NOVEL CATALYST SYSTEMS FOR NOX

David William John McClymont

A thesis submitted for the degree of Doctor of Philosophy

University of Bath

Department of Chemical Engineering

January 2014

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with the author. A copy of this thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that they must not copy it or use material from it except as permitted by law or with the consent of the author.

Candidates wishing to include copyright material belonging to others in their theses are advised to check with the copyright owner that they will give consent to the inclusion of any of their material in the thesis. If the material is to be copied other than by photocopying or facsimile then the request should be put to the publisher or the author in accordance with the copyright declaration in the volume concerned. If, however, a facsimile or photocopy will be included, then it is appropriate to write to the publisher alone for consent.

This thesis may be made available for consultation within the University Library and may be photocopied or lent to other libraries for the purposes of consultation.
Table of Contents

Table of Contents... ii
Acknowledgements... x
Dissemination .. xi
Abstract .. xiii
Nomenclature .. xiv

CHAPTER 1 Introduction ... 1-1

1.1 Background.. 1-1
1.1.1 Biomass .. 1-1
1.1.2 Gasification ... 1-3
1.1.3 Legislation .. 1-4
1.1.4 Emission Control ... 1-6
 1.1.4.1 NH₃/urea-SCR ... 1-6
 1.1.4.2 H₂-SCR ... 1-8
1.1.5 Separation of H₂... 1-10
 1.1.5.1 Pressure Swing Adsorption ... 1-10
 1.1.5.2 Fractional/Cryogenic Distillation ... 1-11
 1.1.5.3 Membrane Separation ... 1-12
1.2 Motivation for Present Work... 1-14
1.3 Structure of the Thesis ... 1-15
CHAPTER 2 Literature Review & Associated Experiences ... 2-1

2.1 Nitrogen Oxides... 2-1
 2.1.1 Sources and Formation of NO\textsubscript{x} .. 2-2
 2.1.1.1 Down–draft Gasification Process... 2-3
 2.1.1.1.1 Formation of NO\textsubscript{x} Species .. 2-6
 2.1.1.2 Typical NO\textsubscript{x} Emissions Levels... 2-8

2.2 Harmful Processes ... 2-9
 2.2.1 Formation of Photochemical Smog ... 2-9
 2.2.2 Destruction of Stratospheric Ozone ... 2-10
 2.2.3 Health Effects .. 2-11

2.3 Legislation ... 2-11
 2.3.1 Industrial Emissions Directive ... 2-11
 2.3.2 Euro Standards ... 2-12

2.4 NO\textsubscript{x} Reduction Strategies .. 2-14
 2.4.1 NH\textsubscript{3}–SCR ... 2-14
 2.4.2 Hydrogen as a Reducing Agent for DeNO\textsubscript{x} ... 2-16
 2.4.2.1 Hydrogen Presence in Biomass Gasification Process 2-16
 2.4.2.2 Hydrogen Generation in Diesel Engine Exhausts 2-18
 2.4.3 Previously Reported Work .. 2-19
 2.4.3.1 H\textsubscript{2}–SCR ... 2-20
 2.4.3.1.1 Noble Metal and Metal Oxide Based Catalysts 2-21
 2.4.3.1.1.1 Pd/Al\textsubscript{2}O\textsubscript{3} Catalysts ... 2-22
 2.4.3.1.1.2 Pt/Al\textsubscript{2}O\textsubscript{3} Catalysts ... 2-23
 2.4.3.1.1.3 Additional Catalyst Systems ... 2-24
 2.4.3.1.2 Perovskites ... 2-25
 2.4.3.1.3 Zeolites ... 2-27
 2.4.3.1.4 Summary Table .. 2-29
2.4.3.2 H₂–assisted SCR ... 2-30
2.4.3.3 H₂/CO Mixture ... 2-31
2.4.3.4 NOₓ Storage and Reduction (NSR) ... 2-32
 2.4.3.4.1 Three Proposed Pathways for NOₓ Sorption 2-32
 2.4.3.4.2 Possible NSR Reactions ... 2-36
 2.4.3.4.3 H₂ use in NSR Experiments 2-37
2.4.3.5 Coupled SCR and NSR Systems 2-38

2.5 Analysis Techniques ... 2-40
 2.5.1 Chemiluminescence NOₓ Analysers 2-42
 2.5.2 Mass Spectrometry .. 2-43
 2.5.3 FTIR .. 2-45
 2.5.4 Gas Chromatography .. 2-46
 2.5.5 Other Techniques .. 2-46

2.6 Conclusions Which Impact Upon the Work in this Thesis 2-47
 2.6.1 Process ... 2-47
 2.6.2 Catalysts ... 2-48
 2.6.2.1 Materials ... 2-48
 2.6.2.2 Preparation Method .. 2-49
 2.6.2.3 Support .. 2-49
 2.6.3 Analysis .. 2-50

CHAPTER 3 Experimental – Investigation of Reaction Mechanisms and Transient Behaviour of H₂–SCR Catalysts in a Continuous Flow Fixed Bed Reactor ... 3-1

3.1 Catalyst Preparation ... 3-1
 3.1.1 Summary ... 3-1
 3.1.2 Catalyst Support Structure ... 3-4
3.1.3 Catalyst Support Materials .. 3-6
 3.1.3.1 Cordierite Substrate ... 3-6
 3.1.3.2 Alumina Washcoat ... 3-7
3.1.4 Active Components .. 3-10
 3.1.4.1 Pt/Al₂O₃ ... 3-10
 3.1.4.2 Ag/Al₂O₃ ... 3-11
3.2 Catalyst Characterisation ... 3-12
 3.2.1 Visual Observation ... 3-12
 3.2.2 Weight Measurements ... 3-12
 3.2.3 Nitrogen Adsorption .. 3-13
 3.2.3.1 Adsorption–desorption Isotherm ... 3-15
 3.2.3.2 Brunauer–Emmett–Teller (BET) Surface Area .. 3-17
 3.2.3.3 Barrett–Joyner–Halenda (BJH) Porosity .. 3-19
 3.2.3.4 Summary .. 3-20
3.3 Design & Commissioning of the Continuous Flow Fixed Bed Reactor 3-21
 3.3.1 Experimental Set-up .. 3-21
 3.3.2 Flow Rate Considerations .. 3-27
 3.3.3 Presentation of Results .. 3-28
3.4 H₂–SCR: A Preliminary Set of Experiments .. 3-30
 3.4.1 Aims and Objectives ... 3-31
 3.4.2 Predicted Outcomes .. 3-31
 3.4.3 Pt/Al₂O₃ ... 3-31
 3.4.3.1 Absence of O₂ ... 3-32
 3.4.3.2 Presence of O₂ ... 3-40
 3.4.4 Ag/Al₂O₃ ... 3-45
 3.4.4.1 Absence of O₂ ... 3-45
 3.4.4.2 Presence of O₂ ... 3-47
3.4.5 Identified Issues and Limitations .. 3-49
3.4.6 Conclusions and Subsequent Actions Taken .. 3-49
3.5 H₂–SCR: Final Results ... 3-50

3.5.1 H₂–SCR ... 3-51
 3.5.1.1 Catalyst Substrate and Support ... 3-53
 3.5.1.1.1 Cordierite .. 3-53
 3.5.1.1.2 γ–Al₂O₃ .. 3-53
 3.5.1.2 Complete Catalyst Systems ... 3-54
 3.5.1.2.1 Pt/Al₂O₃ ... 3-54
 3.5.1.2.2 Ag/Al₂O₃ ... 3-59
 3.5.1.3 H₂–SCR Conclusions ... 3-64

3.5.2 TPD .. 3-65
 3.5.2.1 NO–TPD .. 3-65
 3.5.2.1.1 Catalyst Substrate and Support .. 3-66
 3.5.2.1.1.1 Cordierite .. 3-66
 3.5.2.1.1.2 γ–Al₂O₃ ... 3-66
 3.5.2.1.2 Complete Catalyst Systems .. 3-66
 3.5.2.1.2.1 Pt/Al₂O₃ .. 3-66
 3.5.2.1.2.2 Ag/Al₂O₃ ... 3-68
 3.5.2.2 H₂–TPD .. 3-70
 3.5.2.3 TPD Conclusions .. 3-71

3.6 Key Conclusions .. 3-73
CHAPTER 4 Experimental – Investigation of Reaction Mechanisms and Transient Behaviour of H₂–NSR Catalysts in a Continuous Flow Fixed Bed Reactor ... 4-1

4.1 Catalyst Preparation .. 4-1
 4.1.1 Summary .. 4-1

4.1.2 Storage Components ... 4-2
 4.1.2.1 Barium .. 4-4
 4.1.2.2 Potassium ... 4-5

4.1.3 Active Components .. 4-6
 4.1.3.1 Ba/Pt/Al₂O₃ .. 4-6
 4.1.3.2 Ba/Ag/Al₂O₃ and K/Ag/Al₂O₃ ... 4-7

4.2 Catalyst Characterisation ... 4-8
 4.2.1 Weight Measurements ... 4-8
 4.2.2 Nitrogen Adsorption Analysis .. 4-9

4.3 H₂–NSR: A Preliminary Set of Experiments ... 4-10
 4.3.1 Aims and Objectives ... 4-11
 4.3.2 Predicted Outcomes ... 4-11
 4.3.2.1 NSR Studies .. 4-11
 4.3.2.2 TPD/TPSR Studies .. 4-13
 4.3.3 Ba/Pt/Al₂O₃ ... 4-14
 4.3.3.1 NSR Studies ... 4-14
 4.3.3.2 TPD Studies .. 4-19
 4.3.4 Ba/Ag/Al₂O₃ .. 4-21
 4.3.4.1 NSR Studies ... 4-21
 4.3.5 Identified Issues and Limitations .. 4-24
 4.3.6 Conclusions and Subsequent Actions taken .. 4-25

4.4 H₂–NSR: Final Results ... 4-26
 4.4.1 H₂–NSR .. 4-27
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.1.1</td>
<td>Lean vs Rich 1</td>
<td>4-28</td>
</tr>
<tr>
<td>4.4.1.1.1</td>
<td>Catalyst Substrate and Support</td>
<td>4-29</td>
</tr>
<tr>
<td>4.4.1.1.1.1</td>
<td>Cordierite</td>
<td>4-29</td>
</tr>
<tr>
<td>4.4.1.1.1.2</td>
<td>γ–Al₂O₃</td>
<td>4-30</td>
</tr>
<tr>
<td>4.4.1.1.2</td>
<td>Storage Components</td>
<td>4-31</td>
</tr>
<tr>
<td>4.4.1.1.2.1</td>
<td>Ba/Al₂O₃</td>
<td>4-31</td>
</tr>
<tr>
<td>4.4.1.1.2.2</td>
<td>K/Al₂O₃</td>
<td>4-32</td>
</tr>
<tr>
<td>4.4.1.1.3</td>
<td>Complete Catalyst Systems</td>
<td>4-33</td>
</tr>
<tr>
<td>4.4.1.1.3.1</td>
<td>Ba/Pt/Al₂O₃</td>
<td>4-33</td>
</tr>
<tr>
<td>4.4.1.1.3.2</td>
<td>Ba/Ag/Al₂O₃</td>
<td>4-39</td>
</tr>
<tr>
<td>4.4.1.1.3.3</td>
<td>K/Ag/Al₂O₃</td>
<td>4-43</td>
</tr>
<tr>
<td>4.4.1.2</td>
<td>Lean vs Rich 2</td>
<td>4-48</td>
</tr>
<tr>
<td>4.4.1.2.1</td>
<td>Storage Components</td>
<td>4-49</td>
</tr>
<tr>
<td>4.4.1.2.1.1</td>
<td>Ba/Al₂O₃</td>
<td>4-49</td>
</tr>
<tr>
<td>4.4.1.2.1.2</td>
<td>K/Al₂O₃</td>
<td>4-50</td>
</tr>
<tr>
<td>4.4.1.2.2</td>
<td>Complete Catalyst Systems</td>
<td>4-51</td>
</tr>
<tr>
<td>4.4.1.2.2.1</td>
<td>Ba/Pt/Al₂O₃</td>
<td>4-51</td>
</tr>
<tr>
<td>4.4.1.2.2.2</td>
<td>Ba/Ag/Al₂O₃</td>
<td>4-55</td>
</tr>
<tr>
<td>4.4.1.2.2.3</td>
<td>K/Ag/Al₂O₃</td>
<td>4-59</td>
</tr>
<tr>
<td>4.4.1.3</td>
<td>NSR Conclusions</td>
<td>4-63</td>
</tr>
<tr>
<td>4.4.2</td>
<td>TPD/TPSR</td>
<td>4-64</td>
</tr>
<tr>
<td>4.4.2.1</td>
<td>NO–TPD</td>
<td>4-65</td>
</tr>
<tr>
<td>4.4.2.1.1</td>
<td>Ba/Pt/Al₂O₃</td>
<td>4-66</td>
</tr>
<tr>
<td>4.4.2.1.2</td>
<td>Ba/Ag/Al₂O₃</td>
<td>4-68</td>
</tr>
<tr>
<td>4.4.2.1.3</td>
<td>K/Ag/Al₂O₃</td>
<td>4-70</td>
</tr>
<tr>
<td>4.4.2.2</td>
<td>H₂–TPSR</td>
<td>4-72</td>
</tr>
<tr>
<td>4.4.2.2.1</td>
<td>Ba/Pt/Al₂O₃</td>
<td>4-73</td>
</tr>
</tbody>
</table>
4.4.2.2.2 Ba/Ag/Al₂O₃ ... 4-75
4.4.2.2.3 K/Ag/Al₂O₃ ... 4-77
4.4.2.3 H₂–TPD ... 4-79
4.4.2.4 TPD/TPSR Conclusions ... 4-80
4.4.3 Key Conclusions ... 4-82

CHAPTER 5 Conclusions and Recommendations for Future Work 5-1
5.1 Conclusions ... 5-1
 5.1.1 Viability Study .. 5-1
 5.1.2 Source of H₂ .. 5-2
 5.1.3 General Experimental Set–up .. 5-2
 5.1.4 QMS Analytical Technique ... 5-2
 5.1.5 H₂–SCR Experimental Investigations 5-3
 5.1.6 H₂–NSR Experimental Investigations 5-4
5.2 Recommendations .. 5-6
 5.2.1 Experimental Investigations .. 5-6
 5.2.2 QMS Analytical Technique .. 5-7

Appendix I – Gas Analysis: Design and Construction of an Analytical Method Using an Online Mass Spectrometer ... I

Appendix II – Examples of Detailed Catalyst Preparation Procedures XXXII
Acknowledgements

I have been touched by a huge number of positive influences throughout this project and I would like to extend my sincerest thanks to the following people:

In particular I am exceptionally grateful to my lead supervisor, Professor Stan Kolaczkowski, for his support, guidance, knowledge and dedication to the project which has shaped it into what it is today. He constantly encouraged me to broaden my experiences and has been central to my conversion from a chemist to a chemical engineer.

I would also like to extend my thanks to my co–supervisors; Professor Kieran Molloy and Dr Serpil Awdry for their help and advice.

I am indebted to the management of the Centre for Sustainable Chemical Technologies; in particular Professor Matthew Davidson, Dr Janet Scott and Dr Tim Mays, for providing me with the opportunity to study in Bath and the support afforded a member of the Doctoral Training Centre; including financial assistance for travel to conferences and on placements.

I am thankful to past and present members of the Kolaczkowski group, in particular Ben Firth, Dr Chien Dinh Le and Dr Frank Zhang, as well as the other student members of the Doctoral Training Centre, for the sharing of their experience, assistance and friendship.

I thank Dr hab Joanna Łojewska of the Jagiellonian University, Krakow and members of her research group; Joanna Kryca, Dr Przemysław Jodłowski and Dr Arkadiusz Knapik, for the opportunity to work in their group for two months and their continued friendship.

The technical support staff at the university including Robert Brain, John Bishop, Paul Frith, Phil Jones, Dr Marianne Harkins, Dr Dan Lou–Hing, Suzanne Barkley and Fernando Acosta provided exceptional assistance and services during the course of this project, and I am extremely appreciative of their enthusiasm and industry.

I am also grateful to Professor Stephen Myers, Mr Denny Hall and Professor Prabir Dutta of the Ohio State University, who in their own ways ensured I spent a thoroughly enjoyable and productive three months in Columbus, Ohio.

Finally, huge thanks go to my family and friends for their continual encouragement and support over the last few years.
Dissemination

Some of the results presented within this thesis have already been disseminated through posters, oral presentations and peer reviewed publications. A selection of such dissemination is presented below.

Poster Presentations

Silver catalysts for NO\textsubscript{x} storage and reduction using hydrogen
IChemE Sustainable and Environmental Catalysis Meeting, University of Bath, 25th–26th September 2013.

Silver catalysts for NO\textsubscript{x} storage and reduction using hydrogen
ChemEngDayUK 2013, Imperial College London, 25th–26th March 2013.

Novel catalyst systems for deNO\textsubscript{x}
DTC Symposium Series – Sustainable Industrial Catalysis, University of Bath, 29th January 2013.

Novel catalyst systems for deNO\textsubscript{x}
IChemE Catalysis for Energy Meeting, University of Birmingham, 11th December 2012.

Novel catalyst systems for deNO\textsubscript{x}
DTC Summer Showcase 2012, University of Bath, 9th–13th July 2012.
Multi-Step TPSR/QMS Technique to Study the Kinetics of NH₃–SCR

Copper exchanged zeolites for ammonia reduction of NOₓ from biogas gas engines
DTC Summer Showcase 2011, University of Bath, 11th–13th July 2011.

Oral Presentations

Novel catalyst systems for deNOₓ
D. W. J. McClymont
DTC Summer Showcase 2013, University of Bath, 16th–18th September 2013.

Novel catalyst systems for deNOₓ
D. W. J. McClymont
Department of Chemistry, Jagiellonian University, Krakow, Poland, 21st June 2011.
(Invited Speaker)

Contribution to Publications

Copper exchanged ultrastable zeolite Y – A catalyst for NH₃–SCR of NOₓ from stationary biogas engines

Using a quadrupole mass spectrometer for on-line gas analysis – gasification of biomass and refuse derived fuel
2013 (under review).
Abstract

Although different approaches for the reduction of NO\textsubscript{x} species have been widely investigated in the literature, there are a number of drawbacks to the current industrial processes. In addition, increasingly stringent legislation ensures continued interest in improving these methods. An opportunity to utilise the H\textsubscript{2} produced during biomass gasification to treat the subsequent exhaust emissions was identified and a number of novel catalyst systems were prepared and explored in a variety of different deNO\textsubscript{x} processes, and their performance compared to typical ‘standard’ catalysts.

Measurements conducted on a pilot scale gasifier confirmed the presence of between 10 – 17 % H\textsubscript{2}, depending on the conditions in the gasifier, and validated the approach of this work. An experimental set–up consisting of a 15 mm i.d. stainless steel reactor housed within an electric furnace was constructed and commissioned, and an analytical method for the detection of eight potential deNO\textsubscript{x} reaction species was developed utilising a Quadrupole Mass Spectrometer (QMS).

All of the catalysts explored in this study (o.d. = 14 mm, length = 10 mm) were prepared through impregnation of supplied samples of cordierite substrate monoliths coated with a \(\gamma\)–Al\textsubscript{2}O\textsubscript{3} washcoat. Results of catalytic studies make up the bulk of this thesis, and two such processes were explored:

(a) Selective Catalytic Reduction (SCR) – Pt/Al\textsubscript{2}O\textsubscript{3} has already been widely explored for this process and Ag/Al\textsubscript{2}O\textsubscript{3} was also prepared as a potential novel material. Although the Ag/Al\textsubscript{2}O\textsubscript{3} catalyst displayed some conversion of NO at higher temperatures (e.g. 17 – 21 % at \(\geq 350\) °C), apparent selectivity to the formation of N\textsubscript{2} was poor (e.g. 40 – 41 %).

(b) NO\textsubscript{x} Storage and Reduction (NSR) – Ba/Pt/Al\textsubscript{2}O\textsubscript{3} is considered the standard catalyst for this process and was compared to two novel materials: Ba/Ag/Al\textsubscript{2}O\textsubscript{3} and K/Ag/Al\textsubscript{2}O\textsubscript{3}. With respect to the standard catalyst, the novel systems demonstrated comparable, and in some cases improved performance depending on the NSR conditions at 400 °C. Ba/Ag/Al\textsubscript{2}O\textsubscript{3} demonstrated a capacity to store 11 – 15 % of the supplied NO and subsequently reduce 6 – 77 % of the stored species to N\textsubscript{2}. K/Ag/Al\textsubscript{2}O\textsubscript{3} demonstrated a capacity to store 23 – 72 % of the supplied NO and subsequently reduce 60 – 92 % of the stored species to N\textsubscript{2}.
Nomenclature

- **\(a_s \)**: Specific surface area \(\text{m}^2 \text{g}^{-1} \)
- **\(a_m \)**: Molecular cross sectional area of adsorbate molecule \(\text{nm}^2 \)
- **\(C \)**: BET parameter
- **\(C_{ij} \)**: Ratio of partial pressure of species \(i \) at \(m/z \) \(j \) to that of species \(i \) at its associated ‘main’ peak, used in QMS calibration.
- **\(C_{i\text{Inlet}} \)**: Inlet concentration of species \(i \) \(\text{ppm or \%} \)
- **\(C_{i\text{Outlet}} \)**: Outlet concentration of species \(i \) \(\text{ppm or \%} \)
- **\(h \)**: Planck’s constant \(6.626 \times 10^{-34} \text{ J s} \)
- **\(\Delta H_{298} \)**: Enthalpy change of reaction at 298 K \(\text{J mol}^{-1} \)
- **\(J \)**: Photolysis rate coefficient \(\text{s}^{-1} \)
- **\(K \)**: Reaction rate coefficient \(\text{Various units} \)
- **\(L \)**: Avogadros constant \(6.022 \times 10^{23} \text{ mol}^{-1} \)
- **\(m/z \)**: Mass–to–charge ratio
- **\(n_m \)**: Monolayer capacity \(\text{cm}^3 \text{ g}^{-1} \)
- **\(\varnothing \)**: Diameter \(\text{mm or cm} \)
- **\(P \)**: Pressure \(\text{bar or Torr} \)
- **\(P_i \)**: Corrected partial pressure of species \(i \) \(\text{Torr} \)
- **\(P_{m/z\ j} \)**: Raw partial pressure of \(m/z \) \(j \) \(\text{Torr} \)
- **\(P_0/P \)**: Relative Pressure
- **\(r \)**: Radius \(\text{cm} \)
- **\(RS_i \)**: Relative Sensitivity value of species \(i \), used in QMS calibration.
- **\(t \)**: Time \(\text{s, min or h} \)
- **\(T \)**: Temperature \(\text{°C} \)
- **\(T_{\text{MAX}} \)**: Temperature of reported maximum NO\(_x\) conversion \(\text{°C} \)
- **\(\nu \)**: Frequency \(\text{Hz} \)
- **\(V_a \)**: Volume of gas adsorbed \(\text{cm}^3 \text{ g}^{-1} \)
- **\(x_i \)**: Concentration of species \(i \), used in QMS calibration. \(\text{ppm or \%} \)
- **\(X_i \)**: Total conversion of species \(i \) \(\% \)
Greek Symbols

\(\alpha \) Denotes a phase of \(\text{Al}_2\text{O}_3 \) formed above 1200 °C

\(\beta \) Relates to the accuracy of the gas mixtures supplied by BOC; ± 2 % with respect to the certification

\(\gamma \) Denotes a phase of \(\text{Al}_2\text{O}_3 \) formed above 300 °C

\(\delta \) Denotes a phase of \(\text{Al}_2\text{O}_3 \) formed above 850 °C

\(\theta \) Denotes a phase of \(\text{Al}_2\text{O}_3 \) formed above 1100 °C

\(\pi \) Constant, pi.

Abbreviations

BET Brunauer Emmett Teller

BJH Barrett Joyner Halenda

BOC British Oxygen Company

CHP Combined Heat and Power

CSI Cells per Square Inch

CSP Concentrated Solar Power

DC Direct Current

DeNO\(_x\) Removal of NO\(_x\)

DME Dimethyl Ether

DOC Diesel Oxidation Catalyst

DPF Diesel Particulate Filter

DRIFTs Diffuse Reflectance Infrared Fourier Transform spectroscope

EC European Community

EI Electron Ionization

ELV Emission Limit Value

EREC European Renewable Energy Council

EU European Union

FG Feedgas

FID Flame Ionization Detector

FT Fischer–Tropsch

FT–IR Fourier Transform – Infrared
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC</td>
<td>Gas Chromatography</td>
</tr>
<tr>
<td>GC–MS</td>
<td>Gas Chromatography – Mass Spectrometer</td>
</tr>
<tr>
<td>HC</td>
<td>Hydrocarbon</td>
</tr>
<tr>
<td>HESS</td>
<td>High Efficiency Water Scrubber</td>
</tr>
<tr>
<td>IED</td>
<td>Industrial Emissions Directive</td>
</tr>
<tr>
<td>IGCC</td>
<td>Integrated Gasification Combined Cycle</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>IUPAC</td>
<td>International Union of Pure and Applied Chemistry</td>
</tr>
<tr>
<td>KK</td>
<td>Kolaczkowski–Kim</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>LNT</td>
<td>Lean NO\textsubscript{x} Trap</td>
</tr>
<tr>
<td>LPG</td>
<td>Liquefied Petroleum Gas</td>
</tr>
<tr>
<td>MB</td>
<td>Midbed</td>
</tr>
<tr>
<td>MCM</td>
<td>Mobil Crystalline Material</td>
</tr>
<tr>
<td>MFI</td>
<td>Mordenite Framework Inverted</td>
</tr>
<tr>
<td>MS</td>
<td>Mass Spectrometer</td>
</tr>
<tr>
<td>NDIR</td>
<td>Nondispersive Infrared</td>
</tr>
<tr>
<td>NO\textsubscript{x}</td>
<td>Nitrogen Oxides</td>
</tr>
<tr>
<td>NSR</td>
<td>NO\textsubscript{x} Storage and Reduction</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>PM</td>
<td>Particulate Matter</td>
</tr>
<tr>
<td>PPB</td>
<td>Parts Per Billion</td>
</tr>
<tr>
<td>PPM</td>
<td>Parts Per Million</td>
</tr>
<tr>
<td>PPMV</td>
<td>Parts Per Million by Volume</td>
</tr>
<tr>
<td>PSA</td>
<td>Pressure Swing Adsorption</td>
</tr>
<tr>
<td>PV</td>
<td>Photovoltaic</td>
</tr>
<tr>
<td>QIC</td>
<td>Quartz Inert Capillary</td>
</tr>
<tr>
<td>QMS</td>
<td>Quadrupole Mass Spectrometer</td>
</tr>
<tr>
<td>RC</td>
<td>Radio Communication</td>
</tr>
<tr>
<td>RES</td>
<td>Renewable Energy Source</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>RGA</td>
<td>Residual Gas Analysis</td>
</tr>
<tr>
<td>ROG</td>
<td>Refinery Off–Gas</td>
</tr>
<tr>
<td>RS</td>
<td>Relative Sensitivity</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SCR</td>
<td>Selective Catalytic Reduction</td>
</tr>
<tr>
<td>SEM</td>
<td>Secondary Electron Multiplier</td>
</tr>
<tr>
<td>SMROG</td>
<td>Steam–Methane Reformer Off–Gas</td>
</tr>
<tr>
<td>SNG</td>
<td>Synthetic Natural Gas</td>
</tr>
<tr>
<td>SSITKA</td>
<td>Steady–state Isotopic Transient Kinetic Analysis</td>
</tr>
<tr>
<td>STOS</td>
<td>Short Time–on–stream</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermogravimetric Analysis</td>
</tr>
<tr>
<td>TOC</td>
<td>Total Organic Carbon</td>
</tr>
<tr>
<td>TP</td>
<td>Tailpipe</td>
</tr>
<tr>
<td>TPD</td>
<td>Temperature Programmed Desorption</td>
</tr>
<tr>
<td>TPSR</td>
<td>Temperature Programmed Surface Reaction</td>
</tr>
<tr>
<td>TWC</td>
<td>Three Way Catalyst</td>
</tr>
<tr>
<td>USY</td>
<td>Ultra Stabilised zeolite Y</td>
</tr>
<tr>
<td>UHV</td>
<td>Ultra High Vacuum</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>VST</td>
<td>Vertical Split Tube furnace</td>
</tr>
<tr>
<td>WGS</td>
<td>Water Gas Shift</td>
</tr>
<tr>
<td>WID</td>
<td>Waste Incineration Directive</td>
</tr>
<tr>
<td>ZSM</td>
<td>Zeolite Socony Mobil</td>
</tr>
</tbody>
</table>
Units

Throughout this report, the SI system of units has been typically utilised and the base SI units of relevance to this project are displayed below:

<table>
<thead>
<tr>
<th>Unit</th>
<th>SI Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>metre</td>
<td>m</td>
</tr>
<tr>
<td>Mass</td>
<td>kilogram</td>
<td>kg</td>
</tr>
<tr>
<td>Time</td>
<td>second</td>
<td>s</td>
</tr>
<tr>
<td>Electric current</td>
<td>ampere</td>
<td>A</td>
</tr>
<tr>
<td>Temperature</td>
<td>kelvin</td>
<td>K</td>
</tr>
<tr>
<td>Amount of substance</td>
<td>mole</td>
<td>mol</td>
</tr>
</tbody>
</table>

However, in some cases units derived from those above have also been utilised, and these are displayed below, in addition to some non-standard SI terms which are also generally accepted units:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>1 metre (m) = 10^2 cm = 10^3 mm = 10^6 μm = 10^9 nm</td>
</tr>
<tr>
<td>Mass</td>
<td>1 kilogram (kg) = 1000 g = 6.02214×10^{26} atomic mass units (amu)</td>
</tr>
<tr>
<td>Electric current</td>
<td>1 ampere (A) = 10^6 μA</td>
</tr>
<tr>
<td>Temperature</td>
<td>kelvin (K) = Celsius (°C) + 273.15 K</td>
</tr>
<tr>
<td>Volume</td>
<td>1 litre (L) = 1000 mL = 1 dm3 = 1000 cm3</td>
</tr>
<tr>
<td>Energy</td>
<td>1 joule (J) = 1 kg m2 s$^{-1}$</td>
</tr>
<tr>
<td>Power</td>
<td>1 watt (W) = 1 J s$^{-1}$</td>
</tr>
<tr>
<td>Pressure</td>
<td>1 bar (bar) = 750.06 Torr</td>
</tr>
<tr>
<td>Voltage</td>
<td>1 volt (V) = 1 kg m2 s$^{-3}$ A$^{-10}$</td>
</tr>
</tbody>
</table>

Electronvolt (eV) = $1.6021746565 \times 10^{-19}$ J

Mass fraction (ω_i) = Mass of substance i/mass of total mixture = (m_i/m_{tot})

Weight percent (wt%) = Mass fraction (ω_i) x 100
CHAPTER 1
Introduction

1.1 Background

1.1.1 Biomass

As fossil fuel stocks diminish, alternative renewable resources are required as feedstocks for future energy and chemical supplies.

Higman et al. (2008) describe the term biomass as covering a broad range of materials that offer themselves as fuels or raw materials and which have in common that they are all derived from recently living organisms. In this definition they exclude traditional fossil fuels since, although they also derive from plant (coal) or animal (oil and gas) life, it has taken millions of years to convert them to their current form.

Higman et al. (2008) also go on to explain that there is still a potential overlap between what is classified as waste and what as biomass.

In terms of chemical composition, Raspolli Galletti et al. (2012) state that biomass predominantly consists of three polymeric components: cellulose, hemicellulose, and lignin. Cellulose is a long–chain polysaccharide formed by D–glucose units, linked by β–1, 4 glycosidic bonds. Hemicellulose is a complex, branched, and heterogeneous polymeric network based on pentoses, hexoses and sugar acids. Lignin is an amorphous polymer made by different phenolic compounds.

However, the exact proportions of these components, and the presence of other species, will differ depending on the source of biomass. Separation and subsequent processing of these fractions enables utilisation of biomass in a variety of applications to form various products.
In general, it is considered that biomass will make significant contributions to both the future energy and chemical industries. The European Renewable Energy Council (EREC) has predicted that a substantial portion of future European Union (EU) power will be generated from biomass technologies (Table 1.1).

<table>
<thead>
<tr>
<th>Renewable Energy Source (RES)</th>
<th>Year</th>
<th>2007</th>
<th>2020</th>
<th>2030</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind</td>
<td></td>
<td>56</td>
<td>180</td>
<td>288.5</td>
<td>462</td>
</tr>
<tr>
<td>Hydro*</td>
<td></td>
<td>102</td>
<td>120</td>
<td>148</td>
<td>194</td>
</tr>
<tr>
<td>Photovoltaics (PV)</td>
<td></td>
<td>4.9</td>
<td>150</td>
<td>397</td>
<td>962</td>
</tr>
<tr>
<td>Biomass</td>
<td></td>
<td>20.5</td>
<td>50</td>
<td>58</td>
<td>100</td>
</tr>
<tr>
<td>Geothermal</td>
<td></td>
<td>1.4</td>
<td>4</td>
<td>21.7</td>
<td>77</td>
</tr>
<tr>
<td>Concentrated Solar Power (CSP)</td>
<td></td>
<td>0.011</td>
<td>15</td>
<td>43.4</td>
<td>96</td>
</tr>
<tr>
<td>Ocean</td>
<td></td>
<td>–</td>
<td>2.5</td>
<td>8.6</td>
<td>65</td>
</tr>
<tr>
<td>Total RES–E Capacity (GW)</td>
<td></td>
<td>185</td>
<td>521.5</td>
<td>965.2</td>
<td>1,956</td>
</tr>
</tbody>
</table>

*Biomass is also regarded as important for the future production of both speciality and commodity chemicals; indeed biomass is already involved in the production of many chemical products. Klass (1998) states that biomass is utilised worldwide as a source of many naturally occurring and some synthetic speciality chemicals and cellulosic and starchy polymers. High value, low–volume products, including many flavourings, drugs, fragrances, dyes, oils, waxes, tannins, resins, gums, rubbers, pesticides, and specialty polymers, are commercially extracted from or produced by conversion of biomass feedstocks.

Thus technologies which process or utilise biomass are becoming increasingly common and important. However, the nature of the biomass will influence the most effective method of achieving the desired transformations.
1.1.2 Gasification

Gasification is a thermal process through which fuels and feedstocks, including biomass, can be converted to higher value resources. As described by Knoef (2005):

Gasification adds value to low– or negative–value feedstock by converting them to marketable fuels and products. The process of biomass gasification is quite complex, and includes a number of steps:

a) thermal decomposition to gas, condensable vapours and char (pyrolysis);

b) subsequent thermal cracking of vapours to gas and char;

c) gasification of char by steam or carbon dioxide;

d) partial oxidation of combustible gas, vapours and char.

Panopoulos et al. (2012) express the typical composition of biomass as having the general formula $\text{CH}_{1.4}\text{O}_{0.6}$ and specify that cellulose and lignin have typical formulas of $\text{CH}_{1.4}\text{O}_{0.8}$ and $\text{CH}_{1.4}\text{O}_{0.4}$ respectively. As a result the fuel typically produced is rich in CO and H$_2$, although the composition of the produced gas is also dependent on the type of gasification process, the gasification agent and the gasification temperature (Figure 1.1). The gas produced may be classified as ‘product’ (‘producer’) gas or ‘biosyngas’ (‘syngas’), depending on the process of its formation and its composition. Producer gas has a lower H$_2$ and CO content than syngas although it can be transformed to syngas through thermal treatment (at which point the H$_2$ and CO content is increased).

The gaseous fuel formed through biomass gasification can be used to provide energy through a number of different applications including gas engines, gas turbines and fuel cells. The application of interest in this study is that of a gas engine, where the gaseous product is burnt to provide combined heat and power (CHP) at a local level. In a similar manner to other energy providing processes, the emissions from this application, in which NO$_x$ species are included, are heavy regulated.
1.1.3 Legislation

The emissions of NO$_x$ represent a major environmental issue, and to combat such pollution, legislation has been introduced throughout the industrialized world. In Europe, the waste incineration directive, or WID (Directive 2000/76/EC), regulates the emission limits of certain pollutants released to water or air, by waste incineration or co–incineration processes. This directive was recently incorporated, along with six other directives, into the industrial emissions directive, or IED (Directive 2010/75/EU). This directive applies to all new installations in the UK from 7 January 2013 and will apply to all existing installations from 7 January 2014.

NO$_x$ are amongst the regulated species from waste incineration processes, and plants will need to adhere to both daily average emissions values (Table 1.2) and half–hourly average values (Table 1.3); where either no half–hourly average values exceeds any of the emission limit values set out in Column A of Table 1.3 or, where relevant, 97 % of the half–hourly average values over the year do not exceed any of the emission limit values set out in Column B of Table 1.3.
As such, systems to control the release of emissions from incineration and related processes are being developed to enable continued adherence to these regulations.

Table 1.2 Daily average emission limit values (ELVs) for waste incineration plants as specified in the IED (all values are quoted in mg Nm$^{-3}$).

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total dust</td>
<td>10</td>
</tr>
<tr>
<td>Gaseous and vaporous organic substances, expressed as total organic carbon (TOC)</td>
<td>10</td>
</tr>
<tr>
<td>Hydrogen chloride (HCl)</td>
<td>10</td>
</tr>
<tr>
<td>Hydrogen fluoride (HF)</td>
<td>1</td>
</tr>
<tr>
<td>Sulphur dioxide (SO$_2$)</td>
<td>50</td>
</tr>
<tr>
<td>Nitrogen monoxide (NO) and nitrogen dioxide (NO$_2$), expressed as NO$_2$ for existing waste incineration plants with a nominal capacity exceeding 6 tonnes per hour or new waste incineration plants</td>
<td>200</td>
</tr>
<tr>
<td>Nitrogen monoxide (NO) and nitrogen dioxide (NO$_2$), expressed as NO$_2$ for existing waste incineration plants with a nominal capacity of 6 tonnes per hour or less</td>
<td>400</td>
</tr>
</tbody>
</table>

Note: Reference conditions for these ELVs are as follows: dry gas, temperature of 273.15 K, pressure of 101.3 kPa and O$_2$ content of 11 % (3 % O$_2$ if mineral waste oil is being incinerated).

Table 1.3 Half-hourly average ELVs for waste incineration plants as specified in the IED (all values are quoted in mg Nm$^{-3}$).

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(100 %) A</td>
<td>(97 %) B</td>
</tr>
<tr>
<td>Total dust</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>Gaseous and vaporous organic substances, expressed as total organic carbon (TOC)</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Hydrogen chloride (HCl)</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>Hydrogen fluoride (HF)</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Sulphur dioxide (SO$_2$)</td>
<td>200</td>
<td>50</td>
</tr>
<tr>
<td>Nitrogen monoxide (NO) and nitrogen dioxide (NO$_2$), expressed as NO$_2$ for existing waste incineration plants with a nominal capacity exceeding 6 tonnes per hour or new waste incineration plants</td>
<td>400</td>
<td>200</td>
</tr>
</tbody>
</table>
1.1.4 Emission Control

1.1.4.1 NH$_3$/urea–SCR

The selective catalytic reduction of NO$_x$ by ammonia (NH$_3$–SCR) is the current industrial practice for NO$_x$ control from stationary sources, and urea–SCR is also a well–established method for removal of NO$_x$ from mobile applications i.e. automotive diesel engines. These processes involve injecting the reductant into the exhaust stream from the system, where they selectively react with NO$_x$ over a catalyst to form water and nitrogen (Reactions 1.4, 1.5 and 1.6). Note that in cases where urea is used, it is in the role of an ammonia carrier and this is formed in situ at the elevated temperatures of the process. The reactions involved are described in detail by Koebel et al. (2000), on which the following is based:

Urea is usually applied in a urea–SCR process as an aqueous solution. This solution is atomized into the hot exhaust gas stream, and the first step involves the evaporation of water from the droplets, thus leading to solid or molten urea:

\[
\text{NH}_2\text{—CO—NH}_2(\text{aqueous}) \rightarrow \text{NH}_2\text{—CO—NH}_2(\text{solid}) + x\text{H}_2\text{O} \tag{1.1}
\]

Pure urea will then heat up and decompose thermally according to:

\[
\text{NH}_2\text{—CO—NH}_2(\text{solid}) \rightarrow \text{NH}_3(\text{gas}) + \text{HNCO}(\text{gas}), \quad \Delta H^{298} = 186 \text{ kJ mol}^{-1} \tag{1.2}
\]

Equimolar amounts of ammonia and isocyanic acid are thus formed. Isocyanic acid is very stable in the gas phase, but hydrolyses easily on many solid oxides with water vapour originating from the combustion process:

\[
\text{HNCO}(\text{gas}) + \text{H}_2\text{O}(\text{gas}) \rightarrow \text{NH}_3(\text{gas}) + \text{CO}_2(\text{gas}), \quad \Delta H^{298} = -96 \text{ kJ mol}^{-1} \tag{1.3}
\]

It should also be noted that ammonia is manufactured from hydrocarbon starting materials which are finite natural resources. Urea is subsequently produced through the reaction of ammonia and carbon dioxide. Thus the use of either chemical may be considered as detrimental to both our efforts to reduce dependence on fossil fuels and the pledge to alleviate the associated issues of global warming and climate change.
Once the ammonia has formed it reacts with the NO\textsubscript{x} present. Forzatti (2001) details the main reactions of SCR using ammonia:

\begin{align*}
4\text{NH}_3 + 4\text{NO} + \text{O}_2 &\rightarrow 4\text{N}_2 + 6\text{H}_2\text{O} \\
2\text{NH}_3 + \text{NO} + \text{NO}_2 &\rightarrow 2\text{N}_2 + 3\text{H}_2\text{O} \\
8\text{NH}_3 + 6\text{NO}_2 &\rightarrow 7\text{N}_2 + 12\text{H}_2\text{O}
\end{align*}

(1.4) \hspace{1cm} (1.5) \hspace{1cm} (1.6)

Ammonia is known as a ‘selective’ reductant as it has the ability to react solely with NO\textsubscript{x} and not with other species present. This is another advantage which is not observed with other simple reagents such as carbon monoxide. However, oxidation can still occur at higher temperatures (Reaction 1.7) and this limits the maximum NO\textsubscript{x} conversion possible:

\[4\text{NH}_3 + 5\text{O}_2 \rightarrow 4\text{NO} + 6\text{H}_2\text{O}\]

(1.7)

There are also operating issues at lower temperatures, in particular for mobile applications. Forzatti \textit{et al.} (2009) emphasise that:

“One problem of SCR systems for vehicles, however, is poor activity at low temperatures where most of the NO\textsubscript{x} is produced, for example, during cold start–up and on travelling short distances.”

In addition there is an intrinsic safety issue when utilising ammonia and urea in this application; both chemicals are highly toxic and the applications demand an additional tank of the nitrogenous reductant. This tank must be carefully considered when designing these systems as it presents further operating risks. Additionally, not all the ammonia is reacted over the catalyst and as a result ‘slip’ occurs; this requires an extra catalyst to convert the toxic NH\textsubscript{3} to N\textsubscript{2} and H\textsubscript{2}O. An example of the type of NH\textsubscript{3}/urea–SCR system which may be fitted to the exhaust from a biomass gasification CHP process is shown in Figure 1.2(A).

Another consideration, in relation to the mobile applications, is that a urea infrastructure is required to enable the reductant tank to be refilled at regular intervals. This would be costly to implement, although it is already in place over parts of Europe, and is a serious barrier to widespread urea–SCR use.
1.1.4.2 H$_2$–SCR

Recently it has been shown that hydrogen can be used to successfully reduce NO$_x$ emissions to N$_2$ and H$_2$O:

\[
2\text{NO} + 2\text{H}_2 \rightarrow 2\text{H}_2\text{O} + \text{N}_2 \tag{1.8}
\]

\[
2\text{NO}_2 + 2\text{H}_2 \rightarrow 4\text{H}_2\text{O} + \text{N}_2 \tag{1.9}
\]

Although not yet a widespread technique, this approach has great implications as it may be possible to utilise the hydrogen formed in the application e.g. in the syngas from the biomass gasification process, to reduce the NO$_x$. This would negate the need for the additional tanks of reductant which would obviously save on the volume and costs of the system, as well as removing the safety risks and potentially harmful effects associated with the extra chemicals.

As can clearly be seen from the schematic in Figure 1.2(B); the H$_2$–SCR process would also reduce the necessary size of the exhaust treatment system, as a further oxidation catalyst to treat reductant slip is not required.

This approach to NO$_x$ reduction may also have implications for automotive applications, where H$_2$ can be generated \textit{in situ}. An excellent example of such an application can be found in a patent filed by Bartley \textit{et al.} (2006), where H$_2$ generated from the diesel fuel is subsequently used in a H$_2$–SCR process to treat the emissions of the engine. This application is discussed further in Chapter 2.
Figure 1.2 Schematic of a biomass CHP plant showing; (A) how existing technology could be applied and (B) the application of the proposed NO\textsubscript{x} removal strategy.
1.1.5 Separation of H₂

To confirm the proposed approach it is important to give some thought to the method through which the hydrogen would be sequestered and subsequently utilised. Three main processes for hydrogen separation and purification exist:

- Pressure swing adsorption (PSA)
- Fractional/cryogenic distillation
- Use of membranes

Each approach has both advantages and disadvantages and thus all are suited to different applications. The techniques are briefly discussed here by way of introduction and to provide an example of how it is possible to obtain H₂ for the reduction process. They are not explored further within this study.

1.1.5.1 Pressure Swing Adsorption

PSA has become increasingly investigated over the past few decades and several key commercial processes exist. Sircar (2002) describes the basic concept as follows:

a) Certain components of a gas mixture are selectively adsorbed on a microporous–mesoporous solid adsorbent at a relatively high pressure by contacting the gas with the solid in a packed column of the adsorbent in order to produce a gas stream enriched in the less strongly adsorbed components of the feed gas.

b) The adsorbed components are then desorbed from the solid by lowering their superincumbent gas–phase partial pressures inside the column so that the adsorbent can be reused.

c) The desorbed gases are enriched in the more strongly adsorbed components of the feed gas.

d) No external heat is generally used for desorption.
Interestingly, Sircar et al. (2000) state that:

a) Production of pure hydrogen from a gas mixture containing 60–90 mol% hydrogen by using pressure swing adsorption (PSA) processes has become the state–of–the–art technology in the chemical and petrochemical industries.

b) The two most common gas streams used for this application are (a) the steam–methane reformer off–gas (SMROG) after it has been further treated in a water–gas shift reactor, and (b) the refinery off–gas (ROG) from various sources.

1.1.5.2 Fractional/Cryogenic Distillation

Cryogenic distillation is used for the separation of low molecular weight materials, however it is an energy intensive process; it utilises very low temperatures and high pressures to separate mixture of components based on their boiling points. Although reviewing hydrogen membrane separation techniques; Adhikari et al. (2006) explain that whilst it is possible to separate H₂ from other gas species using cryogenic distillation, it is perhaps not the ideal solution as:

a) The cryogenic process is a low–temperature separation process which uses the difference in boiling temperatures of the feed components to effect the separation.

b) Hydrogen has a high relative volatility compared to hydrocarbons.

c) If the feed contains significant amounts of carbon monoxide (CO) and carbon dioxide (CO₂), a methane wash column is required to reduce the levels of these gases.

d) Higher hydrogen recovery at moderate hydrogen purities (95 % or less) is possible with a cryogenic system; however, very high hydrogen purity is not practical.

It appears that the complex nature of the feed stream may restrict the use of this approach in the application of interest; CO would also be present in the feed stream and thus the additional methane wash column would also be required.
1.1.5.3 Membrane Separation

Membrane technology for the separation of hydrogen from gas mixtures has been prevalent on an industrial scale since 1980 when Permea (now part of Air Products) introduced their PRISM® membrane. There are many types of membranes; again each has different properties and limitations (Table 1.4), including different separation mechanisms, and thus each is suitable for different applications.

