

University of Bath

DOCTOR OF ENGINEERING (ENGD)

Improving Long-Term Localisation with Exponential Decay and Neural Feature Filtering

Rotsidis, Alexandros

Award date:
2023

Awarding institution:
University of Bath

Link to publication

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

Copyright of this thesis rests with the author. Access is subject to the above licence, if given. If no licence is specified above,
original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0
International (CC BY-NC-ND 4.0) Licence (https://creativecommons.org/licenses/by-nc-nd/4.0/). Any third-party copyright
material present remains the property of its respective owner(s) and is licensed under its existing terms.

Take down policy
If you consider content within Bath's Research Portal to be in breach of UK law, please contact: openaccess@bath.ac.uk with the details.
Your claim will be investigated and, where appropriate, the item will be removed from public view as soon as possible.

Download date: 03. Aug. 2025

https://researchportal.bath.ac.uk/en/studentTheses/86a4466c-d8dd-4453-8073-f75ca7afc3c9

Improving Long-Term Localisation with
Exponential Decay and Neural Feature Filtering

submitted by

Alexandros Rotsidis
for the degree of Doctor of Engineering

of the

University of Bath
Department of Computer Science

May, 2023

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with the author. A copy of this
thesis has been supplied on condition that anyone who consults it is understood to recognise
that its copyright rests with the author and that they must not copy it or use material from it

except as permitted by law or with the consent of the author.

This thesis may be made available for consultation within the
University Library and may be photocopied or lent to other

libraries for the purposes of consultation with effect from(date)

Signed on behalf of the Faculty of Science .

Abstract
The work presented in this thesis is a joint work between Dc-activ, an industrial partner and
the University of Bath. The industrial end goal is to develop an augmented reality platform for
retail shops where virtual intelligent avatars can interact with customers. The virtual avatars
must be able to act as shopping assistants and training staff, which entails these avatars must be
intelligent. The platform must be capable of dealing with the dynamic nature of retail shops in
order to provide a pleasant augmented reality for its users. In this work, I first present a number
of industrial application prototypes that showcase the feasibility and potential of deploying
intelligent avatars in a retail environment. Lastly, I present the two research contributions that
improve the efficacy of such a platform.

Determining the camera pose, i.e. localising, is an important stage for a complete augmented
reality experience. Previous research has put effort into localising a camera in static environ-
ments. The real world though is a dynamic place with moving objects, such as cars, people and
lighting changes caused by seasons or different times of the day. Estimating a camera pose in a
dynamic environment, such as the world around us, is called long-term localisation. Long-term
localisation is a problem more relevant and appropriate to the dynamic nature of our world.
Recently the problem of long-term localisation has been one of the new interest areas to receive
a lot of attention.

In this thesis, I first present several intelligent virtual avatar prototypes that prove the feasibility
of deploying augmented reality intelligent avatars in a retail shop.

Then, I first address the task of long-term localisation in a more specific indoor environment,
retail shops. To tackle this problem, I introduce a method based on exponential decay that
improves long-term localisation in a retail shop. The proposed method is additionally tested on
outdoor environments as well where it also shows to improve long-term localisation.

The last task that this thesis addresses is improving the localisation speed while aiming to the
performance intact. I propose a learning-based method that reduces the amount of data needed
to estimate a camera pose. This is achieved by using a neural network trained to classify and
predict static points that are more useful for localising. The method can be easily integrated into
existing pipelines.

Publications

The following publications resulted from my work in this thesis,

• Rotsidis, A., Lutteroth, C., Hall, P., & Richardt, C. (2021). ExMaps: Long-Term Local-
ization in Dynamic Scenes using Exponential Decay. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision (pp. 2867–2876).

• Rotsidis, A., 2021. Dataset for ‘ExMaps: Long-Term Localization in Dynamic Scenes
using Exponential Decay’. Bath: University of Bath Research Data Archive. Available
from: https://doi.org/10.15125/BATH-00986.

Other Publications

During the first year of my EngD, the following publications were accepted,

• Rotsidis A., Theodorou A., & Wortham R. H. (2019). Robots that make sense: transpar-
ent intelligence through augmented reality. In 2019 IUI Workshop in Intelligent User
Interfaces for Algorithmic Transparency in Emerging Technologies (IUI-ATEC). CEUR
Workshop Proceedings.

• Rotsidis A., Theodorou A., Bryson J. J., & Wortham R. H. (2019, October). Improving
robot transparency: An investigation with mobile augmented reality. In 2019 28th IEEE
International Conference on Robot and Human Interactive Communication (RO-MAN).

During the last year of my EngD, the following publications were accepted,

• Numan N., Lu Z., Congdon B., Giunchi D., Rotsidis A., Lernis A., Larmos K., Kourra T.,
Charalambous P., Chrysanthou Y., Julier S., Steed A. (2023). Towards Outdoor Collabora-
tive Mixed Reality: Lessons Learnt from a Prototype System. In ReDigiTS: 2nd Workshop
on 3D Reconstruction, Digital Twinning, and Simulation for Virtual Experiences (IEEE
VR 2023).

iii

https://doi.org/10.15125/BATH-00986

Contents

1 Introduction 1
1.1 Motivation . 4
1.2 Research Aims and Objectives . 6
1.3 Contributions . 8
1.4 Thesis Outline . 9

2 Background 11
2.1 Foundations . 11

2.1.1 The Pinhole Camera Model . 11
2.1.2 Structure-from-Motion . 14
2.1.3 Simultaneous Localisation and Mapping (SLAM) 17

2.2 Camera Localisation . 18
2.2.1 Learning-Based Approaches . 19
2.2.2 Image Retrieval Approaches . 19
2.2.3 Geometric Approaches . 22
2.2.4 Long-term Camera Localisation . 24

2.3 Augmented Reality . 26
2.3.1 AR Retail Applications . 27

2.4 Conclusion . 29

3 Industrial Application Prototypes 31
3.1 Introduction . 31

3.1.1 Shopper Mindsets . 32
3.1.2 Intelligent Avatars . 32
3.1.3 Intelligent Avatars Use Cases . 33

3.2 Overall Architecture . 34
3.2.1 Industrial Requirements . 35
3.2.2 Main Components . 35

3.3 Prototypes and Demos . 36
3.3.1 3D Models Acquisition . 37
3.3.2 Prototype Pose Estimation Pipeline 39
3.3.3 Augmented Reality Frameworks . 43

3.4 Intelligent Avatar Prototypes . 44
3.4.1 First Prototype . 44

v

3.4.2 Second Prototype . 46
3.5 Research Software . 49

3.5.1 ARCore Sandbox . 50
3.6 Conclusion . 53

4 Long-term Localisation in Dynamic Scenes using Exponential Decay 55
4.1 Introduction . 55

4.1.1 Motivation . 56
4.1.2 Challenges . 56
4.1.3 Contributions . 57

4.2 Related Work . 58
4.2.1 Map Maintenance . 59

4.3 Methodology . 60
4.3.1 Exponential Decay of Visibility . 61
4.3.2 Pipeline Used For Experiments . 64

4.4 Experiments and Evaluation . 65
4.4.1 Datasets . 65
4.4.2 Baselines and Comparisons . 71
4.4.3 Metrics . 72
4.4.4 Results . 74

4.5 Conclusion . 82
4.5.1 Summary . 82
4.5.2 Limitations . 83
4.5.3 Future Work . 83

5 Neural Feature Filtering for Faster Structure-from-Motion Localisation 85
5.1 Introduction . 85

5.1.1 Motivation . 86
5.1.2 Challenges . 86
5.1.3 Contributions . 87

5.2 Related Work . 87
5.3 Methodology . 90

5.3.1 SfM Map Information . 90
5.3.2 Neural Feature Filtering Network . 92
5.3.3 Neural Feature Filtering Pipeline . 96

5.4 Comparison Methods . 97
5.5 Experiments and Evaluation . 100

5.5.1 Datasets . 100
5.5.2 Baseline and Comparisons . 100
5.5.3 Metrics . 102
5.5.4 Results . 102
5.5.5 Qualitative Results . 107

5.6 Conclusion . 111
5.6.1 Summary of Contributions . 111
5.6.2 Limitations . 111

vi

5.6.3 Future Work . 111

6 Conclusions 113
6.1 Contributions Summary . 113
6.2 Limitations . 114
6.3 Future Work . 115
6.4 Lessons Learned . 117

A Detailed Results for Chapter 4 119
A.1 Chapter 4 Table Results . 119

B Detailed Results for Chapter 5 149
B.1 Chapter 5 Camera Pose Metrics Table Results 149
B.2 Chapter 5 Binary Classifiers Metrics Table . 160

vii

List of Figures

1.1 One of the pioneers of using augmented reality in retail was IKEA. Their aug-
mented reality app allows customers to view virtual products such as furniture
before buying them in their house [107]. 2

1.2 What future retail shops will look like in an AR environment, according to the
AR company Blippar [55]. The shopper will have easy access to visual data in
AR, which otherwise would have been hard to find online in text form. 3

1.3 In this figure, we see a visualisation of the proof of concept the industrial partner
is aiming for. It shows intelligent avatars in a shop interacting with products. . 4

1.4 Matches (green) from the camera frame (left) to the point cloud (right) are
defined so that rotation and translation of the camera frame is estimated. Then
the matches are used in a solver to estimate the camera pose. Existing camera
poses in the point cloud are seen in red. The pose can be used to project the 3D
points on the image. 5

2.1 In a) I illustrate the pinhole camera model. In a) and in b) I show the projection
of point X on x, which lies on the image plane. It is visualised as a line starting
from X passing through the image plane and the centre of projection, C. We
can get the coordinates of x by using the law of similar triangles [73]. 12

2.2 In this figure, the reader can see the image coordinate system and the camera
coordinate system, offset difference [73]. This is useful as it visually shows the
role of the principal point offset. 13

2.3 A visualization of [Rjt], that transforms 3D points from world coordinate system
(right) to the camera local coordinate system (left) [73]. Depending on what
convention you use, it might be the other way around. For example, popular AR
framework ARCore’s [66] poses transform from camera coordinate system to
world coordinate system. 13

2.4 Keypoints detected on an image, from a retail shop. These keypoints are then
described by a vector and associated to 3D points in a pre-built point cloud (or
map) so a camera pose can be estimated. 15

2.5 3D Point X and its projections on two images. The points x1 and x01 have their
own similar descriptor that is matched during the feature matching process.
Extracted from Duong [49]. 15

ix

2.6 The epipolar constraint is formed between the camera coordinate system, T1
origin (first camera centre), and the origin of T2 (second camera centre) which
is relative to T1 origin and the 3D point X. Points EL and ER are called the
epipoles [183]. A more comprehensive explanation is provided by Szeliski
[183] and Hartley and Zisserman [73]. 16

2.7 A visualisation of 2D keypoints detected on consecutive frames and correspond-
ing 3D points. The green lines represent a simplified projection from the 3D
point to the frames’ keypoint (on the same building’s window in each frame). . 17

2.8 The first fully functioning SLAM enabled car winner of the DARPA Challenge
2005 [188] (left), and on the right the most recent autonomous car from Tesla
[187]. 18

2.9 A robot from Sevensense, a Zurich-based company that develops visual SLAM
for robots. The task is to deliver products from shops to clients. The robot is able
to navigate through dynamic environments by constructing local maps [165]. . 18

2.10 High level description of a simple image retrieval system. It shows images used
in this thesis, retail shop images taken at different times. A database is queried
with a given image to retrieve a number of similar images along with their
camera poses. 20

2.11 Overview of image-based camera localisation. The highlighted blue boxes are
the most popular approaches as of 2018. Figure from Wu [209]. 21

2.12 A point cloud created for a retail shop. Point cloud shows a retail shop aisle
from a top-down view. The bottom frame indicates a camera frame localised
in the SfM model and its matching 2D green features to 3D points. Each green
line represents a 2D–3D match. 23

