Crack imaging by scanning laser line thermography and laser spot thermography

T Li, D P Almond, and D A S Rees

UK Research Centre in NDE (RCNDE), Department of Mechanical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, UK

D.P.Almond@bath.ac.uk

Abstract. The thermographic images of laser heated spots or lines are perturbed by nearby cracks, providing NDE techniques for crack detection. Scanning with a laser line, rather than a laser spot, results in a substantial reduction in inspection time. 3D finite difference modelling results are presented that show the sensitivity of the laser line thermography technique to cracks of varying lengths, depths and openings. A novel crack imaging technique is presented that is based on assembling second spatial derivative thermal images of a scanned laser line. Experimental results show the new technique to image cracks with openings as small as a few micrometres. The scanning time of the laser line thermography technique is shown to be over an order of magnitude smaller than that of the laser spot thermography technique whilst producing crack images of similar quality.

Keywords: NDE, cracks, laser, thermography

1. Introduction

Pulsed, or transient, thermography [1-4] is the most widely used form of thermographic non-destructive evaluation (NDE). In this technique, a surface area is flash heated by one or more flash lamps and images of the subsequent cooling of the surface are collected by an infrared camera. The flash lamp heating produces an approximately uniform area of heating across a surface and this results in, essentially, one-dimensional heat flow from the surface into the bulk of the heated part. This limits the types of defects or features that can be detected by this technique to those that substantially alter the one-dimensional heat flow from the surface. Examples of such defects or features are: delaminations lying in a plane parallel with the surface or interfaces between a surface coating and its substrate. Defects such as cracks, that form in planes that are essentially perpendicular to a surface, are not detectable by this technique. However, cracks of this type can be detected if the heating is localised to a spot or a line on a surface. Furthermore, thermal microscope measurements showed that thermally obtained lengths of vertical crack in silicon nitride were at least 34% longer than those that were optically measured [5]. This paper presents an investigation of crack imaging using laser spot and laser line heating variants of pulsed thermography.

Previous workers have generated heating at a spot on a surface using: electron or ion beams [6, 7], a focused arc lamp or a laser beam [8-16]. For line heating [17-25], methods have included a line infrared lamp, heated wire (radio frequency induction heating) [17, 18] or a line of air jets [19]. Where the heating is produced by the absorption of light, these methods are called photothermal
techniques [22]. In much of the previous work using spot and line heating sources, an infrared detector was used for the detection of the heating. These applications are generally referred to as being ‘photothermal radiometry’ techniques rather than ‘thermography’; the latter indicating the application of an IR camera.

In laser-spot or laser-line photothermal radiometry [8-11, 14-34], the surface heating at a point a distance away from the laser-spot or laser-line is monitored by a single IR detector. At such a point, the heating provides a measure of the thermal impedance between the heated spot and the detection location. This impedance increases if a defect-restricting heat flow is present between the two points. Laser-spot or laser-line photothermal radiometry are typically performed by moving the laser-spot or the laser-line over the test-piece at a fixed speed with a point-reading IR detector trained a fixed distance behind the spot or line. The methods presented here are laser-spot thermography and the laser-line thermography (LST and LLT) in which an IR camera is used to collect full-frame images of all the heating produced by a laser spot or line. A complete inspection of a test piece is achieved by image processing thermal images collected during raster scanning the spot or line over the test piece surface.

Until recently, IR camera based systems have required relatively expensive and bulky equipment whilst an IR detector system could be an inexpensive and compact device [20, 24]. In addition, the response rates of IR detectors far exceeded the frame rates of the IR cameras. However, both the prices and the sizes of modern IR camera are reducing and the response times of cameras are now in the range of 0.16-30 milliseconds [35]. A major advantage of an IR camera is that it has a larger effective IR detection area than an IR detector. The spatial resolution of an IR detector based system in the lateral direction (scanning direction) depends on the heated area and the resolution of the scanner [22, 26, 27]. For high resolution, a small detector area is required. However, a small detector collects less radiation which decreases the signal, leading to a deterioration in system signal to noise ratio. By contrast, an IR camera has an array of detectors. The effective detection area is large and the resolution of the system can also be kept high due to the small size of the elements in the array.

