The Structure and Dynamics of Fundamental Glasses by Neutron Scattering Techniques

submitted by
Dean A. J. Whittaker

for the degree of Doctor of Philosophy

of the
University of Bath
Department of Physics
December 17, 2012

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author. This copy of the thesis has been supplied on the condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the prior written consent of the author.

This thesis may be made available for consultation within the University Library and may be photocopied or lent to other libraries for the purposes of consultation.

Signature of Author

Dean A. J. Whittaker
For Nan White (1905 - 2011), fare thee well
Abstract

The method of isotope substitution in neutron spectroscopy is introduced to measure for the first time the partial vibrational density of states of two network glass forming systems, namely GeSe$_2$ at temperatures of 5, 20 and 292 K and GeO$_2$ at a temperature of 10 K. This work included the development of a new data analysis procedure involving corrections for e.g. beam attenuation, multiple scattering and multiple phonon scattering. The measurements were made using the MARI and MERLIN spectrometers at the ISIS pulsed neutron source where measurements of the elastic lines were used to help deduce the mean squared atomic displacements and Debye-Waller factors. In the case of GeSe$_2$, the latter were found as a function of temperature between 10 and 280 K. The results for GeSe$_2$ glass at temperatures of 5, 20, and 292 K were found to be in good agreement, proving the efficacy of the data correction procedure. For both GeSe$_2$ and GeO$_2$, the results were interpreted with the aid of molecular dynamics simulations to identify the energies corresponding to rocking, bending and stretching motions.

The method of in situ high pressure neutron diffraction was developed using double toroid sintered diamond anvils in a Paris-Edinburgh press to measure, for the first time, reliable diffraction patterns for GeO$_2$, SiO$_2$ and B$_2$O$_3$ glasses at pressures up to 17.5 GPa. The total pair distribution functions were obtained, allowing the nearest neighbour Ge-O, Si-O or B-O coordination numbers and bond distances to be calculated. The glass networks collapse by two principal mechanisms. The first mechanism, at lower pressures, involves a rearrangement of the structural motifs on an intermediate range length scale. The second mechanism, above thresholds in pressure of 5, 20 and 9 GPa for GeO$_2$, SiO$_2$ and B$_2$O$_3$, respectively, involves a change in the nature of the structural motifs.
Acknowledgements

I thank my main supervisor Phil Salmon and STFC supervisor Steve Bennington for their advice and support during my PhD. In particular, I thank Phil for providing excellent support during my writing phase. I also acknowledge the financial support of the EPSRC and STFC for the projects I have been involved with. I would like to thank the Institute of Physics for funding some travel to events and for funding schemes set up through the physics society.

From the university of Bath I would like to thank the LAM group: Anita Zeidler, James Drewitt, Kamil Wezka, Keiron Pizzey and Prae Chirawatkul for useful discussions, data, training, help and friendship; and Harry Bone, Paul Reddish, Adrian Hooper, Wendy Lambson and Phil Jones for help and support with our equipment.

For the work on inelastic neutron scattering I would like to thank: Ross Stewart, Jon Taylor, Devashibhai Adroja, Tatiana Guidi and Rob Bewley who gave fantastic support during experiments; Luigi Giacomazzi and Alfredo Pascquarello provided valuable simulation data; Gavin Mountjoy provided data on SiO₂ to compare with my GeO₂ data. Spencer Howells, Nigel Rhodes, Toby Perring, Russell Ewings and Freddy Akeroyd helped with software and practicalities in the data analysis.

For my work with X-rays not presented here, I would like to thank: Chris Benmore, Simon Billinge and Eugene Bychkov for help with our experiments and my data analysis procedures.

For my work on the Pearl instrument at ISIS I would like to thank: Matt Tucker, Craig Bull, Chris Barry, Stefan Klotz, Chris Goodway, Rob Done and PAW Engineering for experimental support; Martin Wilding for making the silica sample; Vadim Brazhkin and Mark Wilson for some data to compare mine with; and Malcolm Guthrie for support with creating the calibration curves. I would particularly like to thank Matt and Craig for fantastic instrument support during stressful experiments.

I would also like to thank Henry Fischer and Adrian Barnes for useful discussions; Alex Hannon for discussions, help, images, and writing the units conversion program that I find so helpful; Alan Soper and Rowan Hargreeves for support and discussions; and Paul Bingham, Emma Cruddace, Adrian Wright and others at the society of glass technology for positive encouragement and awarding me the Paul prize. I would like to thank all of the contributors to the ISIS neutron training course and ISIS neutron
school for the training provided.

With regards to my outreach / extra-curricular work I would like to thank the contributors to the Ask a Postgrad scheme: Mischa Stocklin (IOP), Tom Fowler, Fran Laughton, Gary Mathlin, James Beard, Caitlin Rice, Michael Grogan, Lucy Hooper, Melanie Keogh and Alexis Kallis; the organisers of I’m a Scientist, get me out of here including Rosie Schultz and Sophia Collins; and for various activities: Alison Rivett (IoP), Bob Draper (Bath), Claire Dimond (STEM / Graphic Science) and Katy Glazer (STFC / Graphic Science). I would like to acknowledge the University of Bath Students’ Union for their support beyond expectation to help get projects off the ground.

Finally, I thank Jodie, mum and dad for putting up with me during my writing phase. It can’t have been an easy task.
## Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>ii</td>
</tr>
<tr>
<td><strong>1 Introduction</strong></td>
<td>1</td>
</tr>
<tr>
<td><strong>2 Theory</strong></td>
<td>5</td>
</tr>
<tr>
<td>2.1 The Double Differential Scattering Cross Section</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Neutron Spectroscopy</td>
<td>7</td>
</tr>
<tr>
<td>2.2.1 Single Phonon Scattering</td>
<td>9</td>
</tr>
<tr>
<td>2.2.2 The Extreme Incoherent Approximation</td>
<td>11</td>
</tr>
<tr>
<td>2.2.3 The Incoherent Approximation</td>
<td>12</td>
</tr>
<tr>
<td>2.2.4 Isotopic Substitution in Neutron Spectroscopy</td>
<td>14</td>
</tr>
<tr>
<td>2.3 Differential Scattering Cross Section</td>
<td>16</td>
</tr>
<tr>
<td>2.4 Neutron Diffraction</td>
<td>17</td>
</tr>
<tr>
<td>2.5 Elastic and Total Scattering</td>
<td>19</td>
</tr>
<tr>
<td><strong>3 Instrumentation</strong></td>
<td>20</td>
</tr>
<tr>
<td>3.1 The ISIS Pulsed Neutron Source</td>
<td>20</td>
</tr>
<tr>
<td>3.2 Direct Geometry time-of-flight Chopper Spectrometers</td>
<td>21</td>
</tr>
<tr>
<td>3.2.1 The MARI Spectrometer</td>
<td>25</td>
</tr>
<tr>
<td>3.3 Time-of-Flight Neutron Diffraction Instrumentation for High Pressure Studies</td>
<td>29</td>
</tr>
<tr>
<td>3.3.1 PEARL</td>
<td>30</td>
</tr>
<tr>
<td>3.4 The Paris-Edinburgh Press</td>
<td>31</td>
</tr>
<tr>
<td><strong>4 Data Treatment</strong></td>
<td>34</td>
</tr>
<tr>
<td>4.1 Inelastic Neutron Scattering Experiments</td>
<td>34</td>
</tr>
<tr>
<td>4.1.1 Introduction</td>
<td>34</td>
</tr>
<tr>
<td>4.1.2 Normalisation and Correction for Scattering from the Can</td>
<td>35</td>
</tr>
<tr>
<td>4.1.3 The Multiple Scattering Contribution to Inelastic Scattering</td>
<td>38</td>
</tr>
<tr>
<td>4.1.4 The Multiple Phonon Correction</td>
<td>40</td>
</tr>
</tbody>
</table>
### 4.2 High Pressure Experiments on the PEARL Diffractometer

- **4.2.1 Introduction** ........................................ 44
- **4.2.2 Pressure Calibration** ................................. 44
- **4.2.3 Background Subtraction and Vanadium Normalisation** ................................. 48
- **4.2.4 Attenuation, Multiple Scattering and Placzek Correction Factors** ................. 49
- **4.2.5 Data Reduction in Practice** .......................... 50

### 5 Vibrational Density of States of GeSe$_2$ Glass Using the MARI Spectrometer

- **5.1 Introduction** ........................................ 54
- **5.2 Experimental Procedure** ............................... 56
  - **5.2.1 Glass Preparation** .................................. 56
  - **5.2.2 Neutron Spectroscopy Measurements** .................. 57
- **5.3 Data Treatment** ........................................ 59
  - **5.3.1 Width of the Elastic Line** ........................... 59
  - **5.3.2 Bose-Einstein Occupation Factor** ..................... 60
  - **5.3.3 Background Subtraction with Attenuation Corrections and Renormalisation** ........ 60
  - **5.3.4 Multiple Scattering Correction** ..................... 62
  - **5.3.5 Multiple Phonon Correction** ........................ 63
- **5.4 “Silver Medal” Calculations** .......................... 66
- **5.5 Results** ............................................... 67
  - **5.5.1 Generalised Vibrational Density of States** .............. 67
  - **5.5.2 Single Phonon Vibrational Density of States** ............ 72
- **5.6 Discussion** ........................................... 73
  - **5.6.1 Validity of the “Silver Medal” Approximation** ........... 74
- **5.7 Conclusion** ............................................. 75

### 6 Vibrational Density of States of GeSe$_2$ Glass Using the MERLIN Spectrometer

- **6.1 Introduction** ........................................ 76
- **6.2 Experimental Method** .................................. 77
  - **6.2.1 Neutron Spectroscopy Experiment 1** .................. 79
  - **6.2.2 Neutron Spectroscopy Experiments 2 and 3** ............ 79
- **6.3 The Debye-Waller Factor and Temperature Dependence of the Vibrational Density of States** ........................................ 81
  - **6.3.1 Width of the Elastic Line** ........................... 81
  - **6.3.2 Bose-Einstein Occupation Factors** ..................... 82
6.3.3 Background Subtraction with Attenuation Correction and Renormalisation ................................................. 82
6.3.4 Multiple Scattering and Multiple Phonon Scattering Corrections ................................................................. 83
6.3.5 Calculating The Debye-Waller Factors ................................. 84
6.4 The Full Vibrational Density of States of GeSe2 .............................. 86
6.4.1 Width of the Elastic Line .................................................. 87
6.4.2 Bose-Einstein Occupation Factors ....................................... 87
6.4.3 Background Subtraction with Attenuation Corrections and Renormalisation ................................................. 88
6.4.4 Multiple Scattering Correction ........................................... 89
6.4.5 Multiple Phonon Correction .............................................. 94
6.5 “Silver Medal” Calculations .................................................. 95
6.6 Results .............................................................................. 98
6.6.1 Generalised Vibrational Density of States ........................... 98
6.6.2 The Single Phonon Vibrational Density of States ................... 105
6.7 Discussion ......................................................................... 109
6.8 Conclusion ......................................................................... 116

7 Vibrational Density of States of GeO2 Glass Using the MARI Spectrometer ......................................................... 118
7.1 Introduction ........................................................................ 118
7.2 Experimental Method .......................................................... 119
7.2.1 Sample Preparation ......................................................... 119
7.2.2 Neutron Spectroscopy Measurements ................................ 120
7.3 The Debye-Waller Factor ..................................................... 123
7.3.1 Width of the Elastic Line .................................................. 124
7.3.2 Background Subtraction with Attenuation Correction and Renormalisation ................................................. 124
7.3.3 Fitting the Debye-Waller Factor ........................................ 126
7.4 The Vibrational Density of States of GeO2 ............................... 127
7.4.1 Width of the Elastic Line .................................................. 127
7.4.2 Bose-Einstein Occupation Factor ...................................... 128
7.4.3 Background Subtraction with Attenuation Corrections and Renormalisation ................................................. 128
7.4.4 Multiple Scattering Correction .......................................... 129
7.4.5 Multiple Phonon Correction .............................................. 132
7.5 “Silver Medal” Calculations .................................................. 133
7.6 Results .............................................................................. 135
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6.1</td>
<td>Generalised Vibrational Density of States</td>
<td>135</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Single Phonon Vibrational Density of States</td>
<td>138</td>
</tr>
<tr>
<td>7.7</td>
<td>Discussion</td>
<td>140</td>
</tr>
<tr>
<td>7.8</td>
<td>Conclusion</td>
<td>143</td>
</tr>
<tr>
<td>8</td>
<td>Changes in the Structure of GeO₂ Glass with Pressure Using the PEARL Diffractometer</td>
<td>144</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>144</td>
</tr>
<tr>
<td>8.2</td>
<td>Experimental Procedure</td>
<td>146</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Sample Preparation</td>
<td>146</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Neutron Diffraction Experiments</td>
<td>147</td>
</tr>
<tr>
<td>8.3</td>
<td>Data Analysis</td>
<td>149</td>
</tr>
<tr>
<td>8.4</td>
<td>Results</td>
<td>158</td>
</tr>
<tr>
<td>8.5</td>
<td>Discussion</td>
<td>163</td>
</tr>
<tr>
<td>8.6</td>
<td>Conclusion</td>
<td>166</td>
</tr>
<tr>
<td>9</td>
<td>Structure of SiO₂ and B₂O₃ Glass Under Pressure</td>
<td>167</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>167</td>
</tr>
<tr>
<td>9.2</td>
<td>Experimental Procedure</td>
<td>169</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Sample Preparation</td>
<td>169</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Neutron Diffraction Experiments</td>
<td>170</td>
</tr>
<tr>
<td>9.3</td>
<td>Data Analysis</td>
<td>172</td>
</tr>
<tr>
<td>9.4</td>
<td>Results</td>
<td>179</td>
</tr>
<tr>
<td>9.5</td>
<td>Discussion</td>
<td>185</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Silica Experiment</td>
<td>185</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Boron Oxide Experiment</td>
<td>187</td>
</tr>
<tr>
<td>9.6</td>
<td>Conclusions</td>
<td>190</td>
</tr>
<tr>
<td>10</td>
<td>Overall Conclusions</td>
<td>191</td>
</tr>
<tr>
<td>A</td>
<td>Appendix A</td>
<td>194</td>
</tr>
<tr>
<td>A.1</td>
<td>The Inclusion of Incoherent Scattering in Calculating the Vibrational Density of States</td>
<td>195</td>
</tr>
<tr>
<td>A.1.1</td>
<td>Single Phonon Scattering</td>
<td>196</td>
</tr>
<tr>
<td>A.1.2</td>
<td>The Extreme Incoherent Approximation</td>
<td>198</td>
</tr>
<tr>
<td>A.1.3</td>
<td>The Incoherent Approximation</td>
<td>199</td>
</tr>
<tr>
<td>A.2</td>
<td>First Order Difference Functions</td>
<td>201</td>
</tr>
<tr>
<td>References</td>
<td>203</td>
<td></td>
</tr>
</tbody>
</table>
1. Introduction

Glassy materials are used for a variety of applications from advanced optical fibres [1] to windows and bottles and are of great interest, both fundamentally and for technological applications [2-6]. Despite their wide spread use, the theory of glasses is still not fully understood. In particular, the nature of the glass transition temperature and its variation between materials is still a mystery [7]. The ability to accurately model glass behaviour allows materials to be designed with tunable properties [8]. For example, molecular dynamics (MD) models can be used to find the microscopic and macroscopic properties of a material by considering the interactions between atoms. The structural and dynamical properties thus predicted can then be compared to experiments to test the validity of the model.

Unlike crystalline materials, glasses do not exhibit regular long range ordering and so their structure cannot be reduced to a series of repeating unit cells easily measured by diffraction techniques [9, 10]. Neither do their vibrational modes reduce to a small set of degenerate allowed states, easily measured by spectroscopic techniques [11]. Instead, glasses can be thought of as a liquid, frozen in time with a range of interatomic distances and a full set of $3N$ allowed vibrational modes.

The structure of multicomponent glasses can be described by a set of partial pair-correlation functions $g_{\alpha\beta}(r)$, which are related to the probability of finding an atom of one chemical species $\beta$ a distance $r$ away from an atom of another chemical species $\alpha$. Similarly, the dynamics of a glass can be described by a series of partial vibrational density of states $Z_\alpha(E)$, which are related to the energy $E$ of the motions of atom $\alpha$.

Many glasses, such as those described in this thesis (GeSe$_2$, GeO$_2$, SiO$_2$ and B$_2$O$_3$), form network-like structures [12] first described by Zachariasen [13]. In this picture, chemically ordered structural motifs are connected either at their corners or edges to form intermediate range ordering [14, 15]. Therefore, the $g_{\alpha\beta}(r)$ functions will feature sharp peaks at small $r$ due to the presence of the structural motifs and peaks at larger

\footnote{Technically, there are $3N$ modes, where 6 of the $3N$ modes originate from translations and rotations of the entire bulk material and so do not contribute to the vibrational density of states. These modes are often ignored when counting the total number of modes due to the large number of atoms in real samples.}
values of \( r \) that arise from intermediate range ordering. The vibrational modes can be attributed to local motions within the structural motifs or motions between the structural motifs. Both the structure and dynamics of a glass can change under different external conditions such as increased pressure \[16\]. A successful MD model should be able to predict the microscopic structure and dynamics of the glass under as many conditions as possible and experiments are needed to test such models.

Several MD approaches exist for modelling a glass. In so-called classical MD models, potentials between nuclei are used to describe their interactions and Newton’s laws of motions are solved for a large system of atoms \[17, 18\]. Another simulation method uses the quantum mechanical \textit{ab initio} approach \[19\], wherein the electronic structure is properly taken into account using density functional theory \[20–23\]. There are currently three well known classes of approximations to the functionals that are used in \textit{ab initio} MD simulations \[24\]: the local density approximation (LDA) \[25\], the generalised gradient approximation (GGA) \[26\] and hybrid functionals \[27, 28\] such as the popular B3LYP functional \[29, 30\]. In the LDA, the true energy density is approximated by a local constant electron density, while in the GGA the gradient of the electron density is used in the approximation to account for non-uniform charge distributions. Hybrid functionals mix the exact (but computationally intensive) exchange part of Hartree-Fock theory together with the LDA or GGA approach to further improve the accuracy of the result. While these models are more sophisticated than classical models, they are far more computationally intensive and are therefore restricted in the number of particles that can be simulated. Current results for glasses \[31\] including GeSe\(_2\) \[32\], show that the various MD models often require improvements to fully reproduce the experimental data.

Neutrons are a useful probe to study the structure and dynamics of materials. Neutrons scatter mostly from the nuclei of atoms, but can also scatter from electrons with a non-zero spin. In a diffraction experiment, the interference pattern thus produced can be used to obtain the sum of the partial pair correlation functions. The nearest-neighbour bond distances and coordination numbers can be calculated if the correlation functions do not overlap in a particular region. In a spectroscopy experiment, the transfer of energy between the neutron and the system is measured and a total vibrational density of states can be obtained as a sum of contributions from all of the chemical species in the system.

Different isotopes of the same chemical species can have different cross sections for neutrons. This fact can be employed to use the method of isotope substitution, first exploited by Enderby \textit{et al.} in 1966 for diffraction studies \[33\]. In this technique, the partial pair correlation functions can be separated by measuring several isotopically enriched (but otherwise identical) samples and using a method akin to solving
simultaneous equations. This gives a much more detailed view of the structure of a glass.

As will be described in this thesis, the method of isotope substitution can also be used to separate the full set of partial vibrational density of states. This offers complementary information to that obtained by infrared and Raman light scattering techniques, where selection rules mean that only certain modes are accessible [11]. The full set of partial vibrational density of states provides a good test of MD simulations but this type of experiment has not yet been made. The development of neutron diffraction under high pressure provides another test for MD simulations. High quality neutron diffraction experiments at pressures above 9 GPa are currently lacking and new measurements are needed.

**Thesis Outline**

In this thesis, the dynamics of glasses under ambient pressure and the structure of glasses under high pressures are measured using neutron scattering techniques and, where possible, compared to MD simulations. The technique of isotope substitution in neutron spectroscopy is developed and the technique of *in situ* neutron diffraction under high pressure conditions is extended to a higher range of pressures than previously achieved.

In chapter 2, the essential theory for the method of isotope substitution in neutron spectroscopy and the method of neutron diffraction is presented. The large-scale facilities and instruments that are required to perform the experiments are presented in chapter 3 while the necessary data analysis procedures are given in chapter 4.

The first ever isotope substitution in neutron spectroscopy experiment is presented in chapter 5 where measurements were made on GeSe$_2$ glass using the MARI spectrometer at the ISIS pulsed neutron source. This material was chosen due to its favourable properties for the technique and the fact that it is a difficult material to model. The results are compared to classical MD simulations [34, 35]. In chapter 6, a further isotope substitution in neutron spectroscopy experiment on GeSe$_2$ glass is presented, made using the MERLIN spectrometer at the ISIS pulsed neutron source. Here, there was a significant increase in detected neutron flux and measurements were made at a variety of temperatures to provide a fuller survey of the dynamics of GeSe$_2$. All of the measurements are compared and the validity of the technique, along with the various approximations involved, are assessed.

In section 7, the method of isotope substitution in neutron spectroscopy is applied to GeO$_2$ glass using the MARI spectrometer. The results are compared with classical and *ab initio* MD simulations [36–38] and conclusions are drawn. The results for GeO$_2$ are
also compared with approximate measurements made for SiO$_2$, a structural analogue for which it is difficult to use the method of isotopic substitution in neutron spectroscopy.

In chapters 8 and 9, neutron diffraction measurements made under pressures up to 17.5 GPa using the PEARL diffractometer at the ISIS pulsed neutron source are presented. The technique and semi empirical data analysis procedure, based on that given by Drewitt [39], was further developed using GeO$_2$ glass, and was then applied to SiO$_2$ and B$_2$O$_3$ glasses. The measurements are compared to existing measurements made on different instruments at lower pressures to assess the validity of the semi empirical data correction procedure. The results are also compared to MD simulations, where possible. These are the highest pressures for which reliable neutron diffraction patterns have been measured. This extends previous work, where the maximum pressure was restricted to $\approx 9$ GPa [40].
2. Theory

In this chapter, the relevant theory for the neutron spectroscopy and diffraction experiments presented in this thesis is described. Firstly the method of neutron spectroscopy to measure the partial vibrational density of states in various approximations is discussed. Then, the method of neutron diffraction to measure the structure of a glass is described. The formalism follows references [11, 41, 42] for neutron spectroscopy and reference [5] for neutron diffraction.

2.1 The Double Differential Scattering Cross Section

Figure 2-1 shows the scattering geometry for a spectroscopy experiment. A collimated beam of incident neutrons (in principle this could be any probe, e.g. photons or electrons) of flux $\Phi$, incident wavevector $k_i$ and incident energy $E_i$ is scattered by a small sample to give a beam described by final wavevector $k_f$ and final energy $E_f$.

A detector of small surface area $dS$ is situated a distance $R$ away from the system of scattering centres in a direction $\hat{k}_f$ and subtends a solid angle $d\Omega = dS/R^2$. The double differential cross section is given by

$$\frac{d^2\sigma}{d\Omega dE_f} = \frac{\text{(Number of neutrons scattered per second into } d\Omega \text{ with final energy } E_f \text{ and } E_f + dE_f)}{(\Phi d\Omega dE_f)}.$$  \hspace{1cm} (2.1)

For each scattering event, the energy transferred from a neutron to the system is $E = E_i - E_f$ and the scattering vector, defined by the triangle in figure 2-2 is $Q = k_i - k_f$ which has a magnitude $Q = |Q|$ given by the cosine rule of

$$Q = \sqrt{k_i^2 + k_f^2 - 2k_i k_f \cos(2\theta)}.$$  \hspace{1cm} (2.2)

where $2\theta$ is the scattering angle between $k_i$ and $k_f$. The incident and final energies
2.1 The Double Differential Scattering Cross Section

Figure 2-1: A neutron with wavevector $k_i$ in a direction parallel to the $z$ axis is incident on a system of scattering centres. The neutron scatters into a detector of surface area $dS$ which subtends a solid angle $d\Omega$ and has a final wavevector $k_f$. The angle between the incident wavevector and the scattered wavevector is $2\theta$, the angle between the $x−z$ plane and the scattered wavevector is $\phi$.

Figure 2-2: The scattering triangle formed by the vectors $k_i$, $k_f$ and $Q = k_i - k_f$. 
2.2 Neutron Spectroscopy

for a neutron are given by

\[ E_i = \frac{\hbar^2 k_i^2}{2m_n}, \quad E_f = \frac{\hbar^2 k_f^2}{2m_n}, \quad (2.3) \]

where \( m_n \) is the mass of a neutron, while \( k_i \) and \( k_f \) are the magnitudes of \( \mathbf{k}_i \) and \( \mathbf{k}_f \), respectively.

2.2 Neutron Spectroscopy

Neutrons are a useful probe of the structure and dynamics of materials. They scatter directly from atomic nuclei via the strong interaction. The wavelength of thermal neutrons is of the order of the inter-atomic spacings and their energy is of the order of vibrational excitations. Therefore, the structure and dynamics of materials can be probed directly by experiment. The neutron scattering length, \( b \), is a measure of the probability that a given atomic nucleus will scatter a neutron which is incident upon it. The value of \( b \) is not correlated to the atomic number or atomic mass of an element, but depends on the isotope and nuclear spin state. Therefore, different isotopes of the same element can have very different scattering lengths (see figure 2-3).

![Figure 2-3: Neutron scattering lengths of common isotopes shown as a function of atomic number][43].

The double differential scattering cross section for a system of \( N \) scattering centres is given by [9]

\[ \frac{1}{N} \frac{d^2\sigma}{d\Omega dE_f} = \frac{1}{N} \frac{k_f}{k_i} \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} dt e^{-i\omega t} \sum_{i=1}^{N} \sum_{j=1}^{N} \overline{b_ib_j} \left\langle e^{-i\mathbf{Q}\cdot\mathbf{R}_i(0)} e^{i\mathbf{Q}\cdot\mathbf{R}_j(t)} \right\rangle, \quad (2.4) \]

where the brackets \( \langle \cdots \rangle \) denote a thermal average, the quantity \( \overline{b_ib_j} \) is the value of
2.2 Neutron Spectroscopy

$b_i b_j$ averaged over random nuclear spin orientations and isotope distributions, while $b_i$ and $b_j$ are the scattering lengths of nuclei $i$ and $j$, respectively. $\mathbf{R}_i(0)$ and $\mathbf{R}_j(t)$ are the positions of particles $i$ at time $t = 0$ and $j$ at time $t$, respectively. $\omega = E/\hbar$ is an angular frequency where $E$ is the energy transfer in a scattering event.

It is often convenient to separate incoherent from coherent scattering such that

$$\frac{1}{N} \frac{d^2\sigma}{d\Omega dE_f} = \frac{1}{N} \frac{d^2\sigma}{d\Omega dE_f}^{\text{c}} + \frac{1}{N} \frac{d^2\sigma}{d\Omega dE_f}^{\text{inc}} = \frac{k_f}{k_i} (S_c(Q, E) + S_{\text{inc}}(Q, E)), \quad (2.5)$$

where $S_c(Q, E)$ and $S_{\text{inc}}(Q, E)$ are the coherent and incoherent total dynamical structure factors, respectively, given by

$$S_c(Q, E) = \frac{1}{N} \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} dt \ e^{-i\omega t} \sum_{i=1}^{N} \sum_{j=1}^{N} \bar{b}_i \bar{b}_j \langle e^{-iQ \cdot \mathbf{R}_i(0)} e^{iQ \cdot \mathbf{R}_i(t)} \rangle \quad (2.6)$$

and

$$S_{\text{inc}}(Q, E) = \frac{1}{N} \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} dt \ e^{-i\omega t} \sum_{i=1}^{N} (\bar{b}_i^2 - \bar{b}_i^2) \langle e^{-iQ \cdot \mathbf{R}_i(0)} e^{iQ \cdot \mathbf{R}_i(t)} \rangle \quad . \quad (2.7)$$

The bar above $\bar{b}_i$ and $\bar{b}_j$ denotes the mean scattering length of the chemical species to which the nuclei $i$ and $j$ belong, respectively. $\bar{b}_i^2$ is the mean of the squared scattering length of the chemical species to which atom $i$ belongs. The means are taken over all isotopes and spin states of that chemical species. It is often convenient to define a coherent scattering cross section $\sigma_{\text{coh}} = 4\pi \bar{b}_i^2 = 4\pi \bar{b}^2$ and an incoherent scattering cross section $\sigma_{\text{inc}} = 4\pi \bar{b}_i^2 = 4\pi \left(\bar{b}^2 - \bar{b}_i^2\right)$ for a given chemical species, where $\bar{b}_i$ and $\bar{b}_i$ are the coherent and incoherent scattering lengths, respectively.

Coherent scattering involves the correlations between the positions of the same nucleus at different times, and pairs of different nuclei at different times. Coherent scattering, therefore, gives rise to interference effects. It can be interpreted as the scattering which would be seen if all nuclei of a particular chemical species had the same mean scattering length. Incoherent scattering arises from deviations of the scattering lengths from their mean values.

In a solid, nuclei move around well defined equilibrium positions, $\mathbf{R}_i$, such that $\mathbf{R}_i(t) = \mathbf{R}_i + \mathbf{u}_i(t)$, where $\mathbf{u}_i(t)$ is a displacement. If the displacements are small, then
the harmonic approximation can be used and equation (2.6) is re-written as

$$S_c(Q,E) = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} b_i b_j \left\langle e^{-iQ \cdot (R_i - R_j)} \right\rangle e^{-(W_i(Q) + W_j(Q))}$$

$$\times \frac{1}{2\pi \hbar} \int_{-\infty}^{\infty} dt \ e^{-i\omega t} \langle (Q \cdot u_i(0))(Q \cdot u_j(t)) \rangle,$$

(2.8)

where $W_i(Q) = \frac{1}{6} \langle u_i^2 \rangle Q^2$ and $W_j(Q) = \frac{1}{6} \langle u_j^2 \rangle Q^2$ are the Debye-Waller factors for nuclei i and j while $\langle u_i^2 \rangle$ and $\langle u_j^2 \rangle$ are the mean square displacements of nuclei i and j, respectively. The final term in equation (2.8) can be Taylor expanded as a power series such that

$$e^{\langle (Q \cdot u_i(0))(Q \cdot u_j(t)) \rangle} = \sum_{p=0}^{\infty} \frac{1}{p!} \langle (Q \cdot u_i(0))(Q \cdot u_j(t)) \rangle^p,$$

(2.9)

where $p = 0, 1, 2, \ldots$. Substituting equation (2.9) into equation (2.8) gives

$$S_c(Q,E) = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} b_i b_j \left\langle e^{-iQ \cdot (R_i - R_j)} \right\rangle e^{-(W_i(Q) + W_j(Q))}$$

$$\times \frac{1}{2\pi \hbar} \int_{-\infty}^{\infty} dt \ e^{-i\omega t} \sum_{p=0}^{\infty} \frac{1}{p!} \langle (Q \cdot u_i(0))(Q \cdot u_j(t)) \rangle^p.$$

(2.10)

In this series, $p = 0$ represents the cross section for elastic scattering, $p = 1$ represents the cross section for all of the one phonon processes while $p > 2$ represents the cross section for $p$ phonon (multiple phonon) processes.

### 2.2.1 Single Phonon Scattering

The single phonon contribution to the coherent dynamical structure factor (the case when $p = 1$ in equation (2.10)) is given by the sum of contributions from events that create phonons, $S_{c+1}(Q,E)$, and from events that annihilate phonons $S_{c-1}(Q,E)$, so that $S_1(Q,E) = S_{c+1}(Q,E) + S_{c-1}(Q,E)$, where $S_1(Q,E)$ is the single phonon coherent total dynamical structure factor. The general motion of each of $N$ quantised simple harmonic oscillators in 3 dimensions due to single phonon processes can be described by the superposition of $3N$ allowed normal modes [11, pp. 139] such that for the case

---

1 Only coherent scattering is considered in this thesis, but incoherent scattering can be included (see appendix A.1).
when $E = E_i - E_f > 0$

$$S_{c,+1}(Q, E) = \frac{1}{N} \frac{\hbar^2}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \langle e^{-i Q \cdot (R_i - R_j)} \rangle e^{-(W_i(Q) + W_j(Q))}$$

$$\times \sum_{\nu=1}^{3N} \frac{(Q \cdot e^{\nu})^*(Q \cdot e^{\nu})}{(M_i M_j)^{1/2} E_\nu} \langle n(E_\nu) \rangle (n(E_\nu) + 1) \delta(E - E_\nu) \tag{2.11}$$

and for the case when $E = E_i - E_f < 0$

$$S_{c,-1}(Q, E) = \frac{1}{N} \frac{\hbar^2}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \langle e^{-i Q \cdot (R_i - R_j)} \rangle e^{-(W_i(Q) + W_j(Q))}$$

$$\times \sum_{\nu=1}^{3N} \frac{(Q \cdot e^{\nu})^*(Q \cdot e^{\nu})}{(M_i M_j)^{1/2} E_\nu} \langle n(E_\nu) \rangle \delta(E + E_\nu) \tag{2.12}$$

where $M_i$ and $M_j$ are the masses of nuclei i and j respectively. $e^{\nu}_i$ and $e^{\nu}_j$ are the displacement vectors of the i$^{th}$ and j$^{th}$ nucleus in the $\nu^{th}$ normal mode, respectively, $E_\nu = h \omega_\nu$ is the energy of mode $\nu$, $\langle n_\nu(E) \rangle$ and $\langle n_\nu(E) + 1 \rangle$ are the Bose-Einstein occupation factors given by

$$\langle n(E_\nu) \rangle = \frac{1}{e^{E_\nu/(k_B T)} - 1} \tag{2.13}$$

and

$$\langle n(E_\nu) + 1 \rangle = \frac{e^{E_\nu/(k_B T)}}{e^{E_\nu/(k_B T)} - 1} \tag{2.14}$$

where $k_B$ is Boltzmann’s constant and $T$ is the absolute temperature. The delta functions ensure that the only contributions to the summations in equations (2.11) and (2.12) are when $E = E_\nu$ and $E = -E_\nu$, respectively. Also, for the case when $E < 0$, using the symmetry of the delta function it follows that $\delta(E + E_\nu) = \delta(-(E + E_\nu)) = \delta(|E| - E_\nu)$. In addition

$$\langle n(-E) \rangle = \frac{1}{e^{-E/(k_B T)} - 1} = \frac{e^{E/(k_B T)}}{1 - e^{E/(k_B T)}} = -\langle n(E) + 1 \rangle \tag{2.15}$$
such that \( \langle n(-E) \rangle / (-E) = \langle n(E) + 1 \rangle / E \). Hence it follows that equation (2.12) can be re-written as

\[
S_{c,-1}(Q, E) = \frac{\hbar^2}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \langle b_i b_j e^{-iQ \cdot (R_i - R_j)} e^{-(W_i(Q)+W_j(Q))} \rangle \\
\times \sum_{\nu=1}^{3N} \frac{(Q \cdot e_i^{(\nu))^*(Q \cdot e_j^{(\nu)})}{(M_i M_j)^{1/2}} \langle n(E) + 1 \rangle / E \langle |E| - E_{\nu} \rangle ,
\] (2.16)

Since \( E > 0 \) (thus \( E = |E| \)) in equation (2.11), equations (2.11) and (2.16) can both be expressed in the same equation valid for all \( E \neq 0 \) such that

\[
S_1(Q, E) = \frac{1}{N} \frac{\hbar^2 Q^2}{2M} \langle \tilde{b}^2 \rangle e^{-2W(Q)} \sum_{i=1}^{N} \sum_{j=1}^{N} \langle e^{-iQ \cdot (R_i - R_j)} \rangle e^{-(W_i(Q)+W_j(Q))} \\
\times \frac{\langle n(E) + 1 \rangle}{E} \sum_{\nu=1}^{3N} \frac{(\tilde{Q} \cdot e_i^{(\nu))^*(\tilde{Q} \cdot e_j^{(\nu)})}{(M_i M_j)^{1/2}} \delta(|E| - E_{\nu}) ,
\] (2.17)

where \( Q = |Q| \) and \( \tilde{Q} = Q/(|Q|) \). Equation (2.11) is recovered from equation (2.17) when \( E > 0 \) and equation (2.12) is recovered from equation (2.17) when \( E < 0 \).

### 2.2.2 The Extreme Incoherent Approximation

In the extreme incoherent approximation, no distinction is made between (e.g. the chemical) identity of the nuclei such that equation (2.17) becomes

\[
S_1(Q, E) = \frac{1}{N} \frac{\hbar^2 Q^2}{2M} \langle \tilde{b}^2 \rangle e^{-2W(Q)} \sum_{i=1}^{N} \sum_{j=1}^{N} \langle e^{-iQ \cdot (R_i - R_j)} \rangle \\
\times \frac{\langle n(E) + 1 \rangle}{E} \sum_{\nu=1}^{3N} \frac{(\tilde{Q} \cdot e_i^{(\nu))^*(\tilde{Q} \cdot e_j^{(\nu)})}{(M_i M_j)^{1/2}} \delta(|E| - E_{\nu}) ,
\] (2.18)

All nuclei are described by the same mean square scattering length, which is taken to be

\[
\langle \tilde{b}^2 \rangle = \sum_{\alpha=1}^{n} c_{\alpha} \tilde{b}_{\alpha}^2 ,
\] (2.19)

the same mass, which is taken to be

\[
M = \sum_{\alpha=1}^{n} c_{\alpha} M_{\alpha} ,
\] (2.20)
and the same Debye-Waller factor, which is taken to be

\[ \mathbf{W}(Q) = \sum_{\alpha=1}^{n} c_\alpha W_\alpha(Q). \] (2.21)

In equations (2.19), (2.20) and (2.21), \( \alpha \) denotes a chemical species, \( n \) denotes the number of chemical species while \( c_\alpha, \bar{b}_\alpha, M_\alpha \) and \( W_\alpha(Q) \) are the atomic fraction, mean scattering length, mean mass and mean Debye-Waller factor for chemical species \( \alpha \), respectively.

The incoherent approximation is then made, whereby only the contribution from terms where \( i = j \) (i.e. terms involving the same nucleus) within the sum made in equation (2.18) are considered such that

\[ S_1(Q,E) = \frac{1}{N} \frac{h^2Q^2}{2M} \left\langle \vec{b}^2 \right\rangle e^{-2\mathbf{W}(Q)} \frac{\langle n(E) + 1 \rangle}{E} \sum_{i=1}^{N} \sum_{\nu=1}^{3N} \left| \vec{Q} \cdot \mathbf{e}_\nu^\prime \right|^2 \delta(|E| - E_\nu) \] . (2.22)

If \( \vec{Q} \) is averaged over all directions (which is the case for an homogeneous, isotropic solid such as most glasses) then

\[ \left\langle \left| \vec{Q} \cdot \mathbf{e}_i^\prime \right|^2 \right\rangle = \frac{1}{3} \left\langle \left| \mathbf{e}_i^\prime \right|^2 \right\rangle . \] (2.23)

If the total vibrational density of states, \( Z(E) \), is defined to be the fraction of states between \( E \) and \( E + dE \) then

\[ Z(E) = \frac{1}{3N} \sum_{i=1}^{N} \sum_{\nu=1}^{3N} \left\langle \left| \mathbf{e}_i^\prime \right|^2 \right\rangle \delta(|E| - E_\nu) = \frac{1}{3N} \sum_{\nu=1}^{3N} \delta(|E| - E_\nu) \] . (2.24)

It follows that \( Z(E) \) is an even function, \( \int Z(E)dE = 1 \) for \( E > 0 \), and that equation (2.22) can be expressed in the extreme incoherent approximation as

\[ S_1(Q,E) = \frac{h^2Q^2}{2M} \left\langle \vec{b}^2 \right\rangle e^{-2\mathbf{W}(Q)} \frac{\langle n(E) + 1 \rangle}{E} Z(E) . \] (2.25)

### 2.2.3 The Incoherent Approximation

For a two component system of chemical species \( A \) and \( X \), equation (2.17) can be rewritten as the sum of partial dynamical structure factors \( S_{\alpha\beta}(Q,E) \) (\( \alpha = A,X \), \( \beta = A,X \), such that

\[ S_1(Q,E) = \bar{b}_{A}^2 S_{AA}(Q,E) + \bar{b}_{X}^2 S_{XX}(Q,E) + 2\bar{b}_{A} \bar{b}_{X} S_{AX}(Q,E) \] , (2.26)
where $\bar{b}_\alpha$ is the mean scattering length of chemical species $\alpha$. $S_{\alpha\beta}(Q, E)$ represents the correlations between nuclei of chemical species $\alpha$ and nuclei of chemical species $\beta$ and is given by

$$S_{\alpha\beta}(Q, E) = \frac{1}{N} \frac{h^2 Q^2}{2} \sum_{\alpha i=1}^{N_\alpha} \sum_{\beta j=1}^{N_\beta} e^{-(W_{\alpha i}(Q) + W_{\beta j}(Q))} \left( e^{-iQ \cdot (R_{\alpha i} - R_{\beta j})} \right) \frac{(\hat{Q} \cdot e_{\alpha i}^\nu)^* (\hat{Q} \cdot e_{\beta j}^\nu)}{(M_{\alpha i} M_{\beta j})^{1/2}} \delta(|E| - E_\nu) ,$$

where $N_\alpha$ and $N_\beta$ are the number of nuclei in the system of chemical species $\alpha$ and $\beta$, while $\alpha i$ and $\beta j$ denote nuclei of chemical species $\alpha$ and $\beta$, respectively.

The incoherent approximation is then made, whereby only terms involving $\alpha i = \beta j$ (i.e. terms involving the same nuclei) contribute to the sum in equation (2.27) such that $S_{\alpha\beta}(Q, E) = 0$ for $\alpha \neq \beta$ and

$$S_{\alpha\alpha}(Q, E) = \frac{1}{N} \frac{h^2 Q^2}{2M_\alpha} e^{-2W_\alpha(Q)} \frac{(n(E) + 1)}{E} \sum_{\alpha i=1}^{N_\alpha} \sum_{\nu=1}^{3N} (\hat{Q} \cdot e_{\alpha i}^\nu)^2 \delta(|E| - E_\nu) ,$$

where $M_\alpha$ and $W_\alpha(Q)$ are the mean mass and Debye-Waller factor for atoms of chemical species $\alpha$, respectively. If $\hat{Q}$ is averaged over all directions (which is the case for an homogeneous, isotropic solid such as most glasses) then

$$\left\langle |\hat{Q} \cdot e_{\alpha i}^\nu|^2 \right\rangle = \frac{1}{3} \left\langle |e_{\alpha i}^\nu|^2 \right\rangle .$$

The partial vibrational density of states for a given chemical species $\alpha$ is defined as the fraction of modes with energy between $E$ and $E + dE$ such that

$$Z_\alpha(E) = \frac{1}{3N} \sum_{\alpha i=1}^{N_\alpha} \sum_{\nu=1}^{3N} \left\langle |e_{\alpha i}^\nu|^2 \right\rangle \delta(|E| - E_\nu) ,$$

where $Z_\alpha(E)$ is the partial vibrational density of states, defined such that $\int Z_\alpha(E) dE = c_\alpha$. Therefore equation (2.28) becomes

$$S_{\alpha\alpha}(Q, E) = \frac{h^2 Q^2}{2M_\alpha} e^{-2W_\alpha(Q)} \frac{(n(E) + 1)}{E} Z_\alpha(E) .$$

The total vibrational density of states is given by $Z(E) = Z_A(E) + Z_X(E)$. 

The partial vibrational density of states for a given chemical species $\alpha$ is defined as the fraction of modes with energy between $E$ and $E + dE$ such that

$$Z_\alpha(E) = \frac{1}{3N} \sum_{\alpha i=1}^{N_\alpha} \sum_{\nu=1}^{3N} \left\langle |e_{\alpha i}^\nu|^2 \right\rangle \delta(|E| - E_\nu) ,$$

where $Z_\alpha(E)$ is the partial vibrational density of states, defined such that $\int Z_\alpha(E) dE = c_\alpha$. Therefore equation (2.28) becomes

$$S_{\alpha\alpha}(Q, E) = \frac{h^2 Q^2}{2M_\alpha} e^{-2W_\alpha(Q)} \frac{(n(E) + 1)}{E} Z_\alpha(E) .$$

The total vibrational density of states is given by $Z(E) = Z_A(E) + Z_X(E)$. 

The partial vibrational density of states for a given chemical species $\alpha$ is defined as the fraction of modes with energy between $E$ and $E + dE$ such that

$$Z_\alpha(E) = \frac{1}{3N} \sum_{\alpha i=1}^{N_\alpha} \sum_{\nu=1}^{3N} \left\langle |e_{\alpha i}^\nu|^2 \right\rangle \delta(|E| - E_\nu) ,$$

where $Z_\alpha(E)$ is the partial vibrational density of states, defined such that $\int Z_\alpha(E) dE = c_\alpha$. Therefore equation (2.28) becomes

$$S_{\alpha\alpha}(Q, E) = \frac{h^2 Q^2}{2M_\alpha} e^{-2W_\alpha(Q)} \frac{(n(E) + 1)}{E} Z_\alpha(E) .$$

The total vibrational density of states is given by $Z(E) = Z_A(E) + Z_X(E)$. 

The partial vibrational density of states for a given chemical species $\alpha$ is defined as the fraction of modes with energy between $E$ and $E + dE$ such that

$$Z_\alpha(E) = \frac{1}{3N} \sum_{\alpha i=1}^{N_\alpha} \sum_{\nu=1}^{3N} \left\langle |e_{\alpha i}^\nu|^2 \right\rangle \delta(|E| - E_\nu) ,$$

where $Z_\alpha(E)$ is the partial vibrational density of states, defined such that $\int Z_\alpha(E) dE = c_\alpha$. Therefore equation (2.28) becomes

$$S_{\alpha\alpha}(Q, E) = \frac{h^2 Q^2}{2M_\alpha} e^{-2W_\alpha(Q)} \frac{(n(E) + 1)}{E} Z_\alpha(E) .$$

The total vibrational density of states is given by $Z(E) = Z_A(E) + Z_X(E)$. 

The partial vibrational density of states for a given chemical species $\alpha$ is defined as the fraction of modes with energy between $E$ and $E + dE$ such that

$$Z_\alpha(E) = \frac{1}{3N} \sum_{\alpha i=1}^{N_\alpha} \sum_{\nu=1}^{3N} \left\langle |e_{\alpha i}^\nu|^2 \right\rangle \delta(|E| - E_\nu) ,$$

where $Z_\alpha(E)$ is the partial vibrational density of states, defined such that $\int Z_\alpha(E) dE = c_\alpha$. Therefore equation (2.28) becomes

$$S_{\alpha\alpha}(Q, E) = \frac{h^2 Q^2}{2M_\alpha} e^{-2W_\alpha(Q)} \frac{(n(E) + 1)}{E} Z_\alpha(E) .$$

The total vibrational density of states is given by $Z(E) = Z_A(E) + Z_X(E)$. 

