Surface-induced nonlinearity enhancement of TM modes in planar subwavelength waveguides

D. V. Skryabin,* A. V. Gorbach, and A. Marini

Centre for Photonics and Photonic Materials, Department of Physics, University of Bath, Bath BA2 7AY, UK

*Corresponding author: d.v.skryabin@bath.ac.uk

Received August 20, 2010; accepted October 31, 2010; posted November 5, 2010 (Doc. ID 133769); published December 17, 2010

Using an asymptotic expansion of Maxwell equations and boundary conditions, we derive an amplitude equation for nonlinear TM modes in planar metal and dielectric waveguides. Our approach reveals that the physics of the significant enhancement of the nonlinear response in subwavelength waveguides with respect to their weakly guiding counterparts is hidden in surface effects. The corresponding enhancement factor is determined by the products of the surface discontinuities of the transverse field components and of the surface values of the longitudinal components of the electric field summed over all the interfaces. We present an insightful expression for the enhancement factor induced by the surface plasmon polaritons and discuss numerical and analytical results for the subwavelength dielectric and metal slot waveguides. Our theory also includes diffraction effects along the unbound direction in these waveguides. © 2010 Optical Society of America

OCIS codes: 190.4390, 240.4350, 240.6680, 130.4310, 130.2790, 190.4350.

1. INTRODUCTION AND RATIONALE

Waveguiding on a subwavelength scale has become a practical reality with silicon slot waveguides providing a promising environment for nonlinear frequency conversion and ultrafast processing [1,2]. Metal and dielectric slot waveguides and surface plasmon are also actively researched for nonlinear applications and soliton effects; see, e.g., [3–9]. Submicrometer core optical fibers [10–12] have also been developed. The recent work carried out with the latter [12] has demonstrated that scaling of the nonlinear fiber parameter in the subwavelength geometry with the square of the projection of the Poynting vector on the propagation direction provides much better fit with the experimental measurements than the previous theories relying on the scaling with $\frac{\int \left| \varepsilon \right|^2 dS}{\int \left| \varepsilon \right|^2 dS}$, where dS is the two-dimensional differential area in the plane perpendicular to the waveguide axis, and ε is the electric field. The older scaling can be traced back to the scalar wave equation [13], and its poor performance in the regime, when the guided mode strongly deviates from being a pure transverse wave, is not surprising.

Optical guidance at the planar metal surfaces and in planar dielectric slot waveguides intrinsically depends on the fact that TM modes have a nonzero longitudinal component of the electric field [4,5,7,8,14]. Nevertheless, existing theories deriving a nonlinear parameter of plasmonic waveguides either utilize the older scaling [4,7] suitable only for quasi-transverse fields or rely on cumbersome calculations [15] prohibiting qualitative understanding of the physical reasons inducing changes in the nonlinear response. Novel approaches developed for fibers and two-dimensional (2-D) silicon waveguides and giving the scaling of the nonlinear response with the projection of the Poynting vector utilize the modal expansion and reciprocity theorem [16–19]. The new scaling agrees favorably with the experimental measurements [12], but still sheds little light on the physics of the significantly enhanced nonlinear response in subwavelength geometries [1,12].

To address this outstanding issue, we develop a rigorous and at the same time transparent asymptotic theory, which reveals that enhancement of the nonlinear response of TM modes in planar subwavelength waveguides happens exclusively due to surface effects. Namely, the enhancement factor is determined by the products of the surface discontinuities of the transverse field components and of the surface values of the longitudinal components of the electric field summed over all the interfaces. If either is disregarded, then no enhancement happens, and the results of the older theories are recovered. Thus, the longitudinal component of ε is important primarily through its surface value and not through its integrated average contribution.

