit of the enamido Ireland-Claisen rearrangement was to harness the synthetic properties associated with the related Ireland-Claisen rearrangement and allow access to multi substituted β-amino acids with high levels of stereocontrol. Initial efforts focussed on developing the preliminary results involving the rearrangement of N-oxazolidinone substrates. After a reaction optimisation further investigation into the variation of diastereoselectivity based upon the nature of electronic perturbation in α-arylacetates was pursued. This study demonstrated a conspicuous range of diastereoselectivity whereby a free energy relationship was realised for the para-substituted analogues and allowed diastereoselection be examined in terms of deconvoluted steric and electronic effects.

![Reaction Scheme]

Fig. 24. EICR of Para-Substituted Substrates & Associated Log(d.r.) vs Resonance Parameter R°."

\[\text{Log(d.r.) vs. } R^° \]

- OMe, F, Cl, I, Me, H, CF₃, CN, NO₂
- d.r. 9:1 - 60:1
- ρ = 1.061
- R² = 0.9694
- ρ = -1.0054
- R² = 0.9704
- NO₂

163
As this non-linear Hammett type plot alludes to a change within the rate determining step of the mechanism, it was clear that the EICR was sensitive to electronic perturbation as reductions in diastereoccontrol were observed with increasing electron withdrawal and donation.131 In order to evaluate the origins of diastereoselection mechanistic studies were undertaken. It was rationalised that 2 key stages within the EICR may be responsible for the varied diastereoselectivity, this being from initially generated mixtures of E/Z-SKAs which rearrange through a predictable chair transition state or from selective formation of the E-SKA which then rearranges through competing chair and boat transition states. With these considerations in mind, \textit{in-situ} NMR experimentation was pursued with the aim of being able to monitor the EICR of an electron withdrawing, neutral and donating substrate. Initial studies involved the 1H-NMR monitoring of model α-aryl SKA formation, designed to mimic the secondary ester of the enamidine substrates. From this study it was shown that SKA formation was in fact sensitive to the nature of electronic substitution, with reduced geometric control observed for the strongly electron withdrawing and electron donating systems.160 These results were indeed important as they demonstrated that generation of varied E/Z-SKAs may influence the diastereochemical outcome of the associated EICR.

![Scheme 155. Comparing Aryl SKAs to d.r. of EICR](image)

Although varied degrees of geometric control were observed for the \textit{in-situ} formation of the model SKAs, they were shown to be much higher than previous literature isolations.149, 156-159 With this in mind a protocol for the formation and isolation of α-aryl E-SKAs was developed, where $(E)^{2}H_{1}$-240 was isolated essentially as a single geometric product.160
The success observed within the monitoring of SKA formation then led us to follow the *in-situ* reaction monitoring of the EICR. After several attempts at synthesising a viable class of substrate, synthesis of 13C-labelled phenyl-, *para*-methoxy- and *para*-trifluoromethylphenylacetates were accomplished. The *in-situ* reaction monitoring by 13C-NMR allowed observation of *E/Z*-SKA formation/consumption and subsequent β-silylester formation.

Unfortunately, the inability to detect both the *syn*- and *anti*-diastereomers of product were plagued by coincident resonances. However the results from this study were informative in that the origins of diastereoselection are attributed to-

1) Poor *E/Z*-SKA control which rearranges through a chair transition state for electron donating substitution.

2) Selective formation of the *E*-SKA which rearranges through competing chair and boat transition states for electron withdrawing substitution.

In addition the results generated from these studies have also allowed a major insight into the effects of silyl by-products generated within the reaction. Throughout each *in*-
The reaction, inflections in the return of substrates were observed and this is attributed to a facile ‘Internal Proton Return’ mechanism to the enolate and SKA.162,163 Generation of LiCl is also thought to play a major role within the observed reaction profile as it exhibits auto-catalytic effects, speeding up the rate of enolisation and reducing that of IPR, resulting in consumption of substrate.165 The formation of silanamine within these reactions has also alluded to the observed stalling of the EICR, as silylation of LiHMDS becomes more facile compared to enolisation of substrates and is attributed to an ever increasing concentration of LiCl exhibiting deleterious effects.

In addition to the mechanistic studies, other areas of research have involved improvement of the alkylacetate EICR, in which alternative reaction conditions were investigated. The most promising conditions for \textit{N}-oxazolidinone substrates were seen to be that offered by Collum, involving a TMSCl-free protocol.173 However, even after a comprehensive optimisation the reaction was seen to demonstrate poor diastereoselectivity, masked by a \textit{pseudo}-kinetic resolution involving a preferential E1cB degradation of the \textit{syn}-diastereomer. To allow the successful EICR of alkylacetates alternative \textit{N}-protection was sought. This resulted in the synthesis of \textit{N}-allylsulfonamide substrates and encouragingly successful rearrangement of both alkyl- and arylacetates was obtained. Utilisation of these rearrangement products has subsequently been demonstrated in the synthesis of \textit{β}-proline analogues.

![Scheme 158. Allylsulfonamide EICR and Subsequent Ring Closing Metathesis.](image)

In addition the successful rearrangement associated with \textit{N}-allylsulfonamide protection has also allowed access to enantiomERICALLY enriched substrates and rearrangement has shown high levels of chirality transfer (>88\% e.e).
Future Work- This research has created several viable areas for future exploration, both within the EICR and external to it. First and foremost the mechanistic studies have allowed an interesting insight into the nature of the EICR; however they have also demonstrated the complexities associated with it. The inability to monitor the formation of both syn- and anti-diastereomers throughout any *in-situ* reaction has been a limiting factor in the discussions surrounding the origins of diastereoselectivity. The presence of HMDS and the presumably ever increasing concentration of LiCl are envisaged to both play major roles within the EICR and other curiosities are observed with the inability to detect LiHMDS and the formation of silanamine throughout each reaction. Therefore in order to allow further mechanistic rationale other NMR techniques involving isotopically enriched reagents could entail.

1) 7Li-NMR – To allow tracking of total lithium content, including various Li-incorporated aggregates and build up of LiCl.

2) 15N-NMR – To allow tracking of total nitrogen content of reagent and reactant, including LiHMDS, HMDS, silanamine and also oxazolidinone of substrate.

3) 29Si-NMR – To allow tracking of total silicon content, with the main aim of being able to distinguish E/Z-SKAs and also syn- and anti-β-silylester products.

As further mechanistic studies would allow a greater understanding of the electronic effects of substitution within the EICR, we would also gain a further insight into the *in-situ* compatibilities between LiHMDS/TMSCl. These observations could then be transposed into other similarly mediated reactions.

In addition to the mechanistic studies, the potential synthetic benefits of the EICR have been demonstrated by the successful rearrangement in high diastereo- and enantioselectivity of the N-allylsulfonamides. Although further exploitation of these synthetic intermediates has only incorporated the synthesis of β-proline analogues, the further development of this chemistry may allow a novel route into ACPC 21 derived β-foldamers, β-proline organocatalysts 324 and iminosugars 325.20-21
Also, the formation and isolation with high E-SKA purity of phenylacetate derived SKAs creates a new topical area of interest. For instance, the involvement in Mannich reactions previously inhibited by a non-selective E-SKA formation, or where only the selectively formed Z-SKA was used, may now allow selective access into both syn- and anti-β-amino acid precursors by utilisation of our selectively formed E-SKA.149,151

The use of our developed synthesis of α-aryl-E-SKAs and their subsequent use within various Mannich reactions, may then serve as a back-up route to compliment the enamido-Ireland-Claisen rearrangement in the synthesis of β-amino acids.
6. Experimental

6.1. General Experimental Information

Reactions were conducted in flame dried vessels using anhydrous solvents and under an inert atmosphere of nitrogen. In all cases, solvents were obtained by passing through anhydrous alumina columns using an Innovative Technology Inc. PS-400-7 solvent purification system. All reagents were purchased from commercial suppliers: Acros Organics, Alfa Aesar, Sigma Aldrich or Novabiochem and used without purification. Triethylamine was freshly distilled alone and chlorotrimethylsilane was freshly distilled from 10 % quinoline. All distilled materials were stored under nitrogen at 4 °C or less.

All reactions were monitored by thin layer chromatography (TLC) using pre-coated MN Alugram Sil G/UV254 silica gel 60 aluminium backed plates. Plates were enveloped using UV light followed by a chemical dip, usually KMnO₄ and gentle heating. Flash chromatography was performed on chromatography grade, silica 60Å particle size 35-70 micron from Fisher Scientific using the solvent system as stated.

¹H and ¹³C NMR were performed on a Brüker Avance 250 (250 MHz), Brüker Avance 300 (300 MHz), Brüker Avance 400 (400 MHz) and Brüker Avance 500 (500 MHz) as stated. Chemical shifts are reported in parts per million (ppm) relative to tetramethylsilane (TMS) (δ = 0.00). Coupling constants are reported in Hertz (Hz) and signal multiplicity is denoted as singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublets (dd), doublet of triplets (dt), doublet of quartets (dq), quartet of triplets (qt), triplet of doublets (td), multiplet (m), quintet (quin) and broad (br). C-H assignments in ¹H-NMR spectra are quoted for compounds that have received 2D-NMR analysis. Mass spectroscopy was performed on a Brüker μTOF using electrospray ionisation (ESI) in either positive or negative ionisation as stated. Infra-red spectroscopy was carried out using a Perkin Elmer Spectrum RX FT-IR system with KBr plates, using a thin film. Melting points were determined by recrystallisations of substrates from DCM/petroleum ether 60–80° using a Bibby Scientific Melting point apparatus Stuart SMP10 digital. X-ray data was collected at 150 K on a Nonius KappaCCD area diffractometer using Mo-
Kα radiation (λ = 0.71073 Å) and all structures were solved by direct methods and refined on all F2 data using SHELXL-97 suite of programs, with hydrogen atoms included in idealised positions and refined using the riding model.

6.2. General Experimental Procedures

General Procedure 1 –
Synthesis of Enamido Esters

\[
\text{PG}_2\text{N} = \text{O} \quad \text{R} \quad \text{CO}_2\text{R} \quad \text{PG}_2\text{N} \quad \text{O} \quad \text{Me} \\
\text{EDCI} (2 \text{ eq.}), \text{TEA (2 eq.),} \\
\text{DMAP (0.1 eq.)} \\
\text{DCM} \\
0^\circ\text{C} \text{ to RT}
\]

To a solution of EDCi (2 eq.) in DCM was added triethylamine (2 eq.), DMAP (0.1 eq.), and the required carboxylic acid (2 eq.). The resulting solution was cooled to 0 °C and the vinylogous enamido alcohol (1 eq.) was added as a solution in DCM. The reaction mixture was allowed to stir before slowly warming to room temperature. The reaction was quenched by addition of 10 % citric acid (30 ml), washed with further 10 % citric acid (2 × 30 ml), washed with NaHCO₃ (sat, 3 × 30 ml), washed with brine (30 ml) and the combined organics were dried over MgSO₄, filtered and concentrated in vacuo to yield the desired enamido esters.

General Procedure 2 –
Rearrangement & Esterification of Enamido Esters

\[
\text{O} \quad \text{N} \quad \text{Me} \\
\text{THF} \\
-98^\circ\text{C} \text{ to RT} \\
\text{2) CH}_3\text{N}_2, \text{ Ether, Ethanol} \\
0^\circ\text{C}
\]

To a solution of LiHMDS (1M in THF, 1.3 eq.) and TMSCl (1.3 eq.) at -95 °C was added a solution of enamide (1 eq.) in THF by syringe pump (4 ml/h) down the side of the reaction vessel. On complete addition the reaction mixture was allowed to warm to
RT over 1 hour and was then quenched with HCl (1M)/Brine (1:1, 5 ml). The organics were extracted with EtOAc (5 × 15 ml), dried over MgSO$_4$, filtered, concentrated in vacuo and the crude acid product was subjected to esterification with diazomethane following general procedure 5, to yield the desired crude methyl esters, of which d.r’s were assigned by extended acquisition (100 scans) on the 500 MHz 1H NMR. Each ester was then subjected to purification by silica gel chromatography, using gradient elution ethyl acetate/petroleum ether 40-60°/triethylamine (20:80:1–40:60:1), to yield pure β-amino esters. Data is subsequently reported on the major diastereoisomer, unless resolution has been achieved.

General Procedure 3 – Rearrangement & Esterification of Enesulfonamido Esters

To a solution of LiHMDS (1M in THF, 2.5 eq.) and TMSCl (6 eq.) at -95 °C was added a solution of enamide (1 eq.) in THF by syringe pump (4 ml/h) down the side of reaction vessel. On complete addition the reaction mixture was allowed to warm to RT over 1 hour and was then quenched with HCl (1M)/Brine (1:1, 5 ml). The organics were extracted with Et$_2$O (3 × 15 ml) and the crude acid product was subjected to esterification with diazomethane following general procedure 5, to yield the desired crude methyl esters, of which d.r’s were assigned by 1H NMR. Each ester was then subjected to purification by silica gel chromatography, using gradient elution ethyl acetate/petroleum ether 40-60°/triethylamine (20:80:1–40:60:1), to yield pure β-amino esters. Data is subsequently reported on the major diastereoisomer.
General Procedure 4

Rearrangement & Esterification of Enesulfonamido Esters

![Chemical Reaction Diagram]

To a solution of LiHMDS (1M in THF, 4.5 eq.) and TEA (45 eq.) at -95 °C was added a solution of enamide (1 eq.) in THF by syringe pump (4 ml/h) down the side of the reaction vessel. On complete addition the reaction mixture was allowed to warm to RT over 1 hour and was then quenched with HCl (1M)/Brine (1:1, 5 ml). The organics were extracted with EtO (5 x 15 ml) and the crude acid product was subjected to esterification with diazomethane following general procedure 5, to yield the desired crude methyl esters, of which d.r's were assigned by ¹H NMR. Each ester was then subjected to purification by silica gel chromatography, using gradient elution ethyl acetate/petroleum ether 40-60°/triethylamine (20:80:1–40:60:1), to yield pure β-amino esters. Data is subsequently reported on the major diastereoisomer.

General Procedure 5

Diazomethane Methylation

![Chemical Reaction Diagram]

To a solution of the crude acid in diethylether/ethanol (99:1) at 0 °C was added diazomethane generated from N-nitrosomethyl urea (50 mg) and 37% KOH (5 ml). Once esterification complete (yellow colour persists), the mix was quenched with glacial acetic acid then basified with NaHCO₃ (sat). The organics were extracted with EtOAc (5 x 15 ml), dried over MgSO₄, filtered and concentrated in vacuo.
General Procedure 6 –

RCM of Allyl Sulfonamide β-Amino Esters

To a solution of rearranged allyl sulfonamide β-amino ester in DCM was added Grubbs I catalyst (5 mol%). The reaction mixture was allowed to stir at room temperature and once the reaction was complete by TLC, the reaction mixture was concentrated in vacuo and then subjected to purification by silica gel chromatography, using gradient elution ethyl acetate/petroleum ether 40-60°C (10:90–20:80), to yield pure RCM material.

General Procedure 7 –

RCM of Allyl Sulfonamide β-Amino Esters

To a solution of rearranged allyl sulfonamide β-amino ester in toluene was added Grubbs I catalyst (5 mol%). The reaction mixture was allowed to stir at 60°C and once the reaction was complete by TLC, the reaction mixture was concentrated in vacuo and purified by silica gel chromatography, using gradient elution ethyl acetate/petroleum ether 40-60°C (10:90–20:80), to yield pure RCM material.
General Procedure 8 –

For the *in-situ* NMR study of SKA Formation & Isomerisation

![Chemical Reaction](image)

To an oven dried Young’s tap NMR tube, inserted into a Dewar at -95 °C and under an atmosphere of nitrogen, was added a solution of M-HMDS (1M in THF, 1.7 eq.) and TMSCl (n eq.). Thermal equilibration was allowed (5 minutes) and then a solution of substrate (50 mg, 1 eq.) was added in THF (0.5 ml). The cooled NMR tube was rapidly lowered into the pre-cooled NMR machine at -95 °C. From this point, 1H- and 13C-NMR spectroscopy were recorded, and the sample was subsequently warmed to -50 °C and 25 °C allowing the sample to equilibrate for five minutes before recording data.

General Procedure 9 –

For the Synthesis and Isolation of *E*-selective Phenyl Derived SKA’s

![Chemical Reaction](image)

Method A - To a stirred solution of LiHMDS (1M in THF, 1.7 eq.) and TMSCl (1.7 eq.) at -95 °C was added a solution of phenyl ester (1 eq.) in THF by syringe pump at rate of 4 ml/h.

Method B - To a stirred solution of LiHMDS (1M in THF, 1.7 eq.) and TMSCl (1.7 eq.) at -95 °C was added a solution of phenyl ester (1 eq.) in THF by fast hand addition.

Method C - To a stirred solution of LiHMDS (1M in THF, 1.7 eq.) and TMSCl (6 eq.) at -95 °C was added a solution of phenyl ester (1 eq.) in THF by syringe pump at rate of 4 ml/h.
All three methods were then subjected to a standardised workup protocol.
Once addition complete the reaction mixture was allowed to stir at room temperature for 1 hour before rapid vacuum concentration at 4 mbar. The crude SKA was then dissolved in CDCl₃ (stored over magnesium sulfate and potassium carbonate) and filtered through cotton wool into a Young’s tap NMR tube for analysis. Post analysis the product was then re-concentrated to constant dryness to allow yield be determined.

6.3. Compound Characterisation

6.3.1. N-Oxazolidinone Substrates

(E)-3-(3-oxobut-1-enyl)oxazolidin-2-one 146

To a solution of chromium (VI) trioxide (42.8 g, 428 mmol, 1.5 eq.) in 20% H₂SO₄ (250 ml) was added dropwise a solution of 3-butyn-2-ol (25.5 ml, 285 mmol, 1 eq.) in 20% H₂SO₄ (250 ml). The reaction mixture was stirred at 0 °C for 6 hours and a colour change from orange to green was observed. The reaction was quenched by addition of NaHCO₃ (sat.) (200 ml) and the organics were extracted with DCM (3 x 300 ml) and dried over MgSO₄. The crude butynone was chilled to 0 °C before 2-oxazolidinone (24.84 g, 285.34 mmol, 1 Eq) and DABCO (3.20 g, 28.53 mmol, 0.1 Eq) were added. The reaction mixture was allowed to stir for 12 hours whilst slowly warming to room temperature and a colour change to a deep maroon was observed. The reaction mixture was washed with NaHCO₃ (sat, 3 x 200 ml), brine (3 x 200 ml) before the combined organics were dried over MgSO₄, filtered and concentrated in vacuo to afford (E)-3-(3-oxobut-1-enyl)oxazolidin-2-one 146 as a cream solid (25.8 g, 58%). M.p. 91–93 °C; FTIR (film/cm⁻¹) νmax: 2923 (s), 2853 (s), 1754 (s), 1622 (s); ¹H NMR (250 MHz, CDCl₃) δ: 2.27 (s, 3H), 3.78 (m, 2H), 4.54 (m, 2H), 5.47 (d, 1H, J = 14.5 Hz), 7.81 (d,
1H, J = 14.5 Hz); 13C NMR (62 MHz, CDCl$_3$) δ: 26.8, 42.1, 62.6, 111.0, 137.9, 154.7, 196.7. HRMS (ESI, +ve) m/z calcd. for C$_7$H$_{10}$NO$_3$ 156.0660, found 156.0650 (M+H)$^+$.

3-(3-Oxo-d1-d2-but-1-enyl)-oxazolidin-2-one 2H$_2$-146

![Chemical Structure]

To 2-oxazolidinone (1.28 g, 14.7 mmol, 2.0 eq.) was added D$_2$O (10 ml) and the resulting solution was concentrated in vacuo. The resulting N-deuterated 2-oxazolidinone was redissolved in D$_2$O (20 ml) at 0 °C then DABCO (0.08 g, 0.7 mmol, 0.1 eq.) and but-3-yn-2-one (0.50 g, 7.35 mmol, 1.0 eq.) was added dropwise. The reaction mixture was allowed to stir for 3 hours, then DCM (50 ml) and brine (50 ml) was added and the organics were extracted with DCM (3 × 50 ml), dried over magnesium sulphate and concentrated in vacuo to yield the crude product which was further purified by flash column chromatography, using ethyl acetate/petroleum ether 40-60° (80:20) to yield 3-(3-oxo-d1-d2-but-1-enyl)-oxazolidin-2-one 2H$_2$-146 as a faint brown solid (0.14 g, 12 %). M.p. 91–93 °C; FTIR (film/cm$^{-1}$) ν_{max}: 2992 (w), 2918 (w), 1762 (s), 1656 (s), 1589 (s), 1572 (s); 1H NMR (250 MHz, CDCl$_3$) δ: 2.20 (s, 3H), 3.72 (app. t, 2H, J = 7.7 Hz), 4.50 (app. t, 2H, J = 7.7 Hz). 13C NMR (125 MHz, CDCl$_3$) δ: 26.8, 42.0, 62.6, 110.5 (t, J = 24.3 Hz), 137.6 (t, J = 27.5 Hz), 154.7, 198.7; HRMS (ESI, +ve) m/z calcd. for C$_7$H$_8$D$_2$NO$_3$ 158.0786, found 158.0772 (M+H)$^+$.

(E)-3-(3-Hydroxybut-1-enyl)oxazolidin-2-one 145

![Chemical Structure]

To a solution of (E)-3-(3-oxobut-1-enyl)oxazolidin-2-one 146 (5.00 g, 32.2 mmol, 1 eq.) in water (250 ml) at 0 °C was slowly added NaBH$_4$ (1.83 g, 48.4 mmol, 1.5 eq.). The reaction mixture was allowed to stir for 12 hours whilst slowly warming to room
temperature and before quenching with brine (100 ml). The organics were extracted with DCM (5 × 50 ml), dried over MgSO₄, filtered and concentrated in vacuo to give (E)-3-(3-hydroxybut-1-enyl)oxazolidin-2-one 145 (5.10 g, 100%) as a yellow oil. FTIR (film/cm⁻¹) νmax: 3321 (bs), 2971 (s), 1732 (s), 1668 (s); ¹H NMR (500 MHz, CDCl₃) δ: 1.31 (d, 3H, J = 6.9 Hz), 1.92 (br s, 1H), 3.6–3.72 (m, 2H), 4.32 (app. quin, 1H, J = 6.9 Hz), 4.44 (app. t, 2H, J = 8.2 Hz), 4.92 (dd, 1H, J = 14.3, 6.9 Hz), 6.84 (d, 1H, J = 14.3 Hz); ¹³C NMR (125 MHz, CDCl₃) δ: 23.4, 42.5, 62.2, 67.1, 114.9, 124.9, 155.5; HRMS (ESI, +ve) m/z calcd. for C₇H₁₁NNaO₃ 180.0636, found 180.0632 (M+Na)⁺.

3-(3-Hydroxy-d¹-d²-d³-but-1-enyl)-oxazolidin-2-one ²H₃-145

To a solution of 3-(3-hydroxy-d¹-d²-d³-but-1-enyl)-oxazolidin-2-one ²H₂-146 (0.07 g, 0.42 mmol, 1 eq.) in D₂O (10 ml) at 0 °C was slowly added NaBD₄ (0.03 g, 0.63 mmol, 1.5 eq.). The reaction mixture was allowed to stir for 12 hours whilst slowly warming to room temperature and was then quenched with brine (20 ml). The organics were extracted with DCM (5 × 20 ml), dried over MgSO₄, filtered and concentrated in vacuo to give 3-(3-hydroxy-d¹-d²-d³-but-1-enyl)-oxazolidin-2-one ²H₃-145 (0.07 g, 99%) as a clear oil. FTIR (film/cm⁻¹) νmax: 3422 (br s), 3058 (m), 2973 (m), 1744 (s), 1630 (s); ¹H NMR (250 MHz, CDCl₃) δ: 1.28 (s, 3H), 1.76 (br S, 1H), 3.65 (app. t, 2H, J = 7.6 Hz), 4.40 (app. t, 2H, J = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ: 23.8, 42.2, 62.3, 66.3 (t, J = 21.0 Hz), 114.5 (t, J = 22.9 Hz), 124.2 (t, J = 24.9 Hz), 155.6; HRMS (ESI, +ve) m/z calcd. for C₇H₈D₃NNaO₃ 183.0825, found 183.0820 (M+Na)⁺.

(E)-4-(2-Oxooxazolidin-3-yl)but-3-en-2-yl phenylacetate 154

EDCi (0.73 g, 3.81 mmol) in DCM (100 ml), triethylamine (0.53 ml, 3.81 mmol), DMAP (0.03 g, 0.19 mmol), phenylacetic acid (0.52 g, 3.81 mmol) and (E)-3-(3-
hydroxybut-1-enyl)oxazolidin-2-one 145 (0.30 g, 1.91 mmol) in DCM (20 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford (E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl phenylacetate 154 as a white solid (0.46 g, 88%). M.p. 94–96 °C; FTIR (film/cm⁻¹) νmax: 2981 (s), 1747 (s), 1731 (s), 1672 (s); ¹H NMR (300 MHz, CDCl₃) δ: 1.30 (´, 3H, J = 6.7 Hz, C₆H₃CH(CH)O-), 3.60 (s, 2H, -C(O)C₆H₅), 3.62–3.72 (m, 2H, -N(CH-)C₆H₅-), 4.40–4.48 (m, 2H, -OC₆H₅-), 4.86 (´´, 1H, J = 14.4, 6.7 Hz, -NCHC₆H₅-), 5.43 (app. quin, 1H, J = 6.7 Hz, CH₃CH(CH)O-), 6.93 (´, 1H, J = 14.4 Hz, -NC₆H₅CH-), 7.21–7.36 (m, 5H, C₆H₅-); ¹³C NMR (62 MHz, CDCl₃) δ: 21.0, 42.0, 42.7, 62.6, 70.3, 109.2, 110.2, 127.4, 127.5, 129.0, 129.6, 124.4, 155.7, 171.2; HRMS (ESI, +ve) m/z calcd. for C₁₅H₁₇NNaO₄ 298.1055, found 298.1050 (M+Na)⁺.

Phenyl-acetic acid d¹-d²-d³-1-methyl-3-(2-oxo-oxazolidin-3-yl)-allyl ester ²H₃-154

EDCi (0.33 g, 1.72 mmol) in DCM (100 ml), triethylamine (0.24 ml, 1.72 mmol), DMAP (0.01 g, 0.09 mmol), phenylacetic acid (0.23 g, 1.72 mmol) and 3-(3-Hydroxy-d¹-d²-d³-but-1-enyl)-oxazolidin-2-one ²H₃-145 (0.14 g, 0.86 mmol) in DCM (20 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford phenyl-acetic acid d¹-d²-d³-1-methyl-3-(2-oxo-oxazolidin-3-yl)-allyl ester ²H₃-154 as a cream solid (0.38 g, 94%). M.p. 97–100 °C; FTIR (film/cm⁻¹) νmax: 3054 (m), 2990 (m), 2919 (m), 1740 (s), 1691 (s), 1670 (s), 1633 (m); ¹H NMR (500 MHz, CDCl₃) δ: 1.39 (s, 3H), 3.62 (s, 2H), 3.63 (app. t, 2H, J = 7.6 Hz), 4.41 (app. t, 2H, J = 7.6 Hz); ¹³C NMR (125 MHz, CDCl₃) δ: 20.4, 41.6, 42.2, 62.2, 69.4 (t, J = 22.9 Hz), 109.2 (t, J = 22.9 Hz), 126.6 (t, J = 27.0 Hz), 127.0, 128.5, 129.2, 134.0, 155.2, 170.8; HRMS (ESI, +ve) m/z calcd. for C₁₅H₁₄D₃NNaO₄ 301.1244, found 301.1245 (M+Na)⁺.
Phenyl-acetic acid-13C$_2$ 1-methyl-3-(2-oxo-oxazolidin-3-yl)-allyl ester13C$_2$-154

![Chemical structure of Phenyl-acetic acid-13C$_2$ 1-methyl-3-(2-oxo-oxazolidin-3-yl)-allyl ester13C$_2$-154]

EDCi (0.69 g, 3.62 mmol) in DCM (100 ml), triethylamine (0.50 ml, 3.62 mmol), DMAP (0.02 g, 0.18 mmol), 13C$_2$-phenyl-acetic acid (0.50 g, 3.62 mmol) and (E)-3-(3-hydroxybut-1-enyl)oxazolidin-2-one 145 (0.28 g, 1.81 mmol) in DCM (20 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford phenyl-acetic acid-13C$_2$ 1-methyl-3-(2-oxo-oxazolidin-3-yl)-allyl ester13C$_2$-154 as a white solid (0.48 g, 89%). M.p. 98–101 °C.

FTIR (film/cm$^{-1}$) ν_{max}: 2991 (m), 2918 (m), 1739 (s), 1691 (s), 1669 (s).

1H NMR (400 MHz, CDCl$_3$) δ: 1.40 (t, 3H, $J = 6.6$ Hz), 3.65 (dd, 2H, $J = 129.6$, 7.8 Hz), 3.74 (app. t, 2H, $J = 7.9$ Hz), 4.48 (app. t, 2H, $J = 7.9$ Hz), 4.91 (dd, 1H, $J = 14.3$, 7.1 Hz), 5.48 (pd, 1H, $J = 6.6$, 3.0 Hz), 6.97 (d, 1H, $J = 14.3$ Hz), 7.27–7.40 (m, 5H).

13C NMR (100 MHz, CDCl$_3$) δ: 20.6, 41.6 (d, $J = 57.4$ Hz), 42.3, 62.2, 69.9 (d, $J = 1.4$ Hz), 109.8 (d, $J = 1.1$ Hz), 127.0, 127.1, 128.5 (d, $J = 3.5$ Hz), 129.3 (t, $J = 2.3$ Hz), 134.0 (dd, $J = 43.7$, 2.95 Hz), 155.3, 170.8 (d, $J = 57.4$ Hz). HRMS (ESI, +ve) m/z calcd. for C$_{13}$H$_{17}$NNaO$_4$ 300.1212, found 300.1115 (M+Na)$^+$.

(E)-4-(2-Oxooxazolidin-3-yl)but-3-en-2-yl 2-(o-methoxyphenyl)acetate 163

![Chemical structure of (E)-4-(2-Oxooxazolidin-3-yl)but-3-en-2-yl 2-(o-methoxyphenyl)acetate 163]

EDCi (0.73 g, 3.81 mmol) in DCM (100 ml), triethylamine (0.53 ml, 3.81 mmol), DMAP (0.03 g, 0.19 mmol), o-methoxyphenylacetic acid (0.63 g, 3.81 mmol) and (E)-3-(3-hydroxybut-1-enyl)oxazolidin-2-one 145 (0.30 g, 1.91 mmol) in DCM (20 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford (E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-(o-methoxyphenyl)acetate 163 as an off white solid (0.55 g, 94%). M.p. 92–93 °C; FTIR (film/cm$^{-1}$) ν_{max}: 2925 (s), 2850 (w), 1755 (s), 1676 (s), 1603 (w), 1590 (w); 1H NMR (300 MHz, CDCl$_3$) δ: 1.35 (d, 3H, $J = 6.7$ Hz), δ 3.59 (s, 2H), 3.63 (app. t, 2H, J
= 8.3 Hz), 3.79 (s, 3H), 4.39 (app. t, 2H, \(J = 8.3 \) Hz), 4.86 (dd, 1H, \(J = 14.3 \), 6.7 Hz), 5.49 (app. quin, 1H, \(J = 6.7 \) Hz), 6.83–6.93 (m, 2H), 7.16 (d, 1H, \(J = 14.3 \) Hz), 7.23 (td, 1H, \(J = 8.0 \), 1.6 Hz); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta \): 21.1, 36.7, 42.7, 55.8, 62.6, 69.9, 110.5, 110.9, 120.8, 123.5, 127.0, 128.9, 131.2, 155.7, 157.9, 171.5; HRMS (ESI, +ve) \(m/z \) calcd. for C\(_{16}\)H\(_{19}\)NNaO\(_5\) 328.1161, found 328.1155 (M+Na\(^+\)).

(E)-4-(2-Oxooxazolidin-3-yl)but-3-en-2-yl 2-\((m\)-methoxyphenyl)acetate 164

![Chemical structure](image)

EDCi (0.73 g, 3.81 mmol) in DCM (100 ml), triethylamine (0.53 ml, 3.81 mmol), DMAP (0.03 g, 0.19 mmol), \(m \)-methoxyphenylacetic acid (0.63 g, 3.81 mmol) and (E)-3-(3-hydroxybut-1-yl)oxazolidin-2-one 145 (0.30 g, 1.91 mmol) in DCM (20 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford (E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-(\(m \)-methoxyphenyl)acetate 164 as an off white solid (0.44 g, 76%). M.p. 90–91 °C.

FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}} \): 3498 (w), 2978 (m), 2933 (m), 1757 (s), 1670 (s), 1601 (s); \(^1\)H NMR (250 MHz, CDCl\(_3\)) \(\delta \): 1.34 (d, 3H, \(J = 6.7 \) Hz), 3.55 (s, 2H), 3.57–3.68 (m, 2H), 3.78 (s, 3H), 4.35–4.45 (m, 2H), 4.84 (dd, 1H, \(J = 14.3 \), 6.7 Hz), 5.42 (app. quin, 1H, \(J = 6.7 \) Hz), 6.81–6.90 (m, 3H), 6.90 (d, 1H, \(J = 14.3 \) Hz), 7.22 (td, 1H, \(J = 7.6 \), 1.2 Hz). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta \): 19.6, 40.6, 41.3, 54.2, 61.2, 69.0, 108.8, 111.5, 113.8, 120.6, 126.0, 128.5, 134.4, 154.3, 158.6, 169.7. HRMS (ESI, +ve) \(m/z \) calcd. for C\(_{16}\)H\(_{19}\)NNaO\(_5\) 328.1161, found 328.1155 (M+Na\(^+\)).

(E)-4-(2-Oxooxazolidin-3-yl)but-3-en-2-yl 2-(\(p \)-methoxyphenyl)acetate 165

![Chemical structure](image)

EDCi (0.73 g, 3.81 mmol) in DCM (100 ml), triethylamine (0.53 ml, 3.81 mmol), DMAP (0.03 g, 0.19 mmol), para-methoxyphenylacetic acid (0.63 g, 3.81 mmol) and (E)-3-(3-hydroxybut-1-yl)oxazolidin-2-one 145 (0.30 g, 1.91 mmol) in DCM (20 ml)
were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford \((E)\)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-\((p\)-methoxyphenyl\)acetate 165 as an off white solid (0.53 g, 91\%). M.p. 89–91 °C; FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 2980 (m), 2932 (m), 2838 (w), 1755 (s), 1671 (s), 1613 (m), 1585 (m), 1514 (s); \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\): 1.34 (d, 3H, \(J = 6.7\) Hz), 3.52 (s, 2H), 3.61–3.69 (m, 2H), 3.77 (s, 3H), 4.37–4.45 (m, 2H), 4.85 (dd, 1H, \(J = 14.4, 6.7\) Hz), 5.40 (app. quin, 1H, \(J = 6.7\) Hz), 6.84 (app. d, 2H, \(J = 8.6\) Hz), 6.89 (d, 1H, \(J = 14.4\) Hz), 7.17 (app. d, 2H, \(J = 8.6\) Hz); \(^1\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\): 21.0, 41.1, 42.7, 55.7, 62.6, 70.2, 110.3, 114.4, 126.5, 127.3, 130.7, 155.7, 159.1, 171.6; HRMS (ESI, +ve) \(m/z\) calcld. for C\(_{16}\)H\(_{19}\)NNaO\(_5\) 328.1161, found 328.1155 (M+Na\(^+\)).

\(^{13}\)C\(_1\)-(4-Methoxyphenyl)acetic acid \((^{13}\)C\(_1\)-282)

\[
\begin{array}{c}
\text{B(OH)\(_2\)} \\
\text{Br} \rightarrow \text{CO}_{2}\text{Et}
\end{array}
\begin{array}{c}
1) \text{Pd(OAc)}\(_2\) (3 mol\%) \\
P(\text{Nap})\(_3\) (0 mol\%) \\
K_2\text{PO}_4 (6 eq.) \\
\text{THF}
\end{array}
\begin{array}{c}
\text{MeO} \\
\text{CO}_{2}\text{H}
\end{array}
\begin{array}{c}
1.0 \text{eq.}
\end{array}
\begin{array}{c}
2) 1\text{N NaOH} \\
\text{MeOH}
\end{array}
\]

To a degassed solution of Pd(OAc)\(_2\) (0.02 g, 0.07 mmol, 3 mol\%), P(\text{Nap})\(_3\) (0.09 mg, 0.21 mmol, 9 mol\%), and finely ground K\(_2\)PO\(_4\) (2.53 g, 11.90 mmol, 5 eq.) in THF (20 ml) was added \(^{13}\)C-ethylbromo acetate (0.26 ml, 2.38 mmol, 1.0 eq.). The reaction mixture was allowed to stir for 5 minutes and then a solution of 4-methoxyphenyl boronic acid (0.36g, 2.38 mmol, 1.0 eq.) and H\(_2\)O (0.09 ml, 4.76 mmol, 2.0 eq.) in THF (10 ml) was added. The reaction mixture was allowed to stir at room temperature over 16 hours and was then quenched by addition to water and extraction with DCM (3 \(\times\) 20 ml), dried over magnesium sulphate and concentrated in vacuo to yield the crude product. The crude ester was then saponified by dissolution in 1N NaOH (20 ml) in methanol (20 ml) and allowed to stir at room temperature over 12 hours. The target compound was isolated by extraction of the organics with 5% NaOH (3 \(\times\) 20 ml), acidifying the aqueous by 6N HCl (30 ml), extracting the organics with DCM (3 \(\times\) 20 ml), concentration in-vacuo and subsequent purification by flash column chromatography, using ethyl acetate/petroleum ether 40-60° (10:90) to yield \(^{13}\)C\(_1\)-(4-
methoxyphenyl)acetic acid 13C$_1$-282 as a white solid (0.12 g, 29%). M.p. 90–92 °C; FTIR (film/cm$^{-1}$) ν_{max}: 3006 (m), 3000 (br s), 2915 (m), 2835 (m), 1687 (s), 1614 (s), 1586 (w), 1512 (s); 1H NMR (400 MHz, CDCl$_3$) δ: 3.64 (d, 2H, $J = 129.0$ Hz), 3.85 (s, 3H), 6.93 (app. t, 2H, $J = 8.5$ Hz), 7.25 (app. t, 2H, $J = 8.5, 4.2$ Hz), 11.6 (br s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ: 40.0, 55.3, 114.1 (d, $J = 4.3$ Hz), 125.4 (d, $J = 44.4$ Hz), 130.4 (d, $J = 3.3$ Hz), 158.9, 178.4 (d, $J = 57.1$ Hz); HRMS (ESI, +ve) m/z calcd. for C$_8$H$_{13}$O$_3$Na$_2$O$_3$ 213.0504, found 213.0411 (M+2Na)$^{2+}$.

(E)-4-(2-Oxooxazolidin-3-yl)but-3-en-2-yl 2-13C$_1$-(4-methoxyphenyl)acetate

13C$_1$-165

EDCi (0.13 g, 0.68 mmol) in DCM (50 ml), triethylamine (0.10 ml, 0.68 mmol), DMAP (0.01 g, 0.03 Eq), 13C$_1$-(4-methoxyphenyl)acetic acid 13C$_1$-282 (0.11 g, 0.68 mmol) and (E)-3-(3-hydroxybut-1-enyl)oxazolidin-2-one (0.05 g, 0.34 mmol) in DCM (10 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford (E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-13C$_1$-(4-methoxyphenyl)acetate 13C$_1$-165 as a yellow oil (0.10 g, 100%). FTIR (film/cm$^{-1}$) ν_{max}: 2970 (m), 2991 (m), 2923 (m), 2840 (m), 1745 (s), 1726 (s), 1668 (s), 1603 (m), 1590 (m); 1H NMR (400 MHz, CDCl$_3$) δ: 1.39 (d, 3H, $J = 6.6$ Hz), 3.68 (app. t, 2H, $J = 7.9$ Hz), 3.83 (s, 3H), 4.45 (app. t, 2H, $J = 7.9$ Hz), 4.89 (dd, 1H, $J = 14.2, 6.9$ Hz), 5.45 (app. quin, 1H, $J = 6.6$ Hz), 6.89 (app. d, 2H, $J = 8.5$ Hz), 6.94 (d, 1H, $J = 14.2$ Hz), 7.22 (app. dd, 1H, $J = 8.5$ Hz); 13C NMR (100 MHz, CDCl$_3$) δ: 20.6, 40.7, 42.3, 55.2, 62.2, 69.8, 109.8, 114.0 (d, $J = 4.0$ Hz), 126.1 (d, $J = 45.8$ Hz), 126.9, 130.3 (d, $J = 3.3$ Hz), 155.3, 158.6, 171.2 (d, $J = 48.9$ Hz); HRMS (ESI, +ve) m/z calcd. for C$_{15}$H$_{19}$NNaO$_5$ 329.1239, found 329.1177 (M+Na)$^+$.