2.13 This figure from Toft et al. [190] illustrates how different query images taken
under different conditions should be able to localise in the point cloud (above).
If the point cloud was constructed from images similar to the left, then the
second from the left will not be able to localise. 25

2.14 This figure from Marchand et al. [117] shows how the two coordinate systems
from the virtual world and the real world have to be aligned in order to create
immersive user augmented reality experiences. The alignment between the
virtual coordinate system and the real coordinate system is done by applying a
pose matrix to the virtual coordinate system. 26

2.15 This figure shows a point cloud superimposed on top of the real world and
viewed from an Android phone. The world and mobile coordinate systems are
aligned, and this allows the phone to navigate in the digital world. The virtual
point cloud is shown on the right and the 3D points are projected correctly on
the trees and ground. 27

2.16 The left image shows a visualisation of 2D keypoints detected on a camera
frame, and the right image shows the end result after localising the device;
computer graphics superimposed on the real world and viewed from the phone’s
screen, showing information to tourists [53]. 27

2.17 This figure shows an application of AR for architects. The user of the app can
see the building at its predefined location before it is built [53]. 28

x

2.18 A more engaging user experience is to position a building model enlarge it and
then allow the user to walk inside the building and get a sense of what it would
feel like for the client, or the architect. This is a process that can be used before
building a house. The image on the far right shows the sea viewed from the
inside of the building [145]. 28

2.19 An example of an AR retail application from Augray [10], that allows users to
try on shoes before buying them. 29

3.1 A sample high–quality store that will be used as an AR environment. The avatars
will be placed in such a model, giving them a sense of their surroundings. Source:
From the industrial partner (Dc-activ) in-house renderings. 34

3.2 The first-gen structure sensor used for initial scans. It is attached to an iPad and
using a proprietary app, the user can the environment facing them. The user
points and moves the devices in the area that they want to scan. 37

3.3 Two scans using the Structure sensor. The left is a meeting room on university
grounds, and the right is the departmental kitchen. Both are accurate, and there
is a good representation of colour and depth. The sensor is also capable of
capturing thin structures such as the handles of the chairs in the left image. . . 37

3.4 One of my scans of a real environment using the Structure sensor. In the model,
I placed a number of avatars, one sitting on a couch and two standing around a
table. Doing so I aimed to replicate a real-life scenario, e.g. avatars around a
table in a store. The QR marker on the couch was later used to align with the
real environment. 38

3.5 One of the first pose estimation pipelines prototypes. It runs a full graphical user
interface, and it attempts to match a real camera frame to a computer-generated
viewpoint of the 3D model before estimating a final pose. The real camera query
frame is shown in the bottom right, for which a camera pose is estimated, which
was shown in the top right blue boxes. 38

3.6 The 3D scanned model and the quarter sphere that was used to place the camera
at its vertices. Then from each placement, a frame was captured, all shown in
the top left and in the bottom row a subset of the frames is magnified. Then
these frames were used in my initial pose estimation pipeline to estimate a pose. 39

3.7 The features detected on both the camera query image (left) and the most
similar 3D scanned model viewpoint image on the right. There are more features
detected on the edge of the desk on the viewpoint image than on the camera
query image, in which there are almost none. The vice-versa for the plastic
cover in the middle of the desk. 41

3.8 The matches between the scanned mode viewpoint and the camera frame. The
total number of matches is below 15. The matches also are not evenly distributed
in the images but in the centre portion of both images. For more accurate pose
estimates, matches should be evenly distributed [146]. 42

3.9 The yellow spheres highlighted with red circles, are the 3D points on the scanned
model where a ray from the 2D viewpoint image detected keypoint intersects
the 3D model’s surface. 42

xi

3.10 The first version of a small-scale virtual avatar in AR, which can recognise
front faces of products and follow them. Its starting and spawn position is
the red marker. The view is a screenshot from a Samsung Galaxy S7 android
smartphone. The app is running at 30 frames per second. 45

3.11 Vuforia’s Target Manager, creates a local coordinate system on each target
image marker as seen on the left, a mock up was drawn. The black borders
represent the image (right) that is uploaded to Vuforia servers the is hence
tracked using the mobile phone app. 45

3.12 The intelligent avatar recognises the product, and the product code shows up
on the top left of the screen. Then the avatar starts walking towards the product
showing basic spatial awareness. The order is clockwise. 46

3.13 Replacing the image targets from the second prototype with dynamic plane
detection and creation. The avatar can now move freely in the place shown, and
the plane’s surface areas increases as the user moves the phone around the space. 47

3.14 The avatar understood my request ‘Tell me more about your products’, and
shows it in text on the upper left corner of the screen. It replies by asking me
about which products I am interested in. 48

3.15 The avatar understands my second oral answer about what products I want to
see, which is Star Wars, and fetches a 3D model of a Star Wars product. 49

3.16 The app that was used to collect data from the retail shop. The app has the
capability to communicate to a remote server and also save locally captured
frames. On the left, the small green points represent the SLAM points from
ARCore, and on the right, the red points are the points from the offline map
rendered and aligned correctly in ARCore’s world coordinate system. 50

3.17 The companion application that was used as a visual debugger for my ex-
periments. The UI shows all the data the onboarding phone’s SLAM system
produces, camera poses and 3D map points. It also stores the pre-built map that
is only shown after a query frame has been localised. The white dots represent
the phone and the added arrow indicates the phone’s look-at direction. 51

3.18 The ARCore sandbox app, was used to localise in an outdoor environment
aswell, to test its efficacy and stability. The area was scanned using the same
app early in the day. A point cloud was constructed, and then later in the
evening, I re-localised. The result is seen here. The point–cloud aligns with the
real environment. Most points are on the trees and at the edge of the green barriers. 53

4.1 I propose a new approach for long-term localisation in dynamic environments
that updates a base map (left) over time as new data arrives to maintain an
up-to-date live map (right). I introduce new stability scores for each world
point that take into account both visibility and recency of observation (using an
exponential decay) to distinguish reliable static and unreliable dynamic world
points. I show that this enables the localisation of unseen query images in the
live map with higher accuracy and speed compared to using the initial base map. 55

4.2 A highly dynamic retail environment, only eight hours apart. Only some features
remain reliable for localisation (in green), while others (in red) would lead to
mismatches and thus errors. 57

xii

4.3 A visualisation of matches in a base map (left), live map (middle), and showing
the scores of the 3D points on the right. Notice the increased number of matches
in the live map compared to the base map. The green lines are inlier matches
and the red are outlier matches. The blue dot is the camera centre. 64

4.4 Sample images from CMU slice 2. This slice contains cars, houses, and some
vegetation. 66

4.5 Sample images from CMU slice 5. This slice’s images depict some moving cars,
less building and more vegetation compared to CMU slice 2. 67

4.6 Sample images from CMU slice 25. The sky takes up a large portion of the
frames’ area. There are no houses no vegetation, and many frames show a highway. 67

4.7 Sample images from CMU slice 11. The images show (in reading order, starting
from the top left) the same area from the same point of view for all the live
maps sessions. Notice the leaves in the fourth image, only appear in one frame. 67

4.8 The base map for the CMU dataset is constructed using only the left camera
images in the ‘sunny/no foliage’ condition. The starting point is shown in the
bottom right. 68

4.9 Sample images from the retail shop. All products are likely to move or be
removed by the end of the day, i.e. in a span of only 8 hours. This shows how
dynamic a retail shop is as an environment. 69

4.10 Sample images from the last session (query) of the retail shop dataset. Most
products have been bought and removed from the shelves. 69

4.11 Sample images from the HGE subset of the LaMAR dataset. The figure shows
various images taken in an outdoor campus, humans (dynamic objects), and
indoor rooms and hallways with repetitive structures. 70

4.12 To illustrate the difference between the proposed time-infused score and the
plain visibility score (i.e. the number of cameras a point was viewed from), I
selected a random picture from the live map and project the visible 3D map
points onto it. Each image feature point here is associated with a stability score
�i (left image) and a visibility score v1 (right image). The higher the value, the
more stable the point is. Most of the products’ points from the left cropped-
image are darker from the ones in the right. This confirms my hypothesis, that
3D points from products (i.e. dynamic objects) are less likely to be used for
pose estimation using my score �i. 72

4.13 Decrease in run time, translation and rotation errors as more sessions are added
to the live map of the retail store dataset. On the left, I show vanilla RANSAC
[59], and on the right, I show a PROSAC version. The values in the y-axis are
different because of different methods. 81

4.14 Number of inliers as 7 sessions are added over time for the retail shop live map,
for vanilla RANSAC (red) and a PROSAC version. In both cases, there is a
steady increase of inliers as more sessions are added to the live map, indicating
more robust long-term localisation. 81

xiii

5.1 Overview of the proposed approach. The proposed method, augments a conven-
tional pose estimation pipeline by adding a neural filtering stage that can filter
out non-matchable features detected from a query image. The neural filtering
stage can be easily plugged into existing pose estimation pipelines to efficiently
select the most reliable features from all detected features. This reduces the
number of features to be matched down to 30% on average (40% shown in the
current example) for all datasets tested and improves feature matching times
by increasing its speed while maintaining the final pose estimates. Such speed
improvements are important for augmented reality applications for a satisfactory
user experience. 85

5.2 For the same loss values the MFE and MSFE perform better than the MSE
function. MFE and MSFE return higher area under the curve (AUC). Figure
from Wang et al. [204]. 95

5.3 A random frame from LaMAR LIN, and the predictions non-matchable (red),
and matchable (green). For the ground truth, the green points are the keypoints
that have a 3D point matched in the live map, red if not. An area of interest is
highlighted in yellow. MnM fails to detect the leaves in the top left corner as
non-matchable compared to NF, which discards more points on leaves. PM fails
to perform adequately and returns a small number of points on the building. . . 108

5.4 A random frame from the retail shop, and the predictions non-matchable (red),
and matchable (green). For the ground truth, the green points are the keypoints
that have a 3D point matched in the live map, red if not. An area of interest is
highlighted in yellow. MnM has a minor difference from NF, but it detects more
matchable points on products (bread) than NF. NF’s central highlighted area is
more similar to the ground truth’s highlighted area than MnM’s highlighted area.
PM result shows that it struggles to classify positives as true positives. Points
on permanent structures like the rail and grill, are all classified as non-matchable. 109

5.5 A random frame from CMU slice 4, and the predictions non-matchable (red),
and matchable (green). For the ground truth, the green points are the keypoints
that have a 3D point matched in the live map, red if not. An area of interest
is highlighted in yellow. MnM classifies a lot of vegetation as matchable in
the highlighted areas. NF highlighted areas resemble the highlighted areas in
the ground truth frame. NF mostly classifies vegetation as dynamic points, i.e.
non-matchable. Similar to the previous figures, the PM result shows that it has
difficulties classifying even points on the church (static building) as matchable. 110

xiv

List of Tables

4.1 Toy example that illustrates two types of stability scores, per session and per
image, applied to an example visibility matrix of 4 points (columns) and 6 im-
ages (rows), captured in 3 sessions (bottom entries are the most recent images).
The columns under ‘session’ and ‘image’ illustrate the corresponding weights
given to each visibility value in the row. The per-session stability score (Equa-
tion (4.4)) treats all images in a session the same and thus cannot distinguish
between points 2 and 3. The per-image stability score (Equation (4.5)) favors
more recent observations, even in the same session. 63

4.2 All the 12 Extended CMU Seasons conditions are listed below. Even though
some have the same condition, they were captured at different timestamps.
The Sunny + No Foliage is used for creating the base map, and the following
condition are used as sessions to localise in the base map. One condition is kept
as a query session. For example, slice 10 has query session 2, slice 4 has query
session 9. The query sessions were chosen at random. 68