Kluiters (2004) describes the concept of a membrane as a barrier that permits selective mass transport between two phases. It is selective because some components can pass through the membrane more easily than others.

Specifically considering the extraction of a small quantity of H\textsubscript{2} from the gas produced in a biomass gasification process; the membrane chosen will depend on the position in the process where the H\textsubscript{2} is recovered. Removing H\textsubscript{2} after the cyclone, but before the gas clean-up, the temperature would be 300 – 400 °C. If H\textsubscript{2} was recovered just before the gas engine, the temperature would only be 20 – 30 °C. The presence of potential poisoning species, especially H\textsubscript{2}S, would also be a major factor in deciding both which type of membrane and its location in the process.
<table>
<thead>
<tr>
<th></th>
<th>Dense Polymer</th>
<th>Ceramic</th>
<th>Dense</th>
<th>Metallic</th>
<th>Carbon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Range (°C)</td>
<td><100</td>
<td>200 – 600</td>
<td>600 – 900</td>
<td>300 – 600</td>
<td>500 – 900</td>
</tr>
<tr>
<td>H₂ Selectivity</td>
<td>low</td>
<td>5 – 139</td>
<td>>1000</td>
<td>>1000</td>
<td>4 – 20</td>
</tr>
<tr>
<td>H₂ Flux (x 10⁻³ mol m⁻² s⁻¹)</td>
<td>low</td>
<td>60 – 300</td>
<td>6 – 80</td>
<td>60 – 300</td>
<td>10 – 200</td>
</tr>
<tr>
<td>Mechanical Issues</td>
<td></td>
<td>Swelling,</td>
<td>Brittle</td>
<td>Brittle</td>
<td>Phase transitions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>compaction, mechanical strength</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poisoning Issues</td>
<td></td>
<td>Degraded by H₂S, HCl, SOₓ, CO₂</td>
<td>Stability in H₂O</td>
<td>Stability in CO₂, H₂S</td>
<td>Poisoned by H₂S, HCl, SOₓ, CO₂</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polyesters, ethers, imides, urethanes, etc</td>
<td>Silica, alumina, zirconia, titania, zeolites</td>
<td>Proton conducting ceramics (mainly SrCeO₃₋δ, BaCeO₃₋δ)</td>
<td>Pd, Ta, V, Nb, and alloys</td>
</tr>
<tr>
<td>Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport Mechanism</td>
<td>Solution/diffusion</td>
<td>Molecular sieving</td>
<td>Solution/diffusion (proton conduction)</td>
<td>Solution/diffusion</td>
<td>Surface diffusion; molecular sieving</td>
</tr>
</tbody>
</table>
1.2 Motivation for Present Work

In this thesis, a process which can effectively reduce NO\textsubscript{x} emissions from gas engines running on producer gas formed from biomass gasification, and which utilises H\textsubscript{2} formed from the gasification process to do so is of particular interest.

As NO\textsubscript{x} is considered a very harmful and greatly polluting material, any action which aims to reduce emissions of NO\textsubscript{x}, and subsequently its environmental impact can be considered as contributing to sustainable development. Several approaches have been developed but the removal of NO\textsubscript{x} gases from many practical applications still represents a major problem for industry. This project places emphasis on the use of H\textsubscript{2} (already present in the system), to create a more sustainable and efficient processes with less waste. It also removes the dependence on vast quantities of additional, toxic materials which in themselves are manufactured from finite natural resources and contribute to global warming and climate change through their production.

A further interest in this work was the development of an analytical method enabling real-time measurements of the products of the studied deNO\textsubscript{x} reactions using a Quadrupole Mass Spectrometer (QMS). Whilst there are many different analytical techniques for such analyses, various shortcomings include a limit on the number of species which can be accurately identified by each technique. The result is that it is often necessary to operate multiple techniques in tandem to measure all the potential species of interest. Given that the presence of particular species, although not detected, may impact on the measurement of others, using a single technique to identify all species would provide assurance of the accuracy of the obtained results.
1.3 Structure of the Thesis

The structure of this thesis is as follows:

Chapter 2 discusses the formation of NO$_x$ and includes a brief literature review of the potential and previous uses of hydrogen in deNO$_x$ applications. Studies which also confirmed the presence of H$_2$ in the gasification application, and work on the current industrial standard NH$_3$–SCR process, will also be presented. Finally, current analysis techniques for related deNO$_x$ applications will be reviewed.

Chapter 3 describes catalyst preparation and characterization details, including justification of the chosen materials and methods, as well as some expected reaction mechanisms with relation to the H$_2$–SCR process. Procedures undertaken in the design and commissioning of the continuous flow fixed bed reactor utilised to investigate the reactions, in addition to preliminary and final H$_2$–SCR experimental results, are also described.

Chapter 4 in a similar manner to Chapter 3, the catalyst preparation procedures, justification of the chosen materials, expected reaction mechanisms with relation to the H$_2$–NSR process and preliminary and final results of the H$_2$–NSR reaction investigations are presented.

Chapter 5 summarises and draws conclusions on the results discussed in Chapters 3 and 4. Possible future approaches in order to continue the project are also proposed.

The appendices provide additional useful information such as the use of the Quadrupole Mass Spectrometer (QMS) for on–line gas analysis, and catalyst preparation procedures. A summary of the links between some of the chapters described here is presented in Figure 1.3.
As the author of this thesis I was responsible for the design and construction of the experimental reactors, the development of the analytical method that enabled the measurements to be performed as well as the performance of all the experimental measurements described. No other student was involved in the gathering of the data described in Figure 1.3.

In addition I gained invaluable experience through a number of case studies and placements including:

- Time spent with a colleague taking measurements on site at a biomass gasification plant in Chester, UK in order to assess the operation and subsequent performance of the technology.

- Two month placement working within a collaborating research group of the Jagiellonian University in Krakow, Poland on the related topic of NH$_3$–SCR. This provided an opportunity to experience research at another institution and to develop an understanding of the current industrial process for control of NO$_x$.

- Three month placement with the Ohio Bioproduct Innovation Center (OBIC) (part of the Ohio State University, Columbus, Ohio, USA), a commercialisation company operating in the bioeconomy sector, providing a real life insight to the development of waste to energy (and value added products) technologies, including those of interest in this project.
Figure 1.3 Diagram depicting the links between the different research activities discussed within this thesis and their associated chapters.
REFERENCES

CHAPTER 2
Literature Review & Associated Experiences

In this chapter, a literature review is provided to describe in detail the:

- Processes which form NO\textsubscript{x}, with respect to the application of interest;
- Environmental and societal impacts of NO\textsubscript{x};
- Legislation in place to combat NO\textsubscript{x} emissions;
- Previous work where H\textsubscript{2} has been used as the reductant for deNO\textsubscript{x} applications; and
- Various analysis techniques previously utilised for related deNO\textsubscript{x} investigations.

In addition, a number of case studies will be encompassed within the chapter, to demonstrate the author’s understanding of both the application of interest and current industrial approaches to the issue, as well as to verify the proposed solution.

2.1 Nitrogen Oxides

The term NO\textsubscript{x} refers to a group of highly reactive gases which are known air pollutants, and Harrison (2001) states that by far the major proportion of emitted NO\textsubscript{x} is in the form of NO. The chemistry of these oxides, and other reactive inorganic nitrogen species, is central to various atmospheric issues including; the formation of photochemical smog, the depletion of stratospheric ozone and the production of acid rain. Nitric oxide is a colourless, odourless gas and nitrogen dioxide is a reddish–brown gas, soluble in water, and with a pungent odour.
2.1.1 Sources and Formation of NO\textsubscript{x}

NO\textsubscript{x} gases are produced from both natural and pollutant sources. They are formed from various biological processes, and are also formed as a product of the combustion of fossil fuels. The environmental impact of these gases ensures there is great interest and debate about their emission levels from both mobile and stationary sources. Based on information in Manahan (2009):

a) Estimates of the quantities of NO\textsubscript{x} entering the atmosphere vary widely, but generally range from a few tens of millions of metric tons per year to somewhat more than 100 million.

b) The biggest share of anthropogenic NO\textsubscript{x} amounting to around 20 million metric tons per year enters the atmosphere from combustion of fossil fuels in both stationary and mobile sources.

c) A similar amount of NO\textsubscript{x} is emitted from soil, much of it from the action of microorganisms on nitrogen fertilizer.

d) Other natural sources are biomass burning, lightning and to a lesser extent, atmospheric oxidation of NH\textsubscript{3}.

In terms of NO\textsubscript{x} formation from fossil fuel combustion; at very high temperatures nitrogen and oxygen will react to form nitric oxide:

\[
N_2 + O_2 \rightarrow 2NO
\]
(2.1)

However, this process occurs at temperatures mainly above 1480 °C and thus is unlikely to contribute to NO\textsubscript{x} formation in the application of interest. Once nitric oxide is formed it slowly reacts with oxygen in the air to form nitrogen dioxide:

\[
2NO + O_2 \rightarrow 2NO_2
\]
(2.2)

Formation of NO\textsubscript{x} species within the application of interest will be discussed further in Section 2.1.1.1.1.
2.1.1.1 Down–draft Gasification Process

As already alluded to, the application of interest for this project is that of a biomass gasification CHP process. During the course of this project time was spent at Refgas Ltd, who have a pilot–scale gasification plant at Sandycroft (near Chester, UK) (Figure 2.2). A simplified schematic of the Refgas process is provided in Figure 2.1. This gives an indication of the type of technology which is currently being developed throughout the UK and the rest of the world. It is important to stress that this image represents a pilot–scale plant; the configuration of which may vary considerably for a commercial process. Additionally there are a number of different types of gasifier technology, which will not be discussed further here, and this schematic represents only one type of approach.

As can be seen from the schematic there are a number of stages involved in the process of gasifying a biomass material into a suitable fuel:

- The fuel (in this case waste wood) is fed into the top of the reactor.
- Combustion and partial oxidation reactions occur within the gasifier, forming a ‘dirty’ gas mixture.
- The gas leaves the reactor from the base at a temperature of ~550 °C.
- Char also leaves the reactor from the base and is collected in a suitable container.
- The gas passes through cyclones used to trap additional char fines and ash.
- The ‘dirty’ gas is now quenched with water and then passes through a high efficiency water scrubber known as a HESS unit.
- Additional residues/tars are now collected through use of a chiller unit.
- The ‘clean’ gas is supplied, under positive pressure, through filters to the storage tank.
- The gas can be directed to flare and/or a gas engine to be used to produce electrical energy.
Figure 2.1 Simplified schematic of Refgas gasification process.
Figure 2.2 Photograph of Refgas pilot-scale gasification plant.
2.1.1.1 Formation of NO\textsubscript{x} Species

Although gas clean–up units are in place at various points in the gasification process, their operation is intended only for certain species. Other species may be unaffected by the clean–up technology or formed as a result of undesired reactions which occur within these units.

Torres et al. (2007) summarise the source of NO\textsubscript{x} formation in biomass gasification CHP processes. They state that biomass contains nitrogen as a part of proteins, DNA, RNA, chlorophyll, alkaloids and porphyrins. In biomass gasification, most of the nitrogen ends up as ammonia (NH\textsubscript{3}) and N\textsubscript{2} with lower concentrations of hydrogen cyanide (HCN), isocyanic acid (HNCO), and nitrogen oxides (NO\textsubscript{x}). The nitrogen containing species are undesirable because they can serve as precursors for NO\textsubscript{x} in downstream burners, gas engines, or gas turbines.

Higman et al. (2008) describe the difficulties in removing NH\textsubscript{3} from syngas, stating that ammonia has a very high solubility in water (two orders of magnitude higher than CO\textsubscript{2}). Hence it is seldom removed from the main wash or quench water circuit of carbon removal systems. The ammonia is therefore recycled in the scrubber wash water and partially stripped out by the syngas in the scrubber, such that the potential for full ammonia removal in the syngas water wash is seldom realised and an additional ‘acid wash’ is required for effective ammonia removal.

HCN can also rapidly decay to form amines (NH\textsubscript{i} where i = 1, 2 or 3) which are then converted to NO\textsubscript{x}. Figure 2.3 summarises some of the processes involved in NO\textsubscript{x} formation that may occur within a biomass gasification CHP process:

![Figure 2.3](image)

Figure 2.3 Typical mechanism for NO\textsubscript{x} formation during a biomass gasification CHP process (i = 1, 2 or 3), adapted from Higman et al. (2008).
Miller et al. (2008) expand on this by detailing the complex reactions that HCN and NH$_3$ can undergo during combustion:

$$\text{HCN} + \frac{5}{4} \text{O}_2 \rightarrow \text{NO} + \text{CO} + \frac{1}{2} \text{H}_2\text{O}$$ \hspace{1cm} (2.3)

$$\text{HCN} + \frac{3}{2} \text{O}_2 + \text{NO} \rightarrow \text{N}_2\text{O} + \text{CO} + \frac{1}{2} \text{H}_2\text{O}$$ \hspace{1cm} (2.4)

$$\text{HCN} + \frac{3}{4} \text{O}_2 \rightarrow \frac{1}{2} \text{NO} + \text{CO}_2 + \frac{1}{2} \text{H}_2\text{O}$$ \hspace{1cm} (2.5)

$$\text{NH}_3 + \frac{5}{4} \text{O}_2 \rightarrow \text{NO} + \frac{3}{2} \text{H}_2\text{O}$$ \hspace{1cm} (2.6)

$$\text{NH}_3 + \frac{3}{4} \text{O}_2 \rightarrow \frac{1}{2} \text{N}_2 + \frac{3}{2} \text{H}_2\text{O}$$ \hspace{1cm} (2.7)

Miller et al. (2008) go on to explain other factors which can influence the abundance of NO$_x$ emissions in the exhaust stream from a combustion engine:

a) In general, NO and N$_2$O emissions increase with increasing nitrogen content in the fuel, whereas with increasing fuel volatile matter content, NO emissions usually increase but N$_2$O emissions decrease.

b) N$_2$O emissions are primarily dependent on the type of fuel (as well as combustion temperature, as discussed later), with low–rank fuels generating lower amounts of N$_2$O than higher rank fuels, i.e. N$_2$O emissions from lowest to highest – biomass, peat, oil shale, brown coal/lignite, bituminous coal. This is attributed to the amount of NH$_3$ released from the fuel as lower rank fuels (i.e. higher volatile matter fuels) release more NH$_3$ and their NH$_3$ to HCN ratio is greater than for higher rank fuels.

c) Oxidation of NH$_3$ results in NO formation, while HCN produces both NO and N$_2$O.

d) Combustion temperature has a significant effect on both NO and N$_2$O emissions. NO emissions increase, but N$_2$O emissions decrease.
2.1.1.2 Typical NO\textsubscript{x} Emissions Levels

Although the exact level of NO\textsubscript{x} emissions will vary through a number of factors already discussed i.e. type of gasification process and nature of biomass fuel, the technology in which the syngas produced is utilised will also play a part. Higman (2008) discuss the potential levels of NO\textsubscript{x} which may be seen from different applications, including those already operational in industry, and state that:

The high hydrogen content of syngas (which would be even higher in the carbon capture scenario) prohibits the use of current dry low NO\textsubscript{x} burners as developed for natural gas. Instead, diffusion burners are used. Typically, one could achieve about 15 ppm (dry basis referred to 15 % O\textsubscript{2}) in the exhaust of a gas turbine without SCR. In fact, some IGCCs such as the plant in Buggenum regularly achieve values under 10 ppmv without SCR.

Although the values reported here already appear to be relatively low (when compared to emissions of other species, including CO: 10 – 25 ppm), Higman (2008) go on to explain that improvement is still necessary, and say that:

Some areas may, however, require SCR to achieve lower NO\textsubscript{x} emission rates of 3 ppmv (dry basis referred to 15 % O\textsubscript{2}) comparable with those for natural gas–fired turbines. In such a case, it is necessary to desulfurize the fuel gas further to about 15 ppmv so as to avoid formation of ammonium bisulfate from ammonia slip in the SCR, which can deposit on heat exchange surfaces downstream of the SCR.
2.2 Harmful Processes

The NO\textsubscript{x} gases formed can then react with other chemicals present in the atmosphere, such as hydrocarbons and water, and contribute to atmospheric processes which are harmful to both the environment and human health.

2.2.1 Formation of Photochemical Smog

Hobbs (2000) summarises the role of these gases and their interactions in the formation of photochemical smog, stating that:

The reactions start with the photolysis of NO\textsubscript{2}:

$$\text{NO}_2 + h\nu \rightarrow \text{NO} + \text{O} \quad (2.8)$$

Ozone is then formed very quickly by:

$$\text{O} + \text{O}_2 + \text{M} \rightarrow \text{O}_3 + \text{M}$$

$$\quad (2.9)$$

where M is most likely N\textsubscript{2} or O\textsubscript{2}. However, not much O\textsubscript{3} is formed directly by Reaction 2.9 since it is depleted by the rapid Reaction 2.10:

$$\text{O}_3 + \text{NO} \rightarrow \text{NO}_2 + \text{O}_2$$

$$\quad (2.10)$$

which regenerates NO\textsubscript{2}. If there were no other reactions, (2.8) – (2.10) would lead to a steady-state concentration of O\textsubscript{3} given by:

$$[\text{O}_3] = \frac{J [\text{NO}_2]}{K_2 [\text{NO}]}$$

$$\quad (2.11)$$

where J is the photolysis rate coefficient.

The ozone and atomic oxygen formed are reactive species which then react with hydrocarbons to form aldehydes. These aldehydes do not vaporize as easily as hydrocarbons; tiny droplets are formed and the result is the ‘haze’ associated with photochemical smog.
2.2.2 Destruction of Stratospheric Ozone

Both nitric oxide and nitrogen dioxide also play a part in the destruction of stratospheric ozone. As described by Manahan (2009), the scheme begins with the depletion of ozone by nitric oxide:

\[\text{O}_3 + \text{NO} \rightarrow \text{NO}_2 + \text{O}_2 \]
(2.10)

then the reaction of nitrogen dioxide with atomic oxygen formed from Reaction 2.8:

\[\text{NO}_2 + \text{O} \rightarrow \text{NO} + \text{O}_2 \]
(2.12)

combining Reactions 2.10 and 2.12 results in a net reaction for the destruction of ozone:

\[\text{O} + \text{O}_3 \rightarrow \text{O}_2 + \text{O}_2 \]
(2.13)

This destruction of stratospheric ozone can have huge implications for life on earth. For example Fahey et al. (2011) state that:

a) Stratospheric ozone is considered good for humans and other life forms because it absorbs ultraviolet–B (UV–B) radiation from the Sun. If not absorbed, UV–B radiation would reach Earth’s surface in amounts that are harmful to a variety of life forms.

b) In humans, increased exposure to UV–B radiation increases the risks of skin cancer, cataracts, and a suppressed immune system.

c) UV–B radiation exposure before adulthood and cumulative exposure are both important health risk factors.

d) Excessive UV–B exposure also can damage terrestrial plant life, single–cell organisms, and aquatic ecosystems.
2.2.3 Health Effects

In addition to the impacts discussed in Section 2.2.2, NO\textsubscript{x} species can also have significant detrimental effects on human health through direct exposure. For example, as discussed by Manahan (2009):

a) Just like carbon monoxide and nitrite, NO attaches to haemoglobin and reduces oxygen transport efficiency.

b) Acute exposure to NO\textsubscript{2} can be quite harmful to human health. For exposures ranging from several minutes to 1 h, a level of 50 – 100 ppm NO\textsubscript{2} causes inflammation of the lung tissue for a period of 6 – 8 weeks, after which time the subject normally recovers.

c) Exposure of the subject to 150 – 200 ppm NO\textsubscript{2} causes bronchiolitis fibrosa obliterans, a condition fatal within 3 – 5 weeks after exposure.

d) Death generally results within 2 – 10 days after exposure to 500 ppm or more of NO\textsubscript{2}.

2.3 Legislation

As a result of the impact of these harmful processes; the emissions of nitrogen oxides represent a major environmental issue and hazard to health. In order to combat such pollution, various forms of legislation have been introduced throughout the industrialised world.

2.3.1 Industrial Emissions Directive

As previously mentioned in Chapter 1; the legislation applicable to the gasification of waste material to form a fuel subsequently utilised in a gas engine or turbine is the IED (Directive 2010/75/EU). With such legislation in place, and as these types of application processes are becoming more prevalent, it is becoming increasingly necessary to develop techniques to enable operation within the legal emissions limits and indeed this forms the basis for the justification of this work.
2.3.2 Euro Standards

In addition to the application of interest, the principle of NO\textsubscript{x} reduction using hydrogen may be equally applied to other applications where both NO\textsubscript{x} is formed and hydrogen may be generated \textit{in situ}. As will be demonstrated in Section 2.4.2.2, techniques to produce hydrogen within a diesel engine have been developed and thus legislation for mobile applications may also be considered appropriate for discussion.

The European Union has introduced limits on pollution produced from motor vehicles; in particular nitrogen oxides and particulates. The emissions standards apply to all new vehicles sold in EU member states and the scheme imparts progressively stringent regulations. A plot of the specified emissions levels for carbon monoxide (CO), oxides of nitrogen (NO\textsubscript{x}), total combined nitrogen oxides and hydrocarbons (NO\textsubscript{x} + HC) and particulate matters (PM), for Euro Standards 2 through 6 is shown in Figure 2.4. The Euro 5 standard came into force on 1 September 2009 and the Euro 6 standard will come into force on 1 September 2014.

![Figure 2.4](image)

\textbf{Figure 2.4} Plot of variation of acceptable emissions levels, for various pollutants from passenger cars with diesel engines, with the introduction of each Euro Standard. Data obtained from DieselNet (2012).
The European Union Regulation (EC) No 715/2007 details the acceptable emission levels from both diesel and petrol driven vehicles. It also provides details of the change in specified levels in relation to the previous standards as summarised:

a) **Euro 5 standard**

Emissions from diesel vehicles:

- nitrogen oxides (NO$_X$): 180 mg km$^{-1}$ (20 % reduction of emissions in comparison to the Euro 4 standard);
- combined emissions of hydrocarbons and nitrogen oxides: 230 mg km$^{-1}$;
- particulates: 5 mg km$^{-1}$ (80 % reduction of emissions in comparison to the Euro 4 standard).

Emissions from petrol vehicles or those running on natural gas or LPG:

- nitrogen oxides (NO$_X$): 60 mg km$^{-1}$ (25 % reduction of emissions in comparison to the Euro 4 standard);
- particulates (solely for lean burn direct – injection petrol vehicles): 5 mg km$^{-1}$ (introduction of a limit that did not exist for the Euro 4 standard).

b) **Euro 6 standard**

Vehicles with a diesel engine will be required to substantially reduce their emissions of nitrogen oxides as soon as the Euro 6 standard enters into force. For example, emissions from vehicles used for transport will be capped at 80 mg km$^{-1}$ (an additional reduction of more than 50 % compared to the Euro 5 standard). Combined emissions of hydrocarbons and nitrogen oxides from diesel vehicles will also be reduced. For example, these will be capped at 170 mg km$^{-1}$ for cars and other vehicles used for transport.

As with the stationary applications, and although requirements will differ for different vehicles, continual development of emission treatment techniques is required to ensure continued adherence to the legislation.
2.4 NO\textsubscript{x} Reduction Strategies

As with technological advancement in a bid to improve performance and efficiency, reduction in the levels of pollutant emissions will also continue to be pursued in order to reduce environmental impact. Strategies to minimise the production of NO\textsubscript{x} emissions already exist and are continually being developed e.g. lean–burn engines or the use of fuels containing less N–species. However, additional exhaust treatment processes are often also required in order to meet the stringent regulations presented in Section 2.3.

There are already well established procedures for reducing NO\textsubscript{x} emissions in some applications. For example; a three–way–catalyst (TWC) successfully converts NO\textsubscript{x}, as well as carbon monoxide and hydrocarbon (HC) species, in the exhausts of petrol driven engines. However, this particular approach is not suitable for other applications with greater quantities of oxygen present i.e. diesel or biogas driven engines, the technology of interest for this study.

2.4.1 NH\textsubscript{3}–SCR

Many approaches for the reduction of NO\textsubscript{x} emissions exist and are in development. These techniques include (and are by no means limited to); direct NO\textsubscript{x} decomposition (adsorption and subsequent dissociation on a metal surface), direct reduction using e.g. CO, HCs or ethanol, and NO\textsubscript{x} storage and reduction (NSR), where NO\textsubscript{x} species are ‘trapped’ and subsequently reduced through alternate lean and rich burn cycles. However, as already alluded to in Chapter 1; NH\textsubscript{3}–SCR and urea–SCR are considered the standard approaches for stationary and mobile applications respectively. Although NH\textsubscript{3}–SCR will be briefly discussed here, and with the exception of the NSR processes which will be explored in detail later in this chapter and the project, the other deNO\textsubscript{x} approaches (which do not concern the use of H\textsubscript{2}) will not be considered in any depth.
During the course of this project, two months was spent on placement working with a collaborator; Dr Joanna Łojewska of the Faculty of Chemistry at the Jagiellonian University, Krakow, Poland. Dr Łojewska’s research group are also interested in deNO\textsubscript{x} approaches, specifically NH\textsubscript{3}–SCR to treat the exhausts of biogas fuelled gas engines, with a view to improving the performance of current installations by addressing several important problems typical of biogas exhaust treatment processes. These problems include the size of the cleaning installation, ammonia slip, thermal deactivation through the formation of hot spots, and the cost of noble metals catalysts. Their proposed solution to these issues is the use of so called structured reactors, based on metallic short channel structures, which demonstrate enhanced mass and heat transport properties as reported by Kolodziej et al. (2009). Theoretically this enables the reactor length to be considerably shortened, but the application of such structures is dependent on the development of new, highly–active catalysts with an improved conversion adjusted to the high transport properties, and also on the methods of catalyst deposition on the metallic surfaces of these structures. The materials they have investigated for these applications are typically zeolites.

This collaboration provided an exciting opportunity to develop a practical understanding of the NH\textsubscript{3}–SCR process and experience first–hand related research in this field. Primary roles involved catalyst preparation and testing, and it was found that prepared copper exchanged ultrastable zeolite Y (Cu–USY) catalysts demonstrated high deNO\textsubscript{x} activity at low temperatures with good hydrothermal resistance, in comparison with Cu–Y and Cu–ZSM 5 catalysts. The results of the work completed during the placement contributed to a publication, Ochońska et al. (2012).
2.4.2 Hydrogen as a Reducing Agent for DeNO$_x$

The main aim of this project is to investigate the use of hydrogen as a reductant to reduce NO$_x$ to N$_2$ and H$_2$O through varying both the catalytic material and type of reducing process. It is important to consider the aspects of the final application and this will include the significant presence of O$_2$ which would also be found in the exhaust stream of such processes.

2.4.2.1 Hydrogen Presence in Biomass Gasification Process

The work conducted at Refgas Ltd (Section 2.1.1.1) included analysis of the composition of the ‘clean’ gaseous fuel produced from the complete gasification process. Using the QMS that will also be used for reaction gas analysis in this project, it was found that, depending on the conditions in the gasifier (Figure 2.5(A)), the composition of the clean syngas consisted of between 10 – 17 % hydrogen (Figure 2.5(B)). The measured data has been presented in order to highlight the variation in hydrogen production with gasifier conditions; through start–up in segment 1 and subsequent variation of gas flow rate and thus temperature in segments 2, 3 and 4. The confirmation of the presence of hydrogen in significant quantities validates the approach of this work.

At this point it is important to consider the levels of hydrogen ultimately required in the NO$_x$ treatment process, with relation to the typical levels of NO$_x$ produced from a gas turbine running on syngas reported in Section 2.1.1.1.2; >15 ppm NO$_x$. Even estimating a necessary hydrogen content of ten times that of NO$_x$, only 150 ppm (or 0.015 %) hydrogen would be required. Thus the hydrogen content of 10 – 17 % measured and displayed in Figure 2.5(B) would be more than sufficient, and the composition of the syngas supplied to the turbine would not be greatly altered.

The work at Refgas also presented a valuable opportunity to witness the type of application for which this research is being conducted, as well as gaining experience of being ‘on site’ at an operational plant. The measurements taken during this visit also contributed to the preparation of a paper, Dinh Le et al (2013), regarding the novel use of the QMS to conduct on–line analysis of the syngas.
Figure 2.5 Measurements made during operation of the Refgas pilot-scale gasification facility: (A) – Conditions within the gasifier; temperatures and gas flow rate. (B) – Composition of clean gas. The dotted lines are included to create different segments, highlighting the impact of different operating conditions on the level of hydrogen (and other syngas components) produced during gasification of biomass.
2.4.2.2 Hydrogen Generation in Diesel Engine Exhuasts

As already discussed, the production of hydrogen in the gasification process, and subsequent use in emissions reduction, can save on the costs associated with the use of additional reductants. However, hydrogen has also been considered for use as a reductant in other applications where it may already be present or can be easily generated. The abstract of a patent by Bartley et al. (2006) describes the nature of a process in which hydrogen is generated from diesel fuel *in situ*, before its subsequent use in a H$_2$–SCR unit to treat the NO$_x$ emissions of a diesel engine:

“An emission control system for reducing NO$_x$ in the exhaust of a diesel engine. A partial oxidation system receives diesel fuel from the engine’s fuel tank and partially oxidises the diesel fuel into hydrogen. The hydrogen is then introduced into the main exhaust line and the hydrogen–enhanced exhaust is delivered to a hydrogen selective catalytic reduction unit, which uses the hydrogen to convert the NO$_x$ to nitrogen.”

As is described in the patent, the SCR unit is combined with a partial oxidation unit, which provides the hydrogen necessary to reduce the emitted NO$_x$. Figure 2.6 is the schematic of the system, which also incorporates an optional water gas shift (WGS) catalyst to generate additional hydrogen through the following Reaction (2.14):

\[
\text{CO + H}_2\text{O} \rightarrow \text{H}_2 + \text{CO}_2
\] (2.14)

![Figure 2.6](image)

_Schematic of proposed diesel engine NO$_x$ emission control system, adapted from Bartley et al. (2006)._
2.4.3 Previously Reported Work

Although not currently a commercial process, hydrogen for use as a reductant in deNO\textsubscript{x} applications has been studied in various capacities. A review of recent literature was conducted to investigate progress in the use of hydrogen to treat NO\textsubscript{x} emissions, with a view to identifying a potential catalyst system and process which could be developed within this project. A schematic summarising the various H\textsubscript{2}–deNO\textsubscript{x} processes considered in this literature review is presented in Figure 2.7. In some cases, particular catalyst systems and potential mechanisms have been further explored.

As such, the preparation methods, activities, selectivities and suitability to the specific application being considered were of most interest, and indeed influenced both the materials explored and the experimental conditions under which they were tested. Consideration was also given to the experience within the research group in terms of the types of materials explored for other, related exhaust treatment applications.
2.4.3.1 H\textsubscript{2}-SCR

There has been greater interest in the use of hydrogen as a supplement in other SCR reactions (Section 2.4.3.2) than in direct H\textsubscript{2}–SCR, however, as will be presented, a number of different catalyst systems have demonstrated activity towards NO\textsubscript{x} reduction using only hydrogen. The key features of each system will be discussed before being directly compared in tabular form (Section 2.4.3.1.4). Note that the data presented in the table has often been interpreted from a figure presented within the stated reference and thus represents approximate, not necessarily absolute values, for an indication only.

In a recent review article Liu et al. (2012b) discussed the possible reactions that could occur during H\textsubscript{2}–SCR with NO:

\[
\begin{align*}
2\text{NO} + 4\text{H}_2 + \text{O}_2 &\rightarrow \text{N}_2 + 4\text{H}_2\text{O} \\
2\text{NO} + 3\text{H}_2 + \text{O}_2 &\rightarrow \text{N}_2\text{O} + 3\text{H}_2\text{O} \\
2\text{NO} + \text{H}_2 &\rightarrow \text{N}_2\text{O} + \text{H}_2\text{O} \\
\text{NO} + \frac{5}{2}\text{H}_2 &\rightarrow \text{NH}_3 + \text{H}_2\text{O} \\
\text{NO} + \frac{1}{2}\text{O}_2 &\rightarrow \text{NO}_2 \\
\text{H}_2 + \frac{1}{2}\text{O}_2 &\rightarrow \text{H}_2\text{O}
\end{align*}
\]

It is interesting to note the role oxygen plays in the above reactions. Whilst it appears necessary for successful reduction of NO to N\textsubscript{2} and H\textsubscript{2}O (Reaction (2.15)), it is also involved in the formation of undesired side products NO\textsubscript{2} (Reaction (2.19)) and the direct reaction of H\textsubscript{2} to form H\textsubscript{2}O (Reaction (2.20)).

Utilising the same approach, the desired reaction involving NO\textsubscript{2} during H\textsubscript{2}–SCR of NO\textsubscript{x} can also be predicted:

\[
2\text{NO}_2 + 6\text{H}_2 + \text{O}_2 \rightarrow \text{N}_2 + 6\text{H}_2\text{O}
\]
Liu et al. (2012b) goes on to describe the roles of each reaction in the overall process:

a) Reaction (2.15) is the most desirable reaction because the products are N$_2$ and H$_2$O.

b) N$_2$O, which is a greenhouse gas, can be formed as a byproduct during both reaction (2.16) and (2.17).

c) NH$_3$ could be produced by Reaction (2.18), although the presence of oxygen can inhibit its formation over some catalyst.

d) The formation of NO$_2$ via Reaction (2.19) may play an important role for the NO$_x$ reduction to proceed due to its higher activity than NO.

e) Reaction (2.20) is the combustion reaction of H$_2$, which competes with Reaction (2.15) and leads to the low utilization of reducing agent for NO$_x$ removal.

2.4.3.1.1 Noble Metal and Metal Oxide Based Catalysts

Noble metal and metal oxide based catalysts are typical heterogeneous catalyst systems considered for SCR and related processes for a number of decades (Nova et al. (2006)):

a) Different types of catalytic systems have been considered for use in the SCR reaction, including noble metals, metal oxides, and zeolites. Among these categories, metal–oxide based catalysts are the most commonly utilised SCR systems at present.

b) Supported noble metal catalysts, which were developed as automotive exhaust catalysts in the early 1970s, were first considered for the SCR of NO$_x$. These catalysts are very active in the SCR reaction but they also effectively oxidise both ammonia and sulfur dioxide. Besides, they are less tolerant to poisoning. For these reasons, noble metal catalysts were soon replaced by metal–oxide based catalysts.

c) Metal oxide catalysts, based on chromium, copper, iron, vanadium, and other oxides either unsupported or supported on alumina, silica, and titania have been investigated as candidates for NO$_x$ reduction by ammonia since the mid–1960s.
The preparation of these materials is described in Spencer (1989), who stated that most industrial catalysts are made either by precipitation, when active phase and support are made together, or by the impregnation of an active phase on to a preformed support. In this instance typical support structures may include high surface area pellets, rings or monoliths.

2.4.3.1.1 Pd/Al₂O₃ Catalysts

Pd/Al₂O₃ materials have been widely explored as potential catalysts for the reduction of NOₓ with H₂, as well as in other applications. Indeed this catalyst was initially chosen to be explored in a previous study, preceding this project, due to the experience within the research group of preparing and handling similar materials i.e. diesel oxidation catalysts (DOCs), which are typically Pd/Al₂O₃ or Pt/Al₂O₃ systems.

It was found that although the direct reaction of H₂ and NO to form H₂O was promoted in the absence of O₂, when a significant O₂ concentration was introduced the H₂ reacted directly with the O₂ and the NO was left unreacted. This was summarised in the conclusions of the aforementioned preliminary study by McClymont (2010), in which it was confirmed that Pd/Al₂O₃ catalysts:

- In the absence of O₂, can effectively reduce NOₓ using H₂, however,
- Strongly promote the reaction between H₂ and O₂, even at low temperatures.

These observations agreed with the literature results for experimental conditions which mimicked the application environment (i.e. a high oxygen concentration) and a summary of the ‘best’ experimental performances for a number of these studies are presented in Table 2.1 along with the performance of selected other systems described in Section 2.4.3.1. The reported results are typically the maximum reported NO conversion, subsequent N₂ selectivity, S_N₂, and relevant reaction temperature, enabling direct comparison of the various investigated systems.
It can be seen that in the presented examples, a maximum NO conversion of only ~40 % was achieved, reported by Marques \textit{et al.} (2008), with a maximum selectivity of ~40 % reported by Macleod \textit{et al.} (2002), who also concluded: in agreement with previous studies it was observed that pure H\textsubscript{2} is a poor reductant for NO\textsubscript{x} reduction under lean burn conditions when employing Pd/Al\textsubscript{2}O\textsubscript{3} as the catalysts.

It should also be noted that the limited activity observed in these studies was often achieved with H\textsubscript{2} in significant excess; H\textsubscript{2}:NO ratios of at least 3:1, and up to a maximum of 10:1 were utilised. Whilst this may not be inconceivable from a practical perspective (as demonstrated in Sections 2.1.1.1.2 and 2.4.2.1 there will be relatively little NO and significant levels of H\textsubscript{2} present in the system), it does suggest that it is incredibly difficult to achieve the desired reaction with this catalyst.

In addition, the catalysts discussed in the references mentioned here were all prepared through impregnation methods, with Marques \textit{et al.} (2008) additionally investigating the impact of the type of metal precursor on catalyst performance. This technique is widely used to prepare materials in the field of heterogeneous catalysis and such conditions may be easily replicated. Finally, the catalyst testing in these references was conducted on powder catalysts and not supported catalyst structures.

\textbf{2.4.3.1.1.2 Pt/Al\textsubscript{2}O\textsubscript{3} Catalysts}

Pt/Al\textsubscript{2}O\textsubscript{3} catalysts have also been extensively investigated for H\textsubscript{2}–SCR processes, and with greater success than the Pd/Al\textsubscript{2}O\textsubscript{3} system. Macleod \textit{et al.} (2002) also explored a Pt/Al\textsubscript{2}O\textsubscript{3} catalyst (in addition to their experiments on a Pd/Al\textsubscript{2}O\textsubscript{3} system) and obtained significantly improved results in comparison (Table 2.1), concluding that:

In agreement with previous studies, the H\textsubscript{2}/NO/O\textsubscript{2} reaction under lean–burn conditions over platinum based catalysts was found to deliver high NO\textsubscript{x} conversion efficiency (up to 80 % NO\textsubscript{x} conversion) at relatively low temperature (~100 – 200 °C).
This result was subsequently matched by Itoh et al. (2010) (Table 2.1) in their study which directly compared the performance of catalysts prepared through two different preparation methods. They state:

The solvothermal preparation is favourable to obtain the uniformly large spherical nanoparticles with high crystallinity, and the resultant catalyst possesses better deNOx activity (NO conversion: 80 %, N2 yield: 60 %) than that prepared by the impregnation method.

This result suggests that a ‘solvothermal’ preparation method; typically involving the use of an autoclave to subject the synthesis materials to high pressures and temperatures for a prolonged period of time, creates better performing catalysts than the more traditional impregnation method. This result will be considered again when reviewing the implications of this literature review for the project.

The demonstrated NO conversion and N2 selectivity for the Pt/Al2O3 catalysts, although a significant improvement upon the Pd/Al2O3 systems, may still not be sufficient for the applications of interest. Indeed, the TWCs for related automotive emission control applications typically operate at almost complete conversion of the pollutant species. This is summarised by Twigg et al. (2006):

“Once the catalyst is at operating temperature, the reactions are mass transfer controlled and conversions between 95 and 100 % are normal.”

2.4.3.1.3 Additional Catalyst Systems

There have been many more metal/support combinations investigated for use in H2–SCR reactions, albeit not as thoroughly explored as those discussed above. This may be explained by their relative lack of activity in comparison to the Pd and Pt catalysts and this is reflected in the typical reported experimental conditions; which are often relatively high in H2 and low in both NO and O2. As a result it is not necessary to discuss in detail any examples here, although a number of examples are presented in Table 2.1 for completeness.
2.4.3.1.2 Perovskites

A class of materials known as perovskites is one of the largest structural families in materials chemistry. Schwartz (2002) describes the basic perovskite structure:

From the viewpoint of crystal structure, the ABO$_3$ type structure (Figure 2.8), in which the cation A usually has valence 2+ and the cation B has valence 4+, is the fundamental perovskite. The perovskite family is created by doping other types of cations into the stoichiometry and/or introducing anion deficiency.

Schwartz (2002) also describes current uses for the perovskite family of materials, stating that perovskite–structured materials have important applications in ferroelectricity, piezoelectricity, ferromagnetism, magnetoresistance, superconductivity, ionic conductivity, and dielectricity.

Perovskites typically consist of two or more mixed metal oxides and have also demonstrated significant activity in the reduction of NO$_x$ using H$_2$. Costa et al. (2001) described the performance of their Pt/La$_{0.5}$Ce$_{0.5}$MnO$_3$ system, stating:

In addition, the N$_2$ selectivity value of 88 % obtained on Pt/La$_{0.5}$Ce$_{0.5}$MnO$_3$, to our knowledge, is the highest value ever reported at the temperature at which maximum activity is observed for the NO/H$_2$/O$_2$ reaction with 5 % H$_2$O in the feed stream in the 100 – 200 ºC low–temperature range.

Coupled with a reported NO conversion of 79 % (Table 2.1), the performance of this material exceeds that of Pt/Al$_2$O$_3$.

![Figure 2.8](image-url)
Figure 2.8 ABO$_3$ perovskite structure presented in Fu et al. (2011).
Chiarello et al. (2007a) subsequently achieved complete NO conversion with their Pd/LaCoO\(_3\) system at 150 °C, with a comparable N\(_2\) selectivity of 78 % (Table 2.1). This study investigated the performance of catalysts synthesised through a flame–spray pyrolysis method. The features of the synthesis procedure were identified in a related publication by Chiarello et al. (2007b):

a) La(CH\(_3\)COO)\(_3\)·xH\(_2\)O (Aldrich, purity >99.9 %, H\(_2\)O 7.5 wt%, determined by TGA) and Co(CH\(_3\)COO)\(_2\)·4H\(_2\)O (Merck, purum) were dissolved in a mixture of propionic acid, n–propanol, and water (5:4:1 vol%) under vigorous stirring at 60 °C, to obtain a 1:1 metal–ion ratio and a 0.15 M overall metal concentration (sample LCO).

b) The desired amount of Pd(CH\(_3\)COO)\(_2\) (Fluka, purum) was added when preparing the Pd–containing sample (PdLCO).

c) The liquid solution was fed at a rate of 4 mL/min by a microannular gear pump (HNP Mikrosysteme model mzn 2905) at the center of a vertical nozzle, together with 5 L/min of O\(_2\) (1 bar pressure drop across the nozzle).

d) The obtained spray was ignited, and the flame was supported by a premixed methane/oxygen (1.0 L/min O\(_2\) and 0.5 L/min CH\(_4\)) annular flame (12 mm diameter, 0.15 mm thick) surrounding the nozzle.

e) The powder thus produced was collected on a glass fiber filter (Whatman GF/D, 25.7 cm diameter) connected to a vacuum pump (Busch Seco SV 1040C).

Although the perovskite materials discussed here have shown very promising performance in the reduction of NO\(_x\) using H\(_2\), it has also been demonstrated that they are often prepared through complex methods requiring numerous chemicals and synthesis steps, as well as intricate equipment.
2.4.3.1.3 Zeolites

As described by Maesen et al. (2001):

a) A zeolite is a crystalline aluminosilicate with a three–dimensional framework structure that forms uniformly sized pores of molecular dimensions. As the pores preferentially adsorb molecules that fit snugly inside the pores and exclude molecules that are too large, they act as sieves on a molecular scale.

b) Zeolites consist of robust, crystalline silica (SiO$_2$) frameworks. At some places in the framework Al$^{3+}$ has replaced Si$^{4+}$ and the framework carries a negative charge. Loosely held cations that sit within the cavities preserve the electroneutrality of the zeolite. Some of those cations are amenable to cation exchange and are able to reversibly interact with polar molecules.

A crystal structure of a typical zeolite is presented in Figure 2.9. Note the various channels, of different sizes, which may accommodate different sized molecules.

![Figure 2.9](image)

Figure 2.9 Crystal structure of ZSM–5/MFI type zeolite presented in Framework Type MFI (2007).

Zeolites are prepared under hydrothermal conditions, usually between 60 °C and 300 °C in a pressure vessel, over the course of a number of minutes, hours or days dependent on the synthesis mixture. Often, zeolite synthesis relies on the presence of a template, within the reaction mixture, that does not participate in the reaction but around which the structure is assembled.
Zeolites have long been known to demonstrate deNO\(_x\) activity both through direct decomposition (Iwamoto et al. (1991)) or in SCR reactions (Sato et al. (1991)). Zeolites were also the active component of the NH\(_3\)–SCR study conducted in Krakow, Poland as part of this project, which was previously discussed in Section 2.4.1 (Ochońska et al. (2012)). In addition, the structure of one of the types of zeolites explored in that study is presented in Figure 2.9.

Shibata et al. (2004) investigated H\(_2\)–SCR for a variety of platinum supported catalysts materials, including several zeolite supports. A Pt/MFI (Mordenite Framework Inverted) catalyst demonstrated both excellent NO conversion and N\(_2\) selectivity (Table 2.1) however the temperature of operation was particularly low, ~100 °C, and NO\(_x\) conversion decreased at higher temperatures. A similar trend was observed for the other catalysts:

“For all the catalysts, the NO\(_x\) conversion increased with the reaction temperature, reached a maximum at 373–423 K, and then decreased without any further increase in the temperature.”

Li et al. (2010) investigated platinum supported on Ti–containing MCM–41 (Mobil Crystalline Material) catalysts and also observed excellent activity at lower temperatures. For Pt/Ti–MCM–41, a high N\(_2\) selectivity of ca. 79 % was achieved at 140 °C when maximal NO\(_x\) conversion (ca. 89 %) was obtained. The investigated catalysts also showed some tolerance to the presence of small amounts of SO\(_2\) and CO. The Pt/Ti–MCM–41 was tolerant to SO\(_2\) at low concentration (~20 ppm) and the deactivation by SO\(_2\) at higher concentration (~50 ppm) was reversible to a great extent. A more serious negative effect was observed at a higher concentration of CO in the range of 100–1000 ppm. Fortunately, the deactivation by CO was also found to be reversible and the NO\(_x\) conversion was easily recovered after removing CO from the inlet.
2.4.3.1.4 Summary Table

Table 2.1: Selected catalyst, reaction and performance characteristics of various references reporting H_2–SCR data.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Catalyst</th>
<th>Feed Composition (%)</th>
<th>Performance</th>
<th>Temperature, T_{MAX} (°C)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macleod et al. (2002)</td>
<td>Pd 0.5</td>
<td>Al$_2$O$_3$ 0.05 0.4 5.0 He</td>
<td>\sim10 \sim40 135</td>
<td>SN_2 reported with respect to total reaction of NO, not only reduction reactions</td>
<td></td>
</tr>
<tr>
<td>Marques et al. (2008)</td>
<td>Pd 0.5</td>
<td>Al$_2$O$_3$ 0.015 0.15 7.0 Ar</td>
<td>\sim40 – 250</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Macleod et al. (2002)</td>
<td>Pt 0.5</td>
<td>Al$_2$O$_3$ 0.05 0.4 5.0 He</td>
<td>\sim80 \sim50 145</td>
<td>SN_2 reported with respect to the formation of N_2 and N_2O</td>
<td></td>
</tr>
<tr>
<td>Itoh et al. (2010)</td>
<td>Pt 1.0</td>
<td>Al$_2$O$_3$ 0.1 0.4 2.0 N$_2$</td>
<td>\sim80 \sim60 120</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rh 3.0</td>
<td>Al$_2$O$_3$ 0.1 1.0 2.0 He</td>
<td>70 – 252</td>
<td>Selectivity not reported</td>
<td></td>
</tr>
<tr>
<td>Nanba et al. (2003)</td>
<td>Ir 1.0</td>
<td>Al$_2$O$_3$ 0.1 1.0 2.0 He</td>
<td>70 – 177</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costa et al. (2001)</td>
<td>Pt 0.1</td>
<td>La$_0.5$Ce$_0.5$MnO$_3$ 0.25 1.0 5.0 He</td>
<td>79 88 140</td>
<td>Reaction mixture included 5% H_2O</td>
<td></td>
</tr>
<tr>
<td>Chiarello et al. (2007a)</td>
<td>Pd 0.5</td>
<td>LaCoO$_3$ 0.25 1.0 5 He</td>
<td>100 78 150</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Shibata et al. (2004)</td>
<td>Pt 0.8</td>
<td>ZSM–5 0.1 0.5 6.7 He</td>
<td>\sim95 \sim70 \sim100</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Li et al. (2010)</td>
<td>Pt 1.0</td>
<td>Ti–MCM–41 0.1 0.5 6.7 He</td>
<td>89 79 140</td>
<td>Performance in the presence of 20 ppm of SO$_2$ and CO also investigated</td>
<td></td>
</tr>
</tbody>
</table>

Note: Reminder of the stoichiometries of the proposed H_2/NO$_x$/O$_2$ reactions – 4:2:1 H_2/NO/O$_2$ and 6:2:1 H_2/NO$_2$/O$_2$. T_{MAX} is the reaction temperature at which maximum NO conversion is observed.
2.4.3.2 H₂–assisted SCR

As already alluded to, the use of H₂ has been explored in tandem with other reductants; typically hydrocarbons but also NH₃ and ethanol, in what is commonly referred to as H₂–assisted SCR.