2. ASYMPTOTIC EXPANSION FOR MAXWELL EQUATIONS AND BOUNDARY CONDITIONS

We consider a planar waveguide, where x is the direction perpendicular to the interfaces, z is the propagation direction, and y is the unbound direction, so that light can diffract along y. Evolution of the monochromatic field obeys time-independent Maxwell equations $\nabla \times \nabla \times \varepsilon = \hat{D}/\varepsilon_0$ subject to boundary conditions at the interfaces. Here the electric field and displacement vectors are defined as $\frac{1}{2} \varepsilon_0 e^{-i\omega t} + \text{c.c.}$ and $\frac{i}{2} \hat{D} e^{-i\omega t} + \text{c.c.}$, and ε_0 is the vacuum susceptibility. If $\varepsilon(x)$ is the dielectric constant varying sharply at the interfaces, then $\hat{D} = \varepsilon_0 (\varepsilon x + \hat{N})$, where \hat{N} is the nonlinear part of the displacement. The coordinates x, y, and z are normalized to the inverse wavelength $k = 2\pi/\lambda$, where λ is the vacuum wavelength. We seek a solution corresponding to a nondegenerate guided mode in the form $\varepsilon(x, y, z) = e^{i\beta z}$, where β is the propagation constant. We substitute $\hat{N} = \hat{N} e^{i\beta z}$ and assume that $\varepsilon = \varepsilon_n + \varepsilon_a$, where $\varepsilon_n(x)$ is the leading term, and $\varepsilon_a(x)$ is a possible correction, accounting, e.g., for linear absorption. Nonzero
components of the electric field of TM modes are \(E_x \) (perpendicular to the interfaces) and \(E_z \) (along the propagation direction). When diffraction along \(y \) direction is accounted for, the TM modes are transformed into quasi-TM ones, so that \(E_y \) is also nonzero but remains relatively small. Generic boundary conditions at the relevant interfaces are such that the tangential components of \(\vec{E} \) and the normal components of the displacement \(\varepsilon \vec{E} + \vec{N} \) and all components of the magnetic field \(\vec{H} = (\lambda c_0 / i 2\pi) e^{-i \omega t} \vec{N} \times \vec{E} e^{i \phi z} \) are continuous:

\[
\begin{align*}
E_x : & \quad \Delta [E_x + N_z] = 0, \\
E_y : & \quad \Delta [E_y] = 0, \\
H_y : & \quad \Delta [\partial_y E_z - e^{-i \omega t} \partial_z (E_x e^{i \phi z})] = 0, \\
E_z : & \quad \Delta [E_z] = 0, \\
H_z : & \quad \Delta [\partial_x E_y - \partial_y E_x] = 0.
\end{align*}
\]

(1)

where the operator \(\Delta [f] \) acting on a function \(f(x) \) is defined as

\[
\Delta [f] = \lim_{\delta \to 0} (f(x + \delta) - f(x - \delta)).
\]

(2)

Here \(x_j \) are the interface coordinates. Boundary conditions on \(H_x \) and \(H_y \) are not independent from the other ones and can be eliminated, but it is technically convenient to retain the \(H_z \) condition explicitly.

For a typical isotropic nonlinearity

\[
\vec{N}(E_x, E_y, E_z) = \frac{1}{2} \chi_3 \left(|\vec{E}|^2 \vec{E} + \frac{1}{2} \vec{E} \cdot \vec{E} \right).
\]

(3)

where \(\chi_3 \) is the nonlinear susceptibility.

We assume that the exponential factor varies in \(z \) much faster than \(\vec{E} \) itself, i.e., \(\vec{E} \| \vec{E} \) \(\ll \beta |\vec{E}| \). Further, it is assumed that the left-hand side of the above inequality, \(e_\| \vec{E} \), and \(\vec{N} \) all have the same order of smallness \(O(s^{\alpha/2}) \), where \(s \ll 1 \) is a dummy parameter. Also, \(e_b \sim O(s), \partial_z \sim O(s), \sqrt{\chi_3} E_{xz} \sim O(s^{1/2}), \sqrt{\chi_3} E_y \sim O(s), \) and \(\partial_y \sim O(s^{1/2}) \). For \(\vec{E} \), we use the following ansatz:

\[
\begin{align*}
E_x &= A_x(y, x) + B_x(y, x) + O(s^{\alpha/2}), \\
E_z &= A_z(y, x) + B_z(y, x) + O(s^{\alpha/2}), \\
E_y &= C(y, x) + O(s^{\alpha/2}), \quad \psi = \psi(z, y),
\end{align*}
\]