4.3 The 10 thresholds used for each dataset CMU, Retail shop and LaMAR (Note
that centimetres used for the Retail Shop). 74

4.4 Total matches, inliers and outliers for the CMU dataset slices. The two leftmost
columns show the increase in matches compared to using a base map to a live
map. RANSAC base map, RANSAC live map, and the best-performing methods
based on a reliability score are compared. For each of the three methods, I list
the inlier percentage and the mean Average Accuracy (mAA). Using a time-
related score shows a consistent increase in performance compared to a live
map. For CMU slice 24, there is a 9% increase in mAA, and 15% for slice 15;
both significant. 75

4.5 I report the total matches, inliers and outliers for the retail shop. The two
leftmost columns show the increase in matches compared to using a live map.
RANSAC base map, RANSAC live map, and the best-performing method
based on a reliability score are compared. For each of the three methods, I
list the inliers percentage, and the mean Average Accuracy (mAA). Using a
time-infused score shows an increase in performance compared to a live map.
The version of RANSAC with �i, per image score, returns the highest mAA,
72.78%, followed by the RANSAC version that uses �s, per session score, with
an mAA of 72.50%, only a 0.28% difference. All methods’ results are listed in
Table A.25. 76

xv

4.6 I report the total matches, inliers and outliers for the LaMAR dataset. The
two leftmost columns show the increase in matches compared to using a live
map. RANSAC base map, RANSAC live map, and the best-performing method
based on a reliability score are compared. For each of the three methods, I
list the inliers percentage, and the mean Average Accuracy (mAA). Using a
time-related score shows an increase in performance compared to a live map.
For the CAB slice there is an increase of 20% in mAA and the CAB top-scoring
method is PROSAC with (�i

1=�i
2). 76

4.7 CMU Slice #21 results, showing the total matches, inliers and outliers percent-
age, iterations, time in milliseconds, translation, rotation error and mean average
accuracy (mAA) for all methods. The best performing method is highlighted in
bold (by mAA). The values were obtained by averaging all the metrics over all
the query images in the slice, and then averaging over 5 benchmark runs. . . . 78

4.8 CMU Dataset: The table reports the average matches of all the query images in
a base map and a live map. The two sets of matches are compared in the two
left most columns. There is a clear increase in matches in all the CMU slices
using a live map. The mean number of matched base and live 3D points are
counted and compared to the ground truth data, i.e. the number of 3D points a
query image contains in its field of view. The live map consistently outperforms
the base map by matching more query image keypoints to 3D map points than
the base map. 79

4.9 Retail Shop Dataset: The table reports the average matches of all the query
images in a base map and a live map. Then, the two sets of matches are compared
in the two leftmost columns. There is a clear increase in matches using a live
map. The average number of matched base and live 3D points are counted and
compared to the ground truth data, i.e. the number of 3D points a query image
contains in its field of view. Again the live map outperforms the base map by
matching more query image keypoints to 3D map points than the base map. . . 80

4.10 LaMAR Dataset: The table reports the average matches of all the query images
in a base map and a live map. Then the two sets of matches are compared in the
two left most columns. There is a clear increase in matches in all the LaMAR
slices using a live map. The average number of matched base and live 3D points
are counted and compared to the ground truth data, i.e. the number of 3D points
a query image contains in its field of view. Again the live map outperforms the
base map by matching more query image keypoints to 3D map points than the
base map. 80

5.1 I show the percentage of all the datasets’ keypoints. The localised image key-
points from a SfM map, can be matched to a 3D point or not. 91

5.2 A toy example of a confusion matrix from Wang et al. [204]. 93
5.3 Second confusion matrix example. 94
5.4 The percentage of all the positive and negative samples from the training data

as defined from Hartmann et al. [76]. After following the same instruction on
how to gather the training data, the ratios are seen below, showing that the data
suffer from imbalanced data. There are more negative samples than positive ones. 99

xvi

5.5 The average balanced accuracy for NF (bce), Nf (small), my proposed method,
NF that uses the MSFE loss function [204]. NF outperforms in LaMAR and
Retail Shop and returns equal balanced accuracy for CMU compared to NF
(bce), the network that uses the binary cross entropy function. 101

5.6 I list the mean metrics for each dataset across all their slices. The first row is
the name of the dataset, the second is the name of the method, and the third row
contains all the metrics listed in this chapter. Only for the retail shop did I report
the translation error in centimetres (cm). The NF method reduces most keypoint
numbers, which leads to faster feature matching, but also does not deteriorate
the pose errors, as PM. 102

5.7 In this table, I show only the keypoint reduction percentage, feature matching
time (F.M time) and, mAA, for all CMU slices. In bold are the keypoint re-
duction percentages of my proposed method (NF) that also return an equal or
higher mAA than the comparison methods PM and MnM. For example, in slice
12, my NF method can filter out 70.25% of the keypoints and return a higher
mAA than PM and equal mAA to MnM. Another example in slice 19, my NF
method can filter out 58.56% of the keypoints and return a higher mAA than
PM and MnM. 104

5.8 The table shows the error metrics for the LaMAR LIN dataset. 105
5.9 The table shows the error metrics for the LaMAR CAB dataset. 105
5.10 The table shows the error metrics for the LaMAR HGE dataset. 105
5.11 The table shows the error metrics for the retail shop dataset. 106
5.12 I report the total time it takes to estimate a pose for a query image. PM returns

the fastest feature matching times and consensus times but also the lowest mAA.
Using PM, for LaMAR, the mAA is only at 42% compared to NF and MnM,
which are both over 95%. The NF method offers a good balance between speed
and accuracy. It is faster than MnM in LaMAR and CMU but with a minor
lower mAA, compared to MnM. For the Retail shop, the NF method is faster
than PM and MnM and also return the highest mAA. 107

A.1 CMU Slice #2 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average
accuracy (mAA) for all methods. The best performing method is highlighted in
bold (by mAA). The values were obtained by averaging all the metrics over all
the query images in the slice, and then averaging over 5 benchmark runs. . . . 120

A.2 CMU Slice #3 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average
accuracy (mAA) for all methods. The best performing method is highlighted in
bold (by mAA). The values were obtained by averaging all the metrics over all
the query images in the slice, and then averaging over 5 benchmark runs. . . . 121

A.3 CMU Slice #4 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average
accuracy (mAA) for all methods. The best performing method is highlighted in
bold (by mAA). The values were obtained by averaging all the metrics over all
the query images in the slice, and then averaging over 5 benchmark runs. . . . 122

xvii

A.4 CMU Slice #5 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average
accuracy (mAA) for all methods. The best performing method is highlighted in
bold (by mAA). The values were obtained by averaging all the metrics over all
the query images in the slice, and then averaging over 5 benchmark runs. . . . 123

A.5 CMU Slice #6 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average
accuracy (mAA) for all methods. The best performing method is highlighted in
bold (by mAA). The values were obtained by averaging all the metrics over all
the query images in the slice, and then averaging over 5 benchmark runs. . . . 124

A.6 CMU Slice #7 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average
accuracy (mAA) for all methods. The best performing method is highlighted in
bold (by mAA). The values were obtained by averaging all the metrics over all
the query images in the slice, and then averaging over 5 benchmark runs. . . . 125

A.7 CMU Slice #8 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average
accuracy (mAA) for all methods. The best performing method is highlighted in
bold (by mAA). The values were obtained by averaging all the metrics over all
the query images in the slice, and then averaging over 5 benchmark runs. . . . 126

A.8 CMU Slice #9 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average
accuracy (mAA) for all methods. The best performing method is highlighted in
bold (by mAA). The values were obtained by averaging all the metrics over all
the query images in the slice, and then averaging over 5 benchmark runs. . . . 127

A.9 CMU Slice #10 results, showing the total matches, inliers and outliers percent-
age, iterations, time in milliseconds, translation, rotation error and mean average
accuracy (mAA) for all methods. The best performing method is highlighted in
bold (by mAA). The values were obtained by averaging all the metrics over all
the query images in the slice, and then averaging over 5 benchmark runs. . . . 128

A.10 CMU Slice #11 results, showing the total matches, inliers and outliers percent-
age, iterations, time in milliseconds, translation, rotation error and mean average
accuracy (mAA) for all methods. The best performing method is highlighted in
bold (by mAA). The values were obtained by averaging all the metrics over all
the query images in the slice, and then averaging over 5 benchmark runs. . . . 129

A.11 CMU Slice #12 results, showing the total matches, inliers and outliers percent-
age, iterations, time in milliseconds, translation, rotation error and mean average
accuracy (mAA) for all methods. The best performing method is highlighted in
bold (by mAA). The values were obtained by averaging all the metrics over all
the query images in the slice, and then averaging over 5 benchmark runs. . . . 130

A.12 CMU Slice #13 results, showing the total matches, inliers and outliers percent-
age, iterations, time in milliseconds, translation, rotation error and mean average
accuracy (mAA) for all methods. The best performing method is highlighted in
bold (by mAA). The values were obtained by averaging all the metrics over all
the query images in the slice, and then averaging over 5 benchmark runs. . . . 131

xviii

A.13 CMU Slice #14 results, showing the total matches, inliers and outliers percent-
age, iterations, time in milliseconds, translation, rotation error and mean average
accuracy (mAA) for all methods. The best performing method is highlighted in
bold (by mAA). The values were obtained by averaging all the metrics over all
the query images in the slice, and then averaging over 5 benchmark runs. . . . 132

A.14 CMU Slice #15 results, showing the total matches, inliers and outliers percent-
age, iterations, time in milliseconds, translation, rotation error and mean average
accuracy (mAA) for all methods. The best performing method is highlighted in
bold (by mAA). The values were obtained by averaging all the metrics over all
the query images in the slice, and then averaging over 5 benchmark runs. . . . 133

A.15 CMU Slice #16 results, showing the total matches, inliers and outliers percent-
age, iterations, time in milliseconds, translation, rotation error and mean average
accuracy (mAA) for all methods. The best performing method is highlighted in
bold (by mAA). The values were obtained by averaging all the metrics over all
the query images in the slice, and then averaging over 5 benchmark runs. . . . 134

A.16 CMU Slice #17 results, showing the total matches, inliers and outliers percent-
age, iterations, time in milliseconds, translation, rotation error and mean average
accuracy (mAA) for all methods. The best performing method is highlighted in
bold (by mAA). The values were obtained by averaging all the metrics over all
the query images in the slice, and then averaging over 5 benchmark runs. . . . 135

A.17 CMU Slice #18 results, showing the total matches, inliers and outliers percent-
age, iterations, time in milliseconds, translation, rotation error and mean average
accuracy (mAA) for all methods. The best performing method is highlighted in
bold (by mAA). The values were obtained by averaging all the metrics over all
the query images in the slice, and then averaging over 5 benchmark runs. . . . 136

A.18 CMU Slice #19 results, showing the total matches, inliers and outliers percent-
age, iterations, time in milliseconds, translation, rotation error and mean average
accuracy (mAA) for all methods. The best performing method is highlighted in
bold (by mAA). The values were obtained by averaging all the metrics over all
the query images in the slice, and then averaging over 5 benchmark runs. . . . 137

A.19 CMU Slice #20 results, showing the total matches, inliers and outliers percent-
age, iterations, time in milliseconds, translation, rotation error and mean average
accuracy (mAA) for all methods. The best performing method is highlighted in
bold (by mAA). The values were obtained by averaging all the metrics over all
the query images in the slice, and then averaging over 5 benchmark runs. . . . 138

A.20 CMU Slice #21 results, showing the total matches, inliers and outliers percent-
age, iterations, time in milliseconds, translation, rotation error and mean average
accuracy (mAA) for all methods. The best performing method is highlighted in
bold (by mAA). The values were obtained by averaging all the metrics over all
the query images in the slice, and then averaging over 5 benchmark runs. . . . 139