Satokawa (2000) first reported the promotional effect of H₂ addition on hydrocarbon–SCR of NO over a Ag/Al₂O₃ catalyst. Subsequent studies on other silver catalysts have also reported enhanced activity by including H₂ in the reductant stream.

Burch et al. (2004) found that on addition of H₂ to their octane–SCR experiments (conducted over Ag/Al₂O₃ catalysts), greatly improved performance was achieved both in terms of NOₓ conversion and the temperature window of operation. With octane alone, the activity first started to increase at a temperature of around 350 °C and reached a broad maximum around 500 °C before declining again. However, when 0.72 % H₂ was introduced, the NOₓ reduction was seen to commence even at 100 °C and reached a maximum at around 200 °C. The conversion ranged from 100 % NOₓ conversion (in the presence of hydrogen) to roughly 10 % conversion (when hydrogen was absent).

Burch et al. (2004) also identified the role H₂ played in the enhanced activity, stating that hydrogen has the effect of activating octane at lower temperatures and it also promotes the oxidation of NO to NO₂ in the absence of hydrocarbon.

Richter et al. (2004) explored a H₂/NH₃ mixture for a variety of silver catalysts although only the Ag/Al₂O₃ catalysts demonstrated significantly improved activity. They found that catalyst samples on γ–Al₂O₃ or mesoporous Al₂O₃ (sol–gel) supports responded in a pronounced way to co–fed H₂. The activity was boosted from values less than 10 % to 100 % at 300 °C, even in the presence of 7 % H₂O, with N₂ selectivities always higher than 95 %.

Breen et al. (2009) also reported a transient NOₓ storage affect over a Ag/Al₂O₃ catalyst during H₂–assisted HC–SCR, which may have implications for NSR applications (Section 2.4.3.4).
2.4.3.3 \(\text{H}_2/\text{CO Mixture} \)

Another approach which may be of interest is the use of a mixture of both \(\text{H}_2 \) and \(\text{CO} \) to treat \(\text{NO}_x \) emissions. This is particularly relevant for this application; as can be seen from Figure 2.5(A) there is a significant \(\text{CO} \) presence (even greater than \(\text{H}_2 \)) in the clean syngas, and thus theoretically both species may be used in \(\text{NO}_x \) reduction.

However, there may be practical issues with separation of both \(\text{H}_2 \) and \(\text{CO} \) together from the syngas mixture, as discussed in Chapter 1 some of described technologies would not be appropriate. In addition, this technique is also not applicable for some previously explored materials, as Macleod et al. (2002) state that the reduction of \(\text{NO}_x \) by hydrogen under lean burn conditions over \(\text{Pt/Al}_2\text{O}_3 \) is strongly poisoned by carbon monoxide.

However, some of the catalyst systems previously described demonstrated excellent \(\text{deNO}_x \) performance when using both \(\text{H}_2 \) and \(\text{CO} \) as reductants. Lee et al. (2004) found that the \(\text{Pd/Al}_2\text{O}_3 \) catalyst gave \(\text{NO}_x \) conversions up to 95.2 % at 150 °C, with complete \(\text{CO} \) and \(\text{H}_2 \) oxidation occurring between 150 and 200 °C.

Lee et al. (2004) explained the observed activity due to the presence of both reductants and as a result of the catalyst preparation method. They said that the synergistic effects of having both \(\text{CO} \) and \(\text{H}_2 \) in the feed as well as using \(\text{PdCl}_2 \) as the precursor with the alumina support enhance \(\text{NO}_x \) reduction to \(\text{N}_2 \) at low temperatures.

There is also interest in using \(\text{H}_2/\text{CO} \) mixtures to reduce stored \(\text{NO}_x \) species in NSR processes (Section 2.4.3.4). Dujardin et al. (2013) explained the reasoning behind investigating their catalyst performance with a \(\text{H}_2/\text{CO} \) reducing mixture, saying that:

a) The supply of hydrogen can be obtained using on–board fuel reformer.

b) However, the impact of \(\text{CO} \) has to be taken into account since fuel reforming leads to a gas mixture composed of \(\text{H}_2 \) and \(\text{CO} \) as main products.

However, the catalyst demonstrated poor activity at lower temperatures due to the extensive formation of carbonate species. It appears that at the very least \(\text{CO} \) will be present in the exhaust mixture and must be considered as a catalyst poison if it is not to be utilised in the reduction reactions.
2.4.3.4 NO\textsubscript{x} Storage and Reduction (NSR)

Takahashi et al. (1996) first reported a novel technique for the treatment of NO\textsubscript{x} emissions known as NO\textsubscript{x} Storage and Reduction or NSR. In the study, a variety of catalysts were prepared and generally consisted of a noble metal and 'storage component' (alkaline earth metal) supported on alumina. Operating through alternating lean and rich conditions, the NO\textsubscript{x} is initially 'stored' on the catalyst surface before subsequent reduction to form N\textsubscript{2}. Alternatively, these types of catalysts are known as ‘Lean NO\textsubscript{x} Traps’ (LNT) and both terms are used interchangeably throughout this thesis.

2.4.3.4.1 Three Proposed Pathways for NO\textsubscript{x} Sorption

Ba/Pt/Al\textsubscript{2}O\textsubscript{3} is considered the ‘standard’ NSR catalyst and has been extensively studied for this process since the original publication by Takahashi et al. (1996). As such, potential chemical processes involved during NSR cycles are well documented.

The following potential pathways Figure 2.10(A)–(C), have been recreated from Epling et al. (2004) and depict the routes through which NO\textsubscript{x} species can be stored on the catalyst surface. The figures are included here as they represent both the desired and undesired NO\textsubscript{x} storage pathways and aid understanding of the roles of the catalyst components and what would also be required of a novel material.

Note that in all cases the solid and dashed black arrows represent adsorption/desorption pathways from and to the gas phase, and the block arrows represent surface diffusion pathways. The overall chemical equations occurring at each site are also displayed.
In pathway A, Figure 2.10(A), the following steps occur:

1. Close proximity of Pt/Ba sites result in the rapid uptake of NO\(_x\) at these locations.
2. Ba sorbate sites further away from Pt sites have a slower uptake.
3. Ba sites not in contact with Pt sites trap NO\(_2\) exclusively from the gas phase using the NO\(_2\) disproportionation mechanism.

Nitrites and nitrates are formed at the Pt/Ba sites and use O\(_2\) and NO\(_2\) as oxygen sources for the further oxidation of nitrites to nitrates.

![Diagram of NO\(_x\) storage on Ba/Pt/Al\(_2\)O\(_3\) – Pathway A.](image)

In pathway B, Figure 2.10(B), a nitrate “spill over” type mechanism is seen. The sorbate sites near Pt are saturated rapidly due to the availability of adsorbed NO\(_2\) and oxygen atoms. Although the trapping rate slows due to the increasing diffusion resistance as the N–species build up around the Pt particles, migration of the nitrate species away from the Pt sites occurs.

![Diagram of NO\(_x\) storage on Ba/Pt/Al\(_2\)O\(_3\) – Pathway B: Nitrate “spill over” type mechanism.](image)
In Pathway C, Figure 2.10(C), the lone Pt site, which is not adjacent to a Ba site, is only involved in the oxidation of NO to NO$_2$ and does not play a role in the storage of NO$_2$ on the Ba sites.

Figure 2.10(C) NO$_x$ storage on Ba/Pt/Al$_2$O$_3$ – Pathway C.
Epling et al. (2004) then categorize the pathways displayed previously (Reactions (2.22)--(2.28) and provide the following explanation:

A mixture of BaO, Ba(OH)$_2$ and BaCO$_3$ is present on the catalyst and each has different relative stabilities in comparison to the nitrate. The BaO is replaced first, followed by the replacement of Ba(OH)$_2$, then BaCO$_3$. These species are displaced to form the nitrites and nitrates.

NO sorbs via:

\[
\text{BaO} + 2\text{NO} + O^* \rightarrow \text{Ba(NO}_2\text{)}_2
\]
(2.22)

\[
\text{BaO} + 2\text{NO} + 3O^* \rightarrow \text{Ba(NO}_3\text{)}_2
\]
(2.23)

NO$_2$ sorbs via:

\[
\text{BaO} + 2\text{NO}_2 + O^* \rightarrow \text{Ba(NO}_2\text{)}_2
\]
(2.24)

\[
\text{BaO} + 2\text{NO}_2 \rightarrow \text{Ba(NO}_2\text{)}_2 + O^*
\]
(2.25)

\[
2\text{BaO} + 4\text{NO}_2 \rightarrow \text{Ba(NO}_2\text{)}_2 + \text{Ba(NO}_3\text{)}_2
\]
(2.26)

As shown, these typically result in nitrite or nitrate formation using O*. The O* originates from NO$_2$ or O$_2$:

\[
\text{BaO} + 3\text{NO}_2 \rightarrow \text{Ba(NO}_3\text{)}_2 + \text{NO}
\]
(2.27)

\[
\text{BaO} + 2\text{NO}_2 + \frac{1}{2}\text{O}_2 \rightarrow \text{Ba(NO}_3\text{)}_2
\]
(2.28)

where the O$_2$ is dissociated on Pt.
2.4.3.4.2 Possible NSR Reactions

Once the NO\textsubscript{x} has been adsorbed and stored on the catalyst surface in the form of nitrates and nitrites, there are a number of potential reactions that can subsequently occur. Figure 2.11(A)–(C) have been recreated from Balcon et al. (1999). Once again, inclusion of these figures aids understanding of the necessary processes for a successful NSR catalyst. Note that a subscript \((g)\) denotes NO\textsubscript{2} in the gas phase, and a subscript \((s)\) denotes stored NO\textsubscript{2}. In these cases the use of NO\textsubscript{2} is not necessarily indicative of actual NO\textsubscript{2} molecules; it is a representation of both the nitrates and nitrites that are stored on the catalyst surface.

Reaction A, Figure 2.11(A), depicts the release of stored NO\textsubscript{2} entities during rich phases.

![Figure 2.11(A) Reaction A: NO\textsubscript{2} release from Ba compounds in rich conditions (He carrier gas).](image)

Reaction B, Figure 2.11(B), demonstrates the competitive effect of CO\textsubscript{2} on NSR processes. CO\textsubscript{2} can be introduced to interact with the same Ba storage sites as NO\textsubscript{2(g)}, promoting the rapid release of stored NO\textsubscript{x} molecules.

![Figure 2.11(B) Reaction B: Competitive effect of CO\textsubscript{2} on NO storage and release (Ba–carbonates formed).](image)
Reaction C, Figure 2.11(C), exhibits the process through which stored NO\textsubscript{x} is first released by a reductant, in a similar fashion to Reaction A, before diffusion of NO\textsubscript{2(g)} towards the metallic sites. Subsequent reduction of NO\textsubscript{x} by a reductant dissociated on these sites produces nitrogen and water. This is the desired process for this study.

\[\text{NO}_2(\text{s}) \rightarrow \text{NO}_2(\text{g}) \]

Figure 2.11(C) NO\textsubscript{2} release and reduction in the presence of a reducing agent, R = \text{H}_2 or CO or HCs.

2.4.3.4.3 H\textsubscript{2} use in NSR Experiments

Like the aforementioned SCR processes, many different reductants have been investigated for use in NSR cycles e.g. Fridell et al. (1999) and Abdulhamid et al. (2004) both trialled H\textsubscript{2}, CO, C\textsubscript{3}H\textsubscript{6} and C\textsubscript{3}H\textsubscript{8} as reductants.

It is, however, widely considered that H\textsubscript{2} is the best reductant for NSR processes over a Pt/Ba/Al\textsubscript{2}O\textsubscript{3} catalyst. For example, according to Poulston et al. (2003), H\textsubscript{2} was found to be more effective at regenerating the NO\textsubscript{x} storage activity especially at lower temperature, but more importantly over the entire temperature window after catalyst ageing.

This view was shared by Liu et al. (2004), who stated that the order of efficiency in terms of conversion of stored NO\textsubscript{x} to N\textsubscript{2} was H\textsubscript{2} > CO > propene. Additionally the use of hydrogen led to the lowest NO\textsubscript{2}:NO ratio.
In terms of a possible mechanism, from results reported by Cumaranatunge et al. (2007) it was hypothesised that when using H$_2$ as the reductant; following initial reaction of H$_2$ and NO, NH$_3$ is formed as an intermediate which subsequently reduces more NO species. They stated that:

a) As the NO$_x$ (NO + NO$_2$) is released from the trapping sites (the exact mechanism of release is not known), it reacts with H$_2$ over Pt to form NH$_3$, N$_2$ and N$_2$O as the N–containing species

b) The NH$_3$ formed will further react with more NO$_x$ to give either N$_2$ or N$_2$O.

It must be noted here that these studies were often conducted with a view to using H$_2$ generated from means other than those proposed in this study. For example, Lietti et al. (2001) proposed that hydrogen is generated at the site with a small reformer that uses natural gas and steam as input streams.

2.4.3.5 Coupled SCR and NSR Systems

Finally, a few recent studies have investigated systems where both SCR and NSR processes are combined to provide NO$_x$ reduction. Building upon the mechanism proposed by Cumaranatunge et al. (2007) above, Can et al. (2012) describe the following process:

a) Ammonia may be produced during the regeneration step of an NSR catalyst, by the direct reaction (NO$_x$ + H$_2$) or/and the isocyanate route.

b) They state that recent literature highlights that the ammonia production rate is higher than the ammonia reaction rate with the remaining NO$_x$ in order to form N$_2$.

c) They proposed that in order to optimize the use of the in situ produced ammonia, a catalyst dedicated to the NO$_x$–SCR by NH$_3$ could be added.

A representation of what this process may look like is depicted in Figure 2.12, which has been recreated from Xu et al. (2012), and represents the experimental set–up used to investigate a coupled LNT/SCR system to treat the emissions from a diesel powered engine.
Figure 2.12 Example schematic of coupled LNT/SCR process applied to a diesel engine exhaust. Recreated from Xu et al. (2012). LNT: Lean NO\textsubscript{x} Trap; DOC: Diesel Oxidation Catalyst; DPF: Diesel Particulate Filter.

The approach has been found to be quite successful for a variety of performance related factors. Wang et al. (2012) found that the formation of N\textsubscript{2}O was greatly reduced using the coupled system with H\textsubscript{2} as the reductant, and they stated:

a) As expected, H\textsubscript{2} is the best NO\textsubscript{x} reductant at all temperatures, while the benefit of the SCR catalyst is again apparent with respect to system NO\textsubscript{x} conversion and the abatement of N\textsubscript{2}O emissions.

b) N\textsubscript{2}O selectivity is shown in Fig. 3 and is very low, peaking at a value of 8 % at 165 °C and then attaining a second maximum of 10 % at 250 °C.

From a practical perspective the coupled system also offers more advantages than a single LNT approach, in addition to greater NO\textsubscript{x} conversion, highlighted by Xu et al. (2012):

- Higher NO\textsubscript{x} conversions and a wider operating temperature window,
- improved durability of both the LNT and SCR catalyst (including an ability of the SCR catalyst to compensate for activity losses by the LNT), and
- benefits of the SCR catalyst in converting not only NO\textsubscript{x} released from the LNT but also hydrocarbons that break through the LNT under purge conditions.

However, this sort of ‘hybrid’ approach provides many opportunities for other novel solutions for treating NO\textsubscript{x} emissions. For example; Liu et al. (2012a) explored the performance of a “dual–layer monolithic catalyst” where a zeolite SCR catalyst was deposited directly on the surface of a NSR catalyst and Castoldi et al. (2011) explored a system where “the LNT and the SCR catalyst particles are physically mixed”.

2-39
2.5 Analysis Techniques

Another novel aspect of this work relates to the real time analysis of the species produced in the reactions of interest. Whilst there have been many investigations of related catalytic systems and reaction conditions, there are also many different methods and types of equipment used for analysis. A review of the most common techniques for the analysis of related gas phase reactions is presented here.

Table 2.2 summarises the main analytical techniques utilised in the analysis of deNO\textsubscript{x} reaction products from the references discussed in this chapter, in addition to some from groups who are well–known in the field of deNO\textsubscript{x} (30 references sampled in total). Table 2.3 details specifically what techniques and combination of techniques were used within each investigation. Note that the various catalyst characterization techniques utilised throughout these studies are not discussed here.

It can be seen that from the sample taken, there are at least seven different analysis techniques commonly employed to measure the outlet gas composition from various deNO\textsubscript{x} reactions. An important point to note is that in most cases two or more detection techniques are often used in parallel to ensure measurement of a wide range of species and it does not appear there is a technique capable of solely identifying all the reaction components of interest (when a single technique is used, only select species are measured). Whilst it is not appropriate to discuss all the identified techniques in detail here, the main features of the most popular techniques will be highlighted.

Table 2.2 Summary of analysis techniques use in sample of 30 deNO\textsubscript{x} investigations.

<table>
<thead>
<tr>
<th>Analytical Technique</th>
<th>Reported use (no. of references from sample)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemiluminescence NO\textsubscript{x} analyser</td>
<td>14</td>
</tr>
<tr>
<td>MS</td>
<td>14</td>
</tr>
<tr>
<td>FTIR</td>
<td>12</td>
</tr>
<tr>
<td>GC</td>
<td>10</td>
</tr>
<tr>
<td>NDIR</td>
<td>5</td>
</tr>
<tr>
<td>IR</td>
<td>4</td>
</tr>
<tr>
<td>FID</td>
<td>3</td>
</tr>
</tbody>
</table>
Table 2.3 Details of specific analysis techniques used in sample of 30 DeNO\textsubscript{x} investigations.

<table>
<thead>
<tr>
<th>Reference</th>
<th>DeNO\textsubscript{x} Process*</th>
<th>DeNO\textsubscript{x} Reaction Analysis Equipment/Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macleod et al. (2002)</td>
<td>H\textsubscript{2} or CO–SCR</td>
<td>Chemiluminescence NO\textsubscript{x} analyser, NDIR detectors, QMS</td>
</tr>
<tr>
<td>Marques et al. (2008)</td>
<td>H\textsubscript{2}–SCR</td>
<td>Chemiluminescence NO\textsubscript{x} analyser, IR analyser, FID detector, FTIR spectrometer,</td>
</tr>
<tr>
<td>Itoh et al. (2010)</td>
<td>H\textsubscript{2}–SCR</td>
<td>FTIR spectrometer,</td>
</tr>
<tr>
<td>Nanba et al. (2003)</td>
<td>H\textsubscript{2}–SCR</td>
<td>GC, FTIR</td>
</tr>
<tr>
<td>Costa et al. (2001)</td>
<td>H\textsubscript{2}–SCR</td>
<td>GC–MS, QMS</td>
</tr>
<tr>
<td>Chiarello et al. (2007a)</td>
<td>H\textsubscript{2}–SCR</td>
<td>GC, QMS</td>
</tr>
<tr>
<td>Shibata et al. (2004)</td>
<td>H\textsubscript{2}–SCR</td>
<td>GC, chemiluminescence NO\textsubscript{x} analyser</td>
</tr>
<tr>
<td>Li et al. (2010)</td>
<td>H\textsubscript{2}–SCR</td>
<td>GC, chemiluminescence NO\textsubscript{x} analyser</td>
</tr>
<tr>
<td>Satokawa (2000)</td>
<td>H\textsubscript{2}/HC–SCR</td>
<td>GC, chemiluminescence NO\textsubscript{x} analyser</td>
</tr>
<tr>
<td>Burch et al. (2004)</td>
<td>H\textsubscript{2}/HC–SCR</td>
<td>Chemiluminescence NO\textsubscript{x} analyser, QMS</td>
</tr>
<tr>
<td>Richter et al. (2004)</td>
<td>H\textsubscript{2}/NH\textsubscript{3}–SCR</td>
<td>GC, NDIR</td>
</tr>
<tr>
<td>Breen et al. (2009)</td>
<td>H\textsubscript{2}/SCR</td>
<td>QMS</td>
</tr>
<tr>
<td>Lee et al. (2004)</td>
<td>H\textsubscript{2}/CO–SCR</td>
<td>GC, chemiluminescence NO\textsubscript{x} analyser, IR analyser, QMS, FTIR, QMS</td>
</tr>
<tr>
<td>Dujardin et al. (2013)</td>
<td>H\textsubscript{2}/CO–NSR</td>
<td>Chemiluminescence NO\textsubscript{x} analyser, QMS, FTIR, FID, IR, Chemiluminescence NO\textsubscript{x} analyser</td>
</tr>
<tr>
<td>Takahashi et al. (1996)</td>
<td>HC–NSR</td>
<td>Chemical Ionization MS, FTIR, NDIR, Chemiluminescence NO\textsubscript{x} analyser, Combined Flame Ionization/Magneto–pneumatic analyser</td>
</tr>
<tr>
<td>Fridell et al. (1999)</td>
<td>NSR</td>
<td>Flame Ionization/Magneto–pneumatic analyser</td>
</tr>
<tr>
<td>Abdulhamid et al. (2004)</td>
<td>NSR</td>
<td>Multi–gas analyser</td>
</tr>
<tr>
<td>Poulston et al. (2003)</td>
<td>H\textsubscript{2}–NSR</td>
<td>FTIR, QMS</td>
</tr>
<tr>
<td>Liu et al. (2004)</td>
<td>NSR</td>
<td>FTIR</td>
</tr>
<tr>
<td>Cumaranatunge et al. (2007)</td>
<td>H\textsubscript{2}–NSR</td>
<td>Chemiluminescence NO\textsubscript{x} analyser, NDIR, FID, GC</td>
</tr>
<tr>
<td>Xu et al. (2012)</td>
<td>LNT/SCR</td>
<td>Chemiluminescence NO\textsubscript{x} analyser, NDIR, FID, GC</td>
</tr>
<tr>
<td>Wang et al. (2012)</td>
<td>LNT/SCR</td>
<td>Multi–gas analyser, FTIR, QMS</td>
</tr>
<tr>
<td>Liu et al. (2012a)</td>
<td>H\textsubscript{2}–LNT/SCR</td>
<td>FTIR, QMS</td>
</tr>
<tr>
<td>Castoldi et al. (2011)</td>
<td>H\textsubscript{2}–LNT/SCR</td>
<td>QMS, FLIR</td>
</tr>
<tr>
<td>Doronkin et al. (2012)</td>
<td>H\textsubscript{2}/NH\textsubscript{3}–SCR</td>
<td>FTIR</td>
</tr>
<tr>
<td>Lindholm et al. (2009)</td>
<td>H\textsubscript{2}–NSR</td>
<td>Chemiluminescence NO\textsubscript{x} analyser, NDIR, FTIR, FID, GC</td>
</tr>
<tr>
<td>Abu–Jrai et al. (2007)</td>
<td>HC–SCR</td>
<td>Chemiluminescence NO\textsubscript{x} analyser, NDIR, FID, GC</td>
</tr>
<tr>
<td>Dhainaut et al. (2007)</td>
<td>H\textsubscript{2}–SCR</td>
<td>MS, GC</td>
</tr>
<tr>
<td>Kim et al. (2013)</td>
<td>H\textsubscript{2}/HC–SCR</td>
<td>FTIR</td>
</tr>
<tr>
<td>Kannisto et al. (2011)</td>
<td>HC–SCR</td>
<td>FTIR</td>
</tr>
</tbody>
</table>

*Note: where no reductant is specified in the DeNO\textsubscript{x} process description, several different reductants are investigated within that study.
2.5.1 Chemiluminescence NO\textsubscript{x} Analysers

Atkins (2009) describes the process through which chemiluminescence NO\textsubscript{x} analysers operate, from which the following key features are taken:

a) NO\textsubscript{x} (chemiluminescence) analysers measure NO by detecting the light emitted when NO is reacted with ozone (O\textsubscript{3}).

b) The intensity of the light is proportional to the amount of NO in the sample gas and the intensity is measured and converted to an electrical signal.

c) Other oxides of nitrogen are measured by passing them through a converter located before the reaction chamber. The converter changes any NO\textsubscript{2}, NO\textsubscript{3}, and so forth present in the sample gas into NO.

d) The converter can be bypassed so that either the total NO\textsubscript{x} or NO alone can be measured.

The technique actually utilises the destructive chemistry of NO\textsubscript{x} in the stratosphere, as already described in Section 2.2.2:

\[
O_3 + NO \rightarrow NO_2 + O_2 \quad (2.10)
\]

Where the excited NO\textsubscript{2} which has formed through the reaction of NO and O\textsubscript{3} emits a photon (light), and the intensity is used to identify the quantities present.

Whilst this is an established and accurate technique, as the name suggests this equipment is only capable of measuring NO, NO\textsubscript{2} and overall NO\textsubscript{x} levels and thus needs to be used in parallel with other techniques capable of measuring the other species of interest.
2.5.2 Mass Spectrometry

From the results of the sample of papers reviewed (see Tables 2.2 and 2.3) it can be seen that mass spectrometry is also a very common analysis technique and indeed it is utilised within this project for reaction analysis. Mass spectrometry separates chemical species through the differing mass–to–charge ratios (m/z) of ionized molecules. There are several different types of mass spectrometer, each utilising a different method of ionization to produce the ionized species. Each species has a distinct fragment pattern and thus this technique may be used to separate out mixtures of various chemicals. More detailed information on the theory and operation of mass spectrometry is provided in Appendix I.

It can be seen from Table 2.3 that mass spectrometry is not often used as an analysis technique in isolation; additional techniques are used in parallel. From this information it may be suggested that this technique is not suitable to measure all the species of interest. Closer inspection of the relevant references presented in Table 2.3 confirms this viewpoint and also raises questions about the use of MS in these studies; in the references discussed below there is no thorough explanation provided of how the MS was calibrated, and from personal experience this is a significant task (QMS calibration is discussed in Appendix I).

In addition, most references utilised an MS to follow the abundance of only a few (1 – 3) species or else do not discuss its use in detail. Only those which detail use of a QMS to separate a significant mixture of species will be discussed here.

Costa et al. (2001) described their use of a QMS to measure the abundance of six species:

The gaseous responses obtained by mass spectrometry were calibrated against standard mixtures. The mass numbers (m/z) 15, 28, 30, 32, 44, and 46 were used for NH\textsubscript{3}, N\textsubscript{2}, NO, O\textsubscript{2}, N\textsubscript{2}O, and NO\textsubscript{2}, respectively.

Although some level of calibration is undertaken, note that they are not measuring for H\textsubscript{2}O (which is predominantly detected at m/z 18). In addition they are using m/z 15 to measure NH\textsubscript{3}, presumably to avoid clashes with H\textsubscript{2}O at m/z 17.
Chiarello et al. (2007a) monitored the abundance of nine species using a QMS for analysis and state that:

a) The m/z mass fragments 2, 12, 14, 18, 28, 30, 32, 44, and 46, corresponding to \(\text{H}_2 \), C, N, \(\text{H}_2\text{O} \), \(\text{N}_2 \), NO, \(\text{O}_2 \), \(\text{N}_2\text{O} \), and NO\(_2\), were monitored.

b) In particular, \(\text{N}_2 \) and \(\text{N}_2\text{O} \) were distinguished from CO and \(\text{CO}_2 \) by the trend of m/z = 12. Indeed, the fact that the latter signal remained unperturbed during the experiment indicates that no C-containing species were formed or consumed.

Note whilst all the other species of interest were monitored here, there was no measure of NH\(_3\) abundance.

Breen et al. (2007) provided a detailed description of the analysis used in Breen et al. (2009) as follows:

a) For most of the experiments, the following mass–to–charge (m/z) ratios were monitored as a function of time: 2 (\(\text{H}_2 \)), 31 (\(^{15}\text{NO} \)), 30 (\(^{15}\text{N}_2 \)), 46 (\(^{15}\text{N}_2\text{O} \)), 47 (\(^{15}\text{NO}_2 \)), 57 (n–C\(_8\)H\(_{18}\)), and 82 (Kr).

b) For the experiments with \(^{14}\text{NO} \), a m/z ratio of 30 (\(^{14}\text{NO} \)) was monitored.

c) For both the \(^{14}\text{NO} \) and \(^{15}\text{NO} \) experiments, various other m/z ratios were also logged to pick up traces of some of the other gases, such as NH\(_3\), CH\(_3\)CN, and HCN, that also can be formed under SCR conditions.

Although not all species of interest were considered here, it is interesting to note the use of isotopes, i.e. \(^{15}\text{NO} \) gas, and their associated fragment patterns to separate gas mixtures.
Castoldi et al. (2004) provided a detailed description of the analysis used in Castoldi et al. (2011) as follows. It should be acknowledged that in this case some calibration was completed prior to analysis (although the NH$_3$ levels were not recorded):

a) The following mass–to–charge (m/z) ratios were used to monitor the concentration of products and reactants: 18 (H$_2$O), 28 (N$_2$ or CO), 30 (NO), 32 (O$_2$), 44 (N$_2$O or CO$_2$), and 46 (NO$_2$).

b) The mass spectrometer data were quantitatively analysed using the fragmentation patterns and the response factors determined experimentally from calibration gases.

2.5.3 FTIR

Infrared spectroscopy, like any optical spectroscopy, identifies a sample through its interaction with (infrared) light. Hof (2003) specifies the reasons for IR’s popularity as an analysis technique, stating that:

a) The method is rapid, sensitive, easy to handle and provides many different sampling techniques for gases, liquids and solids.

b) Important aspects are the convenient qualitative and quantitative evaluation of the spectra.

FTIR is a type of mid–infrared technique, operating in the 2.5 – 25 μm (4000 to 400 cm$^{-1}$) range. Sablinskas (2003) describes the specific benefits of using an FTIR spectrometer, stating that:

a) The most significant advantage of FT spectrometers is that radiation from all wavelengths is measured simultaneously, whereas in dispersive spectrometers all wavelengths are measured consecutively.

b) Therefore, a FT spectrometer is much faster and more sensitive.
2.5.4 Gas Chromatography

As described by McNair et al. (1998), according to the International Union of Pure and Applied Chemistry (IUPAC), the definition of chromatography is such:

a) Chromatography is a physical method of separation in which the components to be separated are distributed between two phases, one of which is stationary (stationary phase) while the other (the mobile phase) moves in a definite direction.

b) Elution chromatography is a procedure in which the mobile phase is continuously passed through or along the chromatographic bed and the sample is fed into the system as a finite slug.

Thus in gas chromatography the mobile phase is a gas and as such it is a very common method for used for reaction gas analysis; through careful calibration and use of the correct column (stationary phase) it is possible to separate out complex gas mixtures.

However, the greatest drawback of a GC (which is not coupled to an MS) is that they are not connected ‘on–line’ and thus sampling of the reaction outlet and subsequent analysis is necessary. This creates a number of issues including reaction within the sample during the period from sampling to analysis, and poor understanding of the time frames/responses involved with the reaction of interest.

2.5.5 Other Techniques

As observed in Tables 2.2 and 2.3 there are additional techniques for measuring the presence of deNOx species although they will not be discussed her. There are also some groups who utilise more specialised approaches for analysis; Steady–state Isotopic Transient Kinetic Analysis (SSITKA) involves replacing one of the reactants of a gas mixture with a stable isotope (in a similar manner to Breen et al. (2007) above) and recording the response. Savva et al. (2008) employed a SSITKA–DRIFTS approach whilst Chansai et al. (2011) further enhanced this method with their short time–on–stream (STOS) technique.
2.6 Conclusions Which Impact Upon the Work in this Thesis

Despite the vast quantities of literature information detailing various treatments of NO\textsubscript{x} emissions with hydrogen, improvements in performance are required in order to make this a viable commercial process which competes with the current standard NH\textsubscript{3}/urea practices.

With reference to what has been previously discussed in this chapter, the following conclusions can be drawn and their influence on this project highlighted:

2.6.1 Process

H\textsubscript{2}–SCR and H\textsubscript{2}–NSR have both been investigated with some success, although evidently the reported performances are not satisfactory enough to warrant commercialisation. Both processes are potentially applicable to the application of interest, and so both should be explored. In addition, the cyclic nature of NSR processes perhaps gives more scope for novel engineering solutions e.g. through dual stream exhausts.

It is recognised that the presence of catalyst poisons e.g. CO, H\textsubscript{2}O or SO\textsubscript{2}, and their impact on catalyst performance may have played a role in the scarce development of H\textsubscript{2} deNO\textsubscript{x} catalysts. Thus catalyst poisoning is regarded as a very important topic. However, as will be described in later chapters; a ‘clean’ reaction gas mixture provided enough complications in terms of analysis and so whilst this issue is recognised as significant, it will not be addressed further in this thesis.
2.6.2 Catalysts

2.6.2.1 Materials

To summarise individually, the different materials reviewed for H₂–SCR:

- As a result of the conclusions previously obtained from the viability study, and that the application of interest involves significant amounts of O₂, Pd/Al₂O₃ was not considered to be explored further within the scope of this project.

- Pt/Al₂O₃ catalysts will be explored in this study as a material for confirming the experimental approach; by comparing obtained experimental results with those reported in the literature, the experimental set–up and conditions can be verified.

- Perovskites and Zeolites – as this study has a dual focus of investigation of both potential catalysts and processes, and is not solely concerned with intricate catalyst formation, these materials were deemed unsuitable for this particular project and thus have been discussed here only for completeness.

With respect to the reviewed literature and as a result of the conclusions above, it was decided that silver based catalysts would be explored for their deNOₓ activity in both SCR and NSR processes:

- Although they have demonstrated promising activity in H₂–assisted SCR and HC–SCR, their performance in direct H₂–SCR has not been reported.

- Silver catalysts have a long history of demonstrating both the reduction and oxidation chemistry deemed necessary for successful NSR reactions.

- Silver is abundant and cheaper than the metals used in current exhaust treatment applications.

- The proposed temperature window of operation for this application can be as high as ~450 °C (although it may be significantly lowered) and silver catalysts have demonstrated good activity at these temperatures for related processes.
Gamma alumina (γ–Al$_2$O$_3$) is a typical high surface area catalyst support material and is widely used in related applications (TWCs, DOCs etc). It has also been previously used within the research group. Due to its history and familiarity, it was chosen as the catalyst support material within this project.

In terms of storage components for the NSR catalysts; whilst other storage components have also been considered, Ba and K have demonstrated the best reported performance and will be explored with the combination of the active components discussed above.

2.6.2.2 Preparation Method

The preparation methods presented were generally similar; impregnation of metal oxides using a metallic solution. These are typically straightforward techniques and preparation conditions can be easily recreated. Other preparation techniques discussed such as solvothermal synthesis or flame–spray pyrolysis require additional, expensive apparatus and will not be pursued. Again, although it is recognised that the catalyst preparation method can have a significant impact on the catalyst performance, as this project involved both the process and the materials, significant emphasis was not placed on preparation techniques and the impact they may have.

2.6.2.3 Support

Although most of the reported literature work focusses on powder catalysts, this project will utilise catalysts supported on honeycomb monolith structures. These structures are typical of autocatalysts, and their advantages are well documented (Twigg et al. (2006)). Using monolithic structures also offers a more realistic indication of conditions and performance in the end application.
2.6.3 Analysis

A Quadrupole Mass Spectrometer (QMS) was utilised for reaction analysis within this project. The main advantage this provides is that of on–line, real time analysis as opposed to intermittent sampling and its associated issues. Although use of this instrumentation has been previously reported, it does not appear that a quantitative method for identifying all the potential reaction mixture species has been developed. The development of a suitable technique is described in Appendix I.
REFERENCES

Kannisto, H., Karatzas, X., et al. (2011). Efficient Low Temperature Lean NO\textsubscript{x} Reduction Over Ag/Al\textsubscript{2}O\textsubscript{3}–A System Approach. Applied Catalysis B: Environmental, Vol. 104, No. 1–2, pp. 74–83.

Kim, P. S., Kim, M. K., et al. (2013). Effect of H\textsubscript{2} on DeNO\textsubscript{x} Performance of HC–SCR over Ag/Al\textsubscript{2}O\textsubscript{3}: Morphological, Chemical, and Kinetic Changes. Journal of Catalysis, Vol. 301, No. 0, pp. 65–76.

McClymont, D., Centre for Sustainable Chemical Technologies, Catalyst System Design for the Control of NO\textsubscript{x} Using Hydrogen. MRes Project, Report (2010).

CHAPTER 3

The processes through which active materials for the H₂–SCR investigation were prepared and characterized will be discussed. The experimental set–up and procedures to be followed when investigating the activity of catalysts in treating NOₓ emissions with hydrogen will also be explained. Finally, preliminary experimental results, obtained through commissioning of the experimental set–up and analysis technique, along with ‘final’ results of the chosen materials performance will be presented and discussed.

3.1 Catalyst Preparation

3.1.1 Summary

A summary flow diagram of the catalysts prepared in this project, and their associated deNOₓ process, is presented in Figure 3.1. Note that only the SCR catalysts (their makeup indicated with a dotted black line) are considered within this chapter. All of the catalysts consist of a cordierite substrate and an intermediate γ–Al₂O₃ layer and were prepared from samples supplied by a major catalyst manufacturer. The make–up of the catalysts then differs in the loading of additional components upon the γ–Al₂O₃ support, which determines which process the catalyst material is applicable to.

It should be noted that catalyst preparation does not form a major interest in this particular research project, and indeed catalysts were prepared in order to confirm the deNOₓ approach and not to investigate the impact of slight variations in preparation method, e.g. catalyst loading, calcination temperature etc. As such, preparation procedures for the catalysts prepared above were influenced by and adjusted from several literature sources (Table 3.1).
Table 3.1 Summary of selected references consulted during development of SCR catalyst preparation methods.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt</td>
<td>Klinghoffer et al. (1998)</td>
</tr>
<tr>
<td>Ag</td>
<td>Doronkin et al. (2012)</td>
</tr>
</tbody>
</table>

Although brief descriptions of the catalyst preparation methods are disclosed within this chapter, examples of detailed synthesis procedures can be found in Appendix II, where some indication of slight variations in the different batches of catalysts made can be gleaned. However, a typical catalyst preparation procedure involved:

- Preparation of a solution containing the desired metal species;
- Submersion of the sample(s) in the solution for a determined time period;
- Removal of excess solvent in the sample channels through a particular drying procedure;
- Removal of residual solvent and formation of desired active species through calcination at a particular temperature.
Figure 3.2 gives an indication of how the catalyst support structures are first prepared from the supplied monoliths and then how the washcoat and any active components are dispersed throughout the monoliths.

Figure 3.2 Overview of catalyst preparation method and dispersion of components in the prepared monoliths.
3.1.2 Catalyst Support Structure

Catalysts may be supported on a number of different materials and in different structures, dependent on their application. Common support structures include honeycomb monoliths and pellets and each have a number of different advantages. The catalysts prepared for this study will be supported on honeycomb monolithic structures; these are cylindrical in shape and consist of many parallel channels where the catalyst will have been deposited and through which the gas will flow. The channels may be circular or triangular, but are most often square in shape, and the structures typically exhibit a high cell density e.g. 400 CSI (cells per square inch).

The benefits of such a support, as discussed in Hayes et al. (1997) are:

a) The monolith configuration combines a high surface-to-volume ratio with low pressure drop.

b) The uniformity of the honeycomb matrix helps to ensure an even flow distribution across the bed with minimal ‘channelling’.

c) If particulates are present in the gaseous stream these can pass easily through the reactor provided that the diameter of the channel is greater than that of the particles.
Monolithic structures are therefore of interest in this project, due to the advantages highlighted above. They can also be used in a modular system (Figure 3.3), which yields further advantages including ease of replacement should a unit fail.

![Module diagram](image)

Figure 3.3 Example of monoliths used in a modular NH$_3$–SCR application, recreated from Forzatti (2001).

Monolith support structures with a cell density of 400 CSI for use in this project, were supplied by a major catalyst manufacturer. Initially supplied with an axial length of 114.3 mm and outer diameter of 105.7 mm (Figure 3.4), cross-sectional ‘slices’ of 10 mm height (e.g. Figure 3.6) were prepared using a band saw. Monolith ‘samples’ could then be obtained using a punch set with the desired diameter, to remove sections from the slices.

The particular monolith samples in use for catalytic investigations had an outer diameter of 14 mm and an axial length of 10 mm (e.g. Figure 3.5), with a volume of 0.00154 L. They contained approximately 80 channels, each with dimensions of 1 x 1 mm. Both uncoated and γ–Al$_2$O$_3$ coated cordierite substrates were supplied for use in this project.

![Monolith dimensions](image)

Figure 3.4 Photograph of unsliced monoliths, supplied by a major catalyst manufacturer.
3.1.3 Catalyst Support Materials

3.1.3.1 Cordierite Substrate

The substrate forms the core part of any monolithic catalyst as it produces the channel structure and surface upon which the active components are supported. Ceramic materials are generally preferred as substrates due to their relatively low manufacturing cost. Cordierite is a ceramic material typically consisting of \(2\text{MgO}.2\text{Al}_2\text{O}_3.5\text{SiO}_2\) (Buschow et al. (2001)), which amounts to a weight percentage breakdown of: 13.78 % magnesia (MgO), 34.86 % alumina (Al\(_2\)O\(_3\)) and 51.36 % silica (SiO\(_2\)). It has a beige appearance (Figure 3.5). Cordierite is widely used in automotive catalytic converter technology, which of course is akin to the application of interest in this project. Cordierite offers a number of benefits to automotive applications, which are described by Lachman et al. (1992):

a) Their thermal shock resistance is low, due to a low thermal expansion coefficient.

b) Their porosity and pore size distribution is suitable for ease of washcoat application and good washcoat adherence.

c) There is sufficient refactoriness, because the melting point exceeds 1450 °C.

d) They have sufficient strength to survive in an exhaust environment.

e) They exhibit compatibility with washcoats and catalysts.

Therefore, cordierite could be equally applicable to the after treatment of biogas engines.

Figure 3.5 Photograph of bare cordierite monolith samples.
3.1.3.2 Alumina Washcoat

Although cordierite is the preferred choice of substrate, it has a relatively low surface area which in isolation renders it unsuitable as a catalyst support in the applications of interest. This issue is resolved by coating the cordierite with a porous material, known as a washcoat, which acts as an intermediate layer and provides the high surface area (100 – 200 m² g⁻¹) required for the catalyst. In some cases, the washcoat can also play a role in the reaction of interest, although this is dependent on the nature of the coating and the reaction under investigation.

In this project, gamma alumina (γ–Al₂O₃) coated monoliths supplied by a major catalyst manufacturer are used as catalyst supports. As previously mentioned the investigation of catalyst preparation, and by extension washcoat adherence to the substrate, is not of specific interest in this project. Thus by utilising provided materials, difficulties that may be experienced in catalyst preparation such as washcoat integrity and inconsistencies in different batches, can hopefully be avoided.

That being said, variations in the thickness of γ–Al₂O₃ washcoating on the supplied monoliths has previously been identified by Kolaczkowski et al. (2012) (Figure 3.6), building upon similar work by Plummer et al. (1999). To combat this, γ–Al₂O₃ monolith samples (Figure 3.8) were only prepared from areas of cross-sectional slices which appeared to have a consistent coating thickness. This was determined by visual inspection only.

A further drawback to using provided γ–Al₂O₃ coated monoliths, is that the wt% loading of the γ–Al₂O₃ on the cordierite substrate cannot be definitely determined. However, by comparing the weight of both coated and uncoated samples, provided from the same supplier, the washcoat loading may be estimated (Table 3.2). The obtained value of 29.6 wt% Al₂O₃ compares favourably with that reported by Yap (2010) of 30.65 wt%, who studied these samples in great detail.
Figure 3.6 Examples of the inconsistencies in washcoat distribution (A and B) in two cross-sectional slices of a supplied γ–Al$_2$O$_3$ monolith, reported with permission from Kolaczkowski et al. (2012).

Table 3.2 Percentage weight of cordierite and γ–Al$_2$O$_3$ washcoat in γ–Al$_2$O$_3$ coated monolith samples.

<table>
<thead>
<tr>
<th>Average Values*</th>
<th></th>
<th></th>
<th>Cordierite</th>
<th>γ–Al$_2$O$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weight of</td>
<td>Weight of</td>
<td>Cordierite</td>
<td>γ–Al$_2$O$_3$</td>
</tr>
<tr>
<td></td>
<td>Cordierite</td>
<td>γ–Al$_2$O$_3$ Coated</td>
<td>Loading (%)</td>
<td>Washcoat Loading (%)</td>
</tr>
<tr>
<td>Sample (g)</td>
<td>Sample (g)</td>
<td>(g)</td>
<td>(%)</td>
<td>(%)</td>
</tr>
<tr>
<td>0.5775 ± 0.0216</td>
<td>0.8205 ± 0.0432</td>
<td>0.2430</td>
<td>70.4</td>
<td>29.6</td>
</tr>
</tbody>
</table>

*Cordierite samples measured = 96. γ–Al$_2$O$_3$ samples measured = 96.
It should be noted that it is possible to form several different phases of alumina depending on the preparation procedure, and in particular the heat treatment it is subject to (Figure 3.7). This is described by Brinker et al. (1990) who detail the temperatures necessary to achieve phase transformation of a boehmite (γ-AlO(OH)) xerogel:

$$\text{AlOOH} \xrightarrow{300 \degree C} \gamma - \text{Al}_2\text{O}_3 \xrightarrow{850 \degree C} \delta - \text{Al}_2\text{O}_3 \xrightarrow{1100 \degree C} \theta - \text{Al}_2\text{O}_3 \xrightarrow{\geq 1200 \degree C} \alpha - \text{Al}_2\text{O}_3$$

Figure 3.7 Phase transformations of Al$_2$O$_3$ and the associated temperatures.

The supplied samples had been calcined at 650 °C for 5 hours in order to produce the desired γ-Al$_2$O$_3$ phase.

Figure 3.8 Photograph of γ-Al$_2$O$_3$ coated monolith samples.
3.1.4 Active Components

Having previously been explored for both SCR and NSR processes, the preparation of platinum catalysts in this study was with a view to comparing results to the literature and validating the experimental procedures. Silver catalysts, although they have been explored for related deNO\textsubscript{x} processes e.g. H\textsubscript{2}–assisted HC–SCR, have not been investigated in direct H\textsubscript{2}–SCR.