182
(E)-4-(2-Oxooxazolidin-3-yl)but-3-en-2-yl 2-o-tolylacetate 166

![Image](image_url)

EDCI (0.73 g, 3.81 mmol) in DCM (100 ml), triethylamine (0.53 ml, 3.81 mmol), DMAP (0.03 g, 0.19 mmol), o-tolylphenylacetic acid (0.57 g, 3.81 mmol) and (E)-3-(3-hydroxybut-1-enyl)oxazolidin-2-one 145 (0.30 g, 1.91 mmol) in DCM (20 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford (E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-o-tolylacetate 166 as a white solid (0.39 g, 71%). M.p. 83–85 °C; FTIR (film/cm$^{-1}$) ν_{max}: 2999 (s), 2924 (s), 1756 (s), 1670 (s); 1H NMR (250 MHz, CDCl$_3$) δ: 1.35 (d, 3H, $J = 6.7$ Hz), 2.30 (s, 3H), 3.60 (s, 2H), 3.69–3.77 (m, 2H), 4.46–4.54 (m, 2H), 4.85 (dd, 1H, $J = 14.6, 6.7$ Hz), 5.42 (app quin, 1H, $J = 6.7$ Hz), 6.90 (d, 1H, $J = 14.6$ Hz), 7.10–7.20 (m, 4H); 13C NMR (75 MHz, CDCl$_3$) δ: 20.0, 21.0, 39.9, 42.7, 62.6, 70.3, 110.2, 126.5, 127.4, 127.7, 130.5, 130.7, 133.2, 137.2, 135.7, 171.1; HRMS (ESI, +ve) m/z calcd. for C$_{16}$H$_{19}$NNaO$_4$ 312.1212, found 312.1206 (M+Na$^+$.)

(E)-4-(2-Oxooxazolidin-3-yl)but-3-en-2-yl 2-m-tolylacetate 167

![Image](image_url)

EDCI (0.73 g, 3.81 mmol) in DCM (100 ml), triethylamine (0.53 ml, 3.81 mmol), DMAP (0.03 g, 0.19 mmol), m-tolylphenylacetic acid (0.57 g, 3.81 mmol) and (E)-3-(3-hydroxybut-1-enyl)oxazolidin-2-one 145 (0.30 g, 1.91 mmol) in DCM (20 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford (E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-m-tolylacetate 167 as a white solid (0.41 g, 74%). M.p. 82–84 °C; FTIR (film/cm$^{-1}$) ν_{max}: 3050 (w), 2980 (s), 2919 (s), 1761 (s), 1670 (s), 1609 (w), 1590 (w); 1H NMR (250 MHz, CDCl$_3$) δ: 1.40 (d, 3H, $J = 6.7$), 2.33 (s, 3H), 3.55 (s, 2H), 3.55–3.64 (m, 2H), 4.38–4.48 (m, 2H), 4.86 (dd, 1H, $J = 14.2, 6.7$ Hz), 5.42 (app quin, 1H, $J = 6.7$ Hz), 6.92 (d, 1H, $J = 14.2$ Hz), 7.03–7.11 (m, 3H), 7.16–7.24 (m, 1 H); 13C NMR (75
MHZ, CDCl$_3$ δ: 21.0, 21.8, 41.9, 42.7, 62.6, 70.2, 110.2, 126.6, 127.3, 128.2, 128.8, 130.4, 134.3, 138.6, 155.6, 171.3; HRMS (ESI, +ve) m/z calcd. for C$_{16}$H$_{19}$NNaO$_4$ 312.1212, found 312.1206 (M+Na)$^+$.

(E)-4-(2-Oxooxazolidin-3-yl)but-3-en-2-yl 2-p-tolylacetate 168

![Chemical structure image]

EDCi (0.73 g, 3.81 mmol) in DCM (100 ml), triethylamine (0.53 ml, 3.81 mmol), DMAP (0.03 g, 0.19 mmol), p-tolylphenylacetic acid (0.57 g, 3.81 mmol) and (E)-3-(3-hydroxybut-1-enyl)oxazolidin-2-one 145 (0.30 g, 1.91 mmol) in DCM (20 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford (E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-p-tolylacetate 168 as a white solid (0.49 g, 88%). M.p. 86–89 °C; FTIR (film/cm$^{-1}$) ν_{max}: 3051 (w), 2981 (s), 2924 (s), 1766 (s), 1670 (s), 1516 (s); 1H NMR (250 MHz, CDCl$_3$) δ: 1.35 (t, 3H, J = 7.0 Hz), 2.32 (s, 3H), 3.55 (s, 2H), 3.61–3.71 (m, 2H), 4.38–4.48 (m, 2H), 4.86 (dd, 1H, J = 14.3, 7.0 Hz), 5.41 (app. quin, 1H, J = 7.0 Hz), δ 6.92 (d, 1H, J = 14.3 Hz), δ 7.08–7.19 (m, 4H); 13C NMR (75 MHz, CDCl$_3$) δ: 21.0, 21.5, 41.6, 42.7, 62.6, 70.3, 110.2, 127.3, 129.5, 129.6, 131.4, 137.0, 155.7, 171.5. HRMS (ESI, +ve) m/z calcd. for C$_{16}$H$_{19}$NNaO$_4$ 312.1212, found 312.1206 (M+Na)$^+$.

(E)-4-(2-Oxooxazolidin-3-yl)but-3-en-2-yl 2-(o-nitrophenyl)acetate 169

![Chemical structure image]

EDCi (0.73 g, 3.81 mmol) in DCM (100 ml), triethylamine (0.53 ml, 3.81 mmol), DMAP (0.03 g, 0.19 mmol), o-nitrophenylacetic acid (0.69 g, 3.81 mmol) and (E)-3-(3-hydroxybut-1-enyl)oxazolidin-2-one 145 (0.30 g, 1.91 mmol) in DCM (20 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford (E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-(o-nitrophenyl)acetate 169 as a yellow oil (0.52 g, 85%). FTIR (film/cm$^{-1}$) ν_{max}: 2982
Chapter 6 Experimental

(m), 2928 (m), 1756 (s), 1671 (s), 1613 (m), 1580 (m), 1526 (s);
1H NMR (300 MHz, CDCl$_3$) δ: 1.35 (d, 3H, $J = 6.7$ Hz), 3.68 (app. t, 2H, $J = 8.0$ Hz), 3.94 (d, 1H, $J = 17.1$ Hz), 4.00 (d, 1H, $J = 17.1$ Hz), 4.42 (app. t, 2H, $J = 8.0$ Hz), 4.85 (dd, 1H, $J = 14.4, 6.7$ Hz), 5.41 (app. quin, 1H, $J = 6.7$ Hz), 6.87 (d, 1H, $J = 14.4$ Hz), 7.33 (app. quin, 1H, $J = 7.8, 1.2$ Hz), 7.45 (t, 1H, $J = 7.8, 1.2$ Hz), 7.58 (t, 1H, $J = 7.8, 1.2$ Hz), 8.07 (d, 1H, $J = 14.4$ Hz);
13C NMR (75 MHz, CDCl$_3$) δ: 20.8, 40.6, 42.7, 62.7, 71.0, 110.2, 125.7, 127.5, 129.0, 130.2, 133.8, 134.0, 149.1, 155.7, 169.6; HRMS (ESI, +ve) m/z calcd. for C$_{15}$H$_{16}$N$_2$NaO$_6$ 343.0906, found 343.0901 (M+Na)$^+$.

(E)-4-(2-Oxooxazolidin-3-yl)but-3-en-2-yl 2-(m-nitrophenyl)acetate 170

![Chemical Structure](image)

EDCi (0.73 g, 3.81 mmol) in DCM (100 ml), triethylamine (0.53 ml, 3.81 mmol), DMAP (0.03 g, 0.19 mmol), m-nitrophenylacetic acid (0.69 g, 3.81 mmol) and (E)-3-(3-hydroxybut-1-enyl)oxazolidin-2-one 145 (0.30 g, 1.91 mmol) in DCM (20 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford (E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-(m-nitrophenyl)acetate 170 as an orange oil (0.56 g, 92%). FTIR (film/cm$^{-1}$) ν_{max}: 2983 (w), 2927 (w), 1755 (s), 1669 (s), 1529 (s); 1H NMR (250 MHz, CDCl$_3$) δ: 1.37 (d, 3H, $J = 6.9$ Hz), 3.64–3.68 (m, 2H), 3.70 (s, 2H), 4.45 (app. t, 2H, $J = 8.1$ Hz), 4.85 (dd, 1H, $J = 14.4, 6.9$ Hz), 5.44 (app. quin, 1H, $J = 6.9$ Hz), 6.93 (d, 1H, $J = 14.4$ Hz), 7.48–7.55 (m, 1H), 7.58–7.65 (m, 1H), 8.1–8.2 (m, 2H); 13C NMR (75 MHz, CDCl$_3$) δ: 21.0, 41.4, 42.7, 62.7, 71.1, 109.7, 122.7, 124.6, 127.9, 129.9, 136.0, 136.3, 148.7, 155.7, 170.0; HRMS (ESI, +ve) m/z calcd. for C$_{15}$H$_{16}$N$_2$NaO$_6$ 343.0906, found 343.0901 (M+Na)$^+$.

185
Chapter 6 Experimental

\[(E)-4-(2-Oxooxazolidin-3-yl)\text{but}-3\text{-en}-2\text{-yl} 2-(\text{p-nitrophenyl})\text{acetate} 171\]

![Chemical Structure](image)

EDCi (0.73 g, 3.81 mmol) in DCM (100 ml), triethylamine (0.53 ml, 3.81 mmol), DMAP (0.03 g, 0.19 mmol), \text{p-nitrophenylacetic acid} (0.69 g, 3.81 mmol) and \((E)-3-(3\text{-hydroxybut-1-yl})\text{oxazolidin-2-one} 145\) (0.30 g, 1.91 mmol) in DCM (20 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford \((E)-4-(2\text{-oxooxazolidin-3-yl})\text{but}-3\text{-en}-2\text{-yl} 2-(\text{p-nitrophenyl})\text{acetate} 171\) as a red oil (0.50 g, 85%). FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 3081 (w), 2982 (m), 2928 (m), 1757 (s), 1670 (s), 1606 (s), 1521 (s); \(^1\text{H}\) NMR (250 MHz, CDCl\(_3\)) \(\delta\): 1.35 (\(\text{d}, 3\text{H}, J = 6.9 \text{ Hz}\)), 3.62–3.71 (m, 2H), 3.70 (s, 2H), 4.44 (app. t, 2H, \(J = 8.1 \text{ Hz}\)), 4.83 (\(\text{dd}, 1\text{H}, J = 14.4, 6.9 \text{ Hz}\)), 5.42 (app. quin, 1H, \(J = 6.9 \text{ Hz}\)), 6.92 (app. \(\text{d}, 1\text{H}, J = 14.4 \text{ Hz}\)), 7.44 (app. \(\text{d}, 2\text{H}, J = 8.7 \text{ Hz}\)), 8.17 (\(\text{d}, 2\text{H}, J = 8.7 \text{ Hz}\)); \(^{13}\text{C}\) NMR (75 MHz, CDCl\(_3\)) \(\delta\): 21.0, 41.7, 42.7, 62.6, 71.1, 109.7, 124.1, 127.8, 130.7, 141.8, 147.6, 155.6, 169.8; HRMS (ESI, +ve) \(m/z\) calcld. for C\(_{15}\)H\(_{16}\)N\(_2\)O\(_6\) 343.0906, found 343.0901 (M+Na\(^+\)).

\[(E)-4-(2\text{-oxooxazolidin-3-yl})\text{but}-3\text{-en}-2\text{-yl} 2-(4\text{-dimethylamino)phenyl})\text{acetate} 202\]

![Chemical Structure](image)

EDCi (0.82 g, 4.28 mmol) in DCM (100 ml), triethylamine (0.60 ml, 4.28 mmol), DMAP (0.03 g, 0.21 mmol), \text{p-dimethyl amino phenyl acetic acid} (0.77 g, 4.28 mmol) and \((E)-3-(3\text{-hydroxybut-1-yl})\text{oxazolidin-2-one} 145\) (0.34 g, 2.14 mmol) in DCM (20 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford \((E)-4-(2\text{-oxooxazolidin-3-yl})\text{but}-3\text{-en}-2\text{-yl} 2-(4\text{-dimethylamino)phenyl})\text{acetate} 202\) as a brown solid (0.62 g, 92%). M.p. 101–103 °C; FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 2978.7 (w), 2918.3 (w), 2803.7 (w), 1764.5 (s), 1731.6 (s), 1670.1 (m), 1615.8 (m), 1523.8 (s); \(^1\text{H}\) NMR (250 MHz, CDCl\(_3\)) \(\delta\): 1.39 (\(\text{d}, 3\text{H}, J = 6.8 \text{ Hz}\)), 2.93 (s, 6H), 3.49 (s, 2H), 3.62 (app. t, 2H, \(J = 7.7 \text{ Hz}\)), 4.41
(app. t, 2H, \(J = 7.7 \) Hz), 4.87 (dd, 1H, \(J = 14.4, 6.8 \) Hz), 5.41 (app. quin, 1 H, \(J = 6.8 \) Hz), 6.70 (d, 2H, \(J = 8.8 \) Hz), 6.92 (d, 1 H, \(J = 14.4 \) Hz), 7.14 (d, 2H, \(J = 8.8 \) Hz) \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta \): 19.6, 39.5, 41.3, 52.5, 61.2, 68.6, 109.0, 111.8, 120.8, 125.8, 128.8, 148.7, 154.3, 170.4. HRMS (ESI, +ve) \(m/z \) calc'd. For C\(_{17}\)H\(_{22}\)N\(_2\)O\(_4\) 341.1477, found 341.1472 (M+Na)

\((E)-4-(2-Oxooxazolidin-3-yl)but-3-en-2-yl 2-(p-iodophenyl)acetate 203\)

EDCi (0.73 g, 3.81 mmol) in DCM (100 ml), triethylamine (0.53 ml, 3.81 mmol), DMAP (0.03 g, 0.19 mmol), p-iodophenylacetic acid (1.00 g, 3.81 mmol) and \((E)-3-(3-hydroxybut-1-enyl)oxazolidin-2-one 145\) (0.30 g, 1.91 mmol) in DCM (20 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford \((E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-(p-iodophenyl)acetate 203\) as a white solid (0.61 g, 79%). M.p. 97–98°C; FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}} \): 2979 (w), 2928 (w), 1757 (s), 1670 (s); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \): 1.34 (d, 3H, \(J = 6.4 \) Hz), 3.51 (s, 2H), 3.60 (app. t, 2H, \(J = 6.7 \) Hz), 4.37–4.44 (m, 2H), 4.82 (dd, 1H, \(J = 14.2, 6.4 \) Hz), 5.40 (app. quin, 1 H, \(J = 6.4 \) Hz), 6.89 (d, 1H, \(J = 14.2 \) Hz), 7.01 (app. d, 2H, \(J = 6.5 \) Hz), 7.62 (app. d, 2H, \(J = 6.5 \) Hz); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta \): 20.6, 41.1, 42.3, 62.2, 70.2, 92.6, 109.6, 127.1, 131.3, 133.7, 137.6, 155.3, 170.2. HRMS (ESI, +ve) \(m/z \) calc'd. for C\(_{15}\)H\(_{16}\)INaO\(_4\) 424.0022, found 424.0016 (M+Na)

\((E)-4-(2-Oxooxazolidin-3-yl)but-3-en-2-yl 2-(p-fluorophenyl)acetate 204\)

EDCi (0.73 g, 3.81 mmol) in DCM (100 ml), triethylamine (0.53 ml, 3.81 mmol), DMAP (0.03 g, 0.19 mmol), p-fluorophenylacetic acid (0.59 g, 3.81 mmol) and \((E)-3-(3-hydroxybut-1-enyl)oxazolidin-2-one 145\) (0.30 g, 1.91 mmol) in DCM (20 ml) were
combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford (E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-((p-fluorophenyl)acetate 204 as an off white solid (0.43 g, 77%). M.p. 94–96 °C; FTIR (film/cm⁻¹) v_max: 2983 (w), 1760 (s), 1670 (s), 1510 (s); ¹H NMR (500 MHz, CDCl₃) δ: 1.32 (d, 3H, J = 6.7 Hz), 3.53 (s, 2H), 3.62 (app. t, 2H, J = 8.1 Hz), 4.38 (app. t, 2H, J = 8.1 Hz), 4.82 (dd, 1H, J = 14.4, 6.7 Hz), 5.39 (app. quin, 1 H, J = 6.7 Hz), 6.87 (d, 1H, J = 14.4 Hz), 6.96 (app. t, 2H, J = 8.5 Hz), 7.17–7.23 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ: 20.6, 40.7, 42.3, 62.3, 70.1, 110.0, 115.3 (d, J = 20.6 Hz), 127.0, 129.8 (d, J = 3.5 Hz), 130.8, (d, J = 7.3 Hz), 155.3, 161.9 (d, J = 245 Hz), 170.6; HRMS (ESI, +ve) m/z calcd. For C₁₅H₁₆FNNaO₄ 316.0961, found 316.0956 (M+Na)⁺.

(E)-4-(2-Oxooxazolidin-3-yl)but-3-en-2-yl 2-((p-chlorophenyl)acetate 205

EDCi (0.73 g, 3.81 mmol) in DCM (100 ml), triethylamine (0.53 ml, 3.81 mmol), DMAP (0.03 g, 0.19 mmol), p-chlorophenylacetic acid (0.65 g, 3.81 mmol) and (E)-3-(3-hydroxybut-1-enyl)oxazolidin-2-one 145 (0.30 g, 1.91 mmol) in DCM (20 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford (E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-((p-chlorophenyl)acetate 205 as a yellow solid (0.55 g, 93%). M.p. 91–93 °C; FTIR (film/cm⁻¹) v_max: 2982 (w), 2928 (w), 1759 (s), 1671 (s), 1599 (w); ¹H NMR (500 MHz, CDCl₃) δ: 1.34 (d, 3H, J = 6.8 Hz), 3.55 (s, 2H), 3.70 (app. t, 2H, J = 8.0 Hz), 4.42 (app. t, 2H, J = 8.0 Hz), 4.83 (dd, 1H, J = 14.4, 6.8 Hz), 5.41 (app. quin, 1 H, J = 6.8 Hz), 6.91 (d, 1H, J = 14.4 Hz), 7.19 (app. d, 2H, J = 8.4 Hz), 7.28 (app. d, 2H, J = 8.4 Hz); ¹³C NMR (125 MHz, CDCl₃) δ: 20.6, 40.9, 42.3, 62.2, 70.2, 109.6, 127.1, 128.7, 130.6, 132.5, 133.0, 155.2, 170.4; HRMS (ESI, +ve) m/z calcd. for C₁₅H₁₆ClNNaO₄ 332.0660, found 332.0653 (M+Na)⁺.
(E)-4-(2-Oxazolidin-3-yl)but-3-en-2-yl 2-(p-(trifluoromethyl)phenyl)acetate 206

EDCI (0.73 g, 3.81 mmol) in DCM (100 ml), triethylamine (0.53 ml, 3.81 mmol), DMAP (0.03 g, 0.19 mmol), p-trifluoromethylphenylacetic acid (0.78 g, 3.81 mmol) and (E)-3-(3-hydroxybut-1-enyl)oxazolidin-2-one 145 (0.30 g, 1.91 mmol) in DCM (20 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford (E)-4-(2-oxo-oxazolidin-3-yl)but-3-en-2-yl 2-(p-(trifluoromethyl)phenyl)acetate 206 as a yellow oil (0.56 g, 86%).

FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 2984 (w), 1757 (s), 1671 (m), 1619 (w); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\): 1.34 (d, 3H, \(J = 7.0\) Hz), 3.63 (s, 2H), 3.63 (app. t, 2H, \(J = 14.4\) Hz), 4.40 (app. t, 2H, \(J = 8.1\) Hz), 4.83 (dd, 1H, \(J = 14.4, 7.0\) Hz), 5.41 (app. quin, 1 H, \(J = 7.0\) Hz), 6.90 (d, 1H, \(J = 14.4\) Hz), 7.34 (app. d, 2H, \(J = 8.0\) Hz), 7.55 (app. d, 2H, \(J = 8.0\) Hz); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\): 20.6, 41.3, 42.3, 62.2, 70.4, 109.5 124.1 (q, \(J = 273.0\) Hz), 125.4 (q, \(J = 3.7\) Hz), 127.2, 129.4 (q, \(J = 32.6\) Hz), 129.6, 138.0, 155.3, 170.0; HRMS (ESI, +ve) \(m/z\) calcld. for C\(_{16}\)H\(_{18}\)F\(_3\)NNaO\(_4\) 366.0929, found 366.0924 (M+Na\(^+\).

\(^{13}\)C\(_{1}\)-2-(4-(trifluoromethyl)phenyl)acetic acid (\(^{13}\)C\(_{1}\)-283)

To a degassed solution of Pd(OAc\(_2\)) (0.01 g, 0.06 mmol, 3 mol%), P(\(^{1}\)Nap\(_3\)) (0.07 mg, 0.17 mmol, 9 mol%), and finely ground K\(_2\)PO\(_4\) (1.96 g, 9.25 mmol, 5 eq.) in THF (20 ml) was added \(^{13}\)C-ethylbromo acetate (0.31 mg, 1.85 mmol, 1.0 eq.). The reaction mixture was allowed to stir for 5 minutes and then a solution of 4-trifluorophenyl boronic acid (0.35 g, 1.85 mmol, 1.0 eq.) and H\(_2\)O (0.07 ml, 3.70 mmol, 2.0 eq.) in THF (10 ml) was added. The reaction mixture was allowed to stir at room temperature over...
16 hours and was then quenched by addition to water and extraction with DCM (3 × 20 ml), dried over magnesium sulphate and concentrated in vacuo to yield the crude product. The crude ester was subjected to flash column chromatography using ethyl acetate/petroleum ether 40-60° (10:90) and was then saponified by dissolution in 1N NaOH (20 ml) in methanol (20 ml) and allowed to stir at room temperature over 12 hours. The target compound was isolated by extraction of the organics with 5% NaOH (3 × 20 ml), acidifying the aqueous by 6N HCl (30 ml), extracting the organics with DCM (3 × 20 ml), concentration in vacuo and subsequent purification by flash column chromatography, using ethyl acetate/petroleum ether 40-60° (10:90) to yield 13C₁-283 as a white solid (0.10 g, 27 %). M.p. 89–91 °C; FTIR (film/cm⁻¹) υmax: 3018 (m), 2919 (br s), 1694 (s), 1619 (m), 1588 (w); 1H NMR (500 MHz, CDCl₃) δ: 3.74 (t, 2H, J = 129.9 Hz), 7.39–7.48 (m, 2H), 7.64 (app. d, 2H, J = 8.5 Hz), 11.77 (br s, 1H); 13C NMR (125 MHz, CDCl₃) δ: 40.8, 124.0 (q, J = 266.3 Hz), 125.6 (quin, J = 125.6 Hz), 129.8 (q, J = 30.8 Hz), 129.8 (d, J = 2.9 Hz), 137.1 (d, J = 45.2 Hz), 177.4 (d, J = 58.3 Hz); HRMS (ESI, +ve) m/z calcd. for C₈₁₃C₁₆O₂F₃ 204.0398, found 204.0343 (M-H)⁻.

(E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-13C₁-(4-(trifluoromethyl)phenyl)acetate

13C₁-206

EDCi (0.09 g, 0.49 mmol) in DCM (30 ml), triethylamine (0.07 ml, 0.49 mmol), DMAP (2.44 mg, 0.02 eq.), 13C₁-2-(4-(trifluoromethyl)phenyl)acetic acid 13C₁-283 (0.10 g, 0.49 mmol) and (E)-3-(3-hydroxybut-1-enyl)oxazolidin-2-one (0.04 g, 0.24 mmol) in DCM (10 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford (E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-13C₁-(4-(trifluoromethyl)phenyl)acetate 13C₁-206 as a yellow oil (0.06 g, 81%). FTIR (film/cm⁻¹) υmax: 3096 (m), 2978 (m), 2927 (m), 1702 (s), 1664 (m), 1590 (m), 1561 (m); 1H NMR (500 MHz, CDCl₃) δ: 1.37 (d, 3H, J = 6.5 Hz), 3.66 (d, 2H, J = 130.0 Hz), 3.67 (app. t, 2H, J = 8.1 Hz), 4.45 (app. t, 2H, J = 8.1 Hz), 4.85 (dd, 1H, J = 14.1, 7.1 Hz), 5.44 (app. quin, 1H, J = 7.1 Hz), 6.94 (d, 2H, J = 14.1 Hz), 7.34–7.45 (m, 2H), 7.59 (app. d, 2H, J = 7.6 Hz); 13C NMR (125 MHz, CDCl₃) δ: 20.6,
41.3, 42.3, 62.2, 70.4, 109.5, 123.1 (q, $J = 272.4$ Hz), 125.5 (quin, $J = 4.3$ Hz), 127.2, 129.5 (d, $J = 33.3$ Hz), 129.7 (d, $J = 3.5$ Hz), 138.0 (d, $J = 46.2$ Hz), 155.2, 170.0 (d, $J = 58.2$ Hz); HRMS (ESI, +ve) m/z calcd. for $C_{15}H_{16}F_3NO_4$ 343.1031, found 343.1002 (M-H)^+.

(E)-4-(2-Oxooxazolidin-3-yl)but-3-en-2-yl 2-(p-cyanophenyl)acetate 207

![Image of compound](image.png)

EDCI (0.73 g, 3.81 mmol) in DCM (100 ml), triethylamine (0.53 ml, 3.81 mmol), DMAP (0.03 g, 0.19 mmol), p-cyanophenylacetic acid (0.62 g, 3.81 mmol) and (E)-3-(3-hydroxybut-1-enyl)oxazolidin-2-one 145 (0.30 g, 1.91 mmol) in DCM (20 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford (E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-(p-cyanophenyl)acetate 207 as a yellow oil (0.42 g, 73%). FTIR (film/cm$^{-1}$) ν_{max}: 2982 (w), 2929 (w), 2230 (s), 1753 (s), 1670 (s), 1610 (w); 1H NMR (500 MHz, CDCl$_3$) δ: 1.33 (d, $J = 6.8$ Hz), 3.63 (s, 2H), 3.67 (app. t, 2H, $J = 8.1$ Hz), 4.42 (app. t, 2H, $J = 8.1$ Hz), 4.82 (dd, 1H, $J = 14.4$, 6.8 Hz), 5.40 (app. quin, 1H, $J = 6.8$ Hz), 6.89 (d, 1H, $J = 14.4$ Hz), 7.37 (app. d, 2H, $J = 7.9$ Hz), 7.59 (app. d, 2H, $J = 7.9$ Hz); 13C NMR (125 MHz, CDCl$_3$) δ: 20.7, 41.5, 42.3, 62.3, 70.6, 109.4, 111.1, 118.7, 127.3, 130.2, 132.3, 139.4, 155.3, 169.5; HRMS (ESI, +ve) m/z calcd. For $C_{16}H_{16}N_2NaO_4$ 323.1008, found 323.1002 (M+Na)$^+$.

(E)-4-(2-Oxooxazolidin-3-yl)but-3-en-2-yl 2-(4-(methylsulfonyl)phenyl)acetate 208

![Image of compound](image.png)

EDCI (0.73 g, 3.81 mmol) in DCM (100 ml), triethylamine (0.53 ml, 3.81 mmol), DMAP (0.03 g, 0.19 mmol), p-methane sulfunyl phenyl acetic acid (0.81 g, 3.81 mmol) and (E)-3-(3-hydroxybut-1-enyl)oxazolidin-2-one 145 (0.30 g, 1.91 mmol) in DCM (20
ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford the pure enamido ester substrate, but a further toluene trituration was required to yield \((E)-4-(2\text{-oxooxazolidin-3-yl})\text{but-3-en-2-yl} 2-(4\text{-methylsulfonyl}phenyl)\text{acetate} \ 208\) as a white solid (0.60 g, 83%). M.p. 108–110 °C; FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 2983.4 (w), 2928.7 (w), 2931.5 (w), 1756.0 (s), 1670.8 (m), 1600.1 (w). \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\): 1.33 (\(\ddprime\), 3H, \(J = 6.6\) Hz), 3.02 (s, 3H), 3.62 (s, 2H), 3.62 (app. t, 2H, \(J = 8.2\) Hz), 4.41 (app. t, 2H, \(J = 8.2\) Hz), 4.81 (\(\ddprime\prime\), 1H, \(J = 14.0, 6.6\) Hz), 5.40 (app. quin, 1 H, \(J = 6.6\) Hz), 6.86 (\(\ddprime\), 1 H, \(J = 14.0\) Hz), 7.46 (\(\ddprime\), 2 H, \(J = 8.8\) Hz), 7.86 (\(\ddprime\), 2 H, \(J = 8.8\) Hz). \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\): 20.7, 41.4, 42.3, 44.5, 62.3, 70.6, 109.4, 127.2, 127.6, 130.4, 139.3, 140.3, 155.3, 169.6. HRMS (ESI, +ve) \(m/z\) calc. for C\(_{16}\)H\(_{20}\)NO\(_6\)S 354.1011, found 354.1025 (M+H\(^+\)).

\((E)-4-(2\text{-Oxooxazolidin-3-yl})\text{but-3-en-2-yl} 2-(2,4\text{-dimethoxyphenyl})\text{acetate} \ 209\)

EDCi (0.73 g, 3.81 mmol) in DCM (100 ml), triethylamine (0.53 ml, 3.81 mmol), DMAP (0.03 g, 0.19 mmol), 2,4-dimethoxy phenyl acetic acid (0.74 g, 3.81 mmol) and \((E)-3-(3\text{-hydroxybut-1-yl})\text{oxazolidin-2-one} \ 145\) (0.30 g, 1.91 mmol) in DCM (20 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford \((E)-4-(2\text{-oxooxazolidin-3-yl})\text{but-3-en-2-yl} 2-(2,4\text{-dimethoxyphenyl})\text{acetate} \ 209\) as a clear oil (0.50 g, 79%). FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 2935.8 (w), 1756.9 (s), 1670.8 (m), 1600.1 (w). \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\): 1.63 (\(\ddprime\), 3H, \(J = 6.6\) Hz), 3.53 (s, 2H), 3.62 (app. t, 2H, \(J = 8.2\) Hz), 3.79 (s, 3H), 3.80 (s 3H), 4.41 (app. t, 2H, \(J = 8.2\) Hz), 4.89 (dd, 1H, \(J = 14.3, 6.6\) Hz), 5.44 (app. quin, 1 H, \(J = 6.6\) Hz), 6.44 (d, 1 H, \(J = 14.3\) Hz), 6.90 (dd, 1 H, \(J = 14.3\) Hz), 7.07 (d, 1H, \(J = 6.6\) Hz), 6.44 (d, 1 H, \(J = 7.9\) Hz), 6.46 (s, 1 H), 6.90 (d, 1 H, \(J = 14.3\) Hz), 7.07 (d, 1H, \(J = 7.9\) Hz). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\): 20.7, 36.0, 42.8, 55.8, 55.9, 62.6, 69.8, 99.0, 104.5, 110.6, 115.9, 126.9, 131.5, 155.6, 158.8, 160.6, 171.8. HRMS (ESI, +ve) \(m/z\) calc. for C\(_{17}\)H\(_{21}\)NNaO\(_6\) 358.1267, found 358.1261 (M+Na\(^+\)).
(E)-(E)-4-(2-Oxooxazolidin-3-yl)but-3-en-2-yl) 4-phenylbut-3-enoate 210

EDCi (0.97 g, 5.06 mmol) in DCM (100 ml), triethylamine (0.70 ml, 5.06 mmol), DMAP (0.03 g, 0.25 mmol), E-styryl acetic acid acid (0.82 g, 5.06 mmol) and (E)-3-(3-hydroxybut-1-enyl)oxazolidin-2-one 145 (0.40 g, 2.53 mmol) in DCM (20 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford (E)-(E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl) 4-phenylbut-3-enoate 210 as a yellow oil (0.76 g, 91%). FTIR (film/cm$^{-1}$) ν_{max}: 3027.2 (w), 2980.7 (w), 2928.9 (w), 1756.6 (s), 1670.3 (m), 1619.2 (w). 1H NMR (500 MHz, CDCl$_3$) δ: 1.38 (d, 3H, $J = 6.9$ Hz), 3.21 (dd, 2H, $J = 7.1$, 0.9 Hz), 3.65 (app. t, 2H, $J = 8.1$ Hz), 4.40 (app. t, 2H, $J = 8.1$ Hz), 4.88 (dd, 1H, $J = 14.2$, 6.9 Hz), 5.45 (app. quin, 1 H, $J = 6.9$ Hz), 6.28 (dt, 1 H, $J = 15.5$, 7.1 Hz), 6.48 (d, 1 H, $J = 15.5$ Hz), 6.90 (d, 1H, $J = 14.2$ Hz), 7.21 (app. d, 1H, $J = 7.3$ Hz), 7.29 (app. t, 2H, $J = 7.3$ Hz), 7.36 (d, 2H, $J = 7.3$ Hz). 13C NMR (125 MHz, CDCl$_3$) δ: 20.6, 38.7, 42.3, 62.3, 69.9, 109.8, 121.7, 126.3, 127.1, 127.6, 128.5, 133.4, 136.9, 155.3, 170.8. HRMS (ESI, +ve) m/z caled. For C$_{17}$H$_{19}$NNaO$_4$ 324.1212, found 324.1206 (M+Na)$^+$.
(E)-4-(2-Oxooxazolidin-3-yl)but-3-en-2-yl 2-(1-methyl-1H-indol-3-yl)acetate 211

Part 1- Synthesis of methyl 2-(1-methyl-1H-indol-3-yl)acetate

![Chemical Structure]

To stirred suspension of NaH (1.39 g, 57.9 mmol, 5 eq.) in THF (100 ml) at 0 °C was added a solution of indole-3-acetic acid (2.00 g, 11.6 mmol, 1 eq.) in THF (50 ml) and the reaction mixture was allowed to stir for 30 mins, before the addition of a solution of iodomethane (2.41 ml, 38.22 mmol, 3.3 eq.) as a solution in THF (50 ml). The reaction mixture was allowed to stir for 15 hours and quenched by the addition of aqueous methanol until a clear yellow solution resulted. The resulting mixture was acidified by the addition of 6N HCl (100 ml), and the organics were extracted by DCM (3 × 100 ml), dried over MgSO₄, filtered and concentrated in vacuo to yield methyl 2-(1-methyl-1H-indol-3-yl)acetate as a brown solid (1.65 g, 76 %). M.p. 128–130 °C; FTIR (film/cm⁻¹) υ max: 3433.2 (br s), 1705.3 (s). ¹H NMR (500 MHz, CDCl₃) δ: 3.77 (s, 3H), 3.81 (d, 2H, J = 0.6 Hz), 7.05 (s, 1H), 7.13 (td, 1H, J = 7.8, 0.9 Hz), 7.22-7.26 (m, 1H), 7.30 (d, 1H, J = 7.8 Hz), 7.59 (d, 1H, J = 7.8 Hz), ¹³C NMR (125 MHz, CDCl₃) δ: 31.0, 32.7, 106.1, 109.4, 119.0, 119.3, 121.9, 127.6, 127.9, 136.9, 178.5. HRMS (ESI, +ve) m/z calcd. For C₁₁H₁₁NNaO₂ 212.0867, found 212.0682 (M+Na)⁺.

Part 2- EDCi (0.50 g, 2.61 mmol) in DCM (100 ml), triethylamine (0.36 ml, 2.61 mmol), DMAP (0.02 g, 0.13 mmol), methyl 2-(1-methyl-1H-indol-3-yl)acetate (0.50 g, 2.61 mmol) and (E)-3-(3-hydroxybut-1-enyl)oxazolidin-2-one 145 (0.20 g, 1.31 mmol) in DCM (20 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford (E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-(1-methyl-1H-indol-3-yl)acetate 211 as an orange
oil (0.42 g, 97%). FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 3053.5 (w), 2980.1 (w), 2931.5 (w), 1756.5 (s), 1670.3 (m), 1616.3 (w), 1552.9 (w). \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\): 1.38 (d, 3H, \(J = 6.8\) Hz), 3.45 (app. t, 2H, \(J = 8.1\) Hz), 3.71 (s, 3H), 3.75 (s, 2H), 4.27 (app. t, 2H, \(J = 8.1\) Hz), 4.82 (dd, 1H, \(J = 14.6, 6.8\) Hz), 5.46 (app. quin, 1 H, \(J = 6.8\) Hz), 6.88 (d, 1 H, \(J = 14.6\) Hz), 7.03 (s, 1 H), 7.11 (td, 1H, \(J = 7.8, 1.0\) Hz), 7.22 (td, 1H, \(J = 7.8, 1.0\) Hz), 7.28 (d, 1H, \(J = 7.8\) Hz), 7.60 (d, 1H, \(J = 7.8\) Hz). \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\): 20.7, 31.7, 32.7, 42.2, 62.3, 69.8, 106.8, 109.3, 110.0, 119.0, 119.1, 121.7, 126.8, 127.7, 127.9, 136.9, 155.4, 171.4. HRMS (ESI, +ve) \(m/z\) calcd. For C\(_{18}\)H\(_{20}\)N\(_2\)O\(_4\) 351.1321, found 351.1315 (M+Na)^+.

\(\text{(E)-4-(2-Oxooxazolidin-3-yl)but-3-en-2-yl 2-(benzo[d][1,3]dioxol-5-yl)acetate 212}\)

EDCi (0.73 g, 3.81 mmol) in DCM (100 ml), triethylamine (0.53 ml, 3.81 mmol), DMAP (0.03 g, 0.19 mmol), benzodioxole phenyl acetic acid (0.69 g, 3.81 mmol) and \(\text{(E)-3-(3-hydroxybut-1-enyl)oxazolidin-2-one 145}\) (0.30 g, 1.91 mmol) in DCM (20 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford \(\text{(E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-(benzo[d][1,3]dioxol-5-yl)acetate 212}\) as a clear oil (0.52 g, 85%). FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 2922.9(m), 1750.9(s) 1670.4(s), 1503.6(s). \(^1\)H NMR (250 MHz, CDCl\(_3\)) \(\delta\): 1.34 (d, 3H, \(J = 6.9\) Hz), 3.49 (s, 2H), 3.66 (app. t, 2H, \(J = 7.9\) Hz), 4.43 (app. t, 2H, \(J = 7.9\) Hz), 4.85 (dd, 1H, \(J = 14.4, 6.9\)), 5.40 (app. quin, 1H, \(J = 6.9\) Hz), 5.93 (s, 2H), 6.66–6.78 (m, 3H), 6.90 (d, 1H, \(J = 14.4\) Hz). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\): 21.0, 41.6, 42.7, 62.6, 70.3, 101.4, 108.7, 110.0, 110.1, 122.8, 127.4, 128.0, 147.1, 148.1, 155.7, 171.4. HRMS (ESI, +ve) \(m/z\) calcd. For C\(_{16}\)H\(_{17}\)N\(_2\)NaO\(_6\) 342.0954, found 342.0948 (M+Na)^+.
Chapter 6

Experimental

(E)-4-(2-Oxooxazolidin-3-yl)but-3-en-2-yl propionacetate 265

![Chemical structure of (E)-4-(2-Oxooxazolidin-3-yl)but-3-en-2-yl propionacetate 265]

EDCI (0.73 g, 3.81 mmol) in DCM (100 ml), triethylamine (0.53 ml, 3.81 mmol), DMAP (0.03 g, 0.19 mmol), propionic acid (0.28 g, 3.81 mmol) and (E)-3-(3-hydroxybut-1-yl)oxazolidin-2-one 145 (0.30 g, 1.91 mmol) in DCM (20 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford (E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl propionacetate 265 as a white solid (0.38 g, 94%). M.p. 89–91 °C. FTIR (film/cm⁻¹) νmax: 2977 (s), 2956 (s), 2852 (s), 1747 (s), 1726 (s), 1665 (w), 1479 (w); ¹H NMR (250 MHz, CDCl₃) δ: 2.29 (q, 2H, α,αα,ααα,ααα,ααα α,α-2H), 1.35 (d, 3H, J = 6.7 Hz, CH₃CH-), 2.29 (q, 2H, J = 7.6 Hz, CH₂CH₂-), 3.64–3.73 (m, 2H, -N(CH₂CH₂)-), 4.39–4.48 (m, 2H, -OCH₂-), 4.87 (dd, 1H, J = 14.4, 6.7 Hz, -NCHCH-), 5.41 (app. quin, 1H, J = 6.7 Hz, CH₂CH(CH₂O)-), 6.92 (d, 1H, J = 14.4 Hz, -NCHCH-); ¹³C NMR (75 MHz, CDCl₃) δ: 9.5, 21.1, 28.3, 42.7, 62.6, 69.5, 110.5, 127.1, 155.7, 174.1; HRMS (ESI, +ve) m/z calcd for C₁₁H₁₅NNaO₄ 236.0898, found 236.0893 (M+Na)⁺.