A.21 CMU Slice #22 results, showing the total matches, inliers and outliers percent-
age, iterations, time in milliseconds, translation, rotation error and mean average
accuracy (mAA) for all methods. The best performing method is highlighted in
bold (by mAA). The values were obtained by averaging all the metrics over all
the query images in the slice, and then averaging over 5 benchmark runs. . . . 140

xix

A.22 CMU Slice #23 results, showing the total matches, inliers and outliers percent-
age, iterations, time in milliseconds, translation, rotation error and mean average
accuracy (mAA) for all methods. The best performing method is highlighted in
bold (by mAA). The values were obtained by averaging all the metrics over all
the query images in the slice, and then averaging over 5 benchmark runs. . . . 141

A.23 CMU Slice #24 results, showing the total matches, inliers and outliers percent-
age, iterations, time in milliseconds, translation, rotation error and mean average
accuracy (mAA) for all methods. The best performing method is highlighted in
bold (by mAA). The values were obtained by averaging all the metrics over all
the query images in the slice, and then averaging over 5 benchmark runs. . . . 142

A.24 CMU Slice #25 results, showing the total matches, inliers and outliers percent-
age, iterations, time in milliseconds, translation, rotation error and mean average
accuracy (mAA) for all methods. The best performing method is highlighted in
bold (by mAA). The values were obtained by averaging all the metrics over all
the query images in the slice, and then averaging over 5 benchmark runs. . . . 143

A.25 Retail shop results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average
accuracy (mAA) for all methods. The best performing method is highlighted in
bold (by mAA). The values were obtained by averaging all the metrics over all
the query images in the slice, and then averaging over 5 benchmark runs. . . . 144

A.26 LaMAR HGE results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average
accuracy (mAA) for all methods. The best performing method is highlighted in
bold (by mAA). The values were obtained by averaging all the metrics over all
the query images in the slice, and then averaging over 5 benchmark runs. . . . 145

A.27 LaMAR CAB results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average
accuracy (mAA) for all methods. The best performing method is highlighted in
bold (by mAA). The values were obtained by averaging all the metrics over all
the query images in the slice, and then averaging over 5 benchmark runs. Note
that for CAB I remove one outlier pose that returned a translation error of over
25,000 meters. This could be happening because the points used to estimate a
pose are co-planar or lie closely on the same line. 146

A.28 LaMAR LIN results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average
accuracy (mAA) for all methods. The best performing method is highlighted in
bold (by mAA). The values were obtained by averaging all the metrics over all
the query images in the slice, and then averaging over 5 benchmark runs. . . . 147

B.1 The table shows the error metrics for the CMU slice 2 dataset. 149
B.2 The table shows the error metrics for the CMU slice 3 dataset. 150
B.3 The table shows the error metrics for the CMU slice 4 dataset. 150
B.4 The table shows the error metrics for the CMU slice 5 dataset. 150
B.5 The table shows the error metrics for the CMU slice 6 dataset. 151
B.6 The table shows the error metrics for the CMU slice 7 dataset. 151

xx

B.7 The table shows the error metrics for the CMU slice 8 dataset. 151
B.8 The table shows the error metrics for the CMU slice 9 dataset. 152
B.9 The table shows the error metrics for the CMU slice 10 dataset. 152
B.10 The table shows the error metrics for the CMU slice 11 dataset. 152
B.11 The table shows the error metrics for the CMU slice 12 dataset. 153
B.12 The table shows the error metrics for the CMU slice 13 dataset. 153
B.13 The table shows the error metrics for the CMU slice 14 dataset. 154
B.14 The table shows the error metrics for the CMU slice 15 dataset. 154
B.15 The table shows the error metrics for the CMU slice 16 dataset. 154
B.16 The table shows the error metrics for the CMU slice 17 dataset. 155
B.17 The table shows the error metrics for the CMU slice 18 dataset. 155
B.18 The table shows the error metrics for the CMU slice 19 dataset. 155
B.19 The table shows the error metrics for the CMU slice 20 dataset. 156
B.20 The table shows the error metrics for the CMU slice 21 dataset. 156
B.21 The table shows the error metrics for the CMU slice 22 dataset. 156
B.22 The table shows the error metrics for the CMU slice 23 dataset. 157
B.23 The table shows the error metrics for the CMU slice 24 dataset. 157
B.24 The table shows the error metrics for the CMU slice 25 dataset. 157
B.25 The table shows the error metrics for the LaMAR LIN dataset. 158
B.26 The table shows the error metrics for the LaMAR CAB dataset. 158
B.27 The table shows the error metrics for the LaMAR HGE dataset. 158
B.28 The table shows the error metrics for the Retail Shop dataset. 159
B.29 The table shows the binary classifier metrics for the CMU slice 2 dataset. . . . 160
B.30 The table shows the binary classifier metrics for the CMU slice 3 dataset. . . . 161
B.31 The table shows the binary classifier metrics for the CMU slice 4 dataset. . . . 161
B.32 The table shows the binary classifier metrics for the CMU slice 5 dataset. . . . 161
B.33 The table shows the binary classifier metrics for the CMU slice 6 dataset. . . . 162
B.34 The table shows the binary classifier metrics for the CMU slice 7 dataset. . . . 162
B.35 The table shows the binary classifier metrics for the CMU slice 8 dataset. . . . 162
B.36 The table shows the binary classifier metrics for the CMU slice 9 dataset. . . . 163
B.37 The table shows the binary classifier metrics for the CMU slice 10 dataset. . . 163
B.38 The table shows the binary classifier metrics for the CMU slice 11 dataset. . . 163
B.39 The table shows the binary classifier metrics for the CMU slice 12 dataset. . . 164
B.40 The table shows the binary classifier metrics for the CMU slice 13 dataset. . . 164
B.41 The table shows the binary classifier metrics for the CMU slice 14 dataset. . . 165
B.42 The table shows the binary classifier metrics for the CMU slice 15 dataset. . . 165
B.43 The table shows the binary classifier metrics for the CMU slice 16 dataset. . . 165
B.44 The table shows the binary classifier metrics for the CMU slice 17 dataset. . . 166
B.45 The table shows the binary classifier metrics for the CMU slice 18 dataset. . . 166
B.46 The table shows the binary classifier metrics for the CMU slice 19 dataset. . . 166
B.47 The table shows the binary classifier metrics for the CMU slice 20 dataset. . . 167
B.48 The table shows the binary classifier metrics for the CMU slice 21 dataset. . . 167
B.49 The table shows the binary classifier metrics for the CMU slice 22 dataset. . . 167
B.50 The table shows the binary classifier metrics for the CMU slice 23 dataset. . . 168
B.51 The table shows the binary classifier metrics for the CMU slice 24 dataset. . . 168

xxi

B.52 The table shows the binary classifier metrics for the CMU slice 25 dataset. . . 168
B.53 The table shows the binary classifier metrics for the LaMAR HGE dataset. . . 169
B.54 The table shows the binary classifier metrics for the LaMAR CAB dataset. . . 169
B.55 The table shows the binary classifier metrics for the LaMAR LIN dataset. . . . 170
B.56 The table shows the binary classifier metrics for the Retail Shop dataset. 170

1

Chapter 1

Introduction

As most humans navigate the world, recognising the same places despite temporal changes is a
trivial task. In summer, the same shop will look familiar to us even at Christmas, regardless of
the added decorations. A road we cross occasionally will still be recognisable during autumn or
spring. Most of the time, we have a good idea of where we are in space, i.e., country, city, street,
building, or even room. We unconsciously process information around us to constantly have
a reasonable estimate of where we are. We use information such as buildings, weather, signs,
familiar objects or landmarks.

Estimating one’s position and orientation in space is called localisation.

An eagle hunting down a salmon needs to know where it is in space to plan its trajectory and
grab the salmon. We need to be localised when driving so we do not crash into obstacles like
other cars or permanent structures like buildings. Localising is far from a frivolous task; it is
a vital task. With the recent surge of interest in robotics, localisation has gained attention in
the research community. Robots have been deployed to various environments, in warehouses
to automate package deliveries, surveillance, underwater and space exploration, monitoring
agriculture crops with drones, or in military scenarios tracking the enemy. The police use drones
to observe territories that otherwise would be dangerous for a human being. People have been
using robots as vacuum cleaners and lawnmowers in personal and domestic environments.
Content creators such as adventurers, bike riders, racing cars enthusiasts have been using drones
to shoot videos. In the automotive section, autonomous driving requires an accurate estimate of
the vehicle’s position to avoid collisions and obey traffic laws.

In this thesis, I focus on localisation for augmented reality applications. Augmented reality
(AR) is the extension/annotation or insertion of virtual objects in the real world. An example
of AR in retail can be seen in Figure 1.1 [107]. IKEA was one of the pioneers of augmented
reality and online shopping. IKEA shoppers could use the IKEA augmented reality app to
position virtual furniture in their living rooms so they could visually experience the product
before buying. Gucci has used AR to enable virtual try-on of their clothes [77]. Louis Vitton,
H&M and Calvin Klein have all launched augmented reality products [84]. Companies such as
Blippar [55] have launched AR software development kits (SDKs) for various sectors such as
automotive, healthcare and retail. In figure Figure 1.2 we see a concept from Blippar, a normal

1

Figure 1.1: One of the pioneers of using augmented reality in retail was IKEA. Their augmented
reality app allows customers to view virtual products such as furniture before buying them in
their house [107].

shop augmented with product visualisation, such as reviews and prices. Similarly, jewellery
brand Kendra Scott has introduced AR to shoppers so they can try on different earring styles,
which shows the spread of augmented reality in various industries [133].

To experience augmented reality, there needs to be a medium between the observer and the
natural world, and most commonly today, that medium is a smartphone. There are alternative
mediums, such as headsets and glasses, but their price tag is high. The steady cost decline in
sensors such as inertia measurement units, cameras, computation hardware such as processors
and memory chips has allowed localisation algorithms to run on mobile devices. Affordable
mobile devices are now capable of running augmented reality and virtual reality applications in
real–time. The development of efficient mobile devices opens the doors to new industries, such
as manufacturing, product quality control, human-robot collaboration [43], and shipping [60].
Companies such as Meta, Snapchat, Microsoft and Epic Games recently have been investing
large sums of funding in creating their metaverse [33], i.e. the fusion of physical, augmented,
and virtual reality spaces in a single shared online space. These adaptations to promote AR from
large corporations mean a promising future for AR applications.

Soon, people will be interacting with virtual avatars in AR, as we do with normal human beings.
These avatars will understand the world and provide information about navigation or nearby
landmarks, offering guidance or details about a product in a shop. Avatars will not be restricted
to outdoor environments, but they will also be deployed in indoor environments such as hotels
or retail shops. The latter use case, deploying avatars in a retail shop, was the initial idea that
kicked off the work in this thesis.

2

Figure 1.2: What future retail shops will look like in an AR environment, according to the AR
company Blippar [55]. The shopper will have easy access to visual data in AR, which otherwise
would have been hard to find online in text form.

The work in this thesis is a collaboration between the University of Bath (academic partner)
and DC-activ joint with LEGO (industrial partners). For simplicity, I will refer to DC-activ and
LEGO, as the industrial partner. The industrial partner is interested in deploying virtual avatars
in their retail shops. The purpose will be to provide a more engaging shopping experience to the
customer in augmented reality and also use the avatars as automated trainers for the staff.

Avatars will be placed in shops, as seen in a visual concept of the end product in Figure 1.3.
The avatars in Figure 1.3 will have a rudimentary intelligence, i.e. they will have topological
knowledge about the shop. For example, they will know where product A will be and where
product B is in the shop. To add to the intelligence of the avatars, they are expected to understand
speech from the enquiring shopper. They will have basic responsive abilities to animate, execute
gestures and reply with speech. The avatar should also directly connect to a database of products,
so it knows which products are available or soon available. In this work, I show some early
prototypes of miniature intelligent avatars that were developed. The avatars will be deployed
in an augmented reality (AR) environment. Figure 1.3 shows a visual concept of the end
product. Retail shops will soon offer the option for shoppers to opt-in to an augmented reality
environment, e.g. to use their mobile phones to interact and view the avatars in AR. I chose
mobile phones as the medium for this work because of the industrial partner’s requirements
and because they are widely available. Cameras on phones are cheap and information-rich
sensors. At the start of the project, I did not consider AR glasses or headsets because of their
unavailability and price, respectively.