3.1.4.1 Pt/Al\textsubscript{2}O\textsubscript{3}

With reference to the procedure described in Klinghoffer et al. (1998), a 1 wt% aqueous platinum solution was prepared using hexachloroplatinic acid. The monoliths were submerged in the solution for a total of 10 min, during which they were turned over once. Once removed from the solution the monoliths were placed in a ceramic dish and dried for 2 h at 120 °C before they were calcined at 500 °C in static air overnight (15 h). As can be seen from Figure 3.9, the monolith samples were now a deep black in colour. Specific details of an example platinum coating procedure is provided in Appendix II–A.

![Figure 3.9](image-url)

Figure 3.9 Photograph of 0.8 wt% Pt/Al\textsubscript{2}O\textsubscript{3} coated monolith samples.
3.1.4.2 Ag/Al₂O₃

Silver was chosen as the active component due to its performance in related deNOₓ processes (e.g. H₂–assisted HC–SCR), and its history of redox chemistry, i.e. it is capable of facilitating both the reducing and oxidising reactions necessary in the NSR processes (Chapter 4).

With consultation of Doronkin et al. (2012), silver nitrate was dissolved in water in order to produce a solution of ~2 wt% silver. The monoliths were submerged in the solution for 2 h. Once removed from the solution the monoliths were placed in a ceramic dish and dried overnight (19 h) at room temperature before they were calcined at 550 °C for 4 h in static air. The monoliths were a grey colour. Specific details of an example silver coating procedure is provided in Appendix II–B.

![Photograph of 2.3 wt% Ag/Al₂O₃ coated monolith samples.](image)

Figure 3.10 Photograph of 2.3 wt% Ag/Al₂O₃ coated monolith samples.
3.2 Catalyst Characterisation

The catalysts in this study were characterised through a variety of different methods:

a) Visual observations to identify coating uniformity.

b) Weight measurements to obtain information on washcoat and active component loading.

c) N\textsubscript{2} adsorption analysis to obtain catalyst surface area and porosity information.

3.2.1 Visual Observation

As may be observed from some of the photographs in Section 3.1, the catalyst preparation procedures, although conducted with the intention of producing consistent samples, sometimes resulted in non-uniform coatings. As a result, the prepared samples subsequently selected for experimental investigations were chosen by the apparent consistent coverage of the necessary components. Note that observations were made with the naked eye and there was no microscope use.

3.2.2 Weight Measurements

Washcoat loading, as described in Section 3.1.3.2, was determined through weighing samples of uncoated and γ–Al\textsubscript{2}O\textsubscript{3} coated ceramic substrate. Active component loading was then determined by weighing the γ–Al\textsubscript{2}O\textsubscript{3} coated monolith samples prior to deposition, followed by weighing after deposition and calcination. Although his technique results in an accurate measure of the average amount of active component present on the monolith samples, it fails to address issues such as the aforementioned uniformity of the coating.

It was assumed, for the purposes of this project, that the measured weight difference represented the amount of each metal loaded upon the monolith samples. However, it should be noted that due to the preparation procedures described in Section 3.1.4, realistically the specified loadings represent an active component species and not the pure metal i.e. it is known that PtO is formed through the procedure described in Section 3.1.4.1 above, and it is responsible for producing the black colour of the monolith samples.
Finally the specified loadings (Table 3.3) are reported with respect to the entirety of the catalyst makeup i.e. the combined weight of the substrate, washcoat and any active components present.

Table 3.3
Details of prepared H₂–SCR catalyst loadings.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Average Values</th>
<th>Metal Loading (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Washcoat Loading (%)</td>
<td></td>
</tr>
<tr>
<td>γ–Al₂O₃</td>
<td>29.6</td>
<td>–</td>
</tr>
<tr>
<td>Pt/Al₂O₃</td>
<td>29.4</td>
<td>0.8</td>
</tr>
<tr>
<td>Ag/Al₂O₃</td>
<td>28.9</td>
<td>2.3</td>
</tr>
</tbody>
</table>

3.2.3 Nitrogen Adsorption

Nitrogen adsorption measurements are a typical characterisation technique used to determine the surface area and pore size of porous materials. Adsorption can be described as the enrichment of one or more of the components in the region between two bulk phases, the interfacial layer, with one phase a solid and the other a fluid. Alternatively it can be described as the accumulation or adhesion of a chemical species onto the surface of a particle. It is not to be confused with absorption, which describes the penetration of a fluid into the solid phase. Adsorption occurs as a result of the interaction between the solid surface and the molecules in the fluid phase. There are two types of adsorption:

- **Physisorption** is adsorption without chemical bonding, van der Waals interactions are responsible.

- **Chemisorption** is adsorption that involves a chemical bond, a chemisorbed molecule undergoes a reaction or dissociation and cannot normally be recovered.

A schematic representation of physisorption is presented in Figure 3.11. The adsorptive is the species in the gas state. The build–up of this species on the adsorbent surface is known as the adsorbate.
Nitrogen adsorption studies were conducted on a Quantachrome Instruments NOVA 2200e Surface Area and Pore Size Analyzer using a volumetric gas adsorption method (as opposed to a gravimetric method). Samples were degassed under vacuum at 200 °C for 1 h to remove all physisorbed species. Measurements were conducted on all samples discussed in Section 3.1, with the exception of the cordierite substrate which has been explored in previous studies and is known to demonstrate a very low surface area (<5 m² g⁻¹). Due to the resolution of the instrument it was necessary to ensure there was at least 10 m² of sample present to obtain an accurate measurement, and thus the samples were of sufficient abundance to reflect this.
3.2.3.1 Adsorption–desorption Isotherm

This type of plot depicts the amount of adsorbate on the adsorbent as a function of pressure at constant temperature (in this case the temperature is 77.3 K). The isotherm is constructed point–by–point as a known amount of gas is admitted to a vessel of known volume and containing the adsorbent. The amount of gas adsorbed by the sample is calculated from the change in pressure. There are a number of different typical shapes of adsorption plots, Figure 3.13, depending on the nature of the material under investigation.

![Adsorption-desorption Isotherm Diagram]

Figure 3.13 IUPAC classification of adsorption isotherms, type I–VI as specified by International Organization for Standardization (2008).

A typical nitrogen adsorption–desorption isotherm obtained for a γ–Al₂O₃ catalyst sample explored in this project, is displayed in Figure 3.14. The shape of the isotherm displayed in Figure 3.14 is typical of all the materials explored within this project, and with relation to the isotherm shapes presented in Figure 3.13 is a type IV isotherm (mesoporous solid) in accordance with IUPAC convention.

Hysteresis is a phenomenon which occurs when the rate of desorption differs from the rate of adsorption. Hysteresis occurred during the nitrogen adsorption–desorption measurement of all the samples investigated in this project and can be clearly seen in Figure 3.14. It may be explained by evaporation mechanisms or the pore structure of the material under investigation. The different shapes of hysteresis loops have also been classified and are presented in Figure 3.15.
Figure 3.14 Nitrogen adsorption–desorption isotherm for γ-Al₂O₃ catalyst.

Figure 3.15 Types of hysteresis loop as specified by Sing et al. (1985).
3.2.3.2 Brunauer–Emmett–Teller (BET) Surface Area

Brunauer et al. (1938) reported a method for calculating the specific surface area of a porous solid by measuring the amount of physically adsorbed gas. Now known as the BET method, this approach has been widely adopted as a standard approach (International Organization for Standardization (2008)), and facilitates the direct comparison of porous materials, although is only applicable to those materials which demonstrate type II or type IV adsorption isotherms (Figure 3.13).

From the measurements the volume of gas adsorbed, V_a in cm3 g$^{-1}$, is calculated and plotted against the respective relative pressure, P/P_0, to give the adsorption isotherm (Figure 3.14). For the BET diagram, the volume of gas adsorbed, V_a in cm3 g$^{-1}$, is plotted against $1/[V_a((P_0/P) - 1)]$ within the relative pressure range 0.05 to 0.3 (this range is depicted by the shaded areas in the type II and type IV isotherms displayed in Figure 3.13). The graph should take the form $y = a + bx$ and the intercept, a, should be positive.

![BET plot for γ–Al$_2$O$_3$ catalyst.](image)

Figure 3.16 BET plot for γ–Al$_2$O$_3$ catalyst.
From this graph the monolayer capacity, \(n_m \), the amount of adsorbate needed to occupy all sites of adsorption, can be calculated (and this point is also identified on Figure 3.14):

\[
n_m = \frac{1}{a + b}
\]

(3.1)

as can the BET parameter, \(C \), which gives an indication of the strength of the adsorbent–adsorbate interaction although it cannot be used to calculate the adsorption enthalpy quantitatively:

\[
C = \frac{b}{a} + 1
\]

(3.2)

The specific surface area, \(a_s \), can then be calculated from the monolayer capacity by considering the average area occupied by an individual molecule in the complete monolayer:

\[
a_s = n_m a_m L
\]

(3.3)

where \(a_m = 0.162 \ \text{nm}^2 \), the molecular cross sectional area of \(\text{N}_2 \) at 77.3 K and \(L \) is Avogadros constant = \(6.022 \times 10^{23} \ \text{mol}^{-1} \). Equation 3.3 now becomes:

\[
a_s = 9.76 \times 10^4 n_m
\]

(3.4)

\(a_s \) has units of \(\text{m}^2 \ \text{g}^{-1} \). The measured surface areas of the \(\text{H}_2\text{–SCR} \) catalysts explored in this study are presented in Table 3.4.

As previously shown; the cordierite substrate demonstrates a very low surface area although accounts for most of the mass of the catalyst systems (>70 %). As such, it is possible to calculate for the apparent \(\gamma\text{–Al}_2\text{O}_3 \) component surface area by assuming that there is no surface area contribution from the cordierite and recalculating for the mass of the \(\gamma\text{–Al}_2\text{O}_3 \) component only. The results of these recalculations are also presented in Table 3.4.
3.2.3.3 Barrett–Joyner–Halenda (BJH) Porosity

The BJH method, developed by Barrett et al. (1951), is one of the most popular models for calculating pore size distribution and assumes the pores are cylindrical in shape.

\[
\text{BJH adsorption average pore diameter} = \frac{4 \times \text{BJH cumulative pore volume}}{\text{BJH cumulative pore area}}
\]

(3.5)

Although detailed description of the calculations is not appropriate here, the results of the BJH adsorption analysis for the H₂–SCR catalysts are presented in Table 3.4.
3.2.3.4 Summary

A summary of the N\textsubscript{2} adsorption analysis conducted on the H\textsubscript{2}–SCR catalysts is presented in Table 3.4. From the obtained N\textsubscript{2} isotherms, the following observations can be made:

- All of the catalysts investigated demonstrate a Type IV isotherm according to IUPAC convention.

- In addition, all of the catalysts demonstrated a hybrid of Type H1 and H3 hysteresis.
 - Not pure H1 as the adsorption does not plateau at high P/P\textsubscript{0}.
 - Not pure H3 as the hysteresis loop does not close with a distinct step.

- The presence of macropores is identified due to the lack of a plateau when P/P\textsubscript{0} approaches 1. It is assumed these are attributable to the cordierite substrate.

- Given that there is some estimation of the coating mass and assumption of no cordierite contribution within the surface area calculation; the measured attributable γ–Al\textsubscript{2}O\textsubscript{3} BET surface area agrees well with the typical surface area for γ–Al\textsubscript{2}O\textsubscript{3} of 100 – 200 m2 g-1 as reported by Hayes et al. (1997).

- The reduction in catalyst surface area as components are loaded on the γ–Al\textsubscript{2}O\textsubscript{3} washcoat may be explained by “partial plugging of supports by loading of other components”, as reported by Kobayashi et al. (2006). This may also explain the observed increase in average pore diameter, as the smallest pores would be ‘plugged’ first.

<table>
<thead>
<tr>
<th>Table 3.4</th>
<th>Calculated BET surface area and BJH average pore diameter of H\textsubscript{2}–SCR catalyst samples.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalyst</td>
<td>Mass of Sample (g)</td>
</tr>
<tr>
<td>γ–Al\textsubscript{2}O\textsubscript{3}</td>
<td>0.4319</td>
</tr>
<tr>
<td>Pt/Al\textsubscript{2}O\textsubscript{3}</td>
<td>0.2991</td>
</tr>
<tr>
<td>Ag/Al\textsubscript{2}O\textsubscript{3}</td>
<td>0.4900</td>
</tr>
</tbody>
</table>
3.3 Design & Commissioning of the Continuous Flow Fixed Bed Reactor

In order to draw accurate conclusions it is important that each material, as far as possible, is subject to the same experimental conditions, thus allowing for fair comparisons. The ultimate purpose of the research should also be considered throughout, and the experimental conditions should somewhat resemble those expected in the end application. Throughout the planning and subsequent execution of the described experiments it is imperative to acknowledge why that particular experiment is being carried out and what is expected to be learnt from it.

3.3.1 Experimental Set–up

A schematic and photograph of the overall experimental set–up are shown in Figure 3.17(A) and Figure 3.17(B) respectively. Throughout design, development and commission of the apparatus slight adjustments were made, for various reasons, resulting in several iterations and configurations. However, within this thesis the rig is presented in its final form. The reaction gases were supplied from BOC, Bristol, UK and consisted of:

- 8102 ppm H₂ in N₂
- 4025 ppm NO (Total NOₓ = 4050 ppm) in N₂
- Air
- ‘Zero’ N₂

‘Zero’ refers to the purity of the gases which in this instance is 99.998 % and thus there is a total impurity concentration of 20 ppm. The H₂ and NO mixtures were supplied with an accuracy of ±5 % with respect to the certified values. The reactant gases were supplied, through flexible stainless steel hoses, to variable area flowmeters (Figure 3.18(A)) where the flow rate to the catalysts could be varied e.g. 30 to 300 cm³ min⁻¹. The flowmeters were supplied by MPB Industries Ltd, Peckham, UK with customised ranges for the reaction gases operating under experimental conditions (inlet pressure: 1 bar, outlet pressure: atmospheric). The flowmeters are from the MPB ‘1200 Long’ series and the have a flow tube length of 295 mm. Their specified operating ranges are shown in Table 3.5.
Table 3.5 Specified flow ranges for flowmeters and their relevant reaction gases.

<table>
<thead>
<tr>
<th>Reaction Gas</th>
<th>Flow range (cm³ min⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8000 ppm H₂/N₂</td>
<td>30 – 300</td>
</tr>
<tr>
<td>4000 ppm NO/N₂</td>
<td>30 – 300</td>
</tr>
<tr>
<td>Air</td>
<td>55 – 500</td>
</tr>
<tr>
<td>N₂</td>
<td>33 – 330</td>
</tr>
</tbody>
</table>

However, due to varying operating conditions it was necessary to calibrate the flow meters in–house. This involved using a ‘soap bubble meter’ of known volume, with varying volume indication levels, charged with a small amount of soap solution. The gas was then supplied to the bottom of the bubble meter, at a certain set point on the flow meter to be calibrated, and soap bubbles formed. These bubbles then travelled up the bubble meter and the time taken for them to pass between two marked points of known volume (1, 9 or 90 cm³ dependent on the flowmeter set point) recorded. From this data, the flow rate of the gas at that particular set point could be calculated. This method was then repeated for a number of different set points and the obtained data was plotted. A line of best fit was applied to the plotted data and this relationship provided a flow rate for every set point on the rotameter. This process was repeated for each gas and flowmeter set, including reaction and calibration gases.

The gases were then fed, through ¼” (6.35 mm) stainless steel tubing, to a series of valves which could be adjusted in order to provide the desired mixture to the reactor. The inclusion of a solenoid valve (Figure 3.18(B)) enabled instantaneous switching between two reactant streams; a necessary technique for investigating the NSR process as will be discussed in Chapter 4.
The catalysts were encased in a cylindrical stainless steel reactor of length 100 mm and inner diameter of 15 mm (Figure 3.18(C)). The catalyst pieces were maintained in position using quartz wool wrapped around the outside of the monoliths, which prevented gas flow down the sides of the samples and directed it through the channels. The reactor was housed in the centre of a Carbolite (Hope, UK) VST 12/600 electric furnace (Figure 3.18(D)) fitted with a 3216P1 temperature controller. The furnace had a heated length of 600 mm and a maximum temperature of 1200 °C, however, given that the maximum explored operating temperature was 700 °C the power output was restricted to 40 % in order to provide greater control at lower temperatures. The configuration of the furnace was such that it was hinged; allowing it to be opened up, affording easy access to the reactor within, without requiring the reactor, reactor inlet and exhaust to be detached and removed each time a sample needed to be changed.

The reactor was connected to stainless steel tubes which act as an inlet and outlet for the gases and two K–type thermocouples were positioned both 5 mm before and 5 mm after the catalyst within. The K–type thermocouples, along with a third placed within the furnace although outside the reactor, were connected to a data logger and real time temperature measurements stored on a dedicated data acquisition PC. A measured change in temperature over the catalyst bed may indicate a reaction is occurring although the extent of the change will be determined by many factors including: the particular reaction or the flow rate and composition of the gases. It was also necessary to calibrate the thermocouples utilised within the reactor, this was achieved through use of an Isotech Jupiter 650S thermocouple calibration block. By comparing the set furnace temperature to that measured by the thermocouples, a linear relationship can be established and any variation accounted for during programming of the data acquisition software.
Figure 3.17 Experimental set–up constructed and utilised within this study: (A) – Schematic, (B) – Photograph.
Figure 3.18 Photographs of (A) flowmeters, (B) solenoid valve, (C) reactors and (D) furnace used in the experimental set-up.
The outlet from the reactor was directed to the analysis equipment, a Hiden Analytical HPR–20 Quadrupole Mass Spectrometer (Figure 3.19). Using Hiden’s MASsoft software, the activity and selectivity of the catalysts was recorded. In addition, the mass spectrometer operates through a sampling line and thus is not necessarily restricted by reaction flow rates, although if the flow rate is too great it may be difficult to identify subtle changes in the system.

Figure 3.19 Photograph of Hiden HPR–20 gas analysis system.

Full details of QMS calibration are described in Appendix I, although the main aspects of the approach will be summarised here:

a) Development of an experimental set-up which enabled delivery of the necessary gas species, and combination of gas species, to the QMS.

b) Optimisation of the QMS operating parameters to enable separation of overlapping species fragment patterns. Adjusted operating parameters included: vacuum pressure, electron energy, electron emission and SEM Detector voltage.

c) Refinement of the analysis method to improve accuracy in measurements by encompassing: background levels, pattern fragmentation and relative sensitivity values.
3.3.2 Flow Rate Considerations

When designing the experiments it was important to consider the flow rates with respect to the end application.

a) Based on data on exhaust treatment in Bennett (1990), the following was obtained and analysed:
Estimate of application exhaust flow rate: 900 dm3 min$^{-1}$.

Diameter of autocatalyst exhaust: $\varnothing = 10$ cm.

Cross sectional area of autocatalyst exhaust = $\pi r^2 = \pi (10/2)^2 = 78.54$ cm2

Diameter of reactor utilised in the preliminary deNO$_x$ study: $\varnothing = 1.5$ cm.

Cross sectional area of preliminary study reactor = $\pi r^2 = \pi (1.5/2)^2 = 1.77$ cm2

$\text{Area}_{\text{Bennett}} / \text{area}_{\text{Prelim}} = 78.54 / 1.77 = 44.37$

Thus to scale down the gas flow from 900 dm3 min$^{-1}$ to a reactor of diameter, $\varnothing = 1.5$ cm: $900 / 44.37 = 20.28$ dm3 min$^{-1} = 1216.8$ dm3 h$^{-1}$

b) Next consideration was then given to the experimental conditions chosen by those known for their experimental laboratory scale work in the field of deNO$_x$ (Castoldi et al. (2010)):

Reported reactor diameter, $\varnothing = 0.7$ cm

Cross sectional area of reactor = $\pi r^2 = \pi (0.7/2)^2 = 0.38$ cm2

Reported reactant mixture flow rate: 6 dm3 h$^{-1}$ = 0.1 dm3 min$^{-1}$.

$\text{Area}_{\text{Prelim}} / \text{area}_{\text{Castoldi}} = 1.77 / 0.38 = 4.66$

Scaling up the flow rates to a reactor diameter, $\varnothing = 1.5$ cm,

6 dm3 h$^{-1} \times 4.66 = 27.96$ dm3 h$^{-1}$
Although the gas flow rate in (a) is very much greater than in (b), it was decided to adopt the lower flow as the time-scale(s) of the transient response would be less prone to measurement errors. Thus, the preliminary experimental procedure (with a total flow rate of 28.20 dm3 h$^{-1}$ or 0.48 dm3 min$^{-1}$) was in the correct range and should be maintained.

3.3.3 Presentation of Results

Depending on the type of experiment undertaken, different measures of success will be employed. Beyond merely stating absolute values, these measures may include:

- Conversion of all reactants; NO, H$_2$ and O$_2$, and
- conversion of NO to both desired products and unwanted by-products.

NO conversion will be calculated as follows:

$$X_{NO} = 1 - \frac{C_{NO}^{Outlet}}{C_{NO}^{Inlet}}$$ \hspace{1cm} (3.6)

Where X_i denotes total conversion of species i and C_{i}^{Inlet} and C_{i}^{Outlet} are the concentrations of NO at the inlet and outlet of the reactor respectively. In a similar manner, H$_2$ conversion and O$_2$ conversion will be calculated as such:

$$X_{H_2} = 1 - \frac{C_{H_2}^{Outlet}}{C_{H_2}^{Inlet}}$$ \hspace{1cm} (3.7)

$$X_{O_2} = 1 - \frac{C_{O_2}^{Outlet}}{C_{O_2}^{Inlet}}$$ \hspace{1cm} (3.8)

NO conversion to NH$_3$, N$_2$O and NO$_2$ were calculated correspondingly:

$$X_{NO\rightarrow NH_3} = \frac{C_{NH_3}^{Outlet}}{C_{NH_3}^{Inlet}}$$ \hspace{1cm} (3.9)

$$X_{NO\rightarrow N_2O} = \frac{2 \times C_{N_2O}^{Outlet}}{C_{NO}^{Outlet}}$$ \hspace{1cm} (3.10)

$$X_{NO\rightarrow NO_2} = \frac{C_{NO_2}^{Outlet}}{C_{NO}^{Outlet}}$$ \hspace{1cm} (3.11)
Note that the previous conversions take into account the stoichiometries of the expected reactions (Equation 2.15 – 2.19).

As all reactions are carried out with N\(_2\) as the carrier gas and thus with N\(_2\) in great excess (>94%), it is difficult to measure the subtle concentration changes which result from NO reduction (and subsequent N\(_2\) formation). Additionally, formation of H\(_2\)O through the oxidation of H\(_2\) and O\(_2\) means it is also difficult to attribute H\(_2\)O formation to NO reduction. However, by considering the formation of the other N–species it is possible to calculate an apparent N\(_2\) formation which allows the complete NO conversion to be realised. As such, it is important to consider the potential reactions discussed by Liu et al. (2012) and presented in Chapter 2 (Section 2.4.3.1), in terms of the stoichiometry of the NO reactant and N–species formation:

\[
\begin{align*}
2\text{NO} + 4\text{H}_2 + \text{O}_2 &\rightarrow \text{N}_2 + 4\text{H}_2\text{O} \quad (2.15) \\
2\text{NO} + 3\text{H}_2 + \text{O}_2 &\rightarrow \text{N}_2\text{O} + 3\text{H}_2\text{O} \quad (2.16) \\
2\text{NO} + \text{H}_2 &\rightarrow \text{N}_2\text{O} + \text{H}_2\text{O} \quad (2.17) \\
\text{NO} + \frac{5}{2}\text{H}_2 &\rightarrow \text{NH}_3 + \text{H}_2\text{O} \quad (2.18) \\
\text{NO} + \frac{1}{2}\text{O}_2 &\rightarrow \text{NO}_2 \quad (2.19)
\end{align*}
\]

Taking into account the stoichiometries displayed in Reactions 2.15–2.19, the apparent N\(_2\) formation and thus, conversion of NO to N\(_2\), may be calculated as follows:

\[
C_{\text{N}_2}\text{Outlet} = C_{\text{NO}}\text{Inlet} - C_{\text{NO}}\text{Outlet} - C_{\text{NH}_3}\text{Outlet} - C_{\text{NO}_2}\text{Outlet} - 2 \times C_{\text{N}_2\text{O}}\text{Outlet} \quad (3.12)
\]

\[
X_{\text{NO}\rightarrow\text{N}_2} = \frac{C_{\text{N}_2}\text{Outlet}}{C_{\text{NO}}\text{Inlet}} \quad (3.13)
\]
3.4 **H₂–SCR: A Preliminary Set of Experiments**

In this section experiments are performed over selected initial parameters, in order to fully explore the different processes and identify potential limitations and exploitations. Utilising the equipment previously described in Section 3.3.1 the experiments generally consisted of the catalysts being heated at a set ramp rate, to defined intervals where the temperature would be held constant and the desired gas mixture being supplied, up to a maximum temperature. The samples were subject to a number of different sequences, depending on the type of investigation being undertaken e.g. SCR or TPD. Details of the different reaction sequences are provided before the results of each individual experiment.

Due to the nature of the equipment and the measurements, it was not practical to be able to supply a completely consistent reaction mixture to every catalyst and thus although the reaction mixture compositions are specified, this is generally for comparison purposes and in actuality there is an element of deviation from the quoted values depending on the experiment. This also holds true for specified temperatures, however, the measured values will be presented in plots and tables without adjustment. Indeed the raw measurements presented here subsequently influenced further calibration of the QMS as described in Appendix I. As such, the parameters described in Appendix I do not necessary correlate to those utilised to obtain measurements presented in this section. Individually presented data points were calculated by averaging the measured raw signal from the mass spectrometer over a period of 5 minutes (typically ∼15 – 20 data points) unless stated, after the system had equilibrated at constant temperature. The data points are connected to give an indication of trends and the connections do not represent recorded data. Where appropriate, arrows are utilised to highlight inlet conditions and identify which species concentration corresponds to which axis.

Finally, these results are not considered absolute and a detailed breakdown and analysis of final results will be presented in Section 3.5. The purpose of these initial experiments was to identify any shortcomings and allow optimisation of the experimental procedure, as well as gain an indication of catalyst performance (which allowed for greater accuracy in QMS calibration). As a result there are subtle differences between the described procedures for experimentation and analysis and these are highlighted throughout the description of the results.
3.4.1 Aims and Objectives

SCR experiments will investigate the ability of the catalyst materials to reduce NO using H₂ (in the presence or absence of O₂) and report the results in terms of conversion of reactants and selectivity to desired and undesired products. The performance of the catalyst materials will initially be investigated only at temperatures up to 250 °C.

3.4.2 Predicted Outcomes

It is expected that the deNOₓ activity will generally improve as temperature is increased, although there may be little improvement (or indeed a drop in performance) above a particular temperature, and that selectivity to different products may also vary with temperature. It is known that with some materials the reaction between H₂ and O₂ to form H₂O is favourable and thus it is expected that deNOₓ activity in the absence of O₂ will be greater than in the presence of O₂. However, it may be that there is some optimum level of O₂ or indeed a certain tolerance within the system up to a particular O₂ concentration, although this will not be explored here.

3.4.3 Pt/Al₂O₃

The Pt/Al₂O₃ catalyst was studied as an example of a ‘typical’ or ‘standard’ H₂–SCR catalyst and to confirm the SCR experimental approach. The catalysts were prepared in–house by impregnating supplied alumina coated monoliths, with an aqueous platinum solution, full details can be found in Section 3.1.4.1. The catalysts had an average platinum loading of 0.8 wt% and an average γ–Al₂O₃ loading of 29.4 wt% with respect to the complete catalyst system.
3.4.3.1 Absence of O$_2$

The first studies investigated that the Pt/Al$_2$O$_3$ catalyst was capable of facilitating the H$_2$ deNO$_x$ reaction and thus aimed to react H$_2$ and NO directly, in the absence of O$_2$. The following overall reaction is desired:

$$2\text{NO} + 2\text{H}_2 \rightarrow \text{N}_2 + 2\text{H}_2\text{O}$$ (3.14)

However, as explained in Chapter 2, Section 2.4.3.1, undesired side reactions may also occur:

$$2\text{NO} + \text{H}_2 \rightarrow \text{N}_2\text{O} + \text{H}_2\text{O}$$ (2.17)

$$\text{NO} + \frac{5}{2}\text{H}_2 \rightarrow \text{NH}_3 + \text{H}_2\text{O}$$ (2.18)

The reactor was loaded with three Pt/Al$_2$O$_3$ monolith pieces. First the Pt species on the catalyst were reduced to form the active metal species; the samples were heated to 350 °C at a rate of 10 °C min$^{-1}$ and subject to 8000 ppm H$_2$ in N$_2$ at a flow rate of 300 cm3 min$^{-1}$ for 1 h before the reactor was then cooled to 100 °C.

During cooling the gas flow was directed through the reactor bypass and a gas composition consisting of 500 ppm NO and 2000 ppm H$_2$ with a N$_2$ balance and a total flow rate of \sim440 cm3 min$^{-1}$ (26.50 dm3 h$^{-1}$) was set (Table 3.6). In this instance the desired gas composition was set using the QMS and thus only an approximate total flow rate is provided.

Table 3.6 Approximate gas mixture flow rates and ultimate inlet composition utilised during preliminary H$_2$–SCR investigations in the absence of O$_2$ over 0.8 wt% Pt/Al$_2$O$_3$.

<table>
<thead>
<tr>
<th>Gas Mixture</th>
<th>Flow Rate (dm3 h$^{-1}$)</th>
<th>Flow Rate (cm3 min$^{-1}$)</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000 ppm NO/N$_2$</td>
<td>3.29</td>
<td>55</td>
<td>500 ppm NO</td>
</tr>
<tr>
<td>8000 ppm H$_2$/N$_2$</td>
<td>6.54</td>
<td>109</td>
<td>2000 ppm H$_2$</td>
</tr>
<tr>
<td>N$_2$</td>
<td>16.67</td>
<td>278</td>
<td>balance N$_2$</td>
</tr>
<tr>
<td>Total</td>
<td>26.50</td>
<td>442</td>
<td></td>
</tr>
</tbody>
</table>
Once the desired reactor temperature had been reached and was stabilised, the gas flow was directed through the reactor for 30 min whilst the temperature remained constant, before it was returned to the bypass. This process was repeated for each temperature (up to 250 °C at 50 °C intervals) and enabled the inlet and outlet of the reactor to be consecutively measured in order to identify any drift in the inlet composition which may occur from the rotameters. This in theory can enable slight changes to be made in the flow rates to produce somewhat constant inlet conditions between different temperatures, however this was not performed in this instance and the set flow rates were not altered throughout the experiment. This produced an initial data set as is shown in Figure 3.20, which is provided for discussion.

Figure 3.20 Example of typical plot from Pt/Al₂O₃ H₂–SCR study with no O₂ in the reactant mixture.
The plot presents a number of issues:

- From a technical perspective the manual switch between the reactor and the bypass generally works very well, enabling an almost instantaneous transfer between the two. Although the flow rates were not adjusted in this instance, the ability to measure and adjust the reactor inlet conditions is invaluable.

- As can be clearly seen; there is a drop in NO concentration over the period of measurement, which is accompanied by a very slight increase in the H₂ concentration. This may demonstrate some instability in the rotameters; however this can be countered by adjusting the flow rates. In any case the concentration change is not great over each measurement period and should not contribute a significant error to the results.

- Due to the furnace operation, small temperature fluctuations within the reactor can be seen.

- It is obvious that the NO concentration falls significantly below zero (up to –340 ppm) during the reaction. This can be accounted for by the calibration of the MS, which incorporated every single possible reaction species, desired products and by-products. As there is no O₂ in this particular reaction mixture, and the contribution of O₂ at 30 amu has been allowed for, there is an error in the NO reading. This highlights the potential need to produce different calibration methods for both different reaction inlet and possible outlet conditions, and this will be pursued further.

- In terms of the deNOₓ reaction; a rise in both NO and H₂ levels can be seen immediately after switching to the reactor before equilibrium is reached.

The performance of the catalyst can now be considered, by comparing the concentration of different species at the different temperatures. The readings from the last five minutes of the 30 min period in which the reactants were supplied to the catalysts were averaged to provide the data points shown in Figure 3.20. A summary of the data is also provided in Table 3.7.
Figure 3.21 H₂–SCR, in the absence of oxygen, over 0.8 wt% Pt/Al₂O₃. Reaction conditions: 500 ppm NO, 2000 ppm H₂, balance N₂.

Table 3.7 Summary of absolute measured species abundance for H₂–SCR, in the absence of oxygen, over 0.8 wt% Pt/Al₂O₃.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Measured Outlet Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ppm</td>
</tr>
<tr>
<td></td>
<td>NO</td>
</tr>
<tr>
<td>21.6</td>
<td>512</td>
</tr>
<tr>
<td>100.5</td>
<td>0</td>
</tr>
<tr>
<td>155.0</td>
<td>0</td>
</tr>
<tr>
<td>203.8</td>
<td>0</td>
</tr>
<tr>
<td>254.4</td>
<td>0</td>
</tr>
</tbody>
</table>

*Background level of H₂O measured
It should be noted that, as already alluded to, due to the operation of some items of equipment the exact composition of the reaction mixture supplied to the catalyst will differ at different temperatures. Nevertheless, the obtained data can give a strong indication of the performance of the catalyst if not comparable absolute values. As can be seen from the plot, at temperatures as low as 100 °C the NO is completely converted. There is also significant conversion of H₂; 70 % at 100 °C increasing to over 90 % at 200 °C and 250 °C. In the absence of O₂ it is clear that Pt/Al₂O₃ promotes a H₂ deNOₓ reaction.

However, there are other points to note: there is a significant level of H₂O present in both the reaction and product mixtures. The reaction gas cylinders contain a certain amount of H₂O and the product values quoted here have been normalised to try and represent the amount of H₂O which has been produced from the reaction only i.e. the ‘background’ H₂O reading has been subtracted from the measured values. However, as can been seen from Figure 3.20 there is still an extra 500+ ppm H₂O in the system, above the theoretical H₂O level, although the origin of this additional H₂O is not clear. Furthermore, the method through which the QMS is calibrated for the reaction mixture only accounts for a significant level of H₂O (in excess of 0.6 %) and thus may be overly sensitive at lower levels of H₂O, leading to inaccurate results. That over 90 % of the H₂ is converted is also surprising given that it is in great excess, with comparison to the NO, and in the absence of O₂ there should be no other species for it to react with.

There is also some demonstration of selectivity in the deNOₓ reaction: undesired by-products N₂O and NH₃ are produced in varying concentrations over a range of temperatures. A very small concentration, only 13 ppm, of N₂O is found at 100 °C whilst there is almost no formation at temperatures above that. The abundance of NH₃ increases significantly to 296 ppm at 150 °C and up to 356 ppm at 250 °C. Again this value of NH₃ identifies a shortcoming in the calibration procedure, as the measured levels are greater than the value at which the method was developed (100 – 150 ppm) and so perhaps at these greater values the measurements are not as accurate. Thus the need for a more robust method, enabling measurement of different species over wide concentration ranges, or indeed different methods for different reaction conditions, is again highlighted.
By directly comparing the data obtained during reaction over the catalyst at different temperatures, trends can be identified. In Figures 3.22(A)–(D) the raw data has been plotted which, as previously discussed, may not provide accurate absolute values but gives an indication of any patterns. What is immediately clear is that there is a period of stabilisation immediately after introducing the gas mixture to the catalyst where both NO and H₂ levels are initially constant. However, after a 5 – 15 min period, depending on the reaction temperature, the levels of these species gradually increase and stabilise at a slightly higher concentration. Additionally, the difference in the initial and final stable concentrations decreases with increasing temperature. Given that during the desired deNOₓ reaction H₂O would be formed, it may be reasonably expected that the H₂O levels should decrease when the H₂ and NO levels increase. Indeed there is some indication of this pattern at temperatures above 100 °C but due to the difficulties in accurately measuring the H₂O it is not possible to definitely confirm.

Furthermore, when NH₃ begins to be formed its abundance follows the same trend as both the NO and H₂ abundance although not in the same time frame; after 10 – 12 min under reaction conditions NH₃ levels increase to a higher stable concentration. This is surprising as it is thought that an increase in NH₃ would be accompanied by a decrease in H₂ and NO as it may be formed either through Reaction 2.18 displayed previously, or Reaction 3.15, the hydrogenation of adsorbed nitrogen (formed from dissociated NO) as discussed by Li et al. (2012):

\[3H_{ads} + N_{ads} \rightarrow NH_3 \]

(3.15)

On closer inspection it also appears that the H₂O and NH₃ abundances are linked: the H₂O concentration drops as the NH₃ concentration increases. Due to the method of measurement, where both species are responsible for contributing to QMS peaks at 17 and 18 amu, it may be that there is still overlap in the results and further development of the method is required to enable complete separation of the peaks.

It should also be noted that there was no NO₂ detected at any point during the experiment, which given the lack of O₂ present in the reaction mixture, is not surprising.
Figures 3.22(A)–(D) Plots of species abundance during H₂ SCR, in the absence of O₂, over 0.8 wt% Pt/Al₂O₃ at different temperatures (A – 100 °C, B – 150 °C, C – 200 °C and D – 250 °C). Key: O₂ – black, H₂O – blue, H₂ – red, NO – green, NH₃ – purple and N₂O – brown.
Further information may be learned from the temperature measurements at the reactor inlet and outlet, Figure 3.23. However, although care was taken to position the thermocouples as close to the catalysts as possible, and from the QMS measurements it appears a reaction is occurring, there is no measured increase in temperature over the length of the reactor. In fact it appears that there is a slight decrease during the periods of reaction, indeed this may account for the apparent change in stabilised concentrations witnessed in Figures 3.22(A)–(D). It may be that the experimental set–up is not capable of measuring such subtle changes in temperature across the catalyst bed although improving the resolution of temperature measurements may be explored.

![Figure 3.23 Reactor inlet and outlet temperatures over the course of H2–SCR, in the absence of oxygen, over 0.8 wt% Pt/Al2O3.](image)

Further issues which also need to be considered are the huge initial H2O peaks which occur when the gas flow is switched back to the reactor, an indication of which can be gleaned from Figures 3.22(A)–(D). A similar phenomenon occurs with both NO and NH3 peaks although in these instances the peaks are negative.
3.4.3.2 Presence of O$_2$

The experiment was repeated in the presence of O$_2$ to provide more realistic conditions with respect to the end application. As a reminder, as explained in Chapter 2, Section 2.4.3.1, in the presence of O$_2$ the following reactions are now expected:

\[
\begin{align*}
2\text{NO} + 4\text{H}_2 + \text{O}_2 & \rightarrow \text{N}_2 + 4\text{H}_2\text{O} \quad (2.15) \\
2\text{NO} + 3\text{H}_2 + \text{O}_2 & \rightarrow \text{N}_2\text{O} + 3\text{H}_2\text{O} \quad (2.16) \\
2\text{NO} + \text{H}_2 & \rightarrow \text{N}_2\text{O} + \text{H}_2\text{O} \quad (2.17) \\
\text{NO} + \frac{5}{2}\text{H}_2 & \rightarrow \text{NH}_3 + \text{H}_2\text{O} \quad (2.18) \\
\text{NO} + \frac{1}{2}\text{O}_2 & \rightarrow \text{NO}_2 \quad (2.19) \\
\text{H}_2 + \frac{1}{2}\text{O}_2 & \rightarrow \text{H}_2\text{O} \quad (2.20)
\end{align*}
\]

In this instance there was no pre-treatment of the catalyst. The catalysts were heated at a rate of 2 °C min$^{-1}$ to 50 °C and subject to a 1 h dwell. The catalysts were then heated at a rate of 5 °C min$^{-1}$ up to 250 °C with a 1 h dwell at each 50 °C interval.

A gas composition consisting of 500 ppm NO, 2000 ppm H$_2$ and 5 % O$_2$ with a N$_2$ balance and a total flow rate of ~440 cm3 min$^{-1}$ (26.50 dm3 h$^{-1}$) was set (Table 3.8). In this instance the flow rates were adjusted between each reaction, if required, in order to obtain more consistent inlet conditions between each temperature (Table 3.9). In general the inlet conditions were very close to the desired values; the greatest recorded variation being within 2.6 % of the specified concentration, this level of error is acceptable and this procedure should be adopted for future experiments.
Table 3.8 Approximate gas mixture flow rates and ultimate inlet composition utilised during preliminary H₂–SCR investigations over 0.8 wt% Pt/Al₂O₃.

<table>
<thead>
<tr>
<th>Gas Mixture</th>
<th>Flow Rate (dm³ h⁻¹)</th>
<th>Flow Rate (cm³ min⁻¹)</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000 ppm NO/N₂</td>
<td>3.29</td>
<td>55</td>
<td>500 ppm NO</td>
</tr>
<tr>
<td>8000 ppm H₂/N₂</td>
<td>6.54</td>
<td>109</td>
<td>2000 ppm H₂</td>
</tr>
<tr>
<td>Air</td>
<td>6.31</td>
<td>105</td>
<td>5.0 % O₂</td>
</tr>
<tr>
<td>N₂</td>
<td>10.36</td>
<td>173</td>
<td>balance N₂</td>
</tr>
<tr>
<td>Total</td>
<td>26.5</td>
<td>442</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.9 Summary table of inlet conditions for deNOₓ reaction over 0.8 wt% Pt/Al₂O₃ at different temperatures.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>NO (ppm)</th>
<th>H₂ (ppm)</th>
<th>O₂ (%)</th>
<th>N₂ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>53.0</td>
<td>489</td>
<td>2027</td>
<td>4.93</td>
<td>94.54</td>
</tr>
<tr>
<td>97.7</td>
<td>487</td>
<td>2023</td>
<td>4.97</td>
<td>94.54</td>
</tr>
<tr>
<td>147.5</td>
<td>512</td>
<td>2000</td>
<td>5.00</td>
<td>94.53</td>
</tr>
<tr>
<td>202.4</td>
<td>499</td>
<td>1992</td>
<td>4.98</td>
<td>94.56</td>
</tr>
<tr>
<td>253.6</td>
<td>498</td>
<td>1976</td>
<td>4.99</td>
<td>94.57</td>
</tr>
</tbody>
</table>
As can be seen from Figure 3.24(A), Figure 3.24(B) and Figure 3.25 the Pt/Al₂O₃ catalyst successfully promotes the H₂ deNOₓ reaction in the presence of O₂, with comparable performance to the previous experiment.

At a temperature of 50 °C, both NO and H₂ are almost completely converted, with 98 % and 95 % conversion respectively. There is also some conversion of O₂; 2.3 % at 50 °C, which given the concentration of O₂ in the reaction mixture, is a significant amount. However, at higher temperatures different trends for each species are observed; whilst H₂ reaches a maximum conversion of 97 % at 100 °C it maintains this level of conversion throughout the higher temperatures. In contrast, the NO conversion drops to a minimum of 27 % at 150 °C before recovering to a conversion of 63 % at 250 °C. The O₂ conversion also follows a different trend, although it is perhaps difficult to see due to presentation of the data; there is a general increase in conversion with temperature, although with a small drop from 100 °C to 150 °C, before a maximum conversion of 2.8 % is reached at 250 °C.

There also appears to be some obvious temperature selectivity of the reaction. At 50 °C the majority of the NO has been reacted with H₂ to form N₂ and H₂O, although there is also a small amount, ~60 ppm, of N₂O formed (Figure 3.24(B)), most likely from the reaction of NO and O₂. The excess H₂ is likely reacted with O₂ to form more H₂O. When the temperature is increased to 100 °C, although a decrease in NO conversion, and subsequently a decrease in N₂O formation (to ~30 ppm), is detected, there is more reaction between H₂ and O₂ and the H₂O level increases (remaining constant as the temperature is increased further). At 150 °C a further decrease in NO conversion and some formation of NO₂ (~195 ppm), from reaction of NO and O₂, is observed. The formation of NO₂ increases at higher temperatures, accompanied by an increase in conversion of both NO and O₂. The maximum measured value of NO₂ is in excess of 1300 ppm which, given the inlet concentration of NO should only be 500 ppm, does not appear accurate. Much like the NH₃ reading in the previous experiment, the calibration method allowed for much lower (trace) concentrations of NO₂ and thus the higher levels which appear to have been formed here are exaggerated. Additionally there was no NH₃ detected throughout this reaction.

To summarise it appears that the most suitable temperature for H₂ deNOₓ with Pt/Al₂O₃ is 50 °C, although this is not ideal as there is a significant level of N₂O formed, which in itself is a potent greenhouse gas. Generally, as temperature continues to increase; first NO conversion drops and then NO₂ formation dramatically rises.

3-42
Figure 3.24(A) H₂–SCR (main species) over 0.8 wt% Pt/Al₂O₃. Reaction conditions: 500 ppm NO, 2000 ppm H₂, 5 % O₂, balance N₂.

Figure 3.24(B) H₂–SCR (trace species) over 0.8 wt% Pt/Al₂O₃. Reaction conditions: 500 ppm NO, 2000 ppm H₂, 5 % O₂, balance N₂.
Figure 3.25 H₂–SCR (conversion) over 0.8 wt% Pt/Al₂O₃ catalyst. Reaction conditions: 500 ppm NO, 2000 ppm H₂, 5 % O₂, balance N₂.
3.4.4 Ag/Al$_2$O$_3$

The previous experiments were repeated with a previously unexplored material, Ag/Al$_2$O$_3$, as a potential novel H$_2$–SCR catalyst. The catalysts were prepared in–house by impregnating alumina coated monoliths with an aqueous silver solution, full details can be found in Section 3.1.4.2. The catalysts had an average silver loading of 2.3 wt% and an average γ–Al$_2$O$_3$ loading of 28.9 wt% with respect to the complete catalyst system.

3.4.4.1 Absence of O$_2$

As a reminder, in the absence of O$_2$, the following reactions are now expected. Desired overall reaction:

$$2\text{NO} + 2\text{H}_2 \rightarrow \text{N}_2 + 2\text{H}_2\text{O}$$

(3.14)

Undesired side reactions as explained in Chapter 2, Section 2.4.3.1:

$$2\text{NO} + \text{H}_2 \rightarrow \text{N}_2\text{O} + \text{H}_2\text{O}$$

(2.17)

$$\text{NO} + \frac{5}{2}\text{H}_2 \rightarrow \text{NH}_3 + \text{H}_2\text{O}$$

(2.18)

The reactor was loaded with three Ag/Al$_2$O$_3$ monolith pieces. The following flow rates were set and unaltered for the duration of the experiment (Table 3.10).

<table>
<thead>
<tr>
<th>Table 3.10</th>
<th>Approximate gas mixture flow rates and ultimate inlet composition utilised during preliminary H$_2$–SCR investigations in the absence of O$_2$ over 2.3 wt% Ag/Al$_2$O$_3$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Mixture</td>
<td>Flow Rate (dm3 h$^{-1}$)</td>
</tr>
<tr>
<td>4000 ppm NO/N$_2$</td>
<td>3.29</td>
</tr>
<tr>
<td>8000 ppm H$_2$/N$_2$</td>
<td>6.54</td>
</tr>
<tr>
<td>N$_2$</td>
<td>16.67</td>
</tr>
<tr>
<td>Total</td>
<td>26.50</td>
</tr>
</tbody>
</table>

The catalysts were then heated at a rate of 5 $^\circ$C min$^{-1}$ up to 250 $^\circ$C with a 1 h dwell at each 50 $^\circ$C interval.
It appears that the experiment was started prematurely and the supplied species concentrations were not stable. This is most easily seen in the measured abundance of H₂, which initially increases from 20 °C to 150 °C, before a slight decrease is seen. However, some information of catalyst performance can be gleaned: the catalyst does not appear particularly active although there is some slight conversion of NO at higher temperatures. This is accompanied by a slight decrease in H₂ abundance and perhaps a slight increase in H₂O (the H₂O has not been normalised, thus the presented values are not accurate and are included for completion). There also appears to be some formation of NH₃ at temperatures of 100 °C and above.