The partial vibrational density of states for a given chemical species $\alpha$ is defined as the fraction of modes with energy between $E$ and $E + dE$ such that

$$Z_\alpha(E) = \frac{1}{3N} \sum_{\alpha i=1}^{N_\alpha} \sum_{\nu=1}^{3N} \left\langle |e_{\alpha i}^\nu|^2 \right\rangle \delta(|E| - E_\nu) ,$$

where $Z_\alpha(E)$ is the partial vibrational density of states, defined such that $\int Z_\alpha(E) dE = c_\alpha$. Therefore equation (2.28) becomes

$$S_{\alpha\alpha}(Q, E) = \frac{h^2 Q^2}{2M_\alpha} e^{-2W_\alpha(Q)} \frac{(n(E) + 1)}{E} Z_\alpha(E) .$$

The total vibrational density of states is given by $Z(E) = Z_A(E) + Z_X(E)$. 

The partial vibrational density of states for a given chemical species $\alpha$ is defined as the fraction of modes with energy between $E$ and $E + dE$ such that

$$Z_\alpha(E) = \frac{1}{3N} \sum_{\alpha i=1}^{N_\alpha} \sum_{\nu=1}^{3N} \left\langle |e_{\alpha i}^\nu|^2 \right\rangle \delta(|E| - E_\nu) ,$$

where $Z_\alpha(E)$ is the partial vibrational density of states, defined such that $\int Z_\alpha(E) dE = c_\alpha$. Therefore equation (2.28) becomes

$$S_{\alpha\alpha}(Q, E) = \frac{h^2 Q^2}{2M_\alpha} e^{-2W_\alpha(Q)} \frac{(n(E) + 1)}{E} Z_\alpha(E) .$$

The total vibrational density of states is given by $Z(E) = Z_A(E) + Z_X(E)$.
2.2 Neutron Spectroscopy

2.2.4 Isotopic Substitution in Neutron Spectroscopy

If the incoherent scattering cross section is small enough to be ignored then equation (2.5) for an homogeneous, isotropic system, becomes

$$\frac{1}{N} \frac{d^2\sigma}{d\Omega dE_f} = \frac{k_f}{k_i} S_c(Q, E) \quad . \quad (2.32)$$

The “Gold Medal” Result

If the multiple phonon contribution to the scattering can be ignored then $S_c(Q, E) = S_1(Q, E)$ and, for a glass, it is convenient to re-write equation (2.26) in the form

$$S_1(Q, E) = \frac{b_A^2}{M_A} S'_{AA}(Q, E) + \frac{b_X^2}{M_X} S'_{XX}(Q, E) + 2 \frac{b_A b_X}{\sqrt{M_A M_X}} S'_{AX}(Q, E) \quad , \quad (2.33)$$

where the revised partial dynamical structure factors are defined by

$$S'_{\alpha\beta}(Q, E) \equiv \sqrt{M_{\alpha} M_{\beta}} S_{\alpha\beta}(Q, E) \quad . \quad (2.37)$$

such that

$$\begin{pmatrix} S'_{AA}(Q, E) \\ S'_{XX}(Q, E) \\ S'_{AX}(Q, E) \end{pmatrix} = B \begin{pmatrix} \frac{b_A^2}{M_A} S_1(Q, E) \\ \frac{b_X^2}{M_X} S_1(Q, E) \\ \frac{b_A b_X}{\sqrt{M_A M_X}} S_1(Q, E) \end{pmatrix} \quad , \quad (2.35)$$

and thus

$$\begin{pmatrix} S'_{AA}(Q, E) \\ S'_{XX}(Q, E) \\ S'_{AX}(Q, E) \end{pmatrix} = B^{-1} \begin{pmatrix} \frac{b_A^2}{M_A} S_1(Q, E) \\ \frac{b_X^2}{M_X} S_1(Q, E) \\ \frac{b_A b_X}{\sqrt{M_A M_X}} S_1(Q, E) \end{pmatrix} \quad . \quad (2.36)$$

The partial dynamical structure factors are then found by using

$$S_{\alpha\beta}(Q, E) = \frac{1}{\sqrt{M_{\alpha} M_{\beta}}} S'_{\alpha\beta}(Q, E) \quad . \quad (2.37)$$
Equation (2.31) can be re-written to allow for deviations from the incoherent approximation by replacing $Z_\alpha(E)$ with the generalised one phonon partial vibrational density of states $G_\alpha(Q, E)$ so that

$$ G_\alpha(Q, E) = \frac{2M_\alpha}{\hbar^2 Q^2} e^{2W_\alpha(Q)} \frac{E}{(n(E) + 1)} S_{\alpha\alpha}(Q, E). $$

(2.38)

The effective partial vibrational density of states $G(E)$ is then obtained by taking the mean of $G_\alpha(Q, E)$ over $Q$ such that

$$ G_\alpha(E) = \frac{1}{Q_{\text{max}} - Q_{\text{min}}} \int_{Q_{\text{min}}}^{Q_{\text{max}}} G_\alpha(Q, E) dQ, $$

(2.39)

where $Q_{\text{max}}$ and $Q_{\text{min}}$ are the maximum and minimum values of $Q$ over which $S_1(Q, E)$ is measured reliably. When the $S'_{\alpha\alpha}(Q, E)$ functions are separated by using equation (2.36) and $G_\alpha(Q, E)$ and $G_\alpha(E)$ are calculated from $S'_{\alpha\alpha}(Q, E)$ by using equations (2.37), (2.38) and (2.39), the effective partial vibrational density of states thus calculated are referred to as the “gold medal” results. Molecular dynamics simulations (e.g. [35, 44, 45]) have shown that $G_\alpha(E)$ is an excellent approximation to the true partial vibrational density of states $Z_\alpha(E)$.

The “Silver Medal” Result

If the contribution to $S_1(Q, E)$ from $S_{AX}(Q, E)$ is ignored (i.e. the incoherent approximation is made to $S_1(Q, E)$, before separation of the full set of partial dynamical structure factors), then equation (2.33) can be re-written as

$$ S_1(Q, E) = \frac{b^2_A}{M_A} S'_{AA}(Q, E) + \frac{b^2_X}{M_X} S'_{XX}(Q, E). $$

(2.40)

The functions $\frac{A_1}{X_1} S_1(Q, E)$ and $\frac{A_2}{X_2} S_1(Q, E)$ are then measured as in the previous section. A matrix $C$ can be defined as

$$ C = \begin{pmatrix} \frac{b^2_A}{M_A} & \frac{b^2_X}{M_X} \\ \frac{b^2_A}{M_A} & \frac{b^2_X}{M_X} \end{pmatrix}, $$

(2.41)

such that

$$ \begin{pmatrix} \frac{A_1}{X_1} S_1(Q, E) \\ \frac{A_2}{X_2} S_1(Q, E) \end{pmatrix} = C \begin{pmatrix} S'_{AA}(Q, E) \\ S'_{XX}(Q, E) \end{pmatrix} $$

(2.42)

and thus

$$ \begin{pmatrix} S'_{AA}(Q, E) \\ S'_{XX}(Q, E) \end{pmatrix} = C^{-1} \begin{pmatrix} \frac{A_1}{X_1} S_1(Q, E) \\ \frac{A_2}{X_2} S_1(Q, E) \end{pmatrix}. $$

(2.43)
The generalised partial vibrational density of states are again extracted by using equations (2.37) and (2.38). When the $S'_{\alpha\alpha}(Q,E)$ functions are separated by using equation (2.43) and $G_{\alpha}(Q,E)$ and $G_{\alpha}(E)$ are calculated from $S'_{\alpha\alpha}(Q,E)$ by using equations (2.37), (2.38) and (2.39), the effective partial vibrational density of states thus calculated are referred to as the “silver medal” results. This method is mathematically equivalent to the first order difference method (see appendix A.2).

The “Bronze Medal” Result

Equation (2.25) can be re-written to allow for deviations from the extreme incoherent approximation by replacing $Z(E)$ with the generalised one phonon partial vibrational density of states $G(Q,E)$ so that

$$G(Q,E) = \frac{1}{\langle \bar{b}^2 \rangle_\alpha} \frac{2M}{\hbar^2 Q^2} e^{2\Pi(Q)} \frac{E}{\langle n(E) + 1 \rangle} S_1(Q,E). \quad (2.44)$$

Similar to equation (2.39), the effective total vibrational density of states $G(E)$ is obtained by taking the mean of $G(Q,E)$ over $Q$ such that

$$G(E) = \frac{1}{Q_{\text{max}} - Q_{\text{min}}} \int_{Q_{\text{min}}}^{Q_{\text{max}}} G(Q,E) \, dQ. \quad (2.45)$$

The use of equations (2.44) and (2.45) is well established [42, 46] (see reference [41] for a detailed explanation) and we refer to equation (2.45) as the “bronze medal” result. $G(E)$ will be a good approximation to the true vibrational density of states $Z(E)$ when $\bar{b}_\alpha \simeq \bar{b}_\chi$ and $M_\alpha \simeq M_\chi$.

2.3 Differential Scattering Cross Section

In section 2.1 the double differential scattering cross section was introduced in equation (2.1). If the final energy of the neutrons is not distinguished and all particles scattered into a solid angle $\Omega$ are counted, then the differential scattering cross section is measured where

$$\frac{d\sigma}{d\Omega} = \text{(Number of neutrons scattered per second into } d\Omega) / (\Phi d\Omega). \quad (2.46)$$

Here, the double differential and differential cross sections are related by

$$\frac{d\sigma}{d\Omega} = \int_0^\infty \left( \frac{d^2\sigma}{d\Omega dE_f} \right) dE_f. \quad (2.47)$$
2.4 Neutron Diffraction

In the static approximation, a condition that is met when $E_i$ is much larger than any energy transfer to/from the system, $k_i \approx k_f$ so that equation (2.2) becomes

$$Q = \frac{4\pi}{\lambda} \sin(\theta) ,$$

(2.48)

where $\lambda = 2\pi/k_i$ is the wavelength of the incident neutron.

2.4 Neutron Diffraction

In neutron diffraction, within the static approximation the differential scattering cross section is given by [9]

$$\frac{1}{N} \frac{d\sigma}{d\Omega} = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{b_i b_j}{2} \left\langle e^{-iQ \cdot R_i(0)} e^{iQ \cdot R_j(0)} \right\rangle ,$$

(2.49)

where the brackets $\langle \cdots \rangle$ denote a thermal average, the quantity $\frac{b_i b_j}{2}$ is the value of $b_i b_j$ averaged over random nuclear spin orientations and isotope distributions, while $b_i$ and $b_j$ are the scattering lengths of nuclei i and j, respectively. $R_i(0)$ and $R_j(0)$ are the positions of nuclei i and j at a time $t = 0$, respectively.

For an isotropic, homogeneous system of scattering centres with $n$ chemical species, the differential scattering cross section can be expressed in the form of a total structure factor, $F(Q)$, and a self term such that [5, 47]

$$\frac{1}{N} \frac{d\sigma}{d\Omega} = F(Q) + \frac{\sigma_{\text{self}}}{4\pi} ,$$

(2.50)

and

$$\frac{\sigma_{\text{self}}}{4\pi} = \sum_{\alpha=1}^{n} c_{\alpha}(\overline{b^2}_\alpha + b_{\text{inc},\alpha}^2)(1 + P_{\alpha}(Q)) ,$$

(2.51)

where $b_{\text{inc},\alpha} = \overline{b^2}_\alpha - \overline{b^2}_\alpha$, while $\overline{b^2}_\alpha$ and $\overline{b}_\alpha$ are the mean of the square of the scattering length and the mean of the scattering length of chemical species $\alpha$, respectively. $P_{\alpha}(Q)$ is the so-called Placzek correction for chemical species $\alpha$ that arises from a departure from the static approximation (originally derived by Placzek [48] with an explanation of different methods used for its calculation given in reference [49]). $F(Q)$ corresponds to the sum of the terms in equation (2.49) when $i \neq j$, less the forward scattering, i.e. it represents the interference pattern produced from neutrons scattered from pairs of different nuclei. $\sigma_{\text{self}}$ is the self scattering cross section, corresponding to $i = j$ in equation (2.49), i.e. it represents scattering from the same nucleus.

The total structure factor can be expressed in terms of a sum of so-called Faber-
Ziman partial structure factors \( S_{\alpha\beta}(Q) \) which describe the correlations between pairs of nuclei of chemical species \( \alpha \) and \( \beta \) by the expression \[ F(Q) = \sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} c_{\alpha} c_{\beta} \bar{b}_{\alpha} \bar{b}_{\beta} [S_{\alpha\beta}(Q) - 1] \ , \tag{2.52} \]

where \( c_{\alpha} \) and \( c_{\beta} \) are the atomic fractions of chemical species \( \alpha \) and \( \beta \), respectively and \( \langle \bar{b} \rangle = \sum_{\alpha}^{n} c_{\alpha} \bar{b}_{\alpha} \). The total pair distribution function, \( G(r) \), is given by the sine Fourier transform of \( F(Q) \) such that

\[
G(r) = \frac{1}{2\pi^2 r \rho} \int_{0}^{\infty} Q F(Q) \sin(Qr) \, dQ \\
= \sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} c_{\alpha} c_{\beta} \bar{b}_{\alpha} \bar{b}_{\beta} [g_{\alpha\beta}(r) - 1] \ , \tag{2.53}
\]

where \( \rho \) is the atomic number density of the system and the partial pair distribution function, \( g_{\alpha\beta}(r) \), is related to the probability of finding a nucleus of chemical species \( \beta \) in a shell between \( r \) and \( r + \, dr \) centred on a nucleus of chemical species \( \alpha \). \( g_{\alpha\beta}(r) \) and \( S_{\alpha\beta}(Q) \) are related by the Fourier transform relation

\[
S_{\alpha\beta}(Q) - 1 = \frac{4\pi \rho}{Q} \int_{0}^{\infty} r (g_{\alpha\beta}(r) - 1) \sin(Qr) \, dr \ . \tag{2.54}
\]

The function \( g_{\alpha\beta}(r) \) is used to find the coordination number, \( \bar{\pi}_{\alpha}^{-} \), which is the mean number of nuclei of chemical species \( \beta \) in a shell of radius between \( r = r_1 \) and \( r = r_2 \) centred on a nucleus of chemical species \( \alpha \), by the equation

\[
\bar{\pi}_{\alpha}^{2} = 4\pi \rho c_{\beta} \int_{r_1}^{r_2} g_{\alpha\beta}(r) r^2 \, dr \ . \tag{2.55}
\]

In the low \( r \) limit, \( g_{\alpha\beta}(r) = 0 \) such that

\[
G(0) = -\sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} c_{\alpha} c_{\beta} \bar{b}_{\alpha} \bar{b}_{\beta} = -\langle \bar{b} \rangle^2 \ . \tag{2.56}
\]
2.5 Elastic and Total Scattering

In the case where \( p = 0 \), equation (2.10) can be re-written as

\[
S_{\text{el}}(Q, E) = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} b_i b_j \left\langle e^{-iQ \cdot (R_i - R_j)} \right\rangle e^{-(W_i(Q) + W_j(Q))} \times \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} dt e^{-i\omega t} \tag{2.57}
\]

and, since \( \int_{-\infty}^{\infty} dt e^{-i\omega t} = 2\pi\hbar \delta(\omega) = 2\pi\hbar \delta(E) \), equation (2.57) can be re-written as

\[
S_{\text{el}}(Q, E) = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} b_i b_j \left\langle e^{-iQ \cdot (R_i - R_j)} \right\rangle e^{-(W_i(Q) + W_j(Q))} \delta(E) . \tag{2.58}
\]

It can be shown that the coherent elastic structure factor for a homogeneous, isotropic system is given by [51, 52]

\[
S_{\text{el}}(Q) = \int_{-\infty}^{\infty} S_{\text{el}}(Q, E) dE = F(Q) + \sum_{\alpha=1}^{n} c_\alpha \bar{b}_\alpha^2 e^{-2W_\alpha(Q)} , \tag{2.59}
\]

It can also be shown that the incoherent elastic structure factor for a homogeneous, isotropic system is given by [52]

\[
S_{\text{inc}}(Q) = \int_{-\infty}^{\infty} S_{\text{inc}}(Q, E) dE = \sum_{\alpha=1}^{n} c_\alpha b_{\text{inc},\alpha}^2 e^{-2W_\alpha(Q)} , \tag{2.60}
\]

where \( b_{\text{inc},\alpha} \) is the incoherent scattering length of chemical species \( \alpha \). Using equation (2.5) with equations (2.59) and (2.60), the elastic differential cross section is then defined as

\[
\frac{1}{N} \frac{d\sigma}{d\Omega}_{\text{el}} = S_{\text{inc}}(Q) + S_{\text{el}}(Q) = F(Q) + \sum_{\alpha=1}^{n} c_\alpha \left( \bar{b}_\alpha^2 + b_{\text{inc},\alpha}^2 \right) e^{-2W_\alpha(Q)} . \tag{2.61}
\]

In the approximation where \( W_\alpha(Q) = \overline{W}(Q) \) for all \( \alpha \),

\[
\frac{1}{N} \frac{d\sigma}{d\Omega}_{\text{el}} = F(Q) + e^{-2\overline{W}(Q)} \sum_{\alpha=1}^{n} c_\alpha \left( \bar{b}_\alpha^2 + b_{\text{inc},\alpha}^2 \right) . \tag{2.62}
\]
3. Instrumentation

In this chapter, the instruments that have been used for the experiments reported in this thesis are presented. The ISIS pulsed neutron source at the Rutherford Appleton Laboratory in the UK and three neutron instruments, the MARI and MERLIN spectrometers and the PEARL high pressure diffractometer, are described. The design and implementation of the Paris-Edinburgh press, which is used to apply pressure to samples in situ, are then given.

3.1 The ISIS Pulsed Neutron Source

The ISIS pulsed neutron source (figure 3-1) at the Rutherford Appleton Laboratory in Didcot, UK provides short pulses of neutrons with a range of wavelengths for use in experiments. At ISIS a tantalum target is bombarded with a high energy (800 MeV) proton beam at a rate of 50 Hz to trigger a spallation process in which the target nuclei are broken into smaller pieces, releasing neutrons [54]. There are \( \approx 17 \) neutrons produced for every proton collision which gives about \( 4.8 \times 10^{14} \) neutrons per pulse. The overall neutron flux is inferred from the proton beam current, which at ISIS is

![Figure 3-1: ISIS at the Rutherford Appleton Laboratory in Didcot, UK](image)
approximately 200 µA [53]. The proton pulse is \( \approx 0.3 \) µs long and produces a neutron pulse with the same width in time. The neutrons travel down channels (beam lines) and are slowed down from energies of order MeV to energies of order meV for experiments. These energies are comparable to those of atomic excitations. The slowing of the neutrons is achieved by collisions in a hydrogen based moderator which also broadens the pulse to around 5-50 µs. The result is a “white beam” that contains a distribution of neutron energies between 0 and 1 eV. The exact distribution of neutron energies depends on the moderator type and temperature. The intensity distributions produced by three different moderators are given in figure 3-2. The neutrons pass through beam-

![Figure 3-2: The wavelength/energy distribution of neutrons from methane (red line), water (green line) and hydrogen (black line) moderators at the ISIS pulsed neutron source.](image)

3.2 Direct Geometry time-of-flight Chopper Spectrometers

One instrument type that is used to measure the double differential scattering cross section in the energy range relevant to phonon scattering is a direct geometry time-of-flight chopper spectrometer. In this type of spectrometer (figure 3-4), neutrons with a specified incident velocity \( v_i \) are selected from the white beam pulse from the
Figure 3-3: A schematic view of the ISIS pulsed neutron source (target station 1 only) showing around 20 instruments [53].

moderator using a series of choppers. First, the nimonic chopper[1] which is closest to the moderator, closes the neutron beam channel between pulses to reduce background noise and to block very high energy neutrons. Next, the disc chopper (figure 3-5a) spins at the same frequency as the source (50 Hz) and is used to narrow the range of incident neutron velocities that continue through the neutron beam channel. Finally a Fermi chopper (figure 3-5b), designed to allow a close-to Gaussian distribution of neutron velocities through to the sample position (as explained in refs. [55, 56]), opens a path for the beam for a short time centred on a time \( t_{\text{Fermi}} \) after each pulse leaves the moderator. This chopper usually spins at a frequency that is a multiple of the source frequency and opens the neutron beam channel several times during each pulse from the moderator. The Fermi and disc choppers are only open at the same time once per pulse, allowing a narrow pulse of nearly monochromatic neutrons with velocities centred on the chosen incident velocity of \( \mathbf{v}_i \) (\(|v_i| = v_i = L_{\text{Fermi}}/t_{\text{Fermi}}\), where \( L_{\text{Fermi}} \) is the path length from the moderator to the Fermi chopper), to continue through to the sample position, a path length of \( L_1 \) from the moderator. For a given \( \mathbf{v}_i \), a faster Fermi chopper frequency will result in a narrower range of transmitted velocities, but at the cost of transmitted flux. Neutrons interact with the sample and emerge with a final velocity of \( \mathbf{v}_f \). The scattered neutron intensity is measured as a function of time-of-flight by a detector at a known position, a path length of \( L_2 \) from the sample.

[1]The nimonic chopper is named after the nickel-molybdenum allow from which it is made.
3.2 Direct Geometry time-of-flight Chopper Spectrometers

Figure 3-4: Direct geometry time-of-flight chopper spectrometer schematic. Monitors are denoted by M1, M2 and M3. A “white beam” of neutrons from the moderator is chopped so that only neutrons with a chosen velocity are incident on the sample, where they are scattered and are detected at an angle $2\theta$. The path length between the moderator and Fermi chopper is $L_{Fermi}$, the path length between the moderator and sample is $L_1$ and the path length between the sample and detectors is $L_2$. The time that a neutron takes to traverse the path length $(L_1 + L_2)$ is recorded in order to calculate $k_f$. The nimonic and disc choppers help to reduce background noise by blocking high energy neutrons and shape the neutron pulse, respectively.

Figure 3-5: (a) A disc chopper, made of neutron absorbing material, spins at 50 Hz and opens the channel once per pulse for a short time to allow a range of neutron energies through. The chopper spins around an axis perpendicular to the plane of the page, parallel to the incident neutron beam marked in red. (b) A Fermi chopper spins with a frequency that is a multiple of 50 Hz. The curved slits drawn in black are transparent to neutrons, with a curvature that allows a narrow roughly Gaussian distribution of energies through to the sample position at a time $t_{Fermi}$ after the pulse leaves the moderator.
position as illustrated in figure 3-6. The position of the detector relative to the sample gives the direction of $v_f$ and the time-of-flight technique [9, 56] allows the magnitude of $v_f$ to be measured where $|v_f| = \frac{v_f}{L_2/t_2} = t - L_1 v_i$ is the time taken for a neutron to traverse a path between the sample and detector and $t$ is the total time-of-flight between the moderator and detector. The incident and final wavevectors $k_i$ and $k_f$ are related to the incident and final velocities by the de Broglie relation such that

$$k_i = \frac{m_n}{\hbar}v_i, \quad k_f = \frac{m_n}{\hbar}v_f.$$ 

(3.1)

$k_i$ and $k_f$ are used to obtain the double differential scattering cross section as a function of the scattering vector $Q$ and energy transferred from the neutron to the system $E$ as described in section 2.1. In practice, a choice of incident neutron energy, $E_i$, is made and this is converted to the appropriate $t_{Fermi}$ by control software. The choice of incident neutron energy and scattering angle provides a constraint on the range of
3.2 Direct Geometry time-of-flight Chopper Spectrometers

$Q$ and $E$ a detector measures, given by using equations (2.2) and (2.3) as

$$Q = \sqrt{\frac{2m_n}{\hbar^2} \left( 2E_i - E - 2\sqrt{E_i(E_i - E) \cos(2\theta)} \right)}$$

which defines the path in $(Q, E)$ space over which the scattered neutron intensity is measured for a detector at an angle $2\theta$ to the incident beam. This so-called kinematically allowed region is plotted in figure 3-7 for an incident energy of 60 meV. Therefore,

![Figure 3-7: Example of the region over which the scattered neutron intensity is measured by each detector for neutrons of incident energy 60 meV. Each curve represents a single detector at an angle to the incident beam $2\theta$ in the range from $3^\circ$ to $135^\circ$.](image)

to cover a wide range of $Q$ and $E$, many detectors are required over a range of scattering angles.

### 3.2.1 The MARI Spectrometer

The MARI spectrometer [57] views the ISIS methane moderator and incorporates an array of detectors that covers a nearly continuous range of $2\theta$ angles from $\approx 3^\circ$ to $\approx 135^\circ$ (see figure 3-8). The detector arrangement features some small gaps in coverage because the detectors are arranged in 8 banks of around 100 detectors each, separated by collimating vanes. The vanes help to prevent scattering that originates away from the sample position from reaching the detectors. The moderator to sample path length $L_1$ is 11.739 m and the sample to detector path length $L_2$ is 4.020 m. Each detector is a tube made from $\approx 0.4$ mm thick Al with an outer diameter of 25.4 mm and height of 300 mm, filled with $^3$He gas to a pressure of 10 bar. The detector efficiency
3.2 Direct Geometry time-of-flight Chopper Spectrometers

Figure 3-8: The MARI spectrometer at the ISIS pulsed neutron source [58]. Neutrons scatter from a sample into a detector array, which is separated into 8 banks of around 100 detectors each.

(figure 3-9) is 70-100 % depending on the neutron energy [59]. A three dimensional

Detector Efficiency

Neutron Energy (meV)

Figure 3-9: The efficiency of $^3$He detectors used on MARI and MERLIN instruments as a function of the energy of a neutron [59].

(3D) representation of the measured spectra is presented in figure 3-10 where the gaps between detector banks can be seen.

The sample to be measured is loaded into a can, usually of annular geometry to reduce the sample attenuation and multiple scattering, and attached to the end of a “candle stick” (figure 3-11) that is lowered into position at the centre of the detectors and is usually cooled by a closed cycle refrigerator (CCR). The path between the CCR
Figure 3-10: The intensity measured on MARI for a sample of vanadium shown in a 3D representation. There are \( \approx 900 \) detector elements arranged in 8 banks. Each tube shown is at a distance of 4.020 m from the sample and is 30 cm high. Here, the measured intensity as a function of position and time-of-flight has been integrated over all time-of-flights. The light blue colour marks some faulty detectors.

Figure 3-11: A “candle stick” used on MARI to lower the sample into position inside a CCR. The sample can is attached to the bottom of the stick with a screw, seen to the bottom right.
tail and the detectors is under vacuum. The CCR tail is evacuated and then filled with a low pressure of He gas. This acts to prevent condensation of air during cooling, eliminates background scattering from air, and promotes uniform heat exchange between the CCR and sample.

The MERLIN Spectrometer

The MERLIN spectrometer [60] views the methane moderator and provides a continuous coverage of scattering angles by incorporating a large array of two dimensional (2D) position sensitive detector tubes (figure 3-12). The detector tubes (otherwise identical to those used on MARI) are 3 m long and are able to record the position of incidence of a neutron along the tube to a precision of 2.1 cm. The moderator to sample path length $L_1$ is 11.8 m and the sample to detector path length $L_2$, as measured to the centre of the detector array, is 2.5 m. The detectors cover a range of scattering angles from $\approx -45^\circ$ to $\approx 135^\circ$ in the horizontal plane and $\approx \pm 30^\circ$ in the vertical plane [60]. The scattered neutron intensity is measured as a function of time-of-flight over 69,632 individual detector pixels of known position. In addition to the large solid angle coverage (3.1 sr), the MERLIN spectrometer incorporates a supermirror guide, which gives a factor of $\approx 5$ gain in incident flux over MARI. The effect of these differences is that MERLIN gives a gain in the detected neutron flux of a factor of approximately 35 over

![Figure 3-12: Merlin spectrometer schematic from ref. [60]. The MERLIN spectrometer incorporates a supermirror guide and a large 2-dimensional array of position sensitive detectors.](image)
MARI. The gain in flux comes at the cost of resolution in both energy transfer $E$ and scattering vector $Q$ due to the shorter sample to detector path length and divergence of the supermirror guide. For the same choice of Fermi chopper, incident energy and Fermi chopper spinning frequency, the energy resolution of the MERLIN spectrometer is $\approx 25\%$ worse than that of MARI. Figure 3-13 demonstrates the spatial coverage of the MERLIN detectors. Samples are loaded in a similar way to MARI. The geometry of the sample assembly means that it is possible to load powder samples without a rigid container.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3-13.png}
\caption{The intensity measured for an empty can using the MERLIN instrument shown in a 3D representation. The Debye-Scherrer rings for aluminium diffraction peaks are seen, along with the effect of preferred orientation of the Al crystallites (bright spots within the rings). There are 69,632 detector pixels. The centre of each position sensitive detector tube is at a distance of 2.5 m from the sample and is 3 m high. Here, the measured intensity as a function of position and time-of-flight has been integrated over all time-of-flights.}
\end{figure}

3.3 Time-of-Flight Neutron Diffraction Instrumentation for High Pressure Studies

In a time-of-flight neutron diffraction experiment, a large fraction of the moderated white beam of neutrons produced by the source is used. The intensity of neutrons is measured as a function of time-of-flight for a detector at an angle of $2\theta$ to the incident beam as shown in figure 3-14. If the scattering from a sample is assumed to be elastic, then the wavelength of the neutron is determined using the de Broglie relationship which can be written as

$$\lambda = \frac{ht}{m_n(L_1 + L_2)}, \quad (3.3)$$
3.3 Time-of-Flight Neutron Diffraction Instrumentation for High Pressure Studies

Figure 3-14: Schematic of a diffraction experiment at a time-of-flight spallation source. A detector is placed at an angle of $2\theta$ to the incident beam, $L_1$ is the path length from the moderator to the sample and $L_2$ is the path length from the sample to the detector. The scattered intensity is measured as a function of time-of-flight.

where $m_n$ is the mass of a neutron, $t$ is the time-of-flight, $L_1$ is the path length between the moderator and the sample, $L_2$ is the path length between the sample and the detector and $h$ is Planck’s constant. As described in section 2.3, the scattering vector $Q$ is given by equation (2.2).

3.3.1 PEARL

The PEARL High Pressure (HiPr) time-of-flight neutron diffraction instrument (figure 3-15) views the methane moderator at the ISIS pulsed neutron source and features an array of nine detector modules, each with 120 $^6$Li ZnS scintillator detector elements covering scattering angles between 83 and 97 $^\circ$. The scattering angle of $\approx 90$ $^\circ$ limits

Figure 3-15: The PEARL diffractometer. (a) The full pressure assembly in the beam and (b) the Paris-Edinburgh press [61].
The range of scattering vectors that can be measured to $1.55 \leq Q \leq 19.6 \, \text{Å}^{-1}$. Pressure is applied to a sample using a Paris-Edinburgh press as described in section 3.4. The instrument is used in transverse geometry, meaning that the incident beam travels through a hole in the breach and the detected neutrons are in a plane perpendicular to the incident beam as shown in figure 3-15b. There are two additional detector banks, one covering scattering angles between 60 ° and 20 ° and the other covering scattering angles between 100 ° and 120 °. However, these banks are inaccessible during a high pressure experiment because the path of any neutron scattered in their direction is blocked by the anvils.

The restricted range at low $Q$, which does not extend below 1.55 Å⁻¹, provides a challenge for measurements on amorphous materials. Often, there is a first sharp diffraction peak (FSDP) [62, 63] in this region that cannot be excluded when performing the Fourier transform into real space (equation (2.53)) if accurate real space functions are to be obtained. The FSDP is associated with intermediate range ordering in a system.

3.4 The Paris-Edinburgh Press

In neutron scattering experiments, the Paris-Edinburgh press [64, 65] is often used to apply pressure to samples. The current press designs are based on a toroidal design first made in the 1960’s, the history of the press designs is summarised by Khvostantsev et al. [66, 67]. This innovative press design allows for the larger sample volumes demanded by neutron scattering experiments, which is necessary because of the limited flux of neutron sources. Many types of anvil and gasket assembly may be used in the press. In our experiments either single toroid sintered diamond anvils with single toroid Ti-Zr gaskets (figure 3-16a) were used to reach pressures of up to approximately 10 GPa [68–70] or double toroid sintered diamond anvils with double toroid Ti-Zr gaskets (figure 3-16b) were used to reach pressures up to approximately 20 GPa [71, 72]. In both cases the inner die of the anvils, formed by the spark erosion of sintered diamond, is held in a tungsten carbide seat supported by a steel binding ring [64]. The steel part of each anvil is covered in a Cd jacket to reduce any secondary scattering of neutrons by the anvil. The inner die features an indention in the shape of a spherical cap to accommodate a sample pellet and grooves to accommodate the Ti-Zr gaskets. A sample pellet is placed between two opposing anvils and encapsulated by the gasket assembly. The gaskets are made from an alloy of Ti₅₀.₆₇₀Zr₄₉.₃₂₄, a composition chosen such that the mean coherent scattering length of the gasket is zero. Pressure is applied to the anvils using a hydraulic pump. As pressure is applied, the gasket assembly deforms into the grooves of the anvils and holds the sample in place radially. The grooves in the anvil act to provide inward
Figure 3-16: (a) Single toroid anvils and gasket and (b) double toroid anvils and gasket, drawn by Drewitt [39] using information from Klotz [73].
support for the gasket and provide a more favourable pressure distribution across the anvils \cite{69} to prevent cracking. Single toroid anvils can achieve pressures of up to 15 GPa. In the case of double toroid anvils, a combination of smaller sample size (thus a higher pressure for the same applied load) and better gasket support, through having two grooves in the anvils to support the gasket assembly, allows pressures of up to 30 GPa to be achieved. The use of diamond adds particularly strong Bragg peaks and Bragg edges to the measured neutron diffraction patterns that are difficult to subtract. However, the diamond anvil cells can reach higher pressures than their boron-nitride counterparts without breaking.
4. Data Treatment

In this chapter, the data analysis methods used for inelastic neutron scattering experiments (section 4.1) and high pressure neutron diffraction experiments (section 4.2) are described.

4.1 Inelastic Neutron Scattering Experiments

4.1.1 Introduction

The aim of the inelastic neutron scattering experiments presented in this thesis (made using either the MARI or MERLIN spectrometers) is to measure the single phonon dynamical structure factor $S_1(Q, E)$. To achieve this, the scattered neutron intensity has to be corrected for background scattering, attenuation of the neutron beam, multiple scattering and multiple phonon scattering using the approaches described below.

In the inelastic neutron scattering experiments described in this thesis an annular geometry was used, whereby powder samples were held in annular aluminium cans as illustrated in figure 4-1. The intensity of single scattered neutrons from the sample and by the can are denoted by $I_s(Q, E)$ and $I_c(Q, E)$, respectively. The attenuation of $I_s(Q, E)$ by the presence of the sample and can is represented by the coefficient $A_{s,sc}(Q, E)$ such that the overall sample scattered intensity is given by $A_{s,sc}(Q, E)I_s(Q, E)$. Similarly, the attenuation of $I_c(Q, E)$ by the presence of the sample and can is represented by the coefficient $A_{c,sc}(Q, E)$ such that the overall can scattered intensity is given by $A_{c,sc}(Q, E)I_c(Q, E)$. Neutrons also scatter from other sources, such as the CCR, with an intensity $I_b(Q, E)$ which, to a good approximation, is not attenuated by the presence of the sample and/or the can. Neutrons can also scatter multiple times to give an intensity denoted by $I_{ms,sc}(Q, E)$.

This section is organised as follows. In section 4.1.2 the initial measurements, normalisation and correction for the background scattering are presented in the approximation that multiple scattering is small. In section 4.1.3 a correction for the multiple scattering contribution to $I_s(Q, E)$ is described. Finally, in section 4.1.4 the method used to calculate the multiple phonon correction within the extreme incoherent
4.1 Inelastic Neutron Scattering Experiments

Figure 4-1: The annular geometry for the inelastic neutron scattering experiments described in this thesis where a powdered sample is contained in an Al can. Examples of the path of a neutron in three different scattering events are given: a neutron that has scattered once in the sample which gives a contribution \( A_{s,sc}(Q,E)I_s(Q,E) \) to the measured intensity (black arrow), a neutron that has scattered once in the can which gives a contribution \( A_{c,sc}(Q,E)I_c(Q,E) \) to the measured intensity (blue arrow) and a neutron that has scattered three times which gives a contribution \( I_{ms,sc}(Q,E) \) to the measured intensity (red arrow).

approximation is given. The data analysis procedure is summarised in figure 4-2.

4.1.2 Normalisation and Correction for Scattering from the Can

For the inelastic neutron scattering experiments described in this thesis, three measurements were made under identical conditions as a function of the scattering angle, \( 2\theta \), and time-of-flight, \( t \), using a monochromatic beam of neutrons. The intensity was measured for the sample in a can \( I_{sc}^{\text{meas}}(2\theta,t) \), for the empty can with no sample \( I_c^{\text{meas}}(2\theta,t) \) and for an annular shaped piece of solid vanadium \( I_v^{\text{meas}}(2\theta,t) \). The scattered intensity \( I_{wb}^{\text{meas}}(2\theta,t) \) was also measured for an annular shaped piece of solid vanadium using a so-called “white beam” of neutrons for which there is a wide range of neutron energies. This white beam measurement is used to identify and remove faulty detectors and to calibrate the efficiency of the detectors as discussed in refs. [55, 74, 76]. In the case when several samples were measured in a single experiment, \( I_c^{\text{meas}}(2\theta,t) \), \( I_v^{\text{meas}}(2\theta,t) \) and \( I_{wb}^{\text{meas}}(2\theta,t) \) were measured only once.

Using the Libisis data analysis software [77], a standard vanadium normalisation method involving \( I_{wb}^{\text{meas}}(2\theta,t) \) and \( I_v^{\text{meas}}(2\theta,t) \) was used to convert \( I_{sc}^{\text{meas}}(2\theta,t) \) and \( I_c^{\text{meas}}(2\theta,t) \) to the normalised measured intensities, \( I_{c,E}^{sc}(Q,E) \) and \( I_{E}(Q,E) \) for the sample-in-can and empty can, respectively. This method is described by Perring [74] and is given in the “HET manual” [78]. The validity of using vanadium as a scattering
4.1 Inelastic Neutron Scattering Experiments

Figure 4-2: The data analysis procedure for inelastic neutron scattering experiments. Here “Can Sub.”, “Att. Corr.” and “Renorm.” represent the empty can subtraction, attenuation correction and renormalisation. Cal. stands for calibration.
The incident and scattered beams are attenuated by the sample and empty can such that
\[ I_{\text{E}}(Q,E) = A_s,\text{sc}(Q,E)I_s(Q,E) + A_c,\text{sc}(Q,E)I_c(Q,E) + I_b(Q,E) + I_{\text{ms,sc}}(Q,E) \] (4.1)
and
\[ I_{\text{E}}(Q,E) = A_c,c(Q,E)I_c(Q,E) + I_b(Q,E) + I_{\text{ms,c}}(Q,E), \] (4.2)
where \( I_{\text{ms,sc}}(Q,E) \) and \( I_{\text{ms,c}}(Q,E) \) are the multiple scattering intensities for the sample-in-can and empty can, respectively. \( A_{x,y}(Q,E) \) is the attenuation coefficient for neutrons scattered in region \( x \) and attenuated by region \( y \), where the regions are denoted by \( s \) for the sample, \( c \) for the can and \( sc \) for the sample and can. The attenuation coefficients take values between 0 (0 % transmission) and 1 (100 % transmission). In the approximation that there is no multiple scattering so that \( I_{\text{ms,sc}}(Q,E) = I_{\text{ms,c}}(Q,E) = 0 \), equations (4.1) and (4.2) can be combined to give the attenuation corrected sample scattered intensity
\[ I_s(Q,E) = \frac{1}{A_s,\text{sc}(Q,E)} \left[ (I_{\text{E}}(Q,E) - I_b(Q,E)) - \frac{A_c,\text{sc}(Q,E)}{A_c,c(Q,E)} (I_c(Q,E) - I_b(Q,E)) \right]. \] (4.3)

The attenuation coefficients have been derived for cylindrical geometry (see ref. [80] for elastic scattering and ref. [81] for inelastic scattering) or flat plate geometry (see refs. [82, 83]). They cannot, at present, be calculated analytically for multiple annuli (i.e. an annular sample inside an annular can). The attenuation coefficients can, however, be calculated for two concentric cylinders by a method developed by Poncet [81] using the formalism of Paalman and Pings [79]. By treating the outer cylinder as a sample and the inner cylinder as transparent to neutrons, it is possible to calculate the attenuation coefficient for a single annulus. For example, a coefficient \( A_{s,c,sc}(Q,E) \) can be calculated and the approximation made where \( A_{s,sc}(Q,E) \simeq A_{c,sc}(Q,E) \simeq A_{s,c,sc}(Q,E) \) such that equation (4.3) becomes
\[ I_s(Q,E) \simeq \frac{1}{A_{s,c,sc}(Q,E)} \left( I_{\text{E}}(Q,E) - I_b(Q,E) \right) - \frac{1}{A_{c,c}(Q,E)} \left( I_c(Q,E) - I_b(Q,E) \right). \] (4.4)

\( A_{s,c,sc}(Q,E) \) is calculated for a ‘pseudo sample’ for which the atoms of the Al can and sample have been mixed such that the fraction of sample atoms is \( f = N_{\text{sample}} / (N_{\text{Al}} + N_{\text{sample}}) \), where \( N_{\text{sample}} \) and \( N_{\text{Al}} \) are the numbers of sample and Al atoms in the beam, respectively. An effective density \( \langle n \rangle = f n_{\text{sample}} + (1 - f) n_{\text{Al}}, \)
an effective total scattering cross section \( \langle \sigma \rangle = f \sigma_{\text{sample}} + (1 - f) \sigma_{\text{Al}} \) and an average absorption cross section \( \langle \sigma_{\text{abs}} \rangle = f \sigma_{\text{abs, sample}} + (1 - f) \sigma_{\text{abs, Al}} \) are then assigned to each atom of the pseudo sample.

In the ideal case, a measurement of the empty instrument would be taken such that the full attenuation correction described above can be made. However, in practice the measurement of the empty instrument (including any CCR tail) is not usually made. Most of the scattering in the measurement of the empty can is from sources other than the can and therefore the approximation is made wherein \( I_b(Q, E) \simeq I_E^E(Q, E) \) and equation (4.4) reduces to

\[
I_s(Q, E) \simeq \frac{1}{A_{\text{sc,sc}}(Q, E)} \left( I_{\text{sc}}^E(Q, E) - I_E^E(Q, E) \right),
\]

where \( A_{\text{sc,sc}}(Q, E) \) is calculated as above for a pseudo sample.

Furthermore, the absolute normalisation described in section 4.1.2 is, in practice, difficult to achieve for inelastic experiments. A renormalisation factor, \( m \), is used so that equation (4.5) becomes

\[
I_s(Q, E) = \frac{m}{A_{\text{sc,sc}}(Q, E)} \left( I_{\text{sc}}^E(Q, E) - I_E^E(Q, E) \right)
\]

and \( m \) is chosen such that the differential scattering cross section with an implicit Plackzek correction \( d\sigma/d\Omega = \int I_s(Q, E) dE \) is in agreement with the neutron diffraction pattern measured for the same sample.

### 4.1.3 The Multiple Scattering Contribution to Inelastic Scattering

Multiple scattering occurs when a single neutron is involved in two or more distinct scattering events as illustrated in figure 4-3. For most geometries, it is not possible to calculate multiple scattering analytically. However, approximations for calculating
4.1 Inelastic Neutron Scattering Experiments

the multiple scattering in the case of slab, spherical and cylindrical geometries are summarised by Sears [84]. An effective method of calculating multiple scattering is by Monte Carlo simulation as described in refs. [80, 86–88]. The treatment of multiple elastic scattering has been done using computer programs such as Gudrun [89]. In the case of inelastic scattering, computer software such as Discus [90] and MScatt [86, 91–93] have been written. Software for calculating multiple scattering for inelastic neutron experiments using annular geometry on instruments such as MARI and MERLIN was not, however, readily available during the work described in this thesis.

However, a crude approximation can be used to find the multiple scattering in an inelastic neutron scattering experiment by assuming that the multiple scattering for an annulus has equal probability at all angles (thus, for measured point in $E$, all $Q$) [94, 95] as illustrated in figure 4-4. Monte Carlo simulations [96] and approximate calculations [85] show that this is a good estimate for flat plate geometry. The technique has been used successfully by others such as Hannon et al. [97] and Fabiani et al. [46] for annular geometry. Using this approximation and the extreme incoherent approximation as in equation (2.25), the attenuation corrected sample scattered intensity is given in the high $Q$ regime by [98]

$$I_s(Q,E) = I_{ms}(E) + B(E)Q^2 \exp(-2\overline{W}(Q)),$$

(4.7)

where $B(E)$ is a fitted coefficient, $I_{ms}(E)$ is the remaining multiple scattering contribution to $I_s(Q,E)$ after subtraction of the empty can and attenuation correction. For each measured energy transfer $E$, equation (4.7) is fitted to measured data by varying
the values of $I_{\text{ms}}(E)$ and $B(E)$. The estimate for $I_{\text{ms}}(E)$ thus obtained is subtracted from $I_s(Q,E)$ to correct for multiple scattering.

If there is a significant amount of multiple phonon scattering, then equation (4.7) must be altered to take into account higher phonon terms given by equation (4.10) below such that

$$I_s(Q,E) = I_{\text{ms}}(E) + \sum_{p=1}^{N_p} B_p(E) Q^{2p} \exp(-2\bar{W}(Q)),$$

(4.8)

where $p$ denotes the number of phonons, $B_p(E)$ are fitted coefficients and $N_p$ is the number of phonon terms included. By making the assumption that the scattering from the sample is fully coherent, the total coherent dynamical structure factor for the sample is then given by

$$S_c(Q,E) = I_s(Q,E) - I_{\text{ms}}(E).$$

(4.9)

### 4.1.4 The Multiple Phonon Correction

Multiple phonon scattering occurs when more than one vibrational mode is involved in a single neutron scattering event. The formalism for multiple phonon scattering given here follows that of Suck [99,100] and Sjölander [101], and has been used by Dawidowski et al. [88,102,103].