In addition, if a single detector was used having a small detection area (perhaps in the range of 25-100μm) scan steps of similar dimensions are needed to form a high resolution image of a surface. Thus the corresponding scan time will be long. An IR camera based technique has the advantage of producing high resolution images using a far coarser (and faster) scanning raster because images are collected from the array of points around the heated spot or line that can be combined by image processing techniques, as will be shown below.

In this paper, an investigation of laser line thermography as a means of detecting and imaging cracks is presented. Details of a similar investigation of laser spot thermography have been published elsewhere [12, 13, 36]. Numerical modelling results are presented in section 2 that show similarities in the characteristics of the two techniques and the sensitivity of the laser line thermography technique to crack geometry. A novel laser line thermography crack imaging technique is presented in section 3. Experimental results obtained by both laser line thermography and laser spot thermography are compared in section 4.
2. 3D analytical and numerical modelling

2.1. 3D analytical modelling – point and line heating

There are no 3D analytical results for the distribution of a heat flow in a material containing narrow vertical cracks. However, results are available for the temperature rise caused by a laser source in a homogeneous, isotropic and semi-infinite material, such as metal. The 3D heat conduction in such a material can be expressed as [37, 38]:

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} - \frac{1}{k} \frac{\partial T}{\partial t} = -\frac{q'''}{K}$$

(1)

where T is the temperature rise. K and k are respectively the thermal conductivity (W·K$^{-1}$·m$^{-1}$) and diffusivity (m²/s). Their relationship is: $k = \frac{K}{\rho C}$, ρ is the density of the material (kg/m³), and C is the specific heat of the material (J·kg$^{-1}$·K$^{-1}$). q''' is the heat produced per unit volume per unit time, in unit of W/m³.

Instantaneous temperature rise from a point source [37] is:

$$T(r, t) = \frac{Q}{8\rho C(\pi kt)^{3/2}} \exp\left(-\frac{r^2}{4kt}\right)$$

(2)

where, Q is the total energy of the heat source (J), r is the radius in a polar coordinate (pole is the point source centre).

The instantaneous temperature rise from a line source [37] is:

$$T(r, t) = \frac{Q'}{4\rho C \pi k t} \exp\left(-\frac{r^2}{4kt}\right)$$

(3)

where Q' is the energy per unit length in the line heat source (J/m).

A continuous heat source has the same effect as a sequence of a very large number of small instantaneous sources of equal size. Thus, for a point source with continuous heating and when Q is constant, the integrated temperature result in the time domain is [37]:

$$T(r, t) = \frac{Q}{8\rho C(\pi kt)^{3/2}} \int_0^t \exp\left(-\frac{r^2}{4kt'}\right) dt' = \frac{q}{4\pi Kr} \text{erfc}\left(\frac{r}{2(kt)^{1/2}}\right)$$

(4)

where q is source power (W).

For a line source with continuous heating, the integrated temperature result in the time domain is [37]:

$$T(r, t) = \frac{Q'}{4\rho C \pi k} \int_0^t \frac{1}{t'} \exp\left(-\frac{r^2}{4kt'}\right) dt' = \frac{q'}{4\pi K} \int_{\frac{r^2}{4kt}}^{\infty} \frac{\exp(-u)}{u} du$$

(5)

where q' is source power per unit length (W/m).

However, the ‘cooling’ effect after the laser spot or laser line is switched off is not considered in equations (4) and (5). After convoluting the laser pulse (a square “top-hat” shape in the time domain, Gaussian shape in the spatial domain) with the instantaneous temperature rise, for a
Gaussian shape round spot source with continuous heating, the integrated temperature result in the time domain is [37, 39]:

$$T(r, z, t) = \frac{I_{\text{max}}a^2k^{1/2}}{K\pi^{1/2}} \int_0^t \frac{p(t-t')\exp(-z^2/4kt'-r^2/(4kt'+a^2))}{r^{1/2}((4kt'+a^2))} dt'$$

(6)

where \((r, z)\) are cylindrical coordinates with the origin on the surface at the centre of the irradiated spot. \(I_{\text{max}}\) is the maximum power density of the laser pulse, \(p(t)\) is the normalised temporal profile of the laser pulse at the time \(t\), and \(a\) is the laser beam radius.