Figure 3.26 H₂–SCR, in the absence of oxygen, over 2.3 wt% Ag/Al₂O₃. Reaction conditions: 500 ppm NO, 2000 ppm H₂, balance N₂.

This experiment should be repeated, with the previously described process ensuring that the inlet concentration is adjusted at each temperature, enabling more accurate measurements.
3.4.4.2 Presence of O$_2$

As a reminder, as explained in Chapter 2, Section 2.4.3.1, in the presence of O$_2$ the following reactions are now expected:

\[
\begin{align*}
2\text{NO} + 4\text{H}_2 + \text{O}_2 & \rightarrow \text{N}_2 + 4\text{H}_2\text{O} & (2.15) \\
2\text{NO} + 3\text{H}_2 + \text{O}_2 & \rightarrow \text{N}_2\text{O} + 3\text{H}_2\text{O} & (2.16) \\
2\text{NO} + \text{H}_2 & \rightarrow \text{N}_2\text{O} + \text{H}_2\text{O} & (2.17) \\
\text{NO} + \frac{5}{2}\text{H}_2 & \rightarrow \text{NH}_3 + \text{H}_2\text{O} & (2.18) \\
\text{NO} + \frac{1}{2}\text{O}_2 & \rightarrow \text{NO}_2 & (2.19) \\
\text{H}_2 + \frac{1}{2}\text{O}_2 & \rightarrow \text{H}_2\text{O} & (2.20)
\end{align*}
\]

The following flow rates were set and unaltered for the duration of the experiment (Table 3.11).

Table 3.11 Approximate gas mixture flow rates and ultimate inlet composition utilised during preliminary H$_2$–SCR investigations over 2.3 wt% Ag/Al$_2$O$_3$.

<table>
<thead>
<tr>
<th>Gas Mixture</th>
<th>Flow Rate (dm3 h$^{-1}$)</th>
<th>Flow Rate (cm3 min$^{-1}$)</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000 ppm NO/N$_2$</td>
<td>3.29</td>
<td>55</td>
<td>500 ppm NO</td>
</tr>
<tr>
<td>8000 ppm H$_2$/N$_2$</td>
<td>6.54</td>
<td>109</td>
<td>2000 ppm H$_2$</td>
</tr>
<tr>
<td>Air</td>
<td>6.31</td>
<td>105</td>
<td>5.0 % O$_2$</td>
</tr>
<tr>
<td>N$_2$</td>
<td>10.36</td>
<td>173</td>
<td>balance N$_2$</td>
</tr>
<tr>
<td>Total</td>
<td>26.5</td>
<td>442</td>
<td></td>
</tr>
</tbody>
</table>

The catalysts were then heated at a rate of 5 °C min$^{-1}$ up to 250 °C with a 1 h dwell at each 50 °C interval. Again, however the flow rates were set at the beginning of the experiment and not altered throughout. As has already been seen this may lead to drift and the alternative procedure, where the flow rates are adjusted if need be at each temperature, should be adopted in repeat experiments.
There are some trends which can be identified, even if absolute values may not be trusted:

- There is very little, if any change, in NO concentration throughout.

- At temperatures above 100 °C both H₂ and O₂ levels decrease. This is accompanied by an apparent increase in H₂O concentration, suggesting these two species are merely reacting together.

- There is little evidence of trace species although this may be a result of the experimental measurement procedure.

Perhaps Ag/Al₂O₃ is not a suitable material for this reaction, although it may be that the catalyst loading is not sufficient for the reaction conditions or that the investigated temperature window is too narrow. This will be explored in further experiments.

Figure 3.27 H₂–SCR over 2.3 wt% Ag/Al₂O₃ catalysts. Reaction conditions: 500 ppm NO, 2000 ppm H₂, 5% O₂, balance N₂.
3.4.5 Identified Issues and Limitations

There are a number of issues with both the experimental procedure and experimental results, from both catalysts, which will need to be addressed in the future:

- Apparent presence of large amounts of H$_2$O in the reaction mixture – what impact is this having on the reaction and subsequent measurements? Given that it is a desired product of the H$_2$–SCR reaction, a large background reading could be masking the production of H$_2$O seen from the reaction and distorting the results.

- Apparent sensitivity of QMS procedure to trace species i.e. NO$_2$ and to a lesser extent NH$_3$.

3.4.6 Conclusions and Subsequent Actions Taken

These preliminary trials were very important to:

- Establish viable operation envelopes;
- Identify potential experimental problems and thereby find solutions so as to improve the experimental technique.

As a result of what has been discussed previously, a number of steps were implemented to improve the overall experimental method:

- Refinement of the method of calibrating the QMS in order to improve the accuracy in detecting NO$_2$ and NH$_3$.
- Investigation of possible methods of removing/reducing background H$_2$O levels.
3.5 H₂–SCR: Final Results

In this section the results of H₂–SCR experiments, performed over selected parameters identified through the preliminary experiments described in Section 3.4, are presented. The experimental set-up and general procedures explained in Section 3.3.1 remained the same whilst specific details of the different reaction sequences are provided before the results of each investigation.

Once again, although the reaction mixture compositions are specified, due to the nature of the equipment and the measurements it was not practical to consistently obtain these exact conditions and so they are provided as a guideline only. This also holds true for specified temperatures.

The challenges of producing a robust analytical method are well documented in Appendix I. Although every effort was made to produce a reliable and robust method; in some instances gentle manipulation of the data was required to negate erroneous ‘background’ readings and present a true reflection of species abundance, however, all results were processed in exactly the same fashion. Individually presented data points were calculated by averaging the measured raw signal from the mass spectrometer over a period of 5 minutes (typically ~6 – 8 data points) unless stated, after the system had equilibrated at constant temperature. The data points are connected to give an indication of trends and the connections do not represent recorded data. Where appropriate, arrows are utilised to highlight inlet conditions and identify which species correspond to which axis.

The catalysts were subject to the following standardised procedures. These first involved pre–treatment with the intention of removing any undesired surface species, before the catalysts were subject to the desired reaction mixtures and processes. The justifications for the procedures are provided within each description.
3.5.1 \textbf{H}_2–\text{SCR}

The reactor was loaded with three monolith pieces of the catalyst under investigation. First the samples were heated to 350 °C at a rate of 10 °C min\(^{-1}\) and subject to 8000 ppm \text{H}_2 in \text{N}_2 at a flow rate of 300 cm\(^3\) min\(^{-1}\) for 1 h, before the reactor was then cooled to 50 °C. During cooling the gas flow was directed through the reactor bypass and an approximate gas composition consisting of 500 ppm NO, 2000 ppm H\(_2\) and 5 % \text{O}_2 with a \text{N}_2 balance and a total flow rate of \(\sim 440\) cm\(^3\) min\(^{-1}\) (26.50 dm\(^3\) h\(^{-1}\)) was set (Table 3.12). In this instance the desired gas composition was set using the QMS and thus only an approximate total flow rate is provided. Note that the reaction composition consisted of a smaller H\(_2\):NO ratio (4:1) and/or a greater \text{O}_2 concentration than many of the examples discussed in Chapter 2. In addition, it was decided that as the composition of the exhaust fume in the final application would include a significant concentration of \text{O}_2, there was no benefit to exploring the \text{H}_2–\text{SCR} reaction in the absence of \text{O}_2.

Once the desired reactor temperature had been reached it was maintained for 1 h and the gas flow was directed through the reactor for 30 min before it was returned to the bypass. The temperature was then increased at a rate of 5 °C min\(^{-1}\) to a maximum temperature of 450 °C, and the procedure repeated at each 100 °C interval. This enabled the inlet and outlet of the reactor to be consecutively measured which in turn led to the identification and resolution of any drift in the inlet composition, producing somewhat constant inlet conditions at different temperatures. The maximum explored temperature was increased to 450 °C as in the preliminary experiments (Section 3.4) the Ag/\text{Al}_2\text{O}_3 catalyst demonstrated very little, if any, performance in the 50 – 250 °C range. Additionally, the operational exhaust temperature of the application of interest is around 450 °C and thus catalyst performance at this temperature is directly of interest.
Table 3.12 Approximate gas mixture flow rates and ultimate inlet composition utilised during final H$_2$–SCR investigations.

<table>
<thead>
<tr>
<th>Gas Mixture</th>
<th>Flow Rate (dm3 h$^{-1}$)</th>
<th>Flow Rate (cm3 min$^{-1}$)</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000 ppm NO/N$_2$</td>
<td>3.29</td>
<td>55</td>
<td>500 ppm NO</td>
</tr>
<tr>
<td>8000 ppm H$_2$/N$_2$</td>
<td>6.54</td>
<td>109</td>
<td>2000 ppm H$_2$</td>
</tr>
<tr>
<td>Air</td>
<td>6.31</td>
<td>105</td>
<td>5.0 % O$_2$</td>
</tr>
<tr>
<td>N$_2$</td>
<td>10.36</td>
<td>173</td>
<td>balance N$_2$</td>
</tr>
<tr>
<td>Total</td>
<td>26.5</td>
<td>442</td>
<td></td>
</tr>
</tbody>
</table>
3.5.1.1 Catalyst Substrate and Support

In order to correctly account for activity in terms of the components of the catalyst, it is important to first identify the behaviour of the substrate and support layers under SCR experimental conditions. As little activity is evident, these results will merely be summarised in an effort to minimise the number of graphs presented throughout this thesis.

3.5.1.1.1 Cordierite

The cordierite samples demonstrated no substantial reaction under SCR conditions up to a temperature of 450 °C; the supplied inlet conditions remained apparently unchanged although there was some detection of very low levels of N₂O (≤10 ppm) and H₂O (≤20 ppm) at temperatures of 200 °C and greater. There was also some formation of NO₂ (≤ 5 ppm) at temperatures of 350 °C and greater.

3.5.1.1.2 γ-Al₂O₃

The γ-Al₂O₃ samples had an average loading of 29.6 wt% with respect to the complete catalyst system. They demonstrated no deNOₓ reaction (consumption of NO) at temperatures up to 450 °C although there was consumption of H₂ and the formation of H₂O at temperatures of 200 °C and above. As there was no apparent reduction in the abundance of O₂ at these temperatures, it is postulated that the H₂ is reacting with surface O species. In addition there was no detection of trace species beyond very slight (~10 ppm) formation of N₂O at temperatures of 300 °C and above, although no apparent drop in NO levels.
3.5.1.2 Complete Catalyst Systems

3.5.1.2.1 Pt/Al₂O₃

As a reminder the Pt/Al₂O₃ catalyst was studied as an example of a typical H₂–SCR catalyst and preparation details can be found in Section 3.1.4.1. The catalysts had an average platinum loading of 0.8 wt% and an average γ–Al₂O₃ loading of 29.4 wt% with respect to the complete catalyst system. Finally, the potential reactions for H₂–SCR in the presence of O₂, first discussed in Chapter 2, Section 2.4.3.1, are as follows:

\[2\text{NO} + 4\text{H}_2 + \text{O}_2 \rightarrow \text{N}_2 + 4\text{H}_2\text{O}\]
(2.15)

\[2\text{NO} + 3\text{H}_2 + \text{O}_2 \rightarrow \text{N}_2\text{O} + 3\text{H}_2\text{O}\]
(2.16)

\[2\text{NO} + \text{H}_2 \rightarrow \text{N}_2\text{O} + \text{H}_2\text{O}\]
(2.17)

\[\text{NO} + \frac{5}{2}\text{H}_2 \rightarrow \text{NH}_3 + \text{H}_2\text{O}\]
(2.18)

\[\text{NO} + \frac{1}{2}\text{O}_2 \rightarrow \text{NO}_2\]
(2.19)

\[\text{H}_2 + \frac{1}{2}\text{O}_2 \rightarrow \text{H}_2\text{O}\]
(2.20)

The measured abundances of both main and trace reactant species formed during H₂–SCR investigations over the Pt/Al₂O₃ catalyst are shown in Table 3.13, Figure 3.28(A) and Figure 3.28(B). Conversion of the supplied reactants is presented in Table 3.14 and Figure 3.29, whilst a breakdown of NO conversion to various N–species is presented in Table 3.15.

In general, a similar performance to the preliminary experiments on the same catalysts is observed (although following recalibration of the QMS the absolute values measured are more appropriate), demonstrating good repeatability between experiments. In addition, the results agree well with those reported for similar material and reaction condition combinations in the literature (e.g. Macleod et al. (2002)).
Table 3.13 Summary of measured species abundance in the outlet of H₂–SCR over 0.8 wt% Pt/Al₂O₃.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Measured Outlet Concentration ppm</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO</td>
<td>H₂</td>
</tr>
<tr>
<td>50.8</td>
<td>70</td>
<td>317</td>
</tr>
<tr>
<td>155.2</td>
<td>341</td>
<td>0</td>
</tr>
<tr>
<td>255.3</td>
<td>68</td>
<td>0</td>
</tr>
<tr>
<td>355.2</td>
<td>178</td>
<td>0</td>
</tr>
<tr>
<td>456.6</td>
<td>407</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3.14 Summary of reactant conversion during H₂–SCR over 0.8 wt% Pt/Al₂O₃.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Conversion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO</td>
</tr>
<tr>
<td>50.8</td>
<td>87.6</td>
</tr>
<tr>
<td>155.2</td>
<td>39.3</td>
</tr>
<tr>
<td>255.3</td>
<td>86.9</td>
</tr>
<tr>
<td>355.2</td>
<td>65.6</td>
</tr>
<tr>
<td>456.6</td>
<td>22.8</td>
</tr>
</tbody>
</table>

Table 3.15 Summary of NO conversion during H₂–SCR over 0.8 wt% Pt/Al₂O₃.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Conversion of NO (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overall</td>
</tr>
<tr>
<td>50.8</td>
<td>87.6</td>
</tr>
<tr>
<td>155.2</td>
<td>39.3</td>
</tr>
<tr>
<td>255.3</td>
<td>86.9</td>
</tr>
<tr>
<td>355.2</td>
<td>65.6</td>
</tr>
<tr>
<td>456.6</td>
<td>22.8</td>
</tr>
</tbody>
</table>
The main observations of this investigation are summarised below:

- Two local ‘maxima’ of NO conversion (~87 %) were observed at 50 °C and 250 °C.

- Significant formation (+70 ppm) of NO\textsubscript{2} occurs at temperatures of 150 °C and higher, with a maximum of 257 ppm formed at 250 °C.

- N\textsubscript{2}O was only produced (83 ppm) at 50 °C.

- The presence of O\textsubscript{2} in the reaction mixture inhibits NH\textsubscript{3} formation (in agreement with the preliminary results for this catalyst system), as stated by Liu \textit{et al.} (2012). Although very small amounts of NH\textsubscript{3} are detected (2 ppm), these may be regarded as erroneous and attributed to the contribution of H\textsubscript{2}O at 17 amu (as discussed in Appendix I) due to its presence in significant quantities.

- Complete conversion of H\textsubscript{2} occurs at temperatures above 50 °C. Whilst some of this is involved in NO\textsubscript{x} reduction to N\textsubscript{2} and N\textsubscript{2}O, the excess H\textsubscript{2} reacts with oxygen over the catalyst to form H\textsubscript{2}O.

- In terms of selectivity towards NO reduction and oxidation, the NO conversion to reduction products (N\textsubscript{2}, N\textsubscript{2}O and NH\textsubscript{3}) versus NO conversion to oxidation products (NO\textsubscript{2}) data is presented in Table 3.15 and Figure 3.30. It can be clearly observed that NO reduction dominates at lower temperatures. However, as the temperature increases NO oxidation becomes increasingly significant, until it is more prevalent than NO reduction processes at temperatures of 250 °C and above.
Figure 3.28(A) \(H_2 \)-SCR (main species) over 0.8 wt% Pt/Al\(_2\)O\(_3\). Reaction conditions: 500 ppm NO, 2000 ppm H\(_2\), 5 % O\(_2\), balance N\(_2\).

Figure 3.28(B) \(H_2 \)-SCR (trace species) over 0.8 wt% Pt/Al\(_2\)O\(_3\). Reaction conditions: 500 ppm NO, 2000 ppm H\(_2\), 5 % O\(_2\), balance N\(_2\).
Figure 3.29
H₂–SCR (conversion) over 0.8 wt% Pt/Al₂O₃. Reaction conditions: 500 ppm NO, 2000 ppm H₂, 5 % O₂, balance N₂.

Figure 3.30
Temperature profiles for NO Reduction (●) and NO oxidation (■) over 0.8 wt% Pt/Al₂O₃. Reaction conditions: 500 ppm NO, 2000 ppm H₂, 5 % O₂, balance N₂.
3.5.1.2.2 Ag/Al₂O₃

As a reminder Ag/Al₂O₃ is being explored as a potential novel H₂–SCR catalyst. Full details of the catalyst preparation can be found in Section 3.1.4.2. The catalysts had an average silver loading of 2.3 wt% and an average γ-Al₂O₃ loading of 28.9 wt% with respect to the complete catalyst system. Once more, the potential reactions for H₂–SCR in the presence of O₂, first discussed in Chapter 2, Section 2.4.3.1, are as follows:

\[
\begin{align*}
2\text{NO} + 4\text{H}_2 + \text{O}_2 & \rightarrow \text{N}_2 + 4\text{H}_2\text{O} \\
2\text{NO} + 3\text{H}_2 + \text{O}_2 & \rightarrow \text{N}_2\text{O} + 3\text{H}_2\text{O} \\
2\text{NO} + \text{H}_2 & \rightarrow \text{N}_2\text{O} + \text{H}_2\text{O} \\
\text{NO} + \frac{5}{2}\text{H}_2 & \rightarrow \text{NH}_3 + \text{H}_2\text{O} \\
\text{NO} + \frac{1}{2}\text{O}_2 & \rightarrow \text{NO}_2 \\
\text{H}_2 + \frac{1}{2}\text{O}_2 & \rightarrow \text{H}_2\text{O}
\end{align*}
\]

(2.15) (2.16) (2.17) (2.18) (2.19) (2.20)

The measured abundance of both main and trace reactant species formed during H₂–SCR investigations over the 2.3 wt% Ag/Al₂O₃ are displayed in Table 3.16, Figure 3.31(A) and Figure 3.31(B). The measured conversions of the reactant species are displayed in Table 3.17 and Figure 3.32 and a breakdown of NO conversion to various N–species is displayed in Table 3.18. Once again the obtained results closely resemble those of the preliminary experiments and suggest good repeatability.
Table 3.16 Summary of measured species abundance in the outlet of H₂–SCR over 2.3 wt% Ag/Al₂O₃.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>NO ppm</th>
<th>H₂ ppm</th>
<th>H₂O ppm</th>
<th>NO₂ ppm</th>
<th>N₂O ppm</th>
<th>NH₃ ppm</th>
<th>Apparent N₂O ppm</th>
<th>O₂ ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.8</td>
<td>578</td>
<td>2111</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>5.3</td>
</tr>
<tr>
<td>155.2</td>
<td>562</td>
<td>1869</td>
<td>356</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>5.2</td>
</tr>
<tr>
<td>255.3</td>
<td>554</td>
<td>57</td>
<td>2091</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>4.9</td>
</tr>
<tr>
<td>355.2</td>
<td>397</td>
<td>0</td>
<td>2032</td>
<td>63</td>
<td>0</td>
<td>1</td>
<td>21</td>
<td>4.8</td>
</tr>
<tr>
<td>456.6</td>
<td>421</td>
<td>0</td>
<td>2051</td>
<td>52</td>
<td>0</td>
<td>1</td>
<td>18</td>
<td>4.9</td>
</tr>
</tbody>
</table>

Table 3.17 Summary of reactant conversion during H₂–SCR over 2.3 wt% Ag/Al₂O₃.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Conversion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO</td>
</tr>
<tr>
<td>50.8</td>
<td>0.0</td>
</tr>
<tr>
<td>155.2</td>
<td>2.2</td>
</tr>
<tr>
<td>255.3</td>
<td>0.0</td>
</tr>
<tr>
<td>355.2</td>
<td>21.3</td>
</tr>
<tr>
<td>456.6</td>
<td>17.7</td>
</tr>
</tbody>
</table>

Table 3.18 Summary of NO conversion during H₂–SCR over 2.3 wt% Ag/Al₂O₃.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Conversion of NO (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overall</td>
</tr>
<tr>
<td>50.8</td>
<td>0.0</td>
</tr>
<tr>
<td>155.2</td>
<td>2.2</td>
</tr>
<tr>
<td>255.3</td>
<td>0.0</td>
</tr>
<tr>
<td>355.2</td>
<td>21.3</td>
</tr>
<tr>
<td>456.6</td>
<td>17.7</td>
</tr>
</tbody>
</table>
The main observations of this investigation are summarised below:

- There is very little performance observed at temperatures up to 250 °C beyond H₂ and O₂ consumption and the accompanying formation of H₂O. Consumption of H₂ begins at 150 °C (15.5 % conversion), reaching 97.5 % conversion at 250 °C and 100 % by 350 °C.

- At lower temperatures (<350 °C) there is no obvious consumption of NO beyond very slight (2.2 %) conversion at 150 °C.

- At higher temperatures (≥350 °C) there is some consumption of NO (21.3 % at 350 °C, 17.7 % at 450 °C) although this is also accompanied by formation of NO₂ (63 ppm at 350 °C, 52 ppm at 450 °C).

- Again, although very small amounts of NH₃ are detected (1 ppm) at temperatures of 250 °C and higher, these may be regarded as erroneous and attributed to the contribution of H₂O at 17 amu (Appendix I).

- There is only very slight (1 – 2 ppm) apparent formation of N₂O at lower temperatures (≤250 °C) only.

- O₂ consumption generally increases as temperature increases and may be attributed to the increasing formation of both H₂O and NO₂.

- In a similar manner to the Pt/Al₂O₃ performance (although the relative conversions are a lot less in this instance) there is an indication that NO reduction is slightly favoured at lower temperatures, whereas NO oxidation is preferred at higher temperatures.
Figure 3.31(A) \(\text{H}_2 \)-SCR (main species) over 2.3 wt% Ag/Al\(_2\)O\(_3\). Reaction conditions: 500 ppm NO, 2000 ppm H\(_2\), 5 % O\(_2\), balance N\(_2\).

Figure 3.31(B) \(\text{H}_2 \)-SCR (trace species) over 2.3 wt% Ag/Al\(_2\)O\(_3\). Reaction conditions: 500 ppm NO, 2000 ppm H\(_2\), 5 % O\(_2\), balance N\(_2\).
Figure 3.32 H₂-SCR (conversion) over 2.3 wt% Ag/Al₂O₃ catalysts. Reaction conditions: 500 ppm NO, 2000 ppm H₂, 5 % O₂, balance N₂.

Figure 3.33 Temperature profiles for NO Reduction (●) and NO oxidation (■) over 2.3 wt% Ag/Al₂O₃. Reaction conditions: 500 ppm NO, 2000 ppm H₂, 5 % O₂, balance N₂.
3.5.1.3 \(\text{H}_2 \)-SCR Conclusions

Although the obtained traces have been discussed in detail throughout presentation of the results, a number of overall conclusions can be made with regards to the SCR reaction investigations when considering the complete data sets. In addition, these conclusions do align with the results of the preliminary study:

- The cordierite substrate demonstrated no reaction.
- The \(\gamma-\text{Al}_2\text{O}_3 \) washcoat demonstrated no significant deNO\(_x\) reaction.
- 50 °C appears to be the most suitable temperature for direct NO\(_x\) reduction using \(\text{H}_2 \) over Pt/Al\(_2\)O\(_3\), although there is a significant level of N\(_2\)O formed (itself a potent greenhouse gas) and at higher temperatures, formation of NO\(_2\) dominates.
- It appears that Ag/Al\(_2\)O\(_3\) is not a suitable material for direct reduction of NO\(_x\) using \(\text{H}_2 \). NO conversion was very limited throughout the explored temperature range and favoured oxidation to NO\(_2\) as opposed to reduction to N\(_2\).

Pt/Al\(_2\)O\(_3\) is well known as an oxidation catalyst, even in the oxidation of NO as explored by Xue et al. (1996). The significant oxidation of NO at higher temperatures demonstrated here illustrates how it may be possible to utilise this process to produce an optimum ratio of NO and NO\(_2\), which could then be exploited in a NO\(_x\) after treatment system. Indeed this approach is already practised in some exhaust after treatment processes and is proposed in Chapter 1 (Figure 1.2).
3.5.2 TPD

TPD measurements of adsorbed species were carried out in order to investigate the catalyst’s abilities to adsorb different reactant species and identify any evidence of surface reactions at particular temperatures.

3.5.2.1 NO–TPD

The reactor was loaded with three monolith pieces of the catalyst under investigation. The reactor temperature was increased to 500 °C at a rate of 10 °C min\(^{-1}\) under a flow of N\(_2\) at 300 cm\(^3\) min\(^{-1}\). Then 8000 ppm H\(_2\) in N\(_2\) was introduced at 300 cm\(^3\) min\(^{-1}\) for 30 min, before the reactor was flushed with N\(_2\) at 330 cm\(^3\) min\(^{-1}\) for 15 min. The catalysts were then subject to 10 % O\(_2\) at 600 cm\(^3\) min\(^{-1}\) for 15 min before being cooled down in N\(_2\) at 330 cm\(^3\) min\(^{-1}\) to 150 °C. 1000 ppm NO in N\(_2\) was then introduced at 400 cm\(^3\) min\(^{-1}\) for 30 min. Finally the reactor was flushed with N\(_2\) at 300 cm\(^3\) min\(^{-1}\) for 15 min to remove any residual NO and the temperature increased to 700 °C at a rate of 10 °C min\(^{-1}\). The desorbed species were subsequently measured.
3.5.2.1.1 Catalyst Substrate and Support

3.5.2.1.1.1 Cordierite

In light of the H₂–SCR results described in Section 3.5.1.1.1, TPD experiments were not performed on the cordierite substrate.

3.5.2.1.1.2 γ-Al₂O₃

In keeping with the results of the SCR experiment there was no apparent NO adsorption (and thus no desorption) witnessed during NO–TPD studies. It should be noted these early studies confirm that the quartz wool, utilised to prevent gas slip down the sides of the catalyst (as described in Section 3.3.1), plays no part in the investigated reactions.

3.5.2.1.2 Complete Catalyst Systems

3.5.2.1.2.1 Pt/Al₂O₃

The measured desorption species for NO–TPD over 0.8 wt% Pt/Al₂O₃ is presented in Figure 3.34. The main observations of this investigation are summarised below:

- The catalysts demonstrate some affinity for NO, as desorption of NO is apparent over the 175 – 350 °C temperature range.
- There is also some apparent formation of NO₂ at 150 °C, perhaps as a result of the reaction of surface O species with the supplied NO, and its subsequent desorption as temperature was increased to 350 °C.
- There was no N₂O formation observed.
- The apparent total abundance of the evolved N–species accounts for only 46.1 % of the adsorbed NO.
Table 3.19 details the selectivity in terms of the observed N–species which evolved during NO–TPD over 0.8 wt% Pt/Al₂O₃. The formation of NO₂ demonstrates some consistency with the H₂–SCR results presented in Figure 3.28(A) and Figure 3.28(B) (formation of NO₂ at 150 ºC).

![Graph showing NO, N₂O, and NO₂ abundance over temperature](image)

Figure 3.34 NO–TPD over 0.8 wt% Pt/Al₂O₃. Adsorption temperature = 150 ºC.

Table 3.19 Proportion of the N–containing species desorbed during NO–TPD over 0.8 wt% Pt/Al₂O₃.

<table>
<thead>
<tr>
<th>Species</th>
<th>% of desorption products</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>66.5</td>
</tr>
<tr>
<td>NO₂</td>
<td>33.5</td>
</tr>
</tbody>
</table>
3.5.2.1.2.2 \textit{Ag/Al}_2\textit{O}_3

The measured desorption species for NO–TPD over 2.3 wt\% \textit{Ag/Al}_2\textit{O}_3 is presented in Figure 3.35. The main observations of this investigation are summarised below:

- Overall, there is very little affinity demonstrated for NO although there is some desorption of NO at lower temperatures (reaching a maximum recorded concentration of 25 ppm at 200 °C).

- Again there is also some formation of NO\textsubscript{2}, and subsequent desorption at lower temps, although it is of the order of 2 – 4 ppm.

- Interestingly there is some formation of N\textsubscript{2}O and a consistent, very low desorption concentration (1 – 2 ppm) of N\textsubscript{2}O from ~200 °C up to a maximum of 7 ppm at ~590 °C.

- The apparent total abundance of the evolved N–species accounts for only 32.9 \% of the adsorbed NO.

Table 3.20 details the selectivity in terms of the observed N–species which evolved during NO–TPD over 0.8 wt\% Pt/\textit{Al}_2\textit{O}_3.
Figure 3.35 NO–TPD over 2.3 wt% Ag/Al₂O₃ catalysts. Adsorption temperature = 150 °C.

Table 3.20 Proportion of the N–containing species desorbed during NO–TPD over 2.3 wt% Ag/Al₂O₃.

<table>
<thead>
<tr>
<th>Species</th>
<th>% of desorption products</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>41</td>
</tr>
<tr>
<td>N₂O</td>
<td>45.1</td>
</tr>
<tr>
<td>NO₂</td>
<td>13.9</td>
</tr>
</tbody>
</table>
3.5.2.2 H₂–TPD

The reactor was loaded with three monolith pieces of the catalyst under investigation. The reactor temperature was increased to 500 ºC at a rate of 10 ºC min⁻¹ under a flow of N₂ at 300 cm³ min⁻¹ and then cooled to 200 ºC, the adsorption temperature. 2000 ppm H₂ in N₂ was introduced at 440 cm³ min⁻¹ for 5 min, before the reactor was flushed with N₂ at 330 cm³ min⁻¹ for 5 min. The temperature was then increased to 500 ºC at a rate of 5 ºC min⁻¹ and then 700 ºC at a rate of 10 ºC min⁻¹ and the desorbed species were subsequently measured. The slower temperature ramp rate to 500 ºC was imposed in an effort to identify desorbed species.

However, although the preliminary investigated H₂–TPD procedure (Chapter 4) did provide some evidence of H₂ affinity for a Ba/Pt/Al₂O₃ catalysts, and the adsorption temperature was increased as a result, there was no apparent desorption observed for any the catalyst materials investigated in this Section and as a result, there will be no presentation of H₂–TPD results here.
3.5.2.3 TPD Conclusions

Although the obtained traces have been discussed in detail throughout the presentation of the results, a number of overall conclusions can be made with regards to the TPD reaction investigations when comparing the results obtained from both complete catalyst systems.

These conclusions relate to the NO–TPD summary information presented in Table 3.21 and Table 3.22:

- There was no affinity to NO demonstrated during TPD investigations with γ–Al₂O₃.
- The NO–TPD behaviour of both Pt/Al₂O₃ and Ag/Al₂O₃ catalyst at 150 ºC appeared to align with the observed H₂–SCR results at the same reaction temperature in terms of the demonstrated affinity for NO.
- Pt/Al₂O₃ demonstrated the greatest affinity for NO at an adsorption temperature of 150 ºC. However, adsorption levels appear low in comparison to supplied amounts; 2.8 – 4.1 %.
- In the absence of supplied O₂ during adsorption and desorption, both catalysts demonstrated some capacity for formation of other N–species; NO₂ formation in the case of Pt/Al₂O₃ and both N₂O and NO₂ formation in the case of Ag/Al₂O₃.

In terms of the H₂–TPD investigations, there may be a number of explanations for the absence of adsorption demonstrated:

- Incorrect adsorption temperature.
- The change in partial pressure once the H₂ inlet feed is stopped results in desorption of lightly adsorbed surface H₂ during flushing of the reactor.
- Possible surface reaction not observed through the experimental procedure i.e. formation of H₂O or NH₃.
Table 3.21 Summary table detailing the relative measured amounts of NO adsorbed and subsequently desorbed during NO–TPD investigations.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>NO–TPD</th>
<th>NO–TPD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Relative amount of NO adsorbed (%)</td>
<td>Relative amount of N–species desorbed (%)</td>
</tr>
<tr>
<td>Pt/Al₂O₃</td>
<td>4.1</td>
<td>46.1</td>
</tr>
<tr>
<td>Ag/Al₂O₃</td>
<td>2.8</td>
<td>32.9</td>
</tr>
</tbody>
</table>

Table 3.22 Summary table detailing the relative proportion of each N–species desorbed during NO–TPD investigations.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>NO–TPD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Proportion (%)</td>
</tr>
<tr>
<td></td>
<td>NO</td>
</tr>
<tr>
<td>Pt/Al₂O₃</td>
<td>66.5</td>
</tr>
<tr>
<td>Ag/Al₂O₃</td>
<td>41.0</td>
</tr>
</tbody>
</table>
3.5.3 Key Conclusions

In light of the results obtained for the explored materials in both SCR and TPD investigations, a number of key conclusions can be drawn which in turn influenced the next stage of the project:

- The developed methods for preparation of the investigated catalysts proved successful and may be applied to related systems.

- The constructed experimental set-up was successfully operated, providing the desired reaction conditions at a variety of temperatures.

- The catalyst systems were robust, demonstrating repeatable performance after multiple experimental runs during both preliminary and final investigations.

- Both Pt/Al₂O₃ and Ag/Al₂O₃ do not appear to be suitable catalyst systems for H₂–SCR of NOₓ to N₂ within the explored temperature range; an alternative deNOₓ approach is required.

- However, the ability to form NO₂ through the oxidation of NO was displayed by both catalyst systems at a variety of temperatures (although predominantly at the higher end of the explored temperature range), and in both investigated processes.

- Such oxidation behaviour is necessary for a successful NSR catalyst as described in Chapter 2 (Section 2.4.3.4). It is envisaged that the SCR materials explored here may form the basis for NSR catalysts, and by coupling with various 'storage components' their activity may be explored.
REFERENCES

Xue, E., Seshan, K., et al. (1996). Roles of Supports, Pt Loading and Pt Dispersion in the Oxidation of NO to NO\textsubscript{2} and of SO\textsubscript{2} to SO\textsubscript{3}. Applied Catalysis B: Environmental, Vol. 11, No. 1, pp. 65–79.

CHAPTER 4
Experimental – Investigation of Reaction Mechanisms and Transient Behaviour of H₂–NSR Catalysts in a Continuous Flow Fixed Bed Reactor

In a similar manner to Chapter 3; the processes through which active materials for the H₂–NSR investigation were prepared and characterized will be detailed. Preliminary experimental results, obtained through commissioning of the experimental set-up and analysis technique, along with final results of the chosen materials performance will be presented and discussed.

4.1 Catalyst Preparation

4.1.1 Summary

A reminder of the summary flow diagram of the catalysts prepared in this project, and their associated deNOx process, is presented in Figure 4.1. Note that only the NSR catalysts, indicated with a solid black line, are considered within this chapter.

![Figure 4.1 Schematic describing the make-up of catalyst materials prepared for investigation.](image-url)
The NSR catalysts explored in this section were typically prepared in a similar manner to the SCR catalysts as described in Chapter 3, (Section 3.1) and some examples of detailed synthesis procedures can also be found in Appendix II. The references consulted when constructing the preparation methods are listed in Table 4.1.

4.1.2 Storage Components

As discussed in Chapter 2; an NSR catalyst requires a ‘storage component’ to facilitate temporary storage of the NO\textsubscript{x} species during the ‘lean period’ before subsequent reduction on exposure to a H\textsubscript{2}–rich feed. Ba and K are most commonly reported NSR storage components and thus were investigated here, although there are several other examples; Sakamoto \textit{et al.} (2012) also investigated Na as a storage component, and Roy \textit{et al.} (2009) reported that Mg, Ca, and Sr have also been explored.

In preparation of NSR catalysts, two separate steps are required to load both the storage component and the active component on to the γ–Al\textsubscript{2}O\textsubscript{3} washcoat. It was found that the order of addition of components to the washcoated monoliths was significant. In cases where the ‘storage’ component was first loaded on to the sample; during the subsequent step, as the monoliths were submerged in the active component solutions, a reaction occurred, and it appeared that the storage component layer was removed from the catalyst. On such occasions a deposit was formed in the bottom of the beaker. This was confirmed through weighing of the catalyst samples.
Thus all NSR catalysts reported in the study were first coated with the active metal component i.e. Pt or Ag, calcined, and then coated with the storage component i.e. Ba or K. In these cases, the order in which the catalyst components are displayed denotes the order in which they were applied to the cordierite substrate i.e. Ba/Pt/Al₂O₃ reading from left to right indicates that the Ba component was last to be applied after the Pt component, and that the Al₂O₃ washcoat was applied first. This rule holds true for all multi–component catalysts reported in this study.

Whilst it is reported that a particular metal species e.g. Ba, is being supported on the catalysts it is likely in fact that it is a related species which is actually deposited. For example, in the case of the barium component, it is likely that BaO would be formed through the described experimental procedure. Further, on exposure to air these BaO species may undergo reaction to form Ba(OH)₂, or BaCO₃. The same can be said for the other metal components, although the exact nature of the species formed depends on the particular metal. In some cases it is known that these species participate in the reactions.

However, the experimental procedures, in particular the pre–treatment processes, are designed as such that only the surface species desired for reaction will be present during experimental trials and subsequently reported. For this reason the titles given to different catalysts in this study will detail the desired metal component only, and not any oxides or other related species.
4.1.2.1 Barium

With consideration of the catalyst preparation procedures detailed in Cant et al. (2002) and Han et al. (2001); barium nitrate was dissolved in water and the monoliths were submerged for 30 min. Once removed from the solution the monoliths were placed in a ceramic dish and dried at 120 °C overnight (18 h) before they were calcined at 550 °C for 4 h. This coating procedure was repeated twice to produce a mass loading considered adequate. The appearance of the monolith samples (Figure 4.2) was not vastly changed from that of the γ–Al₂O₃ monolith samples (detailed in Chapter 3), with perhaps a brighter white coating apparent in places. Specific details of an example barium coating procedure is provided in Appendix II–C.

![Figure 4.2](image.jpg) Photograph of 3.6 wt% Ba/Al₂O₃ coated monolith samples.
4.1.2.2 Potassium

With reference to the preparation procedure detailed in Castoldi et al. (2010); potassium acetate was dissolved in water. The monoliths were submerged in the solution for 30 min. Once removed from the solution the monoliths were placed in a ceramic dish and dried at 120 °C overnight (19 h) before they were calcined at 500 °C for 4 h. The monoliths generally now had a slight grey colour (Figure 4.3) although some parts appeared black – this may be explained by the samples close proximity to the furnace wall during calcination, or it could indicate poor dispersion of the potassium species. Specific details of an example potassium coating procedure is provided in Appendix II–D.

Figure 4.3 Photograph of 19.2 wt% K/Al₂O₃ coated monolith samples.
4.1.3 Active Components

As a reminder, the preparation of the platinum catalysts in this study was with a view to comparing results to the literature and validating the experimental procedures. Silver was chosen as an active component due to its performance in related deNO\textsubscript{x} processes (e.g. H\textsubscript{2}–assisted HC–SCR), and its history of redox chemistry, i.e. perhaps it is capable of facilitating both the reducing and oxidising reactions necessary in the NSR processes, although silver catalyst performance has not been reported for direct H\textsubscript{2}–SCR, or H\textsubscript{2}–NSR processes.

4.1.3.1 Ba/Pt/Al\textsubscript{2}O\textsubscript{3}

The platinum component was loaded on to the catalysts in the same manner as described in Chapter 3, Section 4.1.4.1 and with reference to the procedure detailed in Klinghoffer et al. (1998). Following addition of both platinum and then barium to the γ–Al\textsubscript{2}O\textsubscript{3} samples, the catalysts were dark grey in colour (Figure 4.4). Specific details of an example platinum coating procedure is provided in Appendix II–A.

![Figure 4.4](image.png)
Photograph of Ba/Pt/Al\textsubscript{2}O\textsubscript{3} coated monolith samples.
4.1.3.2 Ba/Ag/Al₂O₃ and K/Ag/Al₂O₃

The silver component was loaded on to the catalysts in the same manner as described in Chapter 3, Section 4.1.4.2 and with consultation of the procedure described in Doronkin et al. (2012). Silver nitrate was dissolved in water in order to produce a solution of ~2 wt% silver. The monoliths were submerged in the solution for 2 h. Once removed from the solution the monoliths were placed in a ceramic dish and dried overnight (19 h) at room temperature before they were calcined at 550 °C for 4 h. The prepared Ba/Ag/Al₂O₃ catalysts were grey whilst the prepared K/Ag/Al₂O₃ catalysts were a dark grey in colour (Figure 4.5). Specific details of an example silver coating procedure is provided in Appendix II–B.

Figure 4.5 Photograph of (A) Ba/Ag/Al₂O₃ and (B) K/Ag/Al₂O₃ coated monolith samples.
4.2 Catalyst Characterisation

Details of catalyst characterisation procedures are presented in Chapter 3. Only the results of the NSR catalyst characterisation will be presented here.

4.2.1 Weight Measurements

The specified loadings in Table 4.2 are reported with respect to the entirety of the catalyst makeup i.e. the combined weight of the substrate, washcoat and any active components present.

Table 4.2 Details of prepared H$_2$–NSR catalyst loadings.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Average Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Washcoat Loading (%)</td>
</tr>
<tr>
<td>γ–Al$_2$O$_3$</td>
<td>29.6</td>
</tr>
<tr>
<td>Ba/Al$_2$O$_3$</td>
<td>28.5</td>
</tr>
<tr>
<td>K/Al$_2$O$_3$</td>
<td>23.9</td>
</tr>
<tr>
<td>Ba/Pt/Al$_2$O$_3$</td>
<td>28.2</td>
</tr>
<tr>
<td>Ba/Ag/Al$_2$O$_3$</td>
<td>27.6</td>
</tr>
<tr>
<td>K/Ag/Al$_2$O$_3$</td>
<td>24.3</td>
</tr>
</tbody>
</table>
4.2.2 Nitrogen Adsorption Analysis

A summary of the N$_2$ adsorption analysis conducted on the H$_2$–NSR catalysts is presented in Table 4.3. In addition, the observations made for the SCR catalysts in terms of N$_2$ isotherm shape (Chapter 3, Section 1.2.3.4) also hold true for the NSR catalysts although they will not be discussed here.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Mass of Sample (g)</th>
<th>Attributable Coating Mass (g)</th>
<th>Reported BET Surface Area (m2 g$^{-1}$)</th>
<th>BET Surface Area based on Coating (m2 g$^{-1}$)</th>
<th>BJH Adsorption Average Pore Diameter (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ–Al$_2$O</td>
<td>0.4319</td>
<td>0.1279</td>
<td>37.74</td>
<td>127.41</td>
<td>9.4536</td>
</tr>
<tr>
<td>Ba/Al$_2$O$_3$</td>
<td>0.5128</td>
<td>0.1650</td>
<td>31.38</td>
<td>97.53</td>
<td>10.5480</td>
</tr>
<tr>
<td>K/Al$_2$O$_3$</td>
<td>0.5755</td>
<td>0.2482</td>
<td>20.20</td>
<td>46.85</td>
<td>11.7794</td>
</tr>
<tr>
<td>Ba/Pt/Al$_2$O$_3$</td>
<td>0.3901</td>
<td>0.1290</td>
<td>34.65</td>
<td>104.74</td>
<td>10.4184</td>
</tr>
<tr>
<td>Ba/Ag/Al$_2$O$_3$</td>
<td>0.4303</td>
<td>0.1479</td>
<td>32.72</td>
<td>95.23</td>
<td>11.8416</td>
</tr>
<tr>
<td>K/Ag/Al$_2$O$_3$</td>
<td>0.5706</td>
<td>0.2417</td>
<td>22.20</td>
<td>52.40</td>
<td>13.4750</td>
</tr>
</tbody>
</table>
4.3 H₂–NSR: A Preliminary Set of Experiments

In this section experiments are performed over selected initial parameters, in order to explore the different processes and identify potential limitations and exploitations. Utilising the equipment previously described in Chapter 3 (Section 3.3) the experiments generally consisted of the desired gas mixtures alternatively being supplied (through use of a solenoid valve) to the catalysts, whilst they were being held at a defined temperature. The samples were subject to a number of different sequences, depending on the type of investigation being undertaken e.g. NSR, TPD or TPSR. For the preliminary results details of the different reaction sequences are provided before the results of each individual experiment.

Once again, it should be acknowledged that the reaction mixture compositions and reaction temperatures specified during procedure or results descriptions are quoted to enable direct comparison between different catalyst samples and thus there will be an element of deviation from the quoted values depending on the experiment. However, the realised inlet compositions and reaction temperatures will be displayed in plots and tables without adjustment. In addition, the raw measurements presented here subsequently influenced further calibration of the QMS as described in Appendix I, and as such, the parameters detailed in Appendix I do not necessary correlate to those utilised to obtain measurements presented in this section.

Presented data points are connected to give an indication of trends and the connections do not represent recorded data. Where appropriate, arrows are utilised to highlight inlet conditions and identify which species concentration corresponds to which axis.

Finally, these results are not considered absolute and a detailed breakdown and analysis of final results will be presented in Section 4.4. The purpose of these initial experiments was to identify any shortcomings and allow optimisation of the experimental procedure, as well as gain an indication of catalyst performance (which allowed for greater accuracy in QMS calibration). As a result there are subtle differences between the detailed procedures for experimentation and analysis and these are highlighted throughout description of the results.
4.3.1 Aims and Objectives

NSR experiments will investigate the ability of the prepared catalyst materials to:

- Convert NO species to other N–containing species in the presence and absence of O₂ during the ‘lean’ phase and temporarily ‘store’ the created N–containing species.
- Provide a platform for the reduction of the stored N–containing species with H₂ during the ‘rich’ phase.
- Selectively form the desired products on reaction of the stored N–containing species with H₂.

Adsorption/desorption tests and TPD measurements of adsorbed species will be carried out in order to investigate the catalysts abilities to adsorb different species and identify any evidence of surface reactions at particular temperatures.

4.3.2 Predicted Outcomes

4.3.2.1 NSR Studies

Taking into account the sorption and reaction pathways previously discussed in Chapter 2 (Section 2.4.3.4) it is possible to make predictions in terms of the shape of the obtained NSR experimental plots (Figure 4.6):

Firstly, it may be expected that on switching to a particular ‘phase’ (rich or lean) there would be a delay seen before ‘breakthrough’ of the reactant species (NO or H₂). This would be due to NOₓ storage and subsequent reduction respectively and eventually, in the absence of any further reaction, the outlet concentration of these species would reach the inlet concentration. Additionally a decrease in O₂ concentration may be expected during the initial stages of each lean phase and production of H₂O seen during initial stages of each rich phase. There may also be some production of other undesired species at various points e.g. NO₂ or N₂O during the lean phase and NH₃ during the rich phase, depending on the properties of the catalyst.
Figure 4.6 Expected shape of the NSR experimental plots.

The overall desired reactions for each period are described in the equations that follow, and the actual sorption and reduction mechanisms were already discussed earlier (Chapter 2, Section 2.4.3.4):

Lean periods:

\[
\text{BaO} + 2\text{NO} + \frac{1}{2} \text{O}_2 \rightarrow \text{Ba(NO}_2)_2
\] \hspace{1cm} (4.1)

\[
\text{BaO} + 2\text{NO} + \frac{3}{2} \text{O}_2 \rightarrow \text{Ba(NO}_3)_2
\] \hspace{1cm} (4.2)

Rich periods:

\[
\text{Ba(NO}_2)_2 + 3\text{H}_2 \rightarrow \text{BaO} + \text{N}_2 + 3\text{H}_2\text{O}
\] \hspace{1cm} (4.3)

\[
\text{Ba(NO}_3)_2 + 5\text{H}_2 \rightarrow \text{BaO} + \text{N}_2 + 5\text{H}_2\text{O}
\] \hspace{1cm} (4.4)
However, there are also potential undesired reactions that form unwanted by-products, such as those discussed in Roy et al. (2009):

\[
\text{Ba(NO}_3\text{)}_2 + 3\text{H}_2 \rightarrow \text{BaO} + 2\text{NO} + 3\text{H}_2\text{O} \quad (4.5)
\]

\[
\text{Ba(NO}_3\text{)}_2 + 4\text{H}_2 \rightarrow \text{BaO} + \text{N}_2\text{O} + 4\text{H}_2\text{O} \quad (4.6)
\]

\[
\text{Ba(NO}_3\text{)}_2 + 8\text{H}_2 \rightarrow \text{BaO} + 2\text{NH}_3 + 5\text{H}_2\text{O} \quad (4.7)
\]

It is also expected, as is reported in the literature, that the catalysts will require conditioning i.e. they must undergo several rich and lean cycles, before they produce a repeatable performance.

