Table of contents

- **List of figures**
- **List of tables**
- **Abbreviations**
- **Acknowledgments**
- **Abstract**

Chapter 1 Introduction

1.1 Common features of neurodegenerative disorders
1.2 Protein misfolding and neurodegenerative diseases
1.3 A short history of the amyloid term
1.4 Alzheimer’s disease: the beginning
1.5 Characterization of the \(\beta \)-amyloid peptide
1.6 APP processing and A\(\beta \) peptide generation
1.7 Neurofibrillary tangles
 1.7.1 Mechanisms involved in \(\tau \) hyperphosphorylation
1.8 Alzheimer’s disease aetiology
 1.8.1 Early-Onset of Alzheimer’s disease
 1.8.2 Late-Onset of Alzheimer’s disease
1.9 Neuroinflammation and neurodegeneration in Alzheimer’s disease
 1.9.1 Cell mediators of inflammation in the CNS
 1.9.1.1 Microglia and Astrocytes
1.10 The emerging role of astrocytes in brain functions
 1.10.1 Tripartite synapses
 1.10.2 Blood-brain barrier
1.11 Alzheimer’s disease hypothesis: searching for the cause
 1.11.1. Amyloid hypothesis of Alzheimer’s disease
1.12 Modelling Alzheimer’s disease features in mice
1.13 An overview of the drug discovery process
1.14 Alzheimer’s disease drug discovery
 1.14.1 Current Alzheimer’s disease therapies
 1.14.2. Alzheimer’s disease drugs based on A\(\beta \) targeting
 1.14.2.1 Drugs to prevent A\(\beta \) aggregation
 1.14.2.2 Drugs to reduce A\(\beta \) production
 14.2.2.1 \(\beta \)-secretases inhibitor preclinical and clinical studies
 14.2.2.2 \(\gamma \)-secretases inhibitor preclinical and clinical studies
 1.14.2.3 Drugs to promote A\(\beta \) clearance
 1.14.2.3.1 Active immunotherapy
 1.14.2.3.2 Passive immunization
 1.14.3 Drugs targeting tau
 1.14.4 Other potential therapeutic strategies
1.15 Behavioural aspects of Alzheimer’s disease
 1.15.1 Hippocampus and memory
1.16 Transgenic techniques
1.17 Embryonic stem cells
 1.17.1 Markers for determination of pluripotent mES cells
 1.17.2 Factors affecting mES cell germline transmission
 1.17.2.2 mES cell culture conditions
 1.17.2.3 Mycoplasma contamination
1.18 Inducible mouse genetic systems
1.19 Background of the present study
1.19.1 Aims of the thesis in the ADIT project contest