α,α-²H₂-Propionic acid 1-methyl-3-(2-oxo-oxazolidin-3-yl)-allyl ester ²H₂-265

![Chemical structure of α,α-²H₂-Propionic acid 1-methyl-3-(2-oxo-oxazolidin-3-yl)-allyl ester ²H₂-265]

EDCI (0.60 g, 3.82 mmol) in CD₂Cl₂ (100 ml), triethylamine (0.53 ml, 3.82 mmol), DMAP (0.05 g, 0.19 mmol), α,α-d²-propionic acid (0.28 g, 3.82 mmol) and (E)-3-(3-hydroxybut-1-yl)oxazolidin-2-one (0.30 g, 1.91 mmol) 145 in CD₂Cl₂ (20 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure, with solutions of citric acid (10%) and sat. sodium bicarbonate made as solutions in D₂O, to afford α,α-d²-propionic acid 1-methyl-3-(2-oxo-oxazolidin-3-yl)-allyl ester ²H₂-265 as a cream solid (0.29 g, 71%). M.p. 89–92 °C; FTIR (film/cm⁻¹) νmax: 2990 (m), 2975 (m), 2937 (m), 1743 (s), 1721 (s), 1662 (s), 1475 (s); ¹H NMR (250 MHz, CDCl₃) δ: 1.04 (s, 3H), 1.29 (d, 3H, J = 6.7 Hz), 3.64 (app. t, 2H, J = 6.7 Hz), 3.64–3.73 (m, 2H, -N(CH₂CH₂)-), 4.87 (dd, 1H, J = 14.4, 6.7 Hz, -NCHCH-), 5.41 (app. quin, 1H, J = 6.7 Hz, CH₂CH(CH₂O)-), 6.92 (d, 1H, J = 14.4 Hz, -NCHCH-); ¹³C NMR (75 MHz, CDCl₃) δ: 9.5, 21.1, 28.3, 42.7, 62.6, 69.5, 110.5, 127.1, 155.7, 174.1; HRMS (ESI, +ve) m/z calcd for C₁₁H₁₅NNaO₄ 236.0898, found 236.0893 (M+Na)⁺.
Chapter 6 Experimental

2H, $J = 8.2$ Hz), 4.39 (app. t, 3H, $J = 8.2$ Hz), 4.82 (dd, 1H, $J = 14.4$, 6.7 Hz), 5.35 (app. pent, 1H, $J = 6.7$ Hz), 6.85 (d, 1H, $J = 6.7$ Hz); 13C NMR (100 MHz, CDCl$_3$) δ: 8.8, 20.7, 27.2 (quin, $J = 19.8$ Hz), 42.3, 62.3, 69.1, 110.1, 126.7, 155.3, 173.6; HRMS (ESI, +ve) m/z calcd. for C$_{10}$H$_{13}$D$_2$NNaO$_4$ 238.1022, found 238.1020 (M+Na)$^+$.

6.3.2. N-Oxazolidinone Rearrangement Products

anti-2-Methyl-3-(2-oxo-oxazolidin-3-yl)-hex-4-enoic acid methyl ester 139

![Chemical Structure](image)

LiHMDS (0.61 ml, 0.61 mmol), TMSCl (0.08 ml, 0.61 mmol) and (E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl propionacetate 256 (0.10 g, 0.46 mmol) in THF (1 ml) were combined according to general procedure 2 (reaction time : 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded *anti*-2-methyl-3-(2-oxo-oxazolidin-3-yl)-hex-4-enoic acid methyl ester 139 as a white solid (0.06 g, 60%, d.r. 2:1). M.p. 89–90 °C; FTIR (film/cm$^{-1}$) ν_{max}: 2922 (s), 1754 (s), 1726 (s) 1658 (m), 1572 (m); 1H NMR (250 MHz, CDCl$_3$) *anti* δ: 1.12 (d, 3H, $J = 7.0$ Hz), 1.65–1.75 (m, 3H), 2.74–2.93 (m, 1H), 3.36–3.63 (m, 2H), 3.66 (s, 3H), 4.15–4.38 (m, 3H), 5.34–5.54 (m, 1H), 5.64–5.86 (m, 1H, $J = 15.3$ Hz); *syn* δ: 1.16 (d, 3H, $J = 7.0$ Hz), 1.65–1.75 (m, 3H), 2.74–2.93 (m, 1H), 3.36–3.63 (m, 2H), 3.64 (s, 3H), 4.15–4.38 (m, 3H), 5.34–5.54 (m, 1H), 5.64–5.86 (m, 1H, $J = 15.3$ Hz); 13C NMR (62 MHz, CDCl$_3$) *anti* δ: 14.7, 17.9, 41.9, 42.5, 51.9, 59.1, 62.2, 124.9, 131.6, 158.1, 174.8; *syn* δ: 14.2, 14.8, 41.4, 42.3, 51.8, 58.1, 62.1, 125.0, 132.4, 157.6, 174.5. HRMS (ESI, +ve) m/z calcd. For C$_{11}$H$_{17}$NNaO$_4$ 250.1055, found 250.1065 (M+Na)$^+$.

197
(anti-\text{-}E\text{-})-Methyl 3-(2-oxooxazolidin-3-yl)-2-phenylhex-4-enoate 144

\[
\begin{align*}
\text{Me} & \quad \text{CO}_2\text{Me} \\
\text{O} & \quad \text{N}
\end{align*}
\]

LiHMDS (0.47 ml, 0.47 mmol), TMSCl (0.06 ml, 0.47 mmol) and (E)-4-(2-oxooxazolidin-3-yl)but-3-eno-2-yl phenylacetate 154 (0.10 g, 0.36 mmol) in THF (1 ml) were combined according to general procedure 2 (reaction time: 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded (anti-\text{-}E\text{-})-methyl 3-(2-oxooxazolidin-3-yl)-2-phenylhex-4-enoate 144 as a white solid (0.08 g, 72%, d.r. 44:1). M.p. 98–99 °C; FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 3062 (m), 3031 (m), 2952 (m), 1546 (s), 1454 (m), 1383 (m), 1290 (m). \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\): 1.49 (dd, 3H, \(J = 6.5, 1.3\) Hz, \(\text{CH}_2\text{CHCH}_2\)), 3.55–3.64 (m, 2H, -N(CH)CH\(_2\)-), 3.65 (s, 3H, -CO\(_2\text{CH}_3\)), 4.14 (d, 1H, \(J = 11.4\) Hz, -CHCO\(_2\text{CH}_3\)), 4.24–4.33 (m, 2H, -OCH\(_2\)-), 4.69 (dd, 1H, \(J = 11.4, 7.9\) Hz, -CHCH(C\(_6\)H\(_5\))CO\(_2\text{CH}_3\)), 5.29 (ddq, 1H, \(J = 15.3, 7.9, 1.3\) Hz, \(\text{CH}_2\text{CHCH}_2\)), 5.42 (dqd, 1H, \(J = 15.3, 6.5, 0.7\) Hz, \(\text{CH}_3\text{CHCH}_2\)), 7.23–7.34 (m, 5H, C\(_6\)H\(_5\)); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\): 17.7, 42.7, 52.3, 54.3, 58.7, 62.6, 124.3, 127.9, 128.7, 128.9, 131.5, 135.1, 157.6, 172.4; HRMS (ESI, +ve) \(m/z\) calcd. For C\(_{16}\)H\(_{20}\)NO\(_4\), 290.1392, found 290.1385 (M+H\(^+\)).

(\text{anti-}E\text{-})-methyl 3-(2-\text{d}\(^2\)-d\(^3\)-oxooxazolidin-3-yl)-2-phenylhex-4-\text{d}\(^4\)\text{d}\(^5\)-enoate \(^2\)H\(_3\)-144

\[
\begin{align*}
\text{Me} & \quad \text{CO}_2\text{Me} \\
\text{O} & \quad \text{N}
\end{align*}
\]

To an oven dried Young’s tap NMR tube, inserted into a Dewar at -95 °C and under an atmosphere of nitrogen, was added a solution of LiHMDS (1 M in THF, 0.24 ml, 0.23 mmol, 1.3 eq.), and TMSCl (0.03 ml, 0.23 mmol, 1.3 eq.). Thermal equilibration was allowed (5 minutes) and then a solution of phenyl-acetic acid d\(^1\)-d\(^2\)-d\(^3\)-1-methyl-3-(2-oxo-oxazolidin-3-yl)-allyl ester \(^2\)H\(_3\)-154 (0.05 g, 0.18 mmol, 1 eq.) in THF (0.5 ml) was
added. The cooled NMR tube was rapidly lowered into the pre-cooled NMR machine at -95 °C. From this point 1H and 13C NMR spectroscopy were recorded utilising solvent suppression techniques, and the sample was subsequently warmed to -50 °C and 25 °C allowing the sample to equilibrate for five minutes before recording data. After in-situ reaction monitoring the reaction mixture was quenched following general procedure 2 and treatment with diazomethane and purification by flash column chromatography afforded (anti-E)-methyl 3-(2-oxooxazolidin-3-yl)-2-phenylhex-4-enoate 2H$_3$-144 as an amorphous yellow solid (0.03 g, 59%, d.r. 51:1). FTIR (film/cm$^{-1}$) ν_{max}: 3015 (m), 3001 (m), 2955 (m), 2919 (m), 1748 (s), 1519 (m); 1H NMR (500 MHz, CDCl$_3$) δ: 1.51 (s, 3H), 3.57–3.67 (m, 2H), 3.68 (s, 3H), 4.16 (s, 1H), 4.26–4.36 (m, 2H), 7.25–7.37 (5H, m); 13C NMR (125 MHz, CDCl$_3$) δ: 17.6, 42.6, 52.3, 54.2, 58.3 (t, $J = 20.6$ Hz), 62.3, 123.8 (t, $J = 23.5$ Hz), 127.9, 128.7, 128.9, 131.1 (t, $J = 23.5$ Hz), 135.1, 157.5, 172.3 HRMS (ESI, +ve) m/z calc. for C$_{16}$H$_{17}$D$_3$NO$_4$ 293.1581, found 293.1582(M+H)$^+$.

13C$_2$-(anti-E)-Methyl 3-(2-oxooxazolidin-3-yl)-2-phenylhex-4-enoate 13C$_2$-144

To an oven dried Young’s tap NMR tube, inserted into a Dewar at -95 °C and under an atmosphere of nitrogen, was added a solution of LiHMDS (1 M in THF, n eq.), and TMSCl (m eq.). Thermal equilibration was allowed (5 minutes) and then a solution of 13C$_2$-(E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl phenylacetate 13C$_2$-154 (0.05 g, 0.17 mmol, 1 eq.) in THF (0.5 ml) was added. The cooled NMR tube was rapidly lowered into the pre-cooled NMR machine at -95 °C. From this point 13C NMR spectroscopy was recorded at -95 °C and then the machine was allowed to warm to -65 °C, where it was then kept for the rest of the experiment (ca. 12 hours) and 13C data was recorded every 5 minutes. After in-situ reaction monitoring the reaction mixture was quenched following general procedure 2 and treatment with diazomethane and purification by flash chromatography afforded 13C$_2$-(anti-E)-methyl 3-(2-oxooxazolidin-3-yl)-2-phenylhex-4-enoate 13C$_2$-144 as a white solid.
Table 24. In-Situ EICR of 13C$_{154}$.

<table>
<thead>
<tr>
<th>Entry</th>
<th>LiHMDS (n eq.)</th>
<th>TMSCI (m eq.)</th>
<th>Yield 13C$_{154}$ (%)</th>
<th>d.r. (anti:syn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.3</td>
<td>1.3</td>
<td>50</td>
<td>39:1</td>
</tr>
<tr>
<td>2</td>
<td>1.7</td>
<td>1.7</td>
<td>56</td>
<td>38:1</td>
</tr>
<tr>
<td>3</td>
<td>1.3</td>
<td>6</td>
<td>65</td>
<td>56:1</td>
</tr>
<tr>
<td>4</td>
<td>5.2</td>
<td>5.2</td>
<td>33</td>
<td>32:1</td>
</tr>
</tbody>
</table>

M.p. 98–100 °C; FTIR (film/cm$^{-1}$) ν_{max}: 3031 (m), 2951 (m), 2920 (m), 1739 (s), 1669 (s), 1482 (m); 1H NMR (500 MHz, CDCl$_3$) δ: 1.52 (d, 3H, $J = 6.3$ Hz), 3.58–3.67 (m, 2H), 3.68 (s, 3H, $J = 3.9$ Hz), 4.03 (dd, 1H, $J = 11.5, 7.1$ Hz), 4.25–4.36 (m, 2H), 4.67–4.75 (m, 1H), 5.31 (dd, 1H, $J = 15.2, 7.8$ Hz), 5.49 (dq, 1H, $J = 15.2, 6.3$ Hz), 7.25–7.38 (m, 5H); 13C NMR (125 MHz, CDCl$_3$) δ: 17.7, 42.6, 52.3, 54.3 (d, $J = 61.7$ Hz), 58.7 (d, $J = 46.1$ Hz), 62.2, 124.3 (d, $J = 5.4$ Hz), 127.8, 128.6 (d, $J = 5.4$ Hz), 128.9, 131.4 (d, $J = 2.8$ Hz), 135.1 (d, $J = 38.9$ Hz), 157.5, 172.3 (d, $J = 61.7$ Hz); HRMS (ESI, +ve) m/z calcd. for C$_{14}$C$_{13}$H$_{19}$NNaO$_4$, 314.1368, found 314.1400 (M+Na)$^+$.

Methyl 2-(o-methoxyphenyl)-3-(2-oxooxazolidin-3-yl)hex-4-enoate 172

![Chemical Structure](image)

LiHMDS (0.43 ml, 0.43 mmol), TMSCI (0.06 ml, 0.43 mmol) and (E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-(o-methoxyphenyl)acetate 163 (0.10 g, 0.33 mmol) in THF (1 ml) were combined according to general procedure 2 (reaction time : 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded **(anti-E)-methyl 2-(o-methoxyphenyl)-3-(2-oxooxazolidin-3-yl)hex-4-enoate 172** as a white solid (0.08 g, 79%, d.r. 22:1). M.p. 95–96 °C; FTIR (film/cm$^{-1}$) ν_{max}: 2919 (m), 1747 (s), 1600 (w), 1495 (m); 1H NMR (250 MHz, CDCl$_3$) δ: 1.50 (dd, 3H, J...
= 6.3, 1.2 Hz), 3.60–3.68 (m, 2H), 3.64 (s, 3H), 3.83 (s, 3H), 4.21–4.37 (m, 2H), 4.67 (d, 1H, \(J = 11.0 \) Hz), 4.78 (dd, 1H, \(J = 11.0, 7.3 \) Hz), 5.30 (ddq, 1H, \(J = 15.3, 7.3, 1.2 \) Hz), 5.50 (dq, 1H, \(J = 15.3, 7.3 \) Hz), 6.85 (dd, 1H, \(J = 7.8, 1.0 \) Hz), 6.93 (td, 1H, \(J = 7.8, 1.0 \) Hz), 7.24 (td, 1H, \(J = 8.2, 1.6 \) Hz), 7.42 (dd, 1H, \(J = 7.8, 1.6 \) Hz). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta \): 17.7, 42.2, 45.7, 52.2, 55.6, 57.9, 62.2, 110.7, 120.8, 123.8, 124.8, 128.8, 129.3, 130.8, 157.1, 157.6, 172.5; HRMS (ESI, +ve) \(m/z \) calcd. For C\(_{17}\)H\(_{22}\)NO\(_5\), 320.1498, found 320.1490 (M+H\(^+\)).

\((\text{anti-}E)\)-Methyl 2-(\(m\)-methoxyphenyl)-3-(2-oxooxazolidin-3-yl)hex-4-enoate 173

LiHMDS (0.43 ml, 0.43 mmol), TMSCl (0.06 ml, 0.43 mmol) and (\(E\))-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-(\(m\)-methoxyphenyl)acetate 164 (0.10 g, 0.33 mmol) in THF (1 ml) were combined according to general procedure 2 (reaction time: 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded (\(\text{anti-}E\))-methyl 2-(\(m\)-methoxyphenyl)-3-(2-oxooxazolidin-3-yl)hex-4-enoate 173 as a white solid (0.08 g, 73%, d.r. 19:1). M.p. 98–99 °C; FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}} \): 2922 (m), 1746 (s), 1600 (m); \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta \): 1.52 (dd, 3H, \(J = 6.4, 1.2 \) Hz), 3.61 (td, 2H, \(J = 7.9, 2.1 \) Hz), 3.67 (s, 3H), 3.80 (s, 3H), 4.12 (d, 1H, \(J = 11.4 \) Hz) 4.30 (td, 2H, \(J = 7.9, 2.1 \) Hz), 4.68 (dd, 1H, \(J = 11.4, 7.7 \) Hz), 5.31 (ddq, 1H, \(J = 15.3, 7.7, 1.2 \) Hz), 5.50 (dq, 1H, \(J = 15.3, 6.4, 0.7 \) Hz), 6.81 (dd, 1H, \(J = 8.1, 2.4 \) Hz), 6.87–6.91 (m, 1H), 6.91–6.94 (m, 1H), 7.22 (t, 1H, \(J = 8.1 \) Hz); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta \): 16.7, 41.7, 51.3, 53.2, 54.3, 57.6, 61.2, 112.4, 113.5, 120.3, 123.2, 128.6, 130.3, 135.5, 156.5, 158.7, 171.3; HRMS (ESI, +ve) \(m/z \) calcd. for C\(_{17}\)H\(_{21}\)NNaO\(_5\), 342.1317, found 342.1304 (M+Na\(^+\)).
LiHMDS (0.43 ml, 0.43 mmol), TMSCl (0.06 ml, 0.43 mmol) and (E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-(p-methoxyphenyl)acetate 165 (0.10 g, 0.33 mmol) in THF (1 ml) were combined according to general procedure 2 (reaction time: 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded (anti-E)-methyl 2-(p-methoxyphenyl)-3-(2-oxooxazolidin-3-yl)hex-4-enoate 174 as a white solid (0.08 g, 77%, d.r. 24:1). M.p. 101–103 °C; FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 2922 (m), 1747 (s), 1611 (w), 1514 (m); \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\): 1.52 (\(\ddagger\), 3H, \(J = 6.4, 1.1\) Hz), 3.53–3.66 (m, 2H), 3.66 (s, 3H), 3.79 (s, 3H), 4.08 (\(\ddagger\), 1H, \(J = 11.5\) Hz) 4.23–4.36 (m, 2H), 4.67 (\(\ddagger\), 1H, \(J = 11.5, 7.7\) Hz), 5.23 (ddq, 1H, \(J = 15.4, 7.7, 1.1\) Hz), 5.49 (dqd, 1H, \(J = 15.4, 6.4, 0.7\) Hz), 6.84 (app. d, 2H, \(J = 8.8\) Hz), 7.25 (app. d, 2H, \(J = 8.8\) Hz); \(^1^3\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\): 18.2, 42.9, 52.7, 53.9, 55.6, 59.1, 62.7, 114.4, 124.8, 127.5, 130.4, 131.8, 157.9, 159.6, 173.0; HRMS (ESI, +ve) \(m/z\) calcd. for C\(_{17}\)H\(_{21}\)NNaO\(_5\), 342.1317, found 342.1321 (M+Na\(^+\)).

\(^{13}\)C\(_1\)-(anti-E)-Methyl 2-(4-methoxyphenyl)-3-(2-oxooxazolidin-3-yl)hex-4-enoate

\(^{13}\)C\(_1\)-174

To an oven dried Young’s tap NMR tube, inserted into a Dewar at -95 °C and under an atmosphere of nitrogen, was added a solution of LiHMDS (1 M in THF, 0.21 ml, 0.21 mmol, 1.3 eq.), and TMSCl (0.03 ml, 0.21 mmol, 1.3 eq.). Thermal equilibration was allowed (5 minutes) and then a solution of (E)-4-(2-Oxooxazolidin-3-yl)but-3-en-2-yl 2-
13C1-(4-methoxyphenyl)acetate 13C1-165 (0.05 g, 0.16 mmol, 1.0 eq.) in THF (0.5 ml) was added. The cooled NMR tube was rapidly lowered into the pre-cooled NMR machine at -95 °C. From this point 13C NMR spectroscopy was recorded at -95 °C and then the machine was allowed to warm to -65 °C, where it was then kept for the rest of the experiment (ca. 12 hours) and 13C data was recorded every 5 minutes. After in-situ reaction monitoring the reaction mixture was quenched following general procedure 2 and treatment with diazomethane and purification by flash chromatography to afford 13C1-(anti-E)-methyl 2-(4-methoxyphenyl)-3-(2-oxooxazolidin-3-yl)hex-4-enoate 13C1-174 as a white solid (0.03 g, 52%, d.r. 25:1). M.p. 103–104 °C; FTIR (film/cm-1) \(\nu_{\text{max}} \): 3012 (m), 2985 (m), 2937 (m), 1710 (s), 1671 (m), 1596 (m), 1566 (m); \(^1\)H NMR (500 MHz, CDCl3) \(\delta \): 1.53 (s, 3H, \(J = 6.5 \) Hz), 3.56–3.65 (m, 2H), 3.67 (s, 3H), 3.80 (s, 3H), 4.10 (dd, 1H, \(J = 132.9, 11.3 \) Hz) 4.26–4.36 (m, 2H), 4.64–4.73 (m, 1H), 5.30 (app. dd, 1H, \(J = 15.1, 8.2 \) Hz), 5.50 (app. dq, 1H, \(J = 15.1, 6.5 \) Hz), 6.86 (app. d, 2H, \(J = 8.8 \) Hz), 7.24 (m, 2H); 13C NMR (125 MHz, CDCl3) \(\delta \): 17.8, 42.6, 52.3, 53.5, 55.2, 58.7 (d, \(J = 24.9 \) Hz), 62.2, 114.0 (d, \(J = 2.6 \) Hz), 124.4, 127.1 (d, \(J = 30.0 \) Hz), 130.0 (d, \(J = 1.7 \) Hz), 131.4 (d, \(J = 2.6 \) Hz), 157.6, 159.2, 172.6 (d, \(J = 39.5 \) Hz); HRMS (ESI, +ve) m/z calcd. for C16\(^1\)3C1H21NNaO5, 343.1395, found 343.1377 (M+Na)+.

(anti-E)-Methyl 3-(2-oxooxazolidin-3-yl)-2-o-tolylhex-4-enoate 175

\[
\text{LiHMDS (0.45 ml, 0.45 mmol), TMSCl (0.06 ml, 0.45 mmol) and (E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-o-tolylacetate 166 (0.10 g, 0.35 mmol) in THF (1 ml) were combined according to general procedure 2 (reaction time : 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded (anti-E)-methyl 3-(2-oxooxazolidin-3-yl)-2-o-tolylhex-4-enoate 175 as a white solid (0.08 g, 71%, d.r. 19:1). M.p. 100–102 °C; FTIR (film/cm-1) \(\nu_{\text{max}} \): 2923 (w), 1745 (s), 1484 (m); \(^1\)H NMR (250 MHz, CDCl3) \(\delta \): 1.48 (d, 3H, \(J = 5.7 \) Hz), 2.40 (s, 3H), 3.60–3.71 (m, 2H), 3.63 (s, 3H), 4.30 (app. t, 2H, \(J = 7.88 \) Hz), 4.55–4.69 (m, 2H), 5.30 (dd, 1H, \(J = 7.88 \) Hz).}
Experimental

= 15.7, 5.7 Hz), 5.41 (dq, 1H, J = 15.7, 5.7 Hz), 7.12–7.21 (m, 3H), 7.34–7.40 (m, 1H);

13C NMR (75 MHz, CDCl$_3$) δ: 16.7, 19.1, 42.4, 47.6, 51.2, 58.3, 61.2, 122.9, 125.3, 126.4, 126.5, 129.5, 130.0, 132.8, 136.0, 156.6, 171.8. HRMS (ESI, +ve) m/z calcd. for C$_{17}$H$_{22}$NO$_4$, 304.1549, found 304.1546 (M+H)$^+$.

(anti-E)-Methyl 3-(2-oxooxazolidin-3-yl)-2-m-tolylhex-4-enoate 176

LiHMDS (0.45 ml, 0.45 mmol), TMSCl (0.06 ml, 0.45 mmol) and (E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-m-tolylacetate 167 (0.10 g, 0.35 mmol) in THF (1 ml) were combined according to general procedure 2 (reaction time : 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded (anti-E)-methyl 3-(2-oxooxazolidin-3-yl)-2-m-tolylhex-4-enoate 176 as an off white solid (0.08 g, 74%, d.r. 43:1). M.p. 95–97 °C; FTIR (film/cm$^{-1}$) ν_{max}: 2919 (m), 1746 (s), 1607 (m), 1484 (m); 1H NMR (300 MHz, CDCl$_3$) δ: 1.51 (d, 3H, J = 6.4 Hz), 2.33 (s, 3H), 3.60 (td, 2H, J = 8.0, 3.4 Hz), 3.66 (s, 3H), 4.09 (d, 1H, J = 11.4 Hz), 4.22–4.37 (m, 2H), 4.71 (dd, 1H, J = 11.4, 7.5 Hz), 5.28 (ddq, 1H, J = 15.4, 7.5, 1.5 Hz), 5.48 (dq, 1H, J = 15.4, 6.4 Hz), 7.04–7.23 (m, 4H); 13C NMR (75 MHz, CDCl$_3$) δ: 16.7, 20.4, 41.5, 51.3, 53.2, 57.4, 61.2, 123.3, 124.9, 127.5, 127.6, 128.5, 130.2, 133.9, 137.4, 156.6, 171.4; HRMS (ESI, +ve) m/z calcd. for C$_{17}$H$_{22}$NO$_4$, 304.1549, found 304.1537 (M+H)$^+$.

204
(anti-E)-Methyl 3-(2-oxooxazolidin-3-yl)-2-p-tolylhex-4-enoate 177

\[
\text{LiHMDS (0.45 ml, 0.45 mmol), TMSCl (0.06 ml, 0.45 mmol) and (E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-p-tolylacetate 168 (0.10 g, 0.35 mmol) in THF (1 ml) were combined according to general procedure 2 (reaction time : 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded (anti-E)-methyl 3-(2-oxooxazolidin-3-yl)-2-p-tolylhex-4-enoate 177 as a white solid (0.07 g, 70%, d.r. 54:1). M.p. 101–102 °C; FTIR (film/cm\(^{-1}\)) \(\nu_{max}\): 2920 (m), 1746 (s), 1666 (m), 1612 (m), 1514 (m), 1483 (m); \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\): 1.52 (t, 3H, \(J = 6.2\) Hz), 2.32 (s, 3H), 3.60 (t, 2H, \(J = 8.2, 2.0\) Hz), 3.65 (s, 3H), 4.09 (t, 1H, \(J = 11.4\) Hz), 4.21–4.37 (m, 2H), 4.70 (dd, 1H, \(J = 11.4, 7.7\) Hz), 5.29 (ddq, 1H, \(J = 15.3, 7.7, 1.4\) Hz), 5.50 (dq, 1H, \(J = 15.3, 6.2\) Hz), 7.12 (app. d, 2H, \(J = 7.9\) Hz), 7.22 (app. d, 2H, \(J = 7.9\) Hz); \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 18.2, 21.5, 42.9, 52.7, 54.4, 58.9, 62.6, 124.8, 129.2, 129.8, 131.7, 132.4, 138.0, 157.9, 172.9; HRMS (ESI, +ve) \(m/z\) calcd. for C\(_{17}\)H\(_{22}\)NO\(_4\), 304.1549, found 304.1538 (M+H\(^+\)).
\]

(anti-E)-Methyl 2-(o-nitrophenyl)-3-(2-oxooxazolidin-3-yl)hex-4-enoate anti-178

\[
\text{LiHMDS (0.41 ml, 0.41 mmol), TMSCl (0.05 ml, 0.41 mmol) and (E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-(o-nitrophenyl)acetate 169 (0.10 g, 0.32 mmol) in THF (1 ml) were combined according to general procedure 2 (reaction time : 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded (anti-E)-methyl 2-(o-nitrophenyl)-3-(2-oxooxazolidin-3-yl)hex-4-enoate 178}
\]
as a yellow solid (0.06 g, 60%). M.p. 134–135 °C; FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 2955 (m), 2918 (m), 1748 (s), 1529 (m); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\): 1.45 (dd, 3H, \(J = 6.6, 1.4\) Hz), 3.66–3.70 (m, 2H), 3.67 (s, 3H), 4.25–4.40 (m, 2H), 4.78 (d, 1H, \(J = 10.4\) Hz), 4.84 (dd, 1H, \(J = 10.4, 8.4\) Hz), 5.29 (ddq, 1H, \(J = 15.4, 8.4, 1.4\) Hz), 5.48 (dq, 1H, \(J = 15.4, 6.6\) Hz), 7.42 (td, 1H, \(J = 8.0, 1.1\) Hz), 7.59 (td, 1H, \(J = 8.0, 1.1\) Hz), 7.74 (dd, 1H, \(J = 8.0, 1.1\) Hz), 7.85 (dd, 1H, \(J = 8.0, 1.1\) Hz); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\): 17.7, 42.0, 47.9, 52.6, 58.6, 62.3, 124.2, 128.7, 129.9, 131.5, 132.5, 133.1, 149.7, 157.6, 170.8; HRMS (ESI, +ve) \(m/z\) calcd. for \(\text{C}_{16}\text{H}_{18}\text{N}_2\text{NaO}_{6}\), 357.1063, found 357.1071 (M+Na).

(syn-E)-Methyl 2-(o-nitrophenyl)-3-(2-oxooxazolidin-3-yl)hex-4-enoate *syn-178*

![Chemical Structure](image)

LiHMDS (0.41 ml, 0.41 mmol), TMSCl (0.05 ml, 0.41 mmol) and *(E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-(o-nitrophenyl)acetate* 169 (0.10 g, 0.32 mmol) in THF (1 ml) were combined according to general procedure 2 (reaction time: 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded *(syn-E)*-methyl 2-(o-nitrophenyl)-3-(2-oxooxazolidin-3-yl)hex-4-enoate 178 as a yellow solid (0.01 g, 12%). M.p. 133–134 °C; FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 2954 (m), 2918 (m), 1747 (s), 1529 (s); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\): 1.74 (\(\delta\)), 3.34 (\(\tau\), 1H, \(J = 8.8, 5.0\) Hz), 3.47 (q, 1H, \(J = 8.9\) Hz), 3.64 (s, 3H), 3.94 (q, 1H, \(J = 8.9\) Hz), 4.17 (\(\tau\), 1H, \(J = 8.8, 5.0\) Hz), 4.66 (d, 1H, \(J = 11.4\) Hz), 5.17 (dd, 1H, \(J = 11.4, 7.8\) Hz), 5.53 (ddq, 1H, \(J = 15.4, 7.8, 1.2\) Hz), 5.90 (dq, 1H, \(J = 15.4, 6.4\) Hz), 7.43 (t, 1H, \(J = 7.8\) Hz), 7.62 (t, 1H, \(J = 7.8\) Hz), 7.76 (d, 1H, \(J = 7.8\) Hz), 7.87 (d, 1H, \(J = 7.8\) Hz); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\): 17.9, 40.6, 47.5, 52.6, 56.4, 62.1, 124.2, 124.6, 128.5, 128.9, 130.6, 132.5, 133.0, 150.5, 157.7, 170.5; HRMS (ESI, +ve) \(m/z\) calcd. For \(\text{C}_{16}\text{H}_{18}\text{N}_2\text{NaO}_{6}\), 357.1063, found 357.1069 (M+Na).
LiHMDS (0.41 ml, 0.41 mmol), TMSCl (0.05 ml, 0.41 mmol) and \((E)\)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl \(2-(p\text{-nitrophenyl})\)acetate 170 (0.10 g, 0.32 mmol) in THF (1 ml) were combined according to general procedure 2 (reaction time: 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded \((anti\text{-E})\)-methyl \(2-(p\text{-nitrophenyl})\)-3-(2-oxooxazolidin-3-yl)hex-4-enoate 179 as an orange solid (0.08 g, 75\%, d.r. 16:1). M.p. 97–99 °C; FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 2953 (m), 1746 (s), 1531 (s), 1482 (w); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\): 1.50 (\(\ddot{\text{q}}\), 3H, \(J = 6.4, 1.4\) Hz), 3.60–3.68 (m, 2H), 3.70 (s, 3H), 4.30–4.35 (m, 2H), 4.35 (\(\ddot{\text{q}}\), 1H, \(J = 11.3\) Hz), 4.64 (dd, 1H, \(J = 11.3, 8.6\) Hz), 5.34 (ddq, 1H, \(J = 15.4, 8.7, 1.4\) Hz), 5.50 (dq, 1H, \(J = 15.4, 6.4, 0.6\) Hz), 7.51 (t, 1H, \(J = 7.8\) Hz), 7.71 (d, 1H, \(J = 7.8, 1.2\) Hz), 8.14 (d, 1H, \(J = 7.8\) Hz), 8.20 (s, 1H); \(^1^3\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\): 18.1, 43.4, 53.1, 54.1, 59.6, 62.8, 123.4, 124.2, 124.3, 130.1, 133.3, 135.6, 137.7, 148.8, 157.9, 171.8; HRMS (ESI, +ve) \(m/z\) calc'd. for C\(_{16}\)H\(_{18}\)N\(_2\)NaO\(_6\), 357.1063, found 357.1063 (M+Na)\(^+\).

\((anti\text{-E})\)-Methyl \(2-(p\text{-nitrophenyl})\)-3-(2-oxooxazolidin-3-yl)hex-4-enoate 180

LiHMDS (0.41 ml, 0.41 mmol), TMSCl (0.05 ml, 0.41 mmol) and \((E)\)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl \(2-(p\text{-nitrophenyl})\)acetate 171 (0.10 g, 0.32 mmol) in THF (1 ml) were combined according to general procedure 2 (reaction time: 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded \((anti\text{-E})\)-methyl \(2-(p\text{-nitrophenyl})\)-3-(2-oxooxazolidin-3-yl)hex-4-enoate anti-
180 as a red solid (0.07 g, 69%). M.p. 101–103 °C; FTIR (film/cm⁻¹) \(\nu \)max: 2954 (m), 1739 (s), 1607 (w), 1522 (s); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \): 1.51 (\(\ddot{d} \), 3H, J = 6.5, 1.2 Hz), 3.62 (app. t, 2H, J = 8.0 Hz), 3.67 (s, 3H), 4.27–4.34 (m, 2H), 4.35 (d, 1H, J = 11.3 Hz), 4.62 (dd, 1H, J = 11.3, 8.5 Hz), 5.31 (ddq, 1H, J = 15.3, 8.5, 1.5 Hz), 5.47 (dq, 1H, J = 15.3, 6.5 Hz), 7.51 (app. \(\ddot{d} \), 2H, J = 8.7 Hz), 8.16 (app. \(\ddot{d} \), 1H, J = 8.7 Hz); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta \): 17.7, 43.0, 52.7, 53.8, 59.2, 62.3, 123.7, 123.8, 129.9, 132.7, 142.5, 147.6, 157.5, 171.3; HRMS (ESI, +ve) \(m/z \) calc’d. for C\(_{16}\)H\(_{18}\)N\(_2\)O\(_6\), 357.1063, found 357.1075 (M+Na). (\(\text{syn-E} \))-methyl 2-(\(p \)-nitrophenyl)-3-(2-oxooxazolidin-3-yl)hex-4-enoate syn-180 as a red solid (0.01 g, 7%). M.p. 101–102 °C; FTIR (film/cm⁻¹) \(\nu \)max: 2954 (m), 1740 (s), 1607 (w), 1521 (s); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \): 1.74 (dd, 3H, J = 6.6, 1.3 Hz), 3.31 (app. t, 2H, J = 8.0 Hz), 3.66 (s, 3H), 4.02 (dt, 1H, J = 8.2, 2.9 Hz), 4.70 (dt, 1H, J = 8.2, 2.9 Hz), 4.27 (d, 1H, J = 11.2 Hz), 4.76 (dd, 1H, J = 11.2, 8.0 Hz), 5.63 (ddq, 1H, J = 15.3, 8.0, 1.6 Hz), 5.87 (dq, 1H, J = 15.3, 6.6 Hz), 7.62 (d, 2H, J = 8.7 Hz), 8.12 (d, 1H, J = 8.7 Hz); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta \): 17.9, 42.5, 52.6, 53.9, 58.2, 61.9, 123.9, 124.5, 129.5, 132.4, 142.4, 147.7, 157.4, 170.8; HRMS (ESI, +ve) \(m/z \) calc’d. for C\(_{16}\)H\(_{18}\)N\(_2\)O\(_6\), 357.1063, found 357.1058 (M+Na).

(\(\text{anti-E} \))-Methyl 2-(4-(dimethylamino)phenyl)-3-(2-oxooxazolidin-3-yl)hex-4-enoate 213

\[
\begin{align*}
\text{Me} & \quad \text{O} \\
\text{Me} & \quad \text{Me} \\
\text{NMe}_{2} & \\
\text{Me} & \quad \text{O} \\
\end{align*}
\]

LiHMDS (1.02 ml, 1.02 mmol), TMSCl (0.13 ml, 1.02 mmol) and (\(\text{E} \))-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-(4-(dimethylamino)phenyl)acetate 202 (0.25 g, 0.78 mmol) in THF (2.5 ml) were combined according to a modified general procedure 2, in which LiHMDS was added by syringe pump at 4 ml/h to a solution of (\(\text{E} \))-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-(4-(dimethylamino)phenyl)acetate 202, TMSCl and THF (reaction time : 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded (\(\text{anti-E} \))-methyl 2-(4-(dimethylamino)phenyl)-3-(2-
oxooxazolidin-3-yl)hex-4-enoate 213 as a brown solid (0.15 g, 58%, d.r. 6:1); M.p. 130–132 °C; FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 2950 (m), 2916 (m), 2805 (m), 1748 (s), 1612 (w), 1613 (m), 1523 (m); \(^1\)H NMR (500 MHz, CDCl\(_3\)) Major \(\delta\): 1.52 (d, 3H, \(J = 6.4\) Hz), 2.91 (s, 3H), 3.52–3.60 (m, 2H), 3.67 (s, 3H), 3.97 (d, 1H, \(J = 11.4\) Hz), 4.20–4.32 (m, 2H), 4.70 (q, 1H, \(J = 11.4, 7.4\) Hz), 5.27 (ddq, 1H, \(J = 15.3, 7.4, 0.9\) Hz), 5.50 (dq, 1H, \(J = 15.3, 6.4, 0.8\) Hz), 6.63 (app. t, 2H, \(J = 8.9\) Hz), 7.19 (app. t, 2H, \(J = 8.9\) Hz). Minor \(\delta\): 1.69 (d, 3H, \(J = 6.5\) Hz), 2.90 (s, 3H), 3.20–3.32 (m, 2H), 3.59 (s, 3H), 3.84 (d, 1H, \(J = 11.4\) Hz), 3.88–4.12 (m, 2H), 4.84 (dd, 1H, \(J = 11.4, 7.6\) Hz), 5.57 (dq, 1H, \(J = 15.3, 7.6, 1.6\) Hz), 5.79 (dq, 1H, \(J = 15.3, 6.5, 0.6\) Hz), 6.63–6.65 (m, 2H), 7.22 (app. d, 2H, \(J = 8.6\) Hz); \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) Major \(\delta\): 17.8, 40.3, 42.2, 52.0, 53.4, 58.2, 62.2, 112.4, 122.3, 124.7, 129.5, 130.8, 150.0, 157.6, 127.8; Minor \(\delta\): 17.9, 40.3, 41.5, 52.0, 53.3, 56.9, 61.9, 112.4, 122.1, 125.6, 128.9, 130.4, 150.1, 157.6, 172.3; HRMS (ESI, +ve) \(m/z\) calcd. For C\(_{18}\)H\(_{24}\)NaN\(_2\)O\(_4\) 355.1634, found 355.1628 (M+Na\(^+\).