(4)

where \(A_x, A_z \sim O(s^{1/2}), B_{xx} \sim O(s^{3/2}), \) and \(C \sim O(s) \). All \(\lambda \), Band \(C \) do not depend on \(z \) and \(y \) explicitly, but only by means of the slowly varying function \(\psi(z, y) \). Collecting all the \(O(s^{1/2}) \) terms, we find the following boundary value problem (BVP):

\[
\begin{align*}
\hat{\mathcal{L}} \hat{A} &= 0, \\
E_x : & \quad \Delta [e_\alpha A_x] = 0, \\
E_z : & \quad \Delta [A_z] = 0, \quad \left(\begin{array}{c}
\hat{a} \\
\hat{b} \\
\hat{c} \\
\end{array} \right)
\end{align*}
\]

(5)

where

\[
\hat{a} \equiv \left(\begin{array}{c}
A_x \\
A_z \\
\end{array} \right), \quad \hat{b} \equiv \left(\begin{array}{c}
\beta^2 - e_\alpha \\
\partial_y e_x \\
\end{array} \right), \quad \hat{c} \equiv \left(\begin{array}{c}
i \partial_x e_x \\
-\partial_y e_x - e_\alpha \\
\end{array} \right).
\]

(6)

For \(\text{Im} e_\alpha = 0 \), the BVP (5) is self-adjoint.

From possible solutions of this BVP, we select a nondegenerate bound mode \(A = 1^{1/2} \psi(z, y) \hat{e} \), where

\[
\hat{e}(x) = (e_x, e_z)^T
\]

(7)

is the mode profile, \(\hat{\mathcal{L}} \hat{e} = 0 \), and \(\psi \) is an undetermined function, \(|\psi|^2 \sim O(s^{1/2}) \). Without any loss of generality, \(\hat{e} \) can be assumed dimensionless, so that the field units are carried by \(1^{1/2} \psi \). The normalization factor \(I \) is chosen below in a way that \(|\psi|^2 \) is the power density (measured in watts per meter) carried in the \(z \) direction. Calculating the \(z \) component of the Poynting vector

\[
P_z = \frac{1}{4\pi} \int_{-\infty}^{\infty} (A_x H_y^* + A_z^* H_y) dx = I|\psi|^2 \frac{\epsilon_\alpha C}{2\beta k} Q.
\]

(8)

where \(H_y = e_\alpha / (\beta k) 1^{1/2} \psi, \) we find \(I = 2\beta k / (\epsilon_\alpha C Q) \). \(|\psi|^2 \) is measured in units of the power density and not of the power itself [13], since integration along the unbound direction \(y \) is not performed.

The BVP in the \(O(s) \) order is

\[
\begin{align*}
\hat{\mathcal{L}} \hat{B} &= 1^{1/2} \hat{J}, \\
E_x : & \quad \Delta [e_\alpha B_x] = 0, \\
E_z : & \quad \Delta [B_z] = 0, \\
E_y : & \quad \Delta [e_\alpha C] = -\Delta [e_\alpha A_x] - 1^{1/2} \psi |\psi|^2 \Delta [n_z],
\end{align*}
\]

(10)

where \(\hat{\mathcal{L}} = (B_x, B_z)^T \) and \(\hat{J} = (J_x, J_z)^T \) is the displacement induced by the perturbations: \(J_x = \partial_y \psi (2\beta e_x - \partial_y e_x) + \partial_y \partial_y \psi (e_x - \partial_y e_x) + \psi e_x e_x + \psi |\psi|^2 e_x, \) \(J_z = -\partial_y \partial_y e_x + \psi e_x e_x + \psi |\psi|^2 n_z \). For nonlinearity as in Eq. (3), we have \(n_z \equiv \text{IN}_{xx}(e_x, 0, e_z) \). Deriving an independent BVP for \(e_z \) and comparing it to the BVP for \(e_x \), one can show that \(e_z = i \beta e_x \). This identity couples the diffraction-induced \(e_x \) and the longitudinal field component and makes it possible to eliminate \(e_y \) from the following derivations.