Chapter 2 Material and Methods
2.1 Standard molecular procedures
 2.1.1 Polymerase Chain Reaction
 2.1.2 Primer design
 2.1.3 Primers
 2.1.4 Gel electrophoresis: DNA separation
 2.1.5 DNA sequencing
 2.1.6 DNA quantification
 2.1.7 Southern blot
 2.1.8 DNA extraction from mouse ear punches
2.2 Molecular Cloning methods
 2.2.1 DNA cloning
 2.2.2 General considerations for the generation of compatible ends between insert and vector for cloning
 2.2.2.1 Restriction enzyme digest
 2.2.2.2 Fill in reaction of 5’overhangs
 2.2.2.3 Insert and plasmid ligation
 2.2.3 Transformation into a bacterial host
 2.3.1 Preparation of chemocompetent cells
 2.3.1.1 Transformation of chemocompetent E.Coli bacteria
 2.4 Screening of selected clones
 2.4.1 Colony PCR
 2.4.2 Small-scale purification of plasmid DNA
 2.4.3 Large-scale purification of plasmid DNA
 2.4.4 Plasmid glycerol stocks
2.5 Plasmids used in this study
 2.5.1 Subcloning strategy to generate the loxP-PGK-gb2-hygro-LoxP pSK plasmid
 2.5.2 CamkIIα-hDKK1_cDNA-IRES-EGFP plasmid subcloning strategy
 2.5.3 Subcloning strategy to generate the pTRE_3-hDKK1_cDNA/LacZ plasmid
 2.5.4 Subcloning strategy to generate the pTRE_3-hS1P3_cDNA/LacZ plasmid
 2.5.5 Subcloning strategy to generate the pTRE_3-light-hDKK1-IRES-EGFP-CAAXpa plasmid
2.6 Gene expression
 2.6.1 Tissue isolation
 2.6.1.1 RNA extraction
 2.6.1.2 Protein extraction
 2.6.2 RT-PCR
 2.6.3 Western blot
2.7 Histological techniques
 2.7.1 LacZ staining
 2.7.1.1 LacZ staining of wholemount embryos
 2.7.1.2 LacZ reporter assay on adult brain sections
 2.7.2 Immunohistochemistry
2.8 Mouse handling and procedures
 2.8.1 Animal Husbandry
 2.8.2 Animals genetic background
 2.8.3 Methods of sacrifice
 2.8.3.1 Cardiac perfusion
2.9 Transgenesis
 2.9.1. Mouse hormone treatment: Superovulation
 2.9.2 Embryos collection
 2.9.2.1 Aggregation embryo collection procedure
2.9.2.2 Blastocyst injection embryo collection procedure
2.9.2.3 Embryo transfer into pseudopregnant females
2.9.3 Treatment of mice with doxycycline

2.10 Behavioural tests
2.10.1 Morris Water Maze test
2.10.2 Data Analysis

2.11 Tissue culture protocols
2.11.1 mES cells culture
 2.11.1.1 mES cell growth media supplemented with FBS
 2.11.1.2 mES cell growth media supplemented with serum replacement
2.11.2 Cell counting using a counting chamber
2.11.3 Passaging mES cell
2.11.4 Freezing mES cell
2.11.5 Thawing mES cell
2.11.6 Kill Curve
2.11.7 mES cell electroporation
2.11.8 mES selection
2.11.9 Picking mES cell colonies
2.11.10 Freezing Es cells in 96-well plates
2.11.11 Preparation of genomic DNA from mES cells in a 96 well plate
2.11.12 β-gal detection on mES cells
 2.11.12.1 β-gal detection on mouse ES cells by LacZ staining
 2.11.12.2 β-gal detection on mouse ES cells by β-gal luminescent assay
2.11.13 Transient transfection by lipofection
2.11.14 Chromosome spreading
2.11.15 Foetal bovine serum testing
2.11.16 Alkaline phosphatase staining
2.11.17 Mycoplasma detection

Chapter 3 Generation of mice with inducible expression of hS1P3

3.1 Sphingosine-1-phosphate receptor S1P3: an overview
3.2. Generation and characterization of hS1P3 inducible transgenic mice
 3.2.1 Subcloning of a human S1P3 cDNA into the Tet-inducible plasmid pBI-G
 3.2.2 S1P3 founders: pronuclear injection outcome
 3.2.3 Induction of gene expression
 3.2.4 Immunoistochemistry on brains of Tg^{hS1P3-tet0/CamKIIα-tTA} mice
3.3 Behavioural testing
3.4 Discussion
 3.4.1. Mouse transgenesis methods
 3.4.1.1 Factors accounting for gene expression variability in the “I” line
 3.4.1.1.1 Random integration site and transgene copy number
 3.4.1.1.2 Intrinsic properties of promoter and bidirectional construct
 3.4.2 Selection of the most appropriate mouse lines and problems associated with
 characterization of S1P3 expression at the protein level
 3.4.3 Phenotype associated with S1P3 overexpression
 3.4.3.1. Astrocitosis
 3.4.3.2 Cognitive impairment
 3.4.4 Expression of S1P3 in the brain at late stages of development has no obvious
 phenotypic effect