Equation (2.10) can be expressed more conveniently in the extreme incoherent approximation by [52,99]

$$S_c(Q,E) = S_1(Q,E) + S_{\text{mp}}(Q,E) = \langle \vec{b}^2 \rangle \exp(-2\bar{W}(Q)) \sum_{p=1}^{\infty} \frac{1}{p!} \left( \frac{\hbar^2 Q^2}{2M} \right)^p u_p(E),$$

(4.10)

where $S_1(Q,E)$ is, within the extreme incoherent approximation, the dynamical structure factor for single phonon scattering ($p = 1$) given by

$$S_1(Q,E) = \langle \vec{b}^2 \rangle \exp(-2\bar{W}(Q)) \frac{\hbar^2 Q^2}{2M} u_1(E),$$

(4.11)

where, using equation (2.25),

$$u_1(E) = \frac{Z(E)}{E} \langle n(E) + 1 \rangle$$

(4.12)

and $Z(E)$ is the one phonon vibrational density of states. $S_{\text{mp}}(Q,E)$ is, within the extreme incoherent approximation, the dynamical structure factor for multiple phonon
scattering \((p > 1)\) given by

\[
S_{mp}(Q, E) = \left\langle \frac{r^2}{b} \right\rangle \exp(-2W(Q)) \sum_{p=2}^{\infty} \frac{1}{p!} \left( \frac{\hbar Q^2}{2M} \right)^{p-1} u_p(E),
\]

(4.13)

where \(u_p(E)\) is the \(p\)-phonon function, given for \(p > 1\), by the convolution relation

\[
u_p(E) = \int_{-\infty}^{\infty} u_{p-1}(E') u_1(E - E') dE'.
\]

(4.14)

The generalised vibrational density of states from equation (2.44) is then given by the sum of single and multiple phonon contributions

\[
G(Q, E) = G_1(Q, E) + G_{mp}(Q, E),
\]

such that by substituting equation (4.10) into equation (2.44) it follows that in the extreme incoherent approximation

\[
G(Q, E) = \frac{E}{\langle n(E) + 1 \rangle} \sum_{p=1}^{\infty} \frac{1}{p!} \left( \frac{\hbar Q^2}{2M} \right)^{p-1} u_p(E),
\]

(4.15)

where the one phonon term \((p = 1)\), \(G_1(Q, E)\), is given by

\[
G_1(Q, E) = \frac{E}{\langle n(E) + 1 \rangle} u_1(E)
\]

(4.16)

and the multiple phonon term \((p > 1)\), \(G_{mp}(Q, E)\), is given by

\[
G_{mp}(Q, E) = \frac{E}{\langle n(E) + 1 \rangle} \sum_{p=2}^{\infty} \frac{1}{p!} \left( \frac{\hbar Q^2}{2M} \right)^{p-1} u_p(E).
\]

(4.17)

\(G(E)\) in equation (2.45) will also have contributions from one phonon and multiple phonon processes such that

\[
G(E) = G_1(E) + G_{mp}(E),
\]

(4.18)

where the one phonon contribution is

\[
G_1(E) \approx Z(E) = \frac{1}{Q_{max} - Q_{min}} \int_{Q_{min}}^{Q_{max}} G_1(Q, E) dQ
\]

(4.19)
and the multiple phonon contribution is

\[
G_{mp}(E) = \frac{1}{Q_{\text{max}} - Q_{\text{min}}} \int_{Q_{\text{min}}}^{Q_{\text{max}}} G_{mp}(Q, E) \, dQ \tag{4.20}
\]

To find \(G_1(E)\), an iterative procedure was developed whereby

\[
G^{(i+1)}_1(E) = G(E) - G^{(i)}_{mp}(E), \tag{4.21}
\]

where \(i = 1, 2, 3, \ldots\) represents the \(i\)th iteration and \(G(E)\) is calculated using the measured dataset. \(G^{(i)}_{mp}(E)\) is calculated by assuming that \(Z(E) = G^{(i)}_1(E)\) in equation (4.12), which is used to calculate \(u_p^{(i)}(E)\) by using equation (4.14) and \(G^{(i)}_{mp}(E)\) by using equations (4.17) and (4.20). For the first iteration, \(G^{(1)}_1(E) = G(E)\) and in subsequent iterations, \(G^{(i)}(E)\) (\(i > 1\)) is obtained from equation (4.21). The procedure is reiterated until convergence is achieved whereby \(G^{(i+1)}_1(E) = G^{(i)}_1(E)\). In the extreme incoherent approximation, the multiple phonon contribution \(S_{mp}(Q, E)\) to the coherent dynamical structure factor is then calculated by using equation (4.13) and the single phonon dynamical structure factor is given by

\[
S_1(Q, E) = S_c(Q, E) - S_{mp}(Q, E). \tag{4.22}
\]

The multiple phonon correction procedure was tested using a model density of states with three peaks as shown in figure 4-5. The single phonon density of states was normalised such that the integral over all energies was unity. Then the following procedure was implemented:

1. \(u_1(E)\) was calculated using equation (4.12) with a temperature of 200 K.
2. The multiple phonon terms \(u_p(E)\) were calculated up to the 5th phonon term using equation (4.14).
3. \(G_{mp}(Q, E)\) was calculated using equation (4.17) with a Debye-Waller factor corresponding to \(\langle u^2 \rangle / 3 = 0.0125 \, \text{Å}^2\).
4. \(G_{mp}(E)\) was calculated by using equation (4.20).
5. \(G(E)\) was calculated using equation (4.18).
6. The correction procedure was used with \(G(E)\) as the input to recover \(G_1(E)\) and \(G_{mp}(E)\). The results after each iteration are given in figure 4-5.
Figure 4-5: (top) The phonon terms calculated for a \( G_1(E) \) function with three peaks, where \( G_p(E) \) represents the \( p^{\text{th}} \) phonon term calculated by using the method described in the text and \( G(E) = \sum_p G_p(E) \). (bottom) The single phonon term \( G_1^{(i)}(E) \) calculated after \( i \) iterations by the correction program using \( G(E) \) as the input dataset. \( G_1(E) \) is the true single phonon scattering as given in the top figure. A temperature of 200 K and Debye-Waller factor of \( \langle u^2 \rangle / 3 = 0.0125 \text{ \AA}^2 \) were used in the calculations. After each iteration, the calculated \( G_1^{(i)}(E) \) function from the program approaches \( G_1(E) \) where convergence is more-or-less achieved when \( i = 3 \).
4.2 High Pressure Experiments on the PEARL Diffractometer

4.2.1 Introduction

The data analysis procedure used for glasses measured on the PEARL diffractometer (see section 3.3.1) is reported by Salmon et al. The procedure is an extension of that developed by Drewitt. Due to the complicated scattering geometry, large background scattering and lack of low Q data associated with such experiments, a semi-empirical data analysis procedure was required. Three measurements are made; for the sample at pressure, \( I_{sc}^E(Q) \), for a vanadium pellet compressed to a pressure such that its geometry is the same as that of the sample, \( I_{vc}^E(Q) \), and for an empty Ti-Zr gasket at ambient pressure, \( I_c^E(Q) \). These latter datasets are used for normalisation and background subtraction. In section 4.2.2 the pressure calibration is presented, while in section 4.2.3 the ideal correction procedure is given, together with examples of the correction factors. In section 4.2.5 practical considerations are made and the semi-empirical data correction procedure is presented, wherein the data are normalised, a residual slope in \( F(Q) \) is removed and a Lorentzian line shape is used for \( F(Q) \) in the low Q region that is not accessible by experiment. The correction and normalisation procedure is summarised in figure 4-6.

4.2.2 Pressure Calibration

The pressure at the sample position is determined from the load \( L \) applied to the anvils through calibration curves based on many neutron diffraction experiments using systems with a known equation of state in an otherwise identical setup. In the case of single toroid anvils it was found that the calibration curve (figure 4-7) depends on whether the samples are held in standard or encapsulated Ti-Zr gaskets and so only experiments done using standard gaskets are presented here. For this anvil profile, the calibration curve for samples contained in standard Ti-Zr gaskets was deduced from (i) a calibration run in which a pellet made from a 1:3 mixture of NaCl and glassy GeSe\(_2\) was compressed in cubic BN anvils, a Rietveld refinement was made of the NaCl Bragg peaks, and the pressure was obtained from the NaCl equation of state; (ii) applying the procedure described by Drewitt et al. where various samples were compressed by different loads using cubic BN anvils and the dimensions of the recovered gaskets were measured; and (iii) compression of GeO\(_2\) glass pellets using sintered diamond anvils where a Rietveld refinement was made to the diamond Bragg peaks and the unit cell volume to pressure conversion was made on the basis of previous experiments on crystalline ice VII. In the case of double toroid anvils, the available data indicates
4.2 High Pressure Experiments on the PEARL Diffractometer

Figure 4-6: The data analysis procedure for the PEARL neutron diffraction experiments.
Figure 4-7: Calibration curve for the load $L$ applied to the piston of a V4 or VX5 variant Paris-Edinburgh press versus the pressure $P$ at the sample position for single toroid anvils at a temperature of 300 K. The calibration was made using standard Ti-Zr gaskets and the data points correspond to a calibration run using a mixture of NaCl and glassy GeSe$_2$ (∆); measurement of the dimensions of recovered gaskets after various samples were compressed using different loads (▼); or consideration of the diamond Bragg peaks measured when various GeO$_2$ glass pellets were compressed in sintered diamond anvils (●). The solid black curve was used to give the pressure at the sample position.
similar calibration curves for standard and encapsulated Ti-Zr gaskets (figure 4-8). For

\[ \text{Figure 4-8: Load } L \text{ applied to the piston of a V3 variant Paris-Edinburgh press versus the pressure } P \text{ at the sample position for double toroid sintered diamond anvils. The calibration curve was deduced from (i) the diffraction patterns measured for a perovskite held in encapsulated Ti-Zr gaskets with a methanol-ethanol-water pressure transmitting medium and a MgO pressure marker (■); (ii) the diffraction patterns measured for crystalline ice held in encapsulated Ti-Zr gaskets (●); and (iii) a Le Bail analysis of the Bragg peaks measured for sintered diamond anvils at different pressure points when various samples, contained in standard gaskets, were compressed. For the latter, the unit cell volume to pressure conversion was made on the basis of the perovskite experiment and the data points correspond to samples of GeO}_2 (△), SiO}_2 (♦) or B\textsubscript{2}O\textsubscript{3} (▲) glass and crystalline vanadium (▼). These data points have been shifted downwards by 2 GPa but show the same } P \text{ versus } L \text{ behaviour as for the perovskite and ice samples i.e. although there is an uncertainty in the absolute values of the diamond Bragg peak data points from study (iii) (e.g. the anvils in standard and encapsulated gasket experiments may not be at the same position for the same applied load) their relative values are the same as for studies (i) and (ii).}

this anvil profile, the calibration curve was deduced from (i) the diffraction patterns measured for the perovskite CaSnO\textsubscript{3} held in encapsulated Ti-Zr gaskets with a MgO pressure marker [108] in a 16:3:1 mixture of deuterated methanol:ethanol:water; (ii) the diffraction patterns measured for crystalline ice held in encapsulated Ti-Zr gaskets; and (iii) a Le Bail analysis [109] of the Bragg peaks measured for sintered diamond anvils at different pressure points when various samples, contained in standard gaskets,
were compressed. For the latter, the unit cell volume to pressure conversion was made on the basis of the perovskite experiment.

4.2.3 Background Subtraction and Vanadium Normalisation

The measured sample and vanadium measured intensities, corrected for background scattering, are given by

\[ I_{sc}(Q) = I_{sc}^E(Q) - I_{bs}^E(Q) = a(Q) N_s A_{s,sc}(Q) \frac{d\sigma}{d\Omega} |_s + a(Q) M_{sc}(Q) \]  \hspace{1cm} (4.23)

\[ I_{Vc}(Q) = I_{Vc}^E(Q) - I_{bV}^E(Q) = a(Q) N_V A_{V,sc}(Q) \frac{d\sigma}{d\Omega} |_V + a(Q) M_{Vc}(Q) \]  \hspace{1cm} (4.24)

where, for the sample of interest (\(\alpha = s\)) or vanadium (\(\alpha = V\)), \(I_{\alpha}^E(Q)\) is the measured intensity, \(I_{\alpha}(Q)\) is the background corrected intensity, \(I_{b\alpha}(Q)\) is the background intensity, \(d\sigma/d\Omega|_\alpha\) is the differential cross section per atom and \(M_{\alpha}(Q)\) is the multiple scattering cross section for sample \(\alpha\) in the gasket, \(A_{\alpha,\alpha}(Q)\) is the attenuation coefficient for scattering by the sample or vanadium and attenuation by the sample or vanadium and gasket, \(N_\alpha\) is the total number of atoms illuminated by the incident beam, and \(a(Q)\) is a normalisation coefficient that transforms measured intensities into neutron scattering cross sections.

The scattering from vanadium is mostly incoherent i.e. its coherent scattering length \(b_V \approx 0\) such that \(F(Q) \approx 0\) and \(d\sigma/d\Omega|_V = \sigma_{self}/4\pi = b_{inc,V}^2 (1 + P_V(Q))\) (cf. equation (2.50)), where \(b_{inc,V}^2\) is the incoherent neutron scattering length for vanadium and \(P_V(Q)\) is the Placzek correction for vanadium. Equation (4.24) is then solved to give \(a(Q) = I_{Vc}(Q)/ \left[ N_V A_{V,sc}(Q) b_{inc,V}^2 (1 + P_V(Q)) + M_{Vc}(Q) \right] \) and by substituting \(a(Q)\) into equation (4.23) the differential scattering cross section for the sample is given by

\[ \frac{d\sigma}{d\Omega} |_s = F(Q) + \frac{\sigma_{self}}{4\pi} = W(Q) \frac{I_{sc}(Q)}{I_{Vc}(Q)} + X(Q) \]  \hspace{1cm} (4.25)

where

\[ W(Q) = \frac{1}{N_s A_{s,sc}(Q)} \left[ N_V A_{V,sc}(Q) b_{inc,V}^2 (1 + P_V(Q)) + M_{Vc}(Q) \right] \]  \hspace{1cm} (4.26)

and

\[ X(Q) = \frac{M_{sc}(Q)}{N_s A_{s,sc}(Q)} \]  \hspace{1cm} (4.27)
4.2 High Pressure Experiments on the PEARL Diffractometer 49

<table>
<thead>
<tr>
<th></th>
<th>Single Toroid</th>
<th>Double Toroid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ambient</td>
<td>8.5 GPa</td>
</tr>
<tr>
<td>(R_s) (cm)</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>(R_c) (cm)</td>
<td>0.7335</td>
<td>0.9438</td>
</tr>
<tr>
<td>(h) (cm)</td>
<td>0.16</td>
<td>0.532</td>
</tr>
<tr>
<td>(\rho) (\text{GeO}_2) (Å(^{-3})) [110]</td>
<td>0.0629</td>
<td>0.0868</td>
</tr>
<tr>
<td>(\rho) (V) (Å(^{-3})) [111]</td>
<td>0.0721</td>
<td>0.0757</td>
</tr>
<tr>
<td>(\rho) (\text{Ti}<em>{0.676}\text{Zr}</em>{0.324}) (Å(^{-3})) [40]</td>
<td>0.0511</td>
<td>0.0536</td>
</tr>
</tbody>
</table>

Table 4.1: The variables used in the calculation of the attenuation coefficients for samples of \(\text{GeO}_2\) in either single or double toroid anvils at the pressures indicated. The gasket dimensions for the high pressure experiments were found from measurements of the recovered gaskets.

4.2.4 Attenuation, Multiple Scattering and Placzek Correction Factors

A simplified geometry for the diffraction experiments is given in figure 4-9. The attenuation coefficients for this geometry for a sample of \(\text{GeO}_2\) were calculated by Salmon et al. [104] using the dimensions given in table 4.1. The Placzek corrections for the sample and vanadium were calculated using the method described by Howe et al. [112].

The order of magnitude of the multiple scattering correction was also calculated by using the procedure described by Soper et al. [80]. The multiple scattering gives a contribution of around 1 % or 2 % to \(W(Q)\) and its contribution to \(X(Q)\) is \(< < \sigma_{\text{self}}/4\pi\), which means that equation (4.25) can be re-written as

\[
F(Q) \approx W(Q)I_{sc}(Q)/I_{vc}(Q) - \sigma_{\text{self}}/4\pi. \tag{4.28}
\]
For comparable sample and vanadium volumes it follows that

\[
W(Q) \simeq \frac{1}{\rho_s A_{sc}(Q) \rho_v A_{Vc}(Q) t_{inc,v}^2} \rho_v A_{Vc}(Q) t_{inc,v}^2 (1 + P_v(Q))
\]

where \( \rho_v \) and \( \rho_s \) are the atomic number densities for vanadium and the sample of interest, respectively. Examples of the \( A_{sc}(Q) \), \( A_{Vc}(Q) \) and \( W(Q) \) functions are shown in figure 4-10 for ambient and high pressure conditions. The results show that \( W(Q) \) is a relatively flat and weakly varying function at high \( Q \).

### 4.2.5 Data Reduction in Practice

In practice, the background intensity for each pressure cannot be measured and the background scattering changes with pressure, as the material in the anvils compresses. Therefore, an approximation was made that, for a given pressure and sample, \( I_{Ea}(Q) = C_a I_c^E(Q) \) where \( I_c^E(Q) \) is the intensity measured with an empty gasket at ambient pressure and \( C_a \) is a constant chosen such that the diamond Bragg peaks in the ratio \( I_{sc}(Q)/I_{Vc}(Q) \) are minimised (figure 4-11b). Also, the dimensions of the gasket and sample at pressure are not certain and the sample geometry is not cylindrical so there is an error in the calculated \( W(Q) \) functions. In practice, the \( W(Q) \) function used in the
data analysis procedure was taken to be a constant independent of $Q$, chosen so that the differential scattering cross section initially calculated oscillates around $\sigma_{\text{self}}/4\pi$ at high $Q$ as expected (figure 4-11(c)). An initial $F(Q)$ function is then calculated by using equation (4.28) such that $F^{(0)}(Q) = W(Q)I_{\text{sc}}(Q)/I_{\text{Vc}}(Q) − \sigma_{\text{self}}/4\pi$.

Figure 4-11: Example of the background correction procedure for a sample of GeO$_2$ at a pressure of 8.5(5) GPa using double-toroid sintered diamond anvils. The sample load was 75 tns, the vanadium load was 35 tns and the empty gasket load was 2 tns. (a) The measured intensity for the sample $I_{\text{sc}}^E(Q)$ (solid black curve), vanadium $I_{\text{Vc}}^E(Q)$ (solid red) and empty gasket $I_{\text{c}}^E(Q)$ (solid blue curve). (b) $I_{\text{sc}}(Q) = I_{\text{sc}}^E(Q) − C_s I_{\text{c}}^E(Q)$ (solid black curve) and $I_{\text{Vc}}(Q) = I_{\text{Vc}}^E(Q) − C_V I_{\text{c}}^E(Q)$ (solid red curve), where $C_s = 0.2$ and $C_V = 0.2$. (c) The ratio $W(Q)I_{\text{sc}}(Q)/I_{\text{Vc}}(Q)$ (solid black curve) and $\sigma_{\text{self}}/4\pi$ (solid red curve), where $W(Q)$ is taken to be a constant equal to 0.44.

In the absence of experimental data, the region in $F^{(0)}(Q)$ for $Q \leq 1.55$ Å$^{-1}$ is first set to the $Q = 0$ limit as estimated e.g. from the sample compressibility [39]. The corresponding total pair distribution function $G^{(0)}(r)$ is found by using equation (2.53) and large amplitude features in $G^{(0)}(r)$ at low $r$, well below the distance of closest approach between two atoms, are set to the calculated $r = 0$ limit (equation
The resultant data set is then back Fourier transformed to give a revised slope-corrected total structure factor $F^{(1)}(Q)$ as shown in figure 4-12. The low $Q$ region of $F^{(1)}(Q)$ is fitted with a Lorentzian function, since this often gives a good account of the FSDP \[114,115\], such that the fitted function passes through the expected $Q = 0$ limit. The revised $F^{(1)}(Q)$ function is then Fourier transformed to give $G^{(1)}(r)$, the lowest $r$ oscillations in $G^{(1)}(r)$ below the distance of closest approach between two atoms are set to the calculated $r = 0$ limit, and the resultant data set is back Fourier transformed to give a revised total structure factor $F^{(2)}(Q)$. $F^{(2)}(Q)$ is then scaled, the small $Q$ region is refitted with a Lorentzian shape and the entire procedure is re-iterated until, as far as possible, (i) the small $r$ oscillations in the final $G(r)$ function are of minimal amplitude and are symmetrical about the calculated limit $G(0)$ limit and (ii) there is agreement between the $F(Q)$ function and the back Fourier transform of the $G(r)$ function after the lowest $r$ oscillations below the distance of closest approach between two atoms are set to the calculated $G(0)$ limit. The procedure is demonstrated in figure 4-13.

Figure 4-12: Example of the slope correction procedure for a sample of GeO$_2$ at a pressure of 8.5(5) GPa using double-toroid sintered diamond anvils. The zeroth approximation to the total structure factor $F^{(0)}(Q)$ (solid red curve in (a)) is Fourier transformed to give $G^{(0)}(r)$ (solid red curve in (b)). The large amplitude features in $G^{(0)}(r)$ at small $r$ are set to the $G(0)$ limit (solid black curve in (b)) and this is back Fourier transformed to give the revised total structure factor $F^{(1)}(Q)$ (solid black curve in (a)).
Figure 4-13: Example of the back Fourier transform and Lorentzian fitting procedure for a sample of GeO$_2$ at a pressure of 8.5(5) GPa using double-toroid sintered diamond anvils. The scaled total structure factor $F^{(1)}(Q)$ (solid black curve in (a)) is fitted with a Lorentzian shape at low $Q$ (the solid green curve in (a)) and Fourier transformed to give $G^{(1)}(r)$ (the solid black curve in (b)). The low $r$ oscillations in $G^{(1)}(r)$ are set to the $G(0)$ limit as indicated by the solid red curve in (b) and this is back Fourier transformed to compare to $F^{(1)}(Q)$ (solid red curve in (a)). The correction procedure is re-iterated until the conditions mentioned in the text are met.
5. Vibrational Density of States of GeSe$_2$ Glass Using the MARI Spectrometer

5.1 Introduction

The ability to model materials is important in order to predict their properties over a wide range of compositions [8], temperatures and pressures [19, 24, 116-125]. Molecular dynamics (MD) is an atomistic modelling approach [126]. MD models for key systems are tested and refined against experimental data from e.g. diffraction and spectroscopy experiments (examples relevant to the glasses studied here include refs. 35, 37, 44, 45, 127-133).

A good example of a test for the MD approach is represented by the GeSe$_2$ system. GeSe$_2$ is a prototypical chalcogenide glass (a family of glasses that are of both scientific and technological interest [3, 134, 135]) where the structure under ambient conditions is formed from a network of corner and edge sharing GeSe$_4$ tetrahedra [136-152]. The similar electronegativities of Ge and Se also leads to the formation of homopolar bonds, which makes GeSe$_2$ challenging to study by MD simulations.

Great effort has been undertaken to understand the dynamics of GeSe$_2$ using light (e.g. Raman and infrared) scattering techniques [153-162]. However, extracting a full density of states using these techniques is difficult due to selection rules and experimental constraints [99, 163]. While it is a flux-limited technique, neutron spectroscopy does not suffer from many of these limitations [11, pp. 132]. The total vibrational density of states in the extreme incoherent approximation has been measured for GeSe$_2$ [51, 130, 164] but no experiments have been aimed at giving the full partial vibrational density of states for this or any other binary network forming glass.

GeSe$_2$ also has properties that make it a good candidate to develop the technique of isotope substitution in neutron spectroscopy. The natural isotopic abundances of Ge and Se have similar scattering cross sections [113] and atomic masses [165] so that the
extreme incoherent approximation should hold well. Isotopically enriched samples of $^{N}\text{Ge}^{N}\text{Se}_2$, $^{70}\text{Ge}^{N}\text{Se}_2$ and $^{73}\text{Ge}^{76}\text{Se}_2$ can be made, where N represents the natural isotopic abundance, and there is a large contrast between the neutron scattering lengths of the different isotopes ($^{N}\text{Ge}$, $^{70}\text{Ge}$ and $^{73}\text{Ge}$ have coherent scattering lengths of 8.185(20), 10.0(1) and 5.09(4) fm, while $^{N}\text{Se}$ and $^{76}\text{Se}$ have coherent scattering lengths of 7.790(9) and 12.2(1) fm, respectively). The incoherent scattering cross sections for all of the isotopes of Ge and Se are also small in comparison with the coherent scattering cross sections \cite{113}, the largest being for $^{73}\text{Ge}$ which has an incoherent scattering length of 3.40(31) fm. The purpose of the present investigation is to develop the method of isotope substitution in neutron spectroscopy to measure the partial vibrational density of states of GeSe$_2$ in order to compare to MD simulations. An experiment was done on the MARI spectrometer (see section 3.2.1) using samples of $^{N}\text{Ge}^{N}\text{Se}_2$, $^{70}\text{Ge}^{N}\text{Se}_2$ and $^{73}\text{Ge}^{76}\text{Se}_2$. Giacomazzi et al. have produced ab initio MD models for GeSe$_2$ using a GGA gradient functional (model 1 in ref. \cite{35}) and a BLYP function \cite{45}. However, the classical MD results of Giacomazzi et al. (model 4 in ref. \cite{35}) using potentials from Vashishta et al. \cite{141, 166} were found to best match experimental data.

This chapter is organised as follows. In section 5.2 the experimental procedure is presented. In section 5.3 the data analysis procedure is shown, where at each stage the total vibrational density of states $G(E)$ is calculated within the extreme incoherent (“bronze medal”) approximation and the results are presented before and after each correction to show their effect. In section 5.3.3 the subtraction of the empty can scattering, including an account of the attenuation and renormalisation corrections, is presented. The multiple scattering is calculated to give the total coherent dynamical structure factor $S_c(Q, E)$ for each sample in section 5.3.4. The multiple phonon corrections are calculated in section 5.3.4. In section 5.4 the matrices used to calculate the single phonon partial dynamical structure factors within the “silver medal” approximation are given.

Results are presented in section 5.5. First, the single phonon generalised vibrational density of states calculated in the “bronze medal” approximation $G_1(Q, E)$ is given together with corresponding single phonon effective vibrational density of states $G_1(E)$ for each sample. The single phonon partial generalised vibrational density of states $G_{\text{Ge}}(Q, E)$ and $G_{\text{Se}}(Q, E)$ calculated in the “silver medal” approximation are then given together with the corresponding single phonon effective partial vibrational density of states $G_{\text{Ge}}(E)$ and $G_{\text{Se}}(E)$. The experimental data are compared to the results obtained from classical MD simulations made by Giacomazzi et al. \cite{35} using the potentials of Vashishta et al. \cite{141, 166} and the results obtained from previous experiments reported in refs. \cite{51, 130, 164}.

Finally the efficacy of the experimental and data analysis procedures is discussed.
in section [5.6] and conclusions are drawn in section [5.7]. Throughout this chapter, a Debye-Waller factor corresponding to $\langle u^2 \rangle / 3 = 0.002 \text{ \AA}^2$ has been used for $W(Q)$, $W_{\text{Ge}}(Q)$ and $W_{\text{Se}}(Q)$ in the calculations where required. This value was found from an experiment which is described in chapter 6 (see table 6.4).

5.2 Experimental Procedure

5.2.1 Glass Preparation

Three isotopically enriched glasses were prepared for a previous experiment by Salmon and Petri [136] in an identical way with a stoichiometry, determined by mass, of $0.3333(2)\text{ Ge:} 0.6667(2)\text{ Se}$. $N\text{ Ge} (99.9999 \%$, Aldrich) or $^{70}\text{ Ge} (99.8 \% ^{70}\text{ Ge}, 0.2 \% ^{72}\text{ Ge})$ or $^{73}\text{ Ge} (98 \% ^{73}\text{ Ge}, 0.3 \% ^{70}\text{ Ge}, 0.8 \% ^{72}\text{ Ge}, 0.8 \% ^{74}\text{ Ge}, 0.1 \% ^{76}\text{ Ge})$ were loaded into silica ampoules (1 mm wall thickness, 4.8 mm internal diameter) together with $N\text{ Se} (99.999 \%, \text{ Johnson Matthey})$ or $^{76}\text{ Se} (99.75 \% ^{76}\text{ Se}, 0.2 \% ^{74}\text{ Se}, 0.05 \% ^{77}\text{ Se})$ in a high purity argon filled glovebox ($\approx 0.1 \text{ ppm oxygen,} < 10 \text{ ppm water}$).

Before loading, the ampoules were cleaned with chromic acid and etched using a 40 \% solution of hydrofluoric acid so that the inside surface of the ampoules was atomically smooth. After loading, the ampoules were purged three times with He gas and evacuated to a pressure of $\approx 10.5 \text{ torr}$. After $\approx 48 \text{ hours}$ the ampoules were sealed, loaded into a rocking furnace and heated at 1 °C min$^{-1}$ to 1000 °C, pausing for 1 hour at both the melting and boiling points of Se (221 °C and 685 °C [169] respectively) and the melting point of Ge (938.3 °C). After $\approx 48 \text{ hours}$ the ampoules were slowly cooled to 850 °C, where they were equilibrated for $\approx 4 \text{ hours}$ and quenched in an ice/salt water mixture at a temperature of $\approx -5 \text{ °C}$. The glasses were separated cleanly from the silica in an argon filled glovebox. For each experiment described below, the samples were loaded into or unloaded from aluminium foil packets in a He filled glovebox. After use in each experiment (where all experiments were done under vacuum or a He atmosphere), the samples were sealed in glass bottles in an argon filled glovebox and placed inside a bomb. Any contamination by oxygen or water could lead to a change in the diffraction pattern that is detectable by experiment but no such changes were found. The properties of the isotopically enriched samples that are relevant to the present neutron scattering experiments are given in table 5.1. It is assumed that the samples have a number density equal to the room temperature value for the $N\text{ Ge}N\text{ Se}_2$ sample, which is 0.0334(1) \text{ \AA}^{-3} [167].
5.2 Experimental Procedure

5.2.1 Specific parameters for the isotopically enriched samples that were measured using the MARI spectrometer at the ISIS pulsed neutron source where $\overline{M}$ is the average atomic mass of the sample, $M_\alpha$ is the average atomic mass of an atom of chemical species $\alpha$, $\tilde{b}_\alpha$ is the average coherent scattering length of chemical species $\alpha$ and $\langle \tilde{b}^2 \rangle = \sum c_\alpha b_\alpha^2$ is the mean square coherent scattering length. The scattering lengths were calculated using the values from reference [113]. N denotes the natural isotopic abundance.

<table>
<thead>
<tr>
<th></th>
<th>$^{\text{N}}\text{Ge}^{\text{N}}\text{Se}_2$</th>
<th>$^{70}\text{Ge}^{\text{N}}\text{Se}_2$</th>
<th>$^{73}\text{Ge}^{76}\text{Se}_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\overline{M}$ (g)</td>
<td>76.83666</td>
<td>75.9494153</td>
<td>74.9162907</td>
</tr>
<tr>
<td>$M_{\text{Ge}}$ (g)</td>
<td>72.59000</td>
<td>69.9355</td>
<td>72.2501</td>
</tr>
<tr>
<td>$M_{\text{Se}}$ (g)</td>
<td>78.96000</td>
<td>78.96000</td>
<td>75.9157</td>
</tr>
<tr>
<td>$\langle \tilde{b}^2 \rangle$ (barn)</td>
<td>0.647(1)</td>
<td>0.757(7)</td>
<td>1.07(2)</td>
</tr>
<tr>
<td>$\tilde{b}_{\text{Ge}}$ (fm)</td>
<td>8.185(20)</td>
<td>10.0(1)</td>
<td>5.09(4)</td>
</tr>
<tr>
<td>$\tilde{b}_{\text{Se}}$ (fm)</td>
<td>7.970(9)</td>
<td>7.970(9)</td>
<td>12.2(1)</td>
</tr>
</tbody>
</table>

Table 5.1: Specific parameters for the isotopically enriched samples that were measured using the MARI spectrometer at the ISIS pulsed neutron source where $\overline{M}$ is the average atomic mass of the sample, $M_\alpha$ is the average atomic mass of an atom of chemical species $\alpha$, $\tilde{b}_\alpha$ is the average coherent scattering length of chemical species $\alpha$ and $\langle \tilde{b}^2 \rangle = \sum c_\alpha b_\alpha^2$ is the mean square coherent scattering length. The scattering lengths were calculated using the values from reference [113]. N denotes the natural isotopic abundance.

5.2.2 Neutron Spectroscopy Measurements

Measurements were made on the MARI spectrometer at the ISIS Pulsed Neutron Source in Didcot (see section 3.2.1). A “sloppy” type Fermi chopper, which transmits a high intensity of neutrons with low energy resolution, spinning with a frequency of 250 Hz was used to select an almost monochromatic incident beam of neutrons centred on an energy of 60.35(5) meV. For this configuration, the MCHOP software [168] was used to give an estimated incident neutron flux of 7435 neutrons s$^{-1}$ with a full width at half maximum (FWHM) in energy at the elastic line ($E = 0$) of 2.46 meV. The energy resolution and detector coverage of the spectrometer under these conditions is shown in figure 5-1.

The samples (where the masses that were used are given in table 5.2) were loaded into packets made from 0.013(1) mm thick aluminium foil in a He filled glovebox. Each loaded sample was wrapped around the inside surface of a cylindrical aluminium can of thickness 0.10(1) mm and diameter of 42 mm to form an annular sample geometry. A 1 mm thick cadmium plate was used to cover the top of the can and provide shielding as shown in figure 5-2. The assembly was placed into a CCR in the neutron beam and the CCR was purged with He gas three times. A pressure of 26 mbar of He gas was let into the sample chamber for heat exchange with the CCR. The samples were cooled to 20(1) K. The incident beam profile was square with a height of 35.0 mm and width of 50.0 mm centred on the foil packet such that the entire sample was illuminated.

Four measurements were taken under identical conditions for samples of $^{\text{N}}\text{Ge}^{\text{N}}\text{Se}_2$, $^{70}\text{Ge}^{\text{N}}\text{Se}_2$, $^{73}\text{Ge}^{76}\text{Se}_2$ in an aluminium foil packet and for an empty aluminium foil packet. Two further measurements were made using a solid annular vanadium sample at room temperature for detector calibration and absolute normalisation; one under
5.2 Experimental Procedure

Figure 5-1: (a) The kinematically allowed region and (b) the energy resolution full width at half maximum (FWHM) calculated using the MCHOP program [168] for the GeSe$_2$ experiment done using the MARI spectrometer using an incident energy of 60.35(5) meV and Fermi chopper frequency of 250 Hz. In (a), the accessible $Q$-$E$ space is shaded in grey i.e. there are gaps between the different detector groups (see section 3.2.1).

Figure 5-2: The sample in an Al foil packet loaded into the middle of a 0.10(1) mm thick Al can. (a) Top view and (b) side view.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sample Mass (g)</th>
<th>Proton Charge ($\mu$A h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{76}$Ge$^{78}$Se$_2$</td>
<td>5.027(1)</td>
<td>7196.2</td>
</tr>
<tr>
<td>$^{70}$Ge$^{78}$Se$_2$</td>
<td>2.084(1)</td>
<td>9316.6</td>
</tr>
<tr>
<td>$^{73}$Ge$^{78}$Se$_2$</td>
<td>1.958(1)</td>
<td>12687.7</td>
</tr>
<tr>
<td>Empty Can</td>
<td>N/A</td>
<td>8389.0</td>
</tr>
</tbody>
</table>

Table 5.2: The mass of sample used together with the charge of protons that was incident on the spallation target during each measurement. The latter is proportional to the number of neutrons that were incident on the sample during that measurement.
identical conditions to the sample measurements and one using an incident beam containing a wide range of neutron energies (i.e. a so-called white beam).

5.3 Data Treatment

The data analysis procedure for the measurements taken on the MARI spectrometer follows the general correction procedure described in section 4.1.

5.3.1 Width of the Elastic Line

The elastic peak centred on $I_s(Q, E = 0)$ is broadened by the energy resolution of the spectrometer and must be taken into account. The energy resolution of a time-of-flight chopper spectrometer instrument has a complicated, asymmetric shape determined by the target, moderator and chopper properties. Theoretical calculations exist [9, 55, 169] but, for practical use, the moderator pulse must be measured [170, 171] and approximations are made. The elastic scattered intensity is significantly larger than the inelastic scattered intensity, so it is usually sufficient to define the limits of the elastic peak in $E$ by eye using e.g. the measured intensity for vanadium ($I^E_{V}(Q, E)$).

Any scattered intensity that is within these limits will be dominated by the elastic contribution, although some contribution from inelastic scattering will also be present. Any scattering that is outside of these limits will be fully inelastic. The extent of the elastic peak therefore defines the lowest energy transfer for which the dynamics can be reliably measured.

![Graph](a) The width due to energy resolution broadening of the elastic peak from the monochromatic vanadium measurement, as represented by the function $\int_{Q_{\min}}^{Q_{\max}} I^E_{V}(Q, E) \, dQ$, where for each value of $E$, $Q_{\min}$ and $Q_{\max}$ are the minimum and maximum $Q$ values that can be measured. Dotted lines indicate the energy transfer range for which the measured intensity is mostly elastic. Data have been normalised such that the integral under the curve is unity. (b) The $Q$ dependence of the FWHM of the elastic line (E.L.) found empirically from the monochromatic vanadium measurement.
5.3 Data Treatment

Figure 5-3a shows, for a vanadium sample, the broadening of the elastic line due to the effect of the energy resolution of the instrument. A range of $-6 \leq E \leq 5$ meV was selected by eye to define the extent of the elastic line where the limits are shown in figure 5-3a as dotted lines. Outside of this range, scattering is deemed to be fully inelastic.

The range over which the elastic line is broadened is dependent on $Q$. The FWHM of the elastic line found empirically using the measurement on the vanadium sample is shown in figure 5-3b. The FWHM increases from 3.23(5) to 3.78(5) meV over the range in $Q$ from 1.1 to 9.2 Å$^{-1}$. The advantages of using high $Q$ data, where the intensity is higher and the effect of the multiple scattering is lower, outweighs the advantages gained in resolution at low $Q$. For all $Q$ values, the FWHM found empirically differs significantly from the estimated value of 2.46 meV using the MCHOP program (see figure 5-1).

5.3.2 Bose-Einstein Occupation Factor

The Bose-Einstein occupation factor was calculated using equation (2.14) for the experimental temperature of 20 K and is given in figure 5-4. The plot shows that inelastic scattering for $E < 0$ will be very small such that only inelastic scattering for $E > 0$ will be considered.

\[
\langle n(E) + 1 \rangle
\]

Figure 5-4: The Bose-Einstein occupation factor calculated using equation (2.14) for a temperature of 20 K.

5.3.3 Background Subtraction with Attenuation Corrections and Renormalisation

The normalised sample-in-can scattered intensity, $I_{sc}(Q, E)$, and empty can scattered intensity, $I_{c}(Q, E)$, were measured for each sample. The background and attenuation corrected intensity, $I_{q}(Q, E)$, for each sample was found by using equation (4.6) which,
for convenience, is re-written here:

\[ I_s(Q, E) = \frac{m}{A_{sc,sc}(Q, E)} (I_{sc}^E(Q, E) - I_{c}^E(Q, E)) , \tag{5.1} \]

where \( A_{sc,sc}(Q, E) \) is the attenuation coefficient (figure 5-5) found by treating the sample-in-can as a single annular sample with effective parameters given in table 5.3, and \( m \) is a renormalisation constant found to be 0.87, 0.82 or 1.34 for the measurements made on \( \text{N} \text{Ge}^\text{N} \text{Se}_2 \), \( \text{70} \text{Ge}^\text{N} \text{Se}_2 \) and \( \text{73} \text{Ge}^\text{76} \text{Se}_2 \), respectively. In figure 5-6 integrals are

<table>
<thead>
<tr>
<th></th>
<th>( \text{N} \text{Ge}^\text{N} \text{Se}_2 )</th>
<th>( \text{70} \text{Ge}^\text{N} \text{Se}_2 )</th>
<th>( \text{73} \text{Ge}^\text{76} \text{Se}_2 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner Radius (cm)</td>
<td>2.0369</td>
<td>2.0664</td>
<td>2.0673</td>
</tr>
<tr>
<td>Outer Radius (cm)</td>
<td>2.1000</td>
<td>2.1000</td>
<td>2.1000</td>
</tr>
<tr>
<td>Eff. Number Density (Å(^{-3}))</td>
<td>0.0389</td>
<td>0.0473</td>
<td>0.0477</td>
</tr>
<tr>
<td>Eff. Total Scattering Cross Section (barn)</td>
<td>5.16(2)</td>
<td>4.15(3)</td>
<td>5.40(7)</td>
</tr>
<tr>
<td>Eff. Abs. Cross Section at 2200 ms(^{-1}) (barn)</td>
<td>4.64(7)</td>
<td>2.98(5)</td>
<td>24.5(15)</td>
</tr>
</tbody>
</table>

Table 5.3: Parameters used to calculate \( A_{sc,sc}(Q, E) \). The parameters for each pseudo sample were calculated using the neutron scattering and absorption cross sections from ref. \[113\], a GeSe number density of 0.0334 Å\(^{-3}\) \[167\] and an Al number density of 0.06026 Å\(^{-3}\) \[165\].

Figure 5-5: The attenuation coefficients \( A_{sc,sc}(Q, E) \) for samples of \( \text{N} \text{Ge}^\text{N} \text{Se}_2 \) (solid black curve), \( \text{70} \text{Ge}^\text{N} \text{Se}_2 \) (solid red curve) and \( \text{73} \text{Ge}^\text{76} \text{Se}_2 \) (solid green curve) averaged (a) over energies between 0 and 40 meV or (b) over all \( Q \) values. The coefficients were calculated using the parameters given in table 5.3. The maximum energy for the vibrational density of states is \( \sim 45 \) meV (see e.g. figure 5-9).

given of the intensities for the sample-in-can measurement, \( \int_{E_{\text{min}}}^{E_{\text{max}}} I_{sc}^E(Q, E) \text{d}E \), empty can measurement, \( \int_{E_{\text{min}}}^{E_{\text{max}}} I_{c}^E(Q, E) \text{d}E \), and corrected sample, \( \int_{E_{\text{min}}}^{E_{\text{max}}} I_s(Q, E) \text{d}E \), where \( E_{\text{min}} \) and \( E_{\text{max}} \) are the minimum (\( \geq -50 \) meV) and maximum (\( \leq 50 \) meV) energies.
5.3 Data Treatment

measured at a given $Q$ value, respectively. These integrals represent differential scattering cross sections and are presented to show the effect that scattering from the can has on the sample-in-can measurement. The differential scattering cross section from Salmon et al. [136] that was used to find $m$ is also plotted in figure 5-6. The effect

![Figure 5-6: The differential scattering cross section $d\sigma/d\Omega$ samples of (a) $^7\text{NGe}^3\text{Se}_2$, (b) $^7\text{Ge}^7\text{Se}_2$ and (c) $^{73}\text{Ge}^{76}\text{Se}_2$ calculated using the sample-in-can, $\int_{E_{\text{min}}}^{E_{\text{max}}} I_s^E(Q,E) dE$ (solid red curve) empty can $\int_{E_{\text{min}}}^{E_{\text{max}}} I_s^E(Q,E) dE$ (solid blue curve) and corrected sample ($\int_{E_{\text{min}}}^{E_{\text{max}}} I_s(Q,E) dE$) (solid black curve) intensities, where $E_{\text{min}}$ and $E_{\text{max}}$ are the minimum ($\geq -50$ meV) and maximum ($\leq 50$ meV) energies measured at a given $Q$ value, respectively. Also plotted are $d\sigma/d\Omega = F(Q) + \sigma_{\text{self}}/4\pi$ from the diffraction experiment by Salmon et al. [136] (broken green curve).

of the background, attenuation and renormalisation correction on the $G(E)$ function is shown in figure 5-7 for the $^7\text{NGe}^3\text{Se}_2$ sample where the appropriate values for $^7\text{NGe}^3\text{Se}_2$ used in equation (2.45) are listed in table 5.1.

5.3.4 Multiple Scattering Correction

The approximate method used to calculate the inelastic multiple scattering contributions to the $I_s(Q,E)$ functions is given in section 4.1.3. The incoherent approximation given by $I_s(Q,E) = I_{\text{ms}}(E) + B(E)Q^2 \exp(-2W(Q))$ (equation (4.7)) could not be fitted directly to the measured $I_s(Q,E)$ functions at each measured $E$ value due to a large statistical error. As will be explained in section 6.4.4 the multiple scattering contribution to $G(E)$ for cold samples roughly follows the density of states. Therefore, for the multiple scattering contribution, $I_{\text{ms}}(E)$ was estimated from the expression (cf.
5.3 Data Treatment

Figure 5-7: \( G(E) \) calculated in the “bronze medal” approximation for the \( ^N\text{Ge}^N\text{Se}_2 \) sample from \( I^E_{sc}(Q,E) \) for the sample-in-can (solid red curve), from \( I^E_c(Q,E) \) for the empty can (solid green curve), and from \( I_s(Q,E) \) for the sample after correction for the empty can scattering, attenuation and renormalisation (solid black curve). No correction for multiple scattering or multiple phonon scattering has been applied.

\[ I_{ms}(E) = C_{ms} G_{uncor}(E) \frac{\langle n(E) + 1 \rangle}{E}, \]

where \( G_{uncor}(E) \) is the density of states calculated without the correction for multiple scattering or multiple phonon scattering and \( C_{ms} \) is a constant which is selected by the following method:

1. Choose a value for \( C_{ms} \) and calculate \( I_{ms}(E) \) using equation (5.2).
2. Fit \( I_s(Q,E) \) to the measured function given by equation (4.7) by varying \( B(E) \).
3. Compare the fitted and measured functions by taking integrals over several broad ranges in \( E \) and comparing the results (two such integrals are presented in figure 5-8).
4. Change \( C_{ms} \) and re-iterate the procedure.
5. The final \( C_{ms} \) value corresponds to the case when the measured function oscillates in \( Q \) around the fitted function (i.e. the two functions are in the best agreement possible) by eye.

The coherent dynamical structure factor is then \( S_c(Q,E) = I_s(Q,E) - I_{ms}(E) \) (see equation (4.9)). Using equations (2.44) and (2.45) (i.e. the “bronze medal” approximation), the \( G(E) \) functions that were calculated for the three samples from \( I_s(Q,E) \), \( S_c(Q,E) \) or \( I_{ms}(E) \) using the appropriate values from table 5.1 are given in figure 5-9.

5.3.5 Multiple Phonon Correction

To assist in the calculation of the multiple phonon corrections, \( G(E) \) was calculated from \( S_c(Q,E) \) using equations (2.44) and (2.45) with the appropriate values given in
5.3 Data Treatment

Figure 5.8: $I_s(Q,E)$ for the $^{73}$Ge$^{76}$Se$_2$ sample (solid grey curve), an example of a bad fit to the data using $I_s(Q,E) = I_{ms}(E) + B(E)Q^2 \exp(-2W(Q))$ (solid blue curve) and an example of a good fit to the data using $I_s(Q,E) = I_{ms}(E) + B(E)Q^2 \exp(-2W(Q))$ (solid red curve), where $I_{ms}(E)$ is defined by equation (5.2). To improve the statistics, the functions have been integrated over the range of energy transfers from (a) 10 to 20 meV or (b) 30 to 40 meV.