\((\text{anti-}E)\)-Methyl 2-(4-iodophenyl)-3-(2-oxooxazolidin-3-yl)hex-4-enoate 214

LiHMDS (0.32 ml, 0.32 mmol), TMSCl (0.04 ml, 0.32 mmol) and \((E)\)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-(\(p\)-iodophenyl)acetate 203 (0.10 g, 0.25 mmol) in THF (1 ml) were combined according to general procedure 2 (reaction time : 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded \((\text{anti-}E)\)-methyl 2-(4-iodophenyl)-3-(2-oxooxazolidin-3-yl)hex-4-enoate 214 as a yellow solid (0.08 g, 77%, d.r. 60:1); M.p. 108–110 °C; FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 2951 (w), 1745 (s) 1485 (m); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\): 1.53 (d, 3H, \(J = 6.5, 1.4\) Hz), 3.56–3.63 (m, 2H), 3.66 (s, 3H), 4.13 (d, 1H, \(J = 11.2\) Hz), 4.25–4.34 (m, 2H), 4.62 (dd, 1H, \(J = 11.2, 8.1\) Hz), 5.29 (ddq, 1H, \(J = 15.3, 8.1, 1.4\) Hz), 5.49 (dq, 1H, \(J = 15.3, 6.5\) Hz), 7.08 (app. d, 2H, \(J = 8.3\) Hz), 7.64 (app. d, 2H, \(J = 8.3\) Hz); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\): 17.8, 42.8, 52.4, 53.8, 58.7, 62.3, 93.6, 124.1, 130.8, 132.0, 134.8,
137.8, 157.5, 171.9; HRMS (ESI, +ve) m/z calcd. For C_{16}H_{18}INaO_{4} 438.0178, found 438.0173 (M+Na)^+.

\textit{(anti-E)-Methyl 2-(p-fluorophenyl)-3-(2-oxooxazolidin-3-yl)hex-4-enoate 215}

LiHMDS (0.42 ml, 0.42 mmol), TMSCl (0.06 ml, 0.42 mmol) and (E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-(p-fluorophenyl)acetate 204 (0.10 g, 0.32 mmol) in THF (1 ml) were combined according to general procedure 2 (reaction time : 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded \textit{(anti-E)-methyl 2-(p-fluorophenyl)-3-(2-oxooxazolidin-3-yl)hex-4-enoate 215} as a yellow solid (0.08 g, 73%, d.r. 23:1). M.p. 95–97 °C; FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 2954 (w), 2918 (w), 1748 (s) 1605 (s), 1510 (s); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\): 1.51 (\(\delta\)), 3.53–3.64 (m, 2H), 3.67 (s, 3H), 4.16 (\(\delta\), 1H, \(J = 11.4\) Hz), 4.25–4.34 (m, 2H), 4.61 (dd, 1H, \(J = 11.4, 8.2\) Hz), 5.29 (ddq, 1H, \(J = 15.4, 8.2, 1.3\) Hz), 5.47 (dq, 1H, \(J = 15.4, 6.6\) Hz), 7.00 (app. t, 2H, \(J = 8.6\) Hz), 8.30 (dd, 1H, \(J = 4.6, 4.2\) Hz); \(^13\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\): 17.7, 42.8, 52.4, 53.4, 59.0, 62.2, 115.6 (d, \(J = 22.1\) Hz), 124.1, 130.5 (d, \(J = 8.2\) Hz), 131.0, 131.9, 157.5, 163.5, 172.3; HRMS (ESI, +ve) m/z calcd. for C_{16}H_{18}FNNaO_{4} 330.1118, found 330.1112 (M+Na)^+.
(anti-E)-Methyl 2-(p-chlorophenyl)-3-(2-oxooxazolidin-3-yl)hex-4-enoate 216

LiHMDS (0.42 ml, 0.42 mmol), TMSCl (0.05 ml, 0.42 mmol) and (E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-(p-chlorophenyl)acetate 205 (0.10 g, 0.32 mmol) in THF (1 ml) were combined according to general procedure 2 (reaction time : 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded (anti-E)-methyl 2-(p-chlorophenyl)-3-(2-oxooxazolidin-3-yl)hex-4-enoate 216 as a yellow solid (0.07 g, 72%, d.r. 46:1). M.p. 107–108 °C; FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 2953 (w), 1746 (s), 1492 (m); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\): 1.51 (\(\ddot{\text{d}}\), 3H, \(J = 6.6, 1.4\) Hz), 3.57–3.62 (m, 2H), 3.66 (s, 3H), 4.15 (\(\ddot{\text{d}}\), 1H, \(J = 11.3\) Hz), 4.25–4.33 (m, 2H), 4.61 (\(\ddot{\text{d}}\), 1H, \(J = 11.3, 8.1\) Hz), 5.29 (\(\ddot{\text{d}}\), 1H, \(J = 15.4, 1.4\) Hz), 5.48 (\(\ddot{\text{d}}\), 1H, \(J = 15.4, 6.6\) Hz), 7.24–7.30 (m, 4H); \(^1\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\): 17.7, 42.8, 52.4, 53.6, 58.9, 62.3, 124.1, 128.9, 130.2, 131.9, 133.6, 133.8, 157.5, 172.0; HRMS (ESI, +ve) m/z calcd. for C\(_{16}\)H\(_{18}\)ClINaO\(_4\) 346.0822, found 346.0832 (M+Na\(^+\)).

(anti-E)-Methyl 3-(2-oxooxazolidin-3-yl)-2-(p-(trifluoromethyl)phenyl)hex-4-enoate 217

LiHMDS (0.36 ml, 0.36 mmol), TMSCl (0.05 ml, 0.36 mmol) and (E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-(p-trifluoromethyl)phenyl)acetate 206 (0.10 g, 0.28 mmol) in THF (1 ml) were combined according to general procedure 2 (reaction time : 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded (anti-E)-methyl 3-(2-oxooxazolidin-3-yl)-2-(p-(trifluoromethyl)phenyl)hex-4-enoate 217 as a yellow solid (0.07 g, 72%, d.r. 46:1). M.p. 107–108 °C; FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 2953 (w), 1746 (s), 1492 (m); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\): 1.51 (\(\ddot{\text{d}}\), 3H, \(J = 6.6, 1.4\) Hz), 3.57–3.62 (m, 2H), 3.66 (s, 3H), 4.15 (\(\ddot{\text{d}}\), 1H, \(J = 11.3\) Hz), 4.25–4.33 (m, 2H), 4.61 (\(\ddot{\text{d}}\), 1H, \(J = 11.3, 8.1\) Hz), 5.29 (\(\ddot{\text{d}}\), 1H, \(J = 15.4, 8.1, 1.4\) Hz), 5.48 (\(\ddot{\text{d}}\), 1H, \(J = 15.4, 6.6\) Hz), 7.24–7.30 (m, 4H); \(^1\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\): 17.7, 42.8, 52.4, 53.6, 58.9, 62.3, 124.1, 128.9, 130.2, 131.9, 133.6, 133.8, 157.5, 172.0; HRMS (ESI, +ve) m/z calcd. for C\(_{16}\)H\(_{18}\)ClINaO\(_4\) 346.0822, found 346.0832 (M+Na\(^+\)).
enoate 217 as a yellow solid (0.07 g, 71%, d.r. 21:1); M.p. 103–104 °C; FTIR (film/cm$^{-1}$) ν_{max}: 2955 (w), 2917 (w), 2850 (w), 1747 (s), 1671 (w), 1620 (w); 1H NMR (500 MHz, CDCl$_3$) δ: 1.51 (d, 3H, $J = 6.6, 1.5$ Hz), 3.58–3.65 (m, 2H), 3.68 (s, 3H), 4.26–4.34 (m, 3H), 4.65 (dd, 1H, $J = 11.2, 8.2$ Hz), 5.31 (dq, 1H, $J = 15.3, 8.2, 1.5$ Hz), 5.48 (q, 1H, $J = 15.3, 6.6$ Hz), 7.46 (app. β, 2H, $J = 8.2$ Hz), 7.58 (app. β, 2H, $J = 8.2$ Hz); 13C NMR (125 MHz, CDCl$_3$) δ: 17.8, 42.9, 52.5, 53.9, 58.9, 62.3, 123.8, 124.0 (q, $J = 272.1$ Hz), 125.6 (q, $J = 3.4$ Hz), 129.3, 130.1 (q, $J = 32.8$ Hz), 132.3, 139.2, 157.5, 171.7; HRMS (ESI, +ve) m/z calc'd. For C$_{17}$H$_{18}$F$_3$NNaO$_4$ 380.1086, found 380.1080 (M+Na)$^+$.

13C$_{1}$-(anti-E)-methyl 3-(2-oxooxazolidin-3-yl)-2-(4-(trifluoromethyl)phenyl)hex-4-enoate 13C$_{1}$-217

To an oven dried Young’s tap NMR tube, inserted into a Dewar at -95 °C and under an atmosphere of nitrogen, was added a solution of LiHMDS (1 M in THF, 0.23 ml, 0.23 mmol, 1.3 eq.), and TMSCl (0.03 ml, 0.23 mmol, 1.3 eq.). Thermal equilibration was allowed (5 minutes) and then a solution of (E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-13C$_{1}$-(4-(trifluoromethyl)phenyl)acetate 13C$_{1}$-206 (0.06 g, 0.18 mmol, 1.0 eq.) in THF (0.6 ml) was added. The cooled NMR tube was rapidly lowered into the pre-cooled NMR machine at -95 °C. From this point 13C NMR spectroscopy was recorded at -95 °C and then the machine was allowed to warm to -65 °C, where it was then kept for the rest of the experiment (ca. 12 hours) and 13C data was recorded every 5 minutes. After in-situ reaction monitoring the reaction mixture was quenched following general procedure 2 and treatment with diazomethane and purification by flash chromatography to afford 13C$_{1}$-(anti-E)-methyl 3-(2-oxooxazolidin-3-yl)-2-(4-(trifluoromethyl)phenyl)hex-4-enoate 13C$_{1}$-217 as a white solid (0.02 g, 48%, d.r. >25:1). M.p. 104–106 °C; FTIR (film/cm$^{-1}$) ν_{max}: 2998 (m), 2915 (m), 2948 (m), 1737 (s), 1657 (m); 1H NMR (500 MHz, CDCl$_3$) δ: 1.52 (d, 3H, $J = 6.6$ Hz), 3.60–3.66 (m, 2H), 3.69 (s, 3H), 4.29 (dd, 1H, $J = 135.0, 11.7$ Hz) 4.32 (app. dt, 2H, $J = 23.5, 8.7$ Hz).
(anti-E)-Methyl 2-(p-cyanophenyl)-3-(2-oxooxazolidin-3-yl)hex-4-enoate 218

LiHMDS (0.43 ml, 0.43 mmol), TMSCl (0.06 ml, 0.43 mmol) and (E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-(p-cyanophenyl)acetate 207 (0.10 g, 0.33 mmol) in THF (1 ml) were combined according to general procedure 2 (reaction time : 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded (anti-E)-methyl 2-(p-cyanophenyl)-3-(2-oxooxazolidin-3-yl)hex-4-enoate 218 as a cream solid (0.07 g, 63%, d.r. 17:1); M.p. 106–109 °C; FTIR (film/cm$^{-1}$) ν_{max}: 2954 (m), 2918 (w), 2851 (w), 1747 (s), 1672 (w), 1608 (w), 1505 (w). 1H NMR (500 MHz, CDCl$_3$) δ: 1.50 (dd, 3H, $J = 6.4, 1.2$ Hz), 3.58–3.63 (m, 2H), 3.67 (s, 3H), 4.26–4.35 (m, 3H), 4.59 (dd, 1H, $J = 11.0, 8.4$ Hz), 5.30 (ddq, 1H, $J = 15.3, 8.4, 1.2$ Hz), 5.46 (dq, 1H, $J = 15.3, 6.4$ Hz), 7.45 (app d, 2H, $J = 8.3$ Hz), 7.61 (app. d, 2H, $J = 8.3$ Hz); 13C NMR (125 MHz, CDCl$_3$) δ: 17.7, 43.0, 52.6, 54.0, 59.2, 62.3, 111.9, 118.4, 123.8, 129.8, 132.4, 132.6, 140.5, 157.5, 171.4; HRMS (ESI, +ve) m/z calcd. for $C_{17}H_{18}N_2NaO_4$ 337.1164, found 337.1159. (M+Na)$^+$.
(anti-\textit{E})-Methyl-2-(4-(methylsulfonyl)phenyl)-3-(2-oxooxazolidin-3-yl)hex-4-enoate 219

\[
\text{LiHMDS (0.18 ml, 0.18 mmol), TMSCl (0.02 ml, 0.18 mmol) and (E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-(4-(methylsulfonyl)phenyl)acetate 208 (0.05 g, 0.47 mmol) in THF (5 ml) were combined according to general procedure 2 (reaction time: 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded (anti-\textit{E})-methyl 2-(4-(methylsulfonyl)phenyl)-3-(2-oxooxazolidin-3-yl)hex-4-enoate 219 as a white solid (0.03 g, 67\%, d.r. >25:1); M.p. 138–140 °C; FTIR (film/cm-1): 2998 (m), 2954 (m), 2924 (m), 1744 (s), 1598 (m); 1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta\): 1.50 (\textit{s}, 3H, \textit{J} = 6.5 Hz), 3.04 (s, 3H), 3.57–3.64 (m, 2H), 3.68 (s, 3H), 4.25–4.37 (m, 3H), 4.63 (app. t, 1H, \textit{J} = 9.0 Hz), 5.30 (app. dd, 1H, \textit{J} = 15.5, 9.0 Hz), 5.48 (app. dq, 1H, \textit{J} = 15.5, 6.5 Hz), 7.54 (app. d, 2H, \textit{J} = 8.4 Hz), 7.89 (app. d, 2H, \textit{J} = 8.4 Hz); 13C NMR (125 MHz, CDCl\textsubscript{3}) \(\delta\): 17.7, 43.0, 44.4, 52.6, 53.9, 59.1, 62.3, 123.7, 127.7, 130.0, 132.7, 140.0, 141.4, 157.5, 171.4; HRMS (ESI, +ve) m/z calcd. For C\textsubscript{17}H\textsubscript{21}NaNO\textsubscript{6}S 390.0987, found 390.0973 (M+Na+).

(anti-\textit{E})-Methyl 2-(2,4-dimethoxyphenyl)-3-(2-oxooxazolidin-3-yl)hex-4-enoate 220

\[
\text{LiHMDS (0.39 ml, 0.39 mmol), TMSCl (0.05 ml, 0.39 mmol) and (E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-(2,4-dimethoxyphenyl)acetate 209 (0.10 g, 0.30 mmol) in THF (1 ml) were combined according to general procedure 2 (reaction time: 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded (anti-\textit{E})-methyl 2-(2,4-dimethoxyphenyl)-3-(2-oxooxazolidin-3-yl)hex-4-enoate 220 as a white solid (0.06 g, 53\%, d.r. >25:1); M.p. 138–140 °C; FTIR (film/cm-1): 2998 (m), 2954 (m), 2924 (m), 1744 (s), 1598 (m); 1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta\): 1.55 (\textit{s}, 3H, \textit{J} = 6.5 Hz), 3.04 (s, 3H), 3.62–3.73 (m, 2H), 3.73 (s, 3H), 4.25–4.37 (m, 3H), 4.50 (app. t, 1H, \textit{J} = 9.0 Hz), 5.30 (app. dd, 1H, \textit{J} = 15.5, 9.0 Hz), 5.49 (app. dq, 1H, \textit{J} = 15.5, 6.5 Hz), 7.54 (app. d, 2H, \textit{J} = 8.4 Hz), 7.89 (app. d, 2H, \textit{J} = 8.4 Hz); 13C NMR (125 MHz, CDCl\textsubscript{3}) \(\delta\): 17.8, 43.0, 44.4, 52.6, 53.9, 59.1, 62.3, 123.7, 127.7, 130.0, 132.7, 140.0, 141.4, 157.5, 171.4; HRMS (ESI, +ve) m/z calcd. For C\textsubscript{17}H\textsubscript{21}NaNO\textsubscript{6}S 390.0987, found 390.0973 (M+Na+).
enoate 220 as a clear oil (0.06 g, 57%, d.r. 6:1); FTIR (film/cm\(^{-1}\)) \(\nu\)\(_{\text{max}}\): 2951 (m), 2840 (m), 1747 (s), 1612 (s), 1587 (m), 1508 (m); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\): 1.51 (dd, 3H, \(J = 6.4, 1.0 \text{ Hz}\)), 3.58–3.68 (m, 5H), 3.78 (s, 3H), 3.79 (s, 3H), 4.21–4.33 (m, 2H), 4.55 (d, 1H, \(J = 11.1 \text{ Hz}\)), 4.74 (dd, 1H, \(J = 15.4, 7.7 \text{ Hz}\)), 5.28 (ddq, 1H, \(J = 15.4, 7.7, 1.0 \text{ Hz}\)), 5.50 (app. dq, 1H, \(J = 15.4, 6.4 \text{ Hz}\)), 6.41 (d, 1H, \(J = 2.4 \text{ Hz}\)), 6.46 (dd, 1H, \(J = 8.4, 2.3 \text{ Hz}\)), 7.31 (d, 1H, \(J = 8.4 \text{ Hz}\)); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\): 17.7, 42.1, 45.1, 52.1, 55.2, 55.6, 57.9, 62.1, 98.5, 104.5, 116.1, 124.8, 129.8, 130.7, 157.6, 158.1, 160.1, 172.6; HRMS (ESI, +ve) \(m/z\) calcd. For C\(_{18}\)H\(_{23}\)NaNO\(_6\) 372.1423, found 372.1418 (M+Na)\(^+\).

\((\text{anti-}E)\)-Methyl 3-(2-oxooxazolidin-3-yl)-2-(\((E)\)-styryl)hex-4-enoate 221

\[
\text{\begin{tikzpicture}
\node (o) at (0,0) {O};
\node (n) at (1,0) {N};
\node (c) at (2,0) {CO$_2$Me};
\node (m) at (0,-1) {Me};
\node (p) at (1,-1) {Ph};
\node (e) at (2,-1) {Et};
\draw (o) -- (n) -- (c) -- (m);
\draw (n) -- (p) -- (e);
\end{tikzpicture}}
\]

LiHMDS (0.43 ml, 0.43 mmol), TMSCl (0.06 ml, 0.43 mmol) and \((E)-((E)-4-(2-\text{oxooxazolidin-3-yl})\text{but-3-en-2-yl})\text{4-phenylbut-3-enoate 210 (0.10 g, 0.33 mmol) in THF (1 ml) were combined according to general procedure 2 (reaction time : 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded \((\text{anti-}E)\)-methyl 3-(2-oxooxazolidin-3-yl)-2-((E)-styryl)hex-4-enoate 221 as an amorphous orange oil (0.07 g, 68%, d.r. >25:1); FTIR (film/cm\(^{-1}\)) \(\nu\)\(_{\text{max}}\): 3010 (m), 2992 (m), 2853 (m), 1745 (s); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\): 1.78 (d, 3H, \(J = 6.4 \text{ Hz}\)), 3.52–3.59 (m, 3H), 3.71 (s, 3H), 4.22–4.33 (m, 2H), 4.59 (app. t, 1H, \(J = 9.1 \text{ Hz}\)), 5.45 (app. dd, 1H, \(J = 15.3, 9.1 \text{ Hz}\)), 5.75 (app. dq, 1H, \(J = 15.3, 6.4 \text{ Hz}\)), 6.10 (dd, 1H, \(J = 15.7, 9.4 \text{ Hz}\)), 6.52 (d, 1H, \(J = 15.7 \text{ Hz}\)), 7.23–7.28 (m, 1H), 7.29–7.38 (m, 4H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\): 17.8, 41.8, 52.2, 52.8, 57.5, 62.2, 123.6, 124.6, 126.4, 127.9, 128.6, 132.0, 134.6, 136.3, 157.6, 172.0; HRMS (ESI, +ve) \(m/z\) calcd. For C\(_{18}\)H\(_{21}\)NNaO\(_4\) 338.1368, found 338.1368 (M+Na)\(^+\).
(anti-\(E\))-Methyl 2-(1-methyl-1H-indol-3-yl)-3-(2-oxooxazolidin-3-yl)hex-4-enoate

LiHMDS (0.40 ml, 0.40 mmol), TMSCl (0.05 ml, 0.40 mmol) and \((\text{E})\)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-(1-methyl-1H-indol-3-yl)acetate \(211\) (0.10 g, 0.31 mmol) in THF (1 ml) were combined according to general procedure 2 (reaction time: 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded (anti-\(E\))-methyl 2-(1-methyl-1H-indol-3-yl)-3-(2-oxooxazolidin-3-yl)hex-4-enoate \(222\) as an amorphous brown oil (0.05 g, 50%, d.r. 10:1); FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 3057 (m), 2958 (m), 2917 (m), 2850 (m), 1732 (s), 1667 (s), 1613 (m), 1548 (w); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\): 1.50 (\(\text{q}\), 3H, \(J = 6.4\) Hz), 3.52–3.63 (m, 2H), 3.66 (s, 3H), 3.77 (s, 3H), 4.23 (app. \(\text{q}\), 1H, \(J = 8.1\) Hz), 4.30 (\(\text{dt}\), 1H, \(J = 8.1, 6.1\) Hz), 4.39 (\(\text{d}\), 1H, \(J = 10.6\) Hz), 4.92 (dd, 1H, \(J = 10.6, 7.3\) Hz), 5.37 (ddq, 1H, \(J = 15.4, 10.6, 1.6\) Hz), 5.56 (ddq, 1H, \(J = 15.4, 6.4, 0.9\) Hz), 7.12 (s, 1H), 7.13 (t, 1H, \(J = 7.9\) Hz), 7.23 (t, 1H, \(J = 7.9\) Hz), 7.29 (t, 1H, \(J = 7.9\) Hz), 7.69 (t, 1H, \(J = 7.9\) Hz); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\): 17.7, 32.9, 41.9, 45.9, 52.1, 57.7, 62.2, 109.1, 109.3, 119.1, 119.4, 121.8, 124.9, 127.3, 128.2, 130.7, 136.7, 157.7, 172.7; HR MS (ESI, +ve) \(m/z\) caled. For C\(_{19}\)H\(_{23}\)N\(_2\)O\(_4\) 343.1657, found 343.1637 (M+H)\(^+\).

(anti-\(E\))-Methyl 2-(benzo[d][1,3]dioxol-5-yl)-3-(2-oxooxazolidin-3-yl)hex-4-enoate

LiHMDS (0.39 ml, 0.39 mmol), TMSCl (0.05 ml, 0.39 mmol) and (E)-4-(2-oxooxazolidin-3-yl)but-3-en-2-yl 2-(benzo[d][1,3]dioxol-5-yl)acetate \(212\) (0.10 g, 0.30 mmol) in THF (2 ml) were combined according to general procedure 2 (reaction
time: 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded (anti-\(E\))-methyl 2-(benzo[d][1,3]dioxol-5-yl)-3-(2-oxooxazolidin-3-yl)hex-4-enoate \(223\) as a white solid (0.06 g, 58%, d.r. 32:1); M.p. 122–125 °C; FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 2999 (m), 2917 (m), 1744 (s), 1505 (m); \(^1\)H NMR (250 MHz, CDCl\(_3\)) \(\delta\): 1.55 (dd, 3H, \(J = 6.4, 0.9\) Hz), 3.54–3.65 (m, 2H), 4.60 (\(\text{bt, 1H, } J = 7.7\) Hz), 5.52 (app. \(\text{bt, 1H, } J = 11.3\) Hz), 6.71–6.79 (m, 2H), 6.87 (\(\text{bt, 1H, } J = 11.3\) Hz), 5.30 (ddq, 1H, \(J = 15.3, 7.7, 0.9\) Hz), 5.52 (app. dq, 1H, \(J = 15.3, 6.4\) Hz), 5.94–5.97 (m, 2H), 6.71–6.79 (m, 2H), 6.87 (d, 1H, \(J = 1.2\) Hz); \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\): 18.2, 21.5, 45.7, 52.7, 54.2, 59.1, 62.6, 101.5, 108.7, 109.2, 122.9, 124.6, 129.0, 131.9, 147.6, 148.3, 157.9, 172.8; HRMS (ESI, +ve) m/z calc’d for \(\text{C}_{17}\text{H}_{20}\text{NO}\) 334.1291, found 334.1292 (M+H\(^+\)).

6.3.3. \(N\)-Sulfonamide Substrates

\[\text{N-\text{Allyl-4-methylbenzenesulfonamide 326}}\]

\[\text{N}^+\text{H}_2 \text{TsCl (1.1 eq.)}\] \[\text{NEt}_3 (1.1 eq.) \rightarrow \text{N}^+\text{H} \text{Ts} \]

\[\text{DCM} \quad 0^\circ\text{C to RT} \]

To a solution of \(p\)-toluenesulfonyl chloride (18.4 g, 96.3 mmol, 1.1 eq.) and triethylamine (13.4 ml, 96.3 mmol, 1.1 eq.) in DCM (70 ml) at 0 °C was added allylamine (5.00 g, 87.6 mmol, 1.0 eq.) by dropwise addition. The reaction mixture was stirred for 1.5 hours under nitrogen at 0 °C, poured onto brine and washed with brine (3 \(\times\) 100 ml), the organics were dried over MgSO\(_4\) and concentrated \textit{in vacuo} to yield a white solid which was subjected to flash column chromatography (15% EtOAc/Petrol 40-60\(^\circ\)) to yield \(N\)-allyl-4-methylbenzenesulfonamide \(326\) as a white crystalline solid (14.8 g, 80%). M.p. 60–63 °C; \(^1\)H NMR (250MHz, CDCl\(_3\)) \(\delta\): 2.42 (s, 3H), 3.57 (app. t, 2H, \(J = 6.0\) Hz), 4.69 (bt, 1H, \(J = 5.8\) Hz), 5.10 (dq, 1H, \(J = 10.2, 1.1\) Hz), 5.19 (dq, 1H, \(J = 17.2, 1.4\) Hz), 5.74 (ddt, 1H, \(J = 17.2, 1.0, 6.0\) Hz), 7.31 (app. d, 2H, \(J = 17.2, 1.4\) Hz), 7.75 (app. d, 2H, \(J = 17.2, 1.4\) Hz); \(^13\)C NMR (250MHz, CDCl\(_3\)) \(\delta\) 21.5, 45.7, 117.6, 127.1, 129.7, 133.0, 136.9, 143.5. All analytical data in accordance with commercial sources.
(E)-N-Allyl-4-methyl-N-(3-oxobut-1-enyl)benzenesulfonamide 327

\[
\begin{align*}
\text{HO} & \quad \text{CrO}_3 (1.5 \text{ eq}) \\
\text{Me} & \quad 20\% \text{ H}_2\text{SO}_4 (\text{aq}) \\
\text{0°C to RT} & \\
\text{Me} & \quad \text{H}_\text{Ts} \\
\text{O} & \quad (1.1 \text{ eq}) \\
\text{DCM} & \quad \text{DABCO (0.1 eq.)} \\
\text{0°C to RT} & \quad \text{N} \\
\end{align*}
\]

To a solution of Cr(VI)O$_3$ (10.3 g, 103 mmol, 1.5 eq.) in 20% H$_2$SO$_4$ (180 ml) at 0 °C under a nitrogen atmosphere was added a solution of 3-butyn-2-ol (5.00 g, 71.3 mmol, 1.0 eq.) in 20% H$_2$SO$_4$ (180 ml) by dropwise addition. The reaction mixture was stirred at 0 °C for 12 hours and a colour change from orange to green was noted, saturated aqueous sodium bicarbonate was added and the organics were extracted with DCM (3 × 450 ml) and dried over MgSO$_4$. The crude butynone was chilled to 0 °C then N-allyl-4-methylbenzenesulfonamide 326 (15.0 g, 78.4 mmol, 1.1 eq.) and DABCO (0.80 g, 7.13 mmol, 0.1 eq.) were added. The reaction mixture was allowed to stir for 12 hours whilst slowly warming to room temperature and a colour change from a clear to a deep maroon solution was noted. The reaction mixture was washed with 5% NaOH (3 × 500 ml), brine and then the organics were dried over MgSO$_4$ and concentrated in vacuo to give a red oil which was subjected to flash column chromatography (25% EtOAc/Petrol 40-60°) to give the desired (E)-N-allyl-4-methyl-N-(3-oxobut-1-enyl)benzenesulfonamide 327 (10.5 g, 53%) as well as the –(Z) (0.79 g, 4%) as a brown oil in both cases.

\textbf{(E)-327 product-} FTIR (film/cm$^{-1}$) ν_{max}: 3082(s), 2980(s), 2879(s), 1682(s), 1586(s); 1H NMR (250MHz, CDCl$_3$) δ 2.22 (s, 3H), 2.44 (s, 3H), 4.07 (dt, 2H, $J = 5.24, 1.59$ Hz), 5.13 (dm, 1H, $J = 9.2$ Hz), 5.19 (m, 1H), 5.48 (d, 1H, $J = 14.3$ Hz), 5.56 (ddt, 1H, $J = 17.2, 10.6, 5.3$ Hz), 7.34 (m, 2H), 7.71 (m, 2H), 8.03 (d, 1H, $J = 14.3$ Hz); 13C NMR (250MHz, CDCl$_3$) δ 21.7, 27.6, 48.3, 109.0, 118.9, 127.3, 129.9, 130.2, 135.3, 141.2, 145.1, 196.6; HRMS (ESI, +ve) m/z calcd. for C$_{14}$H$_{18}$NO$_3$S 280.1007, found 280.0990 (M+H)$^+$.

\textbf{(Z)-327 product-} FTIR (film/cm$^{-1}$) ν_{max}: 3100(s), 2925(s), 1679(s), 1595(s); 1H NMR (250MHz, CDCl$_3$) δ 2.03 (s, 3H), 2.33 (s, 3H), 4.41 (dt, 2H, $J = 5.7, 1.3$ Hz.), 4.86 (dq, 1H, $J = 29.0, 1.5$ Hz), 4.91 (dq, 1H, $J = 22.3, 1.4$ Hz), 5.21 (ddq, 1H, $J = 17.9, 10.3, 5.6$ Hz), 5.35 (d, 1H, $J = 10.3$ Hz), 6.71 (d, 1H, $J = 10.4$ Hz), 7.23 (m, 2H), 7.62 (m, 2H);
13C NMR (250MHz, CDCl₃) δ: 21.5, 30.9, 49.67, 108.5, 118.4, 127.2, 130.0, 131.3, 133.3, 135.6, 144.7, 196.2; HRMS (ESI, +ve) m/z calcd. for C₁₄H₁₈NO₃S 280.1007, found 280.0990 (M+H)⁺. Formation of the minor Z-ene-sulfonamide was not observed on subsequent repeats of this reaction and yields in the order of 60% were obtained.

(E)-N-Allyl-N-(3-hydroxybut-1-enyl)-4-methylbenzenesulfonamide 329

To a solution of (E)-N-allyl-4-methyl-N-(3-oxobut-1-enyl)benzenesulfonamide 327 (1.00 g, 3.58 mmol, 1.0 eq.) in THF:MeOH (20 ml:20 ml) at 0 °C was added NaBH₄ (1.03 g, 27.8 mmol, 7.8 eq.) by portionwise addition. The reaction mixture was allowed to stir whilst slowly warming to RT over 12 hours and then was poured onto sat. NaCl (100 ml) and extracted with DCM (3 × 100 ml), dried over MgSO₄, filtered and concentrated in vacuo to give (E)-N-allyl-N-(3-hydroxybut-1-enyl)-4-methylbenzenesulfonamide 329 as a colourless oil (1.00 g, 100%). FTIR (film/cm⁻¹) νmax: 3392 (bs), 3086 (s), 2971(s), 2925 (s), 2871(s), 1708 (s), 1657 (s), 1597 (s); ¹H NMR (250MHz, CDCl₃) δ 1.27 (d, 3H), 2.42 (s, 3H), 4.00 (dt, 2H, J = 5.2, 1.6 Hz), 4.32 (m, 1H), 4.87 (dd, 1H, J = 14.2, 7.5Hz), 5.18 (dm, 2H, J = 9.9Hz), 5.32 (ddt, 1H, J = 17.4, 10.3, 5.2 Hz), 6.89 (d, 1H, J = 14.2 Hz), 7.30 (m, 2H), 7.67 (m, 2H); ¹³C NMR (250MHz, CDCl₃) δ 21.9, 24.4, 48.5, 68.1, 115.3, 118.3, 127.4, 127.5, 130.2, 131.9, 136.6, 144.3; HRMS (ESI, +ve) m/z calcd. for C₁₄H₁₉NNaO₃S 304.0983, found 304.0978 (M+Na)⁺.
(S)-(4-Bromobut-3-yn-2-yloxy)(tert-butyl)diphenylsilane (S)-383

Part 1 - To a stirred solution of 3-butyn-2-ol (15.0 g, 214 mmol, 1.0 eq.) in THF (200 ml) was added DMAP (2.61 g, 21.4 mmol, 0.1 eq.), TEA (59.1 ml, 428 mmol, 2.0 eq.) and TBDPSCl (64.7 g, 235, 1.1 eq.). The reaction mixture was stirred for 15 hours and then poured onto saturated ammonium chloride (200 ml). The organics were extracted with heptane (3 × 200 ml), concentrated *in vacuo* and the crude product was subjected to flash column chromatography (0-5% EtOAc/Petrol 40-60°) to give (but-3-yn-2-yloxy)(tert-butyl)diphenylsilane as a clear oil (66.0 g, 100%). $[\alpha]_D^B = +65.0$ (c 1, DCM); Other data as previously reported.

Part 2 - To a stirred solution of but-3-yn-2-yloxy)(tert-butyl)diphenylsilane (66.0 g, 214 mmol, 1.0 eq.) in acetone (200 ml) was added NBS (41.9 g, 235 mmol, 1.1 eq.) and silver nitrate (3.63 g, 21.4 mmol, 0.1 eq.). The reaction mixture was stirred for 15 hours and then poured onto saturated sodium chloride (100 ml). The organics were extracted with diethyl ether (3 × 200 ml), dried over magnesium sulphate and concentrated *in vacuo* to yield a yellow oil which was triturated with heptane and the insolubilities were filtered off and the mother liquir was concentrated in vacuo to yield (4-bromobut-3-yn-2-yloxy)(tert-butyl)diphenylsilane (S)-383 as an orange oil (65.0 g, 78%). $[\alpha]_D^{20} = +10.3$ (c 1, DCM); Other data as previously reported.
(S)-N-Allyl-N-(3-(tert-butyldiphenylsilyloxy)but-1-ynyl)-4-methylbenzenesulfonamide (S)-384

To a solution of N-allyl-4-methylbenzenesulfonamide 326 (2.46 g, 11.6 mmol, 1.0 eq.) in toluene (200 ml) was added (S)-(4-bromobut-3-yn-2-yloxy)(tert-butyl)diphenylsilane (S)-383 (5.00 g, 12.9 mmol, 1.1 eq.), CuSO₄·5H₂O (0.58 g, 2.34 mmol, 0.2 eq.), 1,10-phenanthroline (0.84 g, 4.68 mmol, 0.4 eq.) and finely ground K₂PO₄ (4.97 g, 23.2 mmol, 2 eq.). The reaction mixture was allowed to stir at 65 °C for 48 hours, after which was concentrated in vacuo and subjected to flash column chromatography (5-10% EtOAc/Petrol 40-60⁰) to give (S)-N-allyl-N-(3-(tert-butyldiphenylsilyloxy)but-1-ynyl)-4-methylbenzenesulfonamide (S)-384 as a colourless oil (5.05 g, 83%). [α]₅₀°D = +20.0 (c 1, DCM); FTIR (film/cm⁻¹) νmax: 3036 (m), 2961 (m), 2932 (m), 1681 (m), 1647 (m), 1619 (s), 1582 (s); ¹H NMR (500 MHz, CDCl₃) δ: 1.06 (s, 9H), 1.41 (d, 3H, J = 6.4 Hz), 2.44 (s, 3H), 3.79 (ddt, 1H, J = 14.6, 6.3, 1.3 Hz), 3.85 (ddt, 1H, J = 14.6, 6.3, 1.3 Hz), 4.61 (app. quin, 1H, J = 6.4 Hz), 5.11–5.17 (m, 2H), 5.62 (ddt, 1H, J = 17.3, 10.2, 6.3 Hz), 7.28–7.46 (m, 7H), 7.66–7.72 (m, 4H), 7.72–7.77 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ: 19.1, 21.6, 25.3, 26.5, 26.8, 54.0, 60.1, 73.2, 119.6, 127.4, 127.6, 127.8, 129.6, 131.0, 133.7, 134.8, 135.7, 135.9, 144.4; HRMS (ESI, +ve) m/z calcd. for C₃₀H₃₅NNaO₃SSi 540.2005, found 540.2209 (M+Na)⁺.
N-allyl-N-(3-hydroxy-but-1-ynyl)-4-methyl-benzenesulfonylamide (S)-385

![Chemical Structure](image)

To a solution of N-allyl-N-(3-(tert-butyldiphenylsilyloxy)but-1-ynyl)-4-methylbenzenesulfonylamide \((S)\)-384 (3.72 g, 7.20 mmol, 1.0 eq.) in THF (200 ml) at 0 °C was added TBAF (1M soln. in THF, 14.4 ml, 14.4 mmol, 2.0 eq.). The reaction mixture was allowed to stir for 2 hours whilst slowly warming to RT, until complete by TLC, followed by concentration in vacuo and subjection to flash column chromatography (10% EtOAc/Petrol 40-60°) to give N-allyl-N-(3-hydroxy-but-1-ynyl)-4-methyl-benzenesulfonylamide \((S)\)-385 as a faint yellow oil (1.40 g, 70%). \([\alpha]_D^3\) = -38.0° (c 1, DCM); FTIR (film/cm\(^{-1}\)) \(\nu_{max}\) 2978 (m), 2929 (m), 1697 (m), 1596 (w). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 1.47 (d, 3H, \(J = 6.6\) Hz), 2.03 (d, 1H, \(J = 5.2\) Hz), 2.49 (s, 3H), 3.93–4.04 (m, 2H), 4.67 (app quin, 1H, \(J = 6.6\) Hz), 5.22–5.31 (m, 4H), 5.71 (ddt, 1H, \(J = 17.1, 10.2, 6.4\) Hz), 7.39 (d, 2H, \(J = 8.3\) Hz), 7.83 (d, 2H, \(J = 8.3\) Hz); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 21.6, 24.4, 26.5, 54.1, 58.5, 73.1, 120.0, 127.7, 129.7, 130.8, 134.6, 144.8; HRMS (ESI, +ve) \(m/z\) calcd. for C\(_{14}\)H\(_{18}\)NO\(_3\)S 280.1007, found 280.1004 (M+H\(^+\)).

(S)-(E)-N-allyl-N-(3-hydroxybut-1-enyl)-4-methylbenzenesulfonylamide (S)-329

![Chemical Structure](image)

To a solution of (S)-(E)-N-allyl-4-methyl-N-(3-oxobut-1-enyl)benzenesulfonylamide (S)-385 (0.10 g, 0.36 mmol, 1.0 eq.) in toluene (5 ml) at 0 °C was added Vitride\(^{\circledR}\) (0.11 µl, 0.53 mmol, 1.5 eq.) by portionwise addition. The reaction mixture was allowed to stir whilst slowly warming to RT over 4 hours and then was quenched by the addition of Na\(_2\)SO\(_4\)·10H\(_2\)O. After the solution cleared the reaction mixture was filtered through
celite and concentrated in vacuo to yield (S)-(E)-N-allyl-N-(3-hydroxybut-1-enyl)-4-methylbenzenesulfonamide \((S)-329\) as a colourless oil (0.07 g, 76%). \([\alpha]_D^2 = -11.0\) (c 1, DCM); Other data as previously reported for racemic compound.

\((E)-4-(N\text{-Allyl-4-methylphenylsulfonamido})\text{but-3-en-2-yl propionate 330}\)

EDCI (0.54 g, 2.81 mmol) in DCM (100 ml), triethylamine (0.39 ml, 2.81 mmol), DMAP (0.02 g, 0.14 mmol), propionic acid (0.22 ml, 2.81 mmol) and \((E)-N\text{-allyl-N-(3-hydroxybut-1-enyl)-4-methylbenzenesulfonamide 329}\) (0.40 g, 1.41 mmol) in DCM (10 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford \((E)-4-(N\text{-allyl-4-methylphenylsulfonamido})\text{but-3-en-2-yl propionate 330}\) as a yellow oil (0.40 g, 84%).

FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 3082 (m), 3039 (m), 2980 (m), 2931 (m), 2861 (m), 1727 (s), 1656 (s), 1597 (s); \(^1\)H NMR (500 MHz, \((\text{CDCl}_3)_{2}\)CO) \(\delta\): 1.10 (t, 3H, \(J = 7.6\) Hz, \(\text{CH}_3\text{CH}_2\)), 1.29 (d, 3H, \(J = 6.6\) Hz, \(\text{CH}_3\text{CH(\text{CH}_2\text{-})}\)), 2.25 (q, 2H, \(J = 7.6\) Hz, \(\text{CH}_3\text{CH}_2\)), 2.45 (s, 3H, \(-\text{C}_6\text{H}_4\text{CH}_3\)), 3.96 (qd, 2H, \(J = 15.0, 5.4\) Hz, \(-\text{NCH}_2\text{CHCH}_2\)), 4.80 (dd, 1H, \(J = 14.2, 6.6\) Hz, \(-\text{NCHCH}-\)), 5.09–5.17 (m, 2H, \(\text{CH}_3\text{CHCH}_2\text{N-}\)), 5.34 (app. quin, 1H, \(J = 6.6\) Hz, \(\text{CH}_3\text{CH(\text{CH}_2\text{-})O-}\)), 5.79 (ddt, 1H, \(J = 17.0, 10.3, 5.4\) Hz, \(-\text{NCH}_2\text{CHCH}_2\)), 6.96 (d, 1H, \(J = 14.2\) Hz, \(-\text{NCHCH}-\)), 7.29 (app. d, 2H, \(J = 7.6\) Hz, ArH Ts), 7.65 (d, 2H, \(J = 7.6\) Hz, ArH Ts); \(^{13}\)C NMR (125 MHz, \((\text{CDCl}_3)\) \(\delta\): 9.1, 21.0, 21.5, 27.9, 48.0, 69.8, 110.1, 117.9, 127.0, 129.5, 129.8, 131.3, 136.1, 143.9, 173.6; HRMS (ESI, +ve) \(m/z\) calcd. for \(\text{C}_{23}\text{H}_{27}\text{NNaO}_4\text{S} \ 436.1558\), found 436.1679 (M+Na)\(^+\).
(E)-4-(N-allyl-4-methylphenylsulfonamido)but-3-en-2-yl 2-phenylacetate 331

EDCI (0.68 g, 3.55 mmol) in DCM (100 ml), triethylamine (0.49 ml, 3.55 mmol),
DMAP (0.02 g, 0.18 mmol), phenylacetic acid (0.48 g, 3.55 mmol) and (E)-N-allyl-N-
(3-hydroxybut-1-enyl)-4-methylbenzenesulfonamide 329 (0.50 g, 1.78 mmol) in DCM
(20 ml) were combined according to general procedure 1 (reaction time: 15 hours).
Purification was achieved by reported procedure to afford (E)-4-(N-allyl-4-
methylphenylsulfonamido)but-3-en-2-yl 2-phenylacetate 331 as a yellow oil (0.70 g,
98%). FTIR (film/cm⁻¹) νmax: 3051 (m), 2977 (m), 2922 (m), 1727 (s), 1655 (s), 1597
(m); ¹H NMR (250 MHz, (CD₃)₂CO) δ: 1.29 (d, 3H, J = 6.5 Hz, CH₃CH(CH=)-), 2.40
(s, 3H, CH₃CN), 4.48 (dd, 1H, J = 14.2, 6.5 Hz, -NCH₂CH₂), 5.05–5.24 (m, 2H, -NCH₂CHCH₂), 5.37 (app
quin, 1H, J = 6.5 Hz, CH₃CH(CH=O)-), 6.35 (app, 1H, J = 17.3, 10.4, 5.2 Hz, -
NCH₂CHCH₂), 7.03 (d, 1H, J = 14.2 Hz, -NCH₂CH⁻), 7.23–7.37 (m, 5H, CH₂CH₃),
7.39 (app. d, 2H, J = 8.3 Hz, ArH), 7.71 (app. d, 2H, J = 8.3 Hz, ArH); ¹³C NMR (100
MHz, CDCl₃) δ: 20.9, 21.5, 41.7, 48.0, 70.7, 109.7, 117.9, 127.0 (x2), 128.5, 129.2,
129.8 (x2), 131.2, 134.2, 136.1, 143.9, 170.7; HRMS (ESI, +ve) m/z calcd. for
C₂₂H₂₅NNaO₄S₁ 422.1411, found 422.1375 (M+Na)⁺.

(S,E)-4-(N-allyl-4-methylphenylsulfonamido)but-3-en-2-yl 2-phenylacetate (S)-331

EDCI (0.68 g, 3.55 mmol) in DCM (100 ml), triethylamine (0.49 ml, 3.55 mmol),
DMAP (0.02 g, 0.18 mmol), phenylacetic acid (0.48 g, 3.55 mmol) and (S)-(E)-N-allyl-
N-(3-hydroxybut-1-enyl)-4-methylbenzenesulfonamide (S)-329 (0.50 g, 1.78 mmol) in
DCM (20 ml) were combined according to general procedure 1 (reaction time: 15
hours). Purification was achieved by reported procedure to afford (S,E)-4-(N-allyl-4-
methylphenylsulfonamido)but-3-en-2-yl 2-phenylacetate (S)-331 as a yellow oil (0.53 g, 74%); \([\alpha]_{D}^{20} = -8.0 \text{ (c 1, DCM)}\). All data as previously recorded for racemic compound.

\((E)-4-(N\text{-Allyl-4-methylphenylsulfonamido})\text{but-3-en-2-yl 3-methylbutanoate} 335\)

![Chemical structure](image)

EDCi (0.54 g, 2.81 mmol) in DCM (100 ml), triethylamine (0.39 ml, 2.81 mmol), DMAP (0.02 g, 0.14 mmol), isovaleric acid (0.31 ml, 2.81 mmol) and \((E)-N\text{-allyl-N-(3-hydroxybut-1-enyl)-4-methylbenzenesulfonamide} 329\) (0.40 g, 1.41 mmol) in DCM (10 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford \((E)-4-(N\text{-allyl-4-methylphenylsulfonamido})\text{but-3-en-2-yl 3-methylbutanoate} 335\) as a yellow oil (0.45 g, 87%). FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 2960 (m), 2931 (m), 1725 (s), 1655 (s), 1597 (m); \(^1\)H NMR (500 MHz, CD\(_2\)Cl\(_2\)) \(\delta\): 0.92–0.96 (m, 6H), 1.32 (\(\delta\), 3H, \(J = 6.6 \text{ Hz}\)), 2.01–2.10 (m, 1H), 2.14 (\(\delta\), 2H, \(J = 6.7 \text{ Hz}\)), 2.44 (s, 3H), 3.94–4.06 (m, 2H), 4.83 (\(\delta\)d, 1H, \(J = 14.1, 6.6 \text{ Hz}\)), 5.15 (d, 1H, \(J = 11.0 \text{ Hz}\)), 5.18 (d, 1H, \(J = 17.6 \text{ Hz}\)), 5.38 (app. quin, 1H, \(J = 6.6 \text{ Hz}\)), 5.64 (ddt, 1H, \(J = 17.6, 11.0, 6.3 \text{ Hz}\)), 7.02 (d, 1H, \(J = 14.1 \text{ Hz}\)), 7.35 (app. d, 2H, \(J = 7.7 \text{ Hz}\)), 7.69 (app. d, 2H, \(J = 7.7 \text{ Hz}\)); \(^{13}\)C NMR (125 MHz, CD\(_2\)Cl\(_2\)) \(\delta\) 20.8, 21.2, 22.1, 25.7, 43.6, 47.9, 69.6, 110.2, 117.5, 126.9, 129.6, 129.8, 131.4, 136.0, 144.1, 172.0; HRMS (ESI, +ve) \(m/z\) calcd. for C\(_{19}\)H\(_{27}\)NNaO\(_4\)S 388.1558, found 388.1567 (M+Na\(^+\)).

\((E)-4-(N\text{-Allyl-4-methylphenylsulfonamido})\text{but-3-en-2-yl pent-4-enoate} 336\)

![Chemical structure](image)

EDCi (0.54 g, 2.81 mmol) in DCM (100 ml), triethylamine (0.39 ml, 2.81 mmol), DMAP (0.02 g, 0.14 mmol), penteneoic acid (0.28 g, 2.81 mmol) and \((E)-N\text{-allyl-N-(3-}
hydroxybut-1-enyl)-4-methylbenzenesulfonamide 329 (0.40 g, 1.41 mmol) in DCM (20 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford (E)-4-(N-allyl-4-methylphenylsulfonylamido)but-3-en-2-yl pent-4-enoate 336 as a yellow oil (0.51 g, 99%). FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 3054 (m), 2981 (m), 2918 (m), 1718 (s), 1655 (s), 1597 (m); \(^1\)H NMR (500 MHz, (CD\(_3\))\(_2\)CO) \(\delta\): 1.28 (\(\delta\), 3H, \(J = 6.8\) Hz), 2.29–2.37 (m, 4H), 2.44 (s, 3H), 3.98–4.11 (m, 2H), 4.90 (dd, 1H, \(J = 14.4, 6.7\) Hz), 4.94 (dd, 1H, \(J = 10.1, 1.2\) Hz), 5.04 (dd, 1H, \(J = 17.1, 1.4\) Hz), 5.13 (dd, 1H, \(J = 10.1, 1.2\) Hz), 5.21 (dd, 1H, \(J = 17.1, 1.2\) Hz), 5.35 (app. quin, 1H, \(J = 6.8\) Hz), 5.66 (\(\delta\)t, 1H, \(J = 17.2, 1.5\) Hz), 5.78–5.92 (m, 1H), 7.01 (\(\delta\), 1H, \(J = 14.4\) Hz), 7.44 (app. \(\delta\), 2H, \(J = 8.2\) Hz), 7.74 (app. \(\delta\), 2H, \(J = 8.2\) Hz); \(^{13}\)C NMR (125 MHz, (CD\(_3\))\(_2\)CO) \(\delta\): 20.4, 20.5, 47.6, 69.7, 110.3, 114.7, 117.1, 127.0, 129.7, 129.8, 131.8, 136.3, 137.0, 144.1, 171.4; HRMS (ESI, +ve) m/z calc’d. for C\(_{19}\)H\(_{25}\)NNaO\(_4\)S 386.1402, found 386.1480 (M+Na)\(^+\).

Benzzyloxy-acetic acid 3-[allyl-(toluene-4-sulfonyl)-amino]-1-methyl-allyl ester 337

EDCi (0.54 g, 2.81 mmol) in DCM (100 ml), triethylamine (0.39 ml, 2.81 mmol), DMAP (0.02 g, 0.14 mmol), benzzyloxyacetic acid (0.41 ml, 2.81 mmol) and (E)-N-allyl-N-(3-hydroxybut-1-enyl)-4-methylbenzenesulfonamide 329 (0.40 g, 1.41 mmol) in DCM (20 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford benzzyloxy-acetic acid 3-[allyl-(toluene-4-sulfonyl)-amino]-1-methyl-allyl ester 337 as a yellow oil (0.54 g, 87%). FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 3051 (m), 2971 (m), 2934 (m), 1744 (s), 1655 (s), 1597 (m); \(^1\)H NMR (500 MHz, (CD\(_3\))\(_2\)CO) \(\delta\): 1.32 (\(\delta\), 3H, \(J = 6.8\) Hz), 2.40 (s, 3H), 3.98–4.15 (m, 4H), 4.60 (s, 2H), 4.93 (dd, 1H, \(J = 14.3, 6.8\) Hz), 4.93 (dq, 1H, \(J = 10.5, 1.4\) Hz), 5.21 (dq, 1H, \(J = 17.2, 1.5\) Hz), 5.46 (app. quin, 1H, \(J = 6.8\) Hz), 5.65 (ddt, 1H, \(J = 17.2, 10.5, 5.2\) Hz), 7.08 (d, 1H, \(J = 14.3\) Hz), 7.28–7.43 (m, 7H), 7.74 (app. d, 2H, \(J = 8.1\) Hz); \(^{13}\)C NMR (125 MHz, (CD\(_3\))\(_2\)CO) \(\delta\): 20.4, 20.5, 47.6, 67.3, 70.5, 72.6,
Phenylsulfanyl-acetic acid 3-[allyl-(toluene-4-sulfonyl)-amino]-1-methyl-allyl ester

338

Phenylsulfanyl-acetic acid 3-[allyl-(toluene-4-sulfonyl)-amino]-1-methyl-allyl ester 338

EDCi (0.54 g, 2.81 mmol) in DCM (100 ml), triethylamine (0.39 ml, 2.81 mmol), DMAP (0.02 g, 0.14 mmol), thiophenylacetic acid (0.47 g, 2.81 mmol) and (E)-N-allyl-N-(3-hydroxybut-1-enyl)-4-methylbenzenesulfonamide 329 (0.40 g, 1.41 mmol) in DCM (20 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford phenylsulfanyl-acetic acid 3-[allyl-(toluene-4-sulfonyl)-amino]-1-methyl-allyl ester 338 as a yellow oil (0.56 g, 92%). FTIR (film/cm⁻¹) νmax: 3079 (m), 2980 (m), 2919 (m), 1726 (s), 1655 (s), 1597 (m); ¹H NMR (500 MHz, (CD₃)₂CO) δ: 1.24 (d, 3H, J = 7.2 Hz), 2.40 (s, 3H), 4.83 (dd, 1H, J = 14.3, 7.2 Hz), 5.09 (dq, 1H, J = 10.4, 1.5 Hz), 5.17 (dq, 1H, J = 17.1, 1.5 Hz), 5.34 (app. quin, 1H, J = 7.2 Hz), 5.62 (ddt, 1H, J = 17.1, 10.4, 5.2 Hz), 7.03 (d, 1H, J = 14.3 Hz), 7.17–7.24 (m, 1H), 7.25–7.34 (m, 2H), 7.35–7.45 (m, 4H), 7.71 (app. d, 2H, J = 8.2 Hz); ¹³C NMR (125 MHz, (CD₃)₂CO) δ: 25.5, 30.4, 41.0, 52.8, 72.3, 76.4, 114.7, 122.3, 131.6, 132.1, 134.3, 135.0, 135.4, 136.9, 140.8, 141.5, 149.3, 173.6; HRMS (ESI, +ve) m/z calcd. for C₂₂H₂₅NNaO₄S₂ 454.1123, found 454.1126 (M+Na)⁺.

(E)-4-(N-Allyl-4-methylphenylsulfonamido)but-3-en-2-yl 2-(2-iodophenyl)acetate

340

(E)-4-(N-Allyl-4-methylphenylsulfonamido)but-3-en-2-yl 2-(2-iodophenyl)acetate 340

EDCi (0.54 g, 2.81 mmol) in DCM (100 ml), triethylamine (0.39 ml, 2.81 mmol), DMAP (0.02 g, 0.14 mmol), 2-iodophenylacetic acid (0.74 g, 2.81 mmol) and (E)-N-allyl-N-(3-hydroxybut-1-enyl)-4-methylbenzenesulfonamide 329 (0.40 g, 1.41 mmol) in
DCM (20 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford \((E)-4-(N\text{-allyl-4-methylphenylsulfonamido})\text{but-3-en-2-yl} 2-(2\text{-iodophenyl})acetate\ 340\) as a yellow oil (0.64 g, 86%). FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 2978 (m), 2922 (m), 1727 (s), 1655 (s), 1596 (w); \(^1\text{H}\) NMR (500 MHz, \((\text{CD}_3)_2\text{CO}) \delta:\ 1.31 (\delta, 3\text{H}, J = 6.6 \text{ Hz}), 2.44 (\text{s}, 3\text{H}), 3.77 (\text{app. } \delta, 2\text{H}), 3.97–4.08 (\text{m}, 2\text{H}), 4.91 (\text{dd}, 1\text{H}, J = 14.2, 6.6 \text{ Hz}), 5.12 (\text{app. dq}, 1\text{H}, J = 10.4, 1.4 \text{ Hz}), 5.20 (\text{app. dq}, 1\text{H}, J = 17.3, 1.7 \text{ Hz}), 5.39 (\text{app. quin}, 1\text{H}, J = 6.6 \text{ Hz}), 5.65 (\text{ddt}, 1\text{H}, J = 17.3, 10.4, 5.0 \text{ Hz}), 7.00–7.08 (\text{m}, 2\text{H}), 7.35–7.43 (\text{m}, 4\text{H}), 7.72 (\text{app. } \delta, 2\text{H}, J = 8.2 \text{ Hz}), 7.88 (\text{d}, 1\text{H}, J = 7.8 \text{ Hz}); \(^{13}\text{C}\) NMR (125 MHz, \((\text{CD}_3)_2\text{CO}) \delta:\ 20.4, 20.5, 46.0, 47.6, 70.6, 100.6, 109.9, 117.1, 127.0, 128.4, 129.8, 129.9, 131.0, 131.8, 136.4, 138.5, 139.2, 144.0, 169.0; HRMS (ESI, +ve) \(m/z\) calc’d. for \(\text{C}_{22}\text{H}_{24}\text{INaO}_4\text{S}\) 548.0368, found 548.0407 (M+Na\(^+\)).

\((E)-4-(N\text{-Allyl-4-methylphenylsulfonamido})\text{but-3-en-2-yl} 2-(4\text{-methoxyphenyl})acetate\ 341\)

EDCi (0.54 g, 2.81 mmol) in DCM (100 ml), triethylamine (0.39 ml, 2.81 mmol), DMAP (0.02 g, 0.14 mmol), 4-methoxy phenylacetic acid (0.47 g, 2.81 mmol) and \((E)-N\text{-allyl-N-(3-hydroxybut-1-enyl)-4-methylbenzenesulfonamide}\ 329\) (0.40 g, 1.41 mmol) in DCM (20 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford \((E)-4-(N\text{-allyl-4-methylphenylsulfonamido})\text{but-3-en-2-yl} 2-(4\text{-methoxyphenyl})acetate\ 341\) as a yellow oil (0.54 g, 81%). FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 2978 (m), 2943 (m), 1726 (s), 1655 (s), 1613 (m), 1597 (w); \(^1\text{H}\) NMR (250 MHz, \((\text{CD}_3)_2\text{CO}) \delta:\ 1.27 (\delta, 3\text{H}, J = 6.5 \text{ Hz}), 2.42 (\text{s}, 3\text{H}), 3.50 (2\text{H, s}), 3.77 (\text{s, 3H}), 3.92–4.05 (\text{m}, 2\text{H}), 4.86 (\text{dd}, 1\text{H}, J = 14.1, 6.5 \text{ Hz}), 5.09 (\text{dd}, 1\text{H}, J = 10.7, 1.5 \text{ Hz}), 5.16 (\text{dd}, 1\text{H}, J = 17.1, 1.5 \text{ Hz}), 5.37 (\text{app. quin}, 1\text{H}, J = 6.5 \text{ Hz}), 5.59 (\text{ddt}, 1\text{H}, J = 17.1, 10.7, 5.4 \text{ Hz}), 6.85 (\text{d}, 2\text{H}, J = 8.5 \text{ Hz}), 6.99 (\text{d}, 1\text{H}, J = 14.1 \text{ Hz}), 7.17 (\text{app. d}, 2\text{H}, J = 8.3 \text{ Hz}), 7.37 (\text{app. d}, 2\text{H}, J = 8.2 \text{ Hz}), 7.68 (\text{d}, 2\text{H}, J = 8.2 \text{ Hz}); \(^{13}\text{C}\) NMR (125 MHz, \((\text{CD}_3)_2\text{CO}) \delta:\ 21.3, 21.4, 41.0, 48.4, 55.4, 71.0, 111.0, 114.5,
118.0, 127.4, 127.8, 127.9, 130.7, 131.0, 132.6, 137.2, 144.9, 159.6, 171.3; HRMS (ESI, +ve) m/z calcd. for C_{23}H_{27}NNaO_{5}S_{1} 452.1508, found 452.1463 (M+Na)^{+}.

\((E)\)-4-(N-Allyl-4-methylphenylsulfonamido)but-3-en-2-yl 2-(4-
(trifluoromethyl)phenyl)acetate 342

![Structure](image_url)

EDCi (0.54 g, 2.81 mmol) in DCM (100 ml), triethylamine (0.39 ml, 2.81 mmol),
DMAP (0.02 g, 0.14 mmol), 4-trifluoro tolyl phenylacetic acid (0.57 g, 2.81 mmol) and
\((E)-N\)-allyl-\(N\)-(3-hydroxybut-1-enyl)-4-methylbenzenesulfonamide 329 (0.40 g, 1.41
mmol) in DCM (20 ml) were combined according to general procedure 1 (reaction time:
15 hours). Purification was achieved by reported procedure to afford \((E)\)-4-(N-allyl-4-
methylphenylsulfonamido)but-3-en-2-yl 2-(4-(trifluoromethyl)phenyl)acetate 342 as a
yellow oil (0.57 g, 86%). FTIR (film/cm^{-1}) \(\nu_{\text{max}}\): 3015 (w), 2988 (m), 2937 (m), 1727
(s), 1699 (s), 1656 (m), 1596 (w); \(^{1}\)H NMR (500 MHz, \(\text{CD}_3\text{CO}\)) \(\delta\): 1.30 (d, 3H, \(J =
6.8\) Hz), 2.42 (s, 3H), 3.74 (2H, s), 3.95–4.06 (m, 2H), 4.88 (dd, 1H, \(J = 14.3, 6.8\) Hz),
5.09 (app. d, 1H, \(J = 10.7\) Hz), 5.17 (app. d, 1H, \(J = 17.2\) Hz), 5.38 (app. quin, 1H, \(J =
6.8\) Hz), 5.61 (ddt, 1H, \(J = 17.2, 10.7, 5.1\) Hz), 7.03 (d, 1H, \(J = 14.3\) Hz), 7.39 (app. d,
2H, \(J = 8.3\) Hz), 7.52 (app. d, 2H, \(J = 8.3\) Hz), 7.66 (app. d, 2H, \(J = 8.3\) Hz), 7.71 (app.
d, 2H, \(J = 8.3\) Hz); \(^{13}\)C NMR (125 MHz, \(\text{CD}_3\text{CO}\)) \(\delta\): 20.2, 20.4, 40.5, 47.4, 70.6,
109.6, 116.9, 124.3 (q, \(J = 271.4\) Hz), 124.9 (q, \(J = 3.6\) Hz), 126.8, 128.3 (q, \(J = 32.0\)
Hz), 129.6, 129.8, 129.9, 131.4, 136.1, 139.1, 143.9, 169.3; HRMS (ESI, +ve) m/z calcd. for C_{23}H_{23}F_{3}NO_{4}S 466.1299, found 466.1311 (M+H)^{+}.

229
(E)-4-(N-Allyl-4-methylphenylsulfonamido)but-3-en-2-yl 2-(4-nitrophenyl)acetate 343

EDCi (0.54 g, 2.81 mmol) in DCM (100 ml), triethylamine (0.39 ml, 2.81 mmol), DMAP (0.02 g, 0.14 mmol), 4-nitro phenylacetic acid (0.51 g, 2.81 mmol) and (E)-N-allyl-N-(3-hydroxybut-1-enyl)-4-methylbenzenesulfonamide 329 (0.40 g, 1.41 mmol) in DCM (20 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford (E)-4-(N-allyl-4-methylphenylsulfonamido)but-3-en-2-yl 2-(4-nitrophenyl)acetate 343 as an orange oil (0.54 g, 86%).

FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 3018 (w), 2988 (m), 2967 (m), 1727 (s), 1698 (s), 1656 (m), 1599 (w), 1522 (m);

\(^1\)H NMR (500 MHz, (CD\(_3\))\(_2\)CO) \(\delta\): 1.29 (\´, 3H, \(J = 6.7\) Hz), 2.41 (s, 3H), 3.80 (2H, s), 3.95–4.05 (m, 2H), 4.87 (\´´, 1H, \(J = 14.5, 6.7\) Hz), 5.08 (d, 1H, \(J = 10.7, 1.95\) Hz), 5.15 (dq, 1H, \(J = 17.2, 1.3\) Hz), 5.38 (app. quin, 1H, \(J = 6.7\) Hz), 5.59 (ddt, 1H, \(J = 17.2, 10.7, 5.1\) Hz), 7.00 (d, 1H, \(J = 14.5\) Hz), 7.38 (app. d, 2H, \(J = 7.9\) Hz), 7.57 (app. d, 2H, \(J = 8.7\) Hz), 7.69 (app. d, 2H, \(J = 7.9\) Hz), 8.18 (app. d, 2H, \(J = 8.7\) Hz);

\(^13\)C NMR (100 MHz, (CD\(_3\))\(_2\)CO) \(\delta\): 20.3, 20.5, 40.6, 47.5, 70.9, 109.6, 117.1, 123.3, 126.9, 129.8, 130.1, 130.5, 131.6, 136.3, 142.5, 144.1, 147.0, 169.2;

HRMS (ESI, +ve) \(m/z\) calcd. for C\(_{44}\)H\(_{48}\)N\(_4\)O\(_2\)S\(_2\) 911.2613, found 911.2604 (2M+Na\(^+\)).

(E)-4-(N-Allyl-4-methylphenylsulfonamido)but-3-en-2-yl 2-(2,4-dichlorophenyl)acetate 344

EDCi (0.54 g, 2.81 mmol) in DCM (100 ml), triethylamine (0.39 ml, 2.81 mmol), DMAP (0.02 g, 0.14 mmol), 2,4-dichlorophenylacetic acid (0.58 g, 2.81 mmol) and (E)-N-allyl-N-(3-hydroxybut-1-enyl)-4-methylbenzenesulfonamide 329 (0.40 g, 1.41 mmol)
in DCM (20 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford (E)-4-(N-allyl-4-methylphenylsulfonamido)but-3-en-2-yl 2-(2,4-dichlorophenyl)acetate 344 as a yellow oil (0.55 g, 82%). FTIR (film/cm⁻¹) v_{max}: 3091 (m), 2978 (m), 2937 (m), 1729 (s), 1655 (s), 1614 (s), 1591 (s), 1509 (s); ¹H NMR (500 MHz, (CD₃)₂CO) δ: 1.29 (d, 3H, J = 6.7 Hz), 2.44 (s, 3H), 3.76 (2H, s), 3.97–4.07 (m, 2H), 4.89 (d, 1H, J = 14.2, 6.7 Hz), 5.12 (app d, 1H, J = 10.3 Hz), 5.19 (app d, 1H, J = 17.2 Hz), 5.38 (app. quin, 1H, J = 6.7 Hz), 5.63 (app. quin, 1H, J = 17.1, 10.3, 5.1 Hz), 7.01 (d, 1H, J = 14.2 Hz), 7.32–7.47 (m, 4H), 7.50 (d, 1H, J = 1.9 Hz), 7.71 (app. d, 2H, J = 8.2 Hz); ¹³C NMR (125 MHz, (CD₃)₂CO) δ: 20.4, 20.5, 38.4, 47.6, 70.8, 109.7, 117.1, 126.9, 127.2, 128.7, 129.8, 129.9, 131.7, 132.2, 133.0, 133.1, 135.1, 136.4, 144.0, 168.7; HRMS (ESI, +ve) m/z calcd. for C_{22}H_{23}ClN_{1}NaO_{4}S_{1} 490.0617, found 490.0614 (M+Na)⁺.

(E)-4-(N-Allyl-4-methylphenylsulfonamido)but-3-en-2-yl 2-(2,4-dimethoxyphenyl)acetate 345

EDCi (0.54 g, 2.81 mmol) in DCM (100 ml), triethylamine (0.39 ml, 2.81 mmol), DMAP (0.02 g, 0.14 mmol), 2,4-dimethoxyphenylacetic acid (0.56 g, 2.81 mmol) and (E)-N-allyl-N-(3-hydroxybut-1-enyl)-4-methylbenzenesulfonamide 329 (0.40 g, 1.41 mmol) in DCM (20 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford (E)-4-(N-allyl-4-methylphenylsulfonamido)but-3-en-2-yl 2-(2,4-dimethoxyphenyl)acetate 345 as a clear oil (0.56 g, 86%). FTIR (film/cm⁻¹) v_{max}: 3061 (w), 2988 (m), 2937 (m), 2838 (m), 1728 (s), 1656 (s), 1614 (s), 1590 (s), 1509 (s); ¹H NMR (500 MHz, (CD₃)₂CO) δ: 1.27 (d, 3H, J = 6.6 Hz), 2.43 (s, 3H), 3.47 (2H, s), 3.76 (3H, s), 3.79 (3H, s), 3.94–4.09 (m, 2H), 4.89 (dd, 1H, J = 14.2, 6.6 Hz), 5.17 (dq, 1H, J = 10.3, 1.4 Hz), 5.21 (dq, 1H, J = 17.1, 1.4 Hz), 5.34 (app. quin, 1H, J = 6.6 Hz), 5.65 (ddt, 1H, J = 17.1, 10.3, 5.1 Hz), 6.44–6.49 (m, 1H), 6.51–6.57 (m, 1H), 6.98 (d, 1H, J = 14.2 Hz), 7.07 (d, 1H, J = 8.3 Hz), 7.39 (app. d, 2H, J = 8.3 Hz), 7.71 (app. d, 2H, J = 8.3 Hz); ¹³C NMR (125 MHz,
(CD$_3$)$_2$CO) \(\delta \): 20.5 (x2), 35.0, 47.6, 54.6, 54.9, 69.7, 98.2, 104.2, 110.3, 115.7, 117.1, 127.0, 129.4, 129.8, 130.9, 131.8, 136.3, 144.0, 158.5, 160.3, 170.5; HRMS (ESI, +ve) m/z calc. for C$_{23}$H$_{25}$NNaO$_6$S 482.1613, found 482.1653 (M+Na)$^+$.

(E)-4-(N-Allyl-4-methylphenylsulfonamido)but-3-en-2-yl 2-(benzo[d][1,3]dioxol-5-yl)acetate 346

EDCI (0.54 g, 2.81 mmol) in DCM (100 ml), triethylamine (0.39 l, 2.81 mmol), DMAP (0.02 g, 0.14 mmol), 3,4-methylenedioxyphenylacetic acid (0.51 g, 2.81 mmol) and (E)-N-allyl-N-(3-hydroxybut-1-enyl)-4-methylbenzenesulfonamide 329 (0.40 g, 1.41 mmol) in DCM (20 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford (E)-4-(N-allyl-4-methylphenylsulfonamido)but-3-en-2-yl 2-(benzo[d][1,3]dioxol-5-yl)acetate 346 as a yellow oil (0.54 g, 86%). FTIR (film/cm$^{-1}$) \(\nu_{\text{max}} \): 3049 (m), 2916 (m), 1729 (s), 1655 (s), 1503 (s); 1H NMR (500 MHz, CD$_3$Cl) \(\delta \): 1.30 (d, 3H, $J = 6.6$ Hz), 2.41 (s, 3H, 3.46 (2H, s), 3.89–4.01 (m, 2H), 4.76 (dd, 1H, $J = 14.3$, 6.6 Hz), 5.10 (app. d, 1H, $J = 10.3$ Hz), 5.10 (app. d, 1H, $J = 17.0$ Hz), 5.32 (app. quin, 1H, $J = 6.6$ Hz), 5.50 (ddt, 1H, $J = 17.0$, 10.3, 5.3 Hz), 5.91 (s, 2H), 6.65–6.75 (m, 3H), 6.97 (d, 1H, $J = 14.3$ Hz), 7.26 (app. d, 2H, $J = 7.8$ Hz), 7.63 (app. d, 2H, $J = 7.8$ Hz); 13C NMR (125 MHz, CD$_3$Cl) \(\delta \): 20.9, 21.5, 30.9, 41.2, 47.9, 70.6, 100.9, 108.2, 109.6 (x2), 117.8, 122.2, 127.0, 127.1, 127.7, 129.7, 129.8, 131.2, 136.0, 143.9, 146.6, 147.7, 170.7; HRMS (ESI, +ve) m/z calc. for C$_{23}$H$_{25}$NNaO$_6$S 466.1300, found 466.1295 (M+Na)$^+$.

232
N-Benzyl-4-methylbenzenesulfonamide 316

To a solution of \(p \)-toluenesulfonyl chloride (6.12 g, 32.1 mmol, 1.1 eq.) and triethylamine (4.46 ml, 32.1 mmol, 1.1 eq.) in DCM (70 ml) at 0 °C was added benzylamine (5.00 g, 29.2 mmol, 1.0 eq.) by dropwise addition. The reaction mixture was stirred for 1.5 hours under nitrogen at 0 °C, poured onto brine and washed with brine (3 × 100 ml), the organics were dried over MgSO\(_4\) and concentrated *in vacuo* to yield a white solid which was subjected to flash column chromatography (15% EtOAc/Petrol 40-60°) to yield *N*-benzyl-4-methylbenzenesulfonamide 316 as a white crystalline solid (6.71 g, 88%). M.p. 111–114 °C; \(^1\)H NMR (250 MHz, CDCl\(_3\)) \(\delta \): 2.47 (s, 3H), 4.15 (s, 2H), 4.81 (br s, 1H), 7.10–7.48 (m, 7H), 7.78 (app. d, 1H, \(J = 8.3 \) Hz; \(^1\)C NMR (250 MHz, CDCl\(_3\)) \(\delta \) 21.5, 47.8, 127.2, 127.8, 127.9, 128.7, 129.7, 129.7, 136.3, 136.8, 143.5. All analytical data in accordance with commercial sources.

\((E)\)-N-Benzyl-4-methyl-N-(3-oxobut-1-enyl)benzenesulfonamide 328

!image

To a solution of *N*-benzyl-4-methylbenzenesulfonamide 316 (6.90 g, 26.4 mmol, 1.0 eq.), DABCO (0.37 g, 0.26 mmol, 0.1 Eq) in DCM (200 ml) at 0 °C was added butyn-3-one (2.00 g, 29.41 mmol, 1.1 Eq) and the reaction mixture was stirred for 15 hours whilst slowly warming to RT. The reaction mixture was then extracted with 3N HCl (3 × 200 ml) and then 5% NaOH (3 × 200 ml), dried over MgSO\(_4\) and concentrated in vacuo to give an amorphous orange oil which was triturated with EtOAc/Petrol 40-60° to give \((E)\)-*N*-benzyl-4-methyl-N-(3-oxobut-1-enyl)benzenesulfonamide 328 as a cream solid (total yield after a second trituration of mother liquor = 7.10 g, 72%). M.p. 91–93
Chapter 6 Experimental

^0C; FTIR (film/cm$^{-1}$) ν_{max}: 3069 (m), 3039 (m), 2970 (m), 2925 (m); 1H NMR (500 MHz, CDCl$_3$) δ: 2.16 (s, 3H), 2.46 (s, 3H), 4.62 (s, 2H), 5.36 (d, 1H, $J = 14.9$ Hz), 7.14–7.40 (m, 7H), 7.72 (d, 2H, $J = 8.6$ Hz), 8.10 (d, 1H, $J = 14.9$ Hz); 13C NMR (500 MHz, CDCl$_3$) δ: 21.6, 27.6, 49.7, 109.7, 126.7, 127.2, 127.8, 128.8, 130.2, 133.8, 135.2, 141.3, 145.0, 196.4; HRMS (ESI, +ve) m/z calcd. for C$_{18}$H$_{20}$NO$_3$S 330.1164, found 330.1297 (M+H)$^+$.

(E)-N-Benzyl-N-(3-hydroxybut-1-enyl)-4-methylbenzenesulfonamide 323

To a solution of (E)-N-benzyl-4-methyl-N-(3-oxobut-1-enyl)benzenesulfonamide 328 (2.00 g, 6.07 mmol, 1.0 eq.) in THF:MeOH (50 ml:50 ml) at 0°C was added NaBH$_4$ (1.75 g, 47.4 mmol, 7.8 eq.) by portionwise addition. The reaction mixture was allowed to stir whilst slowly warming to RT over 12 hours and then was poured onto sat. NaCl (200 ml) and extracted with DCM (3 × 150 ml), dried over MgSO$_4$, filtered and concentrated in vacuo to give (E)-N-benzyl-N-(3-hydroxybut-1-enyl)-4-methylbenzenesulfonamide 323 as an orange oil (1.97 g, 98%). FTIR (film/cm$^{-1}$) ν_{max}: 3375 (b), 3033 (m), 2971 (m), 2924 (m), 1656 (s), 1597 (s), 1542 (w); 1H NMR (500 MHz, CD$_3$CO) δ: 1.03 (3H, d, $J = 6.4$ Hz), 2.44 (3H, s), 3.66 (3H, d, $J = 4.3$ Hz), 4.14–4.22 (1H, m), 4.49–4.60 (2H, m), 4.87 (1H, dd, $J = 14.2$, 6.4 Hz), 6.90 (1H, d, $J = 14.2$ Hz), 7.21–7.28 (1H, m), 7.28–7.38 (4H, m), 7.44 (2H, d, $J = 8.2$ Hz), 7.76 (2H, d, $J = 8.2$ Hz); 13C NMR (500 MHz, CDCl$_3$) δ: 21.4, 24.8, 50.0, 50.0, 66.8, 118.2, 126.7, 127.8 (x2), 128.0, 129.1, 130.7, 137.2 (x2), 144.8; HRMS (ESI, +ve) m/z calcd. for C$_{18}$H$_{21}$NNaO$_3$S 354.1140, found 354.1323 (M+Na)$^+$.

234
(E)-4-(N-Benzyl-4-methylphenylsulfonamido)but-3-en-2-yl pent-4-enoate 380

EDCi (0.46 g, 2.40 mmol) in DCM (100 ml), triethylamine (0.33 ml, 2.81 mmol), DMAP (0.02 g, 0.12 mmol), pentenoic acid (0.24 ml, 2.81 mmol) and (E)-N-benzyl-N-(3-hydroxybut-1-enyl)-4-methylbenzenesulfonamide 323 (0.40 g, 1.20 mmol) in DCM (20 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to afford (E)-4-(N-benzyl-4-methylphenylsulfonamido)but-3-en-2-yl pent-4-enoate 380 as a white solid (0.47 g, 94%). M.p. 100–103 °C; FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 3082 (m), 3039 (m), 2980 (m), 2931 (m); \(^1\)H NMR (500 MHz, (CD\(_3\))\(_2\)CO) \(\delta\): 1.15 (d, 3H, \(J = 6.6\) Hz), 2.17–2.34 (m, 4H), 2.45 (s, 3H), 4.58 (d, 1H, \(J = 16.1\) Hz), 4.60 (d, 1H, \(J = 16.1\) Hz), 4.80 (app. dd, 1H, \(J = 14.2, 6.6\) Hz), 4.93 (app. dd, 1H, \(J = 9.7, 1.7\) Hz), 5.01 (app. dd, 1H, \(J = 17.0, 1.7\) Hz), 5.28 (app. quin, 1H, \(J = 6.6\) Hz), 5.79 (ddt, 1H, \(J = 17.0, 9.7, 7.1\) Hz), 7.05 (d, 1H, \(J = 14.2\) Hz), 7.23–7.30 (m, 1H), 7.30–7.37 (m, 4H), 7.46 (app. d, 2H, \(J = 8.2\) Hz), 7.78 (app. d, 2H, \(J = 8.2\) Hz); \(^{13}\)C NMR (125 MHz, CD\(_3\)Cl) \(\delta\): 19.7, 20.5, 27.8, 32.8, 48.3, 68.7, 109.9, 114.3, 125.8, 126.0, 126.3, 127.4, 128.5, 128.8, 134.0, 134.8, 135.6, 142.9, 171.0; HRMS (ESI, +ve) \(m/z\) calcd. for C\(_{23}\)H\(_{27}\)NNaO\(_4\)S 436.1558, found 436.1679 (M+Na\(^+\)).
6.3.4. *N*-Sulfonamide Rearrangement Products

(*anti-E*)-Methyl 3-(*N*-allyl-4-methylphenylsulfonamido)-2-phenylhex-4-enoate 333

\[
\text{Me} \quad \overset{\text{Ts}^- \text{N}}{\quad} \text{CO}_2\text{Me}
\]

LiHMDS (1M in toluene, 0.63 ml, 0.63 mmol), TMSCl (0.19 ml, 2.91 mmol) and (*E*)-4-(*N*-allyl-4-methylphenylsulfonamido)but-3-en-2-yl 2-phenylacetate 331 (0.10 g, 0.48 mmol) in THF (1 ml) was combined according to general procedure 3 (reaction time: 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded (*anti-E*)-methyl 3-(*N*-allyl-4-methylphenylsulfonamido)-2-phenylhex-4-enoate 333 as a white solid (0.06 g, 57%, d.r. >25:1). M.p. 103–104 °C; FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 3032 (m), 2950 (m), 2855 (m), 1734 (s), 1668 (w), 1598 (m); \(^1\)H NMR (500 MHz, CD\(_3\)Cl) \(\delta\): 1.28 (t, 3H, \(J = 4.8\) Hz, \(\text{CH}_3\)), 2.33 (s, 3H, \(\text{CH}_3\)), 3.55 (s, 3H, \(-\text{CO}_2\text{CH}_3\)), 3.62–3.87 (m, 2H, \(-\text{NCH}_2\text{CH}_2\)), 4.19 (s, 1H, \(J = 11.2\) Hz, \(-\text{CHCO}_2\text{CH}_3\)), 4.68 (dd, 1H, \(J = 11.2, 7.4\) Hz, \(-\text{NCH}(\text{CH})\text{CH}_2\)), 4.99–5.30 (m, 4H, \(\text{CH}_2\text{CHCH}_2\text{N(Ts)}\text{CH(CH)}\text{CHCH}_3\)), 5.63 (ddt, 1H, \(J = 17.0, 10.3, 6.5\) Hz, \(-\text{NCH(Cl)}\text{CHCH}_3\)), 7.08–7.30 (m, 7H, ArH), 7.65 (app. d, 2H, \(J = 8.2\) Hz, ArH Ts); \(^{13}\)C NMR (125 MHz, CD\(_3\)Cl) \(\delta\) 17.6, 21.4, 50.1, 52.0, 55.7, 63.7, 118.1, 125.9, 127.7, 127.8, 128.5, 128.9, 129.2, 131.8, 134.9, 135.8, 137.8, 143.1, 172.5; HRMS (ESI, +ve) \(m/z\) calcd. for C\(_{23}\)H\(_{28}\)NO\(_4\)S 414.1739, found 414.1734 (M+H\(^+\)).
(2R,3R,E)-methyl 3-(N-allyl-4-methylphenylsulfonamido)-2-phenylhex-4-enoate
(S)-333

LiHMDS (1M in toluene, 0.63 ml, 0.63 mmol), TMSCl (0.19 ml, 2.91 mmol) and (S,E)-
4-(N-allyl-4-methylphenylsulfonamido)but-3-en-2-yl 2-phenylacetate (S)-331 (0.10 g,
0.48 mmol) in THF (1 ml) was combined according to general procedure 3 (reaction
time : 75 minutes). Treatment with diazomethane and purification by flash
chromatography afforded (2R,3R,E)-methyl 3-(N-allyl-4-methylphenylsulfonamido)-2-
phenylhex-4-enoate (S)-333 as a white solid (0.08 g, 71%, d.r. >25:1). M.p. 105–107
°C; [α]D20 = -15.0 (c 1, DCM). All other data as previously recorded for racemic
compound.