Chapter 4 Generation of mice with inducible expression of hDKK1

4.1. Wnt signalling regulation, misregulation and Alzheimer’s disease
4.1.1 Glycogen synthase kinase
4.1.2 Correlation between DKK-1 overexpression and AD pathology
4.1.3 The importance of DKK-1 expression during development
4.1.4 Strategies adopted to overcome hDKK-1 embryo lethality

4.2 Results
4.2.1 Generation of hDKK1 transgenic mice using the mouse embryonic stem cell route
 4.2.1.1 FBS testing
 4.2.1.2 Mycoplasma testing
4.2.2 Generation of stably transfected pTRE-hDKK1 mES cells by electroporation
 4.2.2.1 Screening and genotyping of the resistant mES cell colonies
 4.2.2.2 Karyotyping of stably transfected mES cell clones
4.2.3 Production of mouse chimeras by blastocyst injection and aggregation
 4.2.3.1 Testing chimeric mice for germline transmission

4.3 Alternative strategies for producing hDKK1 transgenic mice
4.3.1 Generation of hDKK1 transgenic mice using the mouse embryonic stem cell route
 4.3.1.1 Subcloning of the IRES-EGFP-CAAXpa into the pTRE_tight-hDKK1_cDNA plasmid
 4.3.1.2 Generation of stably transfected R1rt-TA5cell with the rt-TA protein
 4.3.1.3 Assaying EGFP expression from the pTRE_tight-hDKK-1_cDNA-IRES-EGFP-CAAXpa plasmid
 4.3.1.4 Assaying hDKK-1 expression from the pTRE_tight-hDKK-1_cDNA-IRES-EGFP-CAAXpa plasmid
4.3.2 Production of transgenic hDKK-1 mice by pronuclear injection of the pTRE_tight-hDKK-1_cDNA-IRES-EGFP-CAAXpa plasmid
4.3.3 Generation of mice with non-inducible brain specific expression of hDKK1
 4.3.3.1 Transgene expression in the “E and C” line
4.4 Generation of a stable inducible pTRE_tight-hDKK1_cDNA mES cell line

4.5 Discussion
4.5.1 Problems associated with the Tet System
4.5.2 Strategies to overcome hDKK1 embryonic lethality
4.5.3 Characterization of gene expression in hDKK1 transgenic mice
4.5.4 Future directions

Chapter 5 Final Discussion
5.1 Final discussion

Bibliography
List of figures

Chapter 1
Figure 1.1 Misfolded protein conformation 3
Figure 1.2 Alternative pathways of APP processing 7
Figure 1.3 APP familial Alzheimer’s disease mutations 11
Figure 1.4 Exemplification of the hippocampal network 28
Figure 1.5 \textit{In vivo} regulation of the Tet Off and Tet On system 30

Chapter 2
Figure 2.1 Representation of the pKS-LoxP-PGK-gb2-hygro-LoxP plasmid 46
Figure 2.2 Map of the CamKIIα-hDKK1\textsubscript{cDNA}–IRES–EGFP CAAXpa plasmid 46
Figure 2.3 Map of the pTRE\textsubscript{bi}–hDKK–1\textsubscript{cDNA}/LacZ plasmid 47
Figure 2.4 Map of the pTRE\textsubscript{bi}–hS1P3\textsubscript{cDNA}/LacZ plasmid 47
Figure 2.5 Map of the pTRE–hDKK–1\textsubscript{cDNA}–IRES–EGFP–CAAXpa plasmid 47
Figure 2.6 Map of pTet On 48
Figure 2.7 Map of pTRE–Luc 48
Figure 2.8 Map of pcDNA 3.1 48
Figure 2.9 Hormonal schedule of treatment for producing transgenic mice 59
Figure 2.10 Microwells of a co-culture dish 62
Figure 2.11 Blastocyst isolation 62
Figure 2.12 Morris water maze 64
Figure 2.13 Morris water maze recording system 64