Figure 5.9: $G(E)$ calculated in the “bronze medal” approximation using $I_s(Q,E)$ (solid red curve), $I_{ms}(E)$ (solid blue curve), or $S_c(Q,E) = I_s(Q,E) - I_{ms}(E)$ (solid black curve) and the values given in table 5.1 for samples of (a) $^{73}$Ge$^{76}$Se$_2$, (b) $^{70}$Ge$^{76}$Se$_2$ and (c) $^{73}$Ge$^{76}$Se$_2$. 
The Debye model \cite{172} was used in the region which could not be measured (below 5 meV) due to resolution function broadening of the elastic scattered intensity. In the Debye model, $G(E) \propto E^2$ and the constant of proportionality was chosen such that the Debye model coincides with the first measured data point beyond the region of the elastic peak.

The multiple phonon correction, $S_{\text{mp}}(Q,E)$, was then calculated up to the 5th phonon term using the method described in section \ref{sec:4.1.4}. The vibrational density of states $G(E)$ without the multiple phonon correction calculated from $S_c(Q,E)$, the multiple phonon contribution to the vibrational density of states $G_{\text{mp}}(E)$, and the single phonon vibrational density of states $G_1(E) = G(E) - G_{\text{mp}}(E)$ are plotted in figure \ref{fig:5.10}. The single phonon dynamical structure factor was found by using $S_1(Q,E) = S_c(Q,E) - S_{\text{mp}}(Q,E)$ (equation \ref{eq:4.22}). An example of the dynamical structure factors thus obtained is given in figure \ref{fig:5.11} for the $^7\text{Ge}^N\text{Se}_2$ sample, where $S_c(Q,E)$, $S_1(Q,E)$ and the calculated $S_{\text{mp}}(Q,E)$ are integrated over two energy transfer ranges of (a) 10 to 20 meV or (b) 30 to 40 meV. In this figure the empty can, attenuation, renormalisation and multiple scattering corrections have all been made.
5.4 “Silver Medal” Calculations

Once the data had been fully corrected, the “silver medal” results were calculated. Three different matrices were used as described in section 2.2.4 where, using the values given in table 5.1 for the $^N Ge^N Se_2$ and $^{70} Ge^N Se_2$ samples

$$
\begin{pmatrix}
S'_{GeGe}(Q, E) \\
S'_{SeSe}(Q, E)
\end{pmatrix} = \begin{pmatrix}
-197.5242 & 197.5242 \\
350.9115 & -226.6060
\end{pmatrix} \begin{pmatrix}
\frac{N}{N} S_1 (Q, E) \\
\frac{70}{N} S_1 (Q, E)
\end{pmatrix},
$$

(5.3)

for the $^N Ge^N Se_2$ and $^{73} Ge^{76} Se_2$ samples

$$
\begin{pmatrix}
S'_{GeGe}(Q, E) \\
S'_{SeSe}(Q, E)
\end{pmatrix} = \begin{pmatrix}
128.9691 & -53.1341 \\
-23.6519 & 60.9571
\end{pmatrix} \begin{pmatrix}
\frac{N}{N} S_1 (Q, E) \\
\frac{73}{76} S_1 (Q, E)
\end{pmatrix},
$$

(5.4)

and for the $^{70} Ge^N Se_2$ and $^{73} Ge^{76} Se_2$ samples

$$
\begin{pmatrix}
S'_{GeGe}(Q, E) \\
S'_{SeSe}(Q, E)
\end{pmatrix} = \begin{pmatrix}
78.0246 & -32.1454 \\
-14.3091 & 57.1079
\end{pmatrix} \begin{pmatrix}
\frac{70}{N} S_1 (Q, E) \\
\frac{73}{76} S_1 (Q, E)
\end{pmatrix}.
$$

(5.5)

In these matrices, $\frac{y}{x} S_1 (Q, E)$ denotes the single phonon total dynamical structure factor, measured for a sample of $^x Ge^y Se_2$, where $x$ denotes N, 70 or 73 and $y$ denotes N or 76.

Using the method of singular value decomposition (SVD) [173], the following matrix for a set of “silver medal” results was also used, where the data taken from all three
isotopically enriched samples contribute to the final result

\[
\begin{pmatrix}
S_{GeGe}'(Q, E) \\
S_{SeSe}'(Q, E)
\end{pmatrix} = \begin{pmatrix}
30.14196 & 59.78915 & -37.05076 \\
0.457465 & -14.58586 & 57.03347
\end{pmatrix} \begin{pmatrix}
N^N S_1(Q, E) \\
7^N S_1(Q, E) \\
7^3 S_1(Q, E)
\end{pmatrix}.
\]

(5.6)

The partial vibrational density of states \(G_\alpha(E)\) functions were calculated using equations (2.38) and (2.39) assuming Debye-Waller factors of \(W_{Ge}(Q) = W_{Se}(Q) = W(Q) = 0.002Q^2\). The results are given in figure 5-12.

Figure 5-12: The results for the partial vibrational density of states obtained by applying the “silver medal” approximation calculated using equation (5.3) (solid red line), equation (5.4) (solid green line), equation (5.5) (solid blue line) and equation (5.6) (solid black line) for (a) \(G_{Ge}(E)\) or (b) \(G_{Se}(E)\).

5.5 Results

5.5.1 Generalised Vibrational Density of States

The generalised single phonon vibrational density of states for each sample \(G_1(Q, E)\) and the generalised single phonon partial vibrational density of states \(G_\alpha(Q, E)\) were calculated by using equations (2.44) and (2.38), respectively. To improve the statistics, integrals of these functions were taken over three ranges in energy representing the three peaks in \(G_1(E)\) (see e.g. figure 5-17). The results for the first peak, from 8 to 18 meV, are shown in figure 5-13, the results for the second peak, from 23 to 28 meV, are shown in figure 5-14, and the results for the third peak, from 32 to 40 meV, are shown in figure 5-15. The generalised vibrational density of states \(G_1(Q, E)\) for a sample of \(N^N Ge^N Se_2\) and the generalised partial vibrational density of states \(G_\alpha(Q, E)\) calculated by Giacomazzi et al. from classical MD simulations [34] are also plotted in figures 5-13 to 5-15. The integration ranges chosen for the simulation data are different to those
for the experimental data because there is a relative shift of the peaks in $G_1(E)$ as demonstrated in figure 5-17. Ranges that cover the same peaks were therefore used for the classical MD results, in this case 6 to 16 meV for the first peak, 20 to 25 meV for the second peak and 28 to 34 meV for the third peak.
5.5 Results

integral over the first peak in $G_1(E)$ of the $G(Q,E)$ functions

Figure 5.13: The results from the present experimental study (solid black curves) and from the classical MD simulations done by Giacomazzi et al. [35], when available, (solid red curves) for the integral of $G_1(Q,E)$ over the first peak in $G_1(E)$ for samples of (a) $^{74}$Ge$^{76}$Se$_2$, (b) $^{70}$Ge$^{76}$Se$_2$ and (c) $^{73}$Ge$^{76}$Se$_2$. Plotted in (d) and (e) are the integrals of $G_{Ge}(Q,E)$ and $G_{Se}(Q,E)$ over the first peak in $G_1(E)$, respectively, calculated in the “silver medal” approximation using the SVD matrix in equation (5.6). The limits for the integrals are given in the text.
Figure 5-14: The results from the present experimental study (solid black curves) and from the classical MD simulations done by Giacomazzi et al. 35, when available, (solid red curves) for the integral of $G_1(Q,E)$ over the second peak in $G_1(E)$ for samples of (a) $^{70}\text{Ge}^{70}\text{Se}_2$, (b) $^{70}\text{Ge}^{70}\text{Se}_2$ and (c) $^{73}\text{Ge}^{76}\text{Se}_2$. Plotted in (d) and (e) are the integrals of $G_{\text{Ge}}(Q,E)$ and $G_{\text{Se}}(Q,E)$ over the second peak in $G_1(E)$, respectively, calculated in the “silver medal” approximation using the SVD matrix in equation (5.6). The limits for the integrals are given in the text.
Figure 5.15: The results from the present experimental study (solid black curves) and from the classical MD simulations done by Giacomazzi et al. [35], when available, (solid red curves) for the integral of $G_1(Q,E)$ over the third peak in $G_1(E)$ for samples of (a) $^{28}\text{Ge}^{76}\text{Se}_2$, (b) $^{70}\text{Ge}^{76}\text{Se}_2$ and (c) $^{72}\text{Ge}^{76}\text{Se}_2$. Plotted in (d) and (e) are the integrals of $G_{\text{Ge}}(Q,E)$ and $G_{\text{Se}}(Q,E)$ over the third peak in $G_1(E)$, respectively, calculated in the “silver medal” approximation using the SVD matrix in equation (5.6). The limits for the integrals are given in the text.
5.5 Results

5.5.2 Single Phonon Vibrational Density of States

The results in the “bronze medal” approximation for the samples of $^{73}\text{Ge}^{76}\text{Se}_2$, $^{70}\text{Ge}^{76}\text{Se}_2$ and $^{73}\text{Ge}^{76}\text{Se}_2$ are compared in figure 5-16. In figure 5-17 a comparison is made between the $G(E)$ functions calculated for $^{73}\text{Ge}^{76}\text{Se}_2$ using the “bronze medal” approximation in the present work, the experimental results of Walter et al. [51] and Sinclair et al. [164], and the classical MD simulation results of Giacomazzi et al. [35]. The “silver medal” results for $G_{\text{Ge}}(E)$ and $G_{\text{Se}}(E)$, obtained using the SVD method (equation (5.6)), are compared with those calculated from the classical MD simulations of Giacomazzi et al. [35] in figure 5-18.

Figure 5-16: The fully corrected single phonon vibrational density of states $G_1(E)$ calculated using the “bronze medal” approximation for samples of $^{73}\text{Ge}^{76}\text{Se}_2$ (solid black curve), $^{70}\text{Ge}^{76}\text{Se}_2$ (solid red curve) and $^{73}\text{Ge}^{76}\text{Se}_2$ (solid green curve).

Figure 5-17: The single phonon density of states $G_1(E)$ calculated using the “bronze medal” approximation for a sample of $^{73}\text{Ge}^{76}\text{Se}_2$ as obtained in the present work (solid black curve), from a study using the LRMECS spectrometer at the Intense Pulsed Neutron Source for a temperature of 13(2) K with an incident neutron energy of 60.06 meV [51] (solid green curve), from a study using the MARI spectrometer for a temperature of 18(1) K and an incident neutron energy of 60 meV [164] (solid red curve) and from the classical MD simulations made by Giacomazzi et al. [35] (broken black curve).
5.6 Discussion

The subtraction of the measured intensity for the cryostat and empty can proved to be difficult as illustrated in figure 5.7. The Al Bragg peaks do not align in $Q$ between the measurements for the sample-in-can and for the empty can. This results in a poor background subtraction since Al Bragg peaks are still present in $I_s(Q,E)$.

Despite this difficulty, the single phonon vibrational density of states $G_1(E)$, calculated in the extreme incoherent approximation for a sample of $^{70}$Ge$^{76}$Se$_2$ at a temperature of $T = 20(1)$ K measured using the MARI instrument, is in good agreement with a similar experiment done on the same instrument at $T = 18(1)$ K by Sinclair et al. [164] and is in broad agreement, within a scaling factor, with the results obtained by Walter et al. at $T = 13(2)$ K using the LRMECS instrument [51]. There is a small disagreement in the position of the second peak in $G_1(E)$ at $\approx 25$ meV between the measurements presented here (where the peak is at $E = 25.35(15)$ meV) and those made by Walter et al. (where the peak is at $E = 25.85(15)$ meV), whereas the value measured by Sinclair et al. (where the peak is at $E = 25.31(15)$ meV) is in almost exact agreement. $G_1(E)$ measured by Sinclair et al. exhibits the same features but has sharper peaks because the experiment was done using a higher resolution chopper arrangement (a “C” type chopper spinning at a frequency of 450 Hz). There is a small difference in the height of the first peak at $\approx 10$ meV. In figure 5.18 the results in the present study are compared to the MD simulations of Giacomazzi et al. [35] made using the potentials of Vashishta et al. [141, 166]. The main features in the experimental data are reproduced in the simulation data, except for a systematic shift of the peaks in $G_1(E)$ and $G_\alpha(E)$ to lower $E$ as shown in figures 5.17 and 5.18.

The largest scattering length contrast is between the $^{70}$Ge$^{76}$Se$_2$ and $^{73}$Ge$^{76}$Se$_2$ sam-

Figure 5-18: Comparison of the partial vibrational density of states calculated in the “silver medal” approximation using the SVD matrix (equation 5.6) (solid black curves) with those calculated from the classical MD simulations made by Giacomazzi et al. [35] (broken black curves) for (a) $G_{\text{Ge}}(E)$ and (b) $G_{\text{Se}}(E)$.
The isotope $^{76}\text{Se}$ has a significantly higher scattering length (12.2(1) fm) compared to $^{73}\text{Ge}$ (5.09(4) fm) and there is twice as much Se as Ge. Therefore, the scattering from the $^{73}\text{Ge}^{76}\text{Se}_2$ sample is dominated by scattering from Se atoms such that there is a big contrast between the intensities measured for this sample and the other samples. The “silver medal” results that were obtained by using the measurements made for the $^{70}\text{Ge}^{73}\text{Se}$ and $^{73}\text{Ge}^{76}\text{Se}_2$ samples (equation (5.4)) and the “silver medal” results obtained by using the SVD matrix (equation (5.6)) are in good agreement.

### 5.6.1 Validity of the “Silver Medal” Approximation

In the “silver medal” approximation, it is assumed that the cross term $S_{\text{GeSe}}(Q,E)$ is zero. The “gold medal” approximation (where $S_{\text{GeSe}}(Q,E)$ is taken into account) requires very accurate and precise neutron spectroscopy measurements. Due to the complexity of the corrections, stability of the MARI instrument and the very high levels of scattering that arise from the empty can measurement, it was not possible to obtain the “gold medal” result in the present work. However, for GeSe$_2$, the simulations made by Giacomazzi et al. [35, 45] have been used to calculate the contribution that $S_{\text{GeSe}}(Q,E)$ makes to the final vibrational density of states, and it is found to be small. Plotted in figure 5-19 are the true partial vibrational density of states $Z_\alpha(E)$ and the vibrational density of states $G_\alpha(E)$ calculated in the “silver medal” approximation obtained from the simulations by Giacomazzi et al. [36].

![Figure 5-19](attachment:figure5-19.png)

*Figure 5-19: The true partial vibrational density of states $Z_\alpha(E)$ (solid black curve) and “silver medal” vibrational density of states $G_\alpha(E)$ at a temperature of 5 K (solid red curve) calculated from the MD simulations made by Giacomazzi et al. [36].*

The quality of the measurements made using the MARI spectrometer is limited by the incident flux and detector coverage. The result is that the $G_{\text{Ge}}(E)$ and $G_{\text{Se}}(E)$ functions that have been calculated from these measurements have a large statistical error. It would therefore be advantageous to use a neutron spectrometer which gives
an increased count rate.

5.7 Conclusion

The single phonon partial vibrational density of states of a glass has been measured for the first time within the “silver medal” approximation using the method of isotope substitution in neutron spectroscopy, albeit with a high statistical error. This was achieved by measuring the total dynamical structure factors $S_c(Q, E)$ for samples of $^{28}\text{Ge}^{74}\text{Se}_2$, $^{70}\text{Ge}^{74}\text{Se}_2$ and $^{73}\text{Ge}^{76}\text{Se}_2$. A data analysis procedure was devised to subtract the empty can scattering, normalise the data and correct for multiple scattering. The corrections for the multiple phonon scattering described in section 4.1.4 were successfully applied to the low temperature regime.

The measured single phonon vibrational density of states in the “bronze medal” approximation for the $^{28}\text{Ge}^{74}\text{Se}_2$ sample is in good agreement with the results obtained from refs. [51, 130, 164]. Both the “bronze medal” and “silver medal” results are in agreement, within the statistical error and a shift in $E$, with the classical MD simulations made by Giacomazzi et al. [35] made using the potentials of Vashishta et al. [141] [166].

All of this demonstrates that the method of isotopic substitution in neutron spectroscopy is a plausible way to measure the partial vibrational density of states of a glass to compare with e.g. classical MD simulations. However, an experiment with smaller statistical errors and better background subtraction is required. Further experiments using the MERLIN spectrometer were therefore undertaken to address these issues. These experiments are described in chapter 6.
6. Vibrational Density of States of GeSe$_2$ Glass Using the MERLIN Spectrometer

6.1 Introduction

In chapter 5, the method of isotopic substitution in neutron spectroscopy was used to calculate the partial vibrational density of states for GeSe$_2$ glass using the MARI spectrometer. The measurements were limited by a large statistical error and poor subtraction of scattering from the can and sample environment. In this chapter, measurements made on the MERLIN spectrometer are presented that complement and extend those made using MARI.

The MERLIN spectrometer (see section 3.2.1) has a gain in detected neutron flux of around 35 over the MARI spectrometer depending on the scattering angle and incident energy. Therefore, the spectra measured using the MERLIN spectrometer have a much lower statistical error. The geometry of the sample loading means that a self supporting, rigid sample can is not necessary. Instead, a thin foil packet can be suspended from a candlestick. This reduces scattering from the empty can. The gain in flux and measurement precision comes at the cost of resolution; the resolution in $Q$ and $E$ of the MERLIN spectrometer is worse than that of MARI by around 20%.

The Debye-Waller factor is an important parameter used in calculating the density of states and, while some measurements have been made [51, 174], new measurements were needed. One approach is to measure the elastic scattering and compare it to the total scattering from a diffraction experiment. In order to achieve this, an experiment (herein referred to as experiment 1) was made using an incident beam of neutrons with an energy of 29.9 meV. Measurements were made using a sample of $^N$Ge$^N$Se$_2$ at temperatures between 10 and 280 K. By using a lower incident energy, better energy resolution around the elastic line at $E = 0$ was achieved and so the elastic scattering was more precisely measured.
Two other experiments (herein referred to as experiments 2 and 3) were made using samples of $^{70}$Ge$^{76}$Se$_2$, $^{70}$Ge$^{76}$Se$_2$, and $^{73}$Ge$^{76}$Se$_2$ and an incident beam of neutrons with an energy of $\approx 60$ meV. These experiments were made with the sample held at a low temperature of 5 K or at room temperature, respectively.

This chapter is organised as follows. In section 6.2 the experimental method for all three experiments is presented. In section 6.3 the correction procedure is given for the first experiment and the Debye-Waller factor as a function of temperature is measured. In section 6.4 the corrections for experiments 2 and 3 are shown, where at each stage the total vibrational density of states $G(E)$ is calculated within the extreme incoherent (“bronze medal”) approximation and the results are presented before and after each correction to show its effect. In section 6.6 the results found in the present study are compared to those obtained from the experiments done using the MARI spectrometer (see chapter 5) and the Molecular Dynamics (MD) simulations made by Giacomazzi et al. [35]. The results are discussed in section 6.7 and conclusions are drawn in section 6.8.

### 6.2 Experimental Method

All of the measurements were made on the MERLIN spectrometer at the ISIS Pulsed Neutron Source in Didcot (see section 3.2.1) using the samples of $^{70}$Ge$^{76}$Se$_2$, $^{70}$Ge$^{76}$Se$_2$, and $^{73}$Ge$^{76}$Se$_2$. The samples were loaded into packets of aluminium foil ($\approx 0.013$ mm thickness) in a helium filled glovebox. Each loaded packet was put into an aluminium foil can and rolled around a solid cylinder to form an approximately annular sample shape of diameter $\approx 40$ mm. The can was then fixed using Al tape to the bottom of a boron-nitride disk and the tape covered with cadmium to shield it from neutrons (figure 6-1). The assembly was lowered into the instrument on the end of a shielded aluminium “candlestick”. The beam profile was square with dimensions of 50 mm wide by 40 mm high centred on the foil packet such that the sample area was fully illuminated.

Three experiments, described in detail below, were done using the instrument configurations that are summarised in table 6.1. In all of the experiments, a “sloppy” type Fermi chopper was used. This transmits a high intensity of neutrons with low energy resolution and selects an almost monochromatic incident beam of neutrons centred on the chosen incident energy. For this configuration, the MCHOP software [168] was used to give the estimated incident neutron flux and full width at half maximum (FWHM) in energy of the elastic line (see table 6.1). The values obtained from MCHOP were calculated for a different instrument (HET) and then adjusted for MERLIN by multiplying by a factor of 1.2, which is the estimated difference in resolution and incident flux between the two instruments.
Figure 6-1: (a) Top view and (b) side view of the sample in an Al foil packet loaded into the middle of an Al foil can of 0.013(1) mm thickness, attached to the bottom of a neutron absorbing B₄C block.

<table>
<thead>
<tr>
<th></th>
<th>Experiment 1</th>
<th>Experiment 2</th>
<th>Experiment 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incident energy (meV)</td>
<td>29.9 (1)</td>
<td>59.5(1)</td>
<td>59.9(1)</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>Various</td>
<td>5</td>
<td>RT (292 K)</td>
</tr>
<tr>
<td>Fermi chopper freq. (Hz)</td>
<td>200</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Est. incident flux (n s⁻¹)</td>
<td>79930</td>
<td>86025</td>
<td>86025</td>
</tr>
<tr>
<td>FWHM of elastic line (meV)</td>
<td>1.59</td>
<td>3.65</td>
<td>3.65</td>
</tr>
</tbody>
</table>

Table 6.1: Instrument configurations for the MERLIN spectrometer used in three different experiments. RT stands for room temperature, taken to be 292 K. The FWHM of the elastic line and incident flux were estimated using the MCHOP software [168].
6.2 Experimental Method

6.2.1 Neutron Spectroscopy Experiment 1

In the first experiment, an almost monochromatic incident beam of neutrons centred on an energy 29.9(1) meV and a Fermi chopper frequency of 200 Hz were used. The energy resolution and detector coverage for the MERLIN instrument under these conditions is given in figure 6.2. A $^\text{N}\text{Ge}^\text{N}\text{Se}_2$ sample of mass 4.607(1) g was loaded as described above, the candlestick was lowered into a fixed CCR in the neutron beam and the CCR was purged three times with He gas. A pressure of 23 mbar of He gas was let into the cryostat for heat exchange with the sample. Measurements were made at a series of temperatures. The measurements began while the sample temperature was still approaching the equilibrium temperature but this occurred quickly. The maximum, minimum and mean temperatures recorded at the sample position for each measurement are given in table 6.2. A series of empty foil can measurements were made under the same conditions. Each measurement was made for a period of time ($\approx 1$ h) until a proton charge of 150 $\mu$A h was reached. A vanadium sample was measured at room temperature under the same conditions for absolute normalisation.

6.2.2 Neutron Spectroscopy Experiments 2 and 3

In experiment 2, for each measurement the candlestick was lowered into a CCR in the neutron beam and the CCR was purged three times with He gas. A pressure of 30 mbar of He gas was let into the CCR for heat exchange with the sample. The sample was then cooled to a temperature of 5 K. In the case of experiment 3, the CCR was completely removed to reduce scattering from sources other than the sample and
6.2 Experimental Method

Table 6.2: The mean, minimum and maximum temperature (T) near the sample position for each of the measurements made in experiment 1.

<table>
<thead>
<tr>
<th>Nominal T (K)</th>
<th>Mean T (K)</th>
<th>Minimum T (K)</th>
<th>Maximum T (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>11(1)</td>
<td>11(1)</td>
<td>11(1)</td>
</tr>
<tr>
<td>50</td>
<td>49(1)</td>
<td>49(1)</td>
<td>57(1)</td>
</tr>
<tr>
<td>100</td>
<td>98(1)</td>
<td>94(1)</td>
<td>117(1)</td>
</tr>
<tr>
<td>150</td>
<td>146(1)</td>
<td>141(1)</td>
<td>166(1)</td>
</tr>
<tr>
<td>200</td>
<td>194(1)</td>
<td>189(1)</td>
<td>214(1)</td>
</tr>
<tr>
<td>250</td>
<td>239(1)</td>
<td>236(1)</td>
<td>254(1)</td>
</tr>
<tr>
<td>280</td>
<td>278(1)</td>
<td>278(1)</td>
<td>280(1)</td>
</tr>
</tbody>
</table>

measurements were taken under vacuum at room temperature. The temperature at the sample position was not measured directly but it is taken to be 292 K, as measured for the surroundings by placing a thermocouple on the top flange of the candlestick holder.

A Fermi chopper frequency of 300 Hz was used to select an almost monochromatic incident beam of neutrons centred on an energy 59.5(5) meV for experiment 1 and 59.9(5) meV for experiment 2. The energy resolution and the detector coverage of the MERLIN spectrometer for an incident energy of 60 meV is shown in [6-3].

Figure 6-3: (a) The kinematically allowed region and (b) the energy resolution full width at half maximum (FWHM) calculated using the MCHOP program [168] for experiments 2 and 3 done using the MERLIN spectrometer with an incident energy of ≈ 60 meV and Fermi chopper frequency of 300 Hz. In (a) the accessible Q-E space is shaded in grey.

In both experiments four measurements were made under identical conditions, summarised in table [6.3]. The intensities were measured for samples of $^{70}$Ge$^{76}$Se$_2$, $^{70}$Ge$^{76}$Se$_2$ and $^{73}$Ge$^{76}$Se$_2$ in an aluminium foil packet in an Al foil can and an empty aluminium foil packet in an Al foil can. Two further measurements were made for each experiment using a solid annular vanadium sample at room temperature for detector calibration and
absolute normalisation; one under identical conditions to the sample measurements and
one using an incident beam containing a wide range of neutron energies (i.e. a so-called
white beam).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sample Mass (g)</th>
<th>Proton Charge (µA h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{70}$Ge$^{76}$Se$_2$</td>
<td>2.019(1)</td>
<td>3091.68</td>
</tr>
<tr>
<td>$^{73}$Ge$^{76}$Se$_2$</td>
<td>1.958(1)</td>
<td>3245.9</td>
</tr>
<tr>
<td>Empty Can</td>
<td>N/A</td>
<td>3453.826</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sample Mass (g)</th>
<th>Proton Charge (µA h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{70}$Ge$^{76}$Se$_2$</td>
<td>2.065(1)</td>
<td>2841.6</td>
</tr>
<tr>
<td>$^{73}$Ge$^{76}$Se$_2$</td>
<td>1.972(1)</td>
<td>3241.0</td>
</tr>
<tr>
<td>Empty Can</td>
<td>N/A</td>
<td>1925.5</td>
</tr>
</tbody>
</table>

*Table 6.3:* The mass of sample used together with the charge of protons that was incident on
the spallation target during each measurement. The latter is proportional to the number of
neutrons that were incident on the sample during that measurement.

### 6.3 The Debye-Waller Factor and Temperature Dependence of the Vibrational Density of States

The Debye-Waller factor was found from the measurements made during experiment 1
using an incident neutron energy of 29.9(1) meV. In these measurements, the resolution
broadened elastic peak is sharper than for measurements made at the higher incident
energy and thus there is a lower contribution from inelastic scattering under this peak.
While the full vibrational density of states could not be obtained, the temperature
dependence of the uncorrected first peak is given.

#### 6.3.1 Width of the Elastic Line

The elastic line resolution broadening is described in section 5.3.1. Figure 6-4 shows,
for the vanadium sample, the broadening of the elastic line due to the effect of the
energy resolution of the instrument for an incident neutron energy of 29.9(1) meV. A
range of $-4 \leq E \leq 4$ meV was selected by eye to define the extent of the elastic line
where the limits are shown in figure 6-4 as dotted lines. An assumption was made
that all of the scattering inside this range is elastic such that an integral over this peak represents the elastic differential scattering cross section.

Figure 6-4: The width of the elastic peak due to energy resolution broadening from the monochromatic vanadium represented by \( \int_{Q_{\text{min}}}^{Q_{\text{max}}} I_E(Q,E) \, dQ \), where for each value of \( E \), \( Q_{\text{min}} \) and \( Q_{\text{max}} \) are the minimum and maximum \( Q \) values that can be measured. Dotted lines indicate the energy transfer range for which the measured intensity is mostly elastic. Data have been normalised such that the integral under the curve is unity.

### 6.3.2 Bose-Einstein Occupation Factors

The Bose-Einstein occupation factors were calculated using equation (2.14) for the mean temperatures used in the experiment and are given in figure 6-5.

Figure 6-5: The Bose-Einstein occupation factors calculated from the mean temperatures given in table 6.2 using equation (2.14) where the nominal temperatures are 10 K (black), 50 K (dark blue), 100 K (cyan), 150 K (purple), 200 K (orange) and 280 K (green).

### 6.3.3 Background Subtraction with Attenuation Correction and Renormalisation

The normalised sample-in-can scattered intensity \( I_{\text{sc}}^E(Q,E) \) and empty can scattered intensity \( I_c^E(Q,E) \) were measured at each temperature. The scattered intensity \( I_s(Q,E) \)
was found by using equation (4.6) which, for convenience is re-written here:

\[
I_s(Q, E) = \frac{m}{A_{sc,sc}(Q, E)} (I_{sc}^E(Q, E) - I_c^E(Q, E)),
\]

where \( m \) is a renormalisation constant and \( A_{sc,sc}(Q, E) \) is the attenuation coefficient (figure 6-6) found by treating the sample-in-can as a single annular sample with an effective inner radius of 1.9531 cm, outer radius of 2 cm, effective number density of 0.0321 \( \text{Å}^{-3} \), effective total scattering cross section of 6.33(31) barn and effective absorption cross section of 6.0(1) barn.

At low \( Q \), the effect of the Debye-Waller factor is small and \( \frac{d\sigma}{d\Omega}_{\text{el}} \approx \frac{d\sigma}{d\Omega} \). Therefore, \( m \) was chosen by eye such that the first and second peaks in \( \frac{d\sigma}{d\Omega}_{\text{el}} = \int_{E_{\text{min}}}^{E_{\text{max}}} I_s(Q, E) dE \) at \( Q \approx 1 \text{ Å}^{-1} \) and \( Q \approx 2 \text{ Å}^{-1} \), where \( E_{\text{min}} \) and \( E_{\text{max}} \) are -4 and 4 meV, respectively, agreed with \( \frac{d\sigma}{d\Omega} \) from a diffraction experiment made on the D4C diffractometer at the Institut Laue-Langevin (ILL) by Salmon et al. [136]. The value of \( m \) thus obtained was 0.92 for every measurement. The \( \frac{d\sigma}{d\Omega}_{\text{el}} \) functions obtained using \( I_{sc}^E(Q, E) \) for the sample-in-can, \( I_c^E(Q, E) \) for the empty can and \( I_s(Q, E) \) for the corrected sample scattering are presented for the 5 K measurement in figure 6-7.

6.3.4 Multiple Scattering and Multiple Phonon Scattering Corrections

In the case of the measurements made in experiment 1, the multiple scattering correction could not be applied effectively because there is a large statistical error. The multiple phonon correction could not be applied effectively because it requires that \( G(E) \) is measured over its entire energy range.
6.3 The Debye-Waller Factor and Temperature Dependence of the Vibrational Density of States

6.3.5 Calculating The Debye-Waller Factors

In equation (2.62) the $F(Q)$ function corrected for self scattering can be written as

$$F(Q) = \frac{d\sigma}{d\Omega} \bigg|_{el} - e^{-2\overline{W}(Q)} \sum_{\alpha=1}^{n} c_{\alpha} (b_{\alpha}^2 + b_{inc,\alpha}^2),$$

(6.2)

where $\sum_{\alpha=1}^{n} c_{\alpha} (b_{\alpha}^2 + b_{inc,\alpha}^2) = 0.6705\text{ barn}$ is the self scattering limit. $\overline{W}(Q)$ was chosen for each measurement such that $F(Q)$ found by this method and $F(Q)$ from the diffraction experiment made by Salmon et al. [175] are in as close agreement as possible at all $Q$ values (see figure 6-8). The values of $2\overline{W}(Q)/Q^2 = \langle u^2 \rangle /3$ thus obtained as a function of temperature are given in table 6.4 and are plotted in figure 6-9 alongside the values obtained from the MD simulations made by Giacomazzi et al. [34].
6.3 The Debye-Waller Factor and Temperature Dependence of the Vibrational Density of States

Figure 6-8: The $F(Q)$ functions calculated for $^7$Ge$^7$Se$_2$ using $F(Q) = \int_{E_{\text{min}}}^{E_{\text{max}}} I_s(Q, E)dE - \sum c_\alpha (\beta_\alpha^2 + b_{\text{inc},\alpha}^2)$ (solid black curve), $F(Q) = \int_{E_{\text{min}}}^{E_{\text{max}}} I_s(Q, E)dE - \sum c_\alpha (\beta_\alpha^2 + b_{\text{inc},\alpha}^2) \exp(-2W(Q))$ (solid red curve) and from the diffraction experiment by Salmon et al. [136] (solid green curve), where $E_{\text{min}}$ and $E_{\text{max}}$ are -4 and 4 meV, respectively, while $W(Q) = Q^2 \langle u^2 \rangle /3$ with $\langle u^2 \rangle /3$ values given in table 6.4. For temperatures greater than 10 K, each successive plot is displaced vertically by 1.25 barn. The mean temperature of the sample for each measurement is given in table 6.4.

<table>
<thead>
<tr>
<th>Nominal $T$ (K)</th>
<th>Actual $T$ (K)</th>
<th>$\langle u^2 \rangle /3$ (Å$^2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>11(1)</td>
<td>0.002(1)</td>
</tr>
<tr>
<td>50</td>
<td>49(1)</td>
<td>0.004(1)</td>
</tr>
<tr>
<td>100</td>
<td>98(1)</td>
<td>0.006(1)</td>
</tr>
<tr>
<td>150</td>
<td>146(1)</td>
<td>0.008(1)</td>
</tr>
<tr>
<td>200</td>
<td>194(1)</td>
<td>0.010(1)</td>
</tr>
<tr>
<td>250</td>
<td>239(1)</td>
<td>0.0115(20)</td>
</tr>
<tr>
<td>280</td>
<td>278(1)</td>
<td>0.0125(20)</td>
</tr>
</tbody>
</table>

Table 6.4: The mean square displacement found by comparing the elastic scattering from experiment 1 with diffraction data from Salmon et al. [136]. The errors are estimated from the lowest and highest mean squared displacements for which a good fit can still be achieved between the $F(Q)$ functions found from the elastic scattering and from the diffraction experiment by Salmon et al. [136].
6.4 The Full Vibrational Density of States of GeSe$_2$

The data taken in experiments 2 and 3 using an incident neutron energy of ≈ 60 meV were used to find the vibrational density of states of GeO$_2$ at two different temperatures, namely 5 K and room temperature (292 K). The data analysis procedure for these experiments followed the general correction procedure described in section 4.1. The Debye-Waller factors were calculated using the closest values taken from table 6.4 such that $\langle u^2 \rangle /3 = 0.002$ and $\langle u^2 \rangle /3 = 0.0125$ Å$^2$ for experiments 2 and 3, respectively.
6.4.1 Width of the Elastic Line

The width of the elastic line is discussed in section 5.3.1. Figure 6-11a shows, for a monochromatic vanadium sample, the broadening of the elastic line due to the effect of the energy resolution of the instrument. A range of $-8 \leq E \leq 7$ meV was selected by eye to define the extent of the elastic line where the limits are shown in figure 6-11a as dotted lines. Outside of this range, scattering was deemed to be fully inelastic.

Figure 6-11: (a) The width due to energy resolution broadening of the elastic peak from the monochromatic vanadium represented by $\int_{Q_{\text{min}}}^{Q_{\text{max}}} I_{V}(Q,E) \, dQ$, where for each value of $E$, $Q_{\text{min}}$ and $Q_{\text{max}}$ are the minimum and maximum $Q$ values that can be measured. Dotted lines indicate the energy transfer range for which the measured intensity is mostly elastic. Data have been normalised such that the integral under the curve is unity. (b) The $Q$ dependence of the FWHM of the elastic line (E.L.) found empirically from the monochromatic vanadium measurement.

The range over which the elastic line is broadened is dependent on $Q$. The FWHM of the elastic line found empirically using the monochromatic vanadium measurement are shown in figure 7-8b. The FWHM increases from $4.25(10)$ to $5.60(10)$ meV over the range in $Q$ from 1 to 9.5 Å$^{-1}$. These values differ significantly from the value of 3.65 meV estimated using the MCHOP software [108], where the latter value was found by taking the value for the HET instrument and multiplying it by 1.2.

6.4.2 Bose-Einstein Occupation Factors

The Bose-Einstein occupation factors were calculated using equation 2.14 for the experimental temperatures of 5 and 292 K and are given in figure 6-12.
6.4 The Full Vibrational Density of States of GeSe$_2$

6.4.3 Background Subtraction with Attenuation Corrections and Renormalisation

The normalised sample-in-can scattered intensity $I_{\text{sc}}^E(Q, E)$ and empty can scattered intensity $I_{\text{c}}^E(Q, E)$ were measured for each sample. The sample scattered intensity $I_s(Q, E)$ was found by using equation (6.1), where the attenuation coefficients $A_{\text{sc,sc}}(Q, E)$ (figure 6-13) were found by treating the sample-in-can as a single annular sample with effective parameters given in table 6.5. The renormalisation constant $m$ for the measurements on $^{\text{N}}\text{Ge}^{\text{N}}\text{Se}_2$, $^{70}\text{Ge}^{\text{N}}\text{Se}_2$ and $^{73}\text{Ge}^{76}\text{Se}_2$ was found to be 0.90, 0.80 and 1.08 for experiment 2, and 1.09, 0.93 and 1.09 for experiment 3, respectively. In figure 6-

\begin{table}[h]
\centering
\begin{tabular}{llll}
\hline
 & $^{\text{N}}\text{Ge}^{\text{N}}\text{Se}_2$ & $^{70}\text{Ge}^{\text{N}}\text{Se}_2$ & $^{73}\text{Ge}^{76}\text{Se}_2$ \\
\hline
Experiment 2 (Low Temperature) &  &  &  \\
Inner Radius (cm) & 1.9450 & 1.9729 & 1.9732 \\
Outer Radius (cm) & 2 & 2 & 2 \\
Eff. Number Density ($\text{Å}^{-3}$) & 0.0368 & 0.0433 & 0.0434 \\
Eff. Total Scattering Cross Section (barn) & 6.33(3) & 5.66(5) & 7.80(11) \\
Eff. Abs. Cross Section at 2200 ms$^{-1}$ (barn) & 6.04(9) & 4.56(8) & 39.4(23) \\
\hline
Experiment 3 (Room Temperature) &  &  &  \\
Inner Radius (cm) & 1.9531 & 1.9761 & 1.9767 \\
Outer Radius (cm) & 2 & 2 & 2 \\
Eff. Number Density ($\text{Å}^{-3}$) & 0.0321 & 0.0397 & 0.0400 \\
Eff. Total Scattering Cross Section (barn) & 6.33(31) & 5.71(55) & 7.82(11) \\
Eff. Abs. Cross Section at 2200 ms$^{-1}$ (barn) & 6.0(1) & 4.61(76) & 39.5(24) \\
\hline
\end{tabular}
\caption{Parameters used to calculate $A_{\text{sc,sc}}(Q, E)$. The effective parameters were obtained using neutron scattering and absorption cross sections taken from ref. \cite{11}, a GeSe$_2$ number density of 0.0334 Å$^{-3}$ \cite{167} and an Al number density of 0.06026 Å$^{-3}$ \cite{165}.}
\end{table}

Figure 6-12: The Bose-Einstein occupation factors calculated using equation 2.14 for the sample measurements at temperatures of 5 K (solid curve) and 292 K (broken curve).
6.4 The Full Vibrational Density of States of GeSe$_2$

Figure 6-13: The attenuation coefficients $A_{sc,sc}(Q,E)$ for experiments 2 (solid curves) and 3 (broken curves) for samples of $^{70}$Ge$^{70}$Se$_2$ (black), $^{70}$Ge$^{78}$Se$_2$ (red) and $^{73}$Ge$^{76}$Se$_2$ (green) averaged (a) over energies between 0 and 140 meV or (b) over all $Q$ values. The coefficients were calculated using the parameters taken from table 5.3. The maximum energy for the vibrational density of states is $\approx 45$ meV (see e.g. figure 5-9).

for each experiment the integrals of the intensities are given for the sample-in-can measurement, $\int_{E_{\text{min}}}^{E_{\text{max}}} I_s(Q,E)dE$, empty can measurement $\int_{E_{\text{min}}}^{E_{\text{max}}} I_c(Q,E)dE$ and corrected sample scattering $\int_{E_{\text{min}}}^{E_{\text{max}}} I_s(Q,E)dE$, where $E_{\text{min}}$ and $E_{\text{max}}$ are the minimum ($\geq -50$ meV) and maximum ($\leq 50$ meV) energies which were measured at a given $Q$ value. These integrals represent the differential scattering cross sections and are presented to show the effect that the scattering from the can has on the sample-in-can measurement. The differential scattering cross sections from Salmon et al. [136] that were used to find $m$ are also plotted in figure 6-14. The effect of the background, attenuation and renormalisation correction on the $G(E)$ function is shown for experiments 2 and 3 in figure 6-15 for the $^{70}$Ge$^{70}$Se$_2$ sample where the appropriate values for $^{70}$Ge$^{70}$Se$_2$ used in equation (2.45) are listed in table 5.1.

6.4.4 Multiple Scattering Correction

Experiment 2

In the case of experiment 2, made at a temperature of 5 K, the incoherent approximation given by equation 4.7 was used to calculate the multiple scattering contribution and is reproduced here for convenience

$$I_s(Q,E) = I_{\text{ms}}(E) + B(E)Q^2 \exp(-2\bar{W}(Q)), \quad (6.3)$$

where $B(E)$ is a fitted coefficient, $I_{\text{ms}}(E)$ is the multiple scattering contribution to $I_s(Q,E)$ that remains after subtraction of the empty can and attenuation correction.
Figure 6.14: The differential scattering cross section $d\sigma/d\Omega$ from experiment 2 for samples of (a) $^{70}\text{Ge}^{75}\text{Se}_2$, (b) $^{70}\text{Ge}^{75}\text{Se}_2$ and (c) $^{73}\text{Ge}^{76}\text{Se}_2$; and for experiment 3 for samples of (d) $^{70}\text{Ge}^{75}\text{Se}_2$, (e) $^{70}\text{Ge}^{75}\text{Se}_2$ and (f) $^{73}\text{Ge}^{76}\text{Se}_2$ calculated using the sample-in-can $\int_{E_{\text{min}}}^{E_{\text{max}}} I_{\text{sc}}^{E}(Q, E) dE$ (solid red curve), empty can $\int_{E_{\text{min}}}^{E_{\text{max}}} I_{\text{c}}^{E}(Q, E) dE$ (solid blue curve) or sample after correction for the empty can, attenuation and renormalisation $\int_{E_{\text{min}}}^{E_{\text{max}}} I_{\text{s}}^{E}(Q, E) dE$ (solid black curve) intensities, where $E_{\text{min}}$ and $E_{\text{max}}$ are the minimum ($\geq -50$ meV) and maximum ($\leq 50$ meV) energies which were measured at a given $Q$ value. Also plotted are $d\sigma/d\Omega = F(Q) + \sigma_{\text{self}}/4\pi$ from a diffraction experiment by Salmon et al. [136] (solid green curve).
6.4 The Full Vibrational Density of States of GeSe$_2$

Figure 6-15: $G(E)$ calculated in the “bronze medal” approximation for experiments 2 (solid curves) or 3 (broken curves) for the $^{74}$Ge$^{77}$Se$_2$ sample using $I_{sc}(Q, E)$ for the sample-in-can (red), from $I_{c}(Q, E)$ for the empty can (green), and from $I_{s}(Q, E)$ for the sample after correction for empty can scattering, attenuation and renormalisation (black). No correction for multiple scattering or multiple phonon scattering has been applied.

For each measured value of $E$, a least squares fit of equation (6.3) was made to the measured $I_{s}(Q, E)$ functions by varying $I_{ms}(E)$ and $B(E)$. The coherent dynamical structure factor is then given by $S_c(Q, E) = I_s(Q, E) - I_{ms}(E)$ (see equation (4.9)).

An example of the fit to $I_{s}(Q, E)$ for the sample of $^{74}$Ge$^{77}$Se$_2$ is given in figure 6-16, where an integral is taken over an energy transfer range from 10 to 20 meV to improve the statistics. A fit to $I_{s}(Q, E)$ with $I_{ms}(E) = 0$ is also plotted in figure 6-16 to show that the incoherent approximation does not fit well without the $Q$-independent multiple scattering term. Using equations (2.44) and (2.45) (i.e. the “bronze medal” approximation), the $G(E)$ functions that were calculated for the three samples using

\[ \int_{10}^{20} I_s(Q, E) \, dE (\text{barn}) \]
the appropriate values from table 5.1 and either $I_s(Q, E)$, $S_c(Q, E)$ or $I_{ms}(E)$ are given for the low temperature experiment in figure 6-17. In the case of the low temperature measurements, the multiple scattering correction approximately follows the density of states. This is because the most likely 2-scattering events that give intensity in the inelastic region are those corresponding to elastic-inelastic scattering (in either order), due to the very large elastic differential scattering cross section in comparison with the inelastic differential cross section for neutrons. In these events, a neutron only changes energy once, with a probability distribution related to the vibrational density of states. Therefore, as long as the sample is cold enough such that there is a low probability of inelastic-inelastic 2-scattering events, one would expect multiple scattering to follow the density of states.

**Experiment 3**

In the case of experiment 3, made at room temperature, the model $I_s(Q, E)$ in the incoherent approximation for single phonon scattering (equation (6.3)) did not give a good fit to the measured $I_s(Q, E)$ functions because there is significant multiple phonon scattering. Therefore, the model $I_s(Q, E)$ function that includes higher phonon terms (equation (4.9)) was fitted to the measured $I_s(Q, E)$ functions and is reproduced here for convenience

$$I_s(Q, E) = I_{ms}(E) + \sum_{p=1}^{N_p} B_p(E) Q^{2p} \exp(-2W(Q)) ,$$

(6.4)

where $p$ denotes the number of phonons, $B_p(E)$ are fitted coefficients and $N_p$ is the number of phonon terms. In the fits, terms including $p = 1, 2$ and 3 were used.

An example of a fit to $I_s(Q, E)$ is given in figure 6-18, where the functions have been integrated in $E$ between 10 and 20 meV to improve the statistics. A least squares fit to $I_s(Q, E)$ in the incoherent approximation that does not include multiple phonon terms (equation (6.3)) is also plotted in figure 6-18 and shows that, without the additional phonon terms, the incoherent approximation does not fit well. Using equations (2.44) and (2.45) (i.e. the “bronze medal” approximation), the $G(E)$ functions that were calculated for the three samples using the appropriate values from table 5.1 and either $I_s(Q, E)$, $S_c(Q, E)$ or $I_{ms}(E)$ are given for the room temperature experiment in figure 6-17.