Having virtual avatars interact in an AR environment requires them to align correctly with the
real environment. To do so, the phone’s position and rotation in the real environment needs to be
estimated first, which is defined as localisation. The most common approach for a localisation
back-end is to utilise a pre-built map of the environment the users will localise. That means a
pre-built map, e.g. a three-dimensional point cloud, of a shop is required to localise a shopper’s

3

Figure 1.3: In this figure, we see a visualisation of the proof of concept the industrial partner is
aiming for. It shows intelligent avatars in a shop interacting with products.

mobile device. The pre-built map or point cloud is constructed using an offline process.

A point cloud is a set of 3D points representing a scene, for example, a retail shop. Each
point cloud creation is a one-time step process, and then the point cloud is stored for future
localisations. Each 3D point has metadata assigned to it, specifically, a set of vectors that
describe its appearance. The first step to localise a camera frame in a map is to detect interest
points in the image. Each keypoint is then described using a vector. The keypoint vectors are
matched to the 3D point vectors from the point cloud. Keypoints usually go through a filtering
stage in which some outliers are removed. Then using the filtered matches and a perspective-n-
point solver, the pose is estimated (rotation and translation) of that frame. A visualisation of the
process is shown in Figure 1.4.

Camera localisation in a map, specifically the matching stage (shown in Figure 1.4), commonly
works if the map has been constructed with images taken under similar conditions to the query
images. For example, a retail shop’s map may be constructed during a Christmas event. The
shop will look very different due to additional decoration, compared to other times of the year.
If a camera attempts to localise during summer, in a map that was constructed around Christmas,
it will most likely fail or return a result with a high error. Successful localisation in dynamic
environments is the motivating problem of this thesis.

1.1 Motivation

Retail stores want to keep customers visiting their stores as online shopping has become more
prominent and established. Consider a virtually augmented real retail store where a user can
walk in and experience a completely different reality, where the physical and digital worlds are
connected. Figure 1.2 shows an example of this unity of the real and virtual world. An augmented

4

Figure 1.4: Matches (green) from the camera frame (left) to the point cloud (right) are defined
so that rotation and translation of the camera frame is estimated. Then the matches are used in a
solver to estimate the camera pose. Existing camera poses in the point cloud are seen in red.
The pose can be used to project the 3D points on the image.

reality environment can be then used to engage customers more or to train existing or new
staff. The crucial part here is that the current store’s structure, arrangement and products should
be considered when immersing the user in this AR experience. Products are moved around
frequently when they are bought or restocked. Shops’ reorganisation might move products to
another part of the shop or entire aisles around.

Retail shops are dynamic environments, making new incoming query images challenging to
localise, which means a pre-made point cloud of a retail shop will not always be able to reflect
the most recent changes. Reconstructing the environment in sufficient detail and localising the
user’s device in real-time, given today’s hardware, is challenging because some point clouds
might contain hundreds of thousands of points, even for a middle-sized store.

Low-latency localisation queries lead to better user experiences. Localising a user’s mobile
phone needs to happen in real-time, or at least close to real-time, so it provides a responsive
and pleasant user experience. As there are numerous attempts to speed up the pose estimation
problem close to real–time, it remains an open challenge [112].

To the best of my knowledge, there is no commercial research-based solution that uses pre-made
retail shop 3D point clouds deployed on a server used in commercial scenarios. In accordance
with the industrial partner, the motivating problem of this work is:

How to perform robust localisation over time against a pre-made retail shop point cloud
and how to improve the localisation speed for a more responsive user experience?

The solutions proposed in this thesis for the motivating problem are the essential backbone for
an efficient platform that would allow virtual avatars to live and interact with shoppers in a real
shop.

5

Once this platform is deployed, it will allow further research according to the industrial partner.
For example, it will allow more refined customer behavioural analysis and market research.
Market research aims to gather information about shoppers, their purchasing habits, needs and
preferences. The platform will allow additional data collection, such as which products the
customers enquire for or interact most with. The customer journey, i.e. the path of a shopper in
a shop, is also vital to identify hotspots or places of interest in a retail shop.

The virtual avatars are also planned to be used for training personnel by the industrial partner.
Training in an augmented reality environment has the benefit of being more visual and engaging
for the trainee. Information can be displayed to the trainee rather than communicated in writing.
The trainee can also communicate with the virtual avatar. The avatars can take up multiple roles
of different types of customers. They can be preprogrammed to behave like a particular type of
shopper. Trainees can interact in pre-determined scenarios with the virtual shoppers and learn
how to cope with them depending on their traits.

Customer behaviour is an essential aspect of marketing, and there are numerous methods to
monitor customer behaviour in a shop. Monitoring tools range from simple people counters,
apps that provide a basic customer in and out flow of the shop, to apps that use the shop’s Wi-Fi
intranet for more detailed tracking [151].

Computer vision applications for understanding customers’ behaviours and behavioural market
analysis of customers are still in their infancy [152]. Information on customer location can be
used to infer which aisle they spend the most time at, which products they prefer the most,
and how the placement of products affects sales [173]. Cameras have been used on shopping
carts to monitor customers’ journeys in a shop [173]. A camera on a shopping cart does not
replicate the customer’s viewpoint as accurately as a mobile phone that a shopper looks through
to an AR environment. The more accurate the viewing direction is, the more valid the data.
Solely on-board device localisation without a map suffers from drifting, which means that
errors accumulate over time, and the user’s position is not as accurate as initially. Occasional
localisation in a pre-made point cloud is needed to eliminate drifting. If a mobile phone can
query a localisation server with an up-to-date point cloud of the retail store, then the drifting
errors can be minimised.

The industrial partner can hence use the localisation platform to build more tailored software
that will meet their needs for market analysis and employee research.

In the next section, I present the research objectives of this thesis.

1.2 Research Aims and Objectives

This section describes the two main research aims, i.e. what I am doing in this work and their
corresponding research objectives, i.e. how I attempt to achieve the aims. Given that this work
also involves an industrial partner, there is an additional industrial objective.

To successfully and accurately localise over a long period of time is an essential task as
environments change and objects in the natural world move. An agent, let it be a robot or a

6

mobile phone, should query an offline map and get an accurate pose back as a result. The map
should be robust to current real world changes and work reliably even when multiple products
have moved around in the actual retail shop. The offline maps should distinguish between
dynamic points and points that are on permanent structures, and use only highly static points
for localisation. The point cloud should also be compact in size and not expensive to store in
memory. Distinguishing between dynamic points can also lead to better compression of maps,
keeping the highly static points only. The static points are more useful for localisation as they
are more resistant to temporal changes. I suggest a continuous map update process to achieve a
localisation system that can minimise pose estimation errors or even failures caused by temporal
changes. I take advantage of the high frequency of shopper visits in a retail shop, and I use the
images from their devices to update the offline point cloud. Unlike methods that store multiple
versions of the point clouds, my method is not memory expensive and only uses one point cloud
constructed at one point in time.

To improve localisation speed would lead to user experiences with higher fidelity and a more
pleasant interaction. Once the agent first sends a query image, the point cloud has to respond with
a pose close to real-time for responsiveness. A responsive app means a better user experience.
Keypoint descriptors detected on a query image must be matched to the descriptors in the point
cloud so a pose can be estimated. The second research objective is to reduce the number of
descriptors to be matched. A smaller number of descriptors will lead to faster localisation speeds
because there will be less matching operations computed. Distinguishing between descriptors
that are useful for localisation and descriptors that are not useful, I can then use only the useful
descriptors to estimate a pose. Similarly to points, descriptor vectors of points on static structures
are more favourable than points’ descriptor vectors on dynamic objects.

I develop a custom localisation pipeline for the first two research aims and objectives. The
pipeline was used as a sandbox to experiment on and try new approaches. It follows a baseline
design that takes images as input and outputs a camera pose.

To provide an application for the industrial partner that can be deployed in a real-life scenario.
The deliverable for the industrial partner is a platform that can be used by two categories of users.
The first category will be the shoppers. Shoppers will be able to localise in a retail shop, and the
experience they get will be determined by the second category of users, the administrators. The
second category of users will be responsible for creating context and media for the shoppers to
consume, such as virtual objects in the shop or intelligent avatars rendered in augmented reality
for the shopper or trainee. The system will incorporate a 1:1 scale point cloud of a retail store
acquired from conventional consumer cameras and built using open-source software. A team of
3D modellers will design and create virtual avatars rendered seamlessly in augmented reality.
The avatars must have basic speech capabilities; they must reply to shoppers and understand
questions. The final natural language processing part will be implemented using robust and
well-tested paid third-party services. Following the first tests and deployments, the complete
system can be used for further testing. User studies must follow to evaluate it qualitatively. The
studies must include human volunteers to go through specific scenarios using mobile phones. It
could be a series of tailored interactions with the avatars for a goal or simply navigating through
a retail shop to get to a specific product. Once the application has passed the necessary tests it
can be deployed in production.

7

1.3 Contributions

Work in this thesis focuses on tackling the research as mentioned earlier and industrial aims.
My contributions can be summarised below:

1. Long-term localisation using exponential decay. I propose a novel method that consid-
ers multiple streams of query images and updates an offline point cloud. The offline point
cloud keeps the same number of points, but those points’ metadata is augmented with
additional temporal data. In parallel, exponential decay is applied to the points’ score,
favouring the points seen repeatedly over time, i.e. points on permanent structures that are
more useful for localisation. I apply exponential decay, a concept borrowed from nuclear
physics, to score the points. The method is tested and evaluated using a custom pose
estimation pipeline and multiple datasets. As an additional contribution, I also released
one of the datasets I collected over a period of time from a retail shop. The dataset
includes images taken from the same area and captures changes in the shop over time.
The findings have been published in WACV2021 [146].

2. Neural feature filtering for faster localisation. As a second contribution, I propose a
learning-based method that can discard non-static features detected on an image before
feeding them into the pose estimation pipeline. I use a custom pose estimation pipeline
developed from the ground up. The proposed method can be trivially integrated with
existing SfM-based pipelines and reduce runtime for estimating a camera pose. The
learning model is trained on data already captured; the offline map that contains data is an
image keypoint matched or not. I show that data that is generated from SfM is imbalanced,
and I use a custom loss function to combat the imbalanced data. I compare my method
with methods that address the exact problem, i.e. filtering out dynamic image points. I
show that my proposed method reduces keypoints further than the comparison methods
while keeping the camera pose estimation error lower. My proposed neural network is
able to provide a more stable balance between the speedup, and the camera pose errors
compared to the other comparison methods.

3. Application Prototypes. The last contributions are purely related to the industrial partner
and are technical, prototypes that are a systems contribution. I have developed several
prototype applications that showcase proofs of concept during my work. In the early
stages of my work, I have used 3D scanners to build an accurate 3D model of a retail
shop. Prototypes have shown that the quality of feature matching between a camera frame
and a 3D scanned model is not adequate for reliable pose estimation. I have shown that
intelligent avatars that users can talk to can be created using third-party services. Users
were able to communicate with an avatar in an augmented reality environment. The avatar
could offer information about the shop’s products. More applications have been developed
to show that a shared AR place is possible using off-the-shelf free software. Various
smaller applications prove that tracking is possible and robust in a shop during the day.
The software was developed for mobile phones and is cross-platform. The apps were
developed to run on iOS and Android devices.