For a Gaussian shape elliptical spot source with continuous heating, which is close to a line source when the long axial radius value \(b\) is much bigger than short axial radius \(a\), the integrated temperature result in the time domain is [19, 28, 37, 39]:

$$T(x, y, z, t) = \frac{I_{\text{max}}abk^{1/2}}{K\pi^{1/2}} \int_0^t \frac{p(t-t')\exp(-z^2/4kt'-x^2/(4kt'+a^2)-y^2/(4kt'+b^2))}{r^{1/2}((\sqrt{4kt'+a^2})\sqrt{4kt'+b^2})} dt'$$

(7)

where, \((x, y, z)\) are Cartesian coordinates with the origin on the surface at the centre of the irradiated spot. \(I_{\text{max}}\) is the maximum power density of the laser pulse, \(p(t)\) is the normalised temporal profile of the laser pulse at the time \(t\). \(a\) and \(b\) are the laser beam radii.

2.2. 3D finite difference modelling

For 3D finite difference modelling, the heat boundary condition of the surface with laser spot irradiation in Cartesian coordinates is:

$$-K \frac{\partial T(x, y, z = 0, t)}{\partial z} = \frac{P}{\pi a} \exp(-x^2 + y^2) / a^2$$

(8)

For the other five boundaries, we assume they are insulated. For example, at the boundary when \(x=0\), we have:

$$\frac{\partial T(x = 0, y, z, t)}{\partial x} = 0$$

(9)

The heat boundary condition of the surface with laser line irradiation in Cartesian coordinates is:

$$-K \frac{\partial T(x, y, z = 0, t)}{\partial z} = \frac{P}{\sqrt{\pi a}} \exp(-y^2 / a^2)$$

(10)

The effects of cracks may be simulated by ‘Ghost Points’ in a numerical modelling grid that are generated by balancing thermal fluxes flowing into a crack and through a crack, with those flowing out of the crack according to Fourier’s Law. They guarantee correct thermal gradients in the bulk material either side of the crack.

The concept of the 'ghost point' (or a fictitious point) in a 1-D finite difference heat transfer model is shown in figure 1. In this case, the crack is embedded between the current grid point \(i\) and its left grid point \(i-1\). The width of the crack \(\delta\) may be far smaller than the grid spacing \(d\). The distance of the crack to the left grid point is \(\sigma\). Usually, the crack is full of air and its conductivity \(K_a\) is much lower than the conductivity of the metal block \(K_s\). Thus the thermal gradient across the crack will be larger than in the other parts of the metal block.
Equation 11 shows the heat flux balance in the x-direction when it flows from the grid point 'i-1' into the crack, through the crack and then flows out of the crack to the grid point 'i':

\[
K_s \frac{T_{i-1} - T_i}{\delta} = K_a \frac{T_R - T_L}{d} = K_s \frac{T_i - T_R}{d - \sigma - \delta} = g
\]

(11)

where \(T_{i-1}, T_L, T_R, T_i\) and \(T_{i+1}\) are respectively the temperature rise at the grid point 'i-1', the left boundary of the crack, the right boundary of the crack and the grid points of 'i' and 'i+1'. \(g\) is the heat flux.

Equation 12 shows the calculation of the temperature rise at the 'ghost point'. By defining a 'ghost point' to equal the temperature increase effect because of the crack, the 'isotropic' heat transfer model can still be applied, however, the temperature rise at the grid point 'i-1' should be replaced by the value of the 'ghost point' \(T_G\):

\[
K_s \frac{T_i - T_G}{d} = g
\]

(12)

![Diagram of 1-D 'ghost point' finite difference heat diffusion model](image)

Figure 1. 1-D ‘ghost point’ finite difference heat diffusion model. Heat flux is balanced when it flows into, through and out of the crack.

After substituting equation 11 into equation 12, we can represent \(T_G\) by \(T_i\) and \(T_{i-1}\):

\[
T_G = \frac{\xi}{\xi + d} T_i + \frac{d}{\xi + d} T_{i-1}
\]

(13)

where \(\xi\) is related to \(K_s, K_a\) and \(\delta\):

\[
\xi = \left(\frac{K_s}{K_a} - 1\right) \delta
\]

(14)

Equation 15 shows the 3-D heat diffusion equation with no internal heat generation:

\[
k \nabla^2 T = \frac{\partial T}{\partial t}
\]

(15)

Substituting equation 13 into equation 15, and representing equation 15 using finite difference elements, we can have:

\[
T_{i,j,m}^{n+1} = \frac{k \cdot \Delta t}{d^2} \cdot \left(T_{i+1,j,m}^n + T_{i-1,j,m}^n - a_c T_{i,j+1,m}^n - a_c T_{i,j-1,m}^n - b_g T_{i-1,j,m}^n - N + T_{i,j,m}^n \right)
\]