In the case of the room temperature measurements, the multiple scattering does not follow the density of states. Inelastic-inelastic 2-scattering events have a significant probability of occurring at a temperature of 292 K.
Figure 6.17: $G(E)$ calculated in the “bronze medal” approximation in experiment 2 (done at a low temperature) for samples of (a) $^{70}$Ge$^N$Se$_2$, (b) $^{70}$Ge$^N$Se$_2$ and (c) $^{73}$Ge$^N$Se$_2$ or experiment 3 (done at room temperature) for samples of (d) $^{70}$Ge$^N$Se$_2$, (e) $^{70}$Ge$^N$Se$_2$ and (f) $^{73}$Ge$^N$Se$_2$ using $I_s(Q,E)$ (solid red curve), $I_{ms}(E)$ (solid blue curve), or $S_c(Q,E) = I_s(Q,E) - I_{ms}(E)$ (solid black curve) and values taken from table 5.1.
6.4 The Full Vibrational Density of States of GeSe$_2$

Figure 6-18: The $I_s(Q,E)$ function measured in experiment 3 (made at room temperature) for the $^N$Ge$^N$Se$_2$ sample (solid black curve), an example of a fit to the data within the incoherent approximation that does not include multiple phonon terms (equation (6.3)) (solid red curve) and a fit to the data within the incoherent approximation that does include multiple phonon terms (equation (6.4)) (solid green curve). To improve the statistics, the functions have been integrated over the energy transfer range from 10 to 20 meV.

6.4.5 Multiple Phonon Correction

To assist in the calculation of the multiple phonon corrections, $G(E)$ was calculated from $S_c(Q,E)$ using equations (2.44) and (2.45) with the appropriate values given in table 5.1. The Debye model [172] was used in the region which could not be measured (below 7 meV) due to resolution function broadening of the elastic scattered intensity. In the Debye model, $G(E) \propto E^2$ and the constant of proportionality was chosen such that the Debye model coincides with the first measured data point beyond the region of the elastic peak.

The multiple phonon correction, $S_{mp}(Q,E)$, was then calculated up to the 5$^{th}$ phonon term using the method described in section 4.1.4. The vibrational density of states $G(E)$ without the multiple phonon correction calculated from $S_c(Q,E)$, the multiple phonon contribution to the vibrational density of states $G_{mp}(E)$, and the single phonon vibrational density of states $G_1(E) = G(E) - G_{mp}(E)$ are plotted in figure 6-20. The single phonon dynamical structure factors were found by using $S_1(Q,E) = S_c(Q,E) - S_{mp}(Q,E)$ (equation (4.22)). An example of the dynamical structure factors thus obtained are given in figure 6-19 using the $^N$Ge$^N$Se$_2$ sample in (a) experiment 2 made at low temperature or (b) experiment 3 made at room temperature, where $S_c(Q,E)$, $S_1(Q,E)$ and the calculated $S_{mp}(Q,E)$ are integrated over the energy transfer range from 10 to 20 meV to improve the statistics. In this figure the empty can, attenuation, renormalisation and multiple scattering corrections have all been made. Also plotted in figure 6-19b is a fit using the incoherent approximation without the
6.5 “Silver Medal” Calculations

Once the data had been fully corrected, the “silver medal” results were calculated for experiment 2 (figure 6-21) and experiment 3 (figure 6-22) using the matrices given in section 5.4. The partial vibrational density of states (\(G_\alpha(E)\) functions) were calculated using equations (2.38) and (2.39) assuming Debye-Waller factors of \(W_{Ge}(Q) = W_{Se}(Q) = \overline{W}(Q)\).
Figure 6-20: $G(E)$ calculated in the “bronze medal” approximation for experiment 2 (done at low temperature) for samples of (a) $^N\text{Ge}^N\text{Se}_2$, (b) $^{70}\text{Ge}^N\text{Se}_2$ and (c) $^{73}\text{Ge}^{76}\text{Se}_2$ or experiment 3 (done at room temperature) for samples of (d) $^N\text{Ge}^N\text{Se}_2$, (e) $^{70}\text{Ge}^N\text{Se}_2$ and (f) $^{73}\text{Ge}^{76}\text{Se}_2$ from $S_c(Q,E)$ without the multiple phonon correction (solid red curve), the calculated multiple phonon correction to the vibrational density of states $G_{mp}(E)$ (solid blue curve) and the single phonon vibrational density of states $G_1(E) = G(E) - G_{mp}(E)$ (solid black curve).
Figure 6-21: The results for the partial vibrational density of states in the “silver medal” approximation from measurements made in experiment 2 (made at low temperature) for (a) $G_{Ge}(E)$ or (b) $G_{Se}(E)$ calculated using equation (5.3) (solid red line), equation (5.4) (solid green line), equation (5.5) (solid blue line) or equation (5.6) (solid black line).

Figure 6-22: The results for the partial vibrational density of states in the “silver medal” approximation from measurements made in experiment 3 (done at room temperature) for (a) $G_{Ge}(E)$ or (b) $G_{Se}(E)$ calculated using equation (5.3) (solid red line), equation (5.4) (solid green line), equation (5.5) (solid blue line) or equation (5.6) (solid black line).
6.6 Results

6.6.1 Generalised Vibrational Density of States

The generalised single phonon vibrational density of states for each sample $G_1(Q, E)$ (see figure 6-23) and the generalised single phonon partial vibrational density of states $G_\alpha(Q, E)$ were calculated for experiments 2 and 3 by using equations (2.44) and (2.38), respectively. To improve the statistics, integrals of these functions were taken over three ranges in energy representing the three peaks in $G_1(E)$ (see e.g. figure 6-29). The results for the first peak, from 8 to 18 meV, are shown in figure 6-24, the results for the second peak, from 23 to 28 meV, are shown in figure 6-25, and the results for the third peak, from 32 to 40 meV, are shown in figure 6-26. Also plotted in figures 6-24 to 6-26 are the MARI results described in chapter 5.

The generalised vibrational density of states $G_1(Q, E)$ for a sample of $^N\text{Ge}^N\text{Se}_2$ and the generalised partial vibrational density of states $G_\alpha(Q, E)$ were simulated using the MD method described by Giacomazzi et al. [34] for temperatures of 5 K and 292 K. The simulated and experimental data for $G_1(Q, E)$ (figure 6-27) and $G_\alpha(Q, E)$ (figure 6-28) are compared. The integration ranges chosen for the simulation data are different to those for the experimental data because there is a relative shift of the peaks in $G_1(E)$ as demonstrated in figure 6-34a. Ranges that cover the same peaks were therefore used for the MD results, in this case 6 to 16 meV for the first peak, 20 to 25 meV for the second peak and 28 to 34 meV for the third peak.
Figure 6-23: The $G_1(Q,E)$ function calculated in the “bronze medal” approximation found for a sample of $^{74}\text{Ge}^{82}\text{Se}_2$ in (top) experiment 2 made at a temperature of 5 K and (bottom) experiment 3 made at a temperature of 292 K.
Figure 6-24: The integral over the first peak in $G_1(E)$ of $G_1(Q, E)$ as obtained in experiment 2 done at low temperature (solid black curves), experiment 3 done at room temperature (broken black curves) and from the MARI experiment done at low temperature described in chapter 5 (solid green curves) using samples of (a) $^{28}$Ge$^{74}$Se$_2$, (b) $^{70}$Ge$^{74}$Se$_2$ and (c) $^{73}$Ge$^{76}$Se$_2$. Plotted in (d) and (e) are the integrals of $G_{Ge}(Q, E)$ and $G_{Se}(Q, E)$ over the first peak in $G_1(E)$, respectively. The $G_{\alpha}(Q, E)$ functions were calculated using the SVD matrix (equation (5.6)) and the limits for the integrals are given in the text.
Figure 6-25: The integral over the second peak in $G_1(E)$ of $G_1(Q, E)$ as obtained in experiment 2 done at low temperature (solid black curves), experiment 3 done at room temperature (broken black curves) and from the MARI experiment done at low temperature described in chapter 5 (solid green curves) using samples of (a) $^{73}$Ge$^{76}$Se$_2$, (b) $^{70}$Ge$^{73}$Se$_2$ and (c) $^{73}$Ge$^{76}$Se$_2$. Plotted in (d) and (e) are the integrals of $G_{Ge}(Q, E)$ and $G_{Se}(Q, E)$ over the second peak in $G_1(E)$, respectively. The $G_{\alpha}(Q, E)$ functions were calculated using the SVD matrix (equation (5.6)) and the limits for the integrals are given in the text.
Figure 6-26: The integral over the third peak in $G_1(E)$ of $G_1(Q,E)$ as obtained in experiment 2 done at low temperature (solid black curves), experiment 3 done at room temperature (broken black curves) and from the MARI experiment done at low temperature described in chapter 5 (solid green curves) using samples of (a) $^\text{N}\text{Ge} \text{Se}_2$, (b) $^{70}\text{Ge} \text{Se}_2$ and (c) $^{73}\text{Ge}^{76}\text{Se}_2$. Plotted in (d) and (e) are the integrals of $G_{\text{Ge}}(Q,E)$ and $G_{\text{Se}}(Q,E)$ over the third peak in $G_1(E)$, respectively. The $G_{\alpha}(Q,E)$ functions were calculated using the SVD matrix (equation (5.6)) and the limits for the integrals are given in the text.
Figure 6.27: The results for a sample of $^N\text{Ge}^N\text{Se}_2$ at a temperature of 5 K (solid curves) or 292 K (broken curves) from experiments 2 and 3 (black) or from the *ab initio* MD simulations made by Giacomazzi *et al.* [34] (red) of the integral of $G_1(Q,E)$ over (a) the first peak, (b) the second peak, or (c) the third peak of $G_1(E)$. The limits for the integrals are given in the text.
Figure 6.28: The integral of $G_{\alpha\theta}(Q,E)$ over (a) the first peak, (c) the second peak, or (e) the third peak and the integral of $G_{\sigma\theta}(Q,E)$ over (b) the first peak, (d) the second peak, or (f) the third peak of $G_1(E)$. The datasets correspond to temperatures of 5 K (solid curves) or 292 K (broken curves) from experiments 2 and 3 (black) or from the *ab initio* MD simulations made by Giacomazzi *et al.* [34] (red). These results have been calculated in the “silver medal” approximation using the SVD matrix (equation 5.6) and the limits for the integrals are given in the text.
6.6.2 The Single Phonon Vibrational Density of States

The results in the “bronze medal” approximation for samples of $^N\text{Ge}^N\text{Se}_2$, $^{70}\text{Ge}^N\text{Se}_2$ and $^{73}\text{Ge}^{76}\text{Se}_2$ are compared in figure 6-29. A comparison between the $G_1(E)$ functions for $^N\text{Ge}^N\text{Se}_2$ calculated in the “bronze medal approximation” in the present work and in the work by other authors is given in figure 6-30.

![Figure 6-29: The fully corrected single phonon vibrational density of states $G_1(E)$ calculated for experiment 2 done at low temperature (solid curves) and experiment 3 done at room temperature (broken curves) using the “bronze medal” approximation for samples of $^N\text{Ge}^N\text{Se}_2$ (black), $^{70}\text{Ge}^N\text{Se}_2$ (red) and $^{73}\text{Ge}^{76}\text{Se}_2$ (green).](image)

In figure 6-31 a comparison is made between the total vibrational density of states $G_1(E)$ in the “bronze medal” approximation and the partial vibrational density of states $G_\alpha(E)$ in the “silver medal” approximation as obtained from experiments 2 and 3, and from the MARI experiment described in chapter 5. In the case of $G_\alpha(E)$, the results from the SVD method (equation 5.6) are shown.

A comparison is made in figure 6-32 between the $G_1(E)$ functions calculated for $^N\text{Ge}^N\text{Se}_2$ in the “bronze medal” approximation from experiments 2 and 3, and from the MD simulations made by Giacomazzi et al. In figure 6-33 the $G_\alpha(E)$ functions calculated in the “silver medal” approximation using the SVD method (equation 5.6) are compared to the $G_\alpha(E)$ functions calculated in the “silver medal” approximation from the simulations. Finally, in figure 6-34 the sum of the “silver medal” results such that $G_1(E) = G_{\text{Ge}}(E) + G_{\text{Se}}(E)$ is compared to $G_1(E)$ calculated in the “bronze medal” approximation for temperatures of 5 K and 292 K from the present work and from the MD simulations of Giacomazzi et al.
Figure 6-30: (a) The single phonon density of states $G_1(E)$ calculated using the “bronze medal” approximation for a sample of $^N\text{Ge}^N\text{Se}_2$ as obtained from experiment 2 done at low temperature (solid black curve), from a study using the LRMECS spectrometer at the Intense Pulsed Neutron Source at a temperature of 13(2) K with an incident neutron energy of 60.06 meV [51] (solid blue curve), and from a study using the MARI spectrometer at a temperature of 18(1) K and an incident neutron energy of 60 meV [164] (solid green curve). (b) The single phonon density of states $G_1(E)$ calculated using the “bronze medal” approximation for a sample of $^N\text{Ge}^N\text{Se}_2$ as obtained in experiment 3 done at room temperature (solid black curve) and from a study made at room temperature using the BT-4 instrument at the NIST facility in neutron energy gain mode by Cappelletti et al. [150] (solid magenta curve).
Figure 6.31: $G_1(E)$ calculated in the “bronze medal” approximation for experiment 2 done at low temperature (solid black curves), experiment 3 done at room temperature (broken black curves), and the low temperature experiments done using the MARI spectrometer described in chapter 5 (solid green curves) for samples of (a) $^N$Ge$^N$Se$_2$, (b) $^{70}$Ge$^N$Se$_2$ or (c) $^{73}$Ge$^{76}$Se$_2$. In (d) and (e) the $G_{Ge}(E)$ and $G_{Se}(E)$ functions calculated in the “silver medal” approximation using the SVD method (equation (5.6)) are plotted, respectively.
Figure 6-32: The $G_1(E)$ function obtained for $^N$Ge$^N$Se$_2$ in the “bronze medal” approximation at a temperature of 5 K (solid curves) or 292 K (broken curves) from experiments 2 and 3 (black) or from the MD simulations made by Giacomazzi et al. [35] (red).

Figure 6-33: Comparison of the partial vibrational density of states (a) $G_{Ge}(E)$ or (b) $G_{Se}(E)$ obtained in the “silver medal” approximation using the SVD matrix (equation (5.6)) at a temperature of 5 K (solid curves) or 292 K (broken curves) from experiments 2 and 3 (black) or from the MD simulations made by Giacomazzi et al. [35] (red).

Figure 6-34: $G_1(E)$ for temperatures of (a) 5 K and (b) 292 K obtained using either the “bronze medal” approximation for the $^N$Ge$^N$Se$_2$ sample (solid curves) or the expression $G_1(E) = G_{Ge} + G_{Se}(E)$ using the SVD matrix (equation (5.6)) (broken curves) from experiments 2 and 3 (black) or from the MD simulations made by Giacomazzi et al. [35] (red).
6.7 Discussion

The partial vibrational density of states of GeSe$_2$ have been measured with a small statistical error within the “silver medal” approximation using the method of isotopic substitution in neutron spectroscopy. High quality datasets have been obtained from three experiments using the MERLIN spectrometer. In experiment 1, the Debye-Waller factor was found and the temperature dependence of the density of states at small energy transfers was measured. In experiment 2, the full set of partial vibrational density of states was obtained at a temperature of 5 K. In experiment 3, the full set of partial vibrational density of states was obtained at room temperature, providing a test for the multiple phonon corrections and a further set of data to compare with simulations.

The Debye-Waller Factor

The Debye-Waller factor is related to the mean squared displacement by $2\bar{W}(Q) = Q^2 \langle u^2 \rangle /3$. $\langle u^2 \rangle /3$ was calculated as a function of temperature using the procedure described in section 6.3. There is disagreement between the empirical values and $\langle u^2 \rangle /3$ calculated for Ge and Se from the MD simulations made by Giacomazzi et al. [35], although the datasets follow a similar trend with increasing temperature. The gradient for the experimental values is smaller than for the simulated values (see figure 6-9). The neutron spectroscopy experiment done by Walter et al. [51], where a similar technique was used at a temperature of 10 K, gave $\langle u^2 \rangle /3 = 0.00188 \text{ Å}^2$, which is in better agreement with the present study than with the simulations. Other authors who have measured the vibrational density of states of GeSe$_2$ (e.g. refs. [130, 164]) do not quote Debye-Waller factors.

The Debye-Waller factors were used to approximate the Debye temperature $\theta_D$ [52, pp. 110], which within the Debye model is constant with temperature. At low temperatures, when $T \approx 0$, the Debye temperature is approximated by

$$\theta_D = \frac{3}{4k_B} \left( \frac{\hbar^2 Q^2}{2M} \right) \left( \frac{1}{\bar{W}(Q)} \right), \quad (6.5)$$

while at a high temperature, when $T >> \theta_D$,

$$\theta_D = \sqrt{\frac{3}{k_B} \left( \frac{\hbar^2 Q^2}{2M} \right) \left( \frac{T}{\bar{W}(Q)} \right)} \quad (6.6)$$

For the measurements made at temperatures of 10 and 292 K, corresponding to $\langle u^2 \rangle /3 = 0.002(1)$ and $0.0125(20) \text{ Å}^2$, the calculated Debye temperatures are 157 and 172 K.
using equations (6.5) and (6.6), respectively. For the mean squared displacements of \( \langle u^2 \rangle / 3 = 0.00252 \) and 0.0230 Å\(^2\) found from the simulations made by Giacomazzi et al. \cite{34, 36}, the Debye temperatures calculated from equations (6.5) and (6.6) were 125 and 127 K, respectively. The Debye temperature has been calculated using the measured heat capacity to be 152.01(23) K \cite{174}. The Debye temperatures from the experimental data are in better agreement than the values obtained from the simulations with the values calculated from thermodynamic measurements.

The values of the mean squared displacement obtained from the MD simulations made by Giacomazzi et al. \cite{34} are highly sensitive to the nature of low energy modes and the shift in \( E \) of the vibrational density of states (see e.g. figure 6-32). When the calculation takes this into account, different values are found for the MD simulation data, where for a temperature of 292 K \( \langle u^2 \rangle / 3 = 0.015 \) Å\(^2\) \cite{34}. This is in better agreement with the experimental value of 0.0125(2) Å\(^2\) and with the value of 0.01535 Å\(^2\) obtained from \textit{ab initio} MD simulations using the BLYP model \cite{45}.

**Temperature dependence of \( G(E) \)**

The uncorrected vibrational density of states measured up to \( E \approx 20 \) meV in experiment 1 shows that there is a small change with temperature in the position of the first peak in \( G_1(E) \) at \( \approx 10 \) meV (figure 6-35). There is also a small broadening of the first peak with increasing temperature, probably due to an increase in multiple phonon scattering for which a correction was not made (figure 6-10). The position of the first peak in \( G_1(E) \) for the \( \text{^NGe}^\text{N} \text{Se}_2 \) sample was difficult to obtain from experiment 1 and for the measurements made by Cappelletti et al. \cite{130} due to a large spread of the datapoints. A parabola was therefore fitted to the highest 6 datapoints in

\[ \text{Figure 6-35: The position of the first peak in } G_1(E) \text{ calculated in the “bronze medal” approximation for the } \text{^NGe}^\text{N} \text{Se}_2 \text{ sample from MERLIN experiments 1 (■), 2 and 3 (■), the MARI experiment described in chapter 5 (■), the neutron spectroscopy studies of Walter et al. } 51 \text{ (▲), Sinclair et al. } 164 \text{ (▼) and Cappelletti et al. } 130 \text{ (▶); and the MD simulations of Giacomazzi et al. } 35 \text{ (broken red line). A linear fit to the (■) datapoints is given by the broken black line.} \]
the region of the first peak and the positions thus obtained are plotted in figure 6-35. Similarly, the highest 3 datapoints were fitted with a parabola to find the peak positions plotted in figure 6-35 for experiments 2 and 3, the MD simulations made by Giacomazzi et al. [35], the experiment made on the LRMECS spectrometer by Walter et al. [51] and the experiment made on the MARI spectrometer by Sinclair et al. [164]. Both the simulations and the experiments appear to indicate a small increase in the first peak position with temperature. The change in peak position is an artifact of the approximations used to calculate \( G_1(E) \) and is caused by a deviation from the approximation that \( W_{Ge}(Q) = W_{Se}(Q) = W(Q) \) as used to obtain \( G_1(E) \) in the experimental work [176]. It is worth noting that this small increase in peak position is of the same order as the discrepancy between experiments made on different spectrometers.

Comparison between the MARI and MERLIN experiments

In experiments 2 and 3 and the MARI experiment described in chapter 5, the vibrational density of states \( G_1(E) \) found in the “bronze medal” approximation for samples of \( ^7\text{N} \text{Ge}^7\text{Se}_2 \), \( ^70\text{Ge}^7\text{N} \text{Se}_2 \) and \( ^73\text{Ge}^76\text{Se}_2 \) feature two peaks at \( \approx 10 \) and \( \approx 26 \) meV (exact positions are given in table 6.6) and a broad feature between 30 and 45 meV (see figure 6-31). While there is a small disagreement in the height of these features, the positions of the features from experiments 2 and 3 are in good agreement. The peaks in experiment 3, made at room temperature, appear broadened compared to experiment 2, made at low temperature. Both the small height difference and broadening may be due to remaining multiple phonon scattering intensity. The peak positions for the MARI experiment are somewhat different, with shifts in \( E \) of the order of 1 meV. These shifts are partly due to differences between the asymmetric resolution functions of the two instruments (see figure 6-36). By comparing the resolution functions of the

<table>
<thead>
<tr>
<th></th>
<th>First Peak Position (meV)</th>
<th>Second Peak Position (meV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>( ^7\text{N} \text{Ge}^7\text{Se}_2 )</td>
<td>9.92(15)</td>
<td>25.97(15)</td>
</tr>
<tr>
<td>( ^70\text{Ge}^7\text{N} \text{Se}_2 )</td>
<td>11.88(15)</td>
<td>26.59(15)</td>
</tr>
<tr>
<td>( ^73\text{Ge}^76\text{Se}_2 )</td>
<td>10.22(15)</td>
<td>26.75(15)</td>
</tr>
<tr>
<td>“Silver Medal”</td>
<td>10.46(15)</td>
<td>26.55(15)</td>
</tr>
</tbody>
</table>

Table 6.6: The positions of the first two peaks in \( G_1(E) \) calculated in the “bronze medal” approximation for samples of \( ^7\text{N} \text{Ge}^7\text{Se}_2 \), \( ^70\text{Ge}^7\text{N} \text{Se}_2 \) and \( ^73\text{Ge}^76\text{Se}_2 \) as well as for the sum of the silver medal results \( G_1(E) = G_{Ge}(E) + G_{Se}(E) \) found using the SVD matrix. Values are given for experiments (exp.) 2 and 3 as well as for the MARI experiment described in chapter 5.
two instruments, a shift towards lower $E$ is expected in the MARI experiment, as is observed in the data.

![Graph](image)

**Figure 6-36:** The width of the elastic peak due to energy resolution broadening from the intensity measured for the monochromatic vanadium represented by $\int_{Q_{\text{min}}}^{Q_{\text{max}}} I(E) dQ$ for MERLIN (solid black line) and MARI (solid green line) at an incident energy of $\approx 60$ meV, where $Q_{\text{min}}$ and $Q_{\text{max}}$ are the minimum and maximum $Q$ values that can be measured.

Furthermore, for experiment 3 made at room temperature and the MARI experiment made at low temperature the feature in $G_1(E)$ between 30 and 45 meV appears to be split into two peaks at $\approx 34.36$ and $\approx 38.4$ meV but this is not apparent in experiment 2 made at low temperature. There are two features at similar positions observed in the infra-red spectrum of GeSe$\textsubscript{2}$ [155]. The MD simulations made by Giacomazzi et al. [35] indicate that this peak splitting may arise from a separation in energy of the stretching and bending type modes (see figure 6-39 and an explanation of the different modes below). The lack of this feature in the $G_1(E)$ functions found from experiment 2 may arise from intensity in this region from the can and cryostat that has not been fully subtracted. The intensity of this scattering is higher for experiment 2 compared to experiment 3 (see figure 6-15).

The $G_{\text{Se}}(E)$ functions found in the “silver medal” approximation using the SVD matrix for all three experiments are in remarkably good agreement (figure 6-31 (e)), with the exception of the apparent peak splitting between 30 and 45 meV mentioned above. While there is good agreement between both results obtained using the MERLIN spectrometer, the $G_{\text{Ge}}(E)$ functions found in the “silver medal” approximation using the SVD matrix for the MARI experiment has a much larger peak at $\approx 25$ meV (see figure 6-31 (d)). This appears to result from an unknown systematic error.

As was expected from the fact that Ge and Se of natural isotopic abundance have similar masses and scattering lengths, there was not much difference between $G_1(E)$ calculated in the “bronze medal” approximation for the sample of $^{74}\text{Ge}^{78}\text{Se}_2$ and $G_1(E) = G_{\text{Ge}}(E) + G_{\text{Se}}(E)$ calculated in the “silver medal” approximation using the SVD matrix (see figure 6-34a).
The features in the generalised vibrational density of states, $G_1(Q,E)$, calculated in the “bronze medal approximation” for samples of $^{70}\text{Ge}^{76}\text{Se}_2$, $^{73}\text{Ge}^{76}\text{Se}_2$ and the generalised partial vibrational density of states, $G_\alpha(Q,E)$, calculated in the “silver medal” approximation using the SVD matrix from experiments 2 and 3 are in good agreement with each other (see figures 6-24 to 6-26). The functions from the MARI experiment agree with those from the MERLIN experiment at $Q > 3 \text{ Å}^{-1}$ within the experimental error.

**Insights from the “silver medal” approximation**

In the “silver medal” approximation, it is assumed that the cross term $S_{\text{GeSe}}(Q,E)$ is zero (see section 2.2.4). In the “gold medal” approximation, where $S_{\text{GeSe}}(Q,E)$ is taken into explicit account, very accurate neutron spectroscopy measurements are required. Due to the complexity of the corrections, stability of the instruments and the very high levels of scattering that arise from the empty can measurement, it was not possible to obtain reliable results using the “gold medal” approximation in the current work. However, for $^{70}\text{Ge}^{76}\text{Se}_2$ the simulations have calculated the contribution that $S_{\text{GeSe}}(Q,E)$ makes to the final density of states, and it is found to be small [45] (see e.g. figure 6-19).

The results from the “silver medal” approximation show three bands of energy in the vibrational density of states (see figure 6-37). Below 21 meV the contributions to $G_1(E)$ from Ge and Se are weighted approximately by their atomic concentrations. From approximately 21 to 30 meV, Se atoms contribute almost exclusively, whereas above 30 meV the contributions from Ge and Se receive a roughly equally weighting. These three ranges correspond to 0 to 17 meV, 17 to 26 meV and 26 to 40 meV in the simulations.
Comparison with simulation data

Figures 6-32 and 6-33 show a systematic shift in $E$ between experiment and the MD simulations made by Giacomazzi et al. [35] for the $G_1(E)$ function calculated in the “bronze medal” approximation and for the $G_\alpha(E)$ functions calculated in the “silver medal” approximation. This shift is often seen in MD simulations [37, 177]. However, the features in the density of states are in agreement as shown in figure 6-38, where the $E$ axis for the simulated data has been scaled by a factor of 1.15 to bring the simulated data into better agreement with the experimental data.

One small area of disagreement between simulation and experiment is the presence in the experimental data of a peak at $\approx 25$ meV in $G_{Ge}(E)$. This feature is present in $G_{Ge}(E)$ calculated for all three measurements taken at $E_i \simeq 60$ meV (figure 6-31 (d)). In Raman and infrared scattering studies of GeSe$_2$ [157, 158, 160, 178, 179], separate peaks found at 24.944 and 27.151 meV are attributed to the symmetric stretching modes of corner and edge sharing tetrahedra, respectively. The potentials used for the MD simulations result in a fraction $N_{Ge(ES)}/N_{Ge(CS)} = 47\%$ where $N_{Ge(ES)}$ and $N_{Ge(CS)}$ are the number of edge and corner sharing tetrahedra in the glass, respectively [141]. The value of $N_{Ge(ES)}/N_{Ge(CS)}$ found from a neutron diffraction experiment made using the method of isotopic substitution, such that the full set of partial structure factors could be obtained, is 83(16) % [136, 139]. While the energy resolution in the present study does not allow two distinct peaks to be resolved, the presence of the small peak in $G_{Ge}(E)$ may result from a larger number of edge sharing tetrahedra when compared to simulations.
It is difficult to compare the $G_1(Q, E)$ functions for experiment and simulation on an absolute scale due to the systematic shift in $E$. However, qualitatively these functions agree for $G_1(Q, E)$ calculated for $^{28}\text{Ge}^{74}\text{Se}_2$ in the “bronze medal” approximation (see figure 6-27) and the partial $G_\alpha(Q, E)$ functions calculated in the “silver medal” approximation using the SVD matrix for both experiments 2 and 3 (see figure 6-28), within a scaling factor.

For the MD simulations, the motion of the Se atoms is further broken down into rocking, bending and stretching motions as shown in figure 6-39. Rocking motions

Figure 6-39: (top) Schematic of the bending, stretching and rocking motions, reproduced from ref. [180]. Open and filled circles represent Ge and Se atoms respectively. (bottom) The $G_{\text{Se}}(E)$ function from the MD simulations made by Giacomazzi et al. [35] (solid black curve) separated into contributions from rocking (solid green curve), bending (solid red curve) and stretching (solid blue curve) motions.

only contribute to the lower band where $E < 17$ meV (corresponding to $E < 21$ meV in the experimental data), while the middle band is due to stretching and bending motions having equal weightings. The upper band for $E > 25$ meV (corresponding to $E > 29$ meV in the experimental data) consists of two broad peaks at $\approx 26$ meV for stretching motions and $\approx 36$ meV for bending motions (corresponding to $\approx 34$ meV and $\approx 39$ meV in the experimental data, respectively). This view is supported by the peak assignments from Raman and infrared experiments [155]. Here, the bending direction is taken along the bisector of the Ge-Se-Ge angle, the rocking direction is normal to the Ge-Se-Ge bridge and the stretching direction is orthogonal to the previous two as illustrated in the top of figure 6-39.
Comparison with other experiments

The $G_1(E)$ function calculated in the “bronze medal” approximation using the sample of $^N$Ge$^N$Se$_2$ is in good agreement, within the resolution broadening, with other available neutron scattering experiments made by Walter et al. [51], Sinclair et al. [164] and Cappelletti et al. [130] (see figure 6-30).

The measured vibrational density of states, with an interpretation provided by the simulations of Giacomazzi et al. [35], is consistent with the other bands identified in Raman spectra [134] that are centred on 17.98, 22.32 and 30.62 meV. These are assigned to Se bending, the Ge-Ge bond and Se stretching motions, respectively. The vibrational density of states in the present study was not measured with a high enough resolution to observe these features as sharp peaks as has been seen in other neutron scattering studies [155].

6.8 Conclusion

The total dynamical structure factors have been successfully measured for samples of $^N$Ge$^N$Se$_2$, $^{70}$Ge$^N$Se$_2$ and $^{73}$Ge$^{76}$Se$_2$ in two different experiments. Further measurements were made at an incident energy of 29.9(1) meV to obtain the elastic scattering at higher resolution for the $^N$Ge$^N$Se$_2$ sample. These measurements were used to find the mean squared displacement as a function of temperature by comparing the total and elastic scattering as described in section 6.3.5 at temperatures between 10 K and 280 K. The mean squared displacement increases from 0.006(3) to 0.0375(60) Å$^2$, while the first peak position shifts from 10.31(10) to 10.70(10) meV as the temperature increases from 10 to 280 K.

The method for estimating the multiple scattering was successfully implemented, with results that agree with expectations for the low temperature measurement. The method for calculating the multiple phonon scattering described in section 4.1.4 was successfully used for both the low and room temperature (292 K) data as judged by good agreement between both datasets after the correction was made (see figure 6-31). In the case of the room temperature measurements, multiple phonon scattering was very large.

The results were of good enough precision for the “silver medal” approximation to be used to calculate the partial vibrational density of states in each case. The results for MERLIN experiments 2 and 3 and the MARI experiment are in good agreement with each other, and the calculation of $G_1(E)$ in the “bronze medal” approximation for $^N$Ge$^N$Se$_2$ is in good agreement with the experimental data taken from refs [51, 130, 164] and the simulations taken from ref. [35]. The results from the “silver medal”
approximation are in good agreement with the simulated data, within a shift in $E$.

The current study shows that the density of states features two peaks at $\approx 9.8$ and $\approx 26.5$ meV, and a broad feature above 34 meV. The first peak has contributions from Ge and Se atoms roughly weighted by their atomic concentrations, the second peak has contributions mostly from Se while the third region has roughly equal contributions from Ge and Se. With the aid of the simulations, these regions were associated with local rocking, bending and stretching motions of the Se atoms in tetrahedral structural motifs.
7. Vibrational Density of States of GeO$_2$ Glass Using the MARI Spectrometer

7.1 Introduction

As discussed in chapter 5, the development of models for glassy materials depends on good experimental data with which to test their accuracy. For the GeSe$_2$ system investigated in chapters 5 and 6, the extreme incoherent approximation was valid for the natural isotopic abundance. In the case where the masses and scattering lengths are different, $G_1(E)$ calculated in this way can deviate significantly from the true density of states $Z(E)$ [181]. For example, in the case of SiO$_2$, the difference is as much as 20% of the measured density of states [182]. It is therefore necessary to either combine simulations with experimental data to modify the measured density of states (as discussed in [181, 182]) or to measure the full partial vibrational density of states as discussed in section 2.2.3. For the latter, the method of isotope substitution in neutron spectroscopy can be used.

GeO$_2$ glass fulfills the conditions whereby both chemical species of natural isotopic abundance have different scattering lengths and masses. The $^N$Ge and O coherent scattering lengths are 8.185(20) and 5.803(4) fm [113], while their atomic weights are 72.64 and 15.9995 g, respectively, where $N$ denotes the natural isotopic abundance. However, there is a large scattering length contrast between the Ge isotopes, where $b(^{70}$Ge) and $b(^{73}$Ge) are 10.0(1) and 5.02(4) fm, respectively. This makes GeO$_2$ a good candidate for isotope substitution experiments, such as the successful neutron diffraction experiments described in refs. [175, 183].

GeO$_2$ is part of a family of archetypical strong network glass forming systems which includes SiO$_2$ and BeF$_2$ [184]. Many models have been used to simulate the properties of these glasses [36, 37, 44, 131, 162, 185, 190]. Data are also available for the differential scattering cross sections of $^N$GeO$_2$, $^{70}$GeO$_2$ and $^{73}$GeO$_2$ [175] and for the
vibrational density of states of $^N\text{GeO}_2$ in the extreme incoherent (“bronze medal”) approximation [191, 192]. The partial vibrational density of states would, therefore, provide additional information to test the simulations and help in analysing previous experimental results.

In this chapter, the method of isotope substitution in neutron spectroscopy is used to measure the partial vibrational density of states of GeO$_2$ in the “silver medal” approximation. Using the MARI spectrometer (see section 3.2.1), two experiments were done, the first using an incident neutron energy of 48.3 meV and the second using an incident neutron energy of 173.6 meV. In the first experiment, the resolution of the elastic line was good enough that an estimate of the elastic differential scattering cross section could be obtained. This was used to calculate the Debye-Waller factor. In the second experiment, the vibrational density of states of GeO$_2$ was obtained over its full range using the Debye-Waller factor that was found in the first experiment.

The chapter is organised as follows. In section 7.2 the experimental procedure is presented. In section 7.3 the results of the experiment done using an incident neutron energy of 48.3 meV are presented and the Debye-Waller factor is calculated. In section 7.4 the data analysis procedure for the experiment done using an incident neutron energy of 173.6 meV is given, where at each stage the total vibrational density of states $G(E)$ is calculated within the extreme incoherent (“bronze medal”) approximation and the results are presented before and after each correction to show their effect. Corrections are made for the empty can scattering including beam attenuation and intensity renormalisation (section 7.4.3), multiple scattering (section 7.4.4), and multiple phonon scattering (section 7.4.5). The matrices used to calculate the partial dynamical structure factors are presented in section 7.5.

In section 7.6 the results are given in the “bronze medal” and “silver medal” approximations. They are compared with the ab initio simulations made using a GGA functional for GeO$_2$ by Giacomazzi et al. [36, 37, 44] (model I from ref. [36]) as well as the classical MD simulations of Marrocchelli et al. [38], where a dipole-polarizable-ion model [193, 194] was used. Finally the efficacy of the experimental and data analysis procedures is discussed in section 7.7 and conclusions are drawn in section 7.8.

### 7.2 Experimental Method

#### 7.2.1 Sample Preparation

Three isotopically enriched glassy samples were prepared in an identical way. Approximately 2 g of $^N\text{GeO}_2$ (99.9999 %, Alfa Aesar), $^{70}\text{GeO}_2$ (with a Ge isotopic abundance of 97.71 % $^{70}\text{Ge}$, 2.23 % $^{72}\text{Ge}$, 0.02 % $^{73}\text{Ge}$, 0.03 % $^{74}\text{Ge}$, 0.01 % $^{76}\text{Ge}$, Isoflex) or
The isotope abundance of $^{73}\text{GeO}_2$ contains $0.04\%$ $^{70}\text{Ge}$, $2.84\%$ $^{72}\text{Ge}$, $96.07\%$ $^{73}\text{Ge}$, $1.03\%$ $^{74}\text{Ge}$, $0.02\%$ $^{76}\text{Ge}$, Isoflex) powder was dried in a Pt (10\% Rh) crucible for 2 h at 200°C. The powder was then melted in air at 1400°C for 30 min after which the crucible was placed on a liquid nitrogen cooled brass block and doused with liquid nitrogen. The crucible was subsequently warmed to room temperature using a heat gun, to avoid condensation of atmospheric water, and the clear glass was then removed as large shards (with a small surface area) and stored in an Ar filled glovebox to prevent contamination by atmospheric water.

For each experiment, the large shards of GeO$_2$ glass were placed in a He glovebox, ground into a coarse powder using a mortar and pestle, and then loaded into or unloaded from aluminium foil packets. After use in each experiment (where all experiments were done under vacuum or a He atmosphere), the samples were sealed in glass bottles in an argon filled glovebox and placed inside a bomb. Any contamination by water could lead to a change in e.g. the diffraction patterns.

The properties of the isotopically enriched samples that are relevant to the present neutron scattering experiments are given in Table 7.1. It is assumed that the samples have a number density equal to the room temperature value for the $^N\text{GeO}_2$ sample, which is $0.0629(1)\ \text{Å}^{-3}$ [173].

<table>
<thead>
<tr>
<th></th>
<th>$^N\text{GeO}_2$</th>
<th>$^{70}\text{GeO}_2$</th>
<th>$^{73}\text{GeO}_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{M}$ (g)</td>
<td>34.8629</td>
<td>33.9900</td>
<td>34.9678</td>
</tr>
<tr>
<td>$M_{\text{Ge}}$ (g)</td>
<td>72.5900</td>
<td>69.9712</td>
<td>72.9047</td>
</tr>
<tr>
<td>$M_{\text{O}}$ (g)</td>
<td>15.9994</td>
<td>15.9994</td>
<td>15.9994</td>
</tr>
<tr>
<td>$\langle \bar{b}^2 \rangle$ (barn)</td>
<td>0.4478(11)</td>
<td>0.5560(7)</td>
<td>0.3128(14)</td>
</tr>
<tr>
<td>$\bar{b}_{\text{Ge}}$ (fm)</td>
<td>8.185(2)</td>
<td>9.965(10)</td>
<td>5.15(4)</td>
</tr>
<tr>
<td>$\bar{b}_{\text{O}}$ (fm)</td>
<td>5.803(4)</td>
<td>5.803(4)</td>
<td>5.803(4)</td>
</tr>
</tbody>
</table>

Table 7.1: Specific parameters for the isotopically enriched samples that were measured using the MARI spectrometer at the ISIS pulsed neutron source where $\bar{M}$ is the average atomic mass for the sample, $M_\alpha$ is the average atomic mass of an atom of chemical species $\alpha$, $\bar{b}_\alpha$ is the average coherent scattering length of chemical species $\alpha$ and $\langle \bar{b}^2 \rangle = \sum c_\alpha\bar{b}_\alpha^2$ is the mean square coherent scattering length. The scattering lengths were calculated using the values taken from reference [113]. $N$ denotes the natural isotopic abundance.

### 7.2.2 Neutron Spectroscopy Measurements

Two experiments (summarised in Table 7.2) were done on the MARI spectrometer at the ISIS Pulsed Neutron Source in Didcot (see section 3.2.1). The first experiment was done using neutrons with an incident energy of 48.3(1) meV selected by a Fermi chopper spinning at a frequency of 200 Hz and the second experiment was done using neutrons...
with an incident energy of 173.6(1) meV selected by a Fermi chopper spinning with a frequency of 350 Hz. In both experiments, a “Gd” type Fermi chopper was used. This transmits a high intensity of neutrons with low energy resolution and selects an almost monochromatic incident beam of neutrons centred on the incident neutron energy. For this configuration, the MCHOP software [168] was used to give the estimated incident neutron flux and full width at half maximum (FWHM) in energy of the elastic line given in table 7.2. The energy resolution and detector coverage of the spectrometer under these conditions is shown in figure 7-1 for the measurements made with $E_i = 48.3$ meV and in figure 7-2 for the measurements made with $E_i = 173.6$ meV. The samples

<table>
<thead>
<tr>
<th>Label</th>
<th>Experiment 1</th>
<th>Experiment 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incident energy (meV)</td>
<td>48.3(1)</td>
<td>173.6(1)</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Fermi chopper freq. (Hz)</td>
<td>200</td>
<td>350</td>
</tr>
<tr>
<td>Est. incident flux (n s$^{-1}$)</td>
<td>9040</td>
<td>11405</td>
</tr>
<tr>
<td>Est. FWHM of elastic line (meV)</td>
<td>1.94</td>
<td>7.57</td>
</tr>
</tbody>
</table>

Table 7.2: Instrument configurations for the MARI spectrometer used for experiments 1 and 2. The FWHM of the elastic line and incident flux were estimated using the MCHOP [168] software.

Figure 7-1: (a) The kinematically allowed region and (b) the energy resolution full width at half maximum (FWHM) calculated using the MCHOP program [168] for the GeO$_2$ experiment done using the MARI spectrometer using an incident energy of 48.3(1) meV and Fermi chopper frequency of 200 Hz. In (a) the accessible $Q$-$E$ space is shaded in grey i.e. there are gaps between the different detector groups (see section 3.2.1).

(masses given in table 7.3) were loaded in the same way as in the experiment described in section 5.2.2. The GeO$_2$ powder was loaded into packets made from 0.013(1) mm thick aluminium foil in a He filled glovebox. Each loaded sample was wrapped around
Figure 7-2: (a) The kinematically allowed region and (b) the energy resolution full width at half maximum (FWHM) calculated using the MCHOP program [168] for the GeO$_2$ experiment done using the MARI spectrometer using an incident energy of 173.6(1) meV and Fermi chopper frequency of 350 Hz. In (a) the accessible $Q$-$E$ space is shaded in grey i.e. there are gaps between the different detector groups (see section 3.2.1).

Table 7.3: The mass of sample used together with the charge of protons that was incident on the spallation target during each measurement made using neutrons with an incident energy of 173.6(1) meV. The latter is proportional to the number of neutrons that were incident on the sample during that measurement. The $^{75}$GeO$_2$ sample and Empty Can A were also used in the first experiment done using an incident energy of 48.3 meV.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sample Mass (g)</th>
<th>Proton Charge ($\mu$A h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{75}$GeO$_2$</td>
<td>3.8298(1)</td>
<td>4512.9</td>
</tr>
<tr>
<td>$^{70}$GeO$_2$</td>
<td>1.9181(1)</td>
<td>6353.4</td>
</tr>
<tr>
<td>$^{73}$GeO$_2$</td>
<td>1.9318(1)</td>
<td>5026</td>
</tr>
<tr>
<td>Empty Can A</td>
<td>N/A</td>
<td>3884.5</td>
</tr>
<tr>
<td>Empty Can B</td>
<td>N/A</td>
<td>4768.8</td>
</tr>
</tbody>
</table>
the inside surface of a cylindrical aluminium can of thickness 0.10(1) mm and diameter of 42 mm to form an annular sample geometry. A 1 mm thick cadmium plate was used to cover the top of the can and provide shielding. The can was then attached to a “candle stick” and the assembly was placed into a CCR in the neutron beam. The CCR was purged with He gas three times, then a pressure of 26 mbar of He gas was let into the sample chamber for heat exchange with the CCR. The samples were cooled to 10(1) K. The incident beam profile was square with a height of 35.0 mm and width of 50.0 mm centred on the foil packet such that the entire sample was illuminated by neutrons.

Using an incident neutron energy of 48.3(1) meV, two measurements were taken under identical conditions for a sample of $^{32}$GeO$_2$ in an aluminium foil packet and an empty Al foil packet for a period of time until a proton charge of 2780 or 2098.3 $\mu$A h were reached, respectively. A further measurement for a short amount of time was made at room temperature using vanadium.

Due to practical difficulties, two experiments (A and B) had to be made at different times for the measurements using an incident neutron energy of 173.6(1) meV. In experiment A, three measurements were made for a sample of $^{32}$GeO$_2$ in an Al foil packet and an empty foil packet in can A; and vanadium. The sample and empty can used in experiment A were the same as those used in experiment 1. In experiment B, four measurements were made under identical conditions for samples of $^{70}$GeO$_2$, and $^{73}$GeO$_2$ in an Al foil packet, an empty Al foil packet in can B and vanadium. Both experiments, made at an incident energy of 173.6(1) meV, are hereafter treated as a single experiment, where the corrections for $^{32}$GeO$_2$ are made using empty can A and vanadium measurement A, and the corrections for $^{70}$GeO$_2$ and $^{73}$GeO$_2$ are made using empty can B and vanadium measurement B. The different measurements are summarised in table 7.3.

A further measurement was made using a solid annular vanadium sample at room temperature for detector calibration using an incident beam containing a wide range of neutron energies (i.e. a so-called white beam).

7.3 The Debye-Waller Factor

The Debye-Waller factor was found from experiment 1, which was made using an incident neutron energy of 48.3(1) meV. In these measurements, the resolution function broadened elastic peak is sharper and thus there is a smaller contribution from inelastic scattering.
7.3.1 Width of the Elastic Line

The elastic line resolution broadening is described in section 5.3.1. Figure 7-3 shows, for the vanadium sample, the broadening of the elastic line due to the effect of the energy resolution function of the instrument for an incident energy of 48.3(1) meV. A range of $-7 \leq E \leq 6$ meV was selected by eye to define the extent of the elastic line where the limits are shown in figure 7-3 as dotted lines. An assumption is made that all of the scattering inside this range is elastic. Therefore, an integral over this peak will represent the elastic differential scattering cross section.