3. NONLINEAR SCHROEDINGER EQUATION
AND SURFACE EFFECTS

Projecting Eq. (11) onto the linear TM mode, i.e., demanding \(\int_{-\infty}^{\infty} (\hat{e}^\dagger \cdot \hat{L} \hat{B}) dx = 1^{1/2} \int_{-\infty}^{\infty} (\hat{e}^\dagger \cdot \hat{J}) dx \), we derive the amplitude equation for \(\psi \) and guarantee absence of secular terms in the solution for \(\hat{B} \). An important aspect of the projection procedure is that we take \(\int_{-\infty}^{\infty} = \int_{x = -\infty}^{x = +\infty} \int_{y = -\infty}^{y = +\infty} \), apply the integration by parts and use boundary conditions to evaluate the off-diagonal terms. Importantly, not only the right-hand side part of the projection condition, as in the perturbation theory with no midpoint boundaries, but also the left-hand side yields a nonzero outcome:

\[
\int_{-\infty}^{\infty} (\hat{e}^\dagger \cdot \hat{L} \hat{B}) dx = -\eta P^{1/2} (i \partial \psi),
\]

(12)

\[
\int_{-\infty}^{\infty} (\hat{e}^\dagger \cdot \hat{J}) dx = i(2 + \eta) \beta P \partial_0 \psi + P(1 + \eta) \partial_y \partial_y \psi + \psi \int_{-\infty}^{\infty} e_x |\hat{e}|^2 dx
\]

(13)
Here
\[
\eta = \frac{1}{\beta P} \sum_j (i e_j(x_j))^* \Delta_j[e_j],
\]
(14)
\[
P = \int_{-\infty}^{\infty} |\psi|^2 \, dx.
\]
(15)
The resulting NLS equation for \(\psi \) is
\[
i \frac{\partial \psi}{\partial (z/k)} + \frac{1}{2i \beta k} \frac{\partial^2 \psi}{\partial (y/k)^2} + a \psi + \Upsilon |\psi|^2 \psi = 0.
\]
(16)
where the nonlinear parameter \(\Upsilon \) can be expressed as
\[
\Upsilon = g \gamma.
\]
(17)
\[
\gamma = \frac{2k^2}{3\beta P^2} \int_{-\infty}^{\infty} e_n \left[|\hat{e}|^4 + |\hat{e}|^2 \right] \, dx.
\]
(18)
Here we used \(\chi_3 = (4/3) n_2 e_0 e_c \), where \(n_2 \) is the Kerr coefficient. Parameter \(\gamma \) is defined to be similar to the one derived in the approaches dating back to the use of scalar wave equation [13], with equivalent expressions presented in [4,7]. Importantly, the nonlinear coefficient \(\Upsilon \) differs from \(\gamma \) by the factor \(g \):
\[
g = \frac{1}{(1 + \eta)^2},
\]
(19)
which we call the surface-induced nonlinearity enhancement factor. The units of \(n_2 \) are \(m^2/W \) and the units of \(\gamma \) and \(\Upsilon \) in our planar geometry are \(1/W \).

The enhancement factor \(g \) significantly deviates from \(g = 1 \), providing \(\eta \) significantly deviates from zero. The value of \(\eta \) [see Eq. (14)] is simultaneously determined by the longitudinal components of the field calculated exactly at the interfaces, \(e_j(x_j) \), and by the jumps experienced by the transverse component, \(\Delta_j[e_j] \). Using \(\delta e_j e_k = -i \eta e_j e_k \) (div \& \(\nabla \psi = 0 \) condition for linear TM modes), we conclude that the phase of \(e_j \) can only be \(\pm \pi/2 \), and hence \(\eta \) is real. Calculating \(\eta \) for different metallic and dielectric waveguides (see Section 5 and Appendix A), we have found that \(-1 < \eta < 0 \). This implies \(g > 1 \) and hence field discontinuities at the surfaces and the surface values of the longitudinal field lead to the enhancement of the nonlinear response of the TM-guided modes.

The last and least important coefficient in Eq. (16) for our present purposes is
\[
a = \frac{k \sqrt{g}}{2P} \int_{-\infty}^{\infty} e_n |\hat{e}|^2 \, dx.
\]
(20)
The physical meaning of \(a \) is determined by \(e_n \), which is the perturbation of the dielectric constant. \(a \sim \sqrt{g} \), and hence it is enhanced as well by the surface effects.