(16)

\[
N = T_{i,j+1,m}^n - T_{i,j-1,m}^n + T_{i,j,m+1}^n - T_{i,j,m-1}^n
\]

(17)
where Δt is the time step, $T_{i,j,m}^n$ is the temperature rise of the grid point 'i, j, m' at time n and $T_{i,j,m}^{n+1}$ is the temperature rise at the next time step. The values of a_c and b_g are:

$$a_c = \frac{5\xi + 6d}{\xi + d} \quad (18)$$
$$b_g = \frac{d}{\xi + d} \quad (19)$$

If the crack is embedded between the current grid point 'i, j, m' and the point 'i+1, j, m', then the grid point 'i+1, j, m' becomes the 'ghost point' and the temperature rise at this point should multiply the coefficient b_g like the ghost point 'i-1,j, m' in equation 16.

Furthermore, the temperature gradient across the crack can also be derived from equation (11) as follows:

$$\frac{T_g - T_i}{\delta} = \frac{T_i - T_{i+1}}{K_i/(d - \delta) + \delta} \quad (20)$$

By using the 'ghost points' to balance the heat flux, the heat transfer model avoids the need of the very fine mesh spacing that is necessary to deal with real cracks that often have openings of only a few micrometres [12, 13, 40]. In the following simulations, the boundary conditions for all metal samples are assumed to be insulation. The explicit finite difference method was employed with a 0.1mm grid spacing and 0.1 ms time steps. The simulation programmes were formulated in MATLAB and run on a conventional PC. Table 1 shows the property parameters used in the simulations for the air gap and two kinds of steel.

<table>
<thead>
<tr>
<th>Material</th>
<th>Thermal conductivity K [W/m·K]</th>
<th>Specific heat capacity C [J/Kg·K]</th>
<th>Mass density ρ [Kg/m3]</th>
<th>Thermal diffusivity $k = K/\rho C$ [m2/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>0.025</td>
<td>1000</td>
<td>1.205</td>
<td>2.0747×10$^{-5}$</td>
</tr>
<tr>
<td>Mild steel</td>
<td>40</td>
<td>500</td>
<td>7850</td>
<td>1.0191×10$^{-5}$</td>
</tr>
<tr>
<td>Stainless steel</td>
<td>13.5</td>
<td>485</td>
<td>7900</td>
<td>3.5234×10$^{-6}$</td>
</tr>
</tbody>
</table>

2.3. 3D analytical and numerical results comparisons

In this section, 3D numerical modelling results will be compared with the analytical results when setting the crack width/opening to zero. We notice that the values of ghost parameters of 'a_c' and 'b_g' will become ‘6’ and ‘1’ in equations (18) and (19) if we let $\delta=0$, which turns the 'ghost point' model back to traditional 3D isotropic heat transfer model. In this way, 3D ghost point method can be partially validated.

2.3.1. Temperature rise caused by laser-spot source. Figure 2 shows the comparison of the 3-D analytical modelling result and the 3-D finite difference modelling results when the heating source...
is a laser-spot. The laser pulse was a top-hat (50ms) in the time domain and a Gaussian spot shape in the spatial domain. The radius of the spot was taken to be 1mm ($1/e$ fall and $a=1\text{mm}$). Laser output power was 20W, thus, $I_{\text{max}}\approx20/(\pi a^2)\approx6.37\times10^4\text{W/m}^2$. Note that the reflectivity of the sample surface was not considered in either model. That is, all the 20W of power was assumed to be absorbed by metal samples. Lines with different colours in the figures correspond to temperatures rises of the laser spot centre at different depths in the metal block. There is good agreement between the analytical and the modelling results. The only significant disagreement being a 3% difference in peak temperature at the surface, the 0mm plots.

![Temperature Rise within Steel after an incident Square laser pulse](image1)

![Temperature Rise within Steel after an incident Square laser pulse](image2)

Figure 2. (a) 3-D analytical modelling results. (b) 3-D finite difference modelling results.