Chapter 3
Figure 3.1 Coupling pathways of S1P receptors 75
Figure 3.2 Colony PCR to screen for recombinant pTRE\textsubscript{bi}–hS1P3\textsubscript{cDNA}/LacZ 78
Figure 3.3 Physical map of pTRE\textsubscript{bi}–hS1P3\textsubscript{cDNA}/LacZ 79
Figure 3.4 PCR confirming the orientation of the hS1P3 insert in the pBI-G plasmid 78
Figure 3.5 Restrictions enzyme digestion of pTRE\textsubscript{bi}–hS1P3\textsubscript{cDNA}/LacZ 78
Figure 3.6 Southern blot of S1P3 founders 81
Figure 3.7 LacZ staining showing CamkIIα expression in Tghs1p3-tet0-LacZ/CamKIIα-tTA brain 83
Figure 3.8 β-gal expression in Tghs1p3-tet0-LacZ/CamKIIα-tTA mice 84
Figure 3.9 LacZ staining of brain section from wild type and single TgS1P3 of Izzy mouse line 85
Figure 3.10 β-gal immunohistochemistry on Tghs1p3-tet0-LacZ/CamKIIα-tTA mice 86
Figure 3.11 Comparison of β-gal expression in TgITALO and TgITALO/CamKIIαtTA mice 87
Figure 3.12 RT-PCR on the brain of Tghs1p3 and Tghs1p3/CamKIIα-tTA mice 89
Figure 3.13 Transgene regulation by doxycycline in mice of the Ippolito and Izzy lines 89
Figure 3.14 Alignment of human and mouse S1P3 amino acid Sequence 90
Figure 3.15 S1P3 immunohistochemistry on pancreas and lung tissues 91
Figure 3.16 S1P3 immunohistochemistry on Tghs1p3-tet0-LacZ/CamKIIα-tTA mice 91
Figure 3.17 GFAP immunohistochemistry on Tg$^{hS1P3-tet0-LacZ/CamKI\alpha-tTA}$ mice 93
Figure 3.18 Swim speed of Ippolito line mice 95
Figure 3.19 Behavioural testing on mice from Ippolito line using Morris water maze 95
Figure 3.20 Morris water maze probe trial 95

Chapter 4
Figure 4.1 Canonical pathway of Wnt signalling 105
Figure 4.2 Possible pathway leading to tau hyperphosphorylation in neurons 106
Figure 4.3 Alkaline phosphatase staining of mES cells grown in different FBS batches 110
Figure 4.4 Detection of Mycoplasma in mES cell culture by DAPI staining 110
Figure 4.5 Kill curve 110
Figure 4.6 Genotyping of stably transfected pTREbi-$hDKK-1_{cDNA}$/LacZ mES cell colonies 112
Figure 4.7 Assaying basal transgene from stably transfected pTRE$_{bi}$-$hDKK-1_{cDNA}$/LacZ mES cell colonies 112
Figure 4.8 Chimeras obtained by aggregation and blastocyst injection 114
Figure 4.9 Subcloning of hDKK1$_{cDNA}$ into the tet-inducible vector pTRE$_{tight}$ 116
Figure 4.10 Subcloning of IRES-EGFP-CAAXpa into the pTRE$_{tight}$-$hDKK1_{cDNA}$ plasmid 116
Figure 4.11 Measurement of induction of luciferase activity in stably transfected R1$_{rt-TA}$ mES cells 118
Figure 4.12 Assaying EGFP expression from pTRE$_{tight}$-$hDKK1_{cDNA}$ in R1$_{rt-TAScell}$ line 118
Figure 4.13 Assaying hDKK1 expression from pTRE$_{tight}$-$hDKK1_{cDNA}$ in R1$_{rt-TAScell}$ line 118
Figure 4.14 RT-PCR on the brains of Erminio and Eolo line mice 121
Figure 4.15 RT-PCR on the brains of Cicerone line mice 121
Figure 4.16 EGFP western blot of protein extracted from brains of the “E” and “C” lines 123
Figure 4.17 Direct visualization of EGFP in the Erminio line 123
Figure 4.18 hDKK1 western blot of brain protein samples from mice of the Erminio line 123
Figure 4.19 Immunohistochemistry to detect hDKK1 125
Figure 4.20 Assessing GSK-3β activation in the brain of Erminio line 126
Figure 4.21 Generation of a stable inducible pTRE$_{tight}$-$hDKK-1_{cDNA}$-IRES-EGFP-CAAXpa/ R1$_{rt-TAS}$ mES cell line 128
List of tables