The above research contributions improve long-term localisation and decrease the overall
time required to estimate a camera pose. I aspire for my contributions to hold significance

8

for both the research and industrial communities. More details on contributions can be
found in Chapter 3, Chapter 4 and Chapter 5. The following section will describe the
thesis outline in more detail.

1.4 Thesis Outline

The rest of the thesis is organised as follows:

• Chapter 2 contains a comprehensive explanation of the foundations needed to understand
the rest of the thesis. I start by explaining the pinhole camera model used in the rele-
vant literature. I then introduce Structure-from-motion and SLAM based. The chapter is
self-contained, with the necessary notation defined. Furthermore, three main approaches
for camera pose estimation are mentioned. I briefly explain learning-based, image-based
methods and geometric pose estimation methods. In addition, I explain long-term lo-
calisation and how it compares to conventional localisation. The last section introduces
augmented reality and how it is used in retail scenarios with recent deployed examples in
production.

• Chapter 3 presents several application prototypes that were developed for the industrial
partner. The prototypes, my system contributions, show that intelligent avatars are feasible
in an augmented reality environment. I present a prototype in which the virtual avatar can
understand a real object and another in which the avatar understands human speech and
can reply with relevant information. I discuss the frameworks used for development. I
also showcase early attempts at 3D scanning a retail shop to create a 3D model of the
shop. I describe why localising in the 3D model of the shop, was not a feasible solution.
The following chapters describe my two academic contributions.

• Chapter 4 introduces my first piece of work related to long-term localisation. The chapter
includes a background section with the relevant literature. I show how my method
improves long-term localisation using a novel method based on a concept borrowed from
nuclear physics. The method enhances an offline point cloud to identify which points
are static over time and preferentially uses them in the localisation pipeline. This work
is tested on numerous datasets, outdoors and indoors, proving that the method returns
improved results compared to baseline methods. I propose a new dataset for long-term
localisation benchmarks for retail scenarios.

• Chapter 5 details the second major piece of work of my thesis. The chapter includes a
background section with the relevant literature. I propose a learning-based method to
improve camera pose estimation speeds without deteriorating the quality of the results.
The number of features used for matching is filtered and reduced using neural networks.
Highly dynamic points are discarded, and more static points are chosen to be used in
the localisation pipeline. The method uses only 30% of the original number of features,
achieving similar results or even better than conventional baseline pipelines. The neural
networks are also trained on data from Chapter 4. The method is tested on an indoor and
outdoor dataset and can be trivially used with existing SfM pose estimation pipelines.
The results are presented and discussed.

9

• Chapter 6 concludes the thesis. I summarise the contributions of the work in Chapter 3,
Chapter 4 and Chapter 5, and propose directions for future work. Chapter 6 also states
my take-home messages, what I learned and experienced after conducting research and
working with an industrial partner for nearly four years.

10

Chapter 2

Background

2.1 Foundations

In this chapter, I briefly discuss the background knowledge that will be helpful to understand the
rest of the thesis. I start from the mathematical model of a pinhole camera in Section 2.1.1. The
contributions presented in this thesis, in Chapter 3 and Chapter 4, make use of an offline point
cloud. A point cloud is a fundamental part in the localisation pipeline because query images are
localised against it to estimate a camera pose for each frame. In Section 2.1.2, I introduce the
concept of structure-from-motion (SfM) that is used to construct the point clouds, and its basic
components. Next, in Section 2.1.3, I briefly explain simultaneous localisation and mapping
(SLAM) because it is used in modern augmented reality mobile frameworks. In Section 2.2, I
expand more on the pose estimation problem, i.e. camera localisation. I present the three main
approaches that are used to estimate a camera’s pose. Lastly, I end this chapter with a section
that explains what augmented reality is and how it is used in commercial applications, in retail
environments.

Notation. In this thesis, I use uppercase italic letters, e.g. R or T to denote matrices and bold
uppercase and lowercase letters to denote vectors t;X. Lowercase vectors are for 2D points and
uppercase vectors for 3D points. I use italics to denote scalars, e.g. a, x.

2.1.1 The Pinhole Camera Model

The mathematical model of a camera that I will be using throughout this thesis is the pinhole
camera. A pinhole camera is a sub-class of the general projective camera [73]. The pinhole
camera model is the most common model that augmented reality devices use. For example,
most smartphone devices that run AR frameworks use the camera on the device that is based on
a pinhole camera model.

Figure 2.1 shows an illustration of the pinhole camera model. Following the aforementioned
notation, the 3D point X is projected on the image plane, at the 2D point x. The points such as
X are in the camera’s local coordinate system and the positive Z-axis points forward from the

11

Figure 2.1: In a) I illustrate the pinhole camera model. In a) and in b) I show the projection of
point X on x, which lies on the image plane. It is visualised as a line starting from X passing
through the image plane and the centre of projection, C. We can get the coordinates of x by
using the law of similar triangles [73].

camera centre. The principal point p is the intersection of the principal axis with the image plane.
The distance between the centre of projection C and the image plane is called the focal length,
f . The coordinates of x, can be calculated by the law of similar triangles [73]. From Figure 2.1
I show the two similar triangles. The first triangle is defined by the centre of projection C, point
X, and the projection of point X on the Z -axis. The second triangle is defined by x, the centre
of projection C, and the principal point p. Point X in 3D space is X = (x0; y0; z0) and its
projection on the image plane is defined as x = (xi; yi; f). Irrespective of the z-component of
the 3D point the z-component of x will always be f . By following the law of similar triangles,
from b) in Figure 2.1 then xi = fx0=z0; yi = fy0=z0. The 2D coordinates of the point x are
xi; yi. This projective mapping can be expressed as a linear mapping if X and x are represented
by homogeneous coordinates [73].

Hence the formulation can be written as: x = K �X where

K =

2

4
f 0 0
0 f 0
0 0 1

3

5 (2.1)

The origin of the image plane does not align with the principal point in practice so I offset
the projected point as: xi = fx0=z0 + px; yi = fy0=z0 + py. The offset between the image
coordinate system and the camera coordinate system is seen in Figure 2.2. This leads to

K =

2

4
f 0 px
0 f py
0 0 1

3

5 (2.2)

K is called the intrinsic matrix of the camera. The intrinsic parameters can be estimated during
an offline process called camera calibration [216] or are provided by the camera manufacturer.
For the work in this thesis, the parameters are provided by the device manufacturer.

Points are generally expressed in a world coordinate system. The camera local coordinate
system and the world coordinate system are related by a pose matrix. The pose matrix consists

12

Figure 2.2: In this figure, the reader can see the image coordinate system and the camera
coordinate system, offset difference [73]. This is useful as it visually shows the role of the
principal point offset.

of a rotation matrix, R and a translation vector t where [Rjt] 2 R3�4. The matrix [Rjt] will
transform points from the world coordinate system to the camera coordinate system, seen in
Figure 2.3.

Figure 2.3: A visualization of [Rjt], that transforms 3D points from world coordinate system
(right) to the camera local coordinate system (left) [73]. Depending on what convention you use,
it might be the other way around. For example, popular AR framework ARCore’s [66] poses
transform from camera coordinate system to world coordinate system.

R and t are called the extrinsic parameters of the camera, or camera pose. Once the points have
been transformed to the camera coordinate system they can be projected on the image plane. A
point in world coordinates Xw is projected on an image plane as following ximage = K �[Rjt]�Xw
where Xw is in homogeneous coordinates. The matrix K � [Rjt] is called the projection matrix
and often denoted as P , so that ximage = K � P �Xw where Xw is the world 3D point. The
first contribution in this thesis, focuses on estimating the camera pose matrix in environments

13

where world points might move around (dynamic points). The second contribution is speeding
up the pose estimation procedure. More details on other camera models and the pinhole camera
model can be found in Hartley and Zisserman [73]. To estimate a camera pose one needs to
have 2D-3D correspondences from 2D points on an image to 3D world points. The next section
explains how the 3D points are acquired.

2.1.2 Structure-from-Motion

I make use of offline point clouds to estimate a camera pose as this approach provides more
accurate results [32, 163, 218]. These maps or point clouds are constructed using a method called
Structure-from-Motion [73, 171, 172] and contain the 3D world points. Structure-from-motion
is the problem of estimating the images’ camera poses and 3D points coordinates simultaneously.
In this section, I briefly explain structure-from-motion, and assume the intrinsics matrix K is
known, i.e. cameras are calibrated. I show a simple example with two images, and how more
images and points can be added.

Feature Detection & Description. In order to reconstruct a 3D point, 2D points must be
detected on an image. This is called feature detection. Salient keypoints on images are usually
detected on corners [71]. The key points are then described by a calculated vector based on
the keypoint’s patch, i.e. a small image area around the keypoint. The process is called feature
extraction. Popular feature descriptors are SIFT [108], SURF [14], AKAZE [58], ORB [147],
BRISK [100], SuperPoint [45]. Each feature descriptor is used in different scenarios. For
example, SIFT [108] tends to be used in offline 3D point cloud construction because of its
long computation time. ORB and BRISK tend to be the most popular for real-time applications
because of their speed but are less descriptive than SIFT or SURF [119]. Figure 2.4 shows an
example of keypoints detected on an image.

Feature Matching. For a 3D point to be constructed from 2D keypoints correspondences need
to exist such that xi $ x0i where x 2 R2. The correspondences are between two 2D points from
two images. The assumption holds that the keypoints on the two images are projections of a set
of 3D points, shown in Figure 2.5. Each image represents a different viewpoint of roughly the
same area. If the two images have no overlap, then the feature matching will simply fail. When
matching keypoints’ descriptor vector, the Euclidean distance is used. For this thesis, I use the
SIFT descriptor as it is commonly used in SfM software [164]. The closest vector is returned as
a match if it passes the Lowe’s ratio test [108]. For binary descriptors the Hamming distance is
used, which returns the number of different bits between the compared binary vectors.

Estimating the camera poses. In this paragraph, I assume unknown camera extrinsic parame-
ters for calibrated cameras (known intrinsics parameters). I explain how to estimate the camera
extrinsic parameters or camera pose. Once estimated, given the relative pose between the two
cameras then I can recover the coordinates of the 3D point X. The two cameras coordinate
systems and the projection of 3D point X. can be seen in Figure 2.5. I assume that the canonical
coordinate system T1 with origin at t = (0; 0; 0) and at canonical orientation R = I . Given
the xi $ x0i correspondences (obtained from feature matching) and known intrinsics for each
camera then xTEx0i = 0; based on the coplanarity constraint [73]. The coplanarity constraint is

14

Figure 2.4: Keypoints detected on an image, from a retail shop. These keypoints are then
described by a vector and associated to 3D points in a pre-built point cloud (or map) so a camera
pose can be estimated.

Figure 2.5: 3D Point X and its projections on two images. The points x1 and x01 have their own
similar descriptor that is matched during the feature matching process. Extracted from Duong
[49].

15

formed by the camera centre rays to a 3D point X and the rays between them. A visualisation
of it is shown in Figure 2.6.

Figure 2.6: The epipolar constraint is formed between the camera coordinate system, T1 origin
(first camera centre), and the origin of T2 (second camera centre) which is relative to T1 origin
and the 3D point X. Points EL and ER are called the epipoles [183]. A more comprehensive
explanation is provided by Szeliski [183] and Hartley and Zisserman [73].

E is called the essential matrix. Expanding xTEx0i = 0 then leveraging DLT (Direct Linear
Transform) leads to a linear system of the formAb = 0, given 8 point correspondences. Column
vector b holds the values of the essential matrix. Ab = 0 can be solved using singular value
decomposition (SVD) and get the values of b. What was described is the essence of the 8-
point algorithm [74] that is used to solve for E. Due to real-life noisy data and mismatches, a
RANSAC [59] is used to estimate a sufficiently good E.