![Figure 7-3: The width of the elastic line due to energy resolution broadening from the monochromatic vanadium measurement represented by the function \( \int_{Q_{\text{min}}}^{Q_{\text{max}}} I_{V}(Q,E) \, dQ \) where, for each value of \( E \), \( Q_{\text{min}} \) and \( Q_{\text{max}} \) are the minimum and maximum \( Q \) values that can be measured. Dotted lines indicate the energy transfer range for which the measured intensity is mostly elastic. The data have been normalised such that the integral under the curve is unity.](image)

7.3.2 Background Subtraction with Attenuation Correction and Renormalisation

The normalised sample-in-can scattered intensity \( I_{\text{sc}}^{E}(Q,E) \) and empty can scattered intensity \( I_{E}^{E}(Q,E) \) were measured for the $^{N}\text{GeO}_2$ sample. The scattered intensity for the sample \( I_{s}(Q,E) \) was found by using equation (4.6) which, for convenience, is rewritten here:

\[
I_{s}(Q,E) = \frac{m}{A_{\text{sc,sc}}(Q,E)} \left( I_{\text{sc}}^{E}(Q,E) - I_{E}^{E}(Q,E) \right),
\]

where \( A_{\text{sc,sc}}(Q,E) \) is the attenuation coefficient (figure 7-4) found by treating the sample-in-can as a single annular sample with effective parameters for $^{N}\text{GeO}_2$ given
The Debye-Waller Factor

in table 7.4 and \( m \) is a renormalisation constant.

\[
\begin{array}{c|c|c|c|c|c}
Q (\text{Å}^{-1}) & 0 & 2 & 4 & 6 & 8 \\
\hline
0.940 & 0.942 & 0.944 & 0.946 & 0.948 & 0.950 \\
\end{array}
\]

(a) Q Dependence

\[
\begin{array}{c|c|c|c|c|c}
E (\text{meV}) & 0 & 5 & 10 & 15 & 20 \\
\hline
0.940 & 0.942 & 0.944 & 0.946 & 0.948 & 0.950 \\
\end{array}
\]

(b) E Dependence

Figure 7-4: The attenuation coefficients \( A_{SC, SC}(Q, E) \) for a sample of \( ^{N}\text{GeO}_2 \) averaged (a) over energies between 0 and 30 meV and (b) over all \( Q \) values. The coefficients were calculated using the parameters for \( ^{N}\text{GeO}_2 \) given in table 7.4.

At low \( Q \), the effect of the Debye-Waller factor is small and \( d\sigma /d\Omega \mid_{el} \approx d\sigma /d\Omega \). Therefore, \( m \) was chosen by eye such that the first peak in \( d\sigma /d\Omega \mid_{el} = \int_{E_{\text{min}}}^{E_{\text{max}}} I_s(Q, E)dE \) at \( Q \approx 1.5 \text{ Å}^{-1} \) agreed with \( d\sigma /d\Omega \) from a diffraction experiment made on the D4C diffractometer at the Institut Laue-Langevin (ILL) by Salmon et al. [175], where \( E_{\text{min}} \) and \( E_{\text{max}} \) are -7 and 6 meV, respectively (see figure 7-5). The value of \( m \) thus obtained is 0.99. There are still Al Bragg peaks present in \( I_s(Q, E) \), although the effect is not as bad as found for the GeSe\(_2\) samples described in section 5.3.3.

Figure 7-5: The elastic differential scattering cross section \( d\sigma /d\Omega \mid_{el} \) for a sample of \( ^{N}\text{GeO}_2 \) calculated for the sample-in-can \( \int_{E_{\text{min}}}^{E_{\text{max}}} I_{SC}^{E}(Q, E)dE \) (solid red curve), empty can \( \int_{E_{\text{min}}}^{E_{\text{max}}} I_{c}^{E}(Q, E)dE \) (solid blue curve) and corrected sample \( \int_{E_{\text{min}}}^{E_{\text{max}}} I_s(Q, E)dE \) (solid black curve) intensities, where \( E_{\text{min}} \) and \( E_{\text{max}} \) are -7 and 6 meV, respectively. The datasets are compared to the total scattering cross section \( d\sigma /d\Omega = F(Q) + \sigma_{\text{self}} /4\pi \) (broken green curve).
7.3.3 Fitting the Debye-Waller Factor

In equation (2.62) the $F(Q)$ function deduced from the elastic scattering is given by

$$F(Q) = \frac{d\sigma}{d\Omega} \bigg|_{\text{el}} - e^{-2W(Q)} \sum_{\alpha} c_\alpha (b_\alpha^2 + b_{\text{inc,}\alpha}^2),$$  \hspace{1cm} (7.2)$$

where $\sum_{\alpha=1}^{n} c_\alpha (b_\alpha^2 + b_{\text{inc,}\alpha}^2) = 0.4526$ barn is the self scattering limit. $W(Q)$ was chosen such that $F(Q)$ given by equation (7.2) and $F(Q)$ from a diffraction experiment made by Salmon et al. [63] were in as close agreement as possible at high $Q$ (see figure 7-6). The Debye-Waller factor thus found gave $2W(Q)/Q^2 = \left< u^2 \right>/3 = 0.0015(10)$ Å$^2$. In

Figure 7-6: The $F(Q)$ functions for $^N$GeO$_2$ calculated using $F(Q) = \int_{E_{\text{min}}}^{E_{\text{max}}} I_s(Q,E) dE - \sum_{\alpha} c_\alpha (b_\alpha^2 + b_{\text{inc,}\alpha}^2)$ (solid red curve), $F(Q) = \int_{E_{\text{min}}}^{E_{\text{max}}} I_s(Q,E) dE - \sum_{\alpha} c_\alpha (b_\alpha^2 + b_{\text{inc,}\alpha}^2) \exp (-2W(Q))$ (solid black curve) and from the diffraction experiment by Salmon et al. [175] (solid green curve), where $E_{\text{min}}$ and $E_{\text{max}}$ are -7 and 6 meV, respectively, while $W(Q) = Q^2 \left< u^2 \right>/3$ with $\left< u^2 \right>/3$ given in table 6.4.

Figure 7-7: The value for $\left< u^2 \right>/3$ is plotted together with values of $\left< u^2 \right>/3$ for Ge and O in GeO$_2$ as found from the ab initio MD simulations made by Giacomazzi et al. [34].

Figure 7-7: Temperature dependence of the mean squared displacement $\left< u^2 \right>/3$ found for Ge (dashed line) and O (dotted line) from ab initio MD simulations by Giacomazzi et al. [34] compared to the average $\left< u^2 \right>/3$ value found in the current work (closed red square).
7.4 The Vibrational Density of States of GeO\textsubscript{2}

Data taken at the incident energy of 173.6 meV were used to find the vibrational density of states of GeO\textsubscript{2}. The data analysis procedure for these measurements follows the general correction procedure described in section 4.1.

7.4.1 Width of the Elastic Line

The width of the elastic line is discussed in section 5.3.1. Figure 7-8a shows, for a vanadium sample, the broadening of the elastic line due to the effect of the energy resolution of the instrument. A range of $-20 \leq E \leq 16$ meV was selected by eye to define the extent of the elastic line where the limits are shown in figure 7-8a as dotted lines. Outside of this range, scattering is deemed to be fully inelastic. The range is

![Figure 7-8: (a) The width due to energy resolution broadening of the elastic peak from the monochromatic vanadium measurement as represented by the function $\int_{Q_{\text{min}}}^{Q_{\text{max}}} I_{\text{V}}(Q, E) \, dQ$, where for each value of $E$, $Q_{\text{min}}$ and $Q_{\text{max}}$ are the minimum and maximum $Q$ values that can be measured (solid black curve) or $Q_{\text{max}}$ is fixed at 6 Å\textsuperscript{-1} (solid green curve) to show how the inelastic scattering increases with $Q$ value. Dotted lines indicate the energy transfer range for which the scattered intensity is mostly elastic at all $Q$ values. Data have been normalised such that the integral under the curve is unity. (b) The $Q$ dependence of the FWHM of the elastic line (E.L.) found empirically from the monochromatic vanadium measurement.](image-url)

harder to distinguish at this incident energy than in the experiments made at lower incident energies (e.g. section 7.3.1) because inelastic scattering from the vanadium is larger. This arises from the higher values of $Q$ that are accessible (up to $\approx 16$ Å\textsuperscript{-1}), where the inelastic scattering has a $Q^2$ dependence (see section 2.2.1).

The range over which the elastic line is broadened is dependent on $Q$. The FWHM of the elastic line found empirically using the monochromatic measurement on the vanadium sample are shown in figure 7-8b. The FWHM increases from 11.7(10) to 17.1(10) meV over the range in $Q$ from 1.5 to 14 Å\textsuperscript{-1}. These values differ significantly from that found using the MCHOP software [168] of 7.75 meV.
7.4.2 Bose-Einstein Occupation Factor

The Bose-Einstein occupation factor was calculated using equation (2.14) for the experimental temperature of 10 K and is given in figure 7-9. The plot shows that inelastic scattering for \( E < 0 \) will be very small such that only inelastic scattering for \( E > 0 \) will be considered.

\[
\langle n(E) + 1 \rangle
\]

\( E \) (meV)

\[
\begin{align*}
-175 & \quad 1.0 \\
-150 & \quad 0.5 \\
-125 & \quad 0.0 \\
-100 & \quad -0.5 \\
-75 & \quad -1.0 \\
-50 & \quad -1.5 \\
-25 & \quad -2.0
\end{align*}
\]

Figure 7-9: The Bose-Einstein occupation factor calculated using equation (2.14) for a temperature of 10 K.

7.4.3 Background Subtraction with Attenuation Corrections and Renormalisation

The normalised sample-in-can scattered intensity \( I_{sc}^{E}(Q,E) \) and empty can scattered intensity \( I_{c}^{E}(Q,E) \) were measured for each sample. The scattered intensity \( I_s(Q,E) \) for each sample was calculated by using equation (7.1), where the attenuation coefficients \( A_{sc,sc}(Q,E) \) (figure 7-10) were found by treating the sample-in-can as a single annular sample with effective parameters given in table 7.4 and the renormalisation constant \( m \) was found to be 0.96, 0.93 or 1.03 for the measurements on \( ^{74}\text{GeO}_2 \), \( ^{70}\text{GeO}_2 \) and \( ^{73}\text{GeO}_2 \), respectively. In figure 7-11 integrals of intensities are given for the sample-in-

<table>
<thead>
<tr>
<th></th>
<th>( ^{74}\text{GeO}_2 )</th>
<th>( ^{70}\text{GeO}_2 )</th>
<th>( ^{73}\text{GeO}_2 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner Radius (cm)</td>
<td>2.065</td>
<td>2.0736</td>
<td>2.0739</td>
</tr>
<tr>
<td>Outer Radius (cm)</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>Eff. Number Density (Å(^{-3}))</td>
<td>0.0620</td>
<td>0.0616</td>
<td>0.0615</td>
</tr>
<tr>
<td>Eff. Total Scattering Cross Section (barn)</td>
<td>4.24(1)</td>
<td>4.21(5)</td>
<td>2.94(5)</td>
</tr>
<tr>
<td>Eff. Abs. Cross Section at 2200 ms(^{-1}) (barn)</td>
<td>0.560(9)</td>
<td>0.602(3)</td>
<td>2.48(6)</td>
</tr>
</tbody>
</table>

Table 7.4: Parameters used to calculate \( A_{sc,sc}(Q,E) \). The parameters for each pseudo sample were calculated using neutron scattering and absorption cross sections taken from ref. [113], a GeO\(_2\) number density of 0.0629 Å\(^{-3}\) [195] and an Al number density of 0.06026 Å\(^{-3}\) [165].

can measurement \( \int_{E_{\text{min}}}^{E_{\text{max}}} I_{sc}^{E}(Q,E) dE \), empty can measurement \( \int_{E_{\text{min}}}^{E_{\text{max}}} I_{c}^{E}(Q,E) dE \) and
7.4 The Vibrational Density of States of GeO$_2$

![Graph of Q Dependence and E Dependence](image)

**Figure 7-10**: The attenuation coefficients $A_{sc,sc}(Q,E)$ for samples of $^N$GeO$_2$ (solid black curve), $^{70}$GeO$_2$ (solid red curve) and $^{73}$GeO$_2$ (solid green curve) averaged (a) over energies between 0 and 145 meV or (b) over all $Q$ values. The coefficients were calculated using the parameters taken from Table 7.4. The maximum energy for the vibrational density of states is $\sim$ 150 meV (see e.g. figure 7-14).

Corrected sample scattering $\int_{E_{\text{min}}}^{E_{\text{max}}} I_s(Q,E) dE$, where $E_{\text{min}}$ and $E_{\text{max}}$ are the minimum ($\geq -150$ meV) and maximum ($\leq 150$ meV) energies which were measured at a given $Q$ value. These integrals represent the differential scattering cross sections and are presented to show the effect that scattering from the can has on the sample-in-can measurements. The differential scattering cross sections from Salmon et al. [175] that were used to find $m$ are also plotted in figure 7-11. Some Al Bragg peaks remain in $I_s(Q,E)$. The effect of the background, attenuation and renormalisation corrections on the $G(E)$ function is shown in figure 7-12 for the $^N$GeO$_2$ sample where the appropriate values for $^N$GeO$_2$ have been taken from Table 7.4 and used in equation (2.45).

### 7.4.4 Multiple Scattering Correction

The approximate method used to calculate the multiple scattering contributions to the inelastic part of the $I_s(Q,E)$ functions is given in section 4.1.3. The incoherent approximation given by $I_s(Q,E) = I_{\text{ms}}(E) + B(E)Q^2 \exp(-2W(Q))$ (equation (4.7)) could not be fitted directly to the $I_s(Q,E)$ functions at each measured $E$ value due to a large statistical error. As explained in section 6.4.4, the multiple scattering contribution to $G(E)$ for cold samples roughly follows the density of states. Therefore, for the multiple scattering contribution, $I_{\text{ms}}(E)$ was estimated by using the expression

$$I_{\text{ms}}(E) = C_{\text{ms}}G_{\text{uncor}}(E)\frac{\langle n(E) + 1 \rangle}{E}, \quad (7.3)$$
Figure 7-11: The differential scattering cross section $d\sigma/d\Omega$ for samples of (a) $^7\text{GeO}_2$, (b) $^{70}\text{GeO}_2$ and (c) $^{73}\text{GeO}_2$ calculated using the sample-in-can $\int_{E_{\text{min}}}^{E_{\text{max}}} I_{\text{sc}}^E(Q,E)dE$ (solid red curve), empty can $\int_{E_{\text{min}}}^{E_{\text{max}}} I_{\text{c}}^E(Q,E)dE$ (solid blue curve), and corrected sample $\int_{E_{\text{min}}}^{E_{\text{max}}} I_{s}^E(Q,E)dE$ (solid black curve) intensities, where $E_{\text{min}}$ and $E_{\text{max}}$ are the minimum ($\geq -150$ meV) and maximum ($\leq 150$ meV) energies that were measured at a given $Q$ value. Also plotted is $d\sigma/d\Omega = F(Q) + \sigma_{\text{self}}/4\pi$ from the diffraction experiment by Salmon et al. [175] (solid green curve).

Figure 7-12: $G(E)$ for the $^7\text{GeO}_2$ sample calculated in the “bronze medal” approximation from $I_{\text{sc}}^E(Q,E)$ for the sample-in-can (solid red curve), from $I_{\text{c}}^E(Q,E)$ for the empty can (solid green curve), and from $I_{s}(Q,E)$ for the sample after correction for the empty can scattering, attenuation and renormalisation (solid black curve). No correction for the multiple scattering or multiple phonon scattering has been applied.
where \( G_{uncor}(E) \) is the density of states calculated without the correction for multiple scattering or multiple phonon scattering and \( C_{ms} \) is a constant which was selected using the method described in section 5.3.4. The fits to the \( I_s(Q, E) \) functions were compared to the \( I_s(Q, E) \) functions by integrating over several broad ranges in \( E \), an example of which is given in figure 7-13.

The coherent dynamical structure factor is given by

\[
S_c(Q, E) = I_s(Q, E) - I_{ms}(E)
\]

(see equation (4.9)). Using equations (2.44) and (2.45) for the “bronze medal” approximation, the \( G(E) \) functions that were calculated for the three samples using the appropriate values from table 7.1 and either \( I_s(Q, E) \), \( S_c(Q, E) \) or \( I_{ms}(E) \) are given in figure 7-14.

**Figure 7-13:** \( I_s(Q, E) \) for the \( ^{70}\text{GeO}_2 \) sample (solid black curve) and a fit to the data using \( I_s(Q, E) = I_{ms}(E) + B(E)Q^2 \exp(-2W(Q)) \) (solid red curve), where \( I_{ms}(E) \) is defined in equation (7.3). To improve the statistics, the functions have been integrated over the energy transfer range from 60 to 80 meV.

**Figure 7-14:** \( G(E) \) calculated in the “bronze medal” approximation for samples of (a) \( ^N\text{GeO}_2 \), (b) \( ^{70}\text{GeO}_2 \) or (c) \( ^{73}\text{GeO}_2 \) using \( I_s(Q, E) \) (solid red curve), \( I_{ms}(E) \) (solid blue curve), or \( S_c(Q, E) = I_s(Q, E) - I_{ms}(E) \) (solid black curve) and the values taken from table 7.1.
7.4.5 Multiple Phonon Correction

To assist in the calculation of the multiple phonon corrections, \( G(E) \) was calculated from \( S_c(Q,E) \) using equations (2.44) and (2.45) with the appropriate values given in table 7.1. The Debye model [172] was used in the region which could not be measured (below 16 meV) due to broadening of the elastic scattered intensity. In the Debye model, \( G(E) \propto E^2 \) and the constant of proportionality was chosen such that the Debye model fit coincided with the first measured data point beyond the region of the elastic peak.

The multiple phonon correction, \( S_{mp}(Q,E) \), was then calculated up to the 5th phonon term using the method described in section 4.1.4. The vibrational density of states calculated from \( S_c(Q,E) \) without the multiple phonon correction \( G(E) \), the multiple phonon contribution to the vibrational density of states \( G_{mp}(E) \) and the single phonon vibrational density of states \( G_1(E) = G(E) - G_{mp}(E) \) are plotted in figure 7-15. The single phonon dynamical structure factor was found from the expression \( S_1(Q,E) = S_c(Q,E) - S_{mp}(Q,E) \) (equation (4.22)). An example of the dynamical structure factor thus obtained is given in figure 7-16 for the \(^{70}\text{GeO}_2\) sample, where \( S_c(Q,E) \), \( S_1(Q,E) \) and \( S_{mp}(Q,E) \) are integrated over two energy transfer ranges of (a) 20 to 40 meV or (b) 100 to 130 meV. In all cases the empty can, attenuation, renormalisation and multiple
scattering corrections have been made.

\[ \int_{40}^{20} S(Q,E) \, dE \, (\text{barn}) \]
\[ Q / s_{32} / s_{40} / s_{197} / s_{45} / s_{49} / s_{41} \]

\[ 20 \text{ to } 40 \text{ meV} \]
\[ 100 \text{ to } 130 \text{ meV} \]

Figure 7.16: The \( S_c(Q,E) \) function (solid red curve), the multiple phonon contribution \( S_{mp}(Q,E) \) (solid blue curve) and the single phonon contribution calculated using \( S_1(Q,E) = S_c(Q,E) - S_{mp}(Q,E) \) (solid black curve) for the \(^{73}\)GeO\(_2\) sample, where each function has been integrated over an energy transfer range of (a) 20 to 40 meV or (b) 100 to 130 meV. In all cases the empty can, attenuation, renormalisation and multiple scattering corrections have been made.

### 7.5 “Silver Medal” Calculations

Once the data had been fully corrected, the “silver medal” results were calculated. Three different matrices were used as described in section 2.2.4 where, using the values given in table 7.1 for the \(^N\)GeO\(_2\) and \(^{70}\)GeO\(_2\) samples

\[
\begin{pmatrix}
S'_{\text{GeGe}}(Q,E) \\
S'_{\text{OO}}(Q,E)
\end{pmatrix} =
\begin{pmatrix}
-201.5221 & 201.5221 \\
135.8768 & -88.3653
\end{pmatrix}
\begin{pmatrix}
N S_1(Q,E) \\
70 S_1(Q,E)
\end{pmatrix},
\]

(7.4)

for the \(^N\)GeO\(_2\) and \(^{73}\)GeO\(_2\) samples

\[
\begin{pmatrix}
S'_{\text{GeGe}}(Q,E) \\
S'_{\text{OO}}(Q,E)
\end{pmatrix} =
\begin{pmatrix}
178.7686 & -178.7686 \\
-30.8767 & 78.3881
\end{pmatrix}
\begin{pmatrix}
N S_1(Q,E) \\
73 S_1(Q,E)
\end{pmatrix}
\]

(7.5)

and for the \(^{70}\)GeO\(_2\) and \(^{73}\)GeO\(_2\) samples

\[
\begin{pmatrix}
S'_{\text{GeGe}}(Q,E) \\
S'_{\text{OO}}(Q,E)
\end{pmatrix} =
\begin{pmatrix}
94.7323 & -94.7323 \\
-16.3620 & 63.8735
\end{pmatrix}
\begin{pmatrix}
70 S_1(Q,E) \\
73 S_1(Q,E)
\end{pmatrix}
\]

(7.6)

In these matrices, \( x S_1(Q,E) \) denotes the single phonon total dynamical structure factor, measured for a sample of \(^x\)GeO\(_2\), where \( x = N, 70 \) or 73 and \( N \) denotes the natural
isotopic abundance.

Using the method of singular value decomposition \[173\], the following matrix for a set of “silver medal” results was also used, where the data taken from all three isotopically enriched samples contribute to the final result

\[
\begin{pmatrix}
S'_{\text{GeGe}}(Q, E) \\
S'_{\text{OO}}(Q, E)
\end{pmatrix}
= \begin{pmatrix}
3.77418 & 92.73233 & -96.50650 \\
14.21998 & -23.89742 & 57.18893 \\
\end{pmatrix}\begin{pmatrix}
N S_1(Q, E) \\
70 S_1(Q, E) \\
73 S_1(Q, E)
\end{pmatrix}.
\]

(7.7)

The partial vibrational density of states, \( G_\alpha(E) \) were calculated using equations (2.38) and (2.39) with Debye-Waller factors of \( W_{\text{Ge}}(Q) = W_{\text{O}}(Q) = 0.0015Q^2 \). The results are given in figure 7-17. There is a significant difference between \( G_{\text{Ge}}(E) \) obtained using each of the four different matrices in the “silver medal” approximation (see figure 7-17), particularly for the two results that made use of the data measured for the \( \text{NGeO}_2 \) sample. The result for which the \( \text{NGeO}_2 \) measurement has a positive weighting in the matrix (equation (7.5)) consistently overestimates \( G_{\text{Ge}}(E) \), while the result for which the \( \text{NGeO}_2 \) measurement has a negative weighting in the matrix (equation (7.4)) consistently underestimates \( G_{\text{Ge}}(E) \) when compared to the result which does not feature data taken for the \( \text{NGeO}_2 \) sample (using equation (7.6)). This deviation is particularly evident for the features at \( E \approx 30, 62 \) and 104 meV. The measurement on the \( \text{NGeO}_2 \) sample was taken at a different time to the measurements made using the \( \text{70GeO}_2 \) and \( \text{73GeO}_2 \) samples, so there may be small differences in the setup and background scattering. If this has not been subtracted properly, then small effects that might otherwise cancel in the “silver medal” approximation will instead remain. All
results for \(G_{\text{Ge}}(E)\) in the “silver medal” approximation feature unexplained, unphysical negative values above \(E \approx 80\) meV. Meanwhile, all of the results for \(G_{\text{O}}(E)\) in the “silver medal” approximation are in good agreement, with the exception of the result obtained using samples with the lowest scattering length contrast (equation (7.4)).

The \textit{ab initio} MD simulations made by Giacomazzi et al. [36] show that for \(\text{GeO}_2\), the “silver medal” approximation gives \(G_{\alpha}(E)\) functions that are close to the true partial vibrational density of states \(Z_{\alpha}(E)\) (see figure 7-18).

![Graphs of \(G_\text{Ge}(E)\) and \(G_\text{O}(E)\) vs. \(E\) in meV](image)

\(\text{(a) } G_{\text{Ge}}(E)\) or \(Z_{\text{Ge}}(E)\)

\(\text{(b) } G_{\text{O}}(E)\) or \(Z_{\text{O}}(E)\)

Figure 7-18: Comparison of the contributions from (a) Ge and (b) O to the true vibrational density of states of \(\text{GeO}_2\) (solid black curves) and the vibrational density of states calculated in the “silver medal” approximation (solid red curves) obtained from the \textit{ab initio} MD simulations by Giacomazzi et al. [36].

### 7.6 Results

#### 7.6.1 Generalised Vibrational Density of States

The generalised single phonon vibrational density of states \(G_1(Q, E)\) for the \(^{N}\text{GeO}_2\) sample (figure 7-19) and generalised single phonon partial vibrational density of states \(G_{\alpha}(Q, E)\) from the SVD matrix (equation (7.7)) (figure 7-20) were calculated by using equations (2.44) and (2.38), respectively. To improve the statistics, integrals of these functions were taken over three ranges of energy representing the three peaks in \(G_1(E)\) (see e.g. figure 7-22). The first peak is from 16 to 44 meV, the second peak is from 56 to 84 meV and the third peak is from 100 to 132 meV. The generalised vibrational density of states \(G_1(Q, E)\) for a sample of \(^{N}\text{GeO}_2\) and the generalised partial vibrational density of states \(G_{\alpha}(Q, E)\) calculated by Giacomazzi et al. from \textit{ab initio} MD simulations [34] are also plotted in figures 7-19 and 7-20. The integration ranges chosen for the simulation data are different to those for the experimental data because there
Figure 7.19: The integral of $G_1(Q, E)$ over (a) the first peak, or (b) the second peak, or (c) the third peak in $G_1(E)$ for a sample of $^{28}\text{GeO}_2$. The curves correspond to those obtained from the present experimental study (solid black curves) and from the ab initio MD simulations done by Giacomazzi et al. [34] (solid red curves). The limits for the integrals are given in the text.
Figure 7-20: The integral of either $G_{Ge}(Q,E)$ or $G_{O}(Q,E)$ over (a) and (b) the first peak, or (c) and (d) the second peak, or (e) and (f) the third peak in $G_1(E)$, respectively, obtained from the present experimental study (solid black curves) or from the ab initio MD simulations done by Giacomazzi et al. [34] (solid red curves). $G_{Ge}(E)$ and $G_{O}(E)$ have been calculated in the “silver medal” approximation using the SVD matrix in equation 7.7. The limits for the integrals are given in the text.
is a relative shift of the peaks in $G_1(E)$ as demonstrated in figure 7-22. Ranges that cover the same peaks were therefore used for the ab initio MD results, in this case 10 to 38 meV for the first peak, 48 to 77 meV for the second peak and 90 to 122 meV for the third peak.

### 7.6.2 Single Phonon Vibrational Density of States

The results in the “bronze medal” approximation for the samples of $^N$GeO$_2$, $^{70}$GeO$_2$ and $^{73}$GeO$_2$ are compared in figure 7-21. In figure 7-22 a comparison is made between

$Figure$ 7-21: The fully corrected single phonon vibrational density of states $G_1(E)$ calculated using the “bronze medal” approximation for samples of $^N$GeO$_2$ (solid black curve), $^{70}$GeO$_2$ (solid red curve) and $^{73}$GeO$_2$ (solid green curve).

the $G_1(E)$ functions calculated for $^N$GeO$_2$ using the “bronze medal” approximation in the present work, the experimental results of Galeener et al. [192] and Pilla et al. [191], the ab initio MD simulation results of Giacomazzi et al. [36, 37, 44], and the exact vibrational density of states $Z(E)$ calculated from classical MD simulations by Marrocchelli et al. [38]. In figure 7-23 $G_1(E)$ calculated in the “bronze medal” approximation for $^N$GeO$_2$ is compared with $G_1(E) = G_{Ge}(E) + G_{O}(E)$ calculated in the “silver medal” approximation using the SVD matrix for both the present study and the MD simulations made by Giacomazzi et al. [36]. Finally, in figure 7-24 the $G_\alpha(E)$ functions calculated in the “silver medal” approximation using the SVD matrix (equation (7.7)) are compared to the $G_\alpha(E)$ functions calculated in the “silver medal” approximation from the ab initio simulation data.
7.6 Results

Figure 7-22: The single phonon density of states $G_1(E)$ calculated using the “bronze medal” approximation for a sample of $^N\text{GeO}_2$ as obtained in the present work (solid black curve), from a study using the IN4 time of flight spectrometer at the Institut Laue-Langevin, France at ambient temperature with an incident neutron energy of 16.9 meV in neutron energy gain mode by Pilla et al. \[191\] (solid magenta curve), from a study made at ambient temperature using the neutron Be filter spectroscopy method at the PLUTO reactor of the Atomic Energy Research Establishment, UK by Galeener et al. \[192\] (solid green curve). The other experimental results were not measured on an absolute scale and have been scaled to best fit with the present work. The experimental data are compared to the \textit{ab initio} MD simulations made by Giacomazzi et al. \[36\] (solid red curve) and the exact vibrational density of states $Z(E)$ from the classical MD simulations made by Marrocchelli et al. \[38\] (solid blue curve).

Figure 7-23: $G_1(E)$ obtained using either the “bronze medal” approximation for the $^N\text{GeO}_2$ sample (solid curves) or from the expression $G_1(E) = G_{\text{Ge}}(E) + G_{\text{O}}(E)$ for the “silver medal” SVD results (broken curves). The functions are obtained from the present study (black) and the \textit{ab initio} MD simulations made by Giacomazzi et al. \[36\] (red).

Figure 7-24: Comparison of the partial vibrational density of states $G_\alpha(E)$ calculated in the “silver medal” approximation using the SVD matrix (equation 7.7) (solid black curves) with those calculated from the \textit{ab initio} MD simulations made by Giacomazzi et al. \[36\] (solid red curves) and the exact partial vibrational density of states $Z_\alpha(E)$ calculated from the classical MD simulations made by Marrocchelli et al. \[38\] (solid blue curves) for (a) Ge or (b) O.
There is a significant discrepancy in scaling between $G_1(E)$ calculated for $^7\text{N}\text{GeO}_2$ in the “bronze medal” approximation from the current work and $G_1(E)$ calculated from the \textit{ab initio} MD simulations of Giacomazzi \textit{et al.} \textsuperscript{36}, \textsuperscript{37}, \textsuperscript{44} (figure 7-22). This is despite there being good agreement between the measured differential scattering cross sections and the results found from a diffraction study by Salmon \textit{et al.} \textsuperscript{175} (figure 7-11). The simulations were made using the “bronze medal” approximation so this difference cannot be attributed to the approximations that were made in obtaining $G_1(E)$ from the experimental data. The origin of this discrepancy is unknown. The previous measurements of $G_1(E)$ made by Pilla \textit{et al.} \textsuperscript{191} and Galeener \textit{et al.} \textsuperscript{192} were presented on an arbitrary scale, while the classical MD simulations made by Marrocchelli \textit{et al.} \textsuperscript{38} did not take into account the experimental approximations and so their scales cannot be directly compared to the present work.

The “silver medal” results found using the SVD matrix (equation (7.7)) are in qualitative agreement with the \textit{ab initio} MD simulations made by Giacomazzi \textit{et al.} \textsuperscript{36}, \textsuperscript{37}, \textsuperscript{44} and the classical MD simulations made by Marrocchelli \textit{et al.} \textsuperscript{38}, except for the unphysical negative values of $G_{\text{Ge}}(E)$ in the experimental data. There is a systematic shift in $E$ of the vibrational density of states between the experimental data and the simulations of Giacomazzi \textit{et al.} \textsuperscript{36}, \textsuperscript{37}, \textsuperscript{44}. Similar systematic shifts in the vibrational density of states are found from \textit{ab initio} MD models of the crystalline phases of GeO\textsubscript{2} \textsuperscript{196}. When this shift is taken into account, by scaling the $E$ axis of the results obtained from the simulations made by Giacomazzi \textit{et al.} \textsuperscript{36}, \textsuperscript{37}, \textsuperscript{44} by a factor of 1.1, then the sum of the “silver medal” results in the present study $G_1(E) = G_{\text{Ge}}(E) + G_{\text{O}}(E)$ is in excellent agreement with the simulations (see figure 7-25). The simulations of Marrocchelli \textit{et al.} \textsuperscript{38} show only one peak in $G_{\text{O}}(E)$ at $E > 90$ meV instead
of two as found in the present study and in the simulations made by Giacomazzi et al. \[36, 37, 44\]. This peak splitting is seen in both GeO\(_2\) and SiO\(_2\) from experiments using optical spectroscopy or neutron scattering \[192, 197, 198\] and has been attributed to a splitting in energy of the local symmetric and asymmetric stretching modes of the tetrahedral units (see the top of figure 6-39 for a representation of these modes). For a detailed explanation focused on SiO\(_2\) see refs. \[162, 199, 200\], while for GeO\(_2\) see ref. \[44\].

![Graph](image)

**Figure 7-26:** \(G_1(E) = G_{Ge}(E) + G_O(E)\) (solid curve), \(G_{Ge}(E)\) (dotted curve) and \(G_O(E)\) (dashed curve) calculated in the “silver medal” approximation using the SVD matrix (equation (7.7)). Error bars have been omitted for clarity of presentation.

There are four distinct peaks in \(G_1(E)\). In the first peak at 31.52(5) meV the weighting of the Ge and O contributions to the full vibrational density of states is approximately 1:1 (see figure 7-26). In the second peak at 70.37(5) meV the weighting is approximately the same as the atomic concentrations of 1/3 and 2/3 for Ge and O respectively. The third and fourth peaks at 108.09(5) and 120.73(5) meV have contributions mainly from the O atoms. This indicates that the motions of Ge and O is highly correlated for modes with energies up to approximately 95 meV (90 meV in the ab initio simulated data), above which the motion of the heavier Ge atoms become less important \[36\]. In addition, the ab initio MD simulations made by Giacomazzi \[36, 37, 44\] and the classical MD simulations made by Marrocchelli et al. \[38\] show that for GeO\(_2\) there are three bands of energy related to different types of motion (examples are given at the top of figure 6-39). In the simulations by Giacomazzi et al. \[36\] the lower band up to \(\approx 47\) meV is due to O rocking motions, the middle band from \(\approx 47\) to 87 meV is due to O bending motions and the upper band, above \(\approx 87\) meV, is mostly due to O stretching motions. These bands correspond to ranges of 0 to 47, 47 to 95 and 95 to 145 meV in the experimental data, respectively.

The vibrational spectra of GeO\(_2\) and SiO\(_2\) \[198\] have similar modes as seen in infrared and Raman scattering studies \[123, 201, 205\], although there is a shift between
the spectra that is attributed to the difference in mass between Si and Ge \[202\]. A similar scenario is found for the vibrational density of states measured by neutron spectroscopy in the “bronze medal” approximation (figure 7-27). In table 7.5 the

![Figure 7-27: Comparison of $G_1(E)$ calculated in the “bronze medal” approximation for GeO$_2$ (solid black curve) and for SiO$_2$ measured on the MARI spectrometer by Haworth et al. \[182\] (broken red curve). The data are for samples of natural isotopic abundance.](image)

positions of the four peaks in $G_1(E)$ are presented, as found from $G_1(E)$ calculated for $^N$GeO$_2$ in the “bronze medal” approximation in the present work and as found in the most recent measurements on SiO$_2$ made by Haworth et al. \[182\]. Also shown are the peak positions found from the sum of the “silver medal” results, which exhibit a small shift relative to the “bronze medal” results. The bands of energy for the O motions in

<table>
<thead>
<tr>
<th></th>
<th>GeO$_2$ position (meV)</th>
<th>SiO$_2$ position (meV)</th>
<th>Shift (meV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bronze</td>
<td>Silver</td>
<td>Bronze</td>
</tr>
<tr>
<td>First Peak</td>
<td>31.52(5)</td>
<td>32.48(5)</td>
<td>53.3(2)</td>
</tr>
<tr>
<td>Second Peak</td>
<td>70.37(5)</td>
<td>69.10(5)</td>
<td>102.2(2)</td>
</tr>
<tr>
<td>Third Peak</td>
<td>108.09(5)</td>
<td>108.94(5)</td>
<td>135.8(2)</td>
</tr>
<tr>
<td>Fourth Peak</td>
<td>120.73(5)</td>
<td>121.78(5)</td>
<td>150.3(2)</td>
</tr>
</tbody>
</table>

Table 7.5: The positions of the first four peaks in $G_1(E)$ for GeO$_2$ and SiO$_2$ calculated in the “bronze medal” approximation. Shift denotes the position of the GeO$_2$ peak subtracted from the position of the SiO$_2$ peak. Also given are the peak positions of the first four peaks in the “silver medal” approximation where $G_1(E) = G_{Ge}(E) + G_O(E)$. The peak positions for SiO$_2$ are taken from ref. \[182\].

SiO$_2$ correspond to rocking (from 0 to $\approx$ 70 meV), bending (from $\approx$ 70 to $\approx$ 120 meV) and stretching (above $\approx$ 120 meV) motions as found from the \textit{ab initio} MD simulations made by Pasquarello \textit{et al.} \[200\].
7.8 Conclusion

The partial vibrational density of states have been measured in the “silver medal” approximation for the GeO$_2$ system, where the extreme incoherent (“bronze medal”) approximation does not give a good approximation to the true vibrational density of states. The partial vibrational density of states obtained in the present study show qualitative agreement with results obtained from the ab initio MD simulations made by Giacomazzi et al. [36, 37, 44] and the classical MD simulations made by Marrocchelli et al. [38]. The partial vibrational density of states calculated from MD simulations made by Giacomazzi et al. [36, 37, 44] exhibit a shift in $E$ but contain features corresponding to those of the experimental data while the classical MD simulations made by Marrocchelli et al. [38] do not exhibit this shift but do not reproduce the correct high $E$ behaviour.

Similar to the other inelastic neutron scattering experiments described in this thesis (chapters 5 and 6), the quality of the final results is limited by the ability to measure accurate single phonon dynamical structure factors for three isotopically enriched samples. These limitations include the ability to subtract unwanted scattering from sources other than the sample, the accuracy of the multiple scattering and multiple phonon corrections. For instance, there are unphysical negative values of $G_{\text{Ge}}(E)$ in regions for which the ab initio MD simulations of Giacomazzi et al. [36, 37, 44] and the classical MD simulations of Marrocchelli et al. [38] indicate that $G_{\text{Ge}}(E)$ $\approx$ 0. Further investigations are required to solve these issues.

Despite the limitations of the correction procedure, the measured functions agree well with other neutron spectroscopy experiments [191, 192]. The technique requires further development but already leads to results that can be reliably compared to simulations. Simulations can then be used to calculate quantities that are difficult to access experimentally such as the intermediate range ordering or properties of materials under conditions that currently cannot be accessed by experiment (e.g. under pressure [206]). The technique of isotopic substitution in neutron spectroscopy adds to the suite of experimental methods that can be used to test simulations.
8. Changes in the Structure of GeO$_2$ Glass with Pressure Using the PEARL Diffractometer

8.1 Introduction

Understanding the structure of silicates under pressure is important for understanding geological processes because they form the most abundant materials in the Earth’s crust \[39, 207, 208\]. The first step for understanding the properties of silicates is to understand the structure of silica (SiO$_2$) and other similar network glass formers. SiO$_2$ is a “strong” network forming glass similar to GeO$_2$ and BeF$_2$ \[184\]. SiO$_2$ and GeO$_2$ share several structural and chemical characteristics and are often regarded as analogues \[123, 209\]: although some differences do exist in the intermediate range ordering \[210\]. The structures of both GeO$_2$ and SiO$_2$ (figure 8-1) are based on an open arrangement of tetrahedral motifs connected at their corners with a large mean inter-tetrahedral angle of \(\gtrsim 132^\circ\) \[12, 175, 192, 211–213\]. This structure undergoes significant transformations with increasing pressure \[40, 123, 215–225\]. In SiO$_2$, there is a transformation in the local ordering from 4-fold coordinated tetrahedra to 6-fold coordinated octahedra at pressures up to 50 GPa \[125, 215, 219, 221, 225–228\]. GeO$_2$ has analogous structural transformations but at much lower pressures as found from a variety of spectroscopic \[216, 217, 229, 231\], x-ray diffraction \[110, 220, 223, 232\] and neutron diffraction \[39, 10\] studies. This makes GeO$_2$ a material that is more amenable to \textit{in situ} high pressure neutron diffraction experiments, where the range of pressures that can be reached is limited.

The use of X-rays with small diamond anvil cells \[233, 234\] and established data correction procedures \[235\] allows for the investigation of SiO$_2$ under pressures from ambient to above 50 GPa. However, for neutron diffraction experiments, current studies on amorphous solids have reached only \(\approx 9\) GPa due to the necessary use of a Paris-Edinburgh press as described in section 3.4.
Neutron diffraction is complimentary to x-ray diffraction as it leads to different weighting factors for the $S_{\alpha\beta}(Q)$ functions in the measured $F(Q)$ pattern. Also, with high quality data, the method of isotopic substitution in neutron diffraction \cite{5, 175, 236} can be used with many glasses to obtain the $S_{\alpha\beta}(Q)$ and $g_{\alpha\beta}(Q)$ functions that describe fully the pair distribution of atoms of species $\beta$ around atoms of species $\alpha$. While this is a technique that is well developed for ambient conditions, for examples see references \cite{14, 173, 237, 238}, no such experiments have yet been done at high pressures. Therefore, neutron scattering experiments would add greatly to the structural information already available from x-ray diffraction. To achieve the high quality data required, the experimental method and data analysis procedure must first be perfected.

The method of measuring the structure of amorphous solids using neutron diffraction at high pressures is constantly under development to improve both the quality of data and the limit of the highest pressure that can be reached. Some of the first studies on GeO$_2$ were done at pressures below 5 GPa with high statistical and systematic errors \cite{220}. More recently, successful experiments yielding high quality data have been done for pressures $\lesssim$ 9 GPa by using Boron-Nitride (BN) anvils with a Paris-Edinburgh press \cite{40, 239, 240}. To reliably obtain pressures higher than $\approx$9 GPa, sintered diamond anvils must be used. In this case, there is significantly higher scattering from the anvils with large diamond Bragg scattering and absorption edge effects. This leads to severely contaminated diffraction patterns. Indeed, the first neutron diffraction experiments on samples of amorphous SiO$_2$ \cite{72} could not measure the total structure factor $F(Q)$ to a good enough accuracy to calculate reliable total pair distribution functions $G(r)$. However, pressures of $\approx$ 25 GPa were reached for the first time.

In this chapter, new \textit{in situ} neutron diffraction results on the structure of GeO$_2$ at
pressures up to \( \approx 17 \) GPa are presented. These experiments were done on the PEARL diffractometer at the ISIS pulsed neutron source. Improvements were made to the incident beam collimation and shielding of the sintered diamond anvils. In addition, the new normalisation and background correction procedure described by Drewitt [39] was improved. Measurements were made on GeO\(_2\) samples up to pressures of 8.5 GPa and 17.5 GPa using single and double toroid sintered diamond anvils respectively. A data analysis procedure, described in section 4.2, was developed that allowed the total pair distribution function \( G(r) \) to be measured with sufficient accuracy that coordination numbers and nearest neighbour distances could be calculated for the first time. This represents significant progress in neutron diffraction from amorphous solids under high pressure conditions. As well as being an important material to study, GeO\(_2\) is a good material to test the efficacy of the new procedure; the structure is well known under ambient conditions [175] and high quality experiments are available from neutron diffraction at pressures up to \( \approx 9 \) GPa [40], x-ray diffraction at pressures up to \( \approx 16 \) GPa [220, 223] and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy experiments at pressures up to \( \approx 44 \) GPa [222, 224]. Simulations are also available to compare with the experimental results [241]. The pressure range used in our experiments covers a regime where there is a substantial progression from a tetrahedral to an octahedral glass.

The experimental procedure, steps in the data analysis procedure and the resultant \( F(Q) \) and \( G(r) \) functions are presented as well as the coordination numbers, nearest neighbour distances and peak positions. Where possible, the results from this experiment are compared to previous measurements.

8.2 Experimental Procedure

8.2.1 Sample Preparation

Glassy samples were prepared by first drying \( \approx 5 \) g of GeO\(_2\) powder (99.9999 %, Alfa Aesar), contained in a Pt (10 % Rh) crucible, for 2 h at 200 \( ^\circ \)C. The powder was then melted in air at 1600 \( ^\circ \)C for 20-30 min after which the crucible was placed on a liquid nitrogen cooled brass block and doused with liquid nitrogen. The crucible was subsequently warmed to room temperature using a heat gun, to avoid condensation of atmospheric water, and the clear glass was then removed as a single piece and stored either in a desiccator or argon filled glovebox and used to make GeO\(_2\) pellets as below.

The high pressure experiments used sintered diamond anvils having either a single or double toroid profile as described in section 3.4. Both geometries correspond to samples that have a cylindrical core with a spherical cap placed on each flat surface.
8.2 Experimental Procedure

Figure 8-2: The geometry of the single and double toroid sample pellets in (a) side view, (b) top view and (c) 3-dimensional view.

The sample volume is then given by

\[ V_{\text{pellet}} = 2V_{\text{cap}} + V_{\text{cyl}} = \frac{1}{3}\pi h_{\text{cap}} (3r_1^2 + h_{\text{cap}}^2) + \pi r_1^2 h, \]

(8.1)

where \( V_{\text{cap}} \) is the volume of a cap section, \( V_{\text{cyl}} \) is the volume of the cylindrical section, \( r_1 \) is the radius of the cylindrical section and the base of the cap, \( h_{\text{cap}} \) is the height of the cap and \( h \) is the height of the cylinder. For the single toroid geometry \( r_1 = 3.0 \text{ mm}, h_{\text{cap}} = 1.5 \text{ mm}, h = 1.6 \text{ mm} \) and the sample volume is \( V_{\text{pellet}} = 91.2 \text{ mm}^3 \). In the case of the double toroid geometry \( r_1 = 2.0 \text{ mm}, h_{\text{cap}} = 1 \text{ mm}, h = 1.6 \text{ mm} \) and the sample volume is \( V_{\text{pellet}} = 33.7 \text{ mm}^3 \). Pellets of GeO\(_2\) were made with masses as close as possible to the ideal mass for the corresponding volume as calculated by using a density of 3.643 g cm\(^{-3}\) [175]. The ideal mass of GeO\(_2\) is 0.33218 g for single toroid anvils and 0.12284 g for double toroid anvils, respectively.

The GeO\(_2\) sample for the single toroid anvil experiments was in the form of a pellet of pre-compacted finely powdered glass. The glass was compacted in a press using a load of 8 tons. The GeO\(_2\) samples for the double toroid anvil experiments were in the form of solid pieces that had been shaped to the correct geometry using a rotary tool and polished using diamond paste. Vanadium samples for both geometries were made by compacting the correct mass of either vanadium foil or powder under a load of 1 ton into the pellet shape. The mass of vanadium required was found using a density of 6.110 g cm\(^{-3}\) [165] to be 0.55714 g for single toroid anvils and 0.20603 g for double toroid anvils. A summary of the actual masses of the pellets used in the experiments is given in table 8.1.