(anti-E)-Methyl 3-(N-allyl-4-methylphenylsulfonamido)-2-methylhex-4-enoate 334

LiHMDS (1M in toluene, 1.34 ml, 1.34 mmol), triethylamine (1.81 ml, 13.4 mmol) and
(E)-4-(N-allyl-4-methylphenylsulfonamido)but-3-en-2-yl propionate 330 (0.10 g, 0.30
mmol) in THF (1 ml) was combined according to general procedure 4 (reaction time :
75 minutes). Treatment with diazomethane and purification by flash chromatography
afforded (anti-E)-methyl 3-(N-allyl-4-methylphenylsulfonamido)-2-methylhex-4-enoate
334 as a white solid (0.06 g, 55%, d.r. >25:1). M.p. 88–90 °C; FTIR (film/cm−1) νmax:
2966 (m), 2916 (m), 1735 (s), 1655 (m); 1H NMR (500 MHz, CDCl3) δ: 1.06 (d, 3H, J =
6.9 Hz), 1.51 (dd, 3H, J = 6.4, 1.5 Hz), 2.39 (3H, s), 3.02 (ddt, 2H, J = 10.1, 7.8, 6.9
Hz), 2.83 (s, 3H), 3.69–3.85 (s, 2H), 4.27 (app. t, 1H, J = 10.1 Hz), 5.07–5.18 (m, 2H),
5.41 (ddq, 1H, J = 15.1, 10.1, 1.5 Hz), 5.55 (dq, 1H, J = 15.1, 6.4 Hz), 5.71 (ddt, 1H, J
= 17.3, 10.2, 6.5 Hz), 7.26 (app. d, 2H, J = 8.2 Hz), 7.69 (app. d, 2H, J = 8.2 Hz); 13C NMR (125 MHz, CD$_3$Cl) δ: 15.6, 17.7, 21.4, 43.4, 49.4, 51.7, 64.1, 117.6, 126.2, 127.7, 129.1, 132.1, 135.3, 137.8, 142.9, 175.0; HRMS (ESI, +ve) m/z calcd. for C$_{18}$H$_{25}$NO$_4$S 352.1582, found 352.1577 (M+H)$^+$.

(anti-E)-Methyl 3-(N-allyl-4-methylphenylsulfonamido)-2-(4-(trifluoromethyl)phenyl)hex-4-enoate 342

LiHMDS (1M in toluene, 1.07 ml, 1.07 mmol), TMSCl (0.33 ml, 4.94 mmol) and (I)-4-(N-allyl-4-methylphenylsulfonamido)but-3-en-2-yl 2-(4(trifluoromethyl)phenyl)acetate 357 (0.20 g, 0.82 mmol) in THF (2 ml) was combined according to general procedure 3 (reaction time: 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded (anti-E)-methyl 3-(N-allyl-4-methylphenylsulfonamido)-2-(4-(trifluoromethyl)phenyl)hex-4-enoate 342 as a yellow solid (0.11 g, 54%, d.r. 12:1). M.p. 104–106 °C; FTIR (film/cm$^{-1}$) ν_{max}: 3034 (w), 2951 (m), 2922 (m), 1735 (s), 1669 (w), 1598 (m), 1512 (m); 1H NMR (500 MHz, CD$_3$Cl) δ: 1.37 (d, 3H, J = 4.5 Hz), 2.41 (s, 3H), 3.66 (s, 3H), 3.74–3.89 (m, 2H), 4.39 (d, 1H, J = 11.3 Hz), 4.73 (dd, 1H, J = 11.3, 8.8 Hz), 5.15 (app. d, 1H, J = 10.1 Hz), 5.22 (app. d, 1H, J = 17.0 Hz), 5.19–5.36 (m, 2H), 5.70 (ddt, 1H, J = 17.0, 10.1, 6.4 Hz), 7.27 (app. d, 2H, J = 8.1 Hz), 7.44 (app. d, 2H, J = 8.1 Hz), 7.54 (app. d, 2H, J = 8.1 Hz), 7.73 (app. d, 2H, J = 8.1 Hz); 13C NMR (125 MHz, CD$_3$Cl) δ: 17.5, 21.4, 43.4, 50.3, 52.2, 55.6, 63.7, 118.4, 124.1 (q, J = 272.0 Hz), 125.4 (q, J = 3.5 Hz), 125.5, 127.8, 129.3 (x2), 129.9 (q, J = 32.4 Hz), 132.1, 134.5, 137.6, 139.9, 143.3, 171.9; HRMS (ESI, +ve) m/z calcd. for C$_{24}$H$_{26}$F$_3$NO$_4$S 481.1535, found 481.1400 (M+H)$^+$.

238
(anti-E)-Methyl 3-(N-allyl-4-methylphenylsulfonamido)-2-isopropylhex-4-enoate 347

![Structure of the compound](image)

LiHMDS (1M in toluene, 2.47 ml, 2.47 mmol), triethylamine (3.42 ml, 24.7 mmol) and (E)-4-(N-allyl-4-methylphenylsulfonamido)but-3-en-2-yl 3-methylbutanoate 335 (0.20 g, 0.55 mmol) in THF (2 ml) was combined according to general procedure 4 (reaction time: 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded (anti-E)-methyl 3-(N-allyl-4-methylphenylsulfonamido)-2-isopropylhex-4-enoate 347 as a white solid (0.14 g, 65%, d.r. >25:1). M.p. 105–107 °C; FTIR (film/cm\(^{-1}\)) \(\nu\) max: 3082 (m), 3021 (m), 2985 (m), 2958 (m), 1730 (s), 1655 (m), 1615 (m), 1597 (m), 1509 (m);

\(^{1}\)H NMR (400 MHz, CD\(_3\)Cl) \(\delta\): 0.90 (\(\ddot{\text{t}}\), 3H, \(J = 6.7\) Hz), 0.99 (\(\ddot{\text{t}}\), 3H, \(J = 6.7\) Hz), 1.67 (\(\text{d}, 3H, J = 5.8\) Hz), 1.78–1.94 (1H, m), 2.43 (s, 3H), 3.08 (dd, 2H, \(J = 11.3\), 2.7 Hz), 3.65 (s, 3H), 3.67–3.86 (m, 2H), 4.45 (app. t, 1H, \(J = 11.3\) Hz), 5.07–5.28 (m, 1H), 5.48–5.80 (m, 1H), 7.27 (app. d, 2H, \(J = 8.1\) Hz), 7.72 (app. d, 2H, \(J = 8.1\) Hz);

\(^{13}\)C NMR (125 MHz, CD\(_3\)Cl) \(\delta\): 16.0, 17.8, 21.4, 21.9, 27.6, 51.1, 54.2, 61.9, 117.8, 126.9, 127.9, 129.1, 131.5, 135.2, 137.9, 142.9, 172.8; HRMS (ESI, +ve) m/z calcd. for C\(_{20}\)H\(_{30}\)NO\(_4\)S 380.1895, found 380.1900 (M+H\(^+\)).

(anti-E)-Methyl 2-allyl-3-(N-allyl-4-methylphenylsulfonamido)hex-4-enoate 348

![Structure of the compound](image)

LiHMDS (1M in toluene, 2.48 ml, 2.48 mmol), triethylamine (3.43 ml, 24.80 mmol) and (E)-4-(N-allyl-4-methylphenylsulfonamido)but-3-en-2-yl pent-4-enoate 336 (0.20 g, 0.55 mmol) in THF (2 ml) was combined according to general procedure 4 (reaction time: 75 minutes). Treatment with diazomethane and purification by flash
chromatography afforded (anti-E)-methyl 2-allyl-3-(N-allyl-4-methylphenylsulfonamido)hex-4-enoate 348 as a yellow oil (0.15 g, 70%, d.r. 10:1).

FTIR (film/cm$^{-1}$) ν_{max}: 3012 (m), 2983 (m), 2934 (m), 1729 (s), 1655 (s), 16169 (s), 1596 (s), 1509 (m); 1H NMR (400 MHz, CD$_3$Cl) δ: 1.66 (d, 3H, $J = 6.3$ Hz), 2.12–2.29 (2H, m), 2.43 (s, 3H), 3.08 (t, 1H, $J = 10.6$, 4.5 Hz), 3.66 (s, 3H), 3.74 (dd, 1H, $J = 15.8$, 6.7 Hz), 3.83 (dd, 1H, $J = 16.0$, 6.7 Hz), 4.33 (app. t, 1H, $J = 10.6$ Hz), 4.98–5.22 (m, 4H), 5.48 (dd, 1H, $J = 15.5$, 9.9 Hz), 5.60 (dq, 1H, $J = 14.2$, 6.3 Hz), 5.65–5.77 (m, 2H), 7.28 (app. t, 2H, $J = 8.1$ Hz), 7.73 (app. t, 2H, $J = 8.1$ Hz); 13C NMR (125 MHz, CD$_3$Cl) δ: 17.8, 21.4, 34.9, 49.4, 49.5, 51.5, 63.2, 117.1, 117.8, 126.4, 127.8, 129.2, 132.4, 134.5, 135.1, 137.7, 143.0, 173.6; HRMS (ESI, +ve) m/z calc'd for C$_{20}$H$_{28}$NO$_4$S 378.1739, found 378.1699 (M+H)$^+$.

(anti-E)-Methyl 3-(N-allyl-4-methylphenylsulfonamido)-2-(2-iodophenyl)hex-4-enoate 355

LiHMDS (1M in toluene, 0.34 ml, 0.34 mmol), TMSCl (0.10 ml, 1.57 mmol) and (E)-4-(N-allyl-4-methylphenylsulfonamido)but-3-en-2-yl 2-(2-iodophenyl)acetate 340 (0.07 g, 0.26 mmol) in THF (0.7 ml) was combined according to general procedure 3 (reaction time : 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded (anti-E)-methyl 3-(N-allyl-4-methylphenylsulfonamido)-2-(2-iodophenyl)hex-4-enoate 355 as a white solid (0.05 g, 67%, d.r. >25:1). M.p. 97–99°C; FTIR (film/cm$^{-1}$) ν_{max}: 3179 (w), 2953 (m), 2922 (m), 1734 (s), 1597 (m); 1H NMR (500 MHz, CD$_3$Cl) δ: 1.35 (d, 3H, $J = 6.5$ Hz), 2.41 (s, 3H), 3.63 (s, 3H), 3.83 (app. d, 1H, $J = 17.3$, 6.7 Hz), 3.93 (app. d, 1H, $J = 17.3$, 6.7 Hz), 4.75 (d, 1H, $J = 11.7$ Hz), 4.91 (d, 1H, $J = 11.7$ Hz), 5.14–5.23 (m, 2H), 5.25–5.37 (m, 2H), 5.79 (ddt, 1H, $J = 17.0$, 10.8, 6.7 Hz), 6.92 (app. t, 1H, $J = 7.9$ Hz), 7.26 (app. d, 2H, $J = 8.7$ Hz), 7.27–7.33 (m, 1H), 7.51 (app d, 1H, $J = 7.9$ Hz), 7.74 (app. d, 2H, $J = 8.7$ Hz), 8.20 (d, 1H, $J = 7.9$ Hz); 13C NMR (125 MHz, CD$_3$Cl) δ: 17.6, 21.4, 49.4, 52.2, 57.8, 64.2, 118.1,
124.7, 127.9, 128.5, 128.9, 129.0, 129.2, 129.3, 132.1, 135.0, 137.7, 138.9, 139.6, 143.1, 171.8; HRMS (ESI, +ve) m/z calcd. for C_{25}H_{32}NO_{6}S 474.1950, found 474.1948 (M+H)^+.