Chapter 1
Table 1.1 **Nomenclature of mouse Alkaline phosphatases genes** 32

Chapter 2
Table 2.1 **PCR reaction** 49
Table 2.2 **PCR cycles** 49
Table 2.3 **List of antibodies used in this study** 49
Table 2.4 **List of primers used in this study** 56

Chapter 3
Table 3.1 **Outcome of pronuclear injection experiments using the pTREbi-hS1P3cDNA/LacZ cDNA transgene** 80
Table 3.2 **Mice of the Ippolito line used for the Morris water maze** 94

Chapter 4
Table 4.1 **Outcome of aggregation and blastocyst by using the pTREbi-hDKK-1/LacZ plasmid** 114
Table 4.2 **Outcome of pronuclear injection experiments using the transgene CamKIIα-hDKK1 cDNA-IRE-EGFP-CAAXpa plasmid** 119
Table 4.3 **Chi-squared test of transmission of the transgene from the Eolo founder** 120
Table 4.4 **Outcome of pronuclear injection experiments using the CamKIIα-hDKK1 cDNA plasmid** 120
Table 4.5 **Comparison among the pronuclear injection rate of success using three different hDKK1 constructs** 122
Abbreviations

aa Amino acid
ABCA1 ATP-binding cassette transporter 1
AChEi Acetylcholinesterase inhibitor
AD Alzheimer’s disease
ADIT Alzheimer’s disease innovative drug target
AICD APP intracellular domain
AMPARs α-aminoadenosine-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor
AMPS Ammonium persulfate
ANOVA Analysis of variance
AP Alkaline phosphatase
APH-1 Anterior pharyx-defective 1
APLP1 APP-like proteins 1
APLP2 APP-like proteins 2
ApoE Apolipoprotein
APP Amyloid protein precursor
ATP Adenosine-5′-triphosphate
AVE Anterior visceral endoderm
Aβ beta-amyloid peptide
BACE-1 beta-site amyloid precursor protein cleaving enzyme 1
BBB Blood-brain-barrier
Bp Base pairs
BrdU Thymidine analog bromodeoxyuridine
BSA Bovine serum albumin
°C Degrees Celsius
C1P Ceramide-1-phosphate
CA1-2-3 Cornu Ammonis 1-2-3
CAA Cerebral amyloid angiopathy
CamKII Calmodulin-dependent protein kinase II
CamKII-α Calmodulin-dependent protein kinase II
cDNA Complementary DNA
CLU Clusterin
CNS Central nervous system
COX Cyclooxygenase
DAPI 4′,6-diamidino-2-phenylindole
DDT Dithiothreitol
DEPC Diethyl pyrocarbonate
DG Dentate gyrus
DKK1 Dickkopf-1
DMEM Dulbecco’s modified Eagle’s medium
DMSO Dimethyl sulfoxide
DS Down Syndrome
DTT Dithiothreitol
E Embryonic day
EDTA Diaminoethanetetra-acetic acid disodium salt
EGFP Enhanced green fluorescent protein
EOAD Early-onset Alzheimer’s disease
EU European Union
FBS Foetal bovine serum
FP6 | Framework program 6
FTDP-17 | Frontotemporal Dementia with Parkinsonism-17
G418 | Geneticin selective antibiotic
GABA_γ | γ-aminobutyric acid
GFAP | Glial fibrillary acidic protein
GM-CSF | Granulocyte-macrophage colony-stimulating factor
GNDF | Glial Cell derived Neurotrophic Factor
G-PCR | G-protein coupled receptor
GSAP | γ-secretase activating proteins
GSK3-α | Glycogen synthase kinase 3 alpha
GSK3-β | Glycogen synthase kinase 3 beta
GWAS | Genome-wide associated studies
hCMV | Human cytomegalovirus
HD | Huntington’s disease
HTS | Hit-to Lead Phase
IHC | Immunohistochemistry
IL-1 | Interleukin 1
IL-6 | Interleukin 6
IL-8 | Interleukin 8
Kb | Kilo base