The matrixE can be decomposed toR and t using SVD. The essential matrixE describes where
camera 2 (coordinate system T2) is with respect to camera 1 (coordinate system T1), up to a
scale. At this point, we have two camera projection matrices, Pi=1;2, as theK1;2 for each camera
are given, as we assumed calibrated cameras. An alternative to E is the F , the fundamental
matrix that can be estimated from the same 8-point algorithm and when decomposed provides
the projection matrices for each camera Pi=1;2. F is used in the case of uncalibrated cameras.
For this thesis, we assume calibrated cameras with known K matrices. More details on which
algorithms are used to estimate E/F can be found in Szeliski [183] and Hartley and Zisserman
[73].

Triangulation, is defined as determining a position of a 3D point X given a set of correspon-
dences xi $ x0i and known camera matrices Pi=1;2. This is seen in Figure 2.6, where X is
simply the intersection of the two rays originating from the camera centres. In real life, due to
noise in measurements the rays do not perfectly intersect at X, hence X is simply calculated by
minimising its distance from the two rays. An alternative, more accurate and non-linear method
is described by Szeliski [183].

The result from the two-view reconstruction is a small point cloud and two camera poses. More
cameras/images can be added by localising them with respect to the point cloud. More about

16

camera localisation in Section 2.2. 3D points can be added by following the method based
on 2D-2D correspondences described above, between the new image and an existing image.
Usually, a process called bundle adjustment [194] is used to minimise re-projection errors and
refine the 3D points position and camera parameters. Bundle adjustment is often run after a new
image is added. A sample point cloud is shown in Figure 2.7.

Figure 2.7: A visualisation of 2D keypoints detected on consecutive frames and corresponding
3D points. The green lines represent a simplified projection from the 3D point to the frames’
keypoint (on the same building’s window in each frame).

2.1.3 Simultaneous Localisation and Mapping (SLAM)

SLAM aims to solve the problem of localisation and mapping at the same time [29, 183].
Localisation refers to estimating the device’s position (explained in more detail in Section 2.2)
and mapping refers to constructing a 3D representation of the current scene. The reconstruction
of the scene and localisation happens with minimal lag, ideally in real–time. For example, in
order to keep the reconstruction fast, local bundle adjustment is usually executed on a reduced
number of keyframes and less frequently than in SfM [90, 180], to reduce computational
demands. In SfM, reconstruction is a time-consuming offline process as bundle adjustment
is executed more often, and more expensive descriptors (SIFT) are used. SfM is not suitable
for time-critical scenarios. In SLAM, the map constructed is not a global one as in SfM but a
smaller, local map. SLAM is aimed for autonomous driving, real-time augmented reality and
robots that must navigate in a scene, and need real-time response time. More types of devices
can also be used with SLAM, such as Lidar sensors, RGB-D cameras, inertial sensors, GPS
[29, 31, 123], whereas SfM is usually constrained to using imagery data and visual features.

Some popular SLAM implementation are LSD-SLAM [54], ORB-SLAM2 [123], ORB-SLAM3
[31] and MonoSLAM [41], among others. Visual odometry, VIO, estimates the location of a
device using input from one or more cameras and IMU sensors (inertial measurement unit). VIO
has recently been integrated in more modern SLAM [101, 102, 140]. Since IMU sensors are

17

Figure 2.8: The first fully functioning SLAM enabled car winner of the DARPA Challenge 2005
[188] (left), and on the right the most recent autonomous car from Tesla [187].

nowadays readily available on conventional smartphones popular augmented reality frameworks
have developed such as ARkit [6] and ARCore [66]. Figure 2.8 depicts real-life applications of
SLAM for autonomous driving, and how it has evolved over the past 16 years. Figure 2.9 show
a fully autonomous robot developed for delivering products.

Figure 2.9: A robot from Sevensense, a Zurich-based company that develops visual SLAM
for robots. The task is to deliver products from shops to clients. The robot is able to navigate
through dynamic environments by constructing local maps [165].

Up until now I have briefly discussed SfM and SLAM. The next section will describe in more
detail the problem of camera localisation, i.e. estimating the camera’s position given a point
cloud.

2.2 Camera Localisation

Given a query photo, the approaches described in this section aim to return the position and
orientation (often called external camera parameters) of the camera the image was taken with.
This is known as the camera localisation or pose estimation problem and it is the converse of

18

triangulation [183]. If a prior SfM model is available then a pose can be estimated with 2D
image to 3D point correspondences, called a geometric approach. An image retrieval method
or learning-based method can also be used if prior SfM data is available. The approaches for
camera localisation given prior data are discussed in this section. I start off with the most recent
ones.

2.2.1 Learning-Based Approaches

I start off by introducing the most recent trend in pose estimation, before moving to more
classical image retrieval methods and geometric methods. Recent work in pose estimation has
shifted to learning-based approaches, in which some parts of a pose estimation pipeline are
learned or the whole pipeline is [13, 19, 87, 154, 166, 192, 210]. Learning-based methods can
be categorised broadly in three parts: absolute pose regression, relative pose regression and
scene coordinate regression 1.

Absolute regression methods aim to replace the whole pose estimation pipeline with a learned
approach. Given a query image, the output of the network is a 6-DoF pose. CNNs are trained
on specific scenes, and each frame in the training data is labelled with a 6-DoF camera pose.
The training data is acquired from SfM from a scene. Kendall et al. [87] proposed the first
method, where an image classification neural network was trained and the last layer’s nodes
were replaced to accommodate regression output, i.e. the estimated pose. Absolute regression
methods [22, 87] are fast at query time but suffer from low accuracy, do not generalise to unseen
scenes and need large amounts of training data to perform reasonably well [163].

Relative pose regression methods aim to regress a relative pose between two images [13, 46,
96, 218]. These methods use an image retrieval component to retrieve images closest to the
query image, from a database. Each database image is associated with a pose, and a network
is usually trained to regress a relative pose from a number of retrieved database camera poses.
Compared to absolute regression methods that need to be trained on a specific scene, relative
pose regression methods can be trained on multiple scenes [163].

Scene coordinate regression methods [18, 20, 167, 198] tend to replace the feature extraction
and feature matching of a traditional pipeline with a learning component, e.g. a neural network.
For example, given a query image, the learned function will take image patches as input and
predict 3D coordinates for each pixel. A number of these methods also incorporate depth values
and they have shown promising results for indoor localisation [18], but still perform inadequately
for outdoor localisation compared to more classical methods, as seen in Section 2.2.3.

I now move on to more classical approaches, the image-retrieval based methods.

2.2.2 Image Retrieval Approaches

Image retrieval approaches aim to approximate a query image’s camera pose by formulating
the problem as an image search problem [190, 213]. An image can be described by a single

1https://youtu.be/RaVPiIGhdWk

19

https://youtu.be/RaVPiIGhdWk

vector (also called a global image descriptor) such as GIST [128, 129], DenseVLAD [192]
or NetVLAD [7]. Previous methods include using a bag-of-words approach [97, 170] or a
vocabulary tree [126], a hierarchical version of bag-of-words. The latter two methods rely on
local image features such as SIFT [108], SURF [14], AKAZE [58], ORB [147], BRISK [100]
or SuperPoint [45]. An example that uses bag-of-words is FAB-MAP [40] which uses SURF
features. Global image descriptors are considered more prone to failure in viewpoint changes,
occlusion and local variations in an image compared to local, pixel-based descriptors [49].

Query
Results

Camera
Rotation and
Translation

[R|t]

Image Database

Query Image

Result Images

Camera
Rotation and
Translation

[R|t]
Camera

Rotation and
Translation

[R|t]

Figure 2.10: High level description of a simple image retrieval system. It shows images used in
this thesis, retail shop images taken at different times. A database is queried with a given image
to retrieve a number of similar images along with their camera poses.

In Figure 2.10 I illustrate a simplistic image retrieval system. The query image’s descriptor is
extracted and usually matched to the descriptors of the database images. Database images are
stored with their corresponding camera pose and their local or global descriptors that have been
already extracted and stored. This is commonly achieved using a nearest neighbours approach
based on the Euclidean distance, i.e. L2 norm, between the descriptors.

If a global descriptor is used per image then the query’s global descriptor will be compared
to the database images’ global descriptors to find a number of nearest neighbours that will be
returned. Local image query descriptors such as SIFT or SURF, can be used as an alternative
to global descriptors. Using a bag-of-words [170] approach, all database images’ descriptors

20

are then quantised using K-means2 into clusters (or visual words). For each database image, its
local descriptors are used to create a frequency histogram using the visual words. The same
process repeats for a query image’s descriptors. The query frequency histogram is then matched
using nearest neighbours to the database images’ histograms. Faster versions of the naive
bag-of-words approach above can be found in DBoW2/3 [42, 62] and FBoW [124]. The main
speed improvement in DBoW2 comes from using BRIEF binary descriptors [30] and FAST
[144], instead of using fully-fledged SIFT vectors that tend to be more expensive to extract
and match. Another approach to retrieve images is to use geolocation data [85]. Each image is
associated with geolocation data such as GPS, and similar images are fetched from the same
area, i.e. images that have a close location.

Once the most similar images have been retrieved, the query image’s pose can be estimated
relative to the nearest images as explained in Section 2.1.2 and seen in work from Zhang and
Kosecka [215] and Zhou et al. [218]. Pure image-based methods tend to perform efficiently at
large scale and be robust to changing environments conditions [190]. For example, ToDayGAN
[5] is a style transfer network that converts night images to day images, for image retrieval
localisation. Image retrieval methods make no use of prior 3D information up until this point.

Figure 2.11: Overview of image-based camera localisation. The highlighted blue boxes are the
most popular approaches as of 2018. Figure from Wu [209].

If 3D information is considered then another method to estimate the query pose is by using a
geometric approach, e.g. finding 2D–3D matches from the query image to a set of 3D points.
The set of 3D points contains the 3D points visible from the database retrieved images. Finding
2D–3D matches requires establishing 2D–2D matches between the query image and its similar
images. Then 2D–3D matches from the query images to the set of 3D points can be formed.
The latter approach is considered to be a hybrid approach between image retrieval methods and

2https://en.wikipedia.org/wiki/K-means_clustering

21

https://en.wikipedia.org/wiki/K-means_clustering

geometric approaches [8, 35, 80, 136, 192, 215], and assumes a prior global 3D SfM model or a
model that is locally constructed from the retrieved images as similar to Sattler et al. [161]. This
approach is often called indirect [218]. The most popular approaches related to image retrieval
are shown in Figure 2.11.

Early work for this thesis used a vocabulary tree but quickly switched to a geometric approach,
because the latter returns more accurate results as explained in the next section.

2.2.3 Geometric Approaches

In this section, I describe geometric approaches for estimating a camera’s pose, otherwise known
as direct methods [157, 159, 218]. While most image retrieval based matching methods (also
named indirect [159, 218]) require an intermediate image retrieval step, direct methods compute
the absolute camera pose of a query image according to a known representation, which is
pre-generated by structure-from-motion, or SLAM. Direct methods tend to be more accurate
than image-based retrieval methods and learning-based methods [32, 163, 218]. Direct methods
return the extrinsics camera parameters and assume the intrinsics are already known, but they
can be unknown too, as I explain below.

Given an image I and its keypoints (xi; yi), and their corresponding descriptors di and a 3D
model with descriptors d for each point, then one can create 2D–3D matches. The 3D points’
descriptors are from images that are observed and used in the triangulation of that point. One
approach is to average all 3D points’ descriptors [201] and use the Euclidean distance to match
the 2D descriptor to each 3D point’s mean descriptor. The matches are created by searching
for the nearest descriptor of a 2D keypoint among the 3D points’ descriptor. In Figure 2.12 I
visualise the 2D–3D matches from an image to a point cloud of a retail shop. The green lines
from the image to the point cloud are the matches.