5. SURFACE-INDUCED NONLINEARITY ENHANCEMENT IN BASIC WAVEGUIDE GEOMETRIES

To evaluate the surface-induced nonlinearity enhancement factor \(g \), we have considered several basic waveguide geometries [see Figs. 1(d)–1(f)]. While below we discuss numerical [as shown in Figs. 1(a)–1(c)] and simplest analytical results for \(g \), we also present the analytical field profiles and expressions for \(\eta \) used to calculate \(g \) in Appendix A.

First is the waveguide of width \(w \) (dielectric constant \(e_w \) embedded into the cladding material with dielectric constant \(e_c < e_w \) [see Figs. 1(a) and 1(d)]. Let us remind that all the distances are scaled to \(2\pi/\lambda \). We find that, in this case, \(g \) tends to 1 in both limits \(w \rightarrow \infty \) and \(w \rightarrow 0 \) and has a well-pronounced maximum for the waveguide width of the order of wavelength \(w \sim 1 \), thus implying resonant nonlinear response of the dielectric waveguides [see Fig. 1(a)]. In a very realistic case of silicon surrounded by air, \(g \) rises to \(\approx 4 \).

Placing two identical dielectric waveguides close together creates the guidance of the symmetric \((e_w(x) = e_w(-x)) \) TM mode inside the low-index slot [see Figs. 1(b) and 1(c)]. Changing the slot width \(d \), we found that \(g \) tends to the corresponding values for the single waveguides of width \(w \) and \(2w \) in the corresponding limits \(d \rightarrow \infty \) and \(d \rightarrow 0 \). Location of the maximum of \(g \) also varies with \(w \), but most typically is found for practically accessible \(d \approx 0.1 \) [see Fig. 1(b)]. Figure 2(a) shows a comparison of \(g \) and \(\Upsilon \) calculated as the function of the slot width. To express \(\gamma \) and \(\Upsilon \) in the units of \(1/W/m \), familiar for slot waveguides with a 2-D cross section (see, e.g.,
in [1]), we divided them by \(L_y = 100 \text{ nm} \), which is the characteristic length scale along the \(y \) coordinate. We have chosen \(n_2 \) to be the same inside the slot and in dielectric stripe to illustrate the pure geometrical impact on the nonlinearity enhancement.

The other slot waveguide we are considering consists of the two metal (\(\epsilon_m < 0 \)) interfaces separated by the slot of width \(d \) filled with the dielectric (\(\epsilon_d > 0 \)) [see Fig. 1(f)]. For \(d \gg 1 \), we deal with almost independent surface plasmon polaritons (SPPs) at every interface. In this case, \(g \) can be calculated in an elegant form (while in the other cases the dispersion law for \(\beta \) remains unresolved explicitly; see Appendix A for details):

\[
g_{\text{app}} = \left(\frac{\epsilon_d^2 + \epsilon_m^2}{\epsilon_m} \right) \left(\frac{\epsilon_d^2 + \epsilon_m^2}{\epsilon_m} \right)^2 \]

(22)

and is clearly far from 1. \(g_{\text{app}} \) tends to infinity very rapidly when the contrast parameter \(\epsilon_d/\epsilon_m \) tends to 1 (plasmon resonance), which is the cutoff condition for SPPs to exist at the single interface. In this limit, both phase and group velocity of the plasmon become zero, so that new orders of smallness have to be introduced in our asymptotic procedure, which is likely to result in the amplitude equation different from the one derived above. Nonlinear parameter \(\gamma \) for a plasmon also can be calculated explicitly (see Appendix A) and is given by

\[
\gamma_{\text{app}} = \frac{2k^2 \epsilon_d n_2}{3} \left(\frac{\epsilon_d^2 + \epsilon_m^2}{\epsilon_d + \epsilon_m} \right)^2 \left[1 + \frac{1}{2} \left(\frac{\epsilon_m + \epsilon_d}{\epsilon_d - \epsilon_m} \right)^2 \right].
\]

(23)

Note, that the divergence of \(\gamma_{\text{app}} \) for \(\epsilon_d/\epsilon_m \to 1 \) is weaker than the one of \(g_{\text{app}} \).