Finally, it is necessary to attempt to design the experiments such that any observed adsorption or desorption processes are associated with surface chemistry and not merely the change in bulk gas composition. This is discussed by Lietti et al. (2001) who state that the sequence of phases in their transient experiments was designed in an attempt to separate the effects associated with adsorption and desorption merely caused by changes in gas compositions, from those associated with surface chemical reactions.

4.3.2.2 TPD/TPSR Studies

It is expected that every material will have some affinity for each reactant. Due to the storage component of the NSR materials it is perhaps expected that they will demonstrate a greater affinity for NO than the SCR catalysts.
4.3.3 Ba/Pt/Al₂O₃

The Ba/Pt/Al₂O₃ catalyst was studied as an example of a typical NSR catalyst and to confirm the NSR experimental approach. The catalysts were prepared in house by impregnating supplied alumina coated monoliths, first with an aqueous platinum solution and secondly with an aqueous barium solution. Synthesis details can be found in Section 4.1. The catalysts had an average platinum loading of 0.2 wt%, an average barium loading of 4.7 wt% and an average γ-Al₂O₃ loading of 28.2 wt% with respect to the complete catalyst system.

4.3.3.1 NSR Studies

The reactor was loaded with three Ba/Pt/Al₂O₃ monolith pieces. The temperature was increased to 350 °C at 10 °C min⁻¹ and the catalyst reduced under 8000 ppm H₂ in N₂ at a flow rate of ~300 cm³ min⁻¹ for 1 h. This initial reduction was conducted after reference to Nova et al. (2006), who found that because their experiments were performed in the absence of CO₂, and regeneration was carried out with H₂ or by heating, this led to the transformation of BaCO₃, which was originally present on the calcined samples (presumably as a result of the preparation process) into BaO and Ba(OH)₂. The temperature was maintained whilst the following compositions were approximately set using the reactor bypass (Table 4.4). They were unaltered for the duration of the experiment. The conditions were alternatively cycled, for periods of 25 min each and the raw data is presented in Figure 4.7.
There were a number of issues which arose from the above plot. Firstly, although three cycles have been undertaken there are still slight differences in the final two consecutive cycles and conceivably more lean/rich sequences are required to achieve consistent behaviour. It is also apparent that during the reaction both NO and H₂ abundances do not reach their inlet values (maximum NO outlet: 195 ppm and maximum H₂ outlet: 1648 ppm during the last cycle) and thus surface reactions must be occurring to account for this.

Addressing the ‘lean’ cycle; there is a short delay before breakthrough of NO and an initial drop in O₂ concentration. This may be considered the NOₓ storage period (where NOₓ is adsorbed and stored as nitrates and nitrites) before saturation of the catalyst surface is reached. However, the increase in NO is accompanied by formation, and sharp rise in abundance, of NO₂. Indeed the NO₂ levels reach in excess of 1000 ppm which given the inlet concentration of NO is only ~500 ppm, seems inaccurate. This phenomenon (formation of great quantities of NO₂) was also seen during the preliminary H₂−SCR trials over Pt/Al₂O₃ and again highlights the shortcomings of the preliminary analysis method. There was also some formation of N₂O observed during each ‘lean’ period.

Table 4.4 Approximate gas mixture flow rates and ultimate inlet compositions utilised during preliminary H₂−NSR investigations over Ba/Pt/Al₂O₃.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Gas Mixture</th>
<th>Flow Rate (dm³ h⁻¹)</th>
<th>Flow Rate (cm³ min⁻¹)</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lean</td>
<td>4000 ppm NO/N₂</td>
<td>3.31</td>
<td>55</td>
<td>500 ppm NO</td>
</tr>
<tr>
<td></td>
<td>Air</td>
<td>3.32</td>
<td>55</td>
<td>2.5% O₂</td>
</tr>
<tr>
<td></td>
<td>N₂</td>
<td>19.88</td>
<td>331</td>
<td>balance N₂</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>26.50</td>
<td>441</td>
<td></td>
</tr>
<tr>
<td>Rich</td>
<td>8000 ppm H₂/N₂</td>
<td>6.62</td>
<td>110</td>
<td>2000 ppm H₂</td>
</tr>
<tr>
<td></td>
<td>N₂</td>
<td>19.88</td>
<td>331</td>
<td>balance N₂</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>26.50</td>
<td>441</td>
<td></td>
</tr>
</tbody>
</table>
A similar delay in breakthrough of H\(_2\) is seen during ‘rich’ periods. Concurrently there is large formation of H\(_2\)O which drops off as the H\(_2\) level increases. It may be postulated that the H\(_2\) is reacting with stored NO\(_x\) species and forming H\(_2\)O (Equation 4.4) as there is no N–species observed during the ‘lean’ periods. However it is also known that Pt/Al\(_2\)O\(_3\) promotes the direct reaction of H\(_2\) and O\(_2\) at this temperature (Chapter 3, Section 3.5.1) and although there is no O\(_2\) supplied during the ‘rich’ period, the formation of H\(_2\)O may be a result of the reaction of H\(_2\) with surface O–species. There is also a significant background reading of H\(_2\)O, as previously observed during the preliminary H\(_2\)–SCR trials and again this suggests the analysis method requires refinement. Additionally, in this experiment NH\(_3\) was not measured (it was not included in the analysis method) but this may be a side product at this point and should be investigated in future experiments.

The formation of H\(_2\)O is also accompanied by an increase in temperature, as can be seen in Figure 4.8, which includes the raw data abundances of selected species and accompanying reactor inlet and outlet temperatures, and Table 4.5 which includes measured reactor temperatures averaged over a 60 s period. Throughout the experiment it appears that the reactor outlet temperature is greater than the reactor inlet and this is particularly true at the beginning of each period (where the data presented in the table is sampled from). This suggests exothermic reactions are taking place over the catalyst, thus providing the identified temperature difference. In addition, the reactor temperature is generally hotter during the rich periods. Note: the sinusoidal shape of the temperature plots may be attributed to the operation of the furnace which ‘pulses’ in order to maintain the set point temperature.
Figure 4.7 H₂-NSR over Ba/Pt/Al₂O₃ at 350 °C. Lean conditions: 500 ppm NO, 3.5 % O₂, balance N₂. Rich conditions: 2000 ppm H₂, balance N₂. Note that the secondary y-axis denotes O₂ abundance only.
Figure 4.8 Measured abundance of selected reaction species during NSR cycles and measured reactor inlet and outlet temperatures.

Table 4.5 Measured reactor inlet and outlet temperatures at various stages in the NSR cycles.

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet</td>
<td>Outlet</td>
</tr>
<tr>
<td>Lean 1</td>
<td>354.1</td>
</tr>
<tr>
<td>Lean 2</td>
<td>354.2</td>
</tr>
<tr>
<td>Lean 3</td>
<td>354.2</td>
</tr>
<tr>
<td>Rich 1</td>
<td>354.5</td>
</tr>
<tr>
<td>Rich 2</td>
<td>354.7</td>
</tr>
<tr>
<td>Rich 3</td>
<td>354.6</td>
</tr>
</tbody>
</table>
4.3.3.2 TPD Studies

The reactor was loaded with three Ba/Pt/Al₂O₃ monolith pieces. The temperature was increased to 400 °C at 10 °C min⁻¹, under a N₂ flow rate of ~330 cm³ min⁻¹, and dwelled for 1 h. The reactor was then cooled to ~35 °C and the catalysts subject to 2000 ppm H₂ in N₂ at a flow rate of 441 cm³ min⁻¹ for 0.5 h. The feed was then switched to N₂ for 0.5 h, at a flow rate of ~330 cm³ min⁻¹, before the temperature was again increased to 400 °C at 10 °C min⁻¹ and the desorbed species measured.

As can be seen from Figure 4.9, after the switch to H₂ for the adsorption period there is a small delay before the inlet conditions are reached. This indicates adsorption of H₂ species onto the surface of the catalyst and indeed this is verified when a very broad and slight peak is observed soon after the reactor temperature is increased (during desorption) from around 03:25:00 until 03:40:00.

Further analysis of the areas of these peaks confirms that only 18.06 % of the adsorbed species are subsequently desorbed. This low value creates questions about the experimental procedure, the analysis and the nature of the material. In terms of procedure, the shape of the H₂ adsorption peak does not represent a classic breakthrough curve, indeed there is a steep jump from a lower concentration to the inlet concentration shortly after the H₂ has been introduced and so perhaps there is an error here. There may also be errors in calculating the area under the curve and projected area should there be no adsorption of the reactant species. Additionally it may be that a higher temperature is required to completely desorb all H₂ species.
Figure 4.9 \(\text{H}_2 \text{-TPD over Ba/Pt/Al}_2\text{O}_3 \).
4.3.4 **Ba/Ag/Al₂O₃**

The previous NSR experiments were repeated with an unexplored material, Ba/Ag/Al₂O₃, as a potential novel catalyst. The catalysts were prepared in house by impregnating alumina coated monoliths, first with an aqueous silver solution and secondly with an aqueous barium solution. Synthesis details can be found in Section 4.1. The catalysts had an average silver loading of 1.8 wt%, an average barium loading of 5.0 wt% and an average γ-Al₂O₃ loading of 27.6 wt% with respect to the complete catalyst system.

4.3.4.1 NSR Studies

The catalysts were explored in similar, although not identical, conditions to those described for the Ba/Pt/Al₂O₃ NSR experiment previously (Section 4.3.3.1). The reactor was first loaded with three Ba/Ag/Al₂O₃ monolith pieces. The temperature was increased to 350 °C at 10 °C min⁻¹ and the catalyst reduced under 8000 ppm H₂ in N₂ at a flow rate of ~300 cm³ min⁻¹ for 1 h. The temperature was maintained whilst the following compositions were approximately set using the reactor bypass (Table 4.6). They were unaltered for the duration of the experiment:

Table 4.6 Approximate gas mixture flow rates and ultimate inlet compositions utilised during preliminary H₂–NSR investigations over Ba/Ag/Al₂O₃.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Gas Mixture</th>
<th>Flow Rate (dm³ h⁻¹)</th>
<th>Flow Rate (cm³ min⁻¹)</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lean</td>
<td>Lean</td>
<td>2.63</td>
<td>44</td>
<td>500 ppm NO</td>
</tr>
<tr>
<td></td>
<td>Air</td>
<td>5.53</td>
<td>92</td>
<td>5.0 % O₂</td>
</tr>
<tr>
<td></td>
<td>N₂</td>
<td>15.64</td>
<td>261</td>
<td>balance N₂</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>23.80</td>
<td>397</td>
<td></td>
</tr>
<tr>
<td>Rich</td>
<td>Rich</td>
<td>5.05</td>
<td>84</td>
<td>2000 ppm H₂</td>
</tr>
<tr>
<td></td>
<td>N₂</td>
<td>15.64</td>
<td>261</td>
<td>balance N₂</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>20.69</td>
<td>345</td>
<td></td>
</tr>
</tbody>
</table>

The conditions were alternatively cycled, for varying periods of time (Table 4.7) until the measured results were deemed repeatable between two consecutive cycles (Figure 4.10).
Table 4.7 Cycle times for Ba/Ag/Al₂O₃ H₂–NSR experiment.

<table>
<thead>
<tr>
<th>Cycle No.</th>
<th>Period Length (min)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lean</td>
<td>Rich</td>
</tr>
<tr>
<td>1</td>
<td>45</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>

The following plot displays similar trends to that obtained for the Ba/Pt/Al₂O₃ catalyst. Five cycles were undertaken and the catalyst demonstrated repeatable behaviour between cycles four and five. Again, it is apparent that during the reaction both NO and H₂ abundances do not reach their inlet values (maximum NO outlet: 312 ppm and maximum H₂ outlet: 1014 ppm during the last cycle) and thus surface reactions must be occurring to account for the difference.

Addressing the ‘lean’ cycle; once more there is a short delay before breakthrough of NO, and an initial drop in O₂ concentration. These changes can be attributed to the NOₓ storage period before saturation of the catalyst surface is reached. Again, the increase in NO is accompanied by formation, and sharp rise in abundance of NO₂ (reaching a maximum concentration in excess of 600 ppm). Additionally, there was no apparent formation of N₂O in this instance.

A delay in breakthrough of H₂ is seen during ‘rich’ periods and again there is large formation of H₂O which drops off as the H₂ level increases (there are also significant quantities of apparent background H₂O present). Once more it may be assumed that at least some of the H₂ is reacting with stored NOₓ species and forming H₂O (Equation 4.4) as there are no N–species observed during the rich periods. Finally, as in the previous experiment NH₃ was not measured, but this may be a side product at this point and should be investigated in future experiments.
Figure 4.10
H₂–NSR over Ba/Ag/Al₂O₃ at 350 °C. Lean conditions: 500 ppm NO, 5 % O₂, balance N₂. Rich conditions: 2000 ppm H₂, balance N₂. Note that the secondary y-axis denotes O₂ abundance only. L = Lean cycle, R = Rich cycle.
4.3.5 Identified Issues and Limitations

Once again, there were a number of issues with both the experimental procedures and experimental results, from both catalysts, which required addressing:

- It was confirmed that several lean and rich cycles i.e. 3–4, are required before consistent results are achieved – this had to be built in to the final experimental procedure.

- The initial inlet conditions of each species were not reached at any time during the actual experimental trials; it appears there are surface reactions occurring between inlet species.

- Large spikes in the H$_2$O and O$_2$ levels were seen when switching between cycles. This may be expected for H$_2$O during the rich periods as it is a desired product of the reaction, although it is not expected for O$_2$.

- The apparent presence of large amounts of H$_2$O in the reaction mixture accompanied by a constantly drop in H$_2$O levels over the course of each cycle; was observed, perhaps there was contamination of the line?

- Again there appears to be an apparent sensitivity of the QMS procedure to NO$_2$, which is produced in high quantities in comparison to the inlet concentration of NO. The QMS method required refinement.

In terms of the TPD trials, the low % desorbed species value observed in this experiment may be the result of several issues:

- Error in the experimental procedure i.e. problem with the solenoid valve when switching to the adsorbent stream or insufficient temperature reached;

- Incorrect analysis.

It appears that the absolute value of H$_2$ adsorbed is also very small, although this may simply be due to the fact that the material has little affinity for the species as opposed to any experimental error.
4.3.6 Conclusions and Subsequent Actions taken

Again the ‘general’ predicted outcomes were mostly realised in the initial H₂–NSR experimental trials. The experimental procedure appeared appropriate and produced somewhat expected results; there was a delay at the beginning of each cycle before breakthrough of each reactant species was seen, attributable to periods of storage and reduction, and lower NO levels (than the supplied inlet concentration) and an apparent production of H₂O were also measured during the respective periods. Thus both tested catalysts appear to demonstrate some deNOₓ activity in the H₂–NSR process.

However, there was a large amount of NO₂, in excess of 1000 ppm for the Ba/Pt/Al₂O₃ system and 600 ppm for the Ba/Ag/Al₂O₃ system, produced in both cases. Although, N₂O formation was only witnessed during the Ba/Pt/Al₂O₃ investigation.

In terms of the TPD measurement; once again the experimental approach appears appropriate with both adsorption and subsequent desorption apparent.

There are now a number of steps which were implemented to improve the overall experimental method and complete this section of study. Indeed some of these actions had already been considered in response to the shortcomings of the SCR experimental method:

- Refinement of the method of calibrating the QMS in order to improve the accuracy in detecting NO₂.
- Inclusion of NH₃ in the measurement method as it may be a by-product of the reaction of H₂ with stored NOₓ species.
- Investigation of possible methods of removing/reducing background H₂O levels.
4.4 H₂–NSR: Final Results

In this section the results of H₂–NSR experiments, performed over selected parameters identified through the preliminary experiments described in Section 4.3, are presented. The experimental set–up and general procedures detailed in Chapter 3 remained the same whilst the specific details of the different reaction sequences are provided before each set of results.

Once again, although the reaction mixture compositions are specified, due to the nature of the equipment and the measurements it was not practical to consistently obtain these exact conditions and so they are provided as a guideline only. Again, although every effort was made to produce a reliable and robust method; in some instances gentle manipulation of the data was required to negate erroneous ‘background’ readings and present a true reflection of species abundance; however, all results were processed in exactly the same fashion.

The data points are presented as observed and are connected to give an indication of trends only, the connections do not represent recorded data. Where appropriate, arrows are utilised to highlight inlet conditions and identify which species correspond to which axis. In addition, for ease of display and analysis; only one lean/rich cycle (obtained once repeatable performance was observed) for each of the NSR investigations will be presented.

The catalysts were subject to the following standardised procedures. In some cases this first involved pre–treatment with the intention of removing any undesired surface species, before the catalysts were subject to the desired reaction mixtures and processes. In other cases (the NSR investigations), in the absence of pre–treatment the catalysts were subject to the lean/rich cycles until repeatable performance between cycles was observed. The justifications for the procedures are provided within each description.
4.4.1 H$_2$–NSR

It should be noted that in refining the experimental procedure from the preliminary investigations, it was decided that the catalyst performance should be explored in two different rich period conditions; one in the absence of O$_2$ and another in the presence of O$_2$. For the purposes of the straightforward reporting of results, the conditions under which the catalysts are investigated will be labelled as follows:

- Lean vs Rich 1.
- Lean vs Rich 2.

The experimental temperature of 400 °C was chosen in an effort to improve on the performance of the silver catalysts demonstrated at 350 °C in the preliminary experiments (Section 4.3.4) as was the O$_2$ concentration of 3.2 % (as opposed to 5 %); through reducing the production of NO$_2$.

4.4.1.1 Lean vs Rich 1

The reactor was loaded with three monolith pieces. The temperature was increased to 400 °C at 10 °C min⁻¹ under N₂ at a flow rate of ~330 cm³ min⁻¹. The temperature was maintained whilst the following flow rates and compositions were approximately set using the reactor bypass (Table 4.8). The inlet conditions were unaltered for the duration of each NSR experiment and alternatively cycled, for periods of 30 min each, until repeatable measurements between consecutive cycles were observed; it is for this reason that pre-treatment was deemed unnecessary.

Table 4.8 Approximate gas mixture flow rates and ultimate inlet compositions utilised during final H₂–NSR ‘Lean vs Rich 1’ investigations.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Gas Mixture</th>
<th>Flow Rate (dm³ h⁻¹)</th>
<th>Flow Rate (cm³ min⁻¹)</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lean</td>
<td>4000 ppm NO/N₂</td>
<td>8.24</td>
<td>137</td>
<td>1000 ppm NO</td>
</tr>
<tr>
<td></td>
<td>N₂</td>
<td>19.88</td>
<td>331</td>
<td>3.2 % O₂</td>
</tr>
<tr>
<td></td>
<td>Air</td>
<td>5.06</td>
<td>84</td>
<td>balance N₂</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>33.18</td>
<td>553</td>
<td></td>
</tr>
<tr>
<td>Rich 1</td>
<td>8000 ppm H₂/N₂</td>
<td>8.87</td>
<td>148</td>
<td>2500 ppm H₂</td>
</tr>
<tr>
<td></td>
<td>N₂</td>
<td>19.88</td>
<td>331</td>
<td>balance N₂</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>28.75</td>
<td>479</td>
<td></td>
</tr>
</tbody>
</table>

It is apparent in Table 4.8 that there is some difference in the total flow rates between the different lean and rich periods; this is unavoidable due to the resources and experimental set-up, however the flow rates are not substantially different and for the purposes of this investigation the impact may be considered negligible.
4.4.1.1.1 Catalyst Substrate and Support

Through a similar approach to Chapter 3; in order to correctly account for activity in terms of the individual components of the catalyst, it is important to first identify the behaviour of only the substrate and support layers under NSR experimental conditions. As little activity is evident, the results from these materials will merely be summarised in an effort to minimise the number of graphs presented throughout this thesis. Note that the catalyst substrate and support materials were only investigated under a lean/rich cycle which utilised the ‘Rich 1’ conditions detailed in Table 4.8.

4.4.1.1.1.1 Cordierite

The cordierite samples demonstrated no substantial reaction under NSR conditions at a temperature of 400 ºC. During the lean period the supplied inlet conditions remained apparently unchanged and there was only very slight detection of trace species formation; NO\textsubscript{2} (≤4 ppm) and N\textsubscript{2}O (≤6 ppm). In switching to the rich period, there is also no suggestion of H\textsubscript{2} consumption, but there was apparent formation of trace levels of H\textsubscript{2}O (≤32 ppm), N\textsubscript{2}O (≤23 ppm) and NO\textsubscript{2} (≤10 ppm). These species concentrations peak immediately after switching to the rich period and then gradually decrease in concentration as the period progresses. This does suggest the cordierite has some affinity for NO and facilitates its reaction with H\textsubscript{2} or O–species to form the observed compounds.
4.4.1.1.1.2 γ–Al₂O₃

The γ–Al₂O₃ samples had an average loading of 29.6 wt% with respect to the complete catalyst system. Once more there was no substantial reaction observed under NSR conditions at a temperature of 400 °C. There was no apparent consumption of NO or O₂ during the lean period, although some formation of NO₂ (≤ 10 ppm, presumably from the oxidation of NO) was observed. On switching to the rich phase, consumption of H₂ was observed although there were no trace species detected beyond formation of H₂O; initially in a concentration of 1980 ppm before a gradual decrease to 121 ppm over the course of the rich period. By combining the observed concentrations of H₂ and H₂O and comparing them to the inlet H₂ concentration (in this case 2139 ppm), the values are in strong agreement and in the absence of any trace species it may be assumed that the H₂ is reacting only with surface oxygen species to form the H₂O observed.

Assuming a consistent coating of γ–Al₂O₃ on the substrate samples, it may be assumed that one of the other oxides of which cordierite consists of i.e. MgO or SiO₂, is responsible for the apparent and slight storage and reduction behaviour (formation of N₂O in the rich period) described in Section 4.4.1.1.1.
4.4.1.1.2 Storage Components

As a reminder, Ba and K are included in the NSR catalysts as ‘storage components’ to facilitate temporary storage of the NO\textsubscript{x} species during the lean period before subsequent reduction on exposure to the rich period. It was also deemed important to explore the behaviour of the storage components in the absence of the noble metal component, under NSR conditions, with a view to possibly gleaning information on the mechanism of the storage. Once again, the results from these materials will merely be summarised in an effort to minimise the number of graphs presented throughout this thesis.

4.4.1.1.2.1 Ba/Al\textsubscript{2}O\textsubscript{3}

The investigated samples had an average barium loading of 3.6 wt% and an average γ–Al\textsubscript{2}O\textsubscript{3} loading of 28.5 wt% with respect to the complete catalyst system. Preparation details can be found in Section 4.1.

The Ba/Al\textsubscript{2}O\textsubscript{3} system demonstrated some level of both NO and O\textsubscript{2} consumption during the initial stages of the lean phase. This was accompanied by NO\textsubscript{2} formation, which peaked at 47 ppm immediately after switching to the lean conditions and then levelled out at 23 ppm as the period progressed. There was also some slight N\textsubscript{2}O formation which only occurred after 15 min in to the lean phase and gradually increased to 5 ppm by the end of the phase. Upon switching to the rich phase there is some indication of H\textsubscript{2} consumption accompanied by formation of H\textsubscript{2}O (in similar manner to γ–Al\textsubscript{2}O\textsubscript{3} above: initially 212 ppm which gradually decreases to 117 ppm) in addition to N\textsubscript{2}O (23 ppm) and NO\textsubscript{2} (10 ppm) (in these cases initial concentration is greatest and then gradually decreases). There is also some measurement of NO (89 ppm), the concentration of which gradually decreases over the course of the period. It may be that NO is loosely adsorbed on to the surface of the catalyst, without undergoing a chemical reaction, and when the bulk gas composition changes from the lean phase to the rich phase, the result is the desorption of the NO species.
4.4.1.2.2 K/Al$_2$O$_3$

The investigated samples had an average potassium loading of 19.2 wt% and an average γ-Al$_2$O$_3$ loading of 23.9 wt% with respect to the complete catalyst system. Preparation details can be found in Section 4.1.

On introducing the lean phase there is a strong indication of NO storage through consumption of NO and O$_2$ without the accompanying formation of NO$_2$. Indeed there is no NO$_2$ observed throughout the lean period and formation of N$_2$O occurs only after 600 s of the period, at which point it gradually increases until an outlet value of 30 ppm is reached.

On switching to the rich phase an increase in formation of N$_2$O to 64 ppm is observed before it gradual decreases to 17 ppm over the course of the period. Additionally, there is some formation of NO$_2$ (9 ppm) also observed, although it decreases to 0 ppm over the course of the period, and apparent desorption of NO (94 ppm) which again gradually decreases to 21 ppm over the course of the rich phase. In terms of H$_2$ consumption, conversion of 6.7 % is observed at the end of the rich phase whilst formation of H$_2$O gradually decreases from a peak of 157 ppm to 138 ppm.
4.4.1.3 Complete Catalyst Systems

4.4.1.3.1 Ba/Pt/Al₂O₃

As a reminder, the Ba/Pt/Al₂O₃ catalyst was studied as an example of a typical NSR catalyst and to confirm the NSR experimental approach. The catalysts had an average platinum loading of 0.2 wt%, an average barium loading of 4.7 wt% and an average γ–Al₂O₃ loading of 28.2 wt% with respect to the complete catalyst system. Preparation details can be found in Section 4.1.

The Ba/Pt/Al₂O₃ catalyst demonstrated a similar performance to preliminary experiments (albeit at a different reaction temperature) when subject to the final H₂–NSR experimental conditions. However, due to recalibration of the QMS the measured species concentrations are more appropriate, and indeed where applicable the mass balances are realised. In addition, the performance strongly resembles that of similar investigations of this catalyst material in the literature described previously in Chapter 2 i.e. Lietti et al. (2001), Cumaranatunge et al. (2007) and Abdulhamid et al. (2004), validating the experimental approach and analysis methods.

The overall measured abundances of both main and trace reactant species formed during H₂–NSR investigations over the Ba/Pt/Al₂O₃ catalyst under ‘Lean vs Rich 1’ conditions are shown in Figure 4.11. In addition, the species formed during the lean phase only are presented in Figure 4.12 and similarly during the rich phase only in Figure 4.13 (main species) and Figure 4.14 (trace species).

It can be observed from the overall plot of both the lean and rich cycle in Figure 4.11 that on exposure to the lean phase there is clear evidence of NOₓ storage occurring due to the breakthrough curves of both NO and O₂. This is accompanied by the evolution of H₂O (initially in a concentration of 380 ppm), a phenomena described in Lietti et al. (2001) and which suggests NOₓ storage is also occurring on Ba(OH)₂ sites. NO₂ is also formed and its concentration increases to 283 ppm over time. By considering Figure 4.12 it can be seen that the NOₓOutlet (= NOOutlet + NO₂Outlet) approaches the NOInlet concentration, and the area apparent between the NOₓOutlet and NOInlet plots represents the amount of NOₓ stored on the catalyst. Through calculation this area relates to 18.8 % of the supplied NO during the lean phase.
Figure 4.11 \(\text{H}_2\)–NSR over Ba/Pt/Al\(_2\)O\(_3\) under ‘Lean vs Rich 1’ conditions at 400 \(^\circ\)C. Lean conditions: 1000 ppm NO, 3.2 \% O\(_2\), balance N\(_2\). Rich conditions: 2500 ppm H\(_2\), balance N\(_2\). Note that the secondary y–axis denotes O\(_2\) abundance only.

It should be noted here that the significant formation of NO\(_2\) observed in this experiment appears to result in a reduction in the accuracy of the measured O\(_2\) concentration. This is a consequence of the limitations of the equipment utilised within the QMS method, which did not allow the contributions of NO\(_2\) at secondary peaks to be accurately measured when NO\(_2\) is present in high concentrations. As a result the calculated contribution of NO\(_2\) at 32 amu is significantly greater than in reality, which results in an apparent lower measured concentration of O\(_2\). However, the O\(_2\) present is in great excess with respect to the other reactants and it is still possible to identify trends in the O\(_2\) trace. Therefore, although this highlights a shortcoming in the QMS method, and indeed it applies to each experiment detailed in this section, it was not deemed to significantly affect the performance level indicators utilised in this project.
Species observed during the lean phase of H_2–NSR over Ba/Pt/Al$_2$O$_3$ under ‘Lean vs Rich 1’ conditions at 400 °C. Lean conditions: 1000 ppm NO, 3.2 % O$_2$, balance N$_2$.

On switching to the rich phase (Figure 4.13) initial formation of H$_2$O is observed after 95 s, which peaks at 1522 ppm and then gradually decreases to 222 ppm as time progresses. This is closely followed by the breakthrough of H$_2$ after 190 s, which reaches 2036 ppm, corresponding to a conversion of 20.4 %, at the end of the rich phase. These traces (formation of H$_2$O before breakthrough of H$_2$) indicate the reduction of stored NO$_x$, perhaps through Equation 4.4 detailed previously.

Whilst it may be desirable to combine the H$_2$ and H$_2$O outlet values and compare the total to the H$_2$ inlet value, in a similar manner to the NO$_x$ species above, it is not advisable due to the production of species such as NH$_3$ through Equation 4.7 detailed previously:

$$\text{Ba(NO}_3\text{)}_2 + 8\text{H}_2 \rightarrow \text{BaO} + 2\text{NH}_3 + 5\text{H}_2\text{O}$$ \hspace{1cm} (4.7)
The stoichiometry of the reaction is such that the ratio of $H_2^{\text{Inlet}}:H_2O^{\text{Outlet}}$ does not equal 1, and any presumption as such may lead to inaccurate results. Although it may be argued that by consideration of the other species formed it may be possible to account for the stoichiometry of the reaction, through the analytical technique and methods under use it is impossible to definitively assign the reaction mechanisms. In addition undesired surface reactions may also be occurring, such as that shown below:

$$\text{BaO} + H_2O \rightarrow \text{Ba(OH)}_2$$

(4.8)

However, the trace of the H_2^{Inlet} will be included on the plots in order to provide a relative indication of the catalyst performances. As can be seen from Figure 4.13, without further manipulation the combination of H_2 and H_2O outlet concentrations corresponds to greater than 90% of the inlet H_2 concentration at the end of the rich phase. Thus it may be stated that the QMS method is well calibrated, certainly with respect to the method utilised in the preliminary NSR experiments (Section 4.3).

Now considering the trace species observed during the rich phase (Figure 4.14); a significant quantity of NO (782 ppm) is immediately apparent (even greater than the final NO outlet concentration measured in the lean phase) although this rapidly decreases to 25 ppm by the end of the lean period. In addition to the apparent reduction of stored NOx species, this measured NO may be accounted for in a number of ways:

- It is weakly adsorbed surface NO (not incorporated into $\text{Ba(NO}_3)_2$ or $\text{Ba(NO}_2)_2$) which is desorbed on introduction of a different gas composition.

- It is the result of the reaction of H_2 with stored $\text{Ba(NO}_3)_2$ or $\text{Ba(NO}_2)_2$ (Equation 4.5).

- The rate of reaction of NO release is greater than the rate of reaction of NO reduction.
A similar trace is observed for NO\textsubscript{2} albeit in much smaller quantities (69 ppm down to 2 ppm). There is also some immediate formation of N\textsubscript{2}O but again in very slight quantities: initially 12 ppm and then down to 0 after 660 s. Finally, NH\textsubscript{3} formation was also observed after 190 s and this peaked at 46 ppm before gradually reducing over the course of the period. As was discussed previously in Chapter 2, Section 2.4.3.4.3, it is thought that the mechanism of stored NO\textsubscript{x} reduction with H\textsubscript{2} over Ba/Pt/Al\textsubscript{2}O\textsubscript{3}, beyond reaction between NO and H\textsubscript{2}, involves the formation of NH\textsubscript{3} which subsequently reacts to reduce the NO\textsubscript{x} species. Perhaps the breakthrough of NH\textsubscript{3}, which closely matches that of H\textsubscript{2} breakthrough, indicates that the stored NO\textsubscript{x} species have been reduced at this point and the NH\textsubscript{3} formed is unreactive towards the remaining species or the other species present.

Finally, by considering the apparent abundance of NO\textsubscript{x} stored during the lean phase detailed above, and the total abundance of N–containing species produced in the rich phase; it is possible to calculate the apparent proportion of stored NO\textsubscript{x} which is converted to the desired product, N\textsubscript{2}. Ideally it would also be possible to directly measure the abundance of N\textsubscript{2} formed during the rich phase, but this is not possible whilst using N\textsubscript{2} as the carrier gas. As a result the calculated amount of stored NO\textsubscript{x} which is converted to N\textsubscript{2} is \textit{56.8\%}.
Figure 4.13 Main species observed during the rich phase of H$_2$–NSR over Ba/Pt/Al$_2$O$_3$ under ‘Lean vs Rich 1’ conditions at 400 °C. Rich conditions: 2500 ppm H$_2$, balance N$_2$.

Figure 4.14 Trace species observed during the rich phase of H$_2$–NSR over Ba/Pt/Al$_2$O$_3$ under ‘Lean vs Rich 1’ conditions at 400 °C. Rich conditions: 2500 ppm H$_2$, balance N$_2$. Note the primary x–axis denotes NO concentration only.
4.4.1.3.2 Ba/Ag/Al₂O₃

Ba/Ag/Al₂O₃ was explored as a potential novel H₂–NSR catalyst. The catalysts had an average silver loading of 1.8 wt%, an average barium loading of 5.0 wt% and an average γ-Al₂O₃ loading of 27.6 wt% with respect to the complete catalyst system. Preparation details can be found in Section 4.1.

The overall measured abundances of both main and trace reactant species formed during H₂–NSR investigations over the Ba/Ag/Al₂O₃ catalyst under ‘Lean vs Rich 1’ conditions are shown in Figure 4.15. In addition, the species formed during the lean phase only are presented in Figure 4.16 and similarly during the rich phase only in Figure 4.17 (main species) and Figure 4.18 (trace species).

The Ba/Ag/Al₂O₃ catalyst, in some aspects, demonstrates very similar performance to the ‘standard’ Ba/Pt/Al₂O₃ catalyst (Figure 4.11 and Figure 4.12). Considering the overall plot in Figure 4.15 and lean phase plot in Figure 4.16;

- Initial consumption of both NO and O₂.
- Initial formation of H₂O (1212 ppm) gradually decreases to 0 ppm after 17 min.
- Formation of NO₂ increases to 253 ppm as the period progresses.
- NOₓ Outlet ≈ NO Inlet by the end of the lean period; 10.5 % of supplied NO stored during the lean period.
Figure 4.15
H$_2$–NSR over Ba/Ag/Al$_2$O$_3$ under ‘Lean vs Rich 1’ conditions at 400 °C. Lean conditions: 1000 ppm NO, 3.2 % O$_2$, balance N$_2$. Rich conditions: 2500 ppm H$_2$, balance N$_2$. Note that the secondary y–axis denotes O$_2$ abundance only.

Figure 4.16
Species observed during the lean phase of H$_2$–NSR over Ba/Ag/Al$_2$O$_3$ under ‘Lean vs Rich 1’ conditions at 400 °C. Lean conditions: 1000 ppm NO, 3.2 % O$_2$, balance N$_2$.
On switching to the rich phase (Figure 4.17 and Figure 4.18) again similar performance to the Ba/Pt/Al₂O₃ catalyst (Figure 4.13 and Figure 4.14) is observed:

- Initial formation of H₂O (95 s) peaks at 1407 ppm and decreases to 790 ppm.
- Breakthrough of H₂ (140 s) reaches 1749 ppm, (= 30.4 % conversion at the end of the rich phase).
- Apparent reduction of stored NOₓ in addition to significant levels of NO observed (653 ppm decreasing sharply to 0 ppm after 17.5 min).
- NO₂ abundance follows the NO trace albeit in much smaller quantities (89 ppm down to 3 ppm).
- Formation of N₂O occurs immediately in very slight quantities (initially 8 ppm decreasing to 0 after 240 s).
- ≤3 ppm NH₃ formation observed after 330 s and remained for the duration.
- As a result of the evolution of significant quantities of NO, in tandem with the formation of other N–containing species, the proportion of stored NOₓ which is successfully converted to N₂ is only 5.6 %.
Figure 4.17 Main species observed during the rich phase of \(\text{H}_2 \)-NSR over Ba/Ag/Al\(_2\)O\(_3\) under ‘Lean vs Rich 1’ conditions at 400 °C. Rich conditions: 2500 ppm \(\text{H}_2 \), balance \(\text{N}_2 \).

Figure 4.18 Trace species observed during the rich phase of \(\text{H}_2 \)-NSR over Ba/Ag/Al\(_2\)O\(_3\) at under ‘Lean vs Rich 1’ conditions 400 °C. Rich conditions: 2500 ppm \(\text{H}_2 \), balance \(\text{N}_2 \). Note the primary x–axis denotes NO concentration only.
4.4.1.3.3 K/Ag/Al₂O₃

K/Ag/Al₂O₃ was explored as a potential novel H₂–NSR catalyst. The catalysts had an average silver loading of 2.1 wt%, an average potassium loading of 16.0 wt% and an average γ–Al₂O₃ loading of 24.3 wt% with respect to the complete catalyst system. Preparation details can be found in Section 4.1.

The overall measured abundances of both main and trace reactant species formed during H₂–NSR investigations over the K/Ag/Al₂O₃ catalyst under ‘Lean vs Rich 1’ conditions are shown in Figure 4.19. In addition, the species formed during the lean phase only are presented in Figure 4.20 and similarly during the rich phase only in Figure 4.21 (main species) and Figure 4.22 (trace species).

When considering the overall (Figure 4.19) and lean phase (Figure 4.20) plots, it is apparent that the K/Ag/Al₂O₃ catalyst demonstrates significantly different behaviour to those catalysts previously investigated:

- ‘Breakthrough’ of NO is observed only after an initial dip in concentration (a phenomena not observed with any other catalyst) and reaches a maximum abundance of 413 ppm.
- Evolution of N₂O (15.5 min) gradually increases to 52 ppm by the end of the period. N₂O formation has not been observed during the lean phase of any other catalyst investigation in this project with the exception of the K/Al₂O₃ study. Thus it may be assumed that reaction of NO with surface K–species are responsible for its evolution.
- No formation of NO₂ observed throughout the lean phase.
- NOₓOutlet increases throughout the lean phase though does not approach the NO_Inlet and demonstrates a maximum calculated value of only 514 ppm.
- 72.3 % of the supplied NO is stored, the greatest fraction yet observed in this study.
- Significant evolution of H₂O (1026 ppm) decreasing to 0 ppm after 27 min.
Figure 4.19
H₂–NSR over K/Ag/Al₂O₃ under ‘Lean vs Rich 1’ conditions at 400 °C. Lean conditions: 1000 ppm NO, 3.2 % O₂, balance N₂. Rich conditions: 2500 ppm H₂, balance N₂. Note that the secondary y–axis denotes O₂ abundance only.

Figure 4.20
Species observed during the lean phase of H₂–NSR over K/Ag/Al₂O₃ under ‘Lean vs Rich 1’ conditions at 400 °C. Lean conditions: 1000 ppm NO, 3.2 % O₂, balance N₂.
On switching to the rich phase (Figure 4.21 and Figure 4.22):

- Immediate H$_2$ and H$_2$O breakthrough;
 - Follow a similar trend for the first 3.5 min, after which H$_2$ concentration equals 1163 ppm and H$_2$O concentration equals 1219 ppm.

- Beyond this stage however;
 - H$_2$ concentration decreases to a local minima of 975 ppm after 14 min, and
 - H$_2$O concentration increases to 1473 ppm at the same point.

- After which, for the final 16 min of the period;
 - H$_2$ concentration increases as H$_2$O concentration decreases, reaching final measured values of 1522 ppm (H$_2$) and 1003 ppm (H$_2$O).

Considering the trace species it is clear that whilst there was indication of substantial NO$_x$ storage during the lean phase, it is not translated into successful reduction:

- Evolution of NO peaks at 630 ppm after switching (100 s) and gradually decreases to 19 ppm.

- Immediate formation of N$_2$O and NO$_2$ (117 ppm and 31 ppm respectively) decreases to 0 ppm as the phase progresses.

- Breakthrough of 1 ppm NH$_3$ (165 s) increases to 14 ppm.
It is not clear what has caused the shape of the plotted H₂ and H₂O abundances, although perhaps it is related to the NO abundance; there is a step in the NO trace which coincides with the start of the apparent minima and maxima experienced by the H₂ and H₂O respectively. Although it may be suggested that the NO is loosely adsorbed to the surface of the catalyst and is merely desorbed after switching to the rich phase, perhaps the NO is re-formed through the reaction of H₂ with the nitrates and nitrites, in a similar fashion to Equation 4.5 detailed previously:

\[
\text{Ba(NO}_3\text{)}_2 + 3\text{H}_2 \rightarrow \text{BaO} + 2\text{NO} + 3\text{H}_2\text{O} \tag{4.5}
\]

\[
\text{Ba(NO}_2\text{)}_2 + \text{H}_2 \rightarrow \text{BaO} + 2\text{NO} + \text{H}_2\text{O} \tag{4.9}
\]

Thus should the H₂ be reacting with both Ba(NO₂)₂ and Ba(NO₃)₂ to form NO, or indeed one type of species is found in differing environments, it may be envisaged that reaction with one species/environment is favoured over reaction with the other. Consequently, differing rates of reaction may explain both the step in the NO evolution profile and maxima/minima traces displayed by the H₂ and H₂O abundances.

Despite the significant evolution of NO observed during the rich phase, the calculated amount of stored NOₓ which is converted to N₂ is 59.8 %. Coupled with the previously described storage of 72.3 % of the supplied NO during the lean phase, this catalyst outperforms both the ‘standard’ NSR catalyst and the additional novel silver catalyst previously detailed when investigated under the same reaction conditions.
Figure 4.21 Main species observed during the rich phase of H_2–NSR over K/Ag/Al$_2$O$_3$ under ‘Lean vs Rich 1’ conditions at 400 °C. Rich conditions: 2500 ppm H_2, balance N_2. Note the primary x–axis denotes NO and N_2O concentration only.

Figure 4.22 Trace species observed during the rich phase of H_2–NSR over K/Ag/Al$_2$O$_3$ at under ‘Lean vs Rich 1’ conditions 400 °C. Rich conditions: 2500 ppm H_2, balance N_2. Note the primary x–axis denotes NO and N_2O concentration only.
4.4.1.2 Lean vs Rich 2

It may be found that the presence of O\textsubscript{2} is necessary to reduce the stored NO\textsubscript{x} species and that it plays a role in the reaction, much like the desired H\textsubscript{2}–SCR reactions discussed in Chapter 3.

The reactor was loaded with three monolith pieces. The temperature was increased to 400 °C at 10 °C min\(^{-1}\) under N\textsubscript{2} at a flow rate of ~330 cm\(^3\) min\(^{-1}\). The temperature was maintained whilst the following flow rates and compositions were approximately set using the reactor bypass (Table 4.9). The inlet conditions were unaltered for the duration of each NSR experiment and alternatively cycled, for periods of 30 min each, until repeatable measurements between consecutive cycles were observed; it is for this reason that pre-treatment was deemed unnecessary.

Table 4.9 Approximate gas mixture flow rates and ultimate inlet compositions utilised during final H\textsubscript{2}–NSR ‘Lean vs Rich 2’ investigations.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Gas Mixture</th>
<th>Flow Rate (dm(^3) h(^{-1}))</th>
<th>Flow Rate (cm(^3) min(^{-1}))</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lean</td>
<td>4000 ppm NO/N\textsubscript{2}</td>
<td>8.24</td>
<td>137</td>
<td>1000 ppm NO</td>
</tr>
<tr>
<td></td>
<td>11.13</td>
<td>3.2 % O\textsubscript{2}</td>
<td>84</td>
<td>balance N\textsubscript{2}</td>
</tr>
<tr>
<td></td>
<td>N\textsubscript{2}</td>
<td>19.88</td>
<td>331</td>
<td>3.2 % O\textsubscript{2}</td>
</tr>
<tr>
<td></td>
<td>Air</td>
<td>5.06</td>
<td>84</td>
<td>balance N\textsubscript{2}</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>33.18</td>
<td>553</td>
<td></td>
</tr>
<tr>
<td>Rich 2</td>
<td>8000 ppm H\textsubscript{2}/N\textsubscript{2}</td>
<td>11.13</td>
<td>185</td>
<td>2500 ppm H\textsubscript{2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.9 % O\textsubscript{2}</td>
<td>84</td>
<td>balance N\textsubscript{2}</td>
</tr>
<tr>
<td></td>
<td>19.88</td>
<td>331</td>
<td>2.9 % O\textsubscript{2}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Air</td>
<td>5.06</td>
<td>84</td>
<td>balance N\textsubscript{2}</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>36.06</td>
<td>600</td>
<td></td>
</tr>
</tbody>
</table>
4.4.1.2.1 Storage Components

4.4.1.2.1.1 Ba/Al₂O₃

The investigated samples had an average barium loading of 3.6 wt% and an average γ–Al₂O₃ loading of 28.5 wt% with respect to the complete catalyst system. Preparation details can be found in Section 4.1.

In terms of lean phase performance, the Ba/Al₂O₃ catalyst demonstrated almost identical behaviour when compared to the results of the Lean vs Rich 1 conditions experiment:

- Initial NO₂ formation (62 ppm) which levels out to 20 ppm.
- However, no N₂O formation observed.

This is not necessarily surprising as the lean inlet conditions are consistent between the procedures, although it does suggest that the rich phase, now with the inclusion of O₂, in this instance does not produce a vastly different catalyst surface or the surface species which would impact on the lean phase reactions.

On switching to the rich period, the catalyst again demonstrates a similar performance to that observed in the Lean vs Rich 1 experiment above; although in this instance there was no formation of N₂O, the NO₂ formation remains consistent (initial formation of 10 ppm which gradually decreases over the course of the rich period). Perhaps the presence of O₂ suppresses N₂O formation. There is significantly greater conversion of H₂ and formation of H₂O in comparison to the Lean vs Rich 1 experiment; 54.2 % and 1339 ppm respectively assuming steady state at the end of the rich phase. In the absence of the formation of any other trace species it may be assumed that the H₂ is reacting with some of the O₂ present to produce the greater levels of H₂O measured. Again there is also some apparent desorption of NO; 88 ppm which gradually decreases over the rich period, albeit at a faster rate than observed in the Lean vs Rich 1 experiment above.
4.4.1.2.1.2 K/Al₂O₃

The investigated samples had an average potassium loading of 19.2 wt% and an average γ-Al₂O₃ loading of 23.9 wt% with respect to the complete catalyst system. Preparation details can be found in Section 4.1.

Once more, a similar performance during the lean phase is observed; NO and O₂ consumption (no formation of NO₂) and formation of N₂O only after 600 s of the period. However in this instance the N₂O concentration gradually increases until an outlet value of only 5 ppm is reached. Again, given that the inlet conditions are similar this suggests that the presence of both H₂ and O₂ during the rich phase subsequently influences the reactions of the lean phase.

Switching to the rich phase there is no formation of N₂O observed although formation of NO₂ follows the same shape as above; initial formation of 7 ppm which decreases to 0 ppm as the rich phase progresses. There is also some apparent desorption of NO (96 ppm) which gradually decreases to 46 ppm over the course of the period.