(anti-\(E\))-Methyl 3-(N-allyl-4-methylphenylsulfonamido)-2-(4-methoxyphenyl)hex-4-enoate 356

```
LiHMDS (1M in toluene, 1.16 ml, 1.16 mmol), TMSCl (0.35 ml, 5.35 mmol) and (\(E\))-4-(N-allyl-4-methylphenylsulfonamido)but-3-en-2-yl 2-(4-methoxyphenyl)acetate 341 (0.20 g, 0.89 mmol) in THF (2 ml) was combined according to general procedure 3 (reaction time : 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded (anti-\(E\))-methyl 3-(N-allyl-4-methylphenylsulfonamido)-2-(4-methoxyphenyl)hex-4-enoate 356 as a white solid (0.15 g, 73%, d.r. >25:1). M.p. 109–110 °C; FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 3039 (w), 2952 (m), 2919 (m), 1734 (s), 1670 (w), 1608 (m), 1598 (m), 1522 (m), 1512 (m); \(^1\)H NMR (500 MHz, CD\(_3\)Cl) \(\delta\): 1.39 (\(d\), 3H, \(J = 4.5\) Hz), 2.41 (\(s\), 3H), 3.62 (\(s\), 3H), 3.77 (\(s\), 3H), 3.75–3.88 (m, 2H), 4.21 (\(d\), 1H, \(J = 11.5\) Hz), 4.73 (dd, 1H, \(J = 11.5, 7.44\) Hz), 5.12 (app. \(d\), 1H, \(J = 10.3\) Hz), 5.20 (app \(d\), 1H, \(J = 17.1\) Hz), 5.23–5.33 (m, 2H), 5.70 (ddt, 1H, \(J = 17.1, 10.3, 6.5\) Hz), 6.81 (app. \(d\), 2H, \(J = 8.7\) Hz), 7.22 (app. \(d\), 2H, \(J = 8.7\) Hz), 7.26 (app. \(d\), 2H, \(J = 8.4\) Hz), 7.73 (app. \(d\), 2H, \(J = 8.4\) Hz); \(^{13}\)C NMR (125 MHz, CD\(_3\)Cl) \(\delta\): 17.6, 21.4, 50.0, 51.9, 54.9, 55.1, 63.6, 113.9, 118.0, 126.0, 127.8 (x2), 129.2, 129.9, 131.7, 134.9, 137.9, 143.0, 159.0, 172.8; HRMS (ESI, +ve) m/z calcd. for C\(_{24}\)H\(_{30}\)NO\(_5\)S 444.1844, found 444.1857 (M+H)^+.}
**Experimental**

**Page 242**

*(anti-E)-Methyl 3-**N-allyl-4-methylphenylsulfonamido**-2-**N-(4-nitrophenyl)** hex-4-enoate 358

![Chemical Structure](attachment:image.png)

LiHMDS (1M in toluene, 1.13 ml, 1.13 mmol), TMSCl (0.34 ml, 5.22 mmol) and *(E)-**N-allyl-4-methylphenylsulfonamido**-but-3-en-2-yl 2-**N-(4-nitrophenyl)**acetate 343 (0.20 g, 0.87 mmol) in THF (2 ml) was combined according to general procedure 3 (reaction time : 75 minutes). Treatment with diazomethane and purification by flash chromatography, recrystallisation and a two subsequent recrystallisations of the mother liquor afforded *(anti-E)-methyl 3-**N-allyl-4-methylphenylsulfonamido**-2-**N-(4-nitrophenyl)**hex-4-enoate 358 as an off white solid (0.10 g, 53%, d.r. 20:1). M.p. 128–130 °C; FTIR (film/cm⁻¹) \(\nu_{\text{max}}\): 3018 (w), 2988 (m), 2952 (m), 2925 (m), 1736 (s), 1669 (w), 1598 (m), 1521 (s); \(^1\)H NMR (500 MHz, CD\(_3\)Cl) \(\delta\): 1.38 (´´, 3H, \(J = 6.2, 1.0\) Hz), 2.42 (s, 3H), 3.69 (s, 3H), 3.78 (dd, 1H, \(J = 16.0, 6.8\) Hz), 3.86 (dd, 1H, \(J = 16.0, 6.8\) Hz), 4.49 (d, 1H, \(J = 11.2\) Hz), 4.69 (app. t, 1H, \(J = 11.2\) Hz), 5.17 (app. d, 1H, \(J = 10.2\) Hz), 5.23 (app. d, 1H, \(J = 17.0\) Hz), 5.20–5.38 (m, 2H), 5.69 (ddt, 1H, \(J = 17.0, 10.2, 6.8\) Hz), 7.28 (app. d, 2H, \(J = 8.2\) Hz), 7.51 (app. d, 2H, \(J = 8.2\) Hz), 7.73 (app. d, 2H, \(J = 8.2\) Hz), 8.16 (app. d, 2H, \(J = 8.2\) Hz); \(^{13}\)C NMR (125 MHz, CD\(_3\)Cl) \(\delta\): 17.5, 21.4, 50.5, 52.5, 55.6, 63.8, 118.6, 123.7, 125.4, 127.8, 129.3, 129.9, 132.9, 134.5, 137.5, 143.2, 143.4, 147.4, 171.5; HRMS (ESI, +ve) \(m/z\) calcd. for C\(_{23}\)H\(_{28}\)N\(_2\)O\(_4\)S 481.1409, found 481.1715 (M+Na\(^+\)).

---

242
(anti-\(E\))-Methyl 3-(\(N\)-allyl-4-methylphenylsulfonamido)-2-(2,4-dichlorophenyl)hex-4-enoate 359

LiHMDS (1M in toluene, 1.07 ml, 1.07 mmol), TMSCl (0.33 ml, 4.94 mmol) and (\(E\))-4-(\(N\)-allyl-4-methylphenylsulfonamido)but-3-en-2-yl 2-(2,4-dichlorophenyl)acetate 344 (0.20 g, 0.82 mmol) in THF (2 ml) was combined according to general procedure 3 (reaction time : 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded (anti-\(E\))-methyl 3-(\(N\)-allyl-4-methylphenylsulfonamido)-2-(2,4-dichlorophenyl)hex-4-enoate 359 as a yellow oil (0.14 g, 68%, d.r. >25:1). FTIR (film/cm\(^{-1}\) \(\nu_{\text{max}}\): 3034 (w), 2950 (m), 2919 (m), 1736 (s), 1669 (m), 1598 (m), 1523 (m), 1512 (m); \(^1\)H NMR (500 MHz, CD\(_3\)Cl) \(\delta\): 1.37 (\(s\), 3H, \(J = 5.8\) Hz), 2.41 (\(s\), 3H), 3.65 (\(s\), 3H), 3.80 (dd, 1H, \(J = 15.9, 6.9\) Hz), 3.92 (dd, 1H, \(J = 15.9, 6.9\) Hz), 4.79 (dd, 1H, \(J = 11.5, 8.6\) Hz), 4.90 (d, 1H, \(J = 11.5\) Hz), 5.15 (app. d, 1H, \(J = 10.2\) Hz), 5.18–5.33 (m, 3H), 5.71 (ddt, 1H, \(J = 16.9, 10.3, 6.9\) Hz), 7.21 (dd, 2H, \(J = 8.3, 2.3\) Hz), 7.26 (app. d, 2H, \(J = 8.2\) Hz), 7.36 (d, 1H, \(J = 2.3\) Hz), 7.51 (d, 1H, \(J = 8.3\) Hz), 7.72 (app. d, 2H, \(J = 8.2\) Hz); \(^{13}\)C NMR (125 MHz, CD\(_3\)Cl) \(\delta\): 17.6, 21.4, 49.5, 49.6, 52.3, 63.9, 118.2, 124.7, 127.4, 127.8, 129.2, 129.3, 130.3, 132.4, 132.5, 133.9, 134.9, 135.2, 137.6, 143.2, 171.5; HRMS (ESI, +ve) \(m/z\) calcld. for C\(_{23}\)H\(_{26}\)Cl\(_2\)NO\(_4\)S 482.0959, found 482.0971 (M+H)+.
(anti-E)-Methyl 3-(N-allyl-4-methylphenylsulfonamido)-2-(2,4-dimethoxyphenyl)hex-4-enoate 360

\[
\text{LiHMDS (1M in toluene, 1.09 ml, 1.09 mmol) and (E)-4-(N-allyl-4-methylphenylsulfonamido)but-3-en-2-yl 2-(2,4-dimethoxyphenyl)acetate 345 (0.20 g, 0.84 mmol) in THF (2 ml) was combined according to general procedure 3 (reaction time : 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded (anti-E)-methyl 3-(N-allyl-4-methylphenylsulfonamido)-2-(2,4-dimethoxyphenyl)hex-4-enoate 360 as a yellow oil (0.15 g, 72%, d.r. 20:1). FTIR (film/cm}^{-1})) \nu_{\text{max}}: 3033 (w), 2950 (m), 2919 (m), 1734 (s), 1608 (m), 1522 (m), 1507 (m); \textsuperscript{1}H NMR (500 MHz, CDCl}3) \delta: 1.35 (d, 3H, J = 4.3 Hz), 2.39 (s, 3H), 3.59 (s, 3H), 3.77 (s, 3H), 3.78 (s, 3H), 3.77–3.91 (m, 2H), 4.70 (d, 1H, J = 11.0 Hz), 4.77–4.85 (m, 1H), 5.10 (d, 1H, J = 10.0 Hz), 5.17–5.25 (m, 3H), 5.74 (ddt, 1H, J = 16.9, 10.0, 6.9 Hz), 6.36–6.40 (m, 1H), 6.40–6.48 (m, 1H), 7.24 (app. d, 2H, J = 8.4 Hz), 7.32 (d, 1H, J = 8.5 Hz), 7.72 (app. d, 2H, J = 8.4 Hz); \textsuperscript{13}C NMR (125 MHz, CDCl}3) \delta: 17.6, 21.4, 45.7, 49.2, 51.8, 55.2, 55.6, 63.5, 98.4, 104.6, 116.8, 117.6, 125.9, 127.9, 129.1, 129.3, 130.8, 135.3, 138.0, 142.9, 158.0, 160.1, 172.8; HRMS (ESI, +ve) m/z calcd. for C_{25}H_{32}NO_{6}S 474.1950, found 474.1948 (M+H)\textsuperscript{+}.\]
(anti-\(E\))-Methyl 3-(\(N\)-allyl-4-methylphenylsulfonamido)-2-(benzo[d][1,3]dioxol-5-yl)hex-4-enoate 361

\[
\begin{align*}
\text{Me} & \quad \text{Ts}^- \\
\text{aryl} & \quad \text{alkyl}
\end{align*}
\]

LiHMDS (1M in toluene, 0.55 ml, 0.55 mmol), TMSCl (0.17 ml, 2.53 mmol) and \((E)\)-4-\((N\)-allyl-4-methylphenylsulfonamido\)but-3-en-2-yl 2-(benzo[d][1,3]dioxol-5-yl)acetate 340 (0.10 g, 0.42 mmol) in THF (1 ml) was combined according to general procedure 3 (reaction time : 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded (anti-\(E\))-methyl 3-(\(N\)-allyl-4-methylphenylsulfonamido)-2-(benzo[d][1,3]dioxol-5-yl)hex-4-enoate 361 as a white solid (0.06 g, 55%, d.r. >25:1). M.p. 119–121 °C; FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 3020 (w), 2952 (m), 2928 (m), 1733 (s), 1597 (m), 1504 (s); \(^1\)H NMR (500 MHz, CD\(_3\)Cl) \(\delta\): 1.42 (d, 3H, \(J = 4.8\) Hz), 2.41 (s, 3H), 3.17 (s, 3H), 3.77 (dd, 1H, \(J = 16.0, 6.9\) Hz), 3.84 (dd, 1H, \(J = 16.0, 6.9\) Hz), 4.19 (d, 1H, \(J = 11.3\) Hz), 4.66 (dd, 1H, \(J = 11.3\) Hz), 5.13 (app. d, 1H, \(J = 10.1\) Hz), 5.20 (app. d, 1H, \(J = 17.1\) Hz), 5.27–5.35 (m, 2H), 5.69 (ddt, 1H, \(J = 17.1, 10.1, 6.9\) Hz), 5.92–5.95 (m, 2H), 6.68–6.77 (m, 2H), 6.85 (d, 1H, \(J = 1.7\) Hz), 7.26 (app. d, 2H, \(J = 8.3\) Hz), 7.72 (app. d, 2H, \(J = 8.3\) Hz); \(^{13}\)C NMR (125 MHz, CD\(_3\)Cl) \(\delta\): 17.7, 21.4, 50.2, 52.0, 55.3, 63.6, 101.0, 108.1, 108.8, 118.1, 122.6, 125.9, 127.8, 129.2, 129.5, 131.8, 134.8, 137.8, 143.1, 147.0, 147.8, 172.6; HRMS (ESI, +ve) \(m/z\) calcd. for C\(_{24}\)H\(_{28}\)NO\(_6\)S 458.1637, found 458.1649 (M+H).
(anti-\(E\))-Methyl 2-allyl-3-(N-benzyl-4-methylphenylsulfonamido)hex-4-enoate 381

LiHMDS (1M in toluene, 2.16 ml, 2.16 mmol), triethylamine (3.00 ml, 21.60 mmol) and (\(E\))-4-(N-benzyl-4-methylphenylsulfonamido)but-3-en-2-yl pent-4-enoate 380 (0.20 g, 0.48 mmol) in THF (2 ml) was combined according to general procedure 4 (reaction time : 75 minutes). Treatment with diazomethane and purification by flash chromatography (\(\times\) 2) afforded (anti-\(E\))-methyl 2-allyl-3-(N-benzyl-4-methylphenylsulfonamido)hex-4-enoate 381 as a white solid (0.02 g, 10%, d.r. >25:1). M.p. 92–94 °C; FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 3045 (m), 2971 (m), 2934 (m), 1708 (s), 1601 (m), 1508 (s); \(^1\)H NMR (500 MHz, CD\(_3\)Cl) \(\delta\): 1.61 (\(\text{\textit{t}}, 3\text{H, } J = 5.7 \text{ Hz}\)), 1.96–2.08 (m, 1H), 2.10–2.21 (m, 1H), 2.42 (s, 3H), 3.10 (td, 1H, \( J = 10.7, 4.2 \text{ Hz}\)), 3.48 (s, 3H), 4.13–4.34 (m, 3H), 4.94 (app. d, 1H, \( J = 12.8 \text{ Hz}\)), 5.33–5.49 (m, 2H), 5.55–5.68 (m, 1H), 7.11–7.18 (m, 2H), 7.20–7.31 (m, 5H), 7.70 (app. d, \( J = 8.18 \text{ Hz}\)); \(^{13}\)C NMR (125 MHz, CD\(_3\)Cl) \(\delta\): 17.7, 21.4, 35.1, 48.8, 50.6, 51.4, 63.6, 117.0, 126.6, 127.6, 127.8, 128.1, 129.2 (x2), 132.0, 134.4, 136.6, 138.0, 143.0, 173.6; HRMS (ESI, +ve) \(m/z\) calcd. for C\(_{24}\)H\(_{30}\)NO\(_4\)S 428.1895, found 428.1856 (M+H).^7

6.3.5. Derivatisation of N-Sulfonamide Rearrangement Products

Methyl 2-(1-tosyl-2,5-dihydro-1H-pyrrol-2-yl)propanoate 367

\(\text{anti-}(\text{\textit{E}})\)-Methyl 3-(N-allyl-4-methylphenylsulfonamido)-2-methylhex-4-enoate 334 (0.02 g, 0.05 mmol), catalytic Grubbs I and DCM (5 ml) were combined according to general procedure 6 (reaction time: 6 hours). Purification was achieved by the reported
procedure to yield the methyl 2-(1-tosyl-2,5-dihydro-1H-pyrrol-2-yl)propanoate 367 as a white solid (0.01 g, 79%). M.p. 95–97 °C; FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 2960 (m), 2928 (m), 2878 (m), 1730 (s), 1597 (m); \(^1\)H NMR (500 MHz, CD\(_3\)Cl) \(\delta\): 1.12 (d, 3H, \(J = 7.1\) Hz), 2.44 (s, 3H), 3.31 (qd, 1H, \(J = 7.1, 3.96\) Hz), 3.72 (s, 3H), 4.06–4.19 (m, 2H), 4.84–4.89 (m, 1H), 5.55 (app do, 1H, \(J = 5.5, 2.2\) Hz), 5.72 (app. do, 1H, \(J = 5.5, 2.2\) Hz), 7.33 (app. d, 2H, \(J = 8.1\) Hz), 7.74 (app. d, 2H, \(J = 8.1\) Hz); \(^{13}\)C NMR (125 MHz, CD\(_3\)Cl) \(\delta\): 10.1, 21.5, 43.9, 51.8, 56.1, 67.9, 126.5, 126.8, 127.4, 129.8, 134.1, 143.6, 174.5; HRMS (ESI, +ve) \(m/z\) calcd. for C\(_{15}\)H\(_{20}\)NO\(_4\)S 310.113, found 310.1108 (M+H)

**Methyl 3-methyl-2-(1-tosyl-2,5-dihydro-1H-pyrrol-2-yl)butanoate 368**

\[\text{Me} \quad \text{N-Ts} \quad \text{Me} \quad \text{CO}_2\text{Me}\]

ant-i-(E)-Methyl 3-(N-allyl-4-methylphenylsulfonamido)-2-isopropylhex-4-enoate 347 (0.05 g, 0.13 mmol), catalytic Grubbs I and DCM (5 ml) were combined according to general procedure 6 (reaction time: 13 hours). Purification was achieved by the reported procedure to yield the methyl 3-methyl-2-(1-tosyl-2,5-dihydro-1H-pyrrol-2-yl)butanoate 368 as an amorphous white solid (0.04 g, 86%). FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 2994 (m), 2956 (m), 2878 (m), 1727 (s), 1598 (m); \(^1\)H NMR (500 MHz, CD\(_3\)Cl) \(\delta\): 0.86 (d, 3H, \(J = 6.0\) Hz), 1.10 (d, 3H, \(J = 6.0\) Hz), 1.96–2.06 (m, 1H), 2.42 (s, 3H), 3.03 (app. t, 1H, \(J = 6.0\) Hz), 3.72 (s, 3H), 4.08–4.18 (m, 2H), 4.68–4.73 (m, 1H), 5.66 (app. dq, 1H, \(J = 6.4, 2.1\) Hz), 5.86 (app. dq, 1H, \(J = 6.4, 2.1\) Hz), 7.31 (app. d, 2H, \(J = 8.1\) Hz), 7.70 (app. d, 2H, \(J = 8.1\) Hz); \(^{13}\)C NMR (125 MHz, CD\(_3\)Cl) \(\delta\): 20.0, 21.5, 22.7, 26.3, 51.2, 56.0, 67.6, 125.5, 127.5, 128.5, 129.7, 134.0, 143.6, 173.9; HRMS (ESI, +ve) \(m/z\) calcd. for C\(_{17}\)H\(_{24}\)NO\(_4\)S 338.1426, found 338.1426 (M+H)\(^+\).
Methyl 2-phenyl-2-(1-tosyl-2,5-dihydro-1H-pyrrol-2-yl)acetate 369

\[
\text{anti-}(E)-\text{Methyl }3-(N\text{-allyl-4-methylphenylsulfonamido)-2-phenylhex-4-enoate 333}
\]

(0.10 g, 0.24 mmol), catalytic Grubbs I and DCM (10 ml) were combined according to general procedure 6 (reaction time: 13 hours). Purification was achieved by the reported procedure to yield the methyl 2-phenyl-2-(1-tosyl-2,5-dihydro-1H-pyrrol-2-yl)acetate 369 as a white solid (0.08 g, 92%). M.p. 98–100 °C. FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 3024 (m), 2950 (m), 2931 (m), 1730 (s), 1657 (m), 1615 (m), 1596 (m), 1510 (m); \(^1\)H NMR (500 MHz, CD\(_3\)Cl) \(\delta\): 2.43 (s, 3H), 3.39–3.45 (m, 1H), 3.73 (s, 3H), 3.85 (app. \(\text{q}, J = 15.2, 2.1 \text{ Hz}\)), 4.48 (\(\text{d}, J = 4.4 \text{ Hz}\)), 5.06–5.06 (m, 1H), 5.43 (app. \(\text{dq}, J = 6.4, 2.0 \text{ Hz}\)), 5.80 (app. \(\text{dq}, J = 6.4, 2.0 \text{ Hz}\)), 7.23–7.30 (m, 5H), 7.32 (app. \(\text{dq}, 2H, J = 8.2 \text{ Hz}\)), 7.73 (app. \(\text{d}, J = 8.2 \text{ Hz}\)); \(^{13}\)C NMR (125 MHz, CD\(_3\)Cl) \(\delta\): 21.5, 52.0, 55.5, 56.2, 68.3, 129.9, 127.3 (x2), 127.6, 127.8, 129.8, 130.0, 134.0, 143.6, 172.9; HRMS (ESI, +ve) \(m/z\) calcd. for C\(_{20}\)H\(_{22}\)NO\(_4\)S 372.1269, found 372.1238 (M+H\(^+\)).

Methyl 2-(2-iodophenyl)-2-(1-tosyl-2,5-dihydro-1H-pyrrol-2-yl)acetate 370

\[
\text{anti-}(E)-\text{methyl }3-(N\text{-allyl-4-methylphenylsulfonamido)-2-(2-iodophenyl)hex-4-enoate 355}
\]

(0.09 g, 0.17 mmol), catalytic Grubbs I and toluene (5 ml) were combined according to general procedure 7 (reaction time: 5 hours). Purification was achieved by the reported procedure to yield the methyl 2-(2-iodophenyl)-2-(1-tosyl-2,5-dihydro-1H-pyrrol-2-yl)acetate 370 as a white solid (0.04 g, 51%). M.p. 186–188 °C; FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 3026 (m), 2952 (m), 2878 (m), 1728 (s), 1597 (m); \(^1\)H NMR (500 MHz, CD\(_3\)Cl) \(\delta\): 2.42 (s, 3H), 3.66–3.75 (m, 1H), 3.75 (s, 3H), 3.97 (app. \(\text{dq}, 1H, J = 15.7, 1.9 \text{ Hz}\)), 4.78 (d, 1H, \(J = 5.6 \text{ Hz}\)), 5.19–5.24 (m, 1H), 5.50–5.59 (m, 2H), 6.95
Methyl 2-(4-methoxyphenyl)-2-(1-tosyl-2,5-dihydro-1H-pyrrol-2-yl)acetate 371

\[
\text{anti-(E)-Methyl } 3-(N\text{-allyl-4-methylphenylsulfonamido)-2-(4-methoxyphenyl)hex-4-enoate 356 (0.05 g, 0.11 mmol), catalytic Grubbs I and DCM (5 ml) were combined according to general procedure 6 (reaction time: 13 hours). Purification was achieved by the reported procedure to yield the methyl 2-(4-methoxyphenyl)-2-(1-tosyl-2,5-dihydro-1H-pyrrol-2-yl)acetate 371 as a clear oil (0.04 g, 89%). FTIR (film/cm}^\text{−1}) \nu_{\text{max}}: 3035 (m), 2953 (m), 2884 (m), 1727 (s), 1597 (m), 1512 (m); ^1\text{H NMR (500 MHz, CD}_3\text{Cl}) \delta: 2.42 (s, 3H), 3.44 (dt, 1H, J = 15.0, 5.4, 2.0 Hz), 3.72 (s, 3H), 3.79 (s, 3H), 3.85 (app. dq, 1H, J = 15.0, 2.0 Hz), 4.42 (d, 1H, J = 4.3 Hz), 4.97–5.02 (m, 1H), 5.44 (app. dq, 1H, J = 6.4, 2.0 Hz), 5.80 (app. dq, 1H J = 6.4, 2.0 Hz), 6.82 (app. d, 2H, J = 8.6 Hz), 7.17 (app. d, 2H, J = 8.6 Hz), 7.31 (app. d, 2H, J = 8.6 Hz), 7.72 (app. d, 2H, J = 8.6 Hz); ^13\text{C NMR (125 MHz, CD}_3\text{Cl}) \delta: 21.5, 52.0, 55.1, 55.4, 55.5, 68.4, 113.3, 126.0, 127.0, 127.3, 127.6, 129.8, 131.1, 134.4, 143.6, 158.8, 173.1; HRMS (ESI, +ve) m/z calcd. for C_{22}H_{21}INO_{4}S 498.0235, found 498.0259 (M+H)^{+}.  

Methyl 2-(1-tosyl-2,5-dihydro-1H-pyrrol-2-yl)-2-(4-(trifluoromethyl)phenyl)acetate 372

\[
\text{anti-(E)-Methyl } 3-(N\text{-allyl-4-methylphenylsulfonamido)-2-(4-(trifluoromethyl) phenyl)hex-4-enoate 357 (0.05 g, 0.11 mmol), catalytic Grubbs I and DCM (5 ml) were} 
\]
combined according to general procedure 6 (reaction time: 13 hours). Purification was achieved by the reported procedure to yield the methyl 2-(1-tosyl-2,5-dihydro-1H-pyrrol-2-yl)-2-(4-(trifluoromethyl)phenyl)acetate 372 as a yellow solid (0.04 g, 91%). M.p. 114–115 °C; FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 3010 (m), 2948 (m), 2897 (m), 1730 (s), 1597 (m), 1504 (m); \(^1\)H NMR (500 MHz, CD\(_3\)Cl) \(\delta\): 2.44 (s, 3H, CH\(_3\)C\(_6\)H\(_5\)), 3.38 (ddt, 1H, \(J = 15.1, 5.4, 2.3\) Hz, -NCH\(_2\)HCH-), 3.74 (s, 3H, -CO\(_2\)CH\(_3\)), 3.84 (app. dq, 1H, \(J = 15.1, 2.3\) Hz, -NCH\(_2\)HCH-), 4.60 (d, 1H, \(J = 4.4\) Hz, -CHCO\(_2\)CH\(_3\)), 5.03–5.07 (m, 1H, -NCH\(_2\)(CH\(_3\))CH-), 5.48 (app. dq, 1H \(J = 6.5, 2.3\) Hz, -NCH\(_2\)CHCH-), 5.81 (app. dq, 1H \(J = 6.5, 2.3\) Hz, -NCH\(_2\)CHCH-), 7.33 (app. d, 2H, \(J = 8.2\) Hz, ArH Ts), 7.39 (app. d, 2H, \(J = 8.2\) Hz, ArH p-CF\(_3\)), 7.55 (app. d, 2H, \(J = 8.2\) Hz, ArH p-CF\(_3\)), 7.72 (app. d, 2H, \(J = 8.2\) Hz, ArH Ts); \(^{13}\)C NMR (125 MHz, CD\(_3\)Cl) \(\delta\): 21.5, 52.2, 55.5, 55.8, 68.2, 124.1 (q, \(J = 272.0\) Hz), 124.3 (q, \(J = 3.6\) Hz), 127.0, 127.3, 127.5, 129.6 (q, \(J = 32.6\) Hz), 129.9, 130.5, 134.0, 138.0, 143.9, 172.1; HRMS (ESI, +ve) \(m/z\) calced. for C\(_{21}\)H\(_{21}\)F\(_3\)NO\(_4\)S 440.1143, found 440.1140 (M+H\(^+\)).

**Methyl 2-(4-nitrophenyl)-2-(1-tosyl-2,5-dihydro-1H-pyrrol-2-yl)acetate 373**

![Chemical structure of Methyl 2-(4-nitrophenyl)-2-(1-tosyl-2,5-dihydro-1H-pyrrol-2-yl)acetate 373](image)

\(\text{anti-(E)-Methyl 3-} (N\text{-allyl-4-methylphenylsulfonamido})\text{-2-(4-nitrophenyl)hex-4-enoate 358} (0.03 \text{ g, 0.07 mmol), catalytic Grubbs I and DCM (5 ml) were combined according to general procedure 6 (reaction time : 13 hours). Purification was achieved by the reported procedure to yield the methyl 2-(4-nitrophenyl)-2-(1-tosyl-2,5-dihydro-1H-pyrrol-2-yl)acetate 373 as an off white solid (0.03 g, 96%). M.p. 178–180 °C; FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 3030 (m), 2954 (m), 1732 (s), 1599 (s), 1521 (s); \(^1\)H NMR (500 MHz, CD\(_3\)Cl) \(\delta\): 2.44 (s, 3H, 3.34–3.42 (m, 1H), 3.76 (s, 3H), 3.84 (app. d, 1H, \(J = 15.6\) Hz), 4.69 (d, 1H, \(J = 4.2\) Hz), 5.03–5.09 (m, 1H), 5.48–5.54 (m, 1H), 5.80–5.85 (m, 1H), 7.34 (app. d, 2H, \(J = 8.1\) Hz), 7.45 (app. d, 2H, \(J = 8.4\) Hz), 7.72 (app. d, 2H, \(J = 8.1\) Hz), 8.16 (app. d, 2H, \(J = 8.4\) Hz); \(^{13}\)C NMR (125 MHz, CD\(_3\)Cl) \(\delta\): 21.5, 52.4, 55.6, 55.7, 68.2, 122.8, 126.7, 127.4, 127.8, 129.9, 131.2, 133.7, 141.5, 144.0, 147.3, 171.6; HRMS (ESI, +ve) \(m/z\) calced. for C\(_{20}\)H\(_{21}\)N\(_2\)O\(_6\)S 417.1120, found 417.1123 (M+H\(^+\)).

250
Methyl 2-(2,4-dichlorophenyl)-2-(1-tosyl-2,5-dihydro-1H-pyrrol-2-yl)acetate 374

![Chemical Structure](image)

*anti-(E)*-Methyl 3-(N-allyl-4-methylphenylsulfonamido)-2-(2,4-dichlorophenyl)hex-4-enoate 359 (0.04 g, 0.08 mmol), catalytic Grubbs I and toluene (5 ml) were combined according to general procedure 7 (reaction time : 5 hours). Purification was achieved by the reported procedure to yield the methyl 2-(2,4-dichlorophenyl)-2-(1-tosyl-2,5-dihydro-1H-pyrrol-2-yl)acetate 374 as a white solid (0.03 g, 83%). M.p. 147–148 °C; FTIR (film/cm⁻¹) 𝜈ₘₐₓ: 3039 (m), 2953 (m), 2931 (m), 2876 (m), 1734 (s), 1589 (m), 1542 (w), 1524 (w); ¹H NMR (500 MHz, CDCl₃) δ: 2.43 (s, 3H), 3.52 (´´t, 1H, J = 15.4, 5.2, 2.2 Hz), 3.74 (s, 3H), 3.84 (app. ´q, 1H , J = 15.4, 2.2 Hz), 4.83 (´, 1H, J = 4.5 Hz), 5.14–5.23 (m, 1H), 5.50 (app. ´q, 1H J = 6.3, 2.2 Hz), 5.79 (app. dq, 1H J = 6.3, 2.2 Hz), 7.21 (d, 1H, J = 2.1 Hz), 7.29–7.36 (m, 3H), 7.38 (app. d, 1H, J = 2.1 Hz), 7.72 (app. d, 2H, J = 8.2 Hz); ¹³C NMR (125 MHz, CDCl₃) δ: 21.5, 52.3, 53.2, 55.4, 68.5, 126.6, 127.0, 127.2, 127.4, 129.7, 129.8, 131.1, 133.4, 133.9, 134.0, 135.7, 143.8, 171.8; HRMS (ESI, +ve) m/z calcd. for C₂₀H₂₀Cl₂NO₅S 440.0490, found 440.0686 (M+H)⁺.

Methyl 2-(2,4-dimethoxyphenyl)-2-(1-tosyl-2,5-dihydro-1H-pyrrol-2-yl)acetate 375

![Chemical Structure](image)

*anti-(E)*-methyl 3-(N-allyl-4-methylphenylsulfonamido)-2-(2,4-dimethoxyphenyl)hex-4-enoate 360 (0.07 g, 0.15 mmol), catalytic Grubbs I and toluene (5 ml) were combined according to general procedure 7 (reaction time : 5 hours). Purification was achieved by the reported procedure to yield the methyl 2-(2,4-dimethoxyphenyl)-2-(1-tosyl-2,5-dihydro-1H-pyrrol-2-yl)acetate 375 as a clear oil (0.06 g, 90%). FTIR (film/cm⁻¹) 𝜈ₘₐₓ: 3000 (m), 2950 (m), 2867 (m), 2840 (m), 1731 (s), 1611 (s), 1587 (s), 1542 (w), 1508
Methyl 2-(benzo[d][1,3]dioxol-5-yl)-2-(1-tosyl-2,5-dihydro-1H-pyrrol-2-yl)acetate

\[
\text{Methyl 2-(benzo[d][1,3]dioxol-5-yl)-2-(1-tosyl-2,5-dihydro-1H-pyrrol-2-yl)acetate}
\]

\[
\text{anti-(E)-Methyl 3-(N-allyl-4-methylphenylsulfonamido)-2-(benzo[d][1,3]dioxol-5-yl)hex-4-enoate 361 (0.05 g, 0.11 mmol), catalytic Grubbs I and DCM (5 ml) were combined according to general procedure 6 (reaction time : 5 hours). Purification was achieved by the reported procedure to yield methyl 2-(benzo[d][1,3]dioxol-5-yl)-2-(1-tosyl-2,5-dihydro-1H-pyrrol-2-yl)acetate 376 as a white solid (0.04 g, 89%). M.p. 134–136 °C; FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 2994 (m), 2946 (m), 2909 (m), 1728 (s), 1598 (m), 1504 (s); \(^1\)H NMR (500 MHz, CD\(_3\))Cl) \(\delta\): 2.43 (s, 3H), 3.56 (app. dt, 1H, \(J = 15.0, 5.3, 2.0\) Hz), 3.73 (s, 3H), 3.89 (app. dd, 1H, \(J = 15.0, 2.4\) Hz), 4.38 (d, 1H, \(J = 4.4\) Hz), 4.95–4.99 (m, 1H), 5.49 (app. dq, 1H, \(J = 6.3, 2.1\) Hz), 5.77 (app. dq, 1H, \(J = 6.3, 2.1\) Hz), 5.94 (app. d, 2H, \(J = 4.7\) Hz), 6.70–6.76 (m, 3H), 7.32 (app. d, 2H, \(J = 8.5\) Hz), 7.72 (app. d, 2H, \(J = 8.9\) Hz); \(^13\)C NMR (125 MHz, CD\(_3\))Cl) \(\delta\): 21.5, 52.1, 55.6, 55.8, 68.3, 101.0, 107.9, 110.1, 123.7, 127.0, 127.3, 127.6 (x2), 129.8, 134.2, 143.7, 146.9, 147.0, 172.9; HRMS (ESI, +ve) \(m/z\) calcd. for C\(_{22}\)H\(_{25}\)NNaO\(_6\)S 454.1300, found 454.1533 (M+Na\(^+\)).
(R)-methyl 2-phenyl-2-((R)-1-tosylpyrrolidin-2-yl)acetate 377

To a solution of methyl 2-phenyl-2-(1-tosyl-2,5-dihydro-1H-pyrrol-2-yl)acetate 369 (10.0 mg, 0.03 mmol, 1.0 eq.) in methanol (5 ml) was added Pd/C (1.00 mg, 2.00 × 10^(-4) mmol, 1 mol%) and the reaction mixture was allowed to stir at room temperature for 4 hours. The reaction mixture was filtered through a short pad of silica and concentrated in vacuo to yield (R)-methyl 2-phenyl-2-((R)-1-tosylpyrrolidin-2-yl)acetate 377 as an amorphous white solid (10.0 mg, 100%). FTIR (film/cm⁻¹) νmax: 3037 (m), 2952 (m), 2925 (m), 1731 (s), 1598 (m); ¹H NMR (500 MHz, CD₂Cl₂) δ: 0.81–0.96 (m, 1H), 1.14–1.25 (m, 1H), 1.53–1.65 (m, 1H), 1.69–1.80 (m, 1H), 2.45 (s, 3H), 3.00–3.13 (m, 1H), 3.74 (s, 3H), 4.26 (q, 1H, J = 4.7 Hz), 4.38 (d, 1H, J = 4.7 Hz), 7.28–7.39 (m, 7H), 7.78 (app. d, 2H, J = 8.2 Hz); ¹³C NMR (125 MHz, CD₂Cl₂) δ: 21.5, 23.6, 28.3, 49.1, 52.0, 55.4, 61.2, 127.6, 127.7, 128.4, 129.7 (× 2), 134.2, 134.9, 143.6, 173.2; HRMS (ESI, +ve) m/z calcd. for C₂₀H₂₄N₁O₄S₁ 374.1426, found 374.1469 (M+H)⁺.

anti-methyl 1-tosyl-1,2,8,8a-tetrahydroindeno[2,1-b]pyrrole-8-carboxylate 379

To a solution of Pd(OAc)₂ (3.00 mg, 0.01 mmol, 0.2 eq.), PPh₃ (3.67 mg, 0.01 mmol, 0.2 eq.), Ag₂CO₃ (29.1 mg, 0.11 mmol, 1.5 eq.) in MeCN was added methyl 2-(2-iiodophenyl)-2-(1-tosyl-2,5-dihydro-1H-pyrrol-2-yl)acetate 370 (35.0 mg, 0.07 mmol, 1.0 eq.). The reaction mixture was refluxed for 4 hours and then concentrated in vacuo and subjected to flash column chromatography using ethyl acetate/petroleum ether 40-60° (20:80) to yield anti-methyl 1-tosyl-1,2,8,8a-tetrahydroindeno[2,1-b]pyrrole-8-carboxylate 379 as an amorphous clear solid (22.0 mg, 84%). FTIR (film/cm⁻¹) νmax: 2958 (m), 2919 (m), 2849 (m), 1734 (s), 1597 (m); ¹H NMR (500 MHz, CD₂Cl₂) δ: 2.47
(anti,E)-methyl 2-allyl-3-(N-benzyl-4-methylphenylsulfonamido)hex-4-enoate 381

(0.02 g, 0.05 mmol), catalytic Grubbs I and DCM (5 ml) were combined according to general procedure 6 (reaction time: 12 hours). Purification was achieved by the reported procedure to yield anti-methyl 2-(N-benzyl-4-methylphenylsulfonamido)cyclopent-3-enecarboxylate 382 as a clear oil (0.02 g, 85%).

FTIR (film/cm⁻¹) ν_max: 3031 (m), 2952 (m), 2925 (m), 1731 (s), 1598 (m); ¹H NMR (500 MHz, CDCl₃) δ: 2.34–2.51 (m, 2H, -C₆H₄CH(CH-)CO₂Me), 2.45 (s, 3H, -C₆H₄CH₃), 2.77 (dt, 1H, J = 9.1, 4.9 Hz, -CH₂CH(CH-)CO₂Me), 3.66 (s, 3H, -CO₂CH₃), 4.18 (d, 1H, J = 16.1 Hz, -N(Ts)CHHPh), 4.49 (d, 1H, J = 16.1 Hz, -N(Ts)CHHPh), 5.19–5.26 (m, 1H, NCH(CHCO₂Me)CH-), 5.33–5.39 (m, 1H, NCH(CHCO₂Me)CH-), 5.75–5.82 (m, 1H, NCH(CHCO₂Me)CHCH), 7.22–7.37 (m, 7H, ArH), 7.73 (app. d, 2H, J = 8.2 Hz, ArH, Ts); ¹³C NMR (125 MHz, CDCl₃) δ: 21.5, 35.9, 46.7, 48.2, 52.1, 68.0, 127.3, 127.4, 127.8, 128.3, 128.4, 129.7, 133.9, 137.5, 138.1, 143.3, 174.9; HRMS (ESI, +ve) m/z calcd. for C₁₂H₂₃N₁Na₁O₄S₁ 408.1245, found 408.1401 (M+Na)⁺.
6.3.6 SKA Precursors & Products

Phenyl-acetic acid methyl ester 158

![Phenyl-acetic acid methyl ester](image)

EDCi (1.40 g, 7.30 mmol) in DCM (200 ml), triethylamine (1.02 ml, 7.30 mmol), DMAP (0.05 g, 0.37 mmol), phenylacetic acid (1.00 g, 7.30 mmol) and methanol (3.02 ml, 3.65 mmol) in DCM (50 ml) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure and further purification by column chromatography using gradient elution ethyl acetate/petroleum ether 40-60° (5–15 %) yielded phenyl-acetic acid methyl ester 158 as a pale yellow oil (1.10 g, 100%). FTIR (film/cm⁻¹) v_max: 3032 (m), 2953 (s), 1734 (s), 1603 (s); ¹H NMR (250 MHz, CDCl₃) δ: 3.68 (s, 2H), 3.74 (s, 3H), 7.25–7.49 (m, 5H); ¹³C NMR (63 MHz, CDCl₃) δ: 41.2, 52.0, 127.1, 128.6, 129.2, 134.0, 172.0; HRMS (ESI, +ve) m/z calc. for C₉H₁₁O₂ 151.0759, found 151.0769 (M+H)⁺.

Phenyl-acetic acid isopropyl-2-d₄ ester ²H₁-239

![Phenyl-acetic acid isopropyl-2-d₄ ester](image)

EDCi (1.24 g, 6.47 mmol) in DCM (200 ml), triethylamine (0.91 ml, 6.47 mmol), DMAP (0.04 g, 0.32 mmol), phenyl-acetic acid (0.89 g, 6.47 mmol) and 2-propanol-2-d₄ (0.20 g, 3.23 mmol) as a solution in DCM (30 mL) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to yield phenyl-acetic acid isopropyl-2-d₄ ester ²H₁-239 as a yellow oil (0.46 g, 76%). FTIR (film/cm⁻¹) v_max: 3032 (m), 2976 (m), 1734 (s), 1603 (s); ¹H NMR (250 MHz, CDCl₃) δ: 1.26 (s, 6H), 3.62 (s, 2H), 7.25–7.49 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ: 20.3, 41.8, 67.8 (t, J = 24.3 Hz), 127.0, 128.5, 129.2, 134.4, 171.1; HRMS (GC-EI, +ve) m/z calcd. for C₁₁H₁₇DO₂N₁ 197.1395, found 197.1391 (M+NH₄)⁺.
**Experimental**

13C2-Phenyl-acetic acid isopropyl-\(\text{D}^1\)-ester 2H1-13C2-239

![Chemical structure](image)

EDCi (0.28 g, 1.44 mmol) in DCM (100 ml), triethylamine (0.20 ml, 1.44 mmol), DMAP (0.01 g, 0.07 mmol), 13C2-phenyl-acetic acid (0.20 g, 1.44 mmol) and d1-isopropanol (0.04 ml, 0.72 mmol) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure, with an additional chloroform (20 ml) trituration to afford 13C2-phenyl-acetic acid isopropyl-d1-ester 2H1-13C2-239 as a yellow oil (0.09 g, 34%). FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 2978 (m), 2934 (m), 1686 (s), 1496 (m); 1H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 1.28 (s, 6H), 3.64 \((\text{br}, 2\text{H}, J = 129.8, 7.6 \text{Hz}), 7.27-7.42 \text{(m, 5H)}\); 13C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 21.6 \((\text{br}, J = 2.0 \text{Hz})\), 41.8 \((d, J = 57.2 \text{Hz})\), 67.8 \((\text{dd}, J = 23.5, 2.5 \text{Hz})\), 126.9, 128.5 \((d, J = 4.1 \text{Hz})\), 129.2 \((t, J = 2.0 \text{Hz})\), 134.4 \((\text{dd}, J = 43.9, 3.0 \text{Hz})\), 171.1 \((d, J = 57.2 \text{Hz})\); HRMS (ESI, +ve) \(m/z\) calcd. for C\(_{11}\)H\(_{17}\)D\(_1\)N\(_1\)O\(_2\) 223.1556, found 223.1797 (M+ACN+H\(^+\)).

(1-d1-Isopropoxy-2-phenyl-E-vinloxy)-trimethyl-silane (E)-2H1-240

![Chemical structure](image)

LiHMDS (0.47 ml, 0.47 mmol, 1M in THF), TMSCl (0.10 ml, 1.68 mol) and phenyl-acetic acid isopropyl-2-d1 ester 2H1-239 (0.05 g, 0.28 mmol) were combined according to general procedure 9c and purification was achieved by reported procedure to afford (1-d1-isopropoxy-2-phenyl-E-vinloxy)-trimethyl-silane \((E)-2^1\text{H}_1\)-240 as a yellow oil (0.05 g, 82%, \(E/Z > 100:1\)). 1H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 0.31 (s, 9H), 1.29 (s, 6H), 2.29 (s, 3H), 4.72 (s, 1H), 7.04 \((\text{app. d}, 2\text{H}, J = 7.8 \text{Hz})\), 7.36 \((\text{app. d}, 2\text{H}, J = 7.8 \text{Hz})\); 13C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 5.5, 21.0, 22.2, 69.2 \((t, J = 22.3 \text{Hz})\), 88.1, 126.5, 128.7, 133.1, 134.0, 153.0. IR and HRMS not obtainable. Data in accordance with related non-deuterated analogue.\(^{152}\)

256
(4-Methoxy-phenyl)-acetic acid isopropyl-2-d$_1$ ester $^2$H$_1$-241

![Chemical structure](image)

EDCi (1.24 g, 6.47 mmol) in DCM (200 ml), triethylamine (0.91 ml, 6.47 mmol), DMAP (0.04 g, 0.32 mmol), (4-methoxy-phenyl)-acetic acid (1.08 g, 6.47 mmol) and 2-propanol-2-d$_1$ (0.20 g, 3.23 mmol) as a solution in DCM (30 mL) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to yield (4-methoxy-phenyl)-acetic acid isopropyl-2-d$_1$ ester $^2$H$_1$-241 as a yellow oil (0.68 g, 100%). FTIR (film/cm$^{-1}$) $\nu_{max}$: 2979 (m), 2934 (m), 2837 (m), 1723 (s), 1613 (w), 1512 (s); $^1$H NMR (250 MHz, CDCl$_3$) $\delta$: 1.22 (s, 6H), 3.51 (s, 2H), 3.78 (s, 3H), 6.85 (app. $\delta$, 2H, $J = 8.8$ Hz), 7.19 (app. $\delta$, 2H, $J = 8.8$ Hz); $^{13}$C NMR (63 MHz, CDCl$_3$) $\delta$: 21.7, 40.8, 55.2, 67.7 (t, $J = 24.2$ Hz), 113.9, 126.4, 130.2, 158.6, 171.5; HRMS (GC-EI, +ve) m/z calcd. for C$_{12}$H$_{10}$D$_{11}$O$_3$N$_1$ 227.1500, found 227.1499 (M+NH$_4$)$^+$.  

$p$-Tolyl-acetic acid isopropyl-2-d$_1$ ester $^2$H$_1$-242

![Chemical structure](image)

EDCi (1.24 g, 6.47 mmol) in DCM (200 ml), triethylamine (0.91 ml, 6.47 mmol), DMAP (0.04 g, 0.33 mmol), $p$-tolyl-acetic acid (0.98 g) and 2-propanol-2-d$_1$ (0.20 g, 3.23 mmol) as a solution in DCM (30 mL) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure to yield $p$-tolyl-acetic acid isopropyl-2-d$_1$ ester $^2$H$_1$-242 as a yellow oil (0.63 g, 100%). FTIR (film/cm$^{-1}$) $\nu_{max}$: 2979 (m), 2932 (m), 2837 (m), 1720 (s), 1516 (m); $^1$H NMR (250 MHz, CDCl$_3$) $\delta$: 1.23 (s, 6H), 2.34 (s, 3H), 3.55 (s, 2H), 7.07–7.23 (m, 4H); $^{13}$C NMR (75 MHz, CDCl$_3$) $\delta$: 21.1, 21.7, 41.3, 67.7 (t, $J = 23.2$ Hz), 129.1, 129.2, 131.3, 136.5, 171.3; HRMS (GC-EI, +ve) m/z calcd. for C$_{12}$H$_{10}$D$_{11}$O$_3$N$_1$ 211.1551, found 211.1551 (M+NH$_4$)$^+$.  

257
(4-Trifluoromethyl-phenyl)-acetic acid isopropyl-2-d \textsuperscript{2}H \textsubscript{1}-243

![Chemical structure](image)

EDCi (1.24 g, 6.47 mmol) in DCM (200 ml), triethylamine (0.91 ml, 6.47 mmol),
DMAP (0.04 g, 0.32 mmol), (4-trifluoromethyl-phenyl)-acetic acid (1.33 g, 6.47 mmol)
and 2-propanol-2-d\textsubscript{1} (0.20 g, 3.23 mmol) as a solution in DCM (30 mL) were combined
according to general procedure 1 (reaction time: 15 hours). Purification was achieved by
reported procedure to yield (4-trifluoromethyl-phenyl)-acetic acid isopropyl-2-d\textsubscript{1} ester
\textsuperscript{2}H \textsubscript{1}-243 as a yellow amorphous solid (0.67 g, 83%). FTIR (film/cm\textsuperscript{-1}) \(\nu_{\text{max}}\): 2980 (m),
2937 (m), 1732 (s), 1620 (m); \textsuperscript{1}H NMR (250 MHz, CDCl\textsubscript{3}) \(\delta\): 1.22 (s, 6H), 3.63 (s, 2H),
7.39 (app. d, \(J = 8.0\) Hz), 7.52 (app. d, \(J = 8.0\) Hz); \textsuperscript{13}C NMR (75 MHz, CDCl\textsubscript{3}) \(\delta\): 22.0,
41.8, 68.7 (t, \(J = 24.2\) Hz), 124.6 (q, \(J = 272\) Hz), 125.8 (q, \(J = 3.8\) Hz), 129.7 (q, \(J =
32.0\) Hz), 130.0, 138.9, 170.7; HRMS (GC-EI, +ve) \textit{m/z} calcd. for C\textsubscript{12}H\textsubscript{12}D\textsubscript{1}F\textsubscript{3}O\textsubscript{2}
247.0925, found 247.0925 (M\textsuperscript{+}).

(4-Nitro-phenyl)-acetic acid isopropyl-2-d\textsubscript{1} ester \textsuperscript{2}H \textsubscript{1}-244

![Chemical structure](image)

EDCi (1.24 g, 6.47 mmol) in DCM (200 ml), triethylamine (0.91 ml, 6.47 mmol),
DMAP (0.04 g, 0.65 mmol), (4-nitro-phenyl)-acetic acid (1.18 g, 6.47 mmol) and 2-
propanol-2-d\textsubscript{1} (0.20 g, 3.23 mmol) as a solution in DCM (30 mL) were combined
according to general procedure 1 (reaction time: 15 hours). Purification was achieved by
reported procedure to yield (4-nitro-phenyl)-acetic acid isopropyl-2-d\textsubscript{1} ester \textsuperscript{2}H \textsubscript{1}-244 as
an orange/red oil (0.73 g, 100%). FTIR (film/cm\textsuperscript{-1}) \(\nu_{\text{max}}\): 3081 (m), 2979 (m), 2934 (m),
1726 (s), 1601 (w), 1518 (s); \textsuperscript{1}H NMR (250 MHz, CDCl\textsubscript{3}) \(\delta\): 1.21 (s, 6H), 3.68 (s, 2H),
7.44 (app. d, 2H, \(J = 8.7\) Hz), 8.17 (app. d 2H, \(J = 8.7\) Hz); \textsuperscript{13}C NMR (63 MHz, CDCl\textsubscript{3})
\(\delta\): 21.6, 41.4, 68.6 (t, \(J = 22.4\) Hz), 123.7, 130.2, 141.7, 147.2, 169.7; HRMS (GC-EI, -
ve) \textit{m/z} calcd. for C\textsubscript{11}H\textsubscript{13}D\textsubscript{1}N\textsubscript{1}O\textsubscript{4} 223.0835, found 223.0836 (M-H\textsuperscript{+}).
**Experimental**

**tert-Butyl 2-(4-methoxyphenyl)acetate 252**

To a solution of DCC (2.75 g, 13.3 mmol, 2.0 eq.) in DCM (100 ml) at 0 °C was added DMAP (0.16 g, 1.33 mmol, 0.2 eq.) and (4-methoxy-phenyl)-acetic acid (1.11 g, 6.66 mmol, 1.0 eq.). To the resulting suspension was then added tert-butyl alcohol (33.3 mmol, 5.0 eq.). The reaction mixture was allowed to stir whilst slowly warming to room temperature over 15 hours. The reaction was concentrated in vacuo, washed with ether (150 ml), filtered through celite, washed with 1N NaOH (100 ml), washed with 1N HCl (100 ml), dried over magnesium sulfate, concentrated in vacuo and subjected to purification by preparative HPLC (acetonitrile/water with 3% trifluoroacetic acid) to afford tert-butyl 2-(4-methoxyphenyl)acetate 252 as a yellow oil (0.57 g, 42%). FTIR (film/cm⁻¹) νmax: 2978 (s), 2934 (m), 2836 (m), 1732 (s), 1613 (s), 1513 (s); ¹H NMR (300 MHz, CDCl₃) δ: 1.35 (s, 9H), 3.37 (s, 2H), 3.70 (s, 3H), 6.71 (app. d 2H, J = 8.7 Hz), 7.10 (app. d 2H, J = 8.7 Hz); ¹³C NMR (63 MHz, CDCl₃) δ: 28.0, 41.7, 55.2, 80.7, 113.9, 126.8, 130.2, 158.5, 171.3; HRMS (GC-EI, +ve) m/z calcd. for C₁₃H₂₂O₃Ni 240.1594, found 240.1594 (M+NH₄)⁺.

**tert-Butyl 2-p-tolylacetate 253**

To a solution of DCC (2.75 g, 13.3 mmol, 2.0 eq.) in DCM (100 ml) at 0 °C was added DMAP (0.16 g, 1.33 mmol, 0.2 eq.) and p-tolyl-acetic acid (1.00 g, 6.66 mmol, 1.0 eq.). To the resulting suspension was then added tert-butyl alcohol (2.47 g, 33.3 mmol, 5.0
eq.). The reaction mixture was allowed to stir whilst slowly warming to room temperature over 15 hours. The reaction was concentrated in vacuo, washed with ether (150 ml), filtered through celite, washed with 1N NaOH (100 ml), washed with 1N HCl (100 ml), dried over magnesium sulfate, concentrated in vacuo and subjected to purification by preparative HPLC (acetonitrile/water with 3% trifluoroacetic acid) to afford tert-butyl 2-p-tolyacetate 253 as a yellow oil (0.45 g, 33%). FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 2978(m), 2928 (m), 1734 (s), 1515 (s);

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\): 1.39 (s, 9H), 2.26 (s, 3H), 3.41 (s, 2H), 7.00–7.11 (m, 4H);

\(^{13}\)C NMR (63 MHz, CDCl\(_3\)) \(\delta\): 21.1, 28.1, 42.2, 80.7, 129.1, 129.2, 131.7, 136.4, 171.2; HRMS (GC-EI, +ve) \(m/z\) calcd. for C\(_{13}\)H\(_{22}\)O\(_2\)N\(_1\) 224.1645, found 224.1644 (M+NH\(_4\))^+.

**tert-Butyl 2-(4-nitrophenyl)acetate 254**

[Diagram of tert-Butyl 2-(4-nitrophenyl)acetate]

EDCI (5.17 g, 27.07 mmol) in DCM (400 ml), triethylamine (3.75 ml, 22.07 mmol), DMAP (0.08 g, 1.35 mmol), (4-nitro-phenyl)-acetic acid (4.89 g, 27.07 mmol) and tert-butyl alcohol (1.00 g, 13.54 mmol) as a solution in DCM (30 mL) were combined according to general procedure 1 (reaction time: 15 hours). The reaction was concentrated in vacuo, washed with ether (150 ml), filtered through celite, washed with 1N NaOH (100 ml), washed with 1N HCl (100 ml), dried over magnesium sulfate, concentrated in vacuo and subjected to purification by preparative HPLC (acetonitrile/water with 3% trifluoroacetic acid) to afford tert-butyl 2-(4-nitrophenyl)acetate 254 as a yellow oil (1.01 g, 31%). FTIR (film/cm\(^{-1}\)) \(\nu_{\text{max}}\): 3084 (w), 2981 (m), 2932 (m), 1728 (s), 1606 (w), 1519 (s); \(^1\)H NMR (250 MHz, CDCl\(_3\)) \(\delta\): 1.43 (s, 9H), 3.63 (s, 2H), 7.34 (app. d, 2H, \(J = 8.8\) Hz), 8.18 (app. d, 2H, \(J = 8.8\) Hz); \(^{13}\)C NMR (63 MHz, CDCl\(_3\)) \(\delta\): 28.2, 42.5, 81.9, 123.8, 130.3, 142.2, 147.2, 169.5; HRMS (ESI, -ve) \(m/z\) calcd. for C\(_{12}\)H\(_{14}\)N\(_1\)O\(_4\) 236.0928, found 236.0927 (M-H)^-.
**t**ert-Butyl 2-phenylacetate 261

Utilising a protocol reported by Hofmann.\textsuperscript{189} To a solution of DCC (8.32 g, 40.4 mmol, 1.1 eq.) in DCM (200 mL) at 0 °C was added DMAP (3.58 g, 29.4 mmol, 0.8 eq.) and phenylacetic acid (5.00 g, 36.8 mmol, 1 eq.). To the resulting suspension was then added tert-butyl alcohol (8.20 g, 110 mmol, 3 eq.). The reaction mixture was allowed to stir whilst slowly warming to room temperature over 15 hours. The reaction was concentrated in vacuo, washed with ether (150 ml), filtered through celite, washed with 1N NaOH (100 ml), washed with 1N HCl (100 ml), dried over magnesium sulfate, concentrated in vacuo and subjected to column chromatography using gradient elution ethyl acetate/petroleum ether 40-60° (5–10 %) to yield tert-butyl 2-phenylacetate as a pale yellow oil (4.90 g, 70%). FTIR (film/cm\textsuperscript{-1}) \( \nu_{\text{max}} \): 3032 (m), 2979 (m), 2933 (m), 1729 (s), 1604 (s), 1497 (s); \textsuperscript{1}H NMR (250 MHz, CDCl\textsubscript{3}) \( \delta \): 1.47 (s, 9H), 3.56 (s, 3H), 7.23–7.42 (m, 5H); \textsuperscript{13}C NMR (63 MHz, CDCl\textsubscript{3}) \( \delta \): 28.0, 42.7, 80.8, 126.8, 128.4, 129.2, 134.7, 170.9; HRMS (ESI, +ve) \textit{m/z} calcd. for C\textsubscript{12}H\textsubscript{16}NaO\textsubscript{2} 215.1047, found 215.1042 (M+Na\textsuperscript{+}).