2.3.2. Temperature rise caused by laser-line source. Figure 3 shows the comparison of the 3-D analytical modelling results and the 3-D finite difference modelling results when the heating source is a laser-line. The laser pulse was a top-hat (50ms) in the time domain and a Gaussian elliptical shape in the spatial domain. The radius of the short axis was taken to be 1mm ($1/e$ fall and $a=1\text{mm}$), and the long axis radius was taken to be 10mm ($1/e$ fall and $b=10\text{mm}$). Laser output power was 20W, thus, $I_{\text{max}}\approx20/(\pi ab)\approx6.37\times10^4\text{W/m}^2$. Again note that the reflectivity of the sample surface was not considered in either model. There is good general agreement between analytical and modelling results with peak temperature rises differing by only ~4%.

![Temperature Rise within Mild Steel](image3)

![Temperature Rise within Mild Steel](image4)
2.4 Modelling results concerning the operating parameters and the geometries of a crack

Modelling has been used to gain an understanding of the optimum operating parameters for the laser-spot and laser-line thermography techniques and to assess the theoretical limits of their sensitivities for the detection of cracks. Two kinds of cracks with different shapes (slot and half penny) have been used in the simulations and they were embedded vertically from the surface to a certain depth in a metal block (12mm×12mm×5mm). The modelling grid spacing was 0.1mm. In the modelling, the laser spot and laser line are simulated scanning parallel to the x-axis and passing the centre of crack; the long axis of the laser line was parallel to the y-direction.

Before modelling, a metric will be first set to describe the crack heat blocking effect. Figure 4a shows the surface temperature obtained using the 3-D ghost point finite difference model. The laser spot duration was 50ms and the output power was 21W. The laser radius was 0.9mm ($1/e$ fall) and the crack was a slot crack embedded in a mild steel block, with opening 10µm, length 2mm and depth 2mm. The solid gray line is the temperature profile across the crack and the laser spot centre. The crack blockage effect can be quantified by the temperature difference or gradient across the crack. The temperature difference across the crack is adopted here as a metric of the crack heat-blocking effect. The effect of changing the distance of the laser spot centre to the crack is shown in figure 4b. It shows that the temperature difference metric reaches its largest value when the laser spot centre is at a position of one radius of the laser beam from the crack. This position will be referred to as the ‘optimum’ position in this paper. Similarly, the simulated surface temperature produced by a laser line heating source parallel to the crack is shown in the figure 5a. The laser line was simulated by a Gaussian elliptical shape in the spatial domain. The long axis radius was 10mm ($1/e$ fall) and the short axis radius was 0.5mm ($1/e$ fall). The laser pulse duration was 100ms and the total laser output power and the crack geometries were kept the same. Figure 5b shows the variation of the temperature difference across the crack with distance of the line source to the crack centre. Again, the ‘optimum’ imaging distance between the laser ‘line’ centre and the crack was one radius of the short axis.

Other operating parameters that will affect the temperature difference across the crack are laser power and pulse duration. For laser pulses with the same output energy it is found that, the shorter the laser pulse, the higher the temperature difference across the crack that can be obtained. This is a result of the rapid thermal diffusion rate in metals that causes transient thermal perturbations to dissipate over a shorter time than the duration of the longer pulses. Balanced against this effect is a general increase in the crack thermal metric with laser pulse energy.

In addition, the crack geometry will affect the laser spot and laser line crack imaging. Figure 6 shows the variation of the temperature difference metric with: (a) crack opening, (b) crack length and (c) crack depth. These results are for the laser line source that is shown in figure 5, at the optimum position and at the extinction of a 100ms pulse. The results provide an indication of the limits of laser line imaging for detecting cracks with certain geometries. They show a reduction in the temperature difference across the crack to occur when: crack length is below ∼2mm; crack depth is below ∼1mm and crack opening is below ∼5µm. These figures indicate that the technique,
theoretically, has sensitivity adequate for many real inspection requirements. Very similar results are obtained for laser spot heating [36].

Figure 4. (a) Simulation of laser spot image after 50ms heating. (b) Temperature difference across the crack as a function of laser spot distance to the crack.
Figure 5. (a) Simulation of laser line image after 100ms heating. (b) Temperature difference across the crack as a function of laser line distance to the crack.

Figure 6. Temperature difference across a crack for a laser line source when (a) crack opening changes. (b) crack length changes. (c) crack depth changes.

3. Crack extraction based on modelling and experimental results
Results for the laser line source are presented here. Those for the laser spot have been presented elsewhere [36].