In the metal slot waveguides, the surface enhancement \(g \) is easily getting very significant; even for moderate contrast \(\epsilon_d/\epsilon_m \approx 0.1 - 0.5 \) we have \(g \approx 20 - 50 \), while close to the plasmon resonance it shoots to the infinity. Note that, in the metal slot waveguides, the enhancement factor rises sharply as the slot width tends to zero (\(g \approx 1/d^2 \)), as can be derived using \(g \) given in Appendix A), while in the dielectric slot \(g \) drops after reaching the maximum for some small \(d \) [cf. Figs. 1(a) and 1(c)]. Behavior of the nonlinear parameters \(\gamma \) and \(\gamma \) is also different. In the dielectric slot, \(\gamma \) and \(\gamma \) remain bound for \(d \to 0 \) and \(d \to \infty \) [see Fig. 2(a)]. However, in the metal slot limit \(\gamma_{\text{app}} \to 0 \), while \(\lim_{\epsilon_d/\epsilon_m \to 0} \gamma_{\text{app}} \to \infty \) [see Fig. 2(b)]. Thus, in the narrow metal slots, the surface enhancement makes not only quantitative but also qualitative impact on nonlinear response.

6. SUMMARY AND CONCLUSIONS

In summary, using a new asymptotic approach, which rigorously treats boundary conditions, we have derived a nonlinear amplitude equation for TM modes in planar optical waveguides. Our approach has enabled us to introduce and analyze the surface-induced nonlinearity enhancement factor \(g \). This dimensionless factor attains values between 1 and 10 in dielectric slot waveguides and shoots up toward infinity for surface plasmons and in metallic subwavelength slots. The \(g \) factor provides a clear link between the traditional results for the nonlinear parameter in the weakly guiding regime [13] and the recent calculations and experimental measurements done for subwavelength structures [16–18]. More than this, it shows that the nonlinearity enhancement in the subwavelength regime is attributed to the surface values of the longitudinal component of the electric field and to the interface jumps of the transverse component. For material constants and waveguide geometries leading to the divergent \(g \) factors, a new asymptotic theory should be developed, which will be reported elsewhere. Though it still needs to be proved formally, one can expect that, for the 2-D TM (or quasi-TM) modes, the expression for \(g \) [see Eqs. (14) and (19)] should contain a contour integral along the waveguide boundaries instead of the sum over all the interfaces. Mentioning quasi-TE modes, the significant surface effects are unlikely, due to continuity of the leading order electric field component across the interface and smallness of the longitudinal field.

APPENDIX A

Below we present analytical expressions for the field profiles and parameter \(\eta \) determining the enhancement factor \(g \) [see

Fig. 1. (Color online) (a)-(c) Surface-induced nonlinearity enhancement factor \(g \) for three different waveguide geometries. The corresponding waveguides and electric field profiles are shown in (d)-(f). (a), (d) Single dielectric waveguide of the width \(w \). (b), (e) Dielectric slot waveguide, i.e., two dielectric waveguides separated by the slot width \(d \). (c), (f) Metal slot waveguide, i.e., two metal interfaces separated by the slot width \(d \). All other notations and features are explained in the text.

Fig. 2. Comparison between \(\gamma/L_y \) (dashed curves) and the surface-enhanced \(\gamma/L_y \) (solid curves) nonlinear parameters for the (a) silicon and (b) metal slot waveguides with the polymer-filled slot. \(n_2 \) for silicon and polymer are assumed to be the same \(4 \cdot 10^{-18} \text{ m}^2/\text{W} \), while the dielectric constants are \(\epsilon_s = 12 \) and \(\epsilon_d = 3.2 \), respectively. \(w = 0.7 \), \(\lambda = 1.5 \mu \text{m} \), and \(L_y = 100 \text{ nm} \). In (b), the metal is assumed linear and \(\epsilon_m = -25 \), \(\epsilon_d = 4 \), \(\lambda = 0.8 \mu \text{m} \).