**{(1-Methoxy-2-phenyl-\textit{E}-vinyloxy)}-trimethyl-silane (\textit{E})-\textsuperscript{2}H\textsubscript{1}-262**

LHMDS (0.57 ml, 0.57 mmol, 1M in THF), TMSCl (0.25 ml, 2.00 mmol) and phenylacetic acid methyl ester 158 (50 mg, 0.33 mmol) were combined according to general procedure 9c and purification was achieved by reported procedure to afford (1-methoxy-2-phenyl-\textit{E}-vinyloxy)-trimethyl-silane (\textit{E})-\textsuperscript{2}H\textsubscript{1}-262 as a yellow oil (0.06 g, 80%, \( E/Z = 67:1 \)). \textsuperscript{1}H NMR (400 MHz, CDCl\textsubscript{3}) \( \delta \): 0.38 (s, 9H), 3.76 (s, 3H), 4.74 (s, 1H), 7.01–7.13 (m), 7.21–7.36 (m, 2H), 7.40–7.51 (m, 2H). \textsuperscript{13}C NMR (100 MHz,
Chapter 6  Experimental

CDCl$_3$ δ: 0.0, 54.2, 86.0, 124.2, 126.9, 128.5, 136.9, 155.0. IR and HRMS not obtainable. Spectral data in accordance with literature.$^{190}$

(1-tert-Butoxy-2-phenyl-$E$-vinyloxy)-trimethyl-silane ($E$)-$^2$H$_1$-263

LiHMDS (0.44 ml, 0.44 mmol, 1M in THF), TMSCI (0.20 ml, 1.56 mmol) and tert-butyl 2-phenylacetate 261 (0.05 g, 0.26 mmol) were combined according to general procedure 9c and purification was achieved by reported procedure to afford (1-tert-butoxy-2-phenyl-$E$-vinyloxy)-trimethyl-silane ($E$)-$^2$H$_1$-263 as a yellow oil (0.05 g, 76%, $E/Z$ = 34:1). $^1$H NMR (400 MHz, CDCl$_3$) δ: 0.39 (s, 9H), 1.51 (s, 9H), 4.90 (s, 1H), 7.09 (app. t 1H, $J$ = 7.7 Hz), 7.26–7.32 (m, 2H), 7.53 (app. t, 2H, $J$ = 8.1 Hz). $^{13}$C NMR (100 MHz, CDCl$_3$) δ: 0.1, 29.4, 80.3, 91.7, 124.0, 126.8, 128.0, 137.1, 153.6. IR and HRMS not obtainable. Data for $E$-SKA in accordance with literature, however $Z$-SKA is not, see NOE spectral assignments of similar compound in appendix.$^{119}$

6.3.7 Isolated Arylacetate Degradation Products

Methyl 2-(2-methoxyphenyl)acetate 181

Methyl 2-(2-methoxyphenyl)acetate 181 obtained as a yellow oil. $^1$H NMR (500 MHz, CDCl$_3$) δ: 3.67 (s, 2H), 3.71 (s, 3H), 3.84 (s, 3H), 6.90 (app. d, 1H, $J$ = 7.7 Hz), 6.95 (app. t, 1H, $J$ = 7.7 Hz), 7.21 (app. td, 1H, $J$ = 7.7 Hz), 7.28 (app. t, 1H, $J$ = 7.7 Hz); $^{13}$C NMR (125 MHz, CDCl$_3$) δ: 35.7, 51.9, 55.5, 110.5, 120.5, 123.0, 128.6, 130.9, 157.5, 172.3. All analytical data in accordance with literature values.$^{191}$
Methyl 2-(3-methoxyphenyl)acetate 182

Methyl 2-(3-methoxyphenyl)acetate 182 obtained as a yellow oil. $^1$H NMR (500 MHz, CDCl$_3$) δ: 3.62 (s, 2H), 3.71 (s, 3H), 3.82 (s, 3H), 6.81–6.91 (m, 3H), 7.25 (t, 1H, $J = 7.5$ Hz); $^{13}$C NMR (125 MHz, CDCl$_3$) δ: 41.2, 52.0, 55.1, 112.6, 114.9, 121.6, 129.6, 135.4, 159.7, 171.9. All analytical data in accordance with literature values.$^{192}$

(4-Methoxy-phenyl)-acetic acid methyl ester 183

EDCi (1.24 g, 6.47 mmol) in DCM (200 ml), triethylamine (0.91 ml, 6.47 mmol), DMAP (0.04 g, 0.32 mmol), (4-methoxy-phenyl)-acetic acid (1.09 g, 6.47 mmol) and methanol (0.27 ml, 3.23 mmol) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure and further purification by column chromatography using gradient elution ethyl acetate/petroleum ether 40-60° (5–15 %) yielded (4-methoxy-phenyl)-acetic acid methyl ester 183 as a clear oil (0.50 g, 84%). FTIR (film/cm$^{-1}$) $\nu_{\text{max}}$: 3000 (m), 2953 (m), 2838 (m), 1733 (s), 1612 (m), 1512 (s); $^1$H NMR (250 MHz, CDCl$_3$) δ: 3.57 (s, 2H), 3.69 (s, 3H), 3.79 (s, 3H), 6.86 (app. d, 2H, $J = 8.54$ Hz), 7.20 (app. d, 2H, $J = 8.54$ Hz); $^{13}$C NMR (63 MHz, CDCl$_3$) δ: 40.3, 52.0, 55.3, 114.0, 126.1, 130.3, 158.7, 172.4; HRMS (ESI, +ve) $m/z$ calcd. for C$_{10}$H$_{16}$O$_3$N$_1$ 198.1125, found 198.1121 (M+NH$_4$)$^+$. 

263
Methyl 2-(o-tolyl)acetate 184

Methyl 2-(o-tolyl)acetate 184 obtained as a yellow oil. $^1$H NMR (500 MHz, CDCl$_3$) δ: 2.34 (s, 3H), 3.67 (s, 2H), 3.71 (s, 3H), 7.14–7.25 (m, 4H); $^{13}$C NMR (125 MHz, CDCl$_3$) δ: 19.6, 39.0, 52.0, 126.1, 127.4, 130.2, 130.4, 132.7, 136.9, 172.0. All analytical data in accordance with literature values.$^{193}$

Methyl 2-(m-tolyl)acetate 185

Methyl 2-(m-tolyl)acetate 185 obtained as a yellow oil. $^1$H NMR (500 MHz, CDCl$_3$) δ: 2.36 (s, 3H), 3.61 (s, 2H), 3.71 (s, 3H), 7.07–7.13 (m, 3H), 7.23 (app. t, 1H, $J = 7.6$ Hz); $^{13}$C NMR (125 MHz, CDCl$_3$) δ: 21.4, 41.2, 52.0, 126.3, 127.9, 128.5, 130.0, 133.9, 138.2, 172.2. All analytical data in accordance with literature values.$^{194}$

$p$-Tolyl-acetic acid methyl ester 186

EDCi (1.24 g, 6.47 mmol) in DCM (200 ml), triethylamine (0.91 ml, 6.47 mmol), DMAP (0.04 g, 0.32 mmol), $p$-tolyl acetic acid (0.98 g, 6.47 mmol) and methanol (0.27 ml, 3.23 mmol) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure and further purification by column chromatography using gradient elution ethyl acetate/petroleum ether 40-60° (5–15 %) yielded $p$-tolyl-acetic acid methyl ester 186 as an orange oil (0.43 g, 80%). FTIR (film/cm$^{-1}$) $\nu_{\max}$: 3004 (m), 2952 (s), 2924 (m), 1735 (s); $^1$H NMR (250 MHz, CDCl$_3$) δ: 2.35 (s, 3H), 3.60 (s, 2H), 3.70 (s, 3H), 7.11–7.22 (m, 4H); $^{13}$C NMR (63 MHz, CDCl$_3$)
Methyl 2-(2-nitrophenyl)acetate 187

Methyl 2-(2-nitrophenyl)acetate 187 obtained as a yellow oil. $^1$H NMR (500 MHz, CDCl$_3$) $\delta$: 3.78 (s, 3H), 4.05 (s, 2H), 7.37 (app. d, 1H, $J = 7.8$ Hz), 7.49 (app. t, 1H, $J = 7.8$ Hz), 7.62 (app. t, 1H, $J = 7.8$ Hz), 8.14 (app. d, 1H, $J = 7.8$ Hz); $^{13}$C NMR (125 MHz, CDCl$_3$) $\delta$: 39.6, 52.3, 125.3, 128.6, 129.7, 133.3, 133.6, 148.9, 170.4. All analytical data in accordance with literature values.$^{195}$

Methyl 2-(3-nitrophenyl)acetate 188

Methyl 2-(3-nitrophenyl)acetate 188 obtained as a yellow oil. $^1$H NMR (500 MHz, CDCl$_3$) $\delta$: 3.74 (s, 3H), 3.76 (s, 2H), 7.54 (app. t, 1H, $J = 8.0$ Hz), 7.64 (app. d, 1H, $J = 8.0$ Hz), 8.13–8.20 (m, 2H); $^{13}$C NMR (125 MHz, CDCl$_3$) $\delta$: 40.5, 52.4, 122.3, 124.4, 129.5, 135.6, 135.8, 148.3, 170.8. All analytical data in accordance with literature values.$^{196}$

(4-Nitro-phenyl)-acetic acid methyl ester 189

EDCi (1.24 g, 6.47 mmol) in DCM (200 ml), triethylamine (0.91 ml, 6.47 mmol), DMAP (0.04 g, 0.32 mmol), 4-nitro-phenyl)-acetic acid (1.20 g, 6.47 mmol) and methanol (0.27 ml, 3.23 mmol) were combined according to general procedure 1 (reaction time: 15 hours). Purification was achieved by reported procedure and further
purification by column chromatography using gradient elution ethyl acetate/petroleum ether 40-60° (5–15 %) yielded (4-nitro-phenyl)-acetic acid methyl ester 189 as an amorphous solid (0.53 g, 84%). FTIR (film/cm$^{-1}$) $\nu_{\text{max}}$: 2994 (m), 2955 (m), 1736 (s), 1607 (m), 1515 (s); $^1$H NMR (250 MHz, CDCl$_3$) $\delta$: 3.72 (s, 3H), 3.74 (s, 2H), 7.46 (app.$\ddot{ }$, 2H, $J = 8.79$ Hz), 8.19 (app.$\ddot{ }$, 2H, $J = 8.79$ Hz); $^{13}$C NMR (75 MHz, CDCl$_3$) $\delta$: 40.9, 52.6, 124.0, 130.7, 141.9, 147.4, 171.0; HRMS (GC-EI, +ve) $m/z$ calc. for C$_9$H$_9$N$_1$O$_4$ 195.0526, found 195.0526 (M)$^+$. 

**Methyl 2-(4-(dimethylamino)phenyl)acetate 224**

![Methyl 2-(4-(dimethylamino)phenyl)acetate](image)

Methyl 2-(4-(dimethylamino)phenyl)acetate 224 as a brown solid. M.p. 54–57 °C; $^1$H NMR (500 MHz, CDCl$_3$) $\delta$: 2.94 (s, 6H), 3.54 (s, 2H), 3.69 (s, 3H), 6.71 (app.$\ddot{ }$, 2H, $J = 8.4$ Hz), 7.16 (app.$\ddot{ }$, 2H, $J = 8.4$ Hz); $^{13}$C NMR (125 MHz, CDCl$_3$) $\delta$: 40.2, 40.6, 51.9, 112.7, 121.8, 129.9, 149.8, 172.7. All analytical data in accordance with literature values.$^{197}$

**Methyl 2-(4-iodophenyl)acetate 225**

![Methyl 2-(4-iodophenyl)acetate](image)

Methyl 2-(4-iodophenyl)acetate 225 obtained as a yellow oil. $^1$H NMR (500 MHz, CDCl$_3$) $\delta$: 3.58 (s, 2H), 3.71 (s, 3H), 7.04 (app. d, 2H, $J = 8.0$ Hz), 7.66 (app. d, 1H, $J = 8.0$ Hz); $^{13}$C NMR (125 MHz, CDCl$_3$) $\delta$: 40.6, 52.2, 92.6, 131.3, 133.6, 137.7, 171.5. All analytical data in accordance with literature values.$^{198}$
**Methyl 2-(4-fluorophenyl)acetate 226**

![Structure](image)

Methyl 2-(4-fluorophenyl)acetate 226 obtained as a yellow oil. $^1$H NMR (500 MHz, CDCl$_3$) δ: 3.60 (s, 2H), 3.69 (s, 3H), 6.98–7.04 (m, 2H), 7.21–7.27 (m, 2H); $^{13}$C NMR (125 MHz, CDCl$_3$) δ: 40.2, 52.0, 115.4 (J, $J_1$ = 21.3 Hz), 129.6 (J, $J_2$ = 3.3 Hz), 130.8 (J, $J_3$ = 7.9 Hz), 161.5 (J, $J_4$ = 244 Hz), 171.9. All analytical data in accordance with literature values. 199

**Methyl 2-(4-chlorophenyl)acetate 227**

![Structure](image)

Methyl 2-(4-chlorophenyl)acetate 227 obtained as a yellow oil. $^1$H NMR (500 MHz, CDCl$_3$) δ: 3.61 (s, 2H), 3.71 (s, 3H), 7.22 (app. s, 2H, $J_1$ = 8.4 Hz), 7.31 (app. d, 1H, $J_2$ = 8.4 Hz); $^{13}$C NMR (125 MHz, CDCl$_3$) δ: 40.4, 52.1, 128.7, 130.6, 132.4, 133.1, 171.6. All analytical data in accordance with literature values. 200

**Methyl 2-(4-(trifluoromethyl)phenyl)acetate 228**

![Structure](image)

Methyl 2-(4-(trifluoromethyl)phenyl)acetate 228 obtained as a yellow oil. $^1$H NMR (500 MHz, CDCl$_3$) δ: 3.70 (s, 2H), 3.72 (s, 3H), 7.41 (app. d, 2H, $J_1$ = 8.2 Hz), 7.59 (app. d, 2H, $J_2$ = 8.2 Hz); $^{13}$C NMR (125 MHz, CDCl$_3$) δ: 40.8, 52.2, 124.2 (q, $J_1$ = 271.4 Hz), 125.5 (q, $J_2$ = 3.8 Hz), 129.5 (q, $J_3$ = 32.7 Hz), 129.7, 137.9, 171.2. All analytical data in accordance with literature values. 199
Methyl 2-(4-(methylsulfonyl)phenyl)acetate 230

Methyl 2-(4-(methylsulfonyl)phenyl)acetate 230 obtained as an amorphous white solid. FTIR (film/cm$^{-1}$) $\nu_{\text{max}}$: 3003 (m), 2953 (m), 2931 (m), 1735 (s), 1592 (m), 1562 (m); $^1$H NMR (500 MHz, CDCl$_3$) $\delta$: 3.06 (s, 2H), 3.74 (s, 3H), 3.76 (s, 2H), 7.51 (app. p, $J = 8.2$ Hz), 7.92 (app. d, 2H, $J = 8.2$ Hz); $^{13}$C NMR (125 MHz, CDCl$_3$) $\delta$: 40.9, 44.5, 52.4, 127.7, 130.4, 139.5, 140.2, 170.8; HRMS (ESI, +ve) $m/z$ calcd. for C$_{10}$H$_{12}$NaO$_4$S$_1$ 251.0349, found 251.0347 (M+Na$^+$).

(2,4-Dimethoxy-phenyl)-acetic acid methyl ester 231

(2,4-Dimethoxy-phenyl)-acetic acid methyl ester 231 obtained as a clear oil. $^1$H NMR (500 MHz, CDCl$_3$) $\delta$: 3.58 (s, 2H), 3.69 (s, 3H), 3.80 (s, 3H), 3.81 (s, 3H), 6.45–6.49 (m, 2H), 7.09 (app. d, 1H, $J = 7.9$ Hz); $^{13}$C NMR (125 MHz, CDCl$_3$) $\delta$: 35.1, 51.9, 55.4, 55.5, 98.7, 104.1, 115.5, 131.1, 158.4, 160.2, 172.6. All analytical data in accordance with literature values. Charabarty. 201

(E)-Methyl 4-phenylbut-3-enoate 232

(E)-Methyl 4-phenylbut-3-enoate 232 obtained as a yellow oil. $^1$H NMR (500 MHz, CDCl$_3$) $\delta$: 3.27 (dd, 2H, $J = 7.1$, 1.1 Hz), 3.73 (s, 3H), 6.31 (dt, 1H, $J = 15.9$, 7.1 Hz), 6.51 (d, 1H, $J = 15.9$ Hz), 7.23–7.27 (m, 1H), 7.32 (app. t, 2H, $J = 7.2$ Hz), 7.36–7.41 (m, 2H); $^{13}$C NMR (125 MHz, CDCl$_3$) $\delta$: 29.7, 38.2, 116.7, 121.7, 126.3, 126.6, 128.5, 133.5, 172.0. All analytical data in accordance with literature values. 202
**Methyl 2-(1-methyl-1H-indol-3-yl)acetate 233**

Methyl 2-(1-methyl-1H-indol-3-yl)acetate 233 obtained as a red oil. \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\): 3.71 (s, 3H), 3.78 (s, 3H), 3.79 (s, 2H), 7.06 (s, 1H), 7.14 (app. t, 1H, \(J = 7.6\) Hz), 7.25 (app. d, 1H, \(J = 7.6\) Hz), 7.31 (app. t, 1H, \(J = 7.6\) Hz), 7.61 (app. t, 1H, \(J = 7.6\) Hz); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\): 31.0, 32.7, 51.9, 106.8, 109.3, 118.9, 119.2, 121.8, 127.6, 127.7, 136.9, 172.7. All analytical data in accordance with literature values.\(^{203}\)

**Benzo[1,3]dioxol-5-yl-acetic acid methyl ester 234**

Benzo[1,3]dioxol-5-yl-acetic acid methyl ester 234 obtained as a yellow oil. \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\): 3.52 (s, 2H), 3.67 (s, 3H), 5.91 (s, 2H), 6.66–6.79 (m, 3H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\): 40.7, 52.0, 101.0, 108.2, 109.7, 122.4, 127.6, 146.7, 147.8, 172.1. All analytical data in accordance with literature values.\(^{204}\)

**(2-Iodo-phenyl)-acetic acid methyl ester 362**

(2-Iodo-phenyl)-acetic acid methyl ester 362 obtained as a yellow oil. \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\): 3.73 (s, 3H), 3.82 (s, 2H), 6.97 (td, 1H, \(J = 7.7, 1.6\) Hz), 7.26–7.36 (m, 2H), 7.85 (dd, 1H, \(J = 7.7, 1.6\) Hz); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\): 46.1, 52.2, 101.0, 128.5, 128.9, 130.7, 137.7, 139.5, 171.0. All analytical data in accordance with literature values.\(^{205}\)
(2,4-Dichloro-phenyl)-acetic acid methyl ester 363 obtained as a faint yellow oil. FTIR (film/cm⁻¹) ʋ_max: 3009 (w), 2954 (m), 1736 (s), 1592 (m), 1562 (m); ¹H NMR (500 MHz, CDCl₃) δ: 3.70 (s, 3H), 3.73 (s, 2H), 7.16–7.23 (m, 2H), 7.36–7.39 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ: 38.3, 52.2, 127.2, 129.3, 131.0, 132.2, 133.8, 135.2, 170.5; HRMS (ESI, +ve) m/z calcd. for C₁₀H₈Cl₂NaO₂ 240.9794, found 240.9786 (M+Na)⁺.

6.3.8. E1cB Degradation Products

2-Phenyl-hexa-2,4-dienoic acid methyl ester 201

To a solution of (anti-E)-methyl 3-(2-oxooxazolidin-3-yl)-2-phenylhex-4-enoate 144 (0.20 g, 0.53 mmol, 1.0 eq.) in THF (2 ml) at −98 °C was added LiHMDS (1 M in THF, 0.68 ml, 0.68 mmol, 1.3 eq.) by hand addition. On complete addition the reaction mixture was allowed to warm to RT over 1 hour and was then quenched with HCl (1M)/Brine (1:1, 5 ml). The organics were extracted with EtOAc (5 × 15 ml), dried over MgSO₄, filtered and then concentrated in vacuo to yield the crude reaction mixture, which was purified by flash column chromatography using gradient elution ethyl acetate/petroleum ether 40-60°/triethylamine (5:95:1–50:60:1), to yield 2-phenyl-hexa-2,4-dienoic acid methyl ester 201 as a yellow oil (0.06 g, 57%). FTIR (film/cm⁻¹) ʋ_max: 2921 (m), 2255 (w), 1705 (s), 1519 (s), 1436 (m); ¹H NMR (250 MHz, CDCl₃) δ: 1.71 (d, 3H, J = 6.3 Hz), 3.68 (s, 3H), 5.93–6.24 (m, 2H), 7.17–7.24 (m, 2H), 7.30–7.49 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ: 18.9, 52.1, 127.5, 128.0, 128.2, 130.1, 130.2,
135.4, 139.9, 141.2, 168.2; HRMS (ESI, +ve) m/z calcd. for C\textsubscript{13}H\textsubscript{14}NaO\textsubscript{2}, 225.0891, found 225.0886 (M+Na).+

**2-Benzoyloxy-hexa-2,4-dienoic acid methyl ester 353**

![Structure of 2-Benzoyloxy-hexa-2,4-dienoic acid methyl ester](structure.png)

LiHMDS (1M in toluene, 3.15 ml, 3.15 mmol), triethylamine (4.37 ml, 31.5 mmol) and (E)-4-(N-benzyl-4-methylphenylsulfonamido)but-3-en-2-yl pent-4-enoate 337 (0.30 g, 0.70 mmol) in THF (3 ml) was combined according to general procedure 4 (reaction time : 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded 2-benzoyloxy-hexa-2,4-dienoic acid methyl ester 353 as a yellow oil (0.16 g, 90%). FTIR (film/cm\textsuperscript{-1}) \(\nu_{\text{max}}\): 3020 (m), 2961 (m), 1713 (s), 1643 (m); \(^1\)H NMR (500 MHz, CD\textsubscript{3}Cl) \(\delta\): 1.81 (\(\dd\), 3H, \(J = 7.0, 1.4\) Hz), 3.81 (s, 3H), 4.90 (s, 3H), 6.02 (\(\dd\), 1H, \(J = 14.8, 7.0\) Hz), 6.40 (\(\dd\dd\), 1H, \(J = 14.8, 11.4, 1.4\) Hz), 6.76 (d, 1H, \(J = 11.4\) Hz), 7.31–7.46 (m, 5H); \(^13\)C NMR (125 MHz, CD\textsubscript{3}Cl) \(\delta\): 18.8, 51.9, 74.6, 124.8, 127.4, 128.1, 128.4 (x2), 136.5, 137.0, 141.7, 164.8; HRMS (ESI, +ve) m/z calcd. for C\textsubscript{14}H\textsubscript{16}NaO\textsubscript{3} 255.0997, found 255.0999 (M+Na).+

**2-Phenylsulfanyl-hexa-2,4-dienoic acid methyl ester 354**

![Structure of 2-Phenylsulfanyl-hexa-2,4-dienoic acid methyl ester](structure.png)

LiHMDS (1M in toluene, 2.61 ml, 2.61 mmol), triethylamine (3.62 ml, 26.1 mmol) and (E)-4-(N-benzyl-4-methylphenylsulfonamido)but-3-en-2-yl pent-4-enoate 338 (0.25 g, 0.58 mmol) in THF (2.5 ml) was combined according to general procedure 4 (reaction time : 75 minutes). Treatment with diazomethane and purification by flash chromatography afforded 2-phenylsulfanyl-hexa-2,4-dienoic acid methyl ester 354 as a yellow oil (0.13 g, 93%). FTIR (film/cm\textsuperscript{-1}) \(\nu_{\text{max}}\): 3085 (m), 3021 (m), 2982 (m), 2937 (m), 1730 (s), 1656 (s), 1615 (m), 1596 (m), 1509 (m); \(^1\)H NMR (500 MHz, CD\textsubscript{3}Cl) \(\delta\):
1.93 (dd, 3H, $J = 7.0, 1.1$ Hz), 3.70 (s, 3H), 6.39 (dq, 1H, $J = 14.8, 7.0$ Hz), 6.80–6.90 (m, 1H), 7.10–7.54 (m, 5H), 7.80 (d, 1H, $J = 11.0$ Hz); $^{13}$C NMR (125 MHz, CD$_3$Cl) $\delta$: 19.2, 52.6, 121.1, 125.8, 127.6, 128.9, 129.9, 136.2, 143.1, 149.7, 166.5; HRMS (ESI, +ve) $m/z$ calcd. for C$_{13}$H$_{15}$O$_2$S 235.0792, found 235.0767 (M+H)$^+$. 
7. Appendix

7.1. X-Ray Data for $\beta^{2,3}$-Amino Acid Precursor 144

<table>
<thead>
<tr>
<th>Identification code</th>
<th>k08dc4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C16 H19 N O4</td>
</tr>
<tr>
<td>Formula weight</td>
<td>289.32</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P21/c</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 15.0780(2)Å $\alpha$ = 90°</td>
</tr>
<tr>
<td></td>
<td>b = 6.2840(1)Å $\beta$ = 105.097(1)°</td>
</tr>
<tr>
<td></td>
<td>c = 16.5130(3)Å $\gamma$ = 90°</td>
</tr>
<tr>
<td>Volume</td>
<td>1510.61(4) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.272 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.091 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>616</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.50 x 0.40 x 0.35 mm</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>3.63 to 29.13°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-20&lt;=h&lt;=20; -8&lt;=k&lt;=8; -22&lt;=l&lt;=22</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>28323</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>4056 [R(int) = 0.0452]</td>
</tr>
<tr>
<td>Reflections observed (&gt;2$\sigma$)</td>
<td>3110</td>
</tr>
<tr>
<td>Data Completeness</td>
<td>0.994</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.96 and 0.90</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on $F^2$</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>4056 / 0 / 193</td>
</tr>
<tr>
<td>Goodness-of-fit on $F^2$</td>
<td>1.018</td>
</tr>
<tr>
<td>Final R indices [I&gt;2$\sigma$(I)]</td>
<td>R1 = 0.0485   wR2 = 0.1193</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0668     wR2 = 0.1327</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.454 and -0.242 eÅ⁻³</td>
</tr>
</tbody>
</table>

Table 25. Crystal Data and Structure Refinement for 144. Notes: Potential for C-H···O interactions leading to 1-D hydrogen-bonded chains in the lattice. Crystal structure representative of the batch according PXRD analysis.
<table>
<thead>
<tr>
<th>Atom</th>
<th>( x \times 10^4 )</th>
<th>( y \times 10^4 )</th>
<th>( z \times 10^4 )</th>
<th>( U(\text{eq}) \times 10^3 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>6104(1)</td>
<td>4741(2)</td>
<td>3039(1)</td>
<td>53(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>7027(1)</td>
<td>6146(2)</td>
<td>2307(1)</td>
<td>66(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>6308(1)</td>
<td>3486(2)</td>
<td>391(1)</td>
<td>43(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>5494(1)</td>
<td>1248(2)</td>
<td>963(1)</td>
<td>38(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>6977(1)</td>
<td>2554(2)</td>
<td>2539(1)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>6743(1)</td>
<td>4597(2)</td>
<td>2594(1)</td>
<td>39(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>5870(1)</td>
<td>2640(3)</td>
<td>3261(1)</td>
<td>49(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>6533(1)</td>
<td>1140(2)</td>
<td>3007(1)</td>
<td>37(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>7615(1)</td>
<td>1892(2)</td>
<td>2054(1)</td>
<td>28(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>7094(1)</td>
<td>623(2)</td>
<td>1268(1)</td>
<td>26(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>6272(1)</td>
<td>1951(2)</td>
<td>819(1)</td>
<td>27(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>4691(1)</td>
<td>2534(3)</td>
<td>599(1)</td>
<td>44(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>8416(1)</td>
<td>644(2)</td>
<td>2579(1)</td>
<td>34(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>9211(1)</td>
<td>1504(3)</td>
<td>2943(1)</td>
<td>42(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>10026(1)</td>
<td>349(4)</td>
<td>3483(1)</td>
<td>60(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>7685(1)</td>
<td>118(2)</td>
<td>677(1)</td>
<td>27(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>7695(1)</td>
<td>-1945(2)</td>
<td>369(1)</td>
<td>33(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>8182(1)</td>
<td>-2386(2)</td>
<td>-224(1)</td>
<td>41(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>8668(1)</td>
<td>-809(3)</td>
<td>-497(1)</td>
<td>46(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>8673(1)</td>
<td>1225(3)</td>
<td>-184(1)</td>
<td>45(1)</td>
</tr>
<tr>
<td>C(16)</td>
<td>8184(1)</td>
<td>1693(2)</td>
<td>397(1)</td>
<td>37(1)</td>
</tr>
</tbody>
</table>

Table 26. Atomic coordinates (\( x 10^4 \)) and equivalent isotropic displacement parameters (Å\(^2 x 10^3 \)) for 1. \( U(\text{eq}) \) is defined as one third of the trace of the orthogonalized \( U_{ij} \) tensor.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)-C(1)</td>
<td>1.3589(18)</td>
</tr>
<tr>
<td>O(2)-C(1)</td>
<td>1.2082(18)</td>
</tr>
<tr>
<td>O(3)-C(1)</td>
<td>1.3304(15)</td>
</tr>
<tr>
<td>N(1)-C(1)</td>
<td>1.3413(17)</td>
</tr>
<tr>
<td>N(1)-C(4)</td>
<td>1.4629(16)</td>
</tr>
<tr>
<td>C(2)-H(2A)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(3)-H(3A)</td>
<td>0.9900</td>
</tr>
<tr>
<td>C(4)-H(4)</td>
<td>1.0000</td>
</tr>
<tr>
<td>C(5)-H(5)</td>
<td>1.0000</td>
</tr>
<tr>
<td>C(7)-H(7A)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(7)-H(7C)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(8)-H(8)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(9)-H(9)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(10)-H(10B)</td>
<td>0.9800</td>
</tr>
<tr>
<td>C(11)-C(16)</td>
<td>1.3924(18)</td>
</tr>
<tr>
<td>C(12)-C(13)</td>
<td>1.396(2)</td>
</tr>
<tr>
<td>C(13)-C(14)</td>
<td>1.376(2)</td>
</tr>
<tr>
<td>C(14)-C(15)</td>
<td>1.378(2)</td>
</tr>
<tr>
<td>C(15)-C(16)</td>
<td>1.386(2)</td>
</tr>
<tr>
<td>C(16)-H(16)</td>
<td>0.9500</td>
</tr>
<tr>
<td>C(1)-O(1)-C(2)</td>
<td>109.39(18)</td>
</tr>
<tr>
<td>C(6)-O(4)-C(7)</td>
<td>114.89(10)</td>
</tr>
<tr>
<td>Bond/Angle</td>
<td>Value 1</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>C(1)-N(1)-C(3)</td>
<td>112.59(11)</td>
</tr>
<tr>
<td>C(3)-N(1)-C(4)</td>
<td>125.32(10)</td>
</tr>
<tr>
<td>O(2)-C(1)-O(1)</td>
<td>122.18(13)</td>
</tr>
<tr>
<td>O(1)-C(2)-C(3)</td>
<td>106.20(12)</td>
</tr>
<tr>
<td>C(2)-C(3)-H(2A)</td>
<td>110.5</td>
</tr>
<tr>
<td>C(3)-C(2)-H(2B)</td>
<td>106.5</td>
</tr>
<tr>
<td>N(1)-C(3)-C(2)</td>
<td>101.31(11)</td>
</tr>
<tr>
<td>C(2)-C(3)-H(3A)</td>
<td>111.5</td>
</tr>
<tr>
<td>C(2)-C(3)-H(3B)</td>
<td>111.5</td>
</tr>
<tr>
<td>N(1)-C(4)-C(8)</td>
<td>112.01(10)</td>
</tr>
<tr>
<td>C(8)-C(4)-C(5)</td>
<td>111.59(11)</td>
</tr>
<tr>
<td>C(8)-C(4)-H(4)</td>
<td>107.7</td>
</tr>
<tr>
<td>C(11)-C(5)-C(6)</td>
<td>110.01(10)</td>
</tr>
<tr>
<td>C(6)-C(5)-C(4)</td>
<td>107.28(10)</td>
</tr>
<tr>
<td>C(6)-C(5)-H(5)</td>
<td>108.8</td>
</tr>
<tr>
<td>O(3)-C(6)-O(4)</td>
<td>123.17(11)</td>
</tr>
<tr>
<td>O(4)-C(7)-H(7B)</td>
<td>109.5</td>
</tr>
<tr>
<td>O(4)-C(7)-H(7C)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(7B)-C(7)-H(7C)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(9)-C(8)-H(8)</td>
<td>118.3</td>
</tr>
<tr>
<td>C(8)-C(9)-C(10)</td>
<td>125.61(17)</td>
</tr>
<tr>
<td>C(10)-C(9)-H(9)</td>
<td>117.2</td>
</tr>
<tr>
<td>C(9)-C(10)-H(10B)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(9)-C(10)-H(10C)</td>
<td>109.5</td>
</tr>
<tr>
<td>H(10B)-C(10)-H(10C)</td>
<td>109.5</td>
</tr>
<tr>
<td>C(16)-C(11)-C(5)</td>
<td>121.54(11)</td>
</tr>
<tr>
<td>C(11)-C(12)-C(13)</td>
<td>119.87(13)</td>
</tr>
<tr>
<td>C(13)-C(12)-H(12)</td>
<td>120.1</td>
</tr>
<tr>
<td>C(14)-C(13)-H(13)</td>
<td>119.7</td>
</tr>
<tr>
<td>C(13)-C(14)-C(15)</td>
<td>119.78(14)</td>
</tr>
<tr>
<td>C(15)-C(14)-H(14)</td>
<td>120.1</td>
</tr>
<tr>
<td>C(14)-C(15)-H(15)</td>
<td>119.9</td>
</tr>
<tr>
<td>C(15)-C(16)-C(11)</td>
<td>120.67(14)</td>
</tr>
<tr>
<td>C(11)-C(16)-H(16)</td>
<td>119.7</td>
</tr>
</tbody>
</table>

Table 27. Bond lengths [Å] and angles [°] for 1. Symmetry transformations used to generate equivalent atoms.
Table 28. Anisotropic displacement parameters (Å$^2 \times 10^3$) for 1. The anisotropic displacement factor exponent takes the form: $-2 g^\pi / \beta h^2 a^* a^* U_{11} + ... + 2 h k a^* b^* U_{12}$.

<table>
<thead>
<tr>
<th>Atom</th>
<th>U11</th>
<th>U22</th>
<th>U33</th>
<th>U23</th>
<th>U13</th>
<th>U12</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>80(1)</td>
<td>34(1)</td>
<td>57(1)</td>
<td>6(1)</td>
<td>41(1)</td>
<td>17(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>114(1)</td>
<td>24(1)</td>
<td>77(1)</td>
<td>8(1)</td>
<td>57(1)</td>
<td>7(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>34(1)</td>
<td>37(1)</td>
<td>59(1)</td>
<td>21(1)</td>
<td>13(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>26(1)</td>
<td>42(1)</td>
<td>47(1)</td>
<td>18(1)</td>
<td>11(1)</td>
<td>6(1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>34(1)</td>
<td>22(1)</td>
<td>30(1)</td>
<td>3(1)</td>
<td>11(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>59(1)</td>
<td>26(1)</td>
<td>37(1)</td>
<td>2(1)</td>
<td>20(1)</td>
<td>7(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>59(1)</td>
<td>40(1)</td>
<td>58(1)</td>
<td>1(1)</td>
<td>34(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>45(1)</td>
<td>31(1)</td>
<td>40(1)</td>
<td>8(1)</td>
<td>20(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>28(1)</td>
<td>26(1)</td>
<td>30(1)</td>
<td>2(1)</td>
<td>9(1)</td>
<td>-1(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>25(1)</td>
<td>22(1)</td>
<td>30(1)</td>
<td>4(1)</td>
<td>7(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>27(1)</td>
<td>25(1)</td>
<td>28(1)</td>
<td>1(1)</td>
<td>7(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>26(1)</td>
<td>52(1)</td>
<td>54(1)</td>
<td>21(1)</td>
<td>11(1)</td>
<td>10(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>31(1)</td>
<td>37(1)</td>
<td>32(1)</td>
<td>4(1)</td>
<td>6(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>31(1)</td>
<td>56(1)</td>
<td>37(1)</td>
<td>-7(1)</td>
<td>7(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>31(1)</td>
<td>99(2)</td>
<td>44(1)</td>
<td>-11(1)</td>
<td>0(1)</td>
<td>13(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>24(1)</td>
<td>28(1)</td>
<td>29(1)</td>
<td>1(1)</td>
<td>5(1)</td>
<td>2(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>28(1)</td>
<td>30(1)</td>
<td>39(1)</td>
<td>-1(1)</td>
<td>3(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>42(1)</td>
<td>38(1)</td>
<td>40(1)</td>
<td>-10(1)</td>
<td>5(1)</td>
<td>9(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>45(1)</td>
<td>57(1)</td>
<td>39(1)</td>
<td>-2(1)</td>
<td>19(1)</td>
<td>11(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>47(1)</td>
<td>48(1)</td>
<td>49(1)</td>
<td>2(1)</td>
<td>26(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(16)</td>
<td>41(1)</td>
<td>32(1)</td>
<td>42(1)</td>
<td>-2(1)</td>
<td>18(1)</td>
<td>-4(1)</td>
</tr>
</tbody>
</table>

Table 29. Hydrogen coordinates ($x \times 10^4$) and isotropic displacement parameters (Å$^2 \times 10^3$).

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(2A)</td>
<td>5230</td>
<td>2285</td>
<td>2960</td>
<td>59</td>
</tr>
<tr>
<td>H(2B)</td>
<td>5933</td>
<td>2545</td>
<td>3872</td>
<td>59</td>
</tr>
<tr>
<td>H(3A)</td>
<td>6980</td>
<td>536</td>
<td>3503</td>
<td>44</td>
</tr>
<tr>
<td>H(3B)</td>
<td>6207</td>
<td>-33</td>
<td>2651</td>
<td>44</td>
</tr>
<tr>
<td>H(4)</td>
<td>7866</td>
<td>3209</td>
<td>1855</td>
<td>33</td>
</tr>
<tr>
<td>H(5)</td>
<td>6869</td>
<td>-742</td>
<td>1455</td>
<td>31</td>
</tr>
<tr>
<td>H(7A)</td>
<td>4802</td>
<td>4002</td>
<td>800</td>
<td>66</td>
</tr>
<tr>
<td>H(7B)</td>
<td>4160</td>
<td>1958</td>
<td>764</td>
<td>66</td>
</tr>
<tr>
<td>H(7C)</td>
<td>4567</td>
<td>2512</td>
<td>-14</td>
<td>66</td>
</tr>
<tr>
<td>H(8)</td>
<td>8339</td>
<td>-840</td>
<td>2648</td>
<td>40</td>
</tr>
<tr>
<td>H(9)</td>
<td>9279</td>
<td>2984</td>
<td>2860</td>
<td>50</td>
</tr>
<tr>
<td>H(10A)</td>
<td>10137</td>
<td>837</td>
<td>4064</td>
<td>89</td>
</tr>
<tr>
<td>H(10B)</td>
<td>10569</td>
<td>641</td>
<td>3279</td>
<td>89</td>
</tr>
<tr>
<td>H(10C)</td>
<td>9904</td>
<td>-1185</td>
<td>3456</td>
<td>89</td>
</tr>
<tr>
<td>H(12)</td>
<td>7372</td>
<td>-3049</td>
<td>563</td>
<td>40</td>
</tr>
<tr>
<td>H(13)</td>
<td>8179</td>
<td>-3787</td>
<td>-441</td>
<td>49</td>
</tr>
<tr>
<td>H(14)</td>
<td>8998</td>
<td>-1121</td>
<td>-900</td>
<td>55</td>
</tr>
<tr>
<td>H(15)</td>
<td>9014</td>
<td>2311</td>
<td>-367</td>
<td>54</td>
</tr>
<tr>
<td>H(16)</td>
<td>8188</td>
<td>3102</td>
<td>606</td>
<td>44</td>
</tr>
</tbody>
</table>
Table 30. Dihedral angles [°] for 1. Atom1 - Atom2 - Atom3 - Atom4. Dihedral Symmetry Transformations Used to Generate Equivalent Atoms.

<table>
<thead>
<tr>
<th>Dihedral Angle</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(3) – N(1) - C(1) - O(2)</td>
<td>176.38(17)</td>
</tr>
<tr>
<td>C(4) – N(1) - C(1) - O(2)</td>
<td>-3.6(3)</td>
</tr>
<tr>
<td>C(3) – N(1) - C(1) - O(1)</td>
<td>-3.66(18)</td>
</tr>
<tr>
<td>C(4) – N(1) - C(1) - O(1)</td>
<td>176.40(12)</td>
</tr>
<tr>
<td>C(2) – O(1) - C(1) - O(2)</td>
<td>177.21(17)</td>
</tr>
<tr>
<td>C(2) – O(1) - C(1) - N(1)</td>
<td>-2.75(19)</td>
</tr>
<tr>
<td>C(1) – O(1) - C(2) - C(3)</td>
<td>7.64(19)</td>
</tr>
<tr>
<td>C(1) – N(1) - C(3) - C(2)</td>
<td>7.94(16)</td>
</tr>
<tr>
<td>C(4) – N(1) - C(3) - C(2)</td>
<td>-172.12(12)</td>
</tr>
<tr>
<td>O(1) – C(2) - C(3) - N(1)</td>
<td>-9.00(17)</td>
</tr>
<tr>
<td>C(1) – N(1) - C(4) - C(8)</td>
<td>124.51(14)</td>
</tr>
<tr>
<td>C(3) – N(1) - C(4) - C(8)</td>
<td>-55.43(16)</td>
</tr>
<tr>
<td>C(1) – N(1) - C(4) - C(5)</td>
<td>-110.75(14)</td>
</tr>
<tr>
<td>C(3) – N(1) - C(4) - C(5)</td>
<td>69.32(15)</td>
</tr>
<tr>
<td>N(1) – C(4) - C(5) - C(11)</td>
<td>172.85(10)</td>
</tr>
<tr>
<td>C(8) – C(4) - C(5) - C(11)</td>
<td>-62.16(13)</td>
</tr>
<tr>
<td>N(1) – C(4) - C(5) - C(6)</td>
<td>51.36(13)</td>
</tr>
<tr>
<td>C(8) – C(4) - C(5) - C(6)</td>
<td>176.35(10)</td>
</tr>
<tr>
<td>C(7) – O(4) - C(6) - O(3)</td>
<td>-3.0(2)</td>
</tr>
<tr>
<td>C(7) – O(4) - C(6) - C(5)</td>
<td>175.93(12)</td>
</tr>
<tr>
<td>C(11) - C(5) - C(6) - O(3)</td>
<td>-46.73(17)</td>
</tr>
<tr>
<td>C(4) – C(5) - C(6) - O(3)</td>
<td>76.68(16)</td>
</tr>
<tr>
<td>C(11) - C(5) - C(6) - O(4)</td>
<td>134.35(11)</td>
</tr>
<tr>
<td>C(4) – C(5) - C(6) - O(4)</td>
<td>-102.24(12)</td>
</tr>
<tr>
<td>N(1) – C(4) - C(8) - C(9)</td>
<td>-95.81(16)</td>
</tr>
<tr>
<td>C(5) – C(4) - C(8) - C(9)</td>
<td>140.31(14)</td>
</tr>
<tr>
<td>C(4) – C(8) - C(9) - C(10)</td>
<td>179.00(14)</td>
</tr>
<tr>
<td>C(6) – C(5) - C(11) - C(16)</td>
<td>68.85(15)</td>
</tr>
<tr>
<td>C(4) – C(5) - C(11) - C(16)</td>
<td>-51.09(16)</td>
</tr>
<tr>
<td>C(6) – C(5) - C(11) - C(12)</td>
<td>-107.77(13)</td>
</tr>
<tr>
<td>C(4) – C(5) - C(11) - C(12)</td>
<td>132.29(12)</td>
</tr>
<tr>
<td>C(16) - C(11) - C(12) – C(13)</td>
<td>-1.51(19)</td>
</tr>
<tr>
<td>C(5) – C(11) - C(12) - C(13)</td>
<td>175.21(12)</td>
</tr>
<tr>
<td>C(11) - C(12) - C(13) – C(14)</td>
<td>1.2(2)</td>
</tr>
<tr>
<td>C(12) - C(13) - C(14) – C(15)</td>
<td>-0.1(2)</td>
</tr>
<tr>
<td>C(13) - C(14) - C(15) – C(16)</td>
<td>-0.8(2)</td>
</tr>
<tr>
<td>C(14) – C(15) - C(16) – C(11)</td>
<td>0.5(2)</td>
</tr>
<tr>
<td>C(12) - C(11) - C(16) – C(15)</td>
<td>0.7(2)</td>
</tr>
<tr>
<td>C(5) – C(11) - C(16) - C(15)</td>
<td>-175.96(13)</td>
</tr>
</tbody>
</table>
Graph 2.6. Single Crystal & Bulk Powder Diffraction Patterns from 144.
7.2. Hammett Type Plots with Other $\sigma$-Values

Graph 27. Log(d.r.) vs. $\sigma$.

Graph 28. Log(d.r.) vs. $\sigma^+$. 
Graph 29. Log(d.r.) vs. $\sigma^-$. 

Graph 30. Log(d.r.) vs. Resonance Parameter $R$. 

Chapter 7  Appendix
7.3. 1D-NOE Data for Isolated Tolyl Derived SKAs

![Graph 31. Log(d.r.) vs Resonance Parameter R'].

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Product</th>
<th>(E/Z)°</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me</td>
<td>256</td>
<td>44:1</td>
<td>99</td>
</tr>
<tr>
<td>2</td>
<td>CDMe₂</td>
<td>246</td>
<td>68:1</td>
<td>99</td>
</tr>
<tr>
<td>3</td>
<td>CMe₃</td>
<td>259</td>
<td>68:1</td>
<td>99</td>
</tr>
</tbody>
</table>

*Table 31. Yields & E/Z-Selectivity for 1°, 2° & 3° Derived Tolyl-SKAs.*
LHMDS (0.72 ml, 0.72 mmol, 1M in THF), TMSCl (0.10 ml, 0.72 mmol) and $p$-tolyl-acetic acid methyl ester 250 (0.10 g, 0.42 mmol) were combined according to general procedure 9a and purification was achieved by reported procedure to afford (1-methoxy-2-$p$-tolyl-vinylxy)-trimethyl-silane 256 as a yellow oil (0.10 g, 99%, $E/Z$ 44:1). $^1$H NMR (400 MHz, CDCl$_3$) $\delta$: 0.32 (s, 9H), 2.30 (s, 3H), 3.68 (s, 3H), 4.68 (s, 1H), 7.06 (app. d, 2H, $J = 8.1$ Hz), 7.31 (app. d, 2H, $J = 8.1$ Hz); $^{13}$C NMR (100 MHz, CDCl$_3$) $\delta$: 5.5, 21.0, 53.9, 86.0, 126.5, 128.8, 133.3, 133.7, 154.4. IR and HRMS not obtainable.
(1-Methoxy-2-p-tolyl-vinyloxy)-trimethyl-silane 256
LHMDS (0.64 ml, 642 mmol, 1M in THF), TMSCl (0.09 ml, 642 mmol) and p-tolyl-
acetic acid isopropyl-2-\textsuperscript{d} \textsubscript{1} ester \textsuperscript{239} (0.10 g, 0.38 mmol) were combined according to
general procedure 9a and purification was achieved by reported procedure to afford (1-
d\textsubscript{1}-isopropoxy-2-p-tolyl-vinlyoxy)-trimethyl-silane \textsuperscript{240} as a yellow oil (0.10 g, 99%,
\textit{E/Z} 68:1). \textsuperscript{1}H NMR (400 MHz, CDCl\textsubscript{3}) \textit{\delta}: 0.31 (s, 9H), 1.29 (s, 6H), 2.29 (s, 3H), 4.72
(s, 1H), 7.04 (app. d, 2H, \textit{J} = 7.8 Hz), 7.36 (app. d, 2H, \textit{J} = 7.8 Hz); \textsuperscript{13}C NMR (100
MHz, CDCl\textsubscript{3}) \textit{\delta}: 5.5, 21.0, 22.2, 69.2 (t, \textit{J} = 22.3 Hz), 88.1, 126.5, 128.7, 133.1, 134.0,
153.0. IR and HRMA not obtainable.
(1-d1-Isopropoxy-2-p-tolyl-vinloxy)-trimethyl-silane $^\text{2}H_1$-246
1D-NOE of Minor Z-SKA
LHMDS (0.61 ml, 0.61 mmol, 1M in THF), TMSCl (0.08 ml, 0.61 mmol) and tert-butyl 2-p-tolylacetate 253 (0.10 g, 0.36 mmol) were combined according to general procedure 9a and purification was achieved by reported procedure to afford (1-tert-butoxy-2-p-tolyl-vinyloxy)-trimethyl-silane 259 as a yellow oil (0.10 g, 99%, E/Z 24:1). $^1$H NMR (400 MHz, CDCl$_3$) δ: 0.34 (s, 9H), 1.49 (s, 9H), 2.33 (s, 3H), 4.86 (s, 1H), 7.08 (app. d, 2H, $J = 8.0$ Hz), 7.40 (app. d, 2H, $J = 8.0$ Hz); $^{13}$C NMR (100 MHz, THF) δ: 2.9, 20.9, 29.3, 79.9, 92.9, 127.2, 128.8, 133.4, 134.6, 153.6. IR and HRMS not obtainable.
(1-tert-Butoxy-2-p-tolyl-vinlyoxy)-trimethyl-silane 259
1D-NOE of Minor Z-SKA
7.4. HPLC Data

\(\text{(anti-E)-Methyl 3-(N-allyl-4-methylphenylsulfonamido)-2-phenylhex-4-enoate}\) 333

VWD: Signal A, 254 nm

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Area</th>
<th>Area %</th>
<th>Height</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.693</td>
<td>57182044</td>
<td>49.13</td>
<td>1335586</td>
<td>54.09</td>
</tr>
<tr>
<td>17.417</td>
<td>59210450</td>
<td>50.87</td>
<td>1133646</td>
<td>45.91</td>
</tr>
<tr>
<td><strong>Totals</strong></td>
<td><strong>116392494</strong></td>
<td><strong>100.00</strong></td>
<td><strong>2469232</strong></td>
<td><strong>100.00</strong></td>
</tr>
</tbody>
</table>
(2R,3R,E)-methyl 3-(N-allyl-4-methylphenylsulfonamido)-2-phenylhex-4-enolate (S)-333

VWD: Signal A, 250 nm
Results

<table>
<thead>
<tr>
<th>Retention Time</th>
<th>Area</th>
<th>Area %</th>
<th>Height</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.210</td>
<td>7148487</td>
<td>5.83</td>
<td>316493</td>
<td>6.91</td>
</tr>
<tr>
<td>14.850</td>
<td>4240556</td>
<td>3.46</td>
<td>258057</td>
<td>5.63</td>
</tr>
<tr>
<td>15.260</td>
<td>108865486</td>
<td>88.76</td>
<td>3861193</td>
<td>84.27</td>
</tr>
<tr>
<td>16.067</td>
<td>2399737</td>
<td>1.96</td>
<td>146069</td>
<td>3.19</td>
</tr>
</tbody>
</table>

| Totals         | 122654266| 100.00 | 4581812 | 100.00   |
8. Bibliography