Interestingly the presence of O₂ does not increase H₂ consumption and formation of H₂O during the rich phase. In fact, conversion of H₂ drops to less than 1 % by the end of the rich phase and formation of H₂O gradually decreases to 92 ppm from a highest concentration of 115 ppm.
4.4.1.2.2 Complete Catalyst Systems

4.4.1.2.2.1 Ba/Pt/Al₂O₃

The catalysts had an average platinum loading of 0.2 wt%, an average barium loading of 4.7 wt% and an average γ–Al₂O₃ loading of 28.2 wt% with respect to the complete catalyst system. Preparation details can be found in Section 4.1.

The overall measured abundances of both main and trace reactant species formed during H₂–NSR investigations over the Ba/Pt/Al₂O₃ catalyst under ‘Lean vs Rich 2’ conditions are shown in Figure 4.23. In addition, the species formed during the lean phase only are presented in Figure 4.24 and similarly during the rich phase only in Figure 4.25 (main species) and Figure 4.26 (trace species).

The behaviour of the catalyst during the lean phase (Figure 4.24) closely resembles that of the ‘Rich vs Lean 1’ investigation.

- Breakthrough of both NO and NO₂ is observed and their concentration continues to increase.

- Slight suggestion that the NOₓ Outlet level continues to approach the NO Inlet as the period progresses.

- The amount of NOₓ stored on the catalyst, is 23.1 % of the NO supplied during the lean phase.

 - Slight increase (4.3 %) on the proportion of NOₓ stored during the ‘Lean vs Rich 1’ investigation (18.8 %) with respect to the total NOₓ stored.
Figure 4.23 H₂–NSR over Ba/Pt/Al₂O₃ under ‘Lean vs Rich 2’ conditions at 400 °C. Lean conditions: 1000 ppm NO, 3.2 % O₂, balance N₂. Rich conditions: 2500 ppm H₂, 2.9 % O₂, balance N₂. Note that the secondary y-axis denotes O₂ abundance only.

Figure 4.24 Species observed during the lean phase of H₂–NSR over Ba/Pt/Al₂O₃ under ‘Lean vs Rich 2’ conditions at 400 °C. Lean conditions: 1000 ppm NO, 3.2 % O₂, balance N₂.
In terms of the rich phase (Figure 4.25 and Figure 4.26):

- Instant formation of H₂O observed, reaching a maximum of 2353 ppm.
- Complete conversion of H₂ throughout the entire period.
- Apparent evolution of NO (273 ppm decreasing to 0 ppm) and NO₂ (108 ppm decreasing to 11 ppm).
- No evidence of N₂O or NH₃ formation.
- Calculated amount of stored NOₓ which is converted to N₂ is 82.3 %, a significant increase on the results of the ‘Lean vs Rich 1’ conditions investigation (56.8 %).

It appears that the presence of O₂ in the rich phase plays several important roles in the catalyst reactions of both the lean and rich phases.

During the lean phase:

- A greater proportion of NO is stored on the catalyst surface.

During the rich phase:

- Excess H₂ is consumed to form H₂O.
- The formation of NH₃ or N₂O is suppressed or indeed they are reacted further to form the observed species.
- In addition, the formation of NO is greatly reduced and although the formation of NO₂ is slightly increased, the overall conversion of stored NOₓ to N₂ is greatly increased.
Figure 4.25 Main species observed during the rich phase of H$_2$–NSR over Ba/Pt/Al$_2$O$_3$ under ‘Lean vs Rich 2’ conditions at 400 °C. Rich conditions: 2500 ppm H$_2$, 2.9 % O$_2$, balance N$_2$.

Figure 4.26 Trace species observed during the rich phase of H$_2$–NSR over Ba/Pt/Al$_2$O$_3$ under ‘Lean vs Rich 2’ conditions at 400 °C. Rich conditions: 2500 ppm H$_2$, 2.9 % O$_2$, balance N$_2$.

4-54
4.4.1.2.2 Ba/Ag/Al₂O₃

The catalysts had an average silver loading of 1.8 wt%, an average barium loading of 5.0 wt% and an average γ-Al₂O₃ loading of 27.6 wt% with respect to the complete catalyst system. Preparation details can be found in Section 4.1.

The overall measured abundances of both main and trace reactant species formed during H₂–NSR investigations over the Ba/Ag/Al₂O₃ catalyst under ‘Lean vs Rich 2’ conditions are shown in Figure 4.27. In addition, the species formed during the lean phase only are presented in Figure 4.28 and similarly during the rich phase only in Figure 4.29 (main species) and Figure 4.30 (trace species).

Unsurprisingly, the behaviour of the Ba/Ag/Al₂O₃ catalyst during the lean phase (Figure 4.28) closely resembles that of the ‘Rich vs Lean 1’ investigation.

- Breakthrough of both NO and NO₂ is observed and as their concentration continues to increase the NOₓ Outlet continues to approach the NO Inlet.
- Significant initial formation of H₂O (2151 ppm) which sharply decreases to 13 ppm.

However, in this instance the area apparent between the NOₓ Outlet and NO Inlet plots (representing the amount of NOₓ stored on the catalyst) appears greater. This difference may be accounted for by the relative concentrations of NO₂ formed. Considering the values presented in Table 4.10; if the last values of the lean periods under each respective overall reaction condition are taken, on each occasion the NO conversion reaches a similar level (~31 %). However, the conversion to NO₂ greatly differs.

Although the specific experimental conditions for each lean period remain the same, it appears that the conditions of the rich phase are again influencing the NOₓ storage capacity of the catalyst. On the occasion when only H₂ is present in the rich period, the conversion of NO to NO₂ reaches over 95 % by the end of the lean phase. Contrast this to the conversion of NO to NO₂ when the rich mixture includes both H₂ and O₂ (65 %) and the impact of O₂ is clear. Thus under the ‘Lean vs Rich 2’ conditions it appears that NOₓ storage occurs throughout the entire lean phase (in a similar manner to the behaviour of the Ba/Pt/Al₂O₃ catalyst) and indeed the calculated NOₓ Outlet level suggests as much.
Figure 4.27 H₂–NSR over Ba/Ag/Al₂O₃ under ‘Lean vs Rich 2’ conditions at 400 °C. Lean conditions: 1000 ppm NO, 3.2 % O₂, balance N₂. Rich conditions: 2500 ppm H₂, 2.9 % O₂, balance N₂. Note that the secondary y–axis denotes O₂ abundance only.

Figure 4.28 Species observed during the lean phase of H₂–NSR over Ba/Ag/Al₂O₃ under ‘Lean vs Rich 2’ conditions at 400 °C. Lean conditions: 1000 ppm NO, 3.2 % O₂, balance N₂.
Table 4.10 Conversion of NO and selectivity NO\textsubscript{2} over Ba/Ag/Al\textsubscript{2}O\textsubscript{3} observed during the lean phases of the different overall reaction conditions.

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Conversion of NO (%)</th>
<th>Selectivity to NO\textsubscript{2} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lean vs Rich 1</td>
<td>30.7</td>
<td>95.2</td>
</tr>
<tr>
<td>Lean vs Rich 2</td>
<td>31.1</td>
<td>65.7</td>
</tr>
</tbody>
</table>

As a result, it is calculated that 14.7 % of the supplied NO is stored on the catalyst during the lean phase, an increase of 4.2 % (with respect to the total NO\textsubscript{x} stored) when compared with the ‘Lean vs Rich 1’ investigation over the same catalyst. In terms of the rich phase (Figure 4.29 and Figure 4.30), once again the Ba/Ag/Al\textsubscript{2}O\textsubscript{3} performance closely resembles that of the Ba/Pt/Al\textsubscript{2}O\textsubscript{3} catalyst:

- Immediate formation of H\textsubscript{2}O is observed and a maximum measured concentration of 2553 ppm is measured at the end of the period (which incidentally closely matches the concentration of the H\textsubscript{2} inlet).
- Complete conversion of H\textsubscript{2} throughout the entire period.
- Evolution of NO (161 ppm decreasing to 6 ppm) and NO\textsubscript{2} (59 ppm dropping to 3 ppm).
- No evidence of N\textsubscript{2}O or NH\textsubscript{3} formation.
- Calculated amount of stored NO\textsubscript{x} which is converted to N\textsubscript{2} is 77.4 %, a substantial increase on the results of the ‘Lean vs Rich 1’ conditions investigation (5.6 %).

The conclusions regarding O\textsubscript{2} presence in the ‘rich’ phase made in Section 4.4.1.2.2.1 are also applicable here:

- Excess H\textsubscript{2} is consumed to form H\textsubscript{2}O.
- The formation of NO is greatly reduced whilst the formation of NO\textsubscript{2} is slightly increased.
- The formation of NH\textsubscript{3} or N\textsubscript{2}O is supressed or indeed they are reacted further to form the observed species.
Figure 4.29 Main species observed during the rich phase of H₂–NSR over Ba/Ag/Al₂O₃ under ‘Lean vs Rich 2’ conditions at 400 °C. Rich conditions: 2500 ppm H₂, 2.9 % O₂, balance N₂.

Figure 4.30 Trace species observed during the rich phase of H₂–NSR over Ba/Ag/Al₂O₃ at under ‘Lean vs Rich 2’ conditions 400 °C. Rich conditions: 2500 ppm H₂, 2.9 % O₂, balance N₂.
4.4.1.2.2.3 K/Ag/Al₂O₃

The catalysts had an average silver loading of 2.1 wt%, an average potassium loading of 16.0 wt% and an average γ–Al₂O₃ loading of 24.3 wt% with respect to the complete catalyst system. Preparation details can be found in Section 4.1.

The overall measured abundances of both main and trace reactant species formed during H₂–NSR investigations over the K/Ag/Al₂O₃ catalyst under ‘Lean vs Rich 2’ conditions are shown in Figure 4.31. In addition, the species formed during the lean phase only are presented in Figure 4.32 and similarly during the rich phase only in Figure 4.33 (main species) and Figure 4.34 (trace species).

The performance of the K/Ag/Al₂O₃ catalyst during the lean phase (Figure 4.32) after the catalyst has been subject to a number of ‘Lean vs Rich 2’ cycles, is slightly different to the performance observed as a result of the catalyst being subject to a number of ‘Lean vs Rich 1’ cycles:

- Although there is an initial decrease in the measured outlet NO concentration before a gradual increase is observed, the eventual NO level reached (795 ppm) is significantly greater than detected in the previous investigation.

- Breakthrough of NO₂ occurs after 150 s and N₂O after 250 s, which reach levels of 57 ppm and 19 ppm respectively.

- NOₓOutlet approaches the NOInlet as the period progresses, reaching 85.8 % of the inlet concentration by the end of the phase and resulting in 22.9 % of the supplied NO being stored on the catalyst during the lean phase. This compares favourably with the performance observed for the ‘standard’ Ba/Pt/Al₂O₃ catalyst (23.1 %) investigated under the same conditions.

- Significant initial abundance of H₂O (759 ppm) which sharply decreases to 0 ppm after 19.5 min.
Figure 4.31 H₂–NSR over K/Ag/Al₂O₃ under ‘Lean vs Rich 2’ conditions at 400 °C. Lean conditions: 1000 ppm NO, 3.2 % O₂, balance N₂. Rich conditions: 2500 ppm H₂, 2.9 % O₂, balance N₂. Note that the secondary y-axis denotes O₂ abundance only.

Figure 4.32 Species observed during the lean phase of H₂–NSR over K/Ag/Al₂O₃ under ‘Lean vs Rich 2’ conditions at 400 °C. Lean conditions: 1000 ppm NO, 3.2 % O₂, balance N₂.
On switching to the rich phase:

- H₂ and H₂O breakthrough are again both observed immediately and reach values of 1799 ppm and 817 ppm at the end of the phase respectively.

- Initial evolution of NO (138 ppm), N₂O (60 ppm) and NO₂ (47 ppm) which quickly fall to 0 ppm after 360 s, 450 s and 750 s respectively.

- No evidence of NH₃ formation.

- Calculated amount of stored NOₓ converted to N₂ equals 92.0 %; this is the greatest proportion of conversion to N₂ identified throughout this study, improving upon the performance of the Ba/Pt/Al₂O₃ catalyst explored under the same conditions by 9.7 % with respect to the total amount of stored NOₓ converted to N₂.
Figure 4.33 Main species observed during the rich phase of H₂–NSR over K/Ag/Al₂O₃ under ‘Lean vs Rich 2’ conditions at 400 °C. Rich conditions: 2500 ppm H₂, 2.9 % O₂, balance N₂.

Figure 4.34 Trace species observed during the rich phase of H₂–NSR over K/Ag/Al₂O₃ at under ‘Lean vs Rich 2’ conditions 400 °C. Rich conditions: 2500 ppm H₂, 2.9 % O₂, balance N₂.
4.4.1.3 NSR Conclusions

Although the obtained traces have been discussed in detail throughout presentation of the results, a number of overall conclusions can be made with regards to the NSR reaction investigations when considering the complete data sets.

These conclusions relate to the summary information detailed in Table 4.11:

- In general, the novel silver catalysts demonstrate comparable performance to the ‘standard’ Ba/Pt/Al₂O₃ system.

- The addition of O₂ to the ‘rich’ phase of the NSR cycle increased both the amount of stored NOₓ reduced to N₂ and the amount of NOₓ subsequently stored during the lean phase, on all but one occasion (the amount of NOₓ stored over the K/Ag/Al₂O₃ catalyst decreased after introduction of O₂).

- Addition of O₂ to the ‘rich’ phase of the NSR cycle also suppresses N₂O and NH₃ formation during this phase, often in their entirety.

- The K/Ag/Al₂O₃ catalyst demonstrates improved stored NOₓ reduction capacity (92 %), in tandem with a similar NOₓ storage capacity (22.9 %) with respect to the ‘standard’ Ba/Ag/Al₂O₃ catalyst (82.3 % and 23.1 % respectively). Whilst this data has not been normalised for catalyst loading, due to the vast difference in cost between platinum and silver, these results suggest a viable alternative.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Reaction Conditions</th>
<th>% Supplied NO stored</th>
<th>% Stored NO Reduced to N₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba/Pt/Al₂O₃</td>
<td>Lean vs Rich 1</td>
<td>18.8</td>
<td>56.8</td>
</tr>
<tr>
<td></td>
<td>Lean vs Rich 2</td>
<td>23.1</td>
<td>82.3</td>
</tr>
<tr>
<td>Ba/Ag/Al₂O₃</td>
<td>Lean vs Rich 1</td>
<td>10.5</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td>Lean vs Rich 2</td>
<td>14.7</td>
<td>77.4</td>
</tr>
<tr>
<td>K/Ag/Al₂O₃</td>
<td>Lean vs Rich 1</td>
<td>72.3</td>
<td>59.8</td>
</tr>
<tr>
<td></td>
<td>Lean vs Rich 2</td>
<td>22.9</td>
<td>92.0</td>
</tr>
</tbody>
</table>
4.4.2 TPD/TPSR

TPD and TPSR measurements were carried out in order to investigate the catalysts abilities to adsorb different reactant species and identify any evidence of surface reactions at particular temperatures. Specifically these investigations may give information as to how the nitrates/nitrates formed in the storage phase are subsequently decomposed when subject to temperature. As described in Mudiyanselage et al. (2012), some possible pathways for thermal decomposition of nitrites are:

\[
\text{Ba(NO}_2\text{)}_2 \rightarrow \text{NO}_2 + \text{NO} + \text{BaO} \tag{4.10}
\]

\[
2\text{Ba(NO}_2\text{)}_2 \rightarrow 4\text{NO} + \text{O}_2 + 2\text{BaO} \tag{4.11}
\]

\[
\text{Ba(NO}_2\text{)}_2 \rightarrow 2\text{NO} + \text{BaO}_2 \tag{4.12}
\]

\[
\text{BaO}_2 \rightarrow \text{O}_2 + 2\text{BaO} \tag{4.13}
\]

\[
3\text{Ba(NO}_2\text{)}_2 \rightarrow 4\text{NO} + \text{Ba(NO}_3\text{)}_2 + 2\text{BaO} \tag{4.14}
\]

Likewise, some possible pathways for thermal decomposition of nitrates are:

\[
\text{Ba(NO}_3\text{)}_2 \rightarrow 2\text{NO}_2 + \text{BaO}_2 \tag{4.15}
\]

\[
2\text{Ba(NO}_3\text{)}_2 \rightarrow 4\text{NO}_2 + \text{O}_2 + 2\text{BaO} \tag{4.16}
\]

\[
2\text{Ba(NO}_3\text{)}_2 \rightarrow 4\text{NO} + 3\text{O}_2 + 2\text{BaO} \tag{4.17}
\]

\[
\text{Ba(NO}_3\text{)}_2 \rightarrow 2\text{NO} + \text{O}_2 + \text{BaO}_2 \tag{4.18}
\]

\[
\text{Ba(NO}_3\text{)}_2 \rightarrow \text{NO}_2 + \text{NO} + \text{O}_2 + \text{BaO} \tag{4.19}
\]

Note that there is no proposed formation of N\textsubscript{2}O in the above reactions although from the preliminary experiments its formation has been observed.
4.4.2.1 NO–TPD

The reactor was loaded with three monolith pieces of the catalyst under investigation. The reactor temperature was increased to 500 °C at a rate of 10 °C min⁻¹ under a flow of N₂ at 300 cm³ min⁻¹. Then 8000 ppm H₂ in N₂ was introduced at 300 cm³ min⁻¹ for 30 min, before the reactor was flushed with N₂ at 330 cm³ min⁻¹ for 15 min. The catalysts were then subject to 10 % O₂ at 600 cm³ min⁻¹ for 15 min before being cooled down in N₂ at 330 cm³ min⁻¹ to 150 °C. 1000 ppm NO in N₂ was then introduced at 400 cm³ min⁻¹ for 30 min. Finally the reactor was flushed with N₂ at 300 cm³ min⁻¹ for 15 min to remove any residual NO and the temperature increased to 700 °C at a rate of 10 °C min⁻¹. The desorbed species were subsequently measured. Although it is recognised that typically both NO and O₂ would be present in the reaction mixture, and that the combination would produce the desired stored NOₓ species, the presence of O₂ is also responsible for undesired side reactions. Thus it is anticipated that by pre–treating the catalysts in O₂ the necessary surface O–species will be created and react with the NO supplied during the adsorption step.
The catalysts had an average platinum loading of 0.2 wt%, an average barium loading of 4.7 wt% and an average γ-Al_2O_3 loading of 28.2 wt% with respect to the complete catalyst system. Preparation details can be found in Section 4.1.

Following the NO–TPD procedure in Section 4.4.2.1 the desorbed species were measured and the traces are displayed in Figure 4.35. Although as discussed in Section 4.4.2.1 the adsorption step occurs in the absence of O$_2$, it appears that formation of N–species still takes place. This gives some indication of catalyst affinity for NO and the surface reactions occurring, and justifies the experimental method. It should be noted that the adsorption of NO occurs in minimal quantities; only 4.5 % of the supplied NO was adsorbed during the adsorption step in this particular experiment.

Loosely bound NO dominates the evolved surface NO$_x$ species and is released on heating from 193 – 598 °C. It reaches a maximum of 73 ppm from 193 – 518 °C although levels reach 1118 ppm at 578 °C. In addition, slight N$_2$O formation (1 – 2 ppm) occurs at temperatures of 204 °C above, although a gradual increase occurs from 498 °C and formation reaches 174 ppm at 697 °C. There is some evidence of slight NO$_2$ formation (≤7 ppm) at lower temperatures (175 – 361 °C) however, more significant formation occurs from 558 °C and reaches 12 ppm at 696 °C.

According to Pohanish (2008); Ba(NO$_3$)$_2$ decomposes at 210 °C and then melts at 590 °C. This may explain the presence of NO$_2$ and N$_2$O at the lower temperatures and may also contribute to the NO levels at these temperatures. As temperatures increase, more N$_2$O is released as melting occurs.

<table>
<thead>
<tr>
<th>Species</th>
<th>% of desorption products</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>39.4</td>
</tr>
<tr>
<td>N$_2$O</td>
<td>55.9</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>4.7</td>
</tr>
</tbody>
</table>

Table 4.12: Proportion of the N–containing species desorbed during NO–TPD over Ba/Pt/Al$_2$O$_3$.
Table 3.19 details the selectivity in terms of the observed N–species which evolved during NO–TPD over Ba/Pt/Al₂O₃. It is apparent that the majority of the adsorbed NO is converted to N₂O, whilst the majority of the remainder remains as NO and there is minimal formation of NO₂. However, when considering the mass balance; in terms of NO adsorption and N–containing species desorption, it is apparent that the abundance of the evolved N–species account for 390 % of the adsorbed NO. Although pre–treatment steps were taken in order to remove all surface species from the catalysts, it appears that conditions were not appropriate in order to achieve this. The catalysts had been subject to NSR investigations prior to TPD studies and it appears that surface N–species during such trials were not removed until higher temperatures i.e. >500 °C were reached. Thus the results presented in Table 3.19 and Figure 4.35 are presented for an indication only.

![Desorbed N–species observed during NO–TPD over Ba/Pt/Al₂O₃ with an adsorption temperature of 150 °C.](image)

Figure 4.35 Desorbed N–species observed during NO–TPD over Ba/Pt/Al₂O₃ with an adsorption temperature of 150 °C.
4.4.2.1.2 \textbf{Ba/Ag/Al}_2\text{O}_3

The catalysts had an average silver loading of 1.8 wt\%, an average barium loading of 5.0 wt\% and an average γ-\text{Al}_2\text{O}_3 loading of 27.6 wt\% with respect to the complete catalyst system. Preparation details can be found in Section 4.1.

Following the NO–TPD procedure in Section 4.4.1.3 the desorbed species were measured and are displayed in Figure 4.36. In an effort to aid explanation of the above results, the detailed procedure was repeated; without the NO adsorption step and without both the H\textsubscript{2} pre–treatment and NO adsorption steps although these results are not presented here.

The observed results follow a similar pattern to those obtained for the Ba/Pt/Al\textsubscript{2}O\textsubscript{3} catalyst system:

- Loosely bound NO dominates the evolved surface NO\textsubscript{x} species and is released on heating from 183 – 548 °C reaching a maximum of 50 ppm at 356 °C.

- Slight N\textsubscript{2}O formation (1 – 4 ppm) occurs at temperatures of 194 – 515°C. Above these temperatures more significant evolution is witnessed; 15 ppm at 690 °C.

- Slight NO\textsubscript{2} formation (\leq3 ppm) at lower temperatures (202 – 406 °C).

The decomposition and melting of Ba(NO\textsubscript{3})\textsubscript{2} at 210 °C and then 590 °C has already been discussed in Section 4.4.2.1.1. Given the nature of the measurements observed here, this explanation may be equally applied to the obtained results of this catalyst system.

In terms of the distribution of the observed N–species desorption products, a summary is presented in Table 4.13. In this case, the majority of the desorption products are NO (71.3 \%) whilst almost a quarter are N\textsubscript{2}O (24.7 \%) and only 4.0 \% of the products are NO\textsubscript{2}.

\textbf{Table 4.13} Proportion of the N–containing species desorbed during NO–TPD over Ba/Pt/Al\textsubscript{2}O\textsubscript{3}

\begin{tabular}{|c|c|}
\hline
Species & \% of desorption products \\
\hline
NO & 71.3 \\
N\textsubscript{2}O & 24.7 \\
NO\textsubscript{2} & 4.0 \\
\hline
\end{tabular}
This suggests that only adsorption of NO, and not further reaction is favoured. Again the overall measured levels of N–species are very low in comparison to the total supplied concentration of NO and indeed there is a calculated NO uptake of only 5.91 % during the adsorption step, although this is an improvement on the adsorption levels observed for NO–TPD and H2–TPSR of the Ba/Pt/Al2O3 system.

However, the total abundance of desorption products accounts for 89.7 % of the apparent adsorbed NO. This value is in closer agreement than the corresponding value for the Ba/Pt/Al2O3 system (39.0 %) and given that the evolved N2O concentration appears to still be rising at 700 °C, it could be envisaged that N2O abundance may also account for the remaining 10.3 %.

![Figure 4.36](image_url)

Figure 4.36 Desorbed N–species observed during NO–TPD over Ba/Ag/Al2O3 with an adsorption temperature of 150 °C.
4.4.2.1.3 K/Ag/Al₂O₃

The catalysts had an average silver loading of 2.1 wt%, an average potassium loading of 16.0 wt% and an average γ–Al₂O₃ loading of 24.3 wt% with respect to the complete catalyst system. Preparation details can be found in Section 4.1.

Following the NO–TPD procedure in Section 4.4.1.3 the desorbed species were measured and are displayed in Figure 4.37. Once again the performance of the K/Ag/Al₂O₃ catalyst demonstrates significantly different behaviour to those catalysts previously investigated:

- No N–species are observed at temperatures lower than 350 °C.
- At 359 °C, initial N₂O formation is observed and this rapidly increases to 112 ppm at 472 °C and then 490 ppm at 698 °C.
- Formation of NO₂ occurs at 398°C and gradually increases to 41 ppm at 698 °C.
- NO is released between 574 °C and 689 °C, peaking at 346 ppm at 654 °C.

This formation amounts to the relevant proportions detailed in Table 4.14; there is considerable preference towards forming N₂O over only adsorption of NO or formation of N₂O.

Although NO adsorption now reaches 9.59 % with respect to the total amount of NO supplied, the significant evolution of N–species (in particular N₂O and NO) results in the abundance of the total desorption products equalling 488 % of apparent adsorption. Again it is not clear the cause of this substantial mismatch, although it appears that pre–treatment process proved inadequate, and significant levels of N–species, in particular N₂O, were already present on the surface of the catalyst prior to analysis.

<table>
<thead>
<tr>
<th>Species</th>
<th>% of desorption products</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>26.6</td>
</tr>
<tr>
<td>N₂O</td>
<td>67.6</td>
</tr>
<tr>
<td>NO₂</td>
<td>5.8</td>
</tr>
</tbody>
</table>

Table 4.14 Proportion of the N–containing species desorbed during NO–TPD over K/Ag/Al₂O₃.
Figure 4.37 Desorbed N–species observed during NO–TPD over K/Ag/Al₂O₃ with an adsorption temperature of 150 °C.
4.4.2.2 H_2–TPSR

The reactor was loaded with three monolith pieces of the catalyst under investigation. The reactor temperature was increased to 500 °C at a rate of 10 °C min$^{-1}$ under a flow of N$_2$ at 300 mL min$^{-1}$. Then 8000 ppm H$_2$ in N$_2$ was introduced at 300 cm3 min$^{-1}$ for 30 min, before the reactor was flushed with N$_2$ at 330 cm3 min$^{-1}$ for 15 min. The catalysts were then subject to 10 % O$_2$ at 600 cm3 min$^{-1}$ for 15 min before being cooled down in N$_2$ at 330 cm3 min$^{-1}$ to 150 °C. 1000 ppm NO in N$_2$ was then introduced at 400 cm3 min$^{-1}$ for 30 min. The reactor was then flushed with N$_2$ at 300 cm3 min$^{-1}$ for 15 min to remove any residual NO. Finally, 2000 ppm H$_2$ in N$_2$ at a flow rate of 400 cm3 min$^{-1}$ was introduced and the temperature increased to 700 °C at a rate of 10 °C min$^{-1}$. The desorbed species were subsequently measured.
4.4.2.2.1 Ba/Pt/Al₂O₃

The catalysts had an average platinum loading of 0.2 wt%, an average barium loading of 4.7 wt% and an average γ–Al₂O₃ loading of 28.2 wt% with respect to the complete catalyst system. Preparation details can be found in Section 4.1.

H₂–TPSR was conducted following the procedure detailed in Section 4.4.2.2. The results are displayed in Figure 4.38 and should be compared to the results of the NO–TPD investigation presented in Figure 4.35:

- The presence of H₂ during desorption appears to suppress the formation of NO, or indeed the NO is reacted with the H₂ to form H₂O; there is no evolved NO observed throughout the entire temperature range.

- Whilst N₂O formation was significant in NO–TPD studies (forming around 204 °C and reaching 174 ppm at 697 °C), there is very little formation observed during the TPSR investigation. However, slight formation (1 – 2 ppm) occurs at temperatures as low as 208 °C before gradually increasing to a peak of 18 ppm at 585 °C.

- There was no considerable NO₂ formation observed throughout.

Once more, formation of N₂O appears to be the favoured process, with no NO and only minimal NO₂ observed (Table 4.15).

Assuming the absence of any surface N–species prior to catalyst investigation, and by considering the mass balance in terms of NO adsorption and N–containing species desorption; the desorbed species account for 56.7 % of the apparent adsorbed NO. Thus 43.3 % of apparent adsorbed NO is reduced throughout the desorption period. Incidentally, only 3.22 % of the supplied NO was adsorbed on to the catalyst during the adsorption step.
In terms of \(\text{H}_2 \) and \(\text{H}_2\text{O} \) abundance: breakthrough of \(\text{H}_2 \) is apparent on introducing the reaction mixture at 150 °C. However, evolution of \(\text{H}_2\text{O} \) (and indeed any other species) is not apparent until 208 °C. \(\text{H}_2\text{O} \) formation generally increases to a local maximum of 612 ppm at 271 °C, before it drops to 280 ppm at 394 °C and gradually increases to 712 at 700 °C. \(\text{H}_2 \) abundance reaches a peak of 1758 ppm at 230 °C and maintains a somewhat steady concentration until 417 °C after which is gradually decreases (as \(\text{H}_2\text{O} \) abundance increases) to a final value of 1139 ppm at 700 °C. In addition to reaction with \(\text{N}^- \)–species, it may be assumed that \(\text{H}_2 \) is also combining with surface \(\text{O}^- \)–species to form \(\text{H}_2\text{O} \), particularly at higher temperatures (>400 °C).

Table 4.15 Proportion of the \(\text{N}^- \)-containing species desorbed during \(\text{H}_2^-\text{TPSR} \) over \(\text{Ba/Pt/Al}_2\text{O}_3 \).

<table>
<thead>
<tr>
<th>Species</th>
<th>% of desorption products</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>0.0</td>
</tr>
<tr>
<td>(\text{N}_2\text{O})</td>
<td>98.9</td>
</tr>
<tr>
<td>(\text{NO}_2)</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Figure 4.38 Desorbed \(\text{N}^- \)-species observed during \(\text{H}_2^-\text{TPSR} \) over \(\text{Ba/Pt/Al}_2\text{O}_3 \) with an adsorption temperature of 150 °C. Note that the secondary y–axis denotes \(\text{H}_2 \) and \(\text{H}_2\text{O} \) abundance only.
4.4.2.2 Ba/Ag/Al₂O₃

The catalysts had an average silver loading of 1.8 wt%, an average barium loading of 5.0 wt% and an average γ-Al₂O₃ loading of 27.6 wt% with respect to the complete catalyst system. Preparation details can be found in Section 4.1.

H₂–TPSR was conducted following the procedure detailed in Section 4.4.2.2. The results are displayed in Figure 4.39 and should be compared to the results of the NO–TPD investigation presented in Figure 4.36. As can be seen, the results match quite closely with that of the NO–TPD experiment over the same catalyst system:

- NO is released at lower temperatures, and in similar abundance (maximum of 62 ppm at 298 °C) to the NO–TPD experiment, although the temperature range in which it is released is narrower (156 – 415 °C).
- There is some impact on NO₂ concentration which is now only evident in very small amounts (≤1 ppm) and predominantly in the 569 – 687 °C temperature range.
- The N₂O levels are not greatly affected by the presence of H₂; slight formation (1 – 4 ppm) occurs at temperatures of 166 – 446 °C beyond which a gradual increase in evolution is observed and reaches a maximum of 14 ppm at 698 °C.
- H₂ abundance after introduction falls steadily to 1219 ppm at 698 °C.
- H₂O breakthrough occurs at 209 °C and after an initial sharp increase to 291 ppm at 258 °C there is then a gentler increase to 707 ppm at 698 °C.

In this instance, 7.10 % of the supplied NO was adsorbed on to the catalyst during the adsorption step, again an increase on the maximum relative NO adsorption observed. Once again assuming the absence of any surface N–species prior to catalyst investigation, the desorbed species account for 72.3 % of the apparent adsorbed NO. Thus 27.7 % of apparent adsorbed NO is reduced throughout the desorption period. In addition, on comparison to the NO–TPD results (89.7 % of adsorbed NO was subsequently desorbed) it may be presumed that at least 17.4 % of the stored N–species were reduced to N₂ during TPSR.
Although the results suggest there is some reduction of N–species occurring throughout TPSR, from the obtained results the reaction is not clear. Perhaps there is some reduction of NO at higher temperatures (425 – 548 °C), thus accounting for the narrower temperature range of NO detection.

In terms of the proportion of each N–species evolved during TPSR, the results are presented in Table 4.16. They match very closely the results of the NO–TPD investigation (Table 4.13) suggesting that only adsorption of NO, and not further reaction, is favoured.

Table 4.16 Proportion of the N–containing species desorbed during H\(_2\)–TPSR over Ba/Ag/Al\(_2\)O\(_3\).

<table>
<thead>
<tr>
<th>Species</th>
<th>% of desorption products</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>72.7</td>
</tr>
<tr>
<td>N(_2)O</td>
<td>25.8</td>
</tr>
<tr>
<td>NO(_2)</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Figure 4.39 Desorbed N–species observed during H\(_2\)–TPSR over Ba/Ag/Al\(_2\)O\(_3\) with an adsorption temperature of 150 °C. Note that the secondary y-axis denotes H\(_2\) and H\(_2\)O abundance only.
4.4.2.2.3 K/Ag/Al₂O₃

The catalysts had an average silver loading of 2.1 wt%, an average potassium loading of 16.0 wt% and an average γ-Al₂O₃ loading of 24.3 wt% with respect to the complete catalyst system. Preparation details can be found in Section 4.1.

TPSR was conducted following the procedure detailed in Section 4.4.2.2. The results are displayed in Figure 4.40 and should be compared to the results of the NO–TPD investigation presented in Figure 4.37.

Similar results to those obtained during NO–TPD are observed:

- The presence of H₂ has little effect on the shape of the N₂O and NO₂ desorption curves, although their concentrations are relatively less.
 - N₂O formation is observed at 322 °C, rising rapidly to 75 ppm at 506 °C and then gradually increasing to 222 ppm at 699 °C.
 - Formation of NO₂ first occurs at 407 °C and gradually increases to 14 ppm at 699 °C. NO is only released between 202 °C and 279 °C, peaking at 11 ppm at 270 °C.
- H₂ abundance steadily drops as temperature increases although, as H₂O breakthrough occurs at 279 °C, the H₂ concentration also increases.
- Somewhat steady values of ~1600 ppm (H₂) and ~650 ppm (H₂O) are then observed before consumption of H₂ (and formation of H₂O increased) at a temperature of 465 °C.
- Final abundances at 699 °C for H₂ and H₂O reach 810 and 986 ppm respectively.

This results in an obvious switch in terms of the proportions of each N–species observed during desorption (Table 4.17). N₂O accounts for 92.4 % of the desorbed N–species whilst NO₂ and NO account for 5.7 % and 1.9 % respectively.
A drop in the relative adsorption of NO, to 7.1 %, is observed in this investigation although there is also a drop in the total abundance of desorption products; albeit to 252 % of the apparent total NO adsorption. This may suggest there is some reduction occurring, and indeed the near absence of NO, and vastly reduced concentrations of N₂O and NO₂ (with respect to their concentrations during NO–TPD) support this.

Table 4.17 Proportion of the N–containing species desorbed during H₂–TPSR over Ba/Ag/Al₂O₃.

<table>
<thead>
<tr>
<th>Species</th>
<th>% of desorption products</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>1.9</td>
</tr>
<tr>
<td>N₂O</td>
<td>92.4</td>
</tr>
<tr>
<td>NO₂</td>
<td>5.7</td>
</tr>
</tbody>
</table>

Figure 4.40 Desorbed N–species observed during H₂–TPSR over K/Ag/Al₂O₃ with an adsorption temperature of 150 °C. Note that the secondary y-axis denotes H₂ and H₂O abundance only.
4.4.2.3 \textit{H}_2–TPD

The reactor was loaded with three monolith pieces of the catalyst under investigation. The reactor temperature was increased to 500 °C at a rate of 10 °C min$^{-1}$ under a flow of N$_2$ at 300 cm3 min$^{-1}$ and then cooled to 200 °C, the adsorption temperature. 2000 ppm H$_2$ in N$_2$ was introduced at 440 cm3 min$^{-1}$ for 5 min, before the reactor was flushed with N$_2$ at 330 cm3 min$^{-1}$ for 5 min. The temperature was then increased to 500 °C at a rate of 5 °C min$^{-1}$ and then 700 °C at a rate of 10 °C min$^{-1}$ and the desorbed species were subsequently measured. The slower temperature ramp rate to 500 °C was in an effort to identify desorbed species.

With reference to the preliminary TPD experiments, the adsorption temperature was increased to 200 °C in order to increase the catalysts’ affinity for H$_2$ and also investigate the materials at conditions more closely related to the application. Ideally a range of different adsorption temperatures would be explored although this was not conducted in this investigation.

However, although the preliminary investigated H$_2$–TPD procedure did provide some evidence of H$_2$ affinity for the Ba/Pt/Al$_2$O$_3$ catalysts, and the adsorption temperature was increased as a result, in a similar fashion to the SCR catalysts there was no apparent desorption observed for any the catalyst materials investigated in this Section and as a result, there will be no presentation of H$_2$–TPD results here.
4.4.2.4 TPD/TPSR Conclusions

Although the obtained traces have been discussed in detail throughout presentation of the results, a number of overall conclusions can be made with regards to both the TPD and TPSR reaction investigations when considering the complete data sets.

These conclusions relate to the summary information detailed in Table 4.18 and Table 4.19:

- **K/Ag/Al₂O₃** demonstrates the greatest affinity for NO at an adsorption temperature of 150 °C, followed by Ba/Ag/Al₂O₃ and then Ba/Pt/Al₂O₃. However, adsorption levels appear low in comparison to supplied amounts, 3.2 – 9.6 %, and the mass balances are not always successfully realised.

- The presence of H₂ (during TPSR) significantly reduces the relative amount of desorbed N–species observed – this suggests reaction with the H₂ to form N₂ and H₂O.

- The breakdown in proportion of N–species is similar for both Ba/Pt/Al₂O₃ and K/Ag/Al₂O₃ catalysts during both NO–TPD and H₂–TPSR. During NO–TPD formation of N₂O is preferred over NO adsorption and the formation of NO₂. On introduction of H₂ during TPSR, selectivity to N₂O is increased and approaches 100 %.

- The Ba/Ag/Al₂O₃ catalyst demonstrates a similar breakdown in proportion of N–species for both NO–TPD and H₂–TPSR investigations; preference of NO adsorption, followed by N₂O formation and then NO₂ formation.
Table 4.18 Summary table detailing the relative measured amounts of NO adsorbed and subsequently desorbed during NO–TPD and H₂–TPSR investigations.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>NO–TPD</th>
<th></th>
<th>H₂–TPSR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Relative amount of NO adsorbed (%)</td>
<td>Relative amount of N–species desorbed (%)</td>
<td>Relative amount of NO adsorbed (%)</td>
<td>Relative amount of N–species desorbed (%)</td>
</tr>
<tr>
<td>Ba/Pt/Al₂O₃</td>
<td>4.5</td>
<td>390</td>
<td>3.2</td>
<td>56.7</td>
</tr>
<tr>
<td>Ba/Ag/Al₂O₃</td>
<td>5.9</td>
<td>89.7</td>
<td>7.1</td>
<td>72.3</td>
</tr>
<tr>
<td>K/Ag/Al₂O₃</td>
<td>9.6</td>
<td>488</td>
<td>7.1</td>
<td>252</td>
</tr>
</tbody>
</table>

Table 4.19 Summary table detailing the relative proportion of each N–species desorbed during NO–TPD and H₂–TPSR investigations.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>NO–TPD</th>
<th></th>
<th>H₂–TPSR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Proportion (%)</td>
<td>NO</td>
<td>N₂O</td>
<td>NO₂</td>
</tr>
<tr>
<td>Ba/Pt/Al₂O₃</td>
<td>39.4</td>
<td>55.9</td>
<td>4.7</td>
<td>0</td>
</tr>
<tr>
<td>Ba/Ag/Al₂O₃</td>
<td>71.3</td>
<td>24.7</td>
<td>4.0</td>
<td>72.7</td>
</tr>
<tr>
<td>K/Ag/Al₂O₃</td>
<td>26.6</td>
<td>67.6</td>
<td>5.8</td>
<td>1.9</td>
</tr>
</tbody>
</table>
4.4.3 Key Conclusions

In light of the results obtained for the explored materials in NSR, TPD and TPSR investigations, a number of key conclusions can be drawn:

- The developed methods for preparation of the investigated catalysts proved successful.

- The constructed experimental set-up was successfully operated, enabling provision of the alternating lean and rich conditions necessary for NSR investigations.

- The catalyst systems were robust, demonstrating repeatable performance after multiple experimental runs during both preliminary and final investigations.

- The observed Ba/Pt/Al₂O₃ catalyst performance agreed well with results reported in the literature for similar systems.

- The novel silver catalysts demonstrate comparable and in some cases improved performance relative to the prepared ‘standard’ catalyst, highlighting their suitability for the explored processes.
In terms of the observed mechanisms of storage and reduction, and identified species during TPD/TPSR investigations:

- The Ba/Ag/Al₂O₃ catalyst appeared to facilitate storage and reduction of NO in the same manner as the Ba/Pt/Al₂O₃ system.

- However, there were a number of apparent differences observed in the performance of the K/Ag/Al₂O₃ catalyst (and studied K/Al₂O₃ system):

 - Throughout NSR, TPD and TPSR investigations these systems produced considerably less (if any) NO₂ when compared to other catalysts.

 - The most abundant trace species observed throughout the investigations was N₂O, in greater quantities than produced in the alternative systems.

 - In addition, during the rich period of ‘Lean vs Rich 1’ NSR investigations the measured H₂ and H₂O abundance exhibited fluctuating traces, perhaps suggesting a number of different reduction mechanisms occurring concurrently.

- The K/Ag/Al₂O₃ system demonstrated a similar breakdown of measured N–species, in both TPD and TPSR studies, as the Ba/Pt/Al₂O₃ catalyst.
REFERENCES

Nova, I., Lietti, L., et al. (2006). New Insights in the NO\textsubscript{x} Reduction Mechanism with H\textsubscript{2} over Pt–Ba/\gamma–Al\textsubscript{2}O\textsubscript{3} Lean NO\textsubscript{x} Trap Catalysts Under Near–Isothermal Conditions. Journal of Catalysis, Vol. 239, No. 1, pp. 244–254.

CHAPTER 5
Conclusions and Recommendations for Future Work

The use of hydrogen as a reducing agent in the treatment of NO\textsubscript{x} creates more sustainable and efficient processes with less waste, compared to the current industrial standard NH\textsubscript{3}/urea systems. It also removes the dependence on significant quantities of additional, toxic materials which in themselves are manufactured from finite natural resources and contribute to global warming and climate change through their production. Through investigating the viability of this NO\textsubscript{x} treatment approach, the work described in this thesis may be considered to have three main aspects:

- Design, construction and commission of the experimental rig and the various methods used to explore catalyst performance.
- Development of an analytical technique to enable accurate measurement of the products of the investigated H\textsubscript{2}–deNO\textsubscript{x} reactions.
- Preparation of catalytic materials and subsequent testing in a number of different processes, utilising the apparatus and techniques described above.

5.1 Conclusions

5.1.1 Viability Study

To the best of the author’s knowledge this thesis represents the first viability study of its type. Whilst H\textsubscript{2} as a reducing agent for NO has previously been explored in the literature, it is typically with a view to treating stationary diesel engines and using on–site reformers to provide a source of H\textsubscript{2}. Thus, separating H\textsubscript{2} from the syngas produced from a biomass gasification process to treat the exhaust emissions of the subsequent gas engine represents a novel approach.
5.1.2 Source of H\textsubscript{2}

Through the gas analysis conducted at Refgas Ltd it has been shown that the composition of clean syngas produced through the gasification of wood waste consisted of between 10 – 17 % H\textsubscript{2}, depending on the conditions in the gasifier. The confirmation of the presence of H\textsubscript{2} in significant quantities validates the approach of this work; the necessary concentrations of H\textsubscript{2} required (which would be separated from the produced syngas) for a deNO\textsubscript{x} application, would not significantly affect the composition of the syngas provided to the gas engine.

5.1.3 General Experimental Set–up

The constructed apparatus provided great flexibility in terms of the type of deNO\textsubscript{x} (or characterisation) processes, reaction gas compositions and reaction temperature ranges which could be explored. In addition, information on the potential temperature differences over the catalyst bed could be gleaned. This was a significant achievement and one which future researchers may build upon.

The successful combination of the constructed experimental set–up, developed analysis technique and experimental procedure validated the complete approach through close agreement of obtained results, and the literature, for the relevant catalyst systems.

5.1.4 QMS Analytical Technique

A method was developed to calibrate a QMS to enable on–line, real time measurements of eight potential deNO\textsubscript{x} reaction species. The QMS is a powerful analysis tool and this was not a trivial task; to the best of the author’s knowledge, such an approach has not previously been reported. Particular care was required to separate the overlapping contributions of NH\textsubscript{3} and H\textsubscript{2}O, as well as the overlapping contributions of NO, O\textsubscript{2}, N\textsubscript{2}O and NO\textsubscript{2}. In addition, the measurement of H\textsubscript{2} and total N\textsubscript{2} concentration was also possible through the analytical method developed.
5.1.5 H₂–SCR Experimental Investigations

In these experiments the ability of the catalysts to directly reduce NO using H₂ in the presence and absence of O₂ was explored. For a reaction system for NOₓ control as illustrated in Figure 5.1, two catalyst systems supported on cordierite substrate honeycomb monolith structures were prepared and explored in the 50 to 450 °C temperature range.

![Proposed H₂–SCR NOₓ removal system.](image)

Figure 5.1 Proposed H₂–SCR NOₓ removal system.

a) Pt/Al₂O₃ (0.8/29.4 wt%): performance at 50 °C appears to be the most suitable temperature for direct NOₓ reduction to N₂ using H₂ (87.6 % NO conversion), although there are also significant levels of N₂O formed (66.6 % selectivity to N₂ formation). At higher temperatures, NO conversion drops (22.8 – 86.9 %) and formation of NO₂ dominates (59.3 % at 350 °C).

b) Ag/Al₂O₃ (2.3/28.9 wt%): this catalyst demonstrated poor SCR performance, especially at lower temperatures (≤ 250 °C). At higher temperatures some NO conversion was observed (21.3 % at 350 °C, 17.7 % at 450 °C) although this was accompanied by significant formation of NO₂ and thus the selectivities to N₂ formation were poor (39.9 % at 350 °C, 40.1 % at 450 °C). It appears that Ag/Al₂O₃ is not suitable for the reduction of NOₓ using H₂.
5.1.6 H₂–NSR Experimental Investigations

In these experiments the ability of the catalysts to first store NO during a ‘lean’ period and then subsequently reduce the stored NO\textsubscript{x} species using H\textsubscript{2} during a ‘rich’ period were explored. The impact of the presence and absence of O\textsubscript{2} in the ‘rich’ period was also investigated. For a reaction system for NO\textsubscript{x} control as illustrated in Figure 5.2, three catalyst systems (two novel materials) supported on cordierite substrate honeycomb monolith structures were prepared and explored. The catalysts were tested under two separate sets of NSR reaction conditions at a temperature of 400 °C. The addition of O\textsubscript{2} to the ‘rich’ phase had a substantial impact on the NSR cycle as it increased both the apparent amount of stored NO\textsubscript{x} reduced to N\textsubscript{2}, and also the amount of NO\textsubscript{x} subsequently stored during the following lean phase.