1. Dielectric Waveguide as in Fig. 1(d)

The TM mode of this waveguide is

\[
e_z = \begin{cases} \frac{i\beta}{\kappa} \cos(\kappa x) & |x| < w/2, \\ \frac{i\beta}{\kappa} \sin(\kappa (x-w/2)) e^{-\kappa (|x|-w/2)} & |x| > w/2, \end{cases}
\]

where \(\kappa^2 = \epsilon_m - \beta^2\), \(q^2 = \beta^2 - \epsilon_d\), and \(\beta\) is defined from \(\epsilon_m \kappa \tan(\kappa w/2) = \epsilon_w q\). Then, we obtain

\[
\eta = -2 \left(\frac{\epsilon_w}{\epsilon_d} - 1 \right) \left[\frac{\beta^2}{\kappa^2} - \frac{\epsilon_w}{\epsilon_d} \sin^{-1}(\kappa w) + \frac{\epsilon_w}{\epsilon_d} \left(\frac{\beta^2}{q^2} + 1 \right) \right]^{-1}.
\]

\(\eta < 0\) and \(\eta \to 0\) in both limits \(w \to \infty (x \to 0)\) and \(w \to 0 (q \to 0)\), and hence there is an optimal waveguide width maximizing the surface enhancement [see Fig. 1(a)].

2. Surface Plasmon at a Metal–Dielectric Interface

Field of the surface plasmon is given by

\[
e_x = \frac{i\beta}{q_m} \left[\frac{e^{-\epsilon_d \theta(x)} - 1}{q_m \epsilon_d} e^{\epsilon_d \theta(-x)} \right],
\]

\[
e_z = \epsilon_d q_m \epsilon_m \theta(x) - e^{-\epsilon_d \theta(-x)},
\]

where \(\theta(x)\) is the Heaviside function, \(q_{d,m} = \sqrt{\beta^2 - \epsilon_{d,m}}\), and \(\beta^2 = \epsilon_n \epsilon_d / (\epsilon_m + \epsilon_d)\). Here \(d\) and \(m\) stand for dielectric and metal, respectively. Then, we obtain

\[
\eta = -\frac{2\epsilon_d}{|\epsilon_m|} \left[1 + \frac{\epsilon_d^2}{\epsilon_m^2} \right]^{-1}.
\]

which is used to derive Eq. (22). An explicit form of \(\gamma\) for plasmons is

\[
\gamma = \frac{2k^2 \epsilon_d \epsilon_m}{3} \left[1 - \frac{1}{|\epsilon_m|} \left(1 - \frac{|\epsilon_m|}{\epsilon_d} \right)^2 \right] \left[1 + \frac{1}{|\epsilon_m|} \left(1 + \frac{\epsilon_d}{\epsilon_m} \right) \right]^2.
\]

Thus, \(\gamma\) tends to zero as \(\epsilon_d / |\epsilon_m| \to 1\), but at a rate weaker than the corresponding enhancement factor \(\eta_{\text{app}}\) [see Eq. (22)] tends to infinity, thereby yielding \(\gamma \to \infty\) [see Eq. (23)].

3. Metal Slot Waveguide as in Fig. 1(f)

The metal slot mode with symmetry \(e_x(x) = e_x(-x)\) and \(e_z(x) = -e_z(-x)\) is given by

\[
e_x = \begin{cases} \frac{i\beta}{\kappa} \cosh(q_m d/2) e^{-q_m (|x|-d/2)} & |x| < d/2, \\ \frac{i\beta}{\kappa} \sinh(q_m d/2) e^{-q_m (|x|-d/2)} & |x| > d/2, \end{cases}
\]

\[
e_z = \begin{cases} \frac{\sin(q_m x)}{|q_m|} e^{-q_m x} & |x| < d/2, \\ \frac{\sin(q_m x)}{|q_m|} e^{-q_m (x-d/2)} & |x| > d/2, \end{cases}
\]

where \(q_{d,m}\) are as above, and \(\beta\) is found from \(\epsilon_n q_m \tan(q_m d/2) = \epsilon_d q_m\). \(\eta\) in this case is given by

\[
\eta = -2 \left(1 - \frac{\epsilon_d}{\epsilon_m} \right) \left[\frac{\beta^2}{q_m^2} + 1 + \frac{\beta^2}{q_m^2} - 1 \right]^{-1}.
\]