LB | Luria-Bertani
LIF | Leukaemia inhibitor factor
LOAD | Late-onset Alzheimer’s disease
LTP | Long term potentiation
mES | Mouse Embryonic stem cells
MHCII | Major histocompatibility complex class II
mM | Millimolar
mM | Millimolar
mRNA | Messenger ribonucleic acid
MWM | Morris water maze
NF-κβ | Nuclear factor kappa beta
NFTs | Neurofibrillary tangles
ng | Nanogram
NGS | Normal goat serum
NMDARs | N-methyl D-aspartate
NSAID | Nonsteroidal anti-inflammatory drugs
p | Probability value
PAGE | Polyacrylamide gel electrophoresis
PBS | Phosphate buffered saline
PBST | PBS with Tween-20
PCR | Polymerase chain reaction
PD | Parkinson’s disease
PFA | Paraformaldehyde
PGCs | Primordial germ cells
PHF | Paired helical filament
PICALM | Phosphatidylinositol binding clathrin assembly protein
PKA | Protein kinase A
PP-2A | Protein phosphatase 2
PS1 | Presenilin 1
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS2</td>
<td>Presenilin 2</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidene fluoride</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>RT</td>
<td>Room temperature</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse transcription-PCR</td>
</tr>
<tr>
<td>rt-TA</td>
<td>Tet on Transactivator</td>
</tr>
<tr>
<td>S1P</td>
<td>Sphingosine-1-phosphate</td>
</tr>
<tr>
<td>S1P3</td>
<td>Sphingosine 1-phosphate receptors 3</td>
</tr>
<tr>
<td>SB</td>
<td>Subiculum</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulphate</td>
</tr>
<tr>
<td>SM</td>
<td>Sphingomyelin</td>
</tr>
<tr>
<td>SR</td>
<td>Serum replacement</td>
</tr>
<tr>
<td>TBST</td>
<td>Tris buffered saline with Tween-20</td>
</tr>
<tr>
<td>tg</td>
<td>Transgenic</td>
</tr>
<tr>
<td>Tg</td>
<td>Transgenic</td>
</tr>
<tr>
<td>TGFB</td>
<td>Transforming growth factor beta</td>
</tr>
<tr>
<td>TM</td>
<td>Trans membrane</td>
</tr>
<tr>
<td>Tm</td>
<td>Melting temperature</td>
</tr>
<tr>
<td>TNFα</td>
<td>Tumor necrosis factor-alpha</td>
</tr>
<tr>
<td>TRE</td>
<td>Tet systems response</td>
</tr>
<tr>
<td>tTA</td>
<td>Tet off Transactivator</td>
</tr>
<tr>
<td>U</td>
<td>Unit enzyme</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>Volts</td>
<td>Volts</td>
</tr>
<tr>
<td>χ^2</td>
<td>Chi-squared</td>
</tr>
<tr>
<td>τ</td>
<td>Tau</td>
</tr>
</tbody>
</table>
Acknowledgements

I express my gratitude to my supervisor Dr Andrew Ward for giving me the opportunity to join his laboratory where in the last four years I have learned all I know about science. I also owe him my deepest thanks for reviewing this manuscript and for his gentle way of suggesting without telling. I am also indebted to Dr Georg Terstappen for inviting me to join the ADIT project.

I extend my acknowledgement to Dr Kim Moorwood for challenging my critical thinking and for making me realize that passion, planning, open-mindedness, cooperation and objectivity is essential for succeeding in science. I thank Dr Joanne-Stewart-Cox for helping me at my very beginning with the settling in the lab and for her aid together with the one provided by Dr Kim Moorwood in the production of the transgenic mice.