![Figure 5.2](image)

Figure 5.2 Proposed H\textsubscript{2}–NSR NO\textsubscript{x} removal system.

a) Ba/Pt/Al\textsubscript{2}O\textsubscript{3} (4.7/0.2/28.2 wt%): this catalyst stored 18.8 % of the supplied NO and subsequently reduced 56.8 % of the stored NO\textsubscript{x} species to N\textsubscript{2} when O\textsubscript{2} was only present in the lean phase. When O\textsubscript{2} was introduced to both phases the catalyst stored 23.1 % and reduced 82.3 % of those stored species to N\textsubscript{2}.

b) Ba/Ag/Al\textsubscript{2}O\textsubscript{3} (5.0/1.8/27.6 wt%): this system demonstrated poorer performance with

i. O\textsubscript{2} present only in the lean phase: 10.5 % of NO stored and 5.6 % of that subsequently reduced to N\textsubscript{2}; but somewhat comparable performance when;

ii. O\textsubscript{2} was present in both phases: 14.7 % NO stored and 77.4 % subsequently reduced to N\textsubscript{2}.
c) K/Ag/Al₂O₃ (16.0/2.1/24.3 wt%): this system demonstrated improved performance both when

i. O₂ was present only in the lean phase: 72.3 % of NO stored and 59.8 % of that subsequently reduced to N₂; and when,

ii. O₂ was present in both phases: 22.9 % NO stored and 92.0 % subsequently reduced to N₂.

Various engineering approaches can be envisaged to incorporate this process in the end application; a hybrid technique utilising a dual catalyst bed (Figure 5.2) would enable the separate exhaust and H₂ streams to be alternatively supplied creating the desired lean and rich periods. Incorporating lean/rich cycling of the gas engine could also produce the desired storage and reduction cycles.

Although the performance data for the catalysts has not been normalised (e.g. for number of active sites) the initial observed performance of the K/Ag/Al₂O₃ system is encouraging and seems well suited to the explored process. The improved NO storage capacity may be explained through the greater weight loading of the storage component, and whilst the weight loading of the noble metal component is an almost tenfold increase with respect to the ‘standard’ Ba/Pt/Al₂O₃ system, the relative cost of these components ensures the novel catalyst is a financially viable alternative; an important aspect to consider when developing catalysts for industrial applications. Indeed, the prepared silver catalysts appear to be a good example of the type of necessary developments of more cheap, effective and selective catalysts described in Forzatti (2001).
5.2 Recommendations

Due to the broad, interconnected research activities undertaken throughout this project, and necessary groundwork required e.g. building a rig and constructing an analytical method; there is great scope to drive this work further and build on the promising initial results. A number of suggestions for potential future work are described below:

5.2.1 Experimental Investigations

As a result of the promising performances displayed by the silver catalysts and the economic advantages their use offers; catalyst and process development should be conducted through optimisation of catalyst preparation procedures and exploration of various reaction conditions. Improved catalyst performance may be achieved by varying:

- Catalyst component loading.
- NSR reaction temperature.
- SCR/NSR reaction gas mixture composition e.g. O$_2$ concentration or H$_2$:NO ratio.
- SCR/NSR reaction gas mixture flow rate.
- TPD/TPSR adsorption temperature.

Various aspects of traditional heterogeneous catalysis are acknowledged here due to their importance and relevance to the final application, but were not explored throughout this project:

- Consideration of potential catalyst poisons i.e. CO, CO$_2$, SO$_2$.
- Catalyst ageing or sintering.
5.2.2 QMS Analytical Technique

Use of an inert carrier gas i.e. He or Ar, in deNO$_x$ investigations would enable the unequivocal identification of N$_2$ formation and provide another indicator of catalyst performance.

Although the acquisition time proved adequate to follow the experiments conducted within this project, improved resolution may aid in the identification of the reaction mechanisms involved with release and reduction of stored NO$_x$ species in particular. In addition, \textit{in–situ} surface species analysis techniques such as those applied by Chansai \textit{et al.} (2011) would assist in this process.
REFERENCES

Appendix I – Gas Analysis: Design and Construction of an Analytical Method Using an Online Mass Spectrometer

A Quadrupole Mass Spectrometer (QMS) was employed to conduct online measurements of the products of the deNO$_x$ and other related reactions. In order to accurately interpret the data recorded by the QMS it was necessary to conduct a detailed calibration of the equipment under operating conditions using a variety of gas mixture compositions. This was a complicated task due to the potential presence of many species with clashing signals in the reaction mixture i.e. NO, NO$_2$, N$_2$O as well as the potential for the presence of trace quantities of these species.

The magnitude of this task was highlighted by the fact that although a basic training course was undertaken (provided by Hiden Analytical Limited), and a previous research group member had extensive experience of using the QMS in a similar application (Le (2012)), it still took over eleven months of continual development and iteration to reach the methodology described within this chapter. The nature of the changes undertaken will not be described in detail here, although select issues encountered throughout the process will be highlighted.

A1.1 Introduction

It has already been identified that whilst QMS’s have previously been utilised for analysis of deNO$_x$ reactions (Chapter 2), it is often in combination with other analysis techniques; there did not appear to be a single item of equipment used to identify all the potential species of the reaction. The benefits of using a single technique to provide on–line gas analysis of deNO$_x$ reactions were also highlighted. It is proposed that by developing a thorough understanding of the operation of a QMS, an analytical method for accurate identification of the key reaction species could be produced. To the best of the author’s knowledge, such a study does not exist.
The typical composition of a mass spectrometer as described by Patnaik (2004), and also in the accompanying schematic (Figure A1.1), consists of (1) inlet sample system, (2) ion source, (3) ion acceleration system, (4) mass (ion) analyzer, (5) ion–collection system, usually an electron multiplier detector, (6) data–handling system, and (7) vacuum system connected to components (1) through (5). Then to provide a collision–free path for ions once they are formed, the pressure in the spectrometer must be less than 10^{-6} torr.

![Diagram of mass spectrometer components](image)

Figure A1.1 Schematic detailing the composition of a MS, recreated from Shugar (1990).

A1.2 The Quadrupole Mass Spectrometer

In this project, a Hiden HPR–20 QIC (Quartz Inert Capillary) gas analysis system (Figure A1.2) was utilised along with Hiden’s MASsoft software for QMS control and data analysis.

![Photograph of Hiden HPR–20 gas analysis system](image)

Figure A1.2 Photograph of Hiden HPR–20 gas analysis system.
A schematic drawing of a typical Hiden HPR–20 QIC system is displayed in Figure A1.3, where the main components of the system have also been labelled.

Figure A1.3 HPR–20 QIC benchtop gas analysis system (Hiden Analytical Ltd (2009)).
The role of the most important of the components identified in Figure A1.1 and Figure A1.3 will be briefly explained below. Note that a thorough description of the intricate working details of the QMS will not be included in this report.

A1.2.1 Inlet

The MS inlet is responsible for continuous sampling directly from the exhaust of the experimental set–up through connection with the QIC. Hassell (2003) describes the importance of an MS inlet, stating that these inlets must transition the sample from the higher pressure of the sample line to the vacuum required for the mass spectral analysis, yet this transition must occur without affecting the concentrations of the analytes of interest.

The specifications of the QIC inlet system (Figure A1.4) used in the Hiden HPR–20 QMS are described by Hiden Analytical Ltd (2009):

QIC capillary inlet with:

- 2 metre heated capillary with heater supply, operating up to 200 °C;
- Replaceable inert quartz capillary liner;
- Direct ionisation source inlet with replaceable platinum orifice leak;
- Variable bypass control valve and rotary bypass pump;
- Inlet particulate filter with replaceable element.

Hiden Analytical Ltd (2010) then expands on some of these individual components and their associated roles within achieving accurate gas sampling. They state that:

a) The QIC provides a dynamic method of sampling reactive or condensable gases and vapours by a mass spectrometer.

b) The inlet employs two pressure reduction stages to reduce sample pressure to an acceptably low level for operation of the mass spectrometer ion source.
c) In the first stage, sample gas is drawn down the silica capillary by the action of
the sample bypass pumping line. The sample gas exits the capillary at low
pressure and high velocity. This flow impinges on a platinum orifice which
provides the second stage pressure reduction directly into the mass spectrometer
ion source.

d) The distance from the capillary exit to the orifice, and from the orifice to the ion
source, is very short, typically 4 mm and 12 mm respectively. This provides
maximum free transmission of sample gas directly to the ion source with
minimum surface interaction or memory effects.

e) Condensation of vapours, or adsorption of active sample gas species, is
minimised by continuous heating of the inlet capillary, orifice and sample
bypass regions. The silica capillary is resistively heated by passing an electric
current through the stainless steel capillary sheath which surrounds its entire
length. The capillary electrical connections are configured to ensure that the
sampling end connection remains at ground potential.

f) The orifice and sample bypass regions are heated by an integral cartridge heater.
A bimetallic disk–type thermal cutout provides over–temperature protection to
these regions. The capillary and cartridge heater current is controlled by a
Capillary Temperature Controller.

Figure A1.4 Photograph of the QIC.
A1.2.2 Ionization

The ion source within an MS is responsible for ionizing the sampled species prior to separation by the analyser. There are various ionization techniques of which Electron Ionization (EI), where the sampled species interact with high energy electrons, is the most popular. Watson et al. (2007) provide the following details on the use of EI in identifying unknown species:

a) In mass spectrometry, electron ionization (EI) produces molecular ions from gas–phase analytes. These molecular ions then fragment in a reproducible way, which results in a “fingerprint” of the analyte.

b) Because of the uniqueness of these “chemical fingerprints”, commercially available libraries containing hundreds of thousands of standard EI mass spectra can be used to facilitate identification of unknown compounds.

The compound library within the MASoft software contains fragment patterns for 72 of the most commonly analysed gas phase species. The use of this information within this thesis is discussed in greater detail in Section A1.3.3.1.

There are also various ways to produce the high energy electrons required to ionize the gas samples. Watson et al. (2007) discuss a typical technique for producing high energy electrons, stating that the source of electrons in nearly all EI mass spectrometers (regardless of the type of m/z analyzer) is a thin ribbon or filament of metal that is heated electrically to incandescence, or to a temperature at which it emits free electrons.

The oxide–coated iridium filaments from the Hiden HPR–20 QMS used within this project are displayed in Figure A1.5. In this case, two filaments are fitted to the Mass Spectrometer ionisation source so that when one fails the other filament may be used.

Different species also exhibit different fragmentation patterns depending on the energy of the interacting electrons. In some cases this property may be used to separate complex mixtures, as described by Hiden Analytical Ltd (2012a), and this approach was adopted within this project and is discussed in more detail in Section A1.3.4.1.
A1.2.3 Mass Analyzer

The produced ions now require separation and as already mentioned in Chapter 2 this is achieved using their mass to charge ratios, m/z. As a result, multiply ionized species need to be accounted for. Due to the varying methods of ionization, different types of analyser also exist. The Hiden HPR–20 QMS used for this project utilises a quadrupole analyser and Hiden Analytical Ltd (2009) details the composition of the analyser system:

Quadrupole mass spectrometer comprising:

- Quadrupole probe with:
 - 200 amu mass range capability;
 - Dual Faraday/Electron Multiplier detectors.

- RF (Radio Frequency) Head with:
 - RF generator and pre–amplifier electronics.

- RC (Radio Communication) Interface unit with:
 - Microcomputer controlled data acquisition system;
 - Power supply electronics;
 - Variable supplies for Probe lenses;
 - RS232, RS422 and Ethernet LAN serial communications interfaces.
Hassell (2003) describes the principles and operation of a quadrupole analyser as follows: These consist of four parallel rods with the ends arranged in a square pattern. The rods at opposite corners of the square are electrically connected. An rf signal is applied to one set, and an equivalent but inverted rf signal is applied to the opposite set. Likewise, opposing positive and negative DC offset voltages are applied to the rod sets. This combination creates a resonance condition that permits particles with a specific \(m/z \) to travel down the length of the rods, while all other \(m/z \) particles are annihilated by collision with one of the rods or some other surface.

A1.2.4 Detectors

Hoffmann *et al.* (2007) describe the process through which a detector is utilised within a MS, stating that the ions pass through the mass analyser and are then detected and transformed into a usable signal by a detector. Detectors are able to generate from the incident ions an electric current that is proportional to their abundance.

Hassell (2003) describe the various detectors which may be found within an MS, stating that:

a) Most process analyzers utilise either a Faraday cup or a secondary electron multiplier (SEM) for detection.

b) The Faraday cup is the simpler and more rugged and stable of the two, but is generally useful for detection of species at higher concentrations (100 ppm to 100 %).

c) The SEM is much more sensitive, capable of measurements in the ppb range.

Hassell (2003) states that often a single MS will be configured with both the Faraday cup and the SEM detectors and indeed the Hiden HPR–20 QMS utilised in this project contained both.
A1.2.5 Vacuum System

As is shown in Figure A1.1, the ion source, mass analyser and ion collection system (detector) are all connected into a vacuum system. This is necessary for the operation of the MS, as discussed by Hassell (2003), who stated that:

a) This vacuum must be sufficient (i.e. the mean free path must be sufficiently long) to prevent collisions between particles prior to analysis.

b) A roughing pump is first used to provide vacuum for the sample inlet, as well as to provide the backing pumping for the turbomolecular pump, which provides the vacuum needed (between 10^{-5} and 10^{-7} torr) for the ion source and mass filter.

The specifications for the Hiden HPR–20 vacuum system are described in Hiden Analytical Ltd (2009) and consist of:

- HPR–20 QIC ultra high vacuum (UHV) housing with:
 - Conflat flange type ports for turbo pump, Probe, Penning gauge and inlet.

Vacuum pumping system comprising:

- 60 litre per second turbomolecular pump with controller;
- Rotary backing pump;
- Automatic vent valve with vent delay;
- Cold cathode (Penning) gauge providing protection interlock.
A1.2.6 Analysis

The electrical signals from the detector are then converted to a digital signal which can then be processed and interpreted by a relevant software program. Hiden Analytical Ltd (2009) specifies the capabilities of the computer software provided with the Hiden HPR–20 gas analysis system:

MASsoft PC software including:

a. Full suite of data display modes;
b. Quantitative analysis software with percentage, PPM and PPB data output;
c. Comprehensive data export facilities.

The software is installed on a PC which is also used for MS control through altering various parameters (these parameters are discussed in Section A1.3.2). Conversion of the signals between MS and PC is accomplished by the RC interface.

A1.2.7 Operating Parameters

A summary of the main operating parameters of the HPR–20 QIC gas analysis system is presented in Table A1.1.

Table A1.1 Operating parameters of the Hiden HPR–20 QIC gas analysis system (data collected from Hiden Analytical Ltd (2009)).

<table>
<thead>
<tr>
<th>Component</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet</td>
<td>Inlet type</td>
<td>2 m quartz inert capillary</td>
</tr>
<tr>
<td></td>
<td>Inlet temperature</td>
<td>up to 200 °C</td>
</tr>
<tr>
<td></td>
<td>Sampling pressure</td>
<td>0.1 – 2 bar (absolute)</td>
</tr>
<tr>
<td>Ionization</td>
<td>Electron ionization</td>
<td>4 to 150 eV (in 0.1 eV increments)</td>
</tr>
<tr>
<td></td>
<td>Filaments</td>
<td>Oxide–coated iridium filaments</td>
</tr>
<tr>
<td>Mass analyser</td>
<td>Quadrupole mass range</td>
<td>200 amu</td>
</tr>
<tr>
<td>Detectors</td>
<td>Quadrupole detectors</td>
<td>Faraday and Electron Multiplier Detectors</td>
</tr>
<tr>
<td></td>
<td>Fragmentation pattern library</td>
<td>72 compounds</td>
</tr>
</tbody>
</table>
A1.3 Development of Calibration Method

A1.3.1 Experimental Set–up

The typical set–up utilised throughout calibration of the QMS is presented in Figure A1.6(A). A detailed description of the apparatus is presented in Chapter 3. The calibration gases were supplied, through flexible stainless steel hoses, to variable area flowmeters where the flow rate could be varied e.g. 30 to 300 cm3 min$^{-1}$. In addition, an oil bubbler filled with water (Figure A1.6) was placed in an ice bath and one of the calibration gases directed through it to provide a known concentration of H$_2$O to the calibration mixture. The use of the flowmeters enabled calibration mixtures containing all species of interest to be delivered directly to the QMS through stainless steel tubing. It was verified that complete mixing occurred within the tubing and thus additional apparatus to aid mixing was not included in the calibration set–up. The flowmeters also required calibration for use with the relevant calibration gas mixtures, the procedure for flowmeter calibration is described in Chapter 3. The calibration gases utilised throughout the calibration method were supplied from BOC, Bristol, UK and consisted of:

- 2070 ppm H$_2$ in N$_2$
- 2020 ppm NO, 458 ppm NO$_2$ in N$_2$
- 500 ppm NO$_2$ in N$_2$
- 9.2 % O$_2$ in N$_2$
- 512 ppm NH$_3$ in N$_2$
- 483 ppm N$_2$O in N$_2$
- ‘Zero’ N$_2$

Calibration gases were supplied adhering to BOC’s β standard which specifies an accuracy of ± 2 % with respect to the certification and, from conversation with a BOC employee, a H$_2$O content of no greater than 5 ppm in each cylinder. In addition, ‘Zero’ refers to the purity of the gases which in this instance is 99.998 % and thus there is a total impurity concentration of 20 ppm.
Gas saturated with H$_2$O flows out

‘Dry’ gas flows in

The gas ‘bubbles’ through the water

Oil bubbler

In the experimental set-up an ice bath is used to maintain the water temperature at 0.5 °C

Figure A1.6 (A) Schematic of experimental set-up used for calibration of the QMS. (B) Photograph of oil bubbler used in calibration of the QMS to deliver H$_2$O.
A1.3.2 Setting of Operating Parameters

Setting of appropriate QMS operating parameters formed a large part of the calibration method. As concluded in Chapter 2, a QMS has not been utilised within a deNOₓ application for the detection of both NH₃ and H₂O simultaneously and this was identified as a key issue to enable distinction between this work and other studies. This is a notoriously difficult problem to address as the fragment pattern of both species includes significant contributions at m/z ratios of 17 and 18. Note that whilst a variety of different types of experiment were conducted within this project e.g. SCR, TPD, TPSR, and each involved an individual calibration procedure, the procedure explained here concerns calibration for the ‘complete’ deNOₓ mixture including the following species: H₂, NH₃, H₂O, N₂, NO, O₂, N₂O, and NO₂.

A1.3.2.1 Vacuum Pressure

As already discussed in Section A1.2.5, the vacuum pressure plays a very important role in the operation of the MS and thus any change in pressure can have a detrimental effect on the measurement accuracy. This is consistent with findings in related studies (Turner et al. (2004)) and thus the pressure was closely monitored throughout both calibration and deNOₓ experiments; if the pressure was found to have drifted it was altered to the correct value by using the sample by–pass control valve. The base pressure used throughout this project was typically 1.8 x 10⁻⁶ torr.
A1.3.2.2 Detector Selection

The choice of detector depends on the concentration of the species being measured at particular \(m/z \) ratios. As discussed in Section A1.2.4, the SEM detector offers greater resolution than the Faraday cup (up to ppb level depending on operating conditions). In terms of detectable pressure ranges, the SEM detector can detect gases within a range of \(1 \times 10^{-7} \) to \(1 \times 10^{-13} \) torr whilst the Faraday cup operates within a range of \(1 \times 10^{-5} \) to \(1 \times 10^{-10} \) torr. In this project it was found to be necessary to use a combination of both detectors to measure the range of concentrations of different species under investigation. This had a significant impact on the subsequent operation of the QMS throughout both calibration and deNO\(_x\) experiments; the voltage supplied to the SEM detector required calibration with respect to the Faraday cup such that both detectors gave equivalent signals (this is discussed further in Section A1.3.2.5). Additionally, as the method required switching between the two detectors, the acquisition time was increased.

A1.3.2.3 Electron Energy, eV

Although this is typically set at 70 eV (Hiden Analytical Ltd (2007)), which is suitable to both singly and doubly ionize most species, the electron energy was altered within this project to combat the aforementioned problem of separating the contributions of both \(\text{NH}_3 \) and \(\text{H}_2\text{O} \) at \(m/z \) ratios of 17 and 18. Hiden Analytical Ltd (2012a) recently utilised the technique of ‘soft ionisation’ to successfully separate the two species:

“…minimal ionisation of water occurs below 15 eV. Above this level, ionisation of \(\text{H}_2\text{O} \) to \(\text{H}_2\text{O}^+ \) occurs. It can be seen that at 18 eV the only ionisation products (\(m/z \) 18) detectable when sampling water is \(\text{H}_2\text{O}^+ \). Ionisation of \(\text{H}_2\text{O} \) to \(\text{OH}^+ \) does not occur until around 20 eV. Therefore, this difference in ionisation energy can be used to separate \(\text{OH}^+ \) and \(\text{NH}_3^+ \) if the ionisation threshold of \(\text{NH}_3 \) to \(\text{NH}_3^+ \) is below this level. Theoretically, the ionisation to \(\text{NH}_3^+ \) occurs at around 11 eV”
Adopting this approach, how the various fragment patterns of both NH$_3$ and H$_2$O altered through variation of the electron energy was investigated. Ideally an electron energy which produced no contribution from H$_2$O at m/z 17 and no contribution from NH$_3$ at m/z 18 would have been identified and, acting upon the results reported by Hiden Analytical Ltd (2012a), a range of m/z ratios from 12 to 20 were investigated. Unfortunately this could not be achieved as unexplained secondary ionization products from H$_2$O were witnessed at lower electron energies, where there was no fragmentation from NH$_3$. As a result a compromise was reached with the fragmentation patterns of the two species presented in Table A1.2. These patterns were achieved using individual gas mixtures consisting of 512 ppm NH$_3$ in N$_2$ and ~6380 ppm H$_2$O, 9.8 % O$_2$ in N$_2$ (see humidity calculation, Section A1.3.3.3). Due to the nature of the method of introducing moisture to the calibration mixture, the levels present were increased with respect to what could realistically be expected during deNO$_x$ experiments, whilst the levels of NH$_3$ present were of the order of magnitude expected. As a result, it was decided that during deNO$_x$ experiments, the contribution of H$_2$O at m/z 17 would be negligible if any NH$_3$ was present, and thus the electron energy was set at 18 eV.

Table A1.2 Fragmentation of NH$_3$ and H$_2$O at m/z ratios of 17 and 18 with an electron energy of 18 eV.

<table>
<thead>
<tr>
<th>Species</th>
<th>m/z</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m/z</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>NH$_3$ (& N$_2$)</td>
<td>100.00 %</td>
<td>18.05 %</td>
<td></td>
</tr>
<tr>
<td>H$_2$O (& O$_2$, N$_2$)</td>
<td>0.15 %</td>
<td>100.00 %</td>
<td></td>
</tr>
</tbody>
</table>
A1.3.2.4
Electron Emission Current, μA

The electron emission current is directly related to the magnitude of the signal detected by the detector. Due to the alteration of the electron energy, the emission current required reducing to prevent damaging the filament through excessive current demands. As can be seen from Figure A1.7 (presented in Hiden Analytical Ltd (2007)) for a given electron energy there is a recommended emission current. After consultation with a Hiden engineer, an electron emission of 180 μA was deemed acceptable, although in Figure A1.7 it lies just outside the recommended operating region for an electron energy of 18 eV.

![Graph](image.png)
Figure A1.7 Graph depicting emission current – minimum electron energy characteristic for 0 to 20 eV. From Hiden Analytical Ltd (2007)
A1.3.2.5 SEM Detector Voltage

As already alluded to, the use of both the Faraday cup and SEM detectors required additional calibration to ensure the SEM detector gave an equivalent signal to that of the Faraday detector. This in turn increases the sensitivity when measuring trace levels of gases. Calibration of the SEM detector was achieved by detecting a species at a single mass and directly comparing the intensity of the signals from each detector (Figure A1.8). The SEM detector voltage was then manually altered until the peaks were the same height.

![Figure A1.8](image)

Figure A1.8 Detected abundance of O\(_2\) at m/z 16 using both SEM and Faraday detectors (A) before calibration at 915 V and (B) after calibration at 984 V.
A1.3.2.6 Summary and General Procedure

A summary of the QMS operating parameters is presented in Table A1.3. It is important to note that although once calibrated the QMS demonstrates excellent repeatability; due to natural ‘drift’ of the QMS as the filament degrades, it is necessary to re-calibrate at regular intervals (typically every 3 months). As a result, the parameters presented here only represent the outcome of one particular QMS calibration process (and the subsequent experimental investigations), and were not necessarily utilised in all deNO\textsubscript{x} experiments (for which further calibration processes would have been completed).

The relatively low electron energy and electron emission, in addition to utilising both the Faraday and SEM detectors, resulted in an acquisition time of 42 s for a ‘full’ deNO\textsubscript{x} mixture.

In terms of operating procedure, after initial start-up the QMS was left running in order to achieve the base vacuum pressure, and adjusted as necessary throughout the calibration procedure, to maintain a constant value. It was also generally necessary to warm up the filament prior to use in both calibration and experimental investigation; depending on the operation parameters this may take 2 h (at e.g. 70 eV) or overnight (at e.g. 18 eV).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base pressure</td>
<td>1.8×10^{-6} Torr</td>
</tr>
<tr>
<td>Electron energy</td>
<td>18 eV</td>
</tr>
<tr>
<td>Electron emission</td>
<td>180 μA</td>
</tr>
<tr>
<td>SEM detector voltage</td>
<td>995 V</td>
</tr>
<tr>
<td>Acquisition time</td>
<td>42 s</td>
</tr>
</tbody>
</table>

Table A1.3 QMS parameters used during calibration and deNO\textsubscript{x} experiments.
A1.3.3 Challenges

Although suitable operating parameters had been identified, further issues were encountered throughout the construction of a robust calibration method.

A1.3.3.1 Fragmentation

Whilst using a QMS, a major task when identifying the composition of an unknown gas mixture is the separation of the relevant contributions of two or more species at a particular \(m/z\) ratio. Hoffmann et al. (2007) discuss the issues which arise due to overlapping fragmentation patterns, stating that:

a) The most common interferences are the spectral interferences, also called isobaric interferences. They are due to overlapping peaks which can mask the analyte of interest and can give erroneous results.

b) Such interferences may occur from ions of other elements within the sample matrix, elemental combination, oxide formation, doubly charged ions, and so on.

In the gas mixture of interest this is particularly evident:

- NO, O\(_2\), N\(_2\)O and NO\(_2\) all contribute at a \(m/z\) of 30.

- NH\(_3\) and H\(_2\)O both contribute at \(m/z\) ratios of 17 and 18.

Whilst these particular issues have been addressed before (Hiden Analytical Ltd (2012a) and Hiden Analytical Ltd (2012b)), and as mentioned previously vast databases of compound fragment patterns exist; each QMS system is unique in the exact measurements it conducts. Indeed different species also behave differently in the presence of others, and may provide differing fragment patterns under different conditions. Thus whilst the library fragment patterns may give an indication of the species ‘fingerprint’, the requirement to calibrate the QMS for each gas mixture is highlighted.
Under the specified operating parameters, it is important to identify specific m/z ratios which can be attributed to a particular species. If this is not possible then it is imperative to be able to calculate the relative contributions of overlapping species at a particular m/z.

An indication of the fragment patterns of each species of interest (at the defined operating parameters) can be observed in Table A1.4. Note that the green highlighted m/z ratio for each species indicates its use as the ‘main peak’ for that species, from which its contribution at other m/z ratios may be calculated (Sections A1.3.4.1 and A1.3.4.3). Although the highlighted peaks here represent the ‘ion–molecule’ peak and it may be expected that these peaks would demonstrate the most intensive signal for a particular species, this is not always the case, as is highlighted in Section A1.3.4.3.

Table A1.4 Matrix detailing contributions from the species of interest at different masses under the derived operating parameters.

<table>
<thead>
<tr>
<th>Species</th>
<th>m/z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>H$_2$</td>
<td>X</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>X</td>
</tr>
<tr>
<td>H$_2$O</td>
<td></td>
</tr>
<tr>
<td>N$_2$</td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>O$_2$</td>
<td></td>
</tr>
<tr>
<td>N$_2$O</td>
<td></td>
</tr>
<tr>
<td>NO$_2$</td>
<td></td>
</tr>
</tbody>
</table>
A1.3.3.2 Method of Calibration

There are a number of approaches which may be made to calibrate a QMS for a particular gas mixture, namely the ‘external standard’ and ‘internal standard’ methods. Hoffmann et al. (2007) provide the following description of the use of the ‘external standard’ method:

a) This consists of preparing a synthetic sample containing a known quantity of the molecule to be measured (M_{ste}), then introducing a precise volume of this solution into the spectrometer and recording the intensity of the response signal (I_{ste}).

b) Then, without any modification of the analytical conditions, an equal volume of the solution containing the molecule to be quantified (M_x) is introduce into the spectrometer and the intensity of its response signal (I_x) is measured.

c) There is a proportionality between the response intensities and the quantities as long as the response signal intensity remains linear with respect to the concentration and as long as the signal intensity is zero at zero concentration.

Although the response between intensity and concentration is typically linear when utilising a chemical ionization method (the ionization technique in this project), a heavy reliance is placed upon maintaining the operating conditions of the QMS. As even slight adjustments to the operating parameters will affect the measurements this method is considered to have poor repeatability.

The alternative, ‘internal standard’ method can avoid the errors associated with the ‘external standard’ method. In this case, instead of relying on absolute intensities and assuming a linear relationship with the concentration of the species of interest (external method’), the reliance is on measurement of a ratio between the intensity of the species of interest and a reference compound. This approach forms the basis of the calibration method discussed here.
A1.3.3 Introduction of Moisture to the Calibration Mixture

In order to build the most accurate calibration method for a complete reaction mixture it is necessary to produce a calibration gas mixture containing all the potential species. Assuming that, as advised by a BOC representative the supplied calibration gases contained no H$_2$O (or certainly < 5 ppm H$_2$O in each cylinder), it was thus necessary to identify a technique to accurately deliver a known H$_2$O concentration to the QMS.

A method was devised using a standard oil bubbler, filled with H$_2$O, through which one of the calibration gases flowed (Figure A1.6(B)). By cooling the H$_2$O to 0.5 °C, saturation of the flowing gas stream could achieved with a minimised H$_2$O concentration of 6380 ppm. A further challenge emerged in addition to the use of the bubbler: it was found that some of the reactant species readily dissolve in the water, and thus only particular calibration gas mixtures could be used to ‘bubble through’ the H$_2$O.

A1.3.4 Methodology

The following sections described the steps to be taken in developing a method for the accurate analysis of a gas mixture of unknown composition.

A1.3.4.1 m/z Ratios and Species Overlap

Utilising the information presented in Table A1.4, the initial step was to identify, with consideration to the operating parameters, the m/z ratios of interest and any potential overlaps. This was achieved by scanning the range of m/z ratios with each species individually, at relevant concentrations, and identifying peaks of significant intensity.

As a result the abundance of H$_2$, NH$_3$, N$_2$ and NO$_2$ were derived from the signals at m/z 2, m/z 17, m/z 28, and m/z 46 respectively. Under the operating parameters determined in Section A1.2.7, and specifically the electron energy chosen to distinguish between NH$_3$ and H$_2$O in Section A1.3.2.3, it can be assumed the following species are the only found to contribute at these masses:
\[P_{H_2} = P_{m/z \ 2} \]
\[P_{NH_3} = P_{m/z \ 17} \]
\[P_{N_2} = P_{m/z \ 28} \]
\[P_{NO_2} = P_{m/z \ 46} \]

(A1.1)

\(P_i \) is the corrected partial pressure of component i and \(P_{m/z \ j} \) is the raw partial pressure recorded by the QMS at peak \(m/z \, j \), respectively.

From Table A1.4 it can be seen there is significant overlap between various combinations of NO, O\(_2\), N\(_2\)O and NO\(_2\). As a result:

- the partial pressure of H\(_2\)O at \(m/z \ 18 \) was corrected for NH\(_3\) overlap,
- the partial pressure of O\(_2\) at \(m/z \ 32 \) was corrected for NO\(_2\) overlap,
- the partial pressure of N\(_2\)O at \(m/z \ 44 \) was corrected for NO\(_2\) overlap, and
- the partial pressure of NO at \(m/z \ 30 \) was corrected for O\(_2\), N\(_2\)O and NO\(_2\) overlap.

The following equations were utilised to calculate the contribution of each species at their associated ‘main’ peak:

\[P_{H_2O} = P_{m/z \ 18} - \left(P_{NH_3} \times C_{NH_3 \ 18} \right) \]
\[P_{O_2} = P_{m/z \ 32} - \left(P_{NO_2} \times C_{NO_2 \ 32} \right) \]
\[P_{N_2O} = P_{m/z \ 44} - \left(P_{NO_2} \times C_{NO_2 \ 44} \right) \]
\[P_{NO} = P_{m/z \ 30} - \left(P_{O_2} \times C_{O_2 \ 30} \right) - \left(P_{N_2O} \times C_{N_2O \ 30} \right) - \left(P_{NO_2} \times C_{NO_2 \ 30} \right) \]

(A1.2)

(A1.3)

(A1.4)

(A1.5)

\(C_{ij} \) is the ratio of the partial pressure of component i at peak \(m/z \, j \), \(P_{ij} \), to that of component i at its main peak, \(P_i \) (equation A1.6).

\[C_{ij} = \frac{P_{ij}}{P_i} \]

(A1.6)
Note that these ratios are highly dependent on the operating parameters and presence of other species in the gas mixture and as such are also carefully determined (Section A1.3.4.3) for use in the calibration method.

The concentration of each species was calculated as follows (Equation A1.7):

\[x_i = \frac{(P_i/R_{Si})}{\sum_i(P_i/R_{Si})} \]

(A1.7)

\(x_i \) is the concentration and \(R_{Si} \) is the relative sensitivity, RS value (Section A1.3.4.3), of component \(i \).

A1.3.4.2 Background levels

It is necessary to identify the ‘base’ level or background readings of each \(m/z \) ratio of interest as over time the operation of the QMS alters e.g. through poisoning of the filament erroneous readings at particular \(m/z \) ratios may occur. This is particularly important when dealing with trace levels as slight differences in signal intensity can translate to significant errors in subsequent abundance calculations.

Background readings (Table A1.1) were obtained by flowing ‘zero’ nitrogen through the QMS and analysing the \(m/z \) ratios of interest. It was assumed there were no residual impurities within the system and the gas was supplied until the signals stabilised (2 – 3 h).

Table A1.1 Example of background readings obtained at relevant \(m/z \) ratios using ‘zero’ nitrogen.

<table>
<thead>
<tr>
<th>(m/z)</th>
<th>Background Reading (torr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3.2 x10(^{-11})</td>
</tr>
<tr>
<td>17</td>
<td>1.53 x10(^{-11})</td>
</tr>
<tr>
<td>18</td>
<td>7.35 x10(^{-11})</td>
</tr>
<tr>
<td>30</td>
<td>5.41 x10(^{-11})</td>
</tr>
<tr>
<td>32</td>
<td>6.07 x10(^{-11})</td>
</tr>
<tr>
<td>44</td>
<td>8.68 x10(^{-12})</td>
</tr>
<tr>
<td>46</td>
<td>3.48 x10(^{-14})</td>
</tr>
</tbody>
</table>
Note the reading at \(m/z \) 46 is outside the operating limits of the both Faraday and SEM detectors (Section A1.3.2.2) and thus can be considered ‘noise’ within the system. However, the remaining \(m/z \) ratios exhibit significant intensities, particularly if trace species are to be considered with this method (and the associated parameters). These readings will be utilised through subtraction from the raw measurements obtained during calibration of experimental runs, before the necessary calculations are applied.

In addition it is possible to periodically ‘clean’ the filaments through use of a highly reducing atmosphere (i.e. \(H_2 \)) in a process known as “bake-out”. Although this technique was not applied here it may aid the reduction of the intensity of measured background levels.

A1.3.4.3 Relative Sensitivity Values, RS

Building upon the ‘internal standard method’ described in Section A1.3.3.2, the final step in the development of the calibration process is to obtain an RS value for each species in the calibration mixture. An RS value accounts for the variation in sensitivity the QMS demonstrates for different species (once again each QMS exhibits unique behaviour under varying operating conditions).

This is achieved by successfully separating the contributions of each species at each \(m/z \) ratio and relating the intensity of the individual ‘main peaks’ to that of the species in highest concentration within the mixture (Table A1.2 and Table A1.3). Note that separation of the overlapping species contributions is not a trivial task and required ‘building’ the gas mixture species by species. Although as already discussed, the addition of a species to a mixture may impact on the fragmentation of the other species; if the added species also contributes at the same \(m/z \) ratios (as those already present) then separation can only be achieved by assuming there is no impact on the fragmentation of the species in the original mixture.
Table A1.2 Measured fragment pattern of NH₃.

<table>
<thead>
<tr>
<th>Species</th>
<th>m/z</th>
<th>Relative Signal Intensity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₃</td>
<td>17</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>9.17</td>
</tr>
</tbody>
</table>

Table A1.3 Measured fragment patterns of O₂ and the various NOₓ species.

<table>
<thead>
<tr>
<th>Species</th>
<th>m/z</th>
<th>Relative Signal Intensity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>–</td>
</tr>
<tr>
<td>O₂</td>
<td>30</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>–</td>
</tr>
<tr>
<td>N₂O</td>
<td>26.95</td>
<td>100</td>
</tr>
<tr>
<td>NO₂</td>
<td>2275</td>
<td>19545</td>
</tr>
<tr>
<td></td>
<td>224</td>
<td>100</td>
</tr>
</tbody>
</table>

These RS values then represent the relationship between the two species at the particular concentrations supplied to the QMS. For this reason it is necessary to try and produce a gas mixture which is representative of what would be produced during experimental investigations. Obviously this necessitates speculation in terms of catalyst performance etc. However some flexibility is seen and RS values can demonstrate accuracy over a range of concentrations.

In this study, as N₂ is the carrier gas it is found in great excess and is assigned an RS value of 1. The RS values of the remaining species are then calculated with respect to the N₂ concentration. In an effort to deliver a robust experimental method capable of identifying each species of interest over a (realistic) range of concentrations, a number of different gas mixtures (Table A1.4), with varying concentrations of each species, were delivered to the QMS and the RS values for each component recorded and averaged. These mixtures were delivered within the constraints of the experimental apparatus (i.e. flow ranges of the flowmeters) and in addition, RS values for selected species in the absence of the complete gas mixture were also obtained with a view to the additional experiments to be completed e.g. NO–TPD, H₂–TPSR etc.
Although it was assumed there was no H$_2$O present in the calibration system (in the absence of using the bubbler), in reality this was not the case (even allowing for the presence of potential background levels, Section A1.3.4.2). It is suggested that condensation within the steel tubing or ‘wet’ gases may be responsible for the measured signals. In any case the concentration of H$_2$O provided through the bubbler was far greater than that expected in the experimental investigations. Thus the H$_2$O RS value was obtained utilising the set–up described in Section A1.3.3.3 but the RS values of the remaining species were obtained in the absence of additionally provided H$_2$O.

Table A1.4 Various gas mixtures used to obtain RS values.

<table>
<thead>
<tr>
<th>Mixture</th>
<th>NO (ppm)</th>
<th>NO$_2$ (ppm)</th>
<th>H$_2$ (ppm)</th>
<th>O$_2$ (%)</th>
<th>NH$_3$ (ppm)</th>
<th>N$_2$O (ppm)</th>
<th>N$_2$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1312</td>
<td>297</td>
<td>189</td>
<td>0.64</td>
<td>55</td>
<td>40</td>
<td>99.17</td>
</tr>
<tr>
<td>2</td>
<td>175</td>
<td>40</td>
<td>1370</td>
<td>0.62</td>
<td>53</td>
<td>39</td>
<td>99.21</td>
</tr>
<tr>
<td>3</td>
<td>188</td>
<td>43</td>
<td>198</td>
<td>5.64</td>
<td>57</td>
<td>42</td>
<td>94.31</td>
</tr>
<tr>
<td>4</td>
<td>116</td>
<td>26</td>
<td>122</td>
<td>0.41</td>
<td>402</td>
<td>26</td>
<td>99.52</td>
</tr>
<tr>
<td>5</td>
<td>165</td>
<td>37</td>
<td>173</td>
<td>0.58</td>
<td>50</td>
<td>326</td>
<td>99.34</td>
</tr>
<tr>
<td>6</td>
<td>421</td>
<td>95</td>
<td>431</td>
<td>1.92</td>
<td>96</td>
<td>91</td>
<td>97.97</td>
</tr>
<tr>
<td>7</td>
<td>165</td>
<td>37</td>
<td>422</td>
<td>2.82</td>
<td>104</td>
<td>99</td>
<td>97.10</td>
</tr>
<tr>
<td>8</td>
<td>152</td>
<td>35</td>
<td>160</td>
<td>3.47</td>
<td>144</td>
<td>91</td>
<td>96.48</td>
</tr>
</tbody>
</table>

The obtained RS values for each mixture were obtained and analysed and most species demonstrated consistency through the entire range of investigated concentrations. However, some species exhibited a wider range of obtained RS values and these were typically the species for which calculation of overlap from other species was required i.e. NO, N$_2$O. In other instances there were distinct patterns between the concentration of the species and the obtained RS values and in these cases some discretion was demonstrated when calculating an overall RS value from those obtained with the most appropriate species concentration.
The accuracy of the chosen RS values was analysed by introducing a mixture of known composition and comparing the specified abundances with those produced by the QMS. An example of the RS values obtained and used for the complete species mixture is presented in Table A1.5.

Table A1.5 Example of the RS values for the species in the complete gas mixture obtained on completion of the calibration process.

<table>
<thead>
<tr>
<th>Species</th>
<th>H₂</th>
<th>NH₃</th>
<th>H₂O</th>
<th>NO</th>
<th>O₂</th>
<th>N₂O</th>
<th>NO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS Value</td>
<td>1.76</td>
<td>9.30</td>
<td>3.62</td>
<td>4.37</td>
<td>1.72</td>
<td>4.44</td>
<td>0.30</td>
</tr>
</tbody>
</table>
A1.4 Conclusions

Although not a trivial task, the QMS has been calibrated to measure a complete mixture of all potential deNOₓ species. Whilst there are certainly some limitations to the ranges in which particular species can be identified, the calibration was attempted in such a way as to avoid such issues. Good repeatability in performance is observed although recalibration should be conducted after a period of 2–3 months. It should also be noted that if, during experimental trials, it appears a mixture containing species within ranges out with those used for calibration is formed; recalibration involving a relevant mixture may be conducted to obtain a more accurate RS value and the experimental trial repeated.

Although the QMS is a powerful piece of equipment, there are some drawbacks to its use in this application:

- Throughout development of the calibration method it was identified that setting and maintaining the operating parameters was very important to the accuracy of the measurements.

- In order to make accurate measurements it needs to be ‘trained’ in what to measure. This in turn requires predictions as to what may occur in the experimental trials. Further assumptions were also made throughout the calibration process.

- Although the QMS provides on–line, real time measurements, due to the operating parameters the sample acquisition time is relatively long (42 seconds). Although this is deemed an adequate response for the processes which are investigated here, it may be too slow for other applications in which case a compromise between accuracy and response time must be made.

The procedure discussed here is the results of many studies and iterations and continual development of the method will occur in a bid to improve the accuracy and robustness of the overall method.
REFERENCES

Hiden Analytical Ltd (2012b) NOₓ Detection. Document: Application Note 289

Appendix II – Examples of Detailed Catalyst Preparation Procedures

A **Experiment Number**: DM 016 **Experiment Description**: Pt Coating

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Molecular Weight (g)</th>
<th>Density</th>
<th>Amount Used</th>
<th>Mols</th>
<th>Equivalents</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂PtCl₆·6H₂O</td>
<td>517.90</td>
<td>–</td>
<td>5.3 g</td>
<td>0.010</td>
<td>1</td>
</tr>
<tr>
<td>H₂O</td>
<td>18</td>
<td>1 g/ml</td>
<td>194.7 g</td>
<td>10.81</td>
<td>1056</td>
</tr>
</tbody>
</table>

Experimental Procedure

Following the procedure described in Klinghoffer *et al.* (1998), a 1 wt% Pt Solution was prepared.

15/05 18 x Al₂O₃ monoliths (box 6, A1→C6)

6 x Ba/Al₂O₃ monoliths (box 3, D1→D6)

6 x K/Al₂O₃ monoliths (box 5, B1→B6)

were submerged in the solution for a total of 10 mins, during which the monoliths were turned over once.

Once removed from the solution the monoliths were placed in a ceramic dish and dried for 2 h at 120 °C before they were calcined at 500 °C overnight (15 h, 15/05→16/05).

B **Experiment Number:** DM 012 **Experiment Description:** Ag Coating

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Molecular Weight (g)</th>
<th>Density</th>
<th>Amount Used</th>
<th>Mols</th>
<th>Equivalents</th>
</tr>
</thead>
<tbody>
<tr>
<td>AgNO₃</td>
<td>169.87</td>
<td>–</td>
<td>6.3 g</td>
<td>0.037</td>
<td>1</td>
</tr>
<tr>
<td>H₂O</td>
<td>18</td>
<td>1 g/ml</td>
<td>200 g</td>
<td>11.11</td>
<td>300</td>
</tr>
</tbody>
</table>

Experimental Procedure

AgNO₃ (6.3 g) was dissolved in H₂O (200 g) in order to produce a solution of ~2 wt% silver.

08/05 18 x JM Al₂O₃ monoliths (box 4, A1→C6) were submerged in the solution for 2 h.

Once removed from the solution the monoliths were placed in a ceramic dish and dried overnight (19 h, 08/05 → 09/05) at room temperature before they were calcined at 550 ºC for 4 h (09/05).
C **Experiment Number**: DM 017 **Experiment Description**: Ba Coating

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Molecular Weight (g)</th>
<th>Density</th>
<th>Amount Used</th>
<th>Mols</th>
<th>Equivalents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba(NO$_3$)$_2$</td>
<td>261.34</td>
<td>–</td>
<td>10 g</td>
<td>0.038</td>
<td>1</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>18</td>
<td>1 g/ml</td>
<td>100 ml</td>
<td>5.55</td>
<td>145</td>
</tr>
</tbody>
</table>

Experimental Procedure

The solution prepared in DM 013 was used again (details can be found in the table above).

16/05 6 x Pt/Al2O3 monoliths (box 6, B1→B6)

6 x Ag/Al2O3 monoliths (box 4, B1→B6)

were submerged in the solution for 30 mins.

Once removed from the solution the monoliths were placed in a ceramic dish and dried at 120 °C overnight (18 h, 16/05→17/05) before they were calcined at 550 °C for 4 h (17/05)

D **Experiment Number**: DM 014 **Experiment Description**: K Coating

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Molecular Weight (g)</th>
<th>Density</th>
<th>Amount Used</th>
<th>Mols</th>
<th>Equivalents</th>
</tr>
</thead>
<tbody>
<tr>
<td>K(acac)</td>
<td>98.14</td>
<td>–</td>
<td>34.35 g</td>
<td>0.35</td>
<td>1</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>18</td>
<td>1 g/ml</td>
<td>100 ml</td>
<td>5.55</td>
<td>15.9</td>
</tr>
</tbody>
</table>

Experimental Procedure

K(acac) (34.35 g) was dissolved in H$_2$O (100 ml) in order to produce a solution of concentration = 3.5 mols/L.

10/5 18 x JM Al$_2$O$_3$ monoliths (box 5, A1→C6) were submerged in the solution for 30 mins.

Once removed from the solution the monoliths were placed in a ceramic dish and dried at 120 °C overnight (19 h, 10/5→11/5) before they were calcined at 550 °C for 4 h (11/5).