8.2.2 Neutron Diffraction Experiments

The high pressure experiments were done at room temperature using the PEARL diffractometer. The experimental setup for this diffractometer, which used the Paris-Edinburgh press in transverse geometry, is given in section 3.3.1. The single and double toroid sintered diamond anvils were in a V3 or V4 variant Paris-Edinburgh
8.2 Experimental Procedure

<table>
<thead>
<tr>
<th>Pellet</th>
<th>Sample</th>
<th>Type</th>
<th>Mass (g)</th>
<th>Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GeO₂</td>
<td>powder</td>
<td>0.22(1)</td>
<td>ST</td>
</tr>
<tr>
<td>2</td>
<td>GeO₂</td>
<td>solid</td>
<td>0.12146(5)</td>
<td>DT</td>
</tr>
<tr>
<td>3</td>
<td>GeO₂</td>
<td>solid</td>
<td>0.1220(1)</td>
<td>DT</td>
</tr>
<tr>
<td>4</td>
<td>GeO₂</td>
<td>solid</td>
<td>0.1234(1)</td>
<td>DT</td>
</tr>
<tr>
<td>A</td>
<td>V</td>
<td>powder</td>
<td>0.390(1)</td>
<td>ST</td>
</tr>
<tr>
<td>B</td>
<td>V</td>
<td>foil</td>
<td>0.2061(5)</td>
<td>DT</td>
</tr>
<tr>
<td>C</td>
<td>V</td>
<td>foil</td>
<td>0.1961(5)</td>
<td>DT</td>
</tr>
<tr>
<td>D</td>
<td>V</td>
<td>foil</td>
<td>0.2012(5)</td>
<td>DT</td>
</tr>
</tbody>
</table>

Table 8.1: Summary of the samples made for GeO₂ experiments done on the PEARL instrument. ST indicates a single toroid geometry, DT indicates a double toroid geometry. The pellets of GeO₂ are distinguished by numbers and the pellets of V are distinguished by letters such that they may be referred to later in the text.

press [68, 242] with piston areas of 100 cm² and 102 cm², respectively. Background scattering was reduced by three methods. First, the incident beam was collimated by using a BN and Gd tube arrangement. The Gd tube was inserted into the anvil on the breach of the press with an outer diameter of 3.5 mm and wall thickness of 0.06 mm. Second, the anvils were shielded by neutron absorbing Cd. Third, for the single toroid experiment, a Gd foil of thickness 25 µm was used between the gaskets and the anvils to provide further shielding at the sample position.

For the empty gasket measurement, an empty gasket was placed between the anvils in the press and a load of 2 tns was first applied to hold the assembly in place. The press was then lowered into the neutron beam and centred. A measurement was made for ≈ 1 day. For each sample measurement, the sample was placed between the anvils and a small load of 2 tns was applied to hold the assembly in place. The assembly was then lowered into the neutron beam and centred. The load applied to the anvils via the pistons of the press was slowly increased using a hydraulic oil pump until the desired load was reached. While increasing the pressure, the system was allowed to equilibrate for ≈ 5 min at regular intervals (approximately after every 10 tns of additional load applied). As the anvils compress, the centre of the sample changes position in the beam. Therefore, for each measurement the assembly was moved using a motorised system and the sample was centred in the beam by eye. A neutron diffraction pattern was then collected over a period of approximately 1 day. After each measurement was made, the load was either increased to make a further measurement at a new pressure point or slowly released and the sample removed such that all pressure points were approached from below. For each measurement on a sample of GeO₂, a smaller load was applied to a sample of V and a measurement taken for a short time. The load applied to the sample of V was then increased in small increments, taking a measurement each
8.3 Data Analysis

Table 8.2: Measurements made using single toroid (ST) or double toroid (DT) anvils, where \( P \) is the pressure at the sample position found using the calibration curve in figure 4-7 and the pellets are defined in table 8.1.

<table>
<thead>
<tr>
<th>GeO(_2) Load (tns)</th>
<th>V Load (tns)</th>
<th>Anvils</th>
<th>GeO(_2) Pellet</th>
<th>V Pellet</th>
<th>( P ) (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>20</td>
<td>ST</td>
<td>1</td>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>DT</td>
<td>2</td>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>70</td>
<td>ST</td>
<td>1</td>
<td>A</td>
<td>4.5(5)</td>
</tr>
<tr>
<td>100</td>
<td>110</td>
<td>ST</td>
<td>1</td>
<td>A</td>
<td>8.5(5)</td>
</tr>
<tr>
<td>75</td>
<td>35</td>
<td>DT</td>
<td>3</td>
<td>C</td>
<td>8.5(5)</td>
</tr>
<tr>
<td>100</td>
<td>45</td>
<td>DT</td>
<td>3</td>
<td>C</td>
<td>11.5(5)</td>
</tr>
<tr>
<td>120</td>
<td>85</td>
<td>DT</td>
<td>2</td>
<td>B</td>
<td>14.5(5)</td>
</tr>
<tr>
<td>140</td>
<td>100</td>
<td>DT</td>
<td>4</td>
<td>D</td>
<td>17.5(5)</td>
</tr>
</tbody>
</table>

time, until the ratio of \( I_{sc}(Q)/I_{vc}(Q) \) was flat and as free from diamond Bragg peaks as possible (see section 4.2). A full measurement was then taken for use in the data analysis procedure. The measurements made using the single and double toroid anvils are summarised in table 8.2.

8.3 Data Analysis

The data analysis procedure described in section 4.2 was used to obtain \( F(Q) \) functions. The \( F(0) = -0.387 \) barn limit was found by fitting a diffraction pattern taken at ambient by Salmon et al. \( 175 \) with \( F(Q) = aQ^2 + F(0) \), where \( a \) is a constant, to the lowest four data points at \( Q = 0.4, 0.45, 0.5 \) and \( 0.55 \) Å\(^{-1} \) as indicated in figure 8-3. The dependence of \( F(Q) \) at low \( Q \) is discussed by Salmon \( 243 \). The density of GeO\(_2\) at the pressures attained was found using work done by Hong et al. who made an in-situ study \( 110 \) (see figure 8-4). These values are in agreement with other studies by Tsiok et al. \( 245 \), Smith et al. \( 244 \), and Mei et al. \( 223 \) over extended pressure ranges. The work of Hong et al. \( 110 \), Smith et al. \( 244 \) and Tsiok et al. \( 245 \) indicate an increase of the gradient \( d\rho/dP \) at about 4.5 GPa and the data sets of Hong et al. \( 110 \) and Mei et al. \( 223 \) show a decrease of this gradient at higher pressures with the former indicating a transition at \( \approx 10 \) GPa. The values of density used in the present study are given in table 8.4.

The initial \( F^{(0)}(Q) \) function was found for each pressure point using the correction factors \( C_s, C_V \) and \( W \) (see equation (4.28)) are listed in table 8.3. \( W_2F^{(0)}(Q) \), where \( W_2 \) is the re-scaling factor, is shown with the \( F(Q) \) function in figure 8-5 for the single toroid anvil measurements and in figure 8-6 for the double toroid anvil measurements.
Figure 8.3: Extrapolation of the $F(Q)$ function measured on the D4C diffractometer for a sample of GeO$_2$ by Salmon et al. [175] plotted against $Q^2$. The $F(Q)$ function (solid black curve) is fitted, assuming a $Q^2$ dependence, to the first four data points and an extrapolation was made to $Q = 0$ (solid red curve). This procedure was used to find $F(0) = -0.387$ barn.

Table 8.3: Correction factors for GeO$_2$ experiments done using single toroid (ST) and double toroid (DT) anvils. $C_s$ and $C_V$ are the multiplication factors for the empty gasket diffraction pattern which is subtracted from the sample and vanadium diffraction patterns, respectively, $W$ is the initial normalisation constant and $W_2$ is the re-scaling factor as described in section 4.2.
Figure 8-4: The number density $\rho$ and corresponding mass density for GeO$_2$ glass as measured on compression from the in situ studies of Hong et al. [110] (■, no pressure transmitting medium), Smith et al. [244] (○, 1:1 mixture of pentane and isopentane used as a pressure transmitting medium), Tsiok et al. [245] (dashed (blue) curve, 4:1 mixture of methanol:ethanol used as a pressure transmitting medium with a coated glass sample to avoid reaction with this medium) and Mei et al. [223] (• with vertical error bars, He pressure transmitting medium). The dashed (orange) curve is drawn through the Hong et al. [110] data points at higher pressures as a guide for the eye and the vertical arrows mark the approximate pressures where there is a change in the gradient $d\rho/dP$. The inset gives the number density of vanadium $\rho_V$ as measured on compression from the in situ x-ray diffraction study of Nakamoto et al. [111] at room temperature (□, He pressure transmitting medium).
to show the effect of the slope removal and Lorentzian fitting procedure. In each case the Lorentzian function that was fitted at low $Q$ has been highlighted. Also plotted in figures 8-5 and 8-6 are the back Fourier transforms of the $G(r)$ functions after the majority of the unphysical low-$r$ oscillations have been removed, and these are found to be in excellent agreement with the $F(Q)$ functions. The efficacy of the semi-empirical data analysis procedure was tested by comparing both the $F(Q)$ (figure 8-7) and $G(r)$ (figure 8-8) functions from this study to those found in experiments on samples of GeO$_2$ at similar pressures up to $\lesssim$9 GPa using the D4C diffractometer at the Institut Laue-Langevin in Grenoble, France. The ambient pressure $F(Q)$ functions found using the PEARL diffractometer for both single and double toroid anvils are in good agreement, within the statistical errors, with high quality data taken by Salmon et al. [175] in a standard vanadium can. The measurement in single toroid anvils at a pressure of 4.5 GPa is in good agreement with $F(Q)$ measured at a similar pressure (4.9(5) GPa) by Drewitt et al. [40]. Similarly, the measurements taken for both single and double toroid anvils at a pressure of 8.5(5) GPa are in good agreement with $F(Q)$ measured at the same pressure by Drewitt et al. [40]. The experiment by Drewitt et al. [40] was done using single toroid BN anvils and a direct scattering geometry, wherein the scattered beam is measured in the same plane as the incident beam. The BN in the anvils provides shielding from unwanted scattering and higher quality patterns can be measured. In these experiments, the low $Q$ region can be measured successfully due to the geometry; however, the highest pressure that can be reliably attained using BN anvils is $\approx$ 8.5 GPa.

**Peak Positions and Coordination Numbers**

Peak positions in $F(Q)$ and $G(r)$ were obtained by fitting a parabola $f_{\text{par}}(x) = ax^2 + bx + c$ to the highest 3 data points, where $a$, $b$ and $c$ are constants, $x$ is the independent variable ($Q$ or $r$). The peak position is then defined by the equation $df_{\text{par}}(x)/dx = 0$, such that $x_{\text{peak}} = -b/(2a)$.

The mean coordination number of O around Ge, $n_{\text{GeO}}$, is given by the integral of $g_{\text{GeO}}(r)$ over the first peak. An isotopic substitution experiment by Salmon et al. [175], whereby the full set of partial pair distribution functions $g_{\alpha\beta}(r)$ as given in equation (2.53) were measured, shows that only $g_{\text{GeO}}(r)$ contributes to $G(r)$ in the region of the first peak. Therefore, in this region, equation (2.53) can be rearranged to show that

$$g_{\text{GeO}}(r) = \frac{1}{2c_{\text{Ge}}c_{\text{O}}\overline{b}_{\text{Ge}}\overline{b}_{\text{O}}}(G(r) - G(0)),$$

where $c_{\text{Ge}} = 1/3$ and $c_{\text{O}} = 2/3$ are the atomic fractions of Ge and O, while $\overline{b}_{\text{Ge}}$ and $\overline{b}_{\text{O}}$ are the coherent neutron scattering lengths of Ge and O, respectively. Substituting
Figure 8-5: Plots showing the measured $F(Q)$ functions for glassy GeO$_2$ in single toroid anvils at the indicated pressures. The curves correspond to the function $W_2 F^{(0)}(Q)$ as calculated by using equation (4.28) (solid green curve), the $F(Q)$ function after slope removal and rescaling (solid black curve), the fitted Lorentzian function at low $Q$ (broken blue curve) and the back Fourier transform of the $G(r)$ functions after removal of the majority of unphysical low $r$ oscillations (solid red curve).
Figure 8.6: Plots showing the measured \( F(Q) \) functions for glassy GeO_2 in double toroid anvils at the indicated pressures. The curves correspond to the function \( W^2F^{(0)}(Q) \) as calculated by using equation 4.28 (solid green curve), the \( F(Q) \) function after slope removal and rescaling (solid black curve), the fitted Lorentzian function at low \( Q \) (broken blue curve) and the back Fourier transform of the \( G(r) \) functions after removal of the majority of unphysical low \( r \) oscillations (solid red curve).
Figure 8-7: The total structure factors $F(Q)$ measured for GeO$_2$ glass in this study using single toroid anvils (solid black curves) for pressures of (a) ambient, (b) 4.5(5) GPa or (c) 8.5(5) GPa; or using double toroid anvils (solid red curves) for pressures of ambient and 8.5(5) GPa as plotted in panels (a) and (c), respectively. Also plotted in panels (b) and (c) are the results from Drewitt et al. [40] for pressures of 4.9(5) GPa and 8.5(5) GPa, respectively (solid blue curves); and in panel (a), the data taken in a cylindrical vanadium can by Salmon et al. [175] (solid green curve).
Figure 8-8: The total pair distribution functions $G(r)$ measured for GeO$_2$ glass in this study using single toroid anvils (solid black curves) for pressures of (a) ambient, (b) 4.5(5) GPa or (c) 8.5(5) GPa; or using double toroid anvils (solid red curves) for pressures of ambient and 8.5(5) GPa as plotted in panels (a) and (c), respectively. Also plotted in panels (b) and (c) are the results from Drewitt et al. [40] for pressures of 4.9(5) GPa and 8.5(5) GPa, respectively (solid blue curves); and in panel (a), the data taken in a cylindrical vanadium can by Salmon et al. [175] (solid green curve).
equation (8.2) into equation (2.55) gives the average Ge-O coordination number as
\[ \pi_{\text{Ge}}^{O} = 4\pi \rho c_{O} \int_{r_1}^{r_2} r^2 g_{\text{GeO}}(r) \, dr = \frac{2\pi \rho b_{\text{Ge}} b_{O}}{c_{\text{Ge}} b_{\text{Ge}} b_{O}} \int_{r_1}^{r_2} r^2 (G(r) - G(0)) \, dr, \] (8.3)

where \( \rho \) is the atomic number density. In practice, defining the first peak over which to integrate is problematic for diffraction experiments when \( F(Q) \) has high statistical noise and is not measured over a wide range in \( Q \), leading to Fourier transform artefacts. Often, as is demonstrated in figure 8-9, the peak must be extrapolated to \( G(r) = G(0) \) on the high-\( r \) side. Two methods were considered to calculate the coordination number.

Firstly, \( G(r) \) was fitted with a Gaussian shape in the region of the peak. The Gaussian shape was centred on the position of the peak in \( r \) as calculated using the method described above and the fitted Gaussian curve was used as \( G(r) \) in equation (8.3), with \( r_1 \) and \( r_2 \) set as the values for which the peak crosses \( G(0) \). Secondly, the first peak was extrapolated to \( G(r) = G(0) \) by fitting the four highest \( r \) values (judged by eye) with a straight line and extrapolating this to \( G(r) = G(0) \). For all pressure points, the Gaussian fit used in the first method did not coincide well with the \( G(r) \) function (figure 8-9a) and so the second method was used to find the coordination numbers reported here in table 8.4.
Table 8.4: Parameters describing the pressure dependence of the structure of GeO$_2$ glass as obtained from the neutron diffraction experiments using the PEARL diffractometer with either single toroid (ST) or double toroid (DT) sintered diamond anvils. The number density $\rho$ of the glass is given together with the position $Q_{\text{FSDP}}$ of the first sharp diffraction peak, the position $Q_{\text{PP}}$ of the principal peak, the Ge-O bond distance $r_{\text{GeO}}$ taken from the position of the first peak in $G(r)$, the mean Ge-O coordination number $\bar{n}_{\text{GeO}}$, and the ratio $r_2/r_{\text{GeO}}$ where $r_2$ is the position of the second peak in $G(r)$.

8.4 Results

In table 8.4 a series of peak positions and properties of the system for the measured pressures are given. The positions are given of the first and second peaks in $F(Q)$, referred to as the first sharp diffraction peak (FSDP) with position $Q_{\text{FSDP}}$ and principal peak (PP) with position $Q_{\text{PP}}$, respectively, which relate to the intermediate and extended range ordering in the system [63, 243]. Also given is the position of the first peak in $G(r)$, which is the mean nearest neighbour bond distance $r_{\text{GeO}}$, and the ratio of the position of the second peak to the position of the first peak $r_2/r_{\text{GeO}}$. Finally, the atomic number density $\rho$ and the mean coordination number $\bar{n}_{\text{GeO}}$ are listed.

The measured $F(Q)$ functions are given in figures 8-10 and 8-11 for the single toroid and double toroid experiments, respectively. These are compared with the $F(Q)$ functions obtained from the molecular dynamics (MD) simulations of Marrocchelli et al. [241]. A spline fit was made to the neutron diffraction data to smooth the high frequency noise and it is the spline fits that were used as $F(Q)$ in equation (2.53) to obtain the $G(r)$ functions given in figures 8-12 and 8-13 for the single and double toroid experiments, respectively. Also plotted in figures 8-12 and 8-13 are the $F(Q)$ functions calculated by Fourier transforming the $G(r)$ from Marrocchelli et al. [241], truncating $F(Q)$ at $Q = 19.6 \, \text{Å}^{-1}$ (i.e. the maximum $Q$ for which $F(Q)$ was measured on PEARL) and back Fourier transforming to give the $G(r)$ functions that are compared to the present work.
Figure 8-10: The pressure dependence of the $F(Q)$ functions measured at the stated pressures for the experiment done using single toroid anvils (solid black curves), and the spline fits to the $F(Q)$ data as extrapolated to small $Q$ values by using a Lorentzian function (see the text) (solid red curves). The data are compared with $F(Q)$ found from the MD simulation study of Marrocchelli et al. [241] made at the same number density as the experimental results (solid green curves).
Figure 8-11: The pressure dependence of the $F(Q)$ functions measured at the stated pressures for the experiment done using double toroid anvils (solid black curves), and the spline fits to the $F(Q)$ data as extrapolated to small $Q$ values by using a Lorentzian function (see the text) (solid red curves). The data are compared with $F(Q)$ found from the MD simulation study of Marrocchelli et al. [241] made at the same number density as the experimental results (solid green curves).
Figure 8-12: The pressure dependence of the $G(r)$ functions measured at the stated pressures calculated from the spline fitted $F(Q)$ function shown in figure 8-10 for the experiments done using single toroid anvils (solid black curves) compared with the $G(r)$ functions found from the MD simulation study of Marrocchelli et al. [241] made at the same densities (solid green curves). The latter were obtained by fourier transforming the $F(Q)$ functions truncated at 19.6 Å$^{-1}$. The solid red curve shows the unphysical low-$r$ oscillations obtained for the neutron diffraction results.
Figure 8-13: The pressure dependence of the $G(r)$ functions measured at the stated pressures calculated from the spline fitted $F(Q)$ function shown in figure 8-11 for the experiments done using double toroid anvils (solid black curves) compared with the $G(r)$ functions found from the MD simulation study of Marrocchelli et al. [241] made at the same densities (solid green curves). The latter were obtained by fourier transforming the $F(Q)$ functions truncated at 19.6 Å$^{-1}$. The solid red curve shows the unphysical low-$r$ oscillations obtained for the neutron diffraction results.
8.5 Discussion

The FSDP is indicative of intermediate range ordering of periodicity given by $2\pi/Q_{FSDP}$, where $Q_{FSDP}$ is the position of the peak. There is an associated correlation length given by the inverse of the peak width $Q_{FSDP}^{-1}$. Similarly, the PP is related to extended range ordering with periodicity given by $2\pi/Q_{PP}$. The increase in the $Q_{FSDP}$ and $Q_{PP}$ values with increasing pressure indicates a decrease of the periodicity associated with the intermediate and extended range ordering. The increase in $Q_{FSDP}$ is more or less linear with pressure until a pressure of $\approx 10$ GPa is reached, when there is a change in the gradient $dQ_{FSDP}/dp$ as shown in figure 8-14. This is in agreement with the neutron diffraction study by Drewitt et al. [40], the MD simulation study by Marrocchelli et al. [241] and the x-ray diffraction studies by Hong et al. [110] and Guthrie et al. [220]. There is, however, some disagreement with the study made using x-ray diffraction by Mei et al. [223], where the peak position is consistently higher than in the current study, particularly at pressures $> 8$ GPa. This may be explained by the fact that, unlike the other experiments, the x-ray diffraction study by Mei et al. [223] was made using helium as a pressure transmitting medium to promote hydrostatic conditions. The opposite effect has been observed in SiO$_2$, whereby He enters voids in the glass structure and decreases the compressibility [247] [248]; it would be interesting to further investigate

![Figure 8-14](image_url): The pressure dependence of the position of the first sharp diffraction peak in $F(Q)$, $Q_{FSDP}$, as measured in the present work by using neutron diffraction with either single (▲) or double (△) toroid anvils. The results are compared to those obtained from the previous neutron diffraction experiments of Drewitt et al. [40] (•) and the x-ray diffraction experiments of Hong et al. [110] (○) Guthrie et al. [220] (□) and Mei et al. [223] (■). The dotted (red) line shows the simulation results of Marrocchelli et al. [241].
the effect of He on GeO$_2$. The change in gradient at $\approx 10$ GPa also corresponds to a modification in the main features observed with increasing pressure in x-ray absorption near-edge spectroscopy (XANES) and extended x-ray absorption fine structure (EXAFS) spectroscopy experiments on GeO$_2$ glass [224]. The main contribution to the FSDP comes from Ge-Ge correlations [63]. The movement of this peak to higher $Q$ with pressure indicates that the Ge atoms at the centre of the structural motifs are moving closer together with pressure as expected.

The first peak in $G(r)$ broadens with increasing pressure and shifts position ($r_{Ge}$) in table 8.4 to larger $r$ values after a threshold of $\approx 4.5(5)$ GPa has been reached. This is accompanied by an increase with pressure of the average coordination number of O around Ge from $n_{O_{Ge}} = 4.2(2)$ at 4.5(5) GPa to $n_{O_{Ge}} = 5.5(2)$ at 17.5(5) GPa. Meanwhile, the ratio $r_2/r_{GeO}$ decreases with pressure, consistent with a decrease of $r_{OO}/r_{GeO}$ where $r_{OO}$ is the first peak in $g_{OO}(r)$, from the value of $\sqrt{8/3}$ expected for tetrahedral GeO$_4$ motifs to the value of $\sqrt{2}$ expected for octahedral GeO$_6$ motifs [104]. The pressure dependences of $n_{O_{Ge}}$ and $r_{GeO}$ are in good agreement with the MD simulations of Marrocchelli et al. [241] and are in excellent agreement with the neutron diffraction studies of Drewitt et al. [40] as shown in figure 8-15b. There is some disagreement at higher pressures between the values of $n_{O_{Ge}}$ obtained in the present study and those obtained in the x-ray diffraction studies of Mei et al. [223] and Guthrie et
al. \[220\]. There is agreement between the present study and the Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy experiments of Vaccari et al. \[222\] and Baldini et al. \[224\] in the values of $r_{\text{GeO}}$. The threshold value of $\approx 5 \text{ GPa}$ corresponds to a change in the pressure dependence of the principal peak position in the Raman spectrum of GeO$_2$ glass \[110\]. There is no indication of an abrupt change in the Ge-O bond length at pressures between 6.6 and 8.0 GPa, as reported in a previous EXAFS experiment \[210\] nor of a plateau region between 6 and 10 GPa where $n_{\text{O}} \approx 5$ \[220\]. The majority of the experimental results illustrated in figure 8-15a indicate that a pressure in excess of 18 GPa is necessary in order to form a fully octahedral glass for which $n_{\text{O}} = 6$. Recent EXAFS results suggest that the latter is achieved when the pressure is about 30 GPa \[224\].

In the simulations by Marrocchelli et al. \[241\], the interaction potentials included dipole polarisation effects and were parameterised by using first principles calculations and not by using empirical methods \[38\]. The aim of the new potentials was to develop an accurate description of the interactions, going beyond classical pairwise interaction potentials, which have limited accuracy. The simulations compare well with experiments on the structural and vibrational properties of GeO$_2$ under ambient conditions. The dynamical properties of simulated liquid GeO$_2$ at high temperatures also agree well with experiment \[38\]. The limitations associated with glass formation under pressure in MD simulations meant that the equation of state for GeO$_2$ glass was not reproduced in the simulations and the data of Marrocchelli et al. \[241\] were presented as a function of density. The density was converted to pressure using the calibration curve given by Hong et al. \[110\] in figure 8-4. As shown in figures 8-10 to 8-13 the molecular dynamics simulations reproduce the main features of the measured $F(Q)$ and $G(r)$ functions although, at the highest pressure points, there is a tendency to underestimate the sharpness of the principal peak in $F(Q)$ and the first peak position in $G(r)$. The MD results do, however, show a growing asymmetry of the first peak in $g_{\text{GeO}}(r)$ with increasing pressure and the weighted peak position $\langle r_{\text{GeO}} \rangle = \int dr r g_{\text{GeO}}(r)/ \int dr g_{\text{GeO}}(r)$ follows the neutron diffraction results as shown in figure 8-15b. The simulations also show a threshold pressure of $\approx 5 \text{ GPa}$ below which the Ge-O bond length and coordination number remain constant (figure 8-15) and where compaction occurs via a change in the intermediate range order as reflected by the pressure dependence of $Q_{\text{FSDP}}$ shown in figure 8-14. At pressures greater than this threshold, the simulation results for the Ge-O bond length and coordination number again follow the neutron diffraction data and there is a reduction in $dQ_{\text{FSDP}}/dP$ starting around 8 GPa (figure 8-14). The pressure range from about 5 to 8 GPa corresponds to a mass density increase from about 4.5 to 5.05 $\text{g cm}^{-3}$ and, according to the molecular dynamics results, this corresponds to a regime where the predominant conversion mechanism is from four-fold to
five-fold coordinated Ge atoms. For densities greater that 5.25 g cm\(^{-3}\) (\(P \approx 10\) GPa) six-fold coordinated Ge atoms start to appear in appreciable concentrations (\(\approx 10\) %).

As demonstrated by Salmon et al. [104], the MD simulation results presented here agree better with the experimental data than results obtained from other simulations of GeO\(_2\) glass using either molecular dynamics and the Oeffner-Elliott interaction potentials [122, 209, 249–251] or first principles molecular dynamics [252].

### 8.6 Conclusion

Neutron diffraction was used to measure, for the first time, the structure of GeO\(_2\) glass at pressures up to 17.5(5) GPa with a Paris-Edinburgh press and sintered diamond anvils of either single toroid or double toroid geometry. The semi-empirical methodology that has been developed leads to structure factors that are largely free from diamond Bragg peaks and its validity has been verified by comparison with the data available from other neutron diffraction experiments at pressures up to \(\approx 8.5\) GPa. The measured neutron structure factors are the highest quality ever obtained above \(\approx 9\) GPa which offers the opportunity for studying the detailed structure of glassy and liquid materials by using neutron diffraction at pressures up to \(\approx 18\) GPa. The new results for GeO\(_2\) glass are consistent with the existence of four principal densification mechanisms. At pressures up to a threshold of \(\approx 5\) GPa the density increases through a change in the connectivity of GeO\(_4\) tetrahedra [40]. At pressures larger than this threshold, there is a steady increase in the Ge-O bond length and coordination number in contrast with an early EXAFS study [222] but in agreement with more recent neutron and x-ray diffraction and EXAFS experiments [224]. The rate of change of the intermediate range order, as measured by the pressure dependence of \(Q_{FSDP}\), decreases once the pressure exceeds \(\approx 10\) GPa and the Ge-O coordination number \(\bar{n}_{Ge}^O > 4.5\). According to the molecular dynamics studies of Marrocchelli et al. [241], the pressure range from 5 to \(\approx 10\) GPa corresponds to a regime where GeO\(_4\) units are replaced predominantly by GeO\(_5\) units and, at pressures beyond \(\approx 10\) GPa, appreciable concentrations of GeO\(_6\) units begin to form. Eventually, at about 30 GPa, the transformation to a predominantly octahedral glass is achieved and densification proceeds via compression of the Ge-O bond [224]. The onset of two of these densification regimes correspond to observable changes in the pressure dependence of the bulk number density of the glass \(\rho\) which shows an increase in \(d\rho/dP\) at \(\approx 5\) GPa followed by a decrease in \(d\rho/dP\) at \(\approx 10\) GPa (figure 8-4). The work presented in this chapter is also reported in reference [104].
9. Structure of SiO\textsubscript{2} and B\textsubscript{2}O\textsubscript{3}

Glass Under Pressure

9.1 Introduction

In section 8, the neutron diffraction method was used to measure accurate diffraction patterns of a glass for the first time at pressures > 8.5 GPa using the PEARL diffractometer at ISIS. In the current chapter, two experiments are described which use the same method to measure the neutron diffraction patterns of two other archetypical network glass forming systems - SiO\textsubscript{2} and B\textsubscript{2}O\textsubscript{3}. Under ambient conditions, these glasses have rather different open network structures and are therefore of fundamental interest for understanding transformations under pressure [211, 253–262].

In the case of the SiO\textsubscript{2} (figure 9-1a), the structure under ambient conditions is analogous to that of GeO\textsubscript{2}. The network is made from 4-fold coordinated tetrahedral SiO\textsubscript{4} motifs connected at their corners [263, 264]. However, unlike GeO\textsubscript{2}, SiO\textsubscript{2} does not exhibit any change to the structural motif in the pressure range from ambient to 20 GPa as discussed in chapter 8. However, there is an increase in density with pressure in this region [219, 221] and evidence from x-ray scattering indicates that there is a significant re-arrangement of the tetrahedra on an intermediate length scale [225, 265]. This is a view that is supported by the results obtained from simulations [228, 253, 266–268] (where a useful summary is given in by Huang et al. [253]), a combined energy dispersive x-ray diffraction / sound velocity experiment [269] and light scattering techniques [215, 220, 270]. A transformation is also seen in samples recovered from pressures above 9 GPa [263, 271, 272]. Thus far, the only in situ neutron diffraction experiment made on SiO\textsubscript{2} at pressures above 9 GPa has not yielded total structure factors of good enough quality to obtain the total pair distribution function \(G(r)\) [72].

In the case of B\textsubscript{2}O\textsubscript{3}, the network under ambient conditions (figure 9-1b) is made from corner sharing planar BO\textsubscript{3} trigonal motifs that can link to form highly ordered so-called B\textsubscript{3}O\textsubscript{6} boroxol rings [274]. There is some debate over the fraction of BO\textsubscript{3} motifs that form B\textsubscript{3}O\textsubscript{6} units in the glass [275] with authors claiming fractions from 0
Figure 9-1: The structure of (a) SiO$_2$ under ambient conditions adapted from ref. [214] and (b) B$_2$O$_3$ under ambient conditions from ref. [273]. The blue atoms represent Si, the green B and the red atoms O.

...
9.2 Experimental Procedure

9.2.1 Sample Preparation

For the SiO$_2$ sample, a commercially available 5 mm diameter fused silica rod (Goodfellow 99.9 %) was roughly shaped into a pellet suitable for double toroid anvil geometry (see figure 8-2) by using a rotary tool.

In the case of B$_2$O$_3$ a fresh glassy sample was made that was isotopically enriched with 99.65 wt% $^{11}$B, because $^{10}$B has a large neutron absorption cross section (767 barn at a neutron wavelength 1.798 Å, compared to 0.0055(33) barn for $^{10}$B) [113]. Glassy $^{11}$B$_2$O$_3$ was made by first heating $\approx$ 5 g of $^{11}$B$_2$O$_3$ powder (Ceradyne, inc.), contained in a Pt (10 % Rh) crucible, for 2 h at 200 °C. The powder was then melted in air at 1000 °C for 45 min. The viscous liquid was poured in air into the bottom part of a mould made from P20 tool steel (figure 9-2) and the top part closed. The glass quickly solidified before the mould could be fully closed, resulting in a pellet with one well shaped spherical cap and a cylindrical part, but a badly shaped “upper” spherical cap. The “upper” spherical cap was ground into the correct shape using a rotary tool.
9.2 Experimental Procedure

Figure 9.2: (left) Cross section of the double toroid stainless steel mould designed to make pellets for double toroid anvil geometry (see figure 8.2) (drawn on its side). The glass forming liquid is poured into the centre. A locator ensures that the top and bottom parts are in alignment when the mould is closed. A well helps to accommodate any superfluous liquid so that the two halves can quickly be pushed together. After the liquid has solidified, an insert is moved with a screw to remove the glass pellet. (right) A three dimensional representation of the mould. The dotted black lines indicate the cross section corresponding to the figure on the left hand side.

in an Ar filled glovebag.

The pellets of SiO$_2$ and B$_2$O$_3$ were made with masses as close as possible to the ideal mass for the corresponding volume (see section 8.2.1). Using densities of 2.2101 and 1.7911 g cm$^{-3}$, these ideal masses were found to be 0.074183 and 0.06036 g, respectively. The actual masses of the pellets that were used are given in table 9.1.

Between fabrication and the diffraction experiments, the silica pellet was left in air, while the B$_2$O$_3$ pellet was placed in a bomb in an Ar filled glovebox to prevent any contamination by moisture in the air.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Pellet</th>
<th>Mass (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>1</td>
<td>0.0638(2)</td>
</tr>
<tr>
<td>B$_2$O$_3$</td>
<td>2</td>
<td>0.06093(5)</td>
</tr>
<tr>
<td>V</td>
<td>A</td>
<td>0.1981</td>
</tr>
<tr>
<td>V</td>
<td>B</td>
<td>0.2020(2)</td>
</tr>
</tbody>
</table>

Table 9.1: Summary of the samples made for the SiO$_2$ and B$_2$O$_3$ experiments done on the PEARL instrument. The sample pellets are distinguished by numbers and the vanadium pellets are distinguished by letters such that they may be referred to later in the text.

9.2.2 Neutron Diffraction Experiments

The high pressure experiments were made at room temperature using the PEARL diffractometer. The experimental setup for this diffractometer, which used the Paris-
Edinburgh press in transverse geometry, is given in section 3.3.1. Double toroid sintered diamond anvils were held in a V4 variant Paris-Edinburgh press [68, 242] with a piston area of 102 cm$^2$. Background scattering was reduced by two methods. First, the incident beam was collimated by using a BN and Gd tube arrangement. The Gd tube was inserted into the anvil on the breach of the press with an outer diameter of 3.5 mm and wall thickness of 0.06 mm. Second, the anvils were shielded by neutron absorbing Cd.

For the empty gasket measurement, an empty gasket was placed between the anvils of the press and a load of 2 tns was first applied to hold the assembly in place. The press was then lowered into the neutron beam and centred. A measurement was made for $\approx 1$ day. The sample of SiO$_2$ was placed between the anvils and a small load of 2 tns was again applied. The assembly was then lowered into the neutron beam and centred. The load applied to the anvils via the pistons of the press was slowly increased using a hydraulic oil pump until the desired load was reached. While increasing the pressure, the system was allowed to equilibrate for $\approx 5$ min at regular intervals (approximately after every 10 tns of additional load applied). As the anvils compress, the centre of the sample changes position in the beam. Therefore, for each measurement the assembly was moved using a motorised system and the sample was centred in the beam by eye. A neutron diffraction pattern was collected over a period of approximately 1 day. After each measurement was made, the load was increased to make a further measurement at a new pressure point. For each measurement on the SiO$_2$ sample, a smaller load was applied to the pellet of V labelled “A” and a measurement taken for a short time. The load applied to the V sample was then increased in small increments, taking a measurement each time, until the ratio of $I_{sc}(Q)/I_{vc}(Q)$ was flat and as free from diamond Bragg peaks as possible (see section 4.2). A full measurement was then taken for use in the data analysis procedure. A similar procedure was then used to apply pressure to the pellet of B$_2$O$_3$, where the pressure was matched to the vanadium measurements such that the ratio $I_{sc}(Q)/I_{vc}(Q)$ was flat and as free from diamond Bragg peaks as possible, with the exception of a measurement that was made for a load of 75 tns. A run was therefore made on a second V pellet (labelled “B”). It was found that the V pellet “A” measured at 2 tns could not be used to correct the SiO$_2$ data taken at 2 tns so a measurement was made at a pressure of 20 tns using pellet “B”. The pressure on V pellet “B” was then increased until the $I_{sc}(Q)/I_{vc}(Q)$ function was as flat as possible for the 75 tns B$_2$O$_3$ measurement. The measurements are summarised in table 9.2.
9.3 Data Analysis

The data analysis procedure described in section 4.2 was used to obtain \( F(Q) \) functions for the two samples. The \( F(0) \) limit (-0.2232 and -0.2379 barn for \( \text{SiO}_2 \) and \( \text{B}_2\text{O}_3 \), respectively) was found by fitting diffraction patterns, taken at ambient on the D4C diffractometer at the Institut Laue-Langevin by Salmon et al. [298]. The function \( F(Q) = aQ^2 + F(0) \), where \( a \) is a constant, was fitted to the lowest four data points at \( Q = 0, 0.45, 0.5 \) and \( 0.55 \) Å\(^{-1} \) for \( \text{SiO}_2 \) or at \( Q = 0.3, 0.35, 0.4 \) and \( 0.45 \) Å\(^{-1} \) for \( \text{B}_2\text{O}_3 \) (figure 9-3). The density of \( \text{SiO}_2 \) at the pressures attained was found by using the \( in situ \) measurements of Sato and Funamori [221] and Mead et al. [219] (figure 9-4 (a)). In both of these experiments, a diamond anvil cell was used and the change in volume of the sample measured as a function of pressure. The density of \( \text{B}_2\text{O}_3 \) was found using the

### Table 9.2: Measurements made using double toroid anvils, where \( P \) is the pressure at the sample position found using the calibration curve in figure 4-7 and the pellets are defined in table 9.1.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sample Load (tns)</th>
<th>V Load (tns)</th>
<th>V Pellet</th>
<th>( P ) (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \text{SiO}_2 )</td>
<td>2</td>
<td>20</td>
<td>B</td>
<td>0.0(1)</td>
</tr>
<tr>
<td>( \text{SiO}_2 )</td>
<td>75</td>
<td>100</td>
<td>A</td>
<td>8.5(5)</td>
</tr>
<tr>
<td>( \text{SiO}_2 )</td>
<td>120</td>
<td>120</td>
<td>A</td>
<td>14.5(5)</td>
</tr>
<tr>
<td>( \text{B}_2\text{O}_3 )</td>
<td>2</td>
<td>2</td>
<td>A</td>
<td>0.0(1)</td>
</tr>
<tr>
<td>( \text{B}_2\text{O}_3 )</td>
<td>75</td>
<td>55</td>
<td>B</td>
<td>8.5(5)</td>
</tr>
<tr>
<td>( \text{B}_2\text{O}_3 )</td>
<td>110</td>
<td>100</td>
<td>A</td>
<td>13.0(5)</td>
</tr>
<tr>
<td>( \text{B}_2\text{O}_3 )</td>
<td>140</td>
<td>120</td>
<td>A</td>
<td>17.5(5)</td>
</tr>
</tbody>
</table>

Figure 9-3: Extrapolation of the \( F(Q) \) function measured by Salmon et al. [298] for a sample of (a) \( \text{SiO}_2 \) or (b) \( \text{B}_2\text{O}_3 \) (solid black curves). The first four datapoints are fitted assuming a \( Q^2 \) dependence and an extrapolation made to \( Q = 0 \) (solid red curves). This procedure was used to find \( F(0) = -0.2232 \) and -0.2379 barn for samples of \( \text{SiO}_2 \) and \( \text{B}_2\text{O}_3 \), respectively.
Figure 9-4: (a) The density of SiO$_2$ measured by Sato and Funamori in compression using a diamond anvil cell [221] in three separate runs, run 1 (▲), run 2 (▲) and run 3 (▲); and the density of SiO$_2$ measured by Mead et al. [219] using optical measurements of the strain for a sample within a diamond anvil cell in five separate runs, run 1 (■), run 2 (■), run 3 (■), run 4 (■), run 5 (■). (b) The density of B$_2$O$_3$ from Brazhkin et al. as measured using volumetric measurements on a small sample in a single toroid cell with a methanol-ethanol pressure transmitting medium [292] (▲), using a similar method in a previous study (●) [299], or calculated from simulations (joined ■) [292]; the values found from the sound velocity measurements of Huang et al. [300] (■); the uniaxial measurements on a thin disk of B$_2$O$_3$ by Bridgman [255] (▼); and the simulations made by Takada et al. [301] (broken cyan curve). The red and black curves are a second order polynomial and a third order Birch-Murnaghan equation of state [302] fitted to the ▲ datapoints, respectively. The blue curve is fitted to the ▼ datapoints and is taken from ref. [255].
latest in situ measurements made by Brazhkin et al. \cite{292} on the volume changes of a sample in a methanol-ethanol pressure transmitting medium held between single toroid anvils (figure 9-4 (b)). For pressures above 9 GPa, an extrapolation was made using a second order polynomial fitted to the data by Brazhkin et al. \cite{292} and the values used are taken from this curve. Also presented is a fit of a third order Birch-Murnaghan equation of state given by \cite{302}

\[
P = \frac{3B_0}{2} \left[ \left( \frac{V}{V_0} \right)^{-7/3} - \left( \frac{V}{V_0} \right)^{-5/3} \right] \left[ 1 + \frac{3}{4} (B_1 - 4) \left( \left( \frac{V}{V_0} \right)^{-2/3} - 1 \right) \right],
\]

(9.1)

were \(V\) is the volume and \(V_0\) is the volume under ambient conditions. The best fit was found with parameters \(B_0 = 12.31(7)\) GPa and \(B_1 = 3.28(3)\), where \(B_0\) is the bulk modulus under ambient conditions. The experimental bulk modulus is \(B_0 = 13.8\) GPa \cite{235}. The Birch-Murnaghan equation is an approximation that is often used for equations of state (see e.g. equation (1) in ref. \cite{303}). The values of Brazhkin et al. \cite{292} agree qualitatively with previous in situ measurements made by Brazhkin et al. \cite{299}; but disagree with values found from the sound velocity measurements made by Huang et al., which underestimate the density as discussed in ref. \cite{300}, early uniaxial measurements on a small disc of sample made by Bridgman \cite{254}, and the values found from simulations made by Takada et al. \cite{301} and Brazhkin et al. \cite{292}. The densities used in the present study are given in table 9.4.

The functions \(W_2 F^{(0)}(Q)\) and \(F(Q)\) that were found for each sample and pressure point using the correction factors listed in table 9.3 are plotted in figure 9-5 for SiO\(_2\) and figure 9-6 for B\(_2\)O\(_3\) to show the effect of the slope removal and Lorentzian fitting procedure. In each case the Lorentzian function that was fitted at low \(Q\) has been highlighted. Also plotted in figures 9-5 and 9-6 are the back Fourier transforms of the \(G(r)\) functions after the majority of the unphysical low-\(r\) oscillations have been removed. These are found to be in excellent agreement with the \(F(Q)\) functions, with the exception of the ambient B\(_2\)O\(_3\) measurement.

The efficacy of the semi-empirical data analysis procedure was tested by comparing both the \(F(Q)\) (figure 9-7) and \(G(r)\) (figure 9-8) functions from this study to those found in experiments on samples of SiO\(_2\) or B\(_2\)O\(_3\) at similar pressures \(\lesssim 9\) GPa by Salmon et al. using the D4C diffractometer at the Institut Laue-Langevin in Grenoble, France with single toroid boron-nitride anvils in a Paris-Edinburgh press \cite{298}. The \(G(r)\) functions from Salmon et al. were calculated using \(F(Q)\) functions truncated at a \(Q\) value of 19.6 A\(^{-1}\) corresponding to the maximum \(Q\) measured on PEARL.