3.1. Crack imaging by static laser-line
The 3-D ghost point finite difference model has helped to establish the limits of the effectiveness of LST and LLT in the detection of cracks with opening in the micrometre range. In addition, this 3-D model has helped the development of a new crack imaging method. The purpose of this method is to obtain an image of the crack from the effects it has had on the thermal images of a nearby laser heated spot. A common image processing technique is to compute the first spatial
derivative which reflects the amplitude change rate in an image and thus extracts edges in images. The perturbation of a laser spot image caused by a crack can be regarded in the same way as an edge feature. However, the background heat flow caused by the focused laser spot is still strong and causes large thermal gradients that are mixed together with the crack effects when the spot is close to the crack. The ‘second spatial derivative’ has also been considered since it has been found to enhance the crack effects whilst reducing those of the laser spot.

Figure 7a shows the normalized first (blue dashed line) and second (red solid line) derivatives of the temperature profile line plotted in figure 5a. The red line in figure 7a shows the improved crack discrimination obtained from second derivative processing. Figures 7b and 7c show normalized 2-D images obtained using the first and second derivative image processing of the data shown in figure 5a. (derivatives taken in the x-direction perpendicular to the crack). It is clear that the second derivative processing provides a better means of isolating the image of the crack. The contrast of the crack to the background heat flow (ratio of the maximum amplitude at crack positions to the maximum amplitude of the background heat flow) in figure 7c is 1.65 times higher than that shown in figure 7b.

In practice, the image acquisition time and noise need to be considered. The simulation shown in figure 5a corresponds to images that might be collected by a thermal imaging camera just at the time of the extinction of a laser heating pulse. In practice, more thermal images at different times can be used. This provides the opportunity to form a summed thermal image that will further emphasize the crack structure over the background heat flow. However, the second-derivative method is known to be sensitive to the noise [41], so only thermal images with high signal-to-noise ratio should be considered. The effects of image addition and noise were investigated by adding ±0.1K (one standard deviation) of random noise to the above model and summing first, and then second, derivative thermal images from 0.1s, the time of extinction of the laser heating pulse, to 0.3s, when the remaining heating became comparable to the noise level. Images were computed at intervals of 1/60s matching the 60 Hz frame rate of the IR camera used in the experimental work below. The normalized first and second derivative images are shown in figures 8a and b, respectively. After integrating thermal images, the contrast of the crack to the background heat flow in figure 8b is 1.98 times higher than figure 8a.

However, when the noise was increased to ±0.5K, the second derivative method becomes affected more by the noise than the first derivative method, which is shown in the figure 9. After integrating thermal images, the contrast of the crack to the background heat flow in figure 9a (first derivative) is 3.61 times higher than figure 9b (second derivative).
Figure 7. (a) Normalized first (blue line) and second (red line) spatial derivatives of the temperature profile line in figure 5a. (b) First derivative image, in the x-direction, of figure 5a image. (b) Second derivative image, in the x-direction, of the image in Figure 5a.

Figure 8. (a) Summed first derivative image in the x-direction from 0.1s to 0.3s. (b) Summed second derivative images in the x-direction from 0.1s to 0.3s. The noise level was ±0.1K.
Figure 9. (a) Summed first derivative image in the x-direction from 0.1s to 0.3s. (c) Summed second derivative image in the x-direction from 0.1s to 0.3s. The noise level was ±0.5K.

3.2. Theoretical crack imaging by scanning laser-line
The above simulation results demonstrate the crack-imaging ability when the laser line source is parallel to the crack. However, simulations also show that the crack cannot be detected if it is perpendicular to the line heat source. In practice, the crack orientation is unknown. The effect of a crack orientated at 45° to the laser line is shown in figures 10 and 11. The crack was a half-penny shaped crack of length 5mm, depth 2mm and width 1µm. The laser long axis radius was 10mm (1/e fall) and the short axis radius was 0.5mm (1/e fall). The laser pulse duration was 100ms. It may be seen that only part of the crack can be detected at the two static positions of the laser line. In practice, the location of a crack would be unknown and line-scanning in two orthogonal directions would be used. The combination of the results obtained from such scans would improve the sizing of cracks, as shown in the experimental work, below.