I wish to express my thanks to Prof Fiorella Casamenti and members of her lab, especially Dr Maria Cristina Rosi, Dr Chiara Fiorentini and Dr Cristina Grossi for inviting me to joining their lab where I was introduced to behavioural studies.

A number of other persons helped along the way and I hope I am not leaving anyone out: thanks to Dr Cheney Drew for sharing her knowledge about perfusion; Dr Heather Bone for her suggestions with mES cell culture; Louise Anderson for providing her expertise any time I needed it and to Iryna Withington for helping with tissue processing.

In the “zebramouse” lab I also had the pleasure to work with very bright and passionate colleagues with whom I had discussions about science and everything else. In particular, thanks to: Dr Andrea Weiner and Dr Asha Recino with whom I shared the bright and dark side of the PhD days and who encouraged me to keep on going.

Thanks to Professor Mayford for providing the CamKIIα-tTA mice and to Dr Andrea Caricasole and Dr Giuseppe Pollio (Siena Biotech, Italy) for providing the hDKK1 and hS1P3 plasmids used in this study. Thanks also to Dr Joanne Stewart-Cox for providing the BASP 1 mES cell line and to the project students Helen Mikhasenko and Vanessa DeMello.

If I am going to be Dr. Manfredi it is also thanks to my lovely housemates Sabine Graf and Peter Goodison which contributed to make the writing up stage enjoyable as I would never have imagined.
Abstract

AD is thought to be caused by an abnormal production and aggregation of amyloid-beta (Aβ) peptide. Consequently, precluding the generation of Aβ has been considered as a strategy for AD treatment. Pharmacological compounds reducing Aβ formation have been developed and tested in preclinical and clinical trials and the often promising results obtained in preclinical trials have not been successful reproduced in clinical trials.

With this in mind in 2005 the European Framework Program 6 funded the ADIT project (Design of Small Molecule Therapeutics for the Treatment of Alzheimer Disease Based on the Discovery of Innovative Drug Targets) and this study has been part of this large collaborative study which involved eight institutions across Europe.

The main aim of the ADIT project was to identify new druggable targets for AD drug discovery. The project involved a screen for novel candidate AD target genes, performed by Siena Biotech and involved a number of other collaborating laboratories with roles in validating these targets. Validated targets were those genes: induced in response to Aβ treatment of cultured neurons and with demonstrable neurotoxic activity; induced in the brains of AD patients and in brains from an existing mouse model of AD; deemed most tractable as targets of small molecule inhibitors. Two targets, DKK-1 and S1P3, fulfilled these requirements.

Drug discovery relies on animal models and the aim of this thesis was to develop transgenic mice for the selected targets and to investigate their role in AD pathology. Animal models were generating by pronuclear injection.

Preliminary findings suggest that S1P3 may contribute to the inflammatory process seen in AD. Chronic neuroinflammation is a common characteristic of AD and it may be responsible of the neuronal loss seen in AD. GFAP immunohistochemistry on brains of the S1P3 mice revealed a strong astrocytotic process particularly evident in the hippocampus (mainly in the dentate gyrus) Upregulation of GFAP is commonly accompanied by astrocyte proliferation and activation which leads to the production of pro-inflammatory and cytotoxic cytokines, as well as toxic molecules. A large body of evidence suggests that by transforming from a basal to a reactive state, astrocytes neglect their neurosupportive functions, thus rendering neurons vulnerable to neurotoxins, including proinflammatory cytokines and reactive oxygen species. The S1P3 mouse model represents a model for acquiring more insights into mechanisms of Aβ-mediated toxicity in AD and a target for preventing astrocyte activation.

The characterization of the DKK-1 mouse model is still in its infancy, nevertheless preliminary analysis have already demonstrated that is up-regulation cause Glycogen synthase kinase-3β
(GSK3-β) activation which in turn hyperphosphorylate tau. It is known that hyperphosphorylation of tau is responsible for NFTs formation and DKK-1 inhibition might prevent this process.