The small disagreements between \(F(Q)\) measured by Salmon et al. \cite{298} and the present work for SiO\(_2\) can be explained by the different resolution functions of the two
Figure 9-5: For measurements of the SiO$_2$ sample in double toroid anvils at the indicated pressures, the function $W_2 F^{(0)}(Q)$ as calculated by using equation (4.28) (solid green line), the $F(Q)$ function after slope removal, rescaling and fitting a Lorentzian function at low $Q$ (solid black line), and the back Fourier transform of the $G(r)$ function after removal of the majority of unphysical low $r$ oscillations (solid red curve). The solid red curves are often hidden due to excellent agreement with the solid black curves.
Figure 9-6: For measurements of the B$_2$O$_3$ sample in double toroid anvils at the indicated pressures, the function $W_2 F^{(0)}(Q)$ as calculated by using equation (4.28) (solid green line), the $F(Q)$ function after slope removal, rescaling and fitting a Lorentzian function at low $Q$ (solid black line), and the back Fourier transform of the $G(r)$ function after removal of the majority of unphysical low $r$ oscillations (solid red curve). The solid red curves are often hidden due to excellent agreement with the solid black curves.
Figure 9-7: The total structure factors $F(Q)$ measured for samples of (a) SiO$_2$ under ambient pressure, (b) SiO$_2$ under a pressure of 8.5 GPa, (c) B$_2$O$_3$ under ambient pressure and (d) B$_2$O$_3$ under a pressure of 8.5 GPa from the present study (solid black curves). The datasets are compared to measurements made using the D4C diffractometer using boron-nitride anvils [298, 304] (solid green curves) either under ambient conditions in (a) and (c) or under a pressure of 8.1 GPa in (b) and (d), or to measurements made using the D4C diffractometer with the sample held in a standard vanadium container [298] (solid red curves in (a) and (c)).
Figure 9-8: The total pair distribution functions $G(r)$ measured for samples of (a) SiO$_2$ under ambient pressure, (b) SiO$_2$ under a pressure of 8.5 GPa, (c) B$_2$O$_3$ under ambient pressure and (d) B$_2$O$_3$ under a pressure of 8.5 GPa from the present study (solid black curves). The datasets are compared to measurements made using the D4C diffractometer using boron-nitride anvils [298, 304] (solid green curves) either under ambient conditions in (a) and (c) or under a pressure of 8.1 GPa in (b) and (d), or to measurements made using the D4C diffractometer with the sample held in a standard vanadium container [298] (solid red curves in (a) and (c)).
9.4 Results

In Table 9.3, several parameters describing the structures of SiO$_2$ and B$_2$O$_3$ are given for the measured pressures. The positions are given for the first and second peaks in $F(Q)$, referred to as the first sharp diffraction peak (FSDP) with position $Q_{\text{FSDP}}$ and principal peak (PP) with position $Q_{\text{PP}}$ which relate to the intermediate and extended range ordering in the system \[63, 243\], respectively. In the case of the B$_2$O$_3$ experiment, the FSDP and PP have merged for the higher pressure measurements and cannot be distinguished. Also given is the position of the first peak in $G(r)$, which corresponds

<table>
<thead>
<tr>
<th>$P$ (GPa)</th>
<th>$C_s$</th>
<th>$C_v$</th>
<th>$W$</th>
<th>$W_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$ Measurements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient</td>
<td>0.83</td>
<td>0.92</td>
<td>0.32</td>
<td>1.25</td>
</tr>
<tr>
<td>8.5</td>
<td>0.30</td>
<td>0.20</td>
<td>0.30</td>
<td>2.00</td>
</tr>
<tr>
<td>14.5</td>
<td>0.20</td>
<td>0.15</td>
<td>0.285</td>
<td>2.40</td>
</tr>
<tr>
<td>B$_2$O$_3$ Measurements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient</td>
<td>0.72</td>
<td>0.63</td>
<td>0.35</td>
<td>1.30</td>
</tr>
<tr>
<td>8.5</td>
<td>0.25</td>
<td>0.20</td>
<td>0.32</td>
<td>1.75</td>
</tr>
<tr>
<td>13</td>
<td>0.20</td>
<td>0.20</td>
<td>0.33</td>
<td>1.95</td>
</tr>
<tr>
<td>17.5</td>
<td>0.15</td>
<td>0.15</td>
<td>0.34</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Table 9.3: The correction factors for the SiO$_2$ and B$_2$O$_3$ experiments made using double toroid anvils. $C_s$ and $C_v$ are the multiplication factors for the empty gasket diffraction pattern which is subtracted from the sample and vanadium diffraction patterns, respectively. $W$ is the initial normalisation constant and $W_2$ is the re-scaling factor as described in section 4.2.
to the mean nearest neighbour Si-O or B-O bond distance denoted by $r_{\text{SiO}}$ or $r_{\text{BO}}$, respectively, and the ratio of the position of the second peak to the position of the first peak $r_2/r_{\text{SiO}}$ and $r_2/r_{\text{BO}}$. Finally, the atomic number density $\rho$ and the mean Si-O or B-O coordination number, denoted by $\pi_{\text{Si}}^O$ and $\pi_{\text{B}}^O$ respectively, are listed. The measured

<table>
<thead>
<tr>
<th>Pressure (GPa)</th>
<th>$\rho$ ($\text{Å}^{-3}$)</th>
<th>$Q_{\text{FSDP}}$ ($\text{Å}^{-1}$)</th>
<th>$Q_{\text{PP}}$ ($\text{Å}^{-1}$)</th>
<th>$r_{\text{(Si,B)O}}$ ($\text{Å}$)</th>
<th>$\pi_{\text{(Si,B)}}^O$</th>
<th>$r_2/r_{\text{(Si,B)O}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$ Measurements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient</td>
<td>0.066(1)</td>
<td>1.55(2)</td>
<td>2.90(2)</td>
<td>1.60(2)</td>
<td>4.0(1)</td>
<td>1.652</td>
</tr>
<tr>
<td>8.5(5)</td>
<td>0.085(1)</td>
<td>1.78(2)</td>
<td>2.90(2)</td>
<td>1.59(2)</td>
<td>4.0(1)</td>
<td>1.652</td>
</tr>
<tr>
<td>14.5(5)</td>
<td>0.095(1)</td>
<td>1.93(2)</td>
<td>2.90(2)</td>
<td>1.59(2)</td>
<td>4.0(1)</td>
<td>1.647</td>
</tr>
<tr>
<td>B$_2$O$_3$ Measurements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambient</td>
<td>0.0785(1)</td>
<td>N/A</td>
<td>N/A</td>
<td>1.35(2)</td>
<td>3.0(1)</td>
<td>1.773</td>
</tr>
<tr>
<td>8.5(5)</td>
<td>0.1145(1)</td>
<td>N/A</td>
<td>N/A</td>
<td>1.37(2)</td>
<td>3.3(1)</td>
<td>1.750</td>
</tr>
<tr>
<td>13(5)</td>
<td>0.1166(1)</td>
<td>N/A</td>
<td>N/A</td>
<td>1.40(2)</td>
<td>3.7(1)</td>
<td>1.735</td>
</tr>
<tr>
<td>17.5(5)</td>
<td>0.1279(1)</td>
<td>N/A</td>
<td>N/A</td>
<td>1.41(2)</td>
<td>3.9(1)</td>
<td>1.704</td>
</tr>
</tbody>
</table>

Table 9.4: Parameters describing the pressure dependence of the structure of SiO$_2$ and B$_2$O$_3$ glasses as obtained from the neutron diffraction experiments using the PEARL diffractometer with double toroid sintered diamond anvils. The number densities $\rho$ of the glasses [219, 228, 293] are given together with the position $Q_{\text{FSDP}}$ of the first sharp diffraction peak, the position $Q_{\text{PP}}$ of the principal peak, the Si-O or B-O bond distance $r_{\text{(Si,B)O}}$ taken from the position of the first peak in $G(r)$, the mean Si-O or B-O coordination number $\pi_{\text{(Si,B)}}^O$, and the ratio $r_2/r_{\text{(Si,B)O}}$ where $r_2$ is the position of the second peak in $G(r)$.

$F(Q)$ functions are given in figures [9-9 and 9-10] for the SiO$_2$ and B$_2$O$_3$ experiments, respectively. The results for SiO$_2$ are compared with the $F(Q)$ functions obtained from new classical molecular dynamics (MD) simulations made by Wilson [305] using the potentials of Tangney [306] obtained from ab initio force field calculations. The simulations were made at the same densities as found for the experimental results from figure 9-4. The neutron diffraction data were spline fitted to smooth the high frequency noise and Fourier transformed using equation (2.53) to obtain the $G(r)$ functions given in figures [9-11 and 9-12] for the SiO$_2$ and B$_2$O$_3$ experiments, respectively.
Figure 9-9: The pressure dependence of the $F(Q)$ functions measured for SiO$_2$ at the stated pressures using a Paris-Edinburgh press with double toroid sintered diamond anvils (solid black curves). Spline fits to the data are given by solid red curves. The datasets are compared to the MD simulations made by Wilson [305, 306] (solid green curves).
Figure 9-10: The pressure dependence of the $F(Q)$ functions measured for $\mathrm{B}_2\mathrm{O}_3$ at the stated pressures using a Paris-Edingburgh press with double toroid sintered diamond anvils (solid black curves). Spline fits to the data are given by solid red curves.
Figure 9-11: The pressure dependence of the $G(r)$ functions for SiO$_2$ at the stated pressures as obtained by using the spline fitted $F(Q)$ functions shown in figure 9-9 (solid black curves). The solid red curves show the extent of the unphysical low-$r$ oscillations.
Figure 9-12: The pressure dependence of the $G(r)$ functions for B$_2$O$_3$ at the stated pressures as obtained by using the spline fitted $F(Q)$ functions shown in figure 9-10 (solid black curves). The solid red curves show the extent of the unphysical low-$r$ oscillations.
9.5 Discussion

9.5.1 Silica Experiment

The FSDP is indicative of intermediate range order as discussed in section 8.5, and the pressure dependence of its position is plotted in figure 9-13. These data are compared to the positions found from the experiments made on the D4C diffractometer by Salmon et al. [298]; the x-ray diffraction experiments made using a diamond anvil cell by Benmore et al. [225], Meade et al. [219], Sato et al. [221], and Sato and Funamori [228]; the x-ray diffraction experiments made using a cubic multi-anvil apparatus by Inamura et al. [265], where measurements taken below 9 GPa were made with a different variant of the apparatus to those taken above 11 GPa [265]; and the MD simulations made by Huang et al. [307] (broken red curve). The MD simulations were made using a charge-transfer three-body potential, which was developed to describe the charge redistribution upon breaking and forming bonds, and were made at a temperature of 500 K. The results from the various studies are in agreement, although more datapoints are required between pressures of 10 and 15 GPa where there appears to be a change in the gradient $dQ_{FSDP}/dP$ at $\approx$ 10 GPa. This observation is to some extent reproduced by the simulations made by Huang et al. [307], while the MD simulations of Wilson [305] do not have datapoints in this region of pressure.

Figure 9-13: The pressure dependence of the position of the first sharp diffraction peak in $F(Q)$, $Q_{FSDP}$, for the samples of SiO$_2$ as measured in the present work by using neutron diffraction (▲). The results are compared to those obtained from the neutron diffraction experiments made on the D4C diffractometer by Salmon et al. [298] (△), the x-ray diffraction experiments made by Benmore et al. [225] (□), Meade et al. [219] (□), Inamura et al. [265] (□), Sato et al. [221] (●), and Sato and Funamori [228] (○); and molecular dynamics simulations made by Huang et al. [307] (broken red curve) and Wilson [305, 306] (broken green curve).
The most recent MD simulations made by Wilson [305] (figure 9-14) provide $F(Q)$ functions that are in good agreement with the current data in the region of the FSDP. The $F(Q)$ functions in the region of the PP are not in such good agreement, where the $F(Q)$ functions from simulation are lower than the experimental data. However, the same trend is observed, whereby the FSDP shrinks as the PP rises with increasing pressure. This indicates a change in the intermediate and extended range ordering of the system, consistent with the picture of a re-ordering of tetrahedra [225, 307].

The first and second peaks in $G(r)$ broaden with increasing pressure but do not change position (see figure 9-11), while the Si-O coordination number does not change from the value of 4 at pressures below 14.5 GPa. This is in accordance with neutron diffraction experiments made on the D4C diffractometer by Salmon et al. [298]; x-ray diffraction experiments made using a diamond anvil cell by Benmore et al. [225], Meade et al. [219], Sato et al. [221], and Sato and Funamori [228]; and MD simulations made by Huang et al. [307] and Tse et al. [308] (figure 9-14). The latter were made using two body potentials constructed by using the ab initio approach of van Beest et al. [309].

At the present time, for pressures higher than $\approx 20$ GPa, a diamond anvil cell must be used and only x-ray studies can be made due to the small sample volume. Such studies [219, 225, 228, 265] indicate a gradual change in coordination number, which begins at a pressure of 20 GPa, and where the structural motifs become fully octahedral at a pressure of $\approx 36$ GPa. By comparison, in GeO$_2$ (see chapter 8), a
similar transformation from a tetrahedral to an octahedral glass occurs between 5 and 30 GPa.

### 9.5.2 Boron Oxide Experiment

In the case of B$_2$O$_3$, the FSDP merges with the principal peak and a broad feature is formed in $F(Q)$ at the high pressures measured in the present study (figure 9-10) such that the positions of these peaks cannot be distinguished. The ratio of weighting factors for the contributions of $S_{BB}(Q)$:$S_{OO}(Q)$:$S_{BO}(Q)$ to $F(Q)$ are 0.17444:0.33912:0.48643 for neutron diffraction and 0.10917:0.62882:0.26201 for x-ray diffraction at $Q = 0$. The $F(Q)$ functions measured for neutrons are therefore more heavily weighted towards the B-O correlations, while the $F(Q)$ functions measured for x-rays are more heavily weighted towards the O-O correlations. The FSDP is more separated from the principal peak in the x-ray structure factors (see figure 9-15) due to this difference in weighting factors. The x-ray diffraction study by Brazhkin et al. [292] shows that the FSDP moves to higher $Q$ with increasing pressure and eventually merges with the PP at a pressure of about 9.5 GPa. The PP shows an accompanying increase in intensity with increasing pressure. In the present study, this behaviour continues with pressures increasing up to 17.5 GPa.

The position of the first peak in the $G(r)$ functions (figure 9-12), which is attributed to the B-O correlations, increases with pressure. Other experimental studies [292, 297, 298] show that this increase begins at a pressure of $\approx$ 8 GPa (see figure 9-16), i.e. at pressures below $\approx$ 8 GPa, the B-O bond distance does not change from its ambient value. The bond distance then increases steadily from 1.35 to 1.41 Å between a pressure of 8.5 and 17.5 GPa.

The coordination numbers found in the present work (see figure 9-17a) are in good agreement, within the experimental error, with those obtained from the inelastic x-ray experiments of Lee et al. made using a diamond anvil cell [297]. In these experiments,
1.32
1.34
1.36
1.38
1.40
1.42
1.44

pressure P (GPa)

Figure 9-16: The B-O bond distance $r_{BO}$ for $\text{B}_2\text{O}_3$ glass as measured in the present work by using neutron diffraction (∆). The results are compared to the neutron diffraction measurements made on the D4C diffractometer by Salmon et al. [298] (∇); and the x-ray diffraction experiments made by Brazhkin et al. [292] (♦).

the fractions of 3-fold and 4-fold coordinated boron atoms were found as a function of pressure, allowing the mean coordination numbers to be calculated. The present results also agree with the unpublished neutron diffraction results of Salmon et al. [298] and the x-ray diffraction results made by Brazhkin et al. using a multi-anvil press [292]. The coordination numbers calculated from the present study disagree with the first principles MD simulations made by Brazhkin et al. [292] and Takada et al. [301]. These simulations also give a variation of the density with pressure that is not in agreement with experiment (see figure 9-4). Better agreement between the coordination numbers found from experiment and from simulation is obtained by plotting the datasets as a function of density (see figure 9-17b). In this representation, the simulations made by Brazhkin et al. [292] and Takada et al. [301] are also in good agreement with each other. The experimental data show that there is an increase in the B-O coordination number with pressure beginning at $\approx 8$ GPa. The inelastic x-ray results of Lee et al. [297] indicate a sudden transition of the mean coordination number from 3 to 3.47 in the region of 7 to 8 GPa. However, the present study and the study of Brazhkin et al. [292] support a more gradual increase in coordination number with pressure, accompanied by a gradual increase in the B-O bond distance.

The experimental data are consistent with two densification mechanisms as described by Brazhkin et al. [292] and reproduced in figure 9-18. First, there is a rearrangement of the BO$_3$ trigonal motifs and a breakup of B$_3$O$_6$ boroxol rings at pressures up to $\approx 8$ GPa. Second, above 8 GPa there is continuation of this rearrangement accompanied by a gradual transition of the structural motifs from 3-fold trigonal BO$_3$ to 4-fold tetrahedral BO$_4$ units. The pressure at which the glass becomes fully tetrahedral is not well established, though the inelastic x-ray scattering study of Lee et al. [297] indicate that full transformation occurs above $\approx 23$ GPa.

The comparison of the experimental and simulation results show that an accurate
Figure 9-17: The mean coordination number $n^O_B$ of $\text{B}_2\text{O}_3$ as a function of (a) pressure and (b) density as measured in the present work by using neutron diffraction (▲). The results are compared to the neutron diffraction measurements made on the D4C diffractometer by Salmon et al. [298] (△); the x-ray diffraction experiments made by Brazhkin et al. [292] (♦); the inelastic x-ray experiments made by Lee et al. [297] (♦); and the molecular dynamics simulations made by Brazhkin et al. [292] (joined ■) and Takada et al. [301] (joined ■). The values for $n^O_B$ from the present work were obtained by integrating over the first peak in $G(r)$ (see equation 8.3).

Figure 9-18: A schematic of the network collapse for $\text{B}_2\text{O}_3$ for simulated pressures of (a) ambient, (b) 20 GPa and (c) 200 GPa reproduced from figure 2 in ref. [292]. The quantitative pressure dependence does not correspond to experiments.
simulation of B$_2$O$_3$ under pressure is difficult. New simulations are needed and further experiments, such as x-ray diffraction, are required to fully resolve the densification mechanisms for B$_2$O$_3$. Further *in situ* measurements are also needed for the density of B$_2$O$_3$ at pressures above 9 GPa to ensure that the correct coordination numbers are calculated from the neutron scattering experiments.

### 9.6 Conclusions

Reliable total structure factors $F(Q)$ have for the first time been measured for glassy SiO$_2$ and B$_2$O$_3$ at pressures above 9 GPa using neutron diffraction. The pressure dependence of the measured FSDP position, Si-O and B-O coordination numbers and Si-O and B-O bond distances are in agreement with other experiments.

In the case of SiO$_2$, the principal densification mechanism in the region of ambient pressure to 15 GPa is a change in the intermediate range ordering of the tetrahedra. This is indicated by changes in both the FSDP and PP in the $F(Q)$ functions. The data were compared with the new MD simulations made by Wilson [305, 306] which show promising preliminary results. The combination of experimental techniques and simulations will shed light on the re-arrangement of the tetrahedral network of this fundamentally important glass.

In the case of B$_2$O$_3$, densification occurs through two mechanisms for pressures up to 17.5 GPa. From ambient pressure to $\approx$ 8 GPa, there is a rearrangement of the trigonal motifs (see figures 9-18a and 9-18b reproduced from figure 2 in ref. [292]). Above 8 GPa, the number of 4 fold coordinated tetrahedral motifs increases (see figure 9-18b and 9-18c), resulting in an increase of the mean coordination number. The growth in coordination number is accompanied by an increase in the mean B-O bond distance to accommodate the additional O atoms. The available MD simulations do not agree well with the experimental results due to the difficulty in simulating the boroxol ring structures.

The densification mechanisms for the archetypical glasses studied in this thesis, namely GeO$_2$ (see chapter 8), SiO$_2$, and B$_2$O$_3$ have some similar features. In the low pressure regime, the structural motifs and their connectivity do not change, but there is a reorganisation of the intermediate range ordering. At higher pressures, a second densification mechanism arises where a change in the nature of the structural motifs involves an increase in the coordination number. This second densification mechanism occurs above threshold pressures of $\approx$ 5, 20, and 9 GPa, for GeO$_2$, SiO$_2$, and B$_2$O$_3$, respectively. The nature of the changes to the intermediate range ordering is not directly accessible from the experimental data. To understand the full nature of these mechanisms a combined experimental and simulation approach must be used.
10. Overall Conclusions

In this thesis, two new neutron scattering techniques have been presented for measuring glasses on the atomic level: the method of isotope substitution in neutron spectroscopy and the method of neutron diffraction at pressures above 9 GPa. The network glasses GeSe\textsubscript{2}, GeO\textsubscript{2}, SiO\textsubscript{2} and B\textsubscript{2}O\textsubscript{3} were studied by these methods. The main results and future directions are discussed below.

The technique of isotope substitution in neutron spectroscopy was developed by first measuring a sample of GeSe\textsubscript{2} using the MARI spectrometer (chapter 5). GeSe\textsubscript{2} was chosen because it is a difficult glass to simulate (due to the close electronegativity of the Ge and Se atoms) and the scattering lengths of the isotopes of Ge and Se make it a good candidate for this type of experiment. The full generalised single phonon vibrational density of states \( G_1(Q,E) \) and single phonon vibrational density of states \( G_1(E) \) were measured in the “bronze medal” approximation for samples of \(^{70}\text{Ge}^{70}\text{Se}_2\), \(^{73}\text{Ge}^{76}\text{Se}_2\) at a temperature of 20 K. The measurements also allowed the partial generalised single phonon vibrational density of states \( G_{\text{Ge}}(Q,E) \) and \( G_{\text{Se}}(Q,E) \) and the partial single phonon vibrational density of states \( G_{\text{Ge}}(E) \) and \( G_{\text{Se}}(E) \) to be obtained in the “silver medal” approximation. There were large statistical errors and scattering from sources other than the sample was relatively high, so two further experiments were made using the MERLIN neutron spectrometer (chapter 5). In the MERLIN experiments, \( G_1(Q,E) \) and \( G_1(E) \) were measured in the “bronze medal” approximation for samples of \(^{N}\text{Ge}^{N}\text{Se}_2\), \(^{70}\text{Ge}^{N}\text{Se}_2\) and \(^{73}\text{Ge}^{76}\text{Se}_2\); and \( G_{\text{Ge}}(Q,E), G_{\text{Se}}(Q,E), G_{\text{Ge}}(E) \) and \( G_{\text{Se}}(E) \) were obtained in the “silver medal” approximation at low temperature (5 K) and room temperature (292 K). The density of states features two peaks at \( \approx 9.8, \approx 26.5 \) meV with a broad feature above 34 meV. The first peak has contributions from Ge and Se atoms roughly weighted by their atomic concentrations, the second peak has contributions mostly from Se while the third feature has roughly equal contributions from Ge and Se. The mean squared atomic displacement and first peak in \( G_1(E) \) were also measured for a sample of \(^{N}\text{Ge}^{N}\text{Se}_2\) in the “bronze medal” approximation as a function of temperature. The mean squared displacement increases from 0.006 to 0.0375 Å\(^2\), while the first peak position shifts from 10.31(10) to 10.70(10) meV as the
temperature increases from 10 to 280 K. Methods for subtracting multiple scattering and multiple phonon scattering were developed and the agreement between different instruments and different temperatures indicate that these methods worked well. Thus, the method of isotope substitution in neutron spectroscopy has proved to be a valuable technique for extracting the partial vibrational density of states.

In chapter 7, the method of isotope substitution in neutron spectroscopy was used to measure the vibrational density of states of GeO$_2$. The full generalised single phonon vibrational density of states $G_1(Q, E)$ and single phonon vibrational density of states $G_1(E)$ were measured in the “bronze medal” approximation for samples of $^{70}$GeO$_2$, $^{70}$GeO$_2$ and $^{73}$GeO$_2$ at a temperature of 10 K. The “bronze medal” approximation does not, however, give a good approximation to the true vibrational density of states for this glass due to the large difference in scattering lengths and masses of the Ge and O atoms. The partial generalised single phonon vibrational density of states $G_{Ge}(Q, E)$ and $G_{O}(Q, E)$ and the partial single phonon vibrational density of states $G_{Ge}(E)$ and $G_{O}(E)$ were calculated in the “silver medal” approximation. For this glass, there are four distinct peaks in the vibrational density of states at 32.48(5), 69.10(5), 108.94(5) and 121.78(5) meV. The first peak has roughly equal contributions from Ge and O atoms, the second peak has Ge and O contributions that are roughly weighted by their atomic concentrations, while the third and fourth peaks have contributions almost exclusively from O atoms. With the aid of the simulations, the first peak can be associated mostly with rocking motions, the second peak is associated with bending motions and the third and fourth peaks are associated mostly with stretching motions. The density of states measured for a sample of $^{70}$GeO$_2$ in the “bronze medal” approximation is similar to that measured for SiO$_2$ but with a shift in energy scale, where the various peak positions are shifted by values between 21.78 and 31.83 meV depending on the peak. Further investigations using a different instrument are required to resolve two issues - a large difference in scaling of the “bronze medal” results between the data and simulation and unphysical negative values in $G_{Ge}(E)$.

In chapter 8 reliable total structure factors $F(Q)$ were measured for the first time by neutron diffraction for a glassy sample, chosen to be GeO$_2$, at pressures above 9 GPa. A semi-empirical data correction procedure was used. This procedure was found to be effective as proven by good agreement with the diffraction results obtained using different apparatus and a different data correction method. The $F(Q)$ functions were fourier transformed to obtain reliable total pair distribution functions $G(r)$, allowing the Ge-O coordination numbers and bond distances to be measured. The new results for GeO$_2$ glass are consistent with the existence of four principal densification mechanisms. At pressures up to a threshold of $\approx$ 5 GPa the density increases through a reorganisation of the corner shared GeO$_4$ tetrahedra. At pressures larger than this threshold, there
is a steady increase in the Ge-O bond length and coordination number. The rate of change of the intermediate range order, as measured by the pressure dependence of the position of the first sharp diffraction peak in $F(Q)$, decreases once the pressure exceeds $\approx 10$ GPa. Eventually, at about 30 GPa, the transformation to a predominantly octahedral glass is achieved and densification proceeds via compression of the Ge-O bond.

Finally, in chapter 9, the $F(Q)$ functions were presented for SiO$_2$ and B$_2$O$_3$ at pressures between ambient and 17.5 GPa. The $F(Q)$ functions were Fourier transformed to obtain $G(r)$ functions, allowing the Si-O and B-O coordination numbers and bond distances to be measured. In the case of SiO$_2$, the principle densification mechanism in the region of ambient pressure to 15 GPa is a reorganisation of the SiO$_4$ tetrahedra on an intermediate length scale. This is indicated by changes in the FSDP in the $F(Q)$ functions. The data can be interpreted with the aid of simulations, for which preliminary results show good agreement with the experimental data. In the case of B$_2$O$_3$, densification occurs through two mechanisms at pressures $< 17.5$ GPa. From ambient pressure to $\approx 8$ GPa, there is a rearrangement of the trigonal motifs. Above 8 GPa, the number of BO$_4$ tetrahedral motifs increases. This is accompanied by an increase in the mean B-O bond distance to accommodate the additional O atoms. The available MD simulations do not agree well with the experimental results due to the difficulty in simulating boroxol ring structures. In both SiO$_2$ and B$_2$O$_3$, further work is required using simulations to fully understand the densification mechanisms.

The results presented in this thesis show that experimental data can be used with molecular dynamics simulations to provide insights into the nature of glasses at the atomic scale. The techniques and data analysis procedures that have been developed provide new, more detailed information to test models. The technique of isotope substitution in neutron spectroscopy can be used to measure other glassy samples for which appropriate isotopes are available. It could also be used to measure the partial vibrational density of states of the isotopically substituted chemical species in multi-component glasses (e.g. Ag in Ag-GeSe$_2$). The method of isotope substitution can also be extended to high pressure studies using the PEARL instrument, allowing the full set of partial structure factors to be obtained for a glass at pressures up to 17.5 GPa. Both of the methods developed in this thesis allow a wide variety of glasses to be explored by measuring either their vibrational density of states or their structural changes at high pressures.
Appendix A
A.1 The Inclusion of Incoherent Scattering in Calculating the Vibrational Density of States

In section 2.2 the vibrational density of states was found for the case of coherent neutron scattering. In the following, an account is given that includes the effect of incoherent scattering.

The double differential scattering cross section for a system of \( N \) scattering centres is given by (see equation (2.4) [9]

\[
\frac{1}{N} \frac{d^2\sigma}{d\Omega dE_f} = \frac{k_f}{k_i} \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} dt e^{-i\omega t} \sum_{i=1}^{N} \sum_{j=1}^{N} \overline{b_i b_j} \langle e^{-i\mathbf{Q} \cdot \mathbf{R}_i(0)} e^{i\mathbf{Q} \cdot \mathbf{R}_j(t)} \rangle , \tag{A.1}
\]

where the brackets \( \langle \cdots \rangle \) denote a thermal average, the quantity \( \overline{b_i b_j} \) is the value of \( b_i b_j \) averaged over random nuclear spin orientations and isotope distributions, while \( b_i \) and \( b_j \) are the scattering lengths of nuclei \( i \) and \( j \), respectively. \( \mathbf{R}_i(0) \) and \( \mathbf{R}_j(t) \) are the positions of particles \( i \) at time \( t = 0 \) and \( j \) at time \( t \), respectively. \( \omega = E/\hbar \) is an angular frequency where \( E \) is the energy transfer in a scattering event.

The double differential cross section can be expressed in terms of a total structure factor such that

\[
\frac{1}{N} \frac{d^2\sigma}{d\Omega dE_f} = \frac{k_f}{k_i} S(\mathbf{Q}, E) \tag{A.2}
\]

and \( S(\mathbf{Q}, E) \) is given by [41]

\[
S(\mathbf{Q}, E) = \frac{1}{N} \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} dt e^{-i\omega t} \sum_{i=1}^{N} \sum_{j=1}^{N} \overline{b_i b_j} \langle e^{-i\mathbf{Q} \cdot \mathbf{R}_i(0)} e^{i\mathbf{Q} \cdot \mathbf{R}_j(t)} \rangle . \tag{A.3}
\]

In a solid, nuclei move around well defined equilibrium positions, \( \mathbf{R}_i \), such that \( \mathbf{R}_i(t) = \mathbf{R}_i + \mathbf{u}_i(t) \), where \( \mathbf{u}_i(t) \) is a time dependent displacement. If the displacements are small, then the harmonic approximation can be used and equation (A.3) is re-written as [41]

\[
S(\mathbf{Q}, E) = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \overline{b_i b_j} \left\langle e^{-i\mathbf{Q} \cdot (\mathbf{R}_i - \mathbf{R}_j)} \right\rangle e^{-(W_i(Q) + W_j(Q))} \\
\times \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} dt e^{-i\omega t} e^{i(Q \cdot \mathbf{u}_i(0) + Q \cdot \mathbf{u}_j(t))} . \tag{A.4}
\]

where \( W_i(Q) = \frac{1}{6} \left\langle u_i^2 \right\rangle Q^2 \) and \( W_j(Q) = \frac{1}{6} \left\langle u_j^2 \right\rangle Q^2 \) are the Debye-Waller factors for nuclei \( i \) and \( j \) while \( \left\langle u_i^2 \right\rangle \) and \( \left\langle u_j^2 \right\rangle \) are the mean square displacements of nuclei \( i \) and
The final term in equation (A.4) can be Taylor expanded as a power series such that

\[ e^{\langle (Q \cdot u_i(0))(Q \cdot u_j(t)) \rangle} = \sum_{p=0}^{\infty} \frac{1}{p!} \langle (Q \cdot u_i(0))(Q \cdot u_j(t)) \rangle^p , \]  

(A.5)

where \( p = 0, 1, 2, \ldots \). Substituting equation (A.5) into equation (A.4) gives

\[ S(Q, E) = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} b_i b_j \left< e^{-iQ \cdot (R_i - R_j)} \right> e^{-(W_i(Q) + W_j(Q))} \]

\[ \times \frac{1}{2\pi \hbar} \int_{-\infty}^{\infty} dt \ e^{-i\omega t} \sum_{p=0}^{\infty} \frac{1}{p!} \langle (Q \cdot u_i(0))(Q \cdot u_j(t)) \rangle^p . \]  

(A.6)

In this series, \( p = 0 \) represents the cross section for elastic scattering, \( p = 1 \) represents the cross section for all of the one phonon processes while \( p > 2 \) represents the cross section for \( p \) phonon (multiple phonon) processes.

**A.1.1 Single Phonon Scattering**

The single phonon contribution to the coherent dynamical structure factor (the case when \( p = 1 \) in equation (A.6)) is given by the sum of contributions from events that create phonons, \( S_{+1}(Q, E) \), and from events that annihilate phonons \( S_{-1}(Q, E) \), so that

\[ S(Q, E) = S_{+1}(Q, E) + S_{-1}(Q, E) , \]

where \( S_1(Q, E) \) is the single phonon coherent total dynamical structure factor. The general motion of each of \( N \) quantised simple harmonic oscillators in 3 dimensions due to single phonon processes can be described by the superposition of \( 3N \) allowed normal modes [11, pp. 139] such that for the case when \( E = E_i - E_f > 0 \)

\[ S_{+1}(Q, E) = \frac{1}{N} \frac{\hbar^2}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} b_i b_j \left< e^{-iQ \cdot (R_i - R_j)} \right> e^{-(W_i(Q) + W_j(Q))} \]

\[ \times \frac{3N}{(M_i M_j)^{1/2} E_\nu} \langle n(E_\nu) + 1 \rangle \delta(E - E_\nu) \]  

(A.7)

and for the case when \( E = E_i - E_f < 0 \)

\[ S_{-1}(Q, E) = \frac{1}{N} \frac{\hbar^2}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} b_i b_j e^{-iQ \cdot (R_i - R_j)} e^{-(W_i(Q) + W_j(Q))} \]

\[ \times \frac{3N}{(M_i M_j)^{1/2} E_\nu} \langle n(E_\nu) \rangle \delta(E + E_\nu) \]  

(A.8)
where $M_i$ and $M_j$ are the masses of nuclei $i$ and $j$ respectively. $\mathbf{e}_i^\nu$ and $\mathbf{e}_j^\nu$ are the displacement vectors of the $i$th and $j$th nucleus in the $\nu$th normal mode, respectively, $E^\nu = \hbar \omega^\nu$ is the energy of mode $\nu$, $\langle n^\nu(E) \rangle$ and $\langle n^\nu(E) + 1 \rangle$ are the Bose-Einstein occupation factors given by

$$\langle n^\nu(E) \rangle = \frac{1}{e^{E^\nu/(k_B T)} - 1} \quad (A.9)$$

and

$$\langle n^\nu(E) + 1 \rangle = \frac{e^{E^\nu/(k_B T)}}{e^{E^\nu/(k_B T)} - 1} , \quad (A.10)$$

where $k_B$ is Boltzmann’s constant and $T$ is the absolute temperature. The delta functions ensure that the only contributions to the summations in equations (A.7) and (A.8) are when $E = E^\nu$ and $E = -E^\nu$, respectively. Also, for the case when $E < 0$, using the symmetry of the delta function it follows that $\delta(E + E^\nu) = \delta(-E + E^\nu) = \delta(|E| - E^\nu)$. In addition

$$\langle n(-E) \rangle = \frac{1}{e^{-E/(k_B T)} - 1} = \frac{e^{E/(k_B T)}}{1 - e^{E/(k_B T)}} = - \langle n(E) + 1 \rangle , \quad (A.11)$$

such that $\langle n(-E) \rangle / (-E) = \langle n(E) + 1 \rangle / E$. Hence it follows that equation (A.8) can be re-written as

$$S_{-1}(Q, E) = \frac{1}{N} \frac{\hbar^2}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} b_i b_j e^{-iQ \cdot (R_i - R_j)} e^{-(W_i(Q) + W_j(Q))}$$

$$\times \sum_{\nu=1}^{3N} \frac{(Q \cdot \mathbf{e}_i^\nu)^* (Q \cdot \mathbf{e}_j^\nu)}{(M_i M_j)^{1/2}} \langle n(E) + 1 \rangle \delta(|E| - E^\nu) . \quad (A.12)$$

Since $E > 0$ (thus $E = |E|$) in equation (A.7), equations (A.7) and (A.12) can both be expressed in the same equation valid for all $E \neq 0$ such that

$$S_1(Q, E) = \frac{1}{N} \frac{\hbar^2 Q^2}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} b_i b_j \left< e^{-iQ \cdot (R_i - R_j)} \right> e^{-(W_i(Q) + W_j(Q))}$$

$$\times \frac{\langle n(E) + 1 \rangle}{E} \sum_{\nu=1}^{3N} \frac{(\hat{Q} \cdot \mathbf{e}_i^\nu)^* (\hat{Q} \cdot \mathbf{e}_j^\nu)}{(M_i M_j)^{1/2}} \delta(|E| - E^\nu) , \quad (A.13)$$

where $Q = |Q|$ and $\hat{Q} = Q/(|Q|)$. Equation (A.7) is recovered from equation (A.13) when $E > 0$ and equation (A.8) is recovered from equation (A.13) when $E < 0$. 

197
A.1.2 The Extreme Incoherent Approximation

In the extreme incoherent approximation, no distinction is made between (e.g. the chemical) identity of the nuclei such that equation (A.13) becomes

\[
S_1(Q, E) = \frac{1}{N} \frac{\hbar^2 Q^2}{2M} \left( \langle \hat{b}^2 \rangle \right) e^{-2\mathcal{W}(Q)} \sum_{i=1}^{N} \sum_{j=1}^{N} \left\langle e^{-iQ \cdot (R_i - R_j)} \right\rangle \\
\times \frac{\langle n(E) + 1 \rangle}{E} \sum_{\nu=1}^{3N} (\hat{Q} \cdot e_{\nu})^* (\hat{Q} \cdot e_{\nu}) \delta(|E| - E_{\nu}) .
\]

(A.14)

All nuclei are described by the same mean square scattering length, which is taken to be

\[
\langle \hat{b}^2 \rangle = \sum_{\alpha=1}^{n} b^2_{\alpha} = \sum_{\alpha=1}^{n} c_{\alpha} \left( b_{\text{coh},\alpha}^2 + b_{\text{inc},\alpha}^2 \right) ,
\]

the same mass, which is taken to be

\[
M = \sum_{\alpha=1}^{n} c_{\alpha} M_{\alpha} ,
\]

(A.15)

and the same Debye-Waller factor, which is taken to be

\[
\mathcal{W}(Q) = \sum_{\alpha=1}^{n} c_{\alpha} W_{\alpha}(Q) .
\]

(A.16)

In equations (A.15), (A.16) and (A.17), \( \alpha \) denotes a chemical species, \( n \) denotes the number of chemical species while \( c_{\alpha} \), \( b_{\alpha} \), \( M_{\alpha} \) and \( W_{\alpha}(Q) \) are the atomic fraction, mean scattering length, mean mass and mean Debye-Waller factor for chemical species \( \alpha \), respectively. For convenience, the coherent scattering lengths \( b_{\text{coh},\alpha}^2 = 4\pi b_{\alpha}^2 \) and incoherent scattering lengths \( b_{\text{inc},\alpha}^2 = \left( b_{\alpha}^2 - b_{\text{coh},\alpha}^2 \right) \) of chemical species \( \alpha \) have been used.

The incoherent approximation is then made, whereby only the contribution from terms where \( i = j \) (i.e. terms involving the same nucleus) within the sum made in equation (A.14) are considered such that

\[
S_1(Q, E) = \frac{1}{N} \frac{\hbar^2 Q^2}{2M} \left( \langle \hat{b}^2 \rangle \right) e^{-2\mathcal{W}(Q)} \frac{\langle n(E) + 1 \rangle}{E} \sum_{i=1}^{N} \sum_{\nu=1}^{3N} \hat{Q} \cdot e_{\nu}^* \delta(|E| - E_{\nu}) .
\]

(A.18)

If \( \hat{Q} \) is averaged over all directions (which is the case for an homogeneous, isotropic solid such as most glasses) then

\[
\langle |\hat{Q} \cdot e_{\nu}|^2 \rangle = \frac{1}{3} \langle |e_{\nu}|^2 \rangle .
\]

(A.19)
If the total vibrational density of states, \( Z(E) \), is defined to be the fraction of states between \( E \) and \( E + dE \) then
\[
Z(E) = \frac{1}{3N} \sum_{i=1}^{N} \sum_{\nu=1}^{3N} \langle |e_i^\nu|^2 \rangle \delta(|E| - E_{\nu}) = \frac{1}{3N} \sum_{\nu=1}^{3N} \delta(|E| - E_{\nu}) . \tag{A.20}
\]

It follows that \( Z(E) \) is an even function, \( \int Z(E) dE = 1 \) for \( E > 0 \), and that equation (A.18) can be expressed in the extreme incoherent approximation as
\[
S_1(Q,E) = \frac{\hbar^2 Q^2}{2M} \left( \langle b^2 \rangle e^{-2W(Q)} \langle n(E) + 1 \rangle Z(E) \right) . \tag{A.21}
\]

### A.1.3 The Incoherent Approximation

For a two component system of chemical species \( A \) and \( X \), equation (A.13) can be rewritten as the sum of partial dynamical structure factors \( S_{\alpha\beta}(Q,E) \) (\( \alpha = A,X, \beta = A,X \)) such that
\[
S_1(Q,E) = b_{\alpha}^2 S_{\alpha\alpha}(Q,E) + b_{\beta}^2 S_{\beta\beta}(Q,E) + 2b_{\alpha} b_{\beta} S_{\alpha\beta}(Q,E) , \tag{A.22}
\]
where \( b_{\alpha}^2 = b_{\text{coh},\alpha}^2 + b_{\text{inc},\alpha}^2 \), and \( b_{\alpha} = b_{\text{coh},\alpha} \cdot S_{\alpha\beta}(Q,E) \) represents the correlations between nuclei of chemical species \( \alpha \) and nuclei of chemical species \( \beta \) and is given by
\[
S_{\alpha\beta}(Q,E) = \frac{1}{N} \frac{h^2 Q^2}{2} \sum_{\alpha i=1}^{N_{\alpha}} \sum_{\beta j=1}^{N_{\beta}} e^{-(W_{\alpha i}(Q) + W_{\beta j}(Q))} \left( e^{-i\hat{Q} \cdot (\hat{R}_{\alpha i} - \hat{R}_{\beta j})} \right) 
\times \frac{\langle n(E) + 1 \rangle}{E} \sum_{\nu=1}^{3N} \langle \hat{Q} \cdot e_{\alpha i}^\nu \rangle \langle \hat{Q} \cdot e_{\beta j}^\nu \rangle (M_{\alpha i} M_{\beta j})^{1/2} \delta(|E| - E_{\nu}) , \tag{A.23}
\]
where \( N_{\alpha} \) and \( N_{\beta} \) are the number of nuclei in the system of chemical species \( \alpha \) and \( \beta \), while \( \alpha i \) and \( \beta j \) denote nuclei of chemical species \( \alpha \) and \( \beta \), respectively.

The incoherent approximation is then made, whereby only terms involving \( \alpha i = \beta j \) (i.e. terms involving the same nuclei) contribute to the sum in equation (A.23) such that \( S_{\alpha\beta}(Q,E) = 0 \) for \( \alpha \neq \beta \) and
\[
S_{\alpha\alpha}(Q,E) = \frac{1}{N} \frac{h^2 Q^2}{2M_{\alpha}} e^{-2W_{\alpha}(Q)} \frac{\langle n(E) + 1 \rangle}{E} \sum_{\alpha i=1}^{N_{\alpha}} \sum_{\nu=1}^{3N} |\hat{Q} \cdot e_{\alpha i}^\nu|^2 \delta(|E| - E_{\nu}) , \tag{A.24}
\]
where \( M_{\alpha} \) and \( W_{\alpha}(Q) \) are the mean mass and Debye-Waller factor for atoms of chemical species \( \alpha \), respectively. If \( \hat{Q} \) is averaged over all directions (which is the case for an
homogeneous, isotropic solid such as most glasses) then

\[ \left\langle |\mathbf{Q} \cdot \mathbf{e}_{\alpha i}|^2 \right\rangle = \frac{1}{3} \left\langle |\mathbf{e}_{\alpha i}|^2 \right\rangle . \]  

(A.25)

The partial vibrational density of states for a given chemical species \( \alpha \) is defined as the fraction of modes with energy between \( E \) and \( E + dE \) such that

\[ Z_{\alpha}(E) = \frac{1}{3N} \sum_{\alpha i=1}^{N} \sum_{\nu=1}^{3N} \langle |\mathbf{e}_{\nu i}|^2 \rangle \delta(|E| - E_{\nu}) , \]  

(A.26)

where \( Z_{\alpha}(E) \) is the partial vibrational density of states, defined such that \( \int Z_{\alpha}(E) dE = c_{\alpha} \). Therefore equation (A.24) becomes

\[ S_{\alpha\alpha}(Q, E) = \frac{\hbar^2 Q^2}{2M_{\alpha}} \left( n(E) + 1 \right) Z_{\alpha}(E) . \]  

(A.27)

The total vibrational density of states is given by \( Z(E) = Z_{\Lambda}(E) + Z_{\Sigma}(E) \).
A.2 First Order Difference Functions

The “silver medal” results presented in this thesis (see section 2.2.4) can be shown to be equivalent to an application of the first order difference method (see e.g. [175]). If two experiments are made on a two component system that differ only in the isotopic compositions of the elements, then the $S(Q,E)$ functions that are measured can be represented by

$$S(Q,E) = b_1^2 S_{11}(Q,E) + b_2^2 S_{22}(Q,E) + 2b_1 b_2 S_{12}(Q,E)$$  \hspace{1em} (A.28)

$$S'(Q,E) = b_1'^2 S_{11}(Q,E) + b_2'^2 S_{22}(Q,E) + 2 b_1' b_2 S_{12}(Q,E),$$  \hspace{1em} (A.29)

where $S(Q,E)$ and $S'(Q,E)$ are the measured total dynamical structure factors, while $b_\alpha$ and $b_\alpha'$ are the scattering lengths of chemical species $\alpha$ for the isotope compositions used in experiments 1 and 2, respectively. $S_{\alpha\beta}(Q,E)$ denotes a partial dynamical structure factor for chemical species $\alpha$ and $\beta$. Two first order difference functions can be defined by

$$\Delta S(Q,E) = \frac{1}{b_1'^2 b_2' - b_2^2 b_1'^2} \left((b_2'^2 S(Q,E) - b_2^2 S'(Q,E))\right)$$  \hspace{1em} (A.30)

and

$$\Delta S'(Q,E) = \frac{1}{b_1'^2 b_2' - b_2^2 b_1'^2} \left(b_1'^2 S'(Q,E) - b_2^2 S(Q,E))\right).$$  \hspace{1em} (A.31)

By substituting equations (A.28) and (A.29) into equations (A.30) and (A.31) it can be shown that

$$\Delta S(Q,E) = S_{11}(Q,E) + \frac{2b_1 b_2}{b_1' b_2 + b_2' b_1} S_{12}(Q,E)$$  \hspace{1em} (A.32)

and

$$\Delta S'(Q,E) = S_{22}(Q,E) + \frac{2b_1' b_2}{b_1' b_2 + b_1 b_2'} S_{12}(Q,E).$$  \hspace{1em} (A.33)

In the incoherent approximation, the contributions from $S_{12}(Q,E)$ are neglected such that equations (A.32) and (A.33) become

$$\Delta S(Q,E) = S_{11}(Q,E)$$  \hspace{1em} (A.34)

and

$$\Delta S'(Q,E) = S_{22}(Q,E),$$  \hspace{1em} (A.35)

respectively.

In the “silver medal” approach using the incoherent approximation (see section 2.2.4),
the contributions from $S_{12}(Q, E)$ are neglected and a matrix can be made where

$$A = \begin{pmatrix}
    b_1^2 & b_2^2 \\
    b_1^2 & b_2^2
\end{pmatrix},$$

(A.36)
such that equations (A.28) and (A.29) can be described in matrix notation by

$$\begin{pmatrix}
    S(Q, E) \\
    S'(Q, E)
\end{pmatrix} = A \begin{pmatrix}
    S_{11}(Q, E) \\
    S_{22}(Q, E)
\end{pmatrix},$$

(A.37)
and therefore

$$\begin{pmatrix}
    S_{11}(Q, E) \\
    S_{22}(Q, E)
\end{pmatrix} = A^{-1} \begin{pmatrix}
    S(Q, E) \\
    S'(Q, E)
\end{pmatrix}.$$  

(A.38)
The inversion of the 2 by 2 matrix $A$ can be done using Cramer’s rule giving

$$A^{-1} = \frac{1}{b_1^2 b_2^2 - b_2^2 b_1^2} \begin{pmatrix}
    -b_2^2 & b_2^2 \\
    -b_2^2 & b_1^2
\end{pmatrix}.$$  

(A.39)
By substituting equation (A.39) into equation (A.38) and expanding the matrices, it follows that

$$S_{11}(Q, E) = \frac{1}{b_1^2 b_2^2 - b_2^2 b_1^2} \left( b_2^2 S(Q, E) - b_2^2 S'(Q, E) \right)$$

(A.40)
$$S_{22}(Q, E) = \frac{1}{b_1^2 b_2^2 - b_2^2 b_1^2} \left( b_1^2 S'(Q, E) - b_1^2 S(Q, E) \right).$$

(A.41)
Within the coherent approximation, equations (A.34) and (A.35) show that $S_{11}(Q, E) = \Delta S(Q, E)$ and $S_{22}(Q, E) = \Delta S'(Q, E)$. In this case, equations (A.40) and (A.41) found using the “silver medal” approach are equivalent to equations (A.30) and (A.31) using the first order difference approach, respectively.
Bibliography


[58] Image downloaded from [http://www.isis.stfc.ac.uk/instruments/mari/mari-picture7948.gif](http://www.isis.stfc.ac.uk/instruments/mari/mari-picture7948.gif), July 2010.