Figure 12a shows a simulation of the laser line thermal images that would be used to scan the whole block with an orientation of 45° to the crack, using a scan step length of twice the laser beam radius (1.8 mm). The first and second derivative (x-direction) images, figures 12b and c, result in a broken image of the crack. Figure 13 shows a similar scan using a step size of one laser beam radius, resulting in complete first and second derivative images of the whole of the crack, figures 13b and c.

Based on these simulation studies, an image processing procedure has been formulated. The processing steps performed on the thermal images from the IR camera are as follows:

1. Subtract the background IR image to produce a dark-field image showing only the transient heat diffusion (this can be easily done by subtracting a thermal image obtained before the laser was switched on),
2. Compute the first and second derivative of each dark-field image at each scanning step in both the x- and y-directions.
3. Integrate all derivative images in the x- and y-directions collected from 0.1s to 0.3s at each scanning position.
4. Form a composite image of all the integrated images obtained at the different scanning positions. A final summed image may be obtained by adding the squares of the two derivative images in the x- and y-directions.

Figure 10. Laser line source crossing the tip of the crack. (a) Simulation of thermal image of the laser line (b) First differential image. (c). Second differential image.

Figure 11. Laser line source crossing the centre part of the crack. (a) Simulation of thermal image of the laser line (b) First differential image. (c). Second differential image.
Figure 12. Laser line source scans across the block using a 2x laser beam radius step length. (a) Simulations of thermal images of the laser line at each scan position. (b) Cumulative first differential image. (c) Cumulative second differential image.

Figure 13. Laser line source scans across the block using a 1x laser beam radius step length. (a) Simulations of thermal images of the laser line at each scan position. (b) Cumulative first differential image. (c) Cumulative second differential image.
4. Experimental crack imaging by scanning laser line thermography

Figure 14. (a) Experimental setup for the laser line scanning. (b) Thermal image of obtained laser line (around 15 mm long, 1/e fall).
Frame no.=1; Time=16.67ms
Frame no.=2; Time=33.34ms
Frame no.=3; Time=50.01ms
Frame no.=4; Time=66.68ms
Frame no.=5; Time=83.35ms
Frame no.=6; Time=100.02ms
Frame no.=7; Time=116.69ms
Frame no.=8; Time=133.36ms
Frame no.=9; Time=150.03ms

(a)
Figure 15. (a) Experimental laser line thermal images of a crack of 10mm length, 2mm depth and 50µm width in a stainless steel plate. (b) Corresponding simulated thermal images.

Figure 14a shows the experimental set up for laser line scanning thermography. A beam expander (7 times) and a cylindrical lens were used to convert a laser spot with radius of around 0.9mm to a laser line source. Figure 14b shows the thermal image of the heating produced by the laser line source. Its length was around 15mm (1/e fall) and its width was about 0.5mm (1/e fall).

Figure 15a shows a set of nine experimental thermal images obtained by a 60 Hz frame rate IR camera following the extinction of a 100ms laser heating pulse. The test piece was a stainless steel plate with a crack at the surface centre (10mm long, 2mm deep, and 50µm wide). The laser line was set at the optimum position to the right of the crack. Corresponding simulated thermal images are shown in the figure 15b. A thermal noise level of ±1K was added to the thermal images in the simulations. The simulations can be seen reproduce all the principle features of the experimental results.

The crack images, figures 16a and 16b, were obtained using the image processing method defined in section 3. The crack was in a titanium test piece, it was 11mm long with a depth at the crack centre of about 3mm. The crack was opened, using a 3-point bending rig, to produce an average opening of the crack of 20 µm. The reflectivity of the surface was smaller than 40%. The crack was orientated at an angle of approximately 45º to test the ability of the technique to image cracks.
at an angle to the scanning direction. The laser line was scanned in the \(x \)-direction with a step length of 0.2\(\text{mm} \). The total scan length in the \(x \)-direction was 10\(\text{mm} \). Figure 16a shows the first derivative image and figure 16b shows the second derivative image. The crack shape shown in the thermal images compared well with microscope photographs of the crack. Information about the distribution of the crack opening can also be seen in the image; it shows stronger signals in the middle part of the crack, where the crack is most open.

![Figure 16](image)

Figure 16. (a) Summed first derivative thermal images of a crack using the laser line source. (b) Summed second derivative thermal image.

The advantage of the laser line scanning technique over the laser spot scanning technique is a significant reduction in scanning time. For the same scanning area \((10 \times 10\text{mm}) \), using the same 0.2\(\text{mm} \) \(x \)-direction scan steps and \(y \)-direction steps of 0.5\(\text{mm} \), 1000 scan steps are required by LST to scan the area, whilst only 50 scan steps are needed to generate an LLT image. Consequently, the scanning time for the LST would be 20 times longer than LLT, for this case. In addition, experimental results show that both the LLT and LST obtained first and second derivative images with similar signal-to-noise ratios.

Derivative images of the same crack without applying the 3 point bending force to the titanium test-piece, which resulted in an average crack opening of \(\sim 3\mu\text{m} \), are shown in figure 17. Figures 17a and 17b are the imaging results which were obtained using the LLT. Figures 17c and 17d are imaging results obtained using the LST. The crack shape and size are clear in all four images. This provides evidence of the sensitivities of the techniques to cracks with openings of a few micrometres. The LST image SNRs were slightly higher than those of the LLT images because of the higher laser output power density of the focused, expanded, laser spot.

The scan steps of both LLT and LST in the \(x \)-direction were 0.2\(\text{mm} \). Total scan lengths were around 6\(\text{mm} \) in the \(x \)-direction for both the LLT and the LST. In the \(y \)-direction, the scan step was
0.5mm for the LST and the total scan length was around 15mm. Thus the scan time of the LST was 30 times longer than for the LLT.

![Image](image1.png)

Figure 17. Titanium test-piece with a crack of 11mm long, 3µm wide. (a) Summed first derivative imaging result by LLT method; (b) Summed second derivative imaging result using the LLT method; (c) Summed first derivative imaging result by the LST method (d) Summed second derivative imaging result by the LST method.

5. Discussion and Conclusions

The results presented in this paper indicate that both the LST and LLT techniques have sensitivities to cracks that are competitive with many established NDE techniques. The techniques have the advantages of being non-contactable and requiring no surface preparation. However, it is known that for the techniques to be successful, surfaces should be clean and free of deep scratches or indentations that would perturb heat flow in a similar manner to a crack.
The paper also presents a derivative image processing method for extracting images of cracks after line or raster scanning. The results obtained show scanned pulse LLT and LST, incorporating derivative image processing, to be a new effective nondestructive evaluation technique for detecting and imaging surface breaking cracks with openings in the range of micrometres. Crack images obtained by the new techniques are at least comparable to those obtained by the long established dye penetrant inspection (DPI) method. However, this new technique has the advantages: of eliminating the long preparation time of the DPI technique; of eliminating the use of undesirable liquids; of eliminating the exposure of the inspector to UV light; of being deployable remotely and of being suitable for automation. The practical sensitivities and reliabilities of the new techniques are under investigation.

The LLT method provides much higher scanning rate than the LST method. The fundamental limit to the scanning rate is the laser excitation time that was 100ms for the LLT method. This time is a function of available laser power and line length as an adequate energy density has to be deposited to achieve images of acceptable signal-to-noise ratios. In the system employed in this work, the time taken to write IR camera data collected at each raster position to the main system control computer set the scanning rate. There would be considerable scope for reducing this time constraint if a fully integrated and optimised system was developed but this was outside of the scope of this work which has demonstrated the operating principles of the LLT imaging method. Subsequent image processing time was negligible. However, it is recognised that this technique is still far slower than pulsed transient thermography using flash lamps and that its areas of application will probably be the inspection of localised defect-prone areas on comparatively small components. For both techniques the equipment cost is dominated by the cost of the IR camera, in the case of LLT being a factor of about three higher than the cost of the laser and scanning stage combined.

Acknowledgements
This research was funded as a targeted research project of the Engineering and Physical science Research Council (EPSRC) UK Research Centre in NDE (RCNDE). The work also received support from Rolls Royce plc, RWE Npower and the National Nuclear Laboratory.

References
[22] Lehtiniemi R, Rantala J, and Hartikainen J 1995,Photothermal line scanning system for the NDTof plasma sprayed coatings of nuclear plant components Research in Nondestructive Evaluation 6(2) 99-123
[34] Bodnar J L; Egée M 1996 Wear Wear crack characterisation by photothermal radiometry 196(1-2) 54-59
[40] Rantala J and Hartikainen J 1991 Numerical estimation of the spatial resolution of thermal NDT techniques based on flash heating Research in Nondestructive Evaluation 3(3) 125-139