A simple method to determine the projection matrix P that contains the extrinsics and intrinsics
assuming there are 2D–3D correspondences is to use the Direct Linear Transform or DLT [181].
DLT is a linear system of equations that when solved, it returns the projection matrix P [183]:

xi =
p00Xi + p01Yi + p02Zi + p03

p20Xi + p21Yi + p22Zi + p23
(2.3)

yi =
p10Xi + p11Yi + p12Zi + p13

p20Xi + p21Yi + p22Zi + p23
(2.4)

where (xi; yi) are the 2D keypoint coordinates and (Xi; Yi; Zi) are the 3D coordinates of the
matched 3D point. At least 6 matches are needed to solve the equations formed by the matches.
The system of equations can be solved in a linear fashion where Ax = b where x are the entries
in P . The system can be solved by using Singular Value Decomposition. Once the projection
matrix P is acquired then RQ decomposition [199] can decompose it into intrinsics K, and
camera pose [Rjt] [183].

If the intrinsics K are known, then there is an alternative method to DLT and fewer matches
can be used. Determining the pose of a camera from 2D–3D correspondences is called the
‘Perspective-n-Point’ or ‘PnP’ problem [70, 134, 141]. The minimum number of matches

22

Figure 2.12: A point cloud created for a retail shop. Point cloud shows a retail shop aisle from a
top-down view. The bottom frame indicates a camera frame localised in the SfM model and its
matching 2D green features to 3D points. Each green line represents a 2D–3D match.

needed to solve the PnP problem given the camera intrinsics, K is three and the solver is called
‘P3P’ [69]. ‘P3P’ has been generalised to work with arbitrary number of matches [99, 120]
which is ‘PnP’. ‘P3P’ will return four ambiguous solutions, and a fourth point is added to return
a unique solution. Alternatively, subsets of three matches out of four are run through ‘P3P’, and
the common solution is chosen [49]. It is a common approach [111, 118, 201] given K and 3D
points to estimate a pose with ‘PnP’ and RANSAC [59]. Their implementations are found in
popular frameworks such as OpenCV [21]. K is used to refine the camera pose in ‘PnP’ by
minimizing reprojection errors,

P
i kKTXi � xik2, where T = [Rjt]estimated, and xi the query

image’s detected keypoint (xi; yi) locations.

When dealing with point clouds that contain millions of points, then feature matching from a
query image to all 3D points, i.e. an exhaustive search, can be slow [161]. The alternative to
exhaustive search is an approximate search. Typically, kd-trees are used for approximate search
and a popular library is FLANN [122]. A more recent alternative library is FAISS [83]. Other
methods tend to divide the point clouds into smaller point clouds, compressing them [34] or
focusing on improving the speed of feature matching methods [157, 158].

23

RANSAC Random sample consensus [59] is a simple and effective algorithm that deals with
outliers in data. It is often used in conjunction with a ‘PnP’ solver. ‘PnP’ wrongly assumes
that all matches are correct, but this is unlikely to be the case for real-world data, especially
if the images contain a lot of repetitive structures [193], which can lead to incorrect matches.
To put it simply, RANSAC is an iterative process that starts off by picking a random sample
and estimating a model’s parameters. In the case of localisation, using ‘PnP’, that would be
equivalent to picking 4 distinct 2D–3D matches and estimating a pose, [Rjt]. The resulting
pose will be then used to evaluate the reprojection error of all the images’ 3D points using the
intrinsics matrix K. If the reprojection error is below a threshold for a match’s 2D keypoint then
that will count as an inlier, otherwise as an outlier. The process repeats and four more random
matches are chosen, a model (pose) is estimated and its inliers are counted for a predefined
number of iterations. RANSAC converges if the maximum number of iterations has been
reached or if the ratio of outliers over the total matches returns a certain ratio. As I explain in
Chapter 4 in this thesis, the 3D points not only are assigned a set of descriptors but also a score.
This allows me to prioritise matches based on that score and utilise this score in PROSAC [36].

PROSAC Progressive Sample Consensus [36] differs from RANSAC as it does not treat all
2D–3D matches equally and does not draw samples uniformly. Instead, PROSAC uses matches
sorted in descending order and picks progressively top n matches. In the original paper [36], the
value used with PROSAC is the ratio [108] of the distances in the SIFT descriptor space of the
first to second nearest neighbour of an image’s keypoint while matching to 3D points. In this
work, as shown in Chapter 4, I use a temporal score instead of the distance ratio. PROSAC relies
on the assumption that matches with a high score are more likely to be inliers. The assumption
is valid using our scores because each score as seen in Chapter 4 represents how stable the point
is over time. The algorithm has two stopping criteria: one is a non-random solution and the
other is maximality. The first will consider a solution correct and stop if for that solution the
inliers have a probability less than 5% to be inliers for an incorrect model. The second is, if the
probability of having more inliers in the next estimated model, after a number of samples, is
less than 5%. PROSAC tends to be faster than RANSAC, and the worst-case scenarios in both
were found to be identical [36]. One might think PROSAC would be more lucrative compared
to RANSAC for the speed improvements but there is not always a score to use.

2.2.4 Long-term Camera Localisation

In this section, I introduce long-term camera localisation. So far, I have discussed pose esti-
mation in a static environment, i.e. the point cloud represents a scene captured at a specific
point in time. This does not reflect reality as environments change [50, 121, 189]. If a map was
constructed from images in daylight, then localising query images taken at night will likely fail
due to extreme changes in frame appearance. The same is the case for environmental changes.
For example, a frame taken at a specific location depicting the same location will vary between
summer and winter.

Image pixel-level descriptors, such as SIFT, are not fully invariant to environmental and seasonal
changes. For successful map localisation over time, either the query frame has to undergo certain

24

Figure 2.13: This figure from Toft et al. [190] illustrates how different query images taken under
different conditions should be able to localise in the point cloud (above). If the point cloud was
constructed from images similar to the left, then the second from the left will not be able to
localise.

processing to match the point cloud information and be localised, or the map has to be updated to
reflect the changes over time. The former can be achieved by various methods: one is semantic
segmentation [177, 191] another is, turning the image to the same type of image [5, 190].
Figure 2.13 from Toft et al. [190] shows an example how four query images taken in four
different conditions should be able to localise in the above point cloud. As of the time of writing,
the number of datasets for long-term localisation is lower than traditional datasets used for
localisation [160, 190]. Traditional datasets such as from Maddern et al. [116], Geiger et al.
[63] and Blanco-Claraco et al. [16] do not contain sufficient data over time [190] to be used as
datasets to benchmark long-term localisation methods. Long-term localisation attempts have
proposed map-based solutions, e.g. the maps are updated or maintained so only stable points are
kept, the most useful for localisation. In Chapter 3, I introduce in more details map maintenance
methods aimed for long-term localisation.

At this point, the reader should have a solid understanding of what pose estimation is and why
it is crucial to make it robust over time. In the next section, I introduce augmented reality and
discuss how it is related to camera localisation.

25

Figure 2.14: This figure from Marchand et al. [117] shows how the two coordinate systems
from the virtual world and the real world have to be aligned in order to create immersive user
augmented reality experiences. The alignment between the virtual coordinate system and the
real coordinate system is done by applying a pose matrix to the virtual coordinate system.

2.3 Augmented Reality

As the name suggests, augmented reality (AR) augments the real reality we perceive with
computer-generated content. In Chapter 1, I discussed the value of AR. The definition is:
Augmented Reality is the superimposition of computer-generated graphics on top of the real
world [11]. This is achieved today with various mediums such as camera-equipped phones
and glasses3. A complete AR system should be able to combine virtual and real graphics, and
be interactive in real-time [117]. This does not include any technical specifications on how
the AR system should work. Augmented reality from a high-level point of view is a motion
tracking problem as defined by Marchand et al. [117]. Multiple sensors have been proposed
including IMUs (inertial measurement units), GPS [206] but visual-based options seem to
have become preferable given their low cost, and availability for example in smartphones with
cameras and ability to work indoors unlike GPS. The hardware improvements in mobile phones
such as the addition of GPUs have fostered the applications for AR [205]. Even though depth
sensors/multiple cameras and Lidar sensors can be utilised, these are not mainstream yet on
consumer devices.

AR requires that the virtual environment is aligned in a coherent fashion with the real environ-
ment for a pleasant user experience. In Figure 2.14, I show a visual explanation of how the real
and virtual coordinate systems have to be aligned in order for the graphics to be combined and
coherent in one frame [117].

In this thesis, I use mobile device monocular RGB cameras as they are - low cost and widely
available. In Figure 2.15, I show two screenshots of an experimental Android app that I developed

3https://www.spectacles.com/uk/

26

https://www.spectacles.com/uk/

Figure 2.15: This figure shows a point cloud superimposed on top of the real world and viewed
from an Android phone. The world and mobile coordinate systems are aligned, and this allows
the phone to navigate in the digital world. The virtual point cloud is shown on the right and the
3D points are projected correctly on the trees and ground.

Figure 2.16: The left image shows a visualisation of 2D keypoints detected on a camera
frame, and the right image shows the end result after localising the device; computer graphics
superimposed on the real world and viewed from the phone’s screen, showing information to
tourists [53].

to showcase a proof of concept for mobile AR. The figure shows the app localising successfully
and the point cloud coordinate system aligned to the phone’s camera coordinate system providing
a smooth user AR experience.

The applications of AR are numerous ranging from architecture, urban planning, entertainment,
fashion, gaming [205]. Tourists can also leverage AR to view information about historical sites
such as shown in Figure 2.16. Users can view buildings in the real world before they are built,
as seen in Figure 2.17 and Figure 2.18. AR in medical procedures is used where virtual organs
can be overlaid on top of a patient, to help guide the surgeon [168, 200].

2.3.1 AR Retail Applications

Augmented reality is a fast moving and growing industry [39, 60]. In this section, I will be
focusing on retail applications of augmented reality. AR can provide information to shoppers
at the point of sale and positively influence a shopping experience [175, 176]. Shoppers with
AR-enabled phones can be shown product information, available promotions or coupons, leading
to faster, better purchasing decisions and enriched shopping experiences [138, 197]. AR can

27

Figure 2.17: This figure shows an application of AR for architects. The user of the app can see
the building at its predefined location before it is built [53].

Figure 2.18: A more engaging user experience is to position a building model enlarge it and
then allow the user to walk inside the building and get a sense of what it would feel like for the
client, or the architect. This is a process that can be used before building a house. The image on
the far right shows the sea viewed from the inside of the building [145].

28

Figure 2.19: An example of an AR retail application from Augray [10], that allows users to try
on shoes before buying them.

facilitate product evaluation prior to purchase. For example is now possible, using AR, to
experience products virtually without having the physical product [185]. Shoppers can also
omit visiting a shop and experience a digital version of the products in their own home [143].
Figure 2.19 shows such an example, where a user virtually tries on a pair of shoes. AR can
also enhance a shoppers experience in a shop with virtual avatars that can offer guidance or
information regarding the shop or certain products [143]. Placing avatars in retail shops is still
an early unexplored area [4, 68] and it requires a localisation system that devices such as mobile
phones can use over time such that the graphical avatar is aligned with the real shop environment.
In Chapter 3, I showcase prototypes of intelligent avatars developed for my industrial supervisor.
The first virtual avatar understands real objects. The second avatar discussed in Chapter 3,
understands speech and can provide information about shop products.

2.4 Conclusion

This chapter introduced the reader to the foundations of SfM, a field of computer vision so
the rest of the thesis can be understood clearly. I introduced the very first steps of structure-
from-motion, feature detection all the way up to the final stages required for building a point
cloud. Three main research categories of camera localisation were described in this chapter,
learning-based, image-based, and geometric approaches. I have gone into more detail regarding
the geometric approach because it is the method used for the contributions listed in Chapter 4
and Chapter 5. I explained why pose estimation feature matching speed is still a bottleneck in
geometric approaches, given the number of 2D image keypoints and 3D points that need to be
matched. I have introduced the research topic of long-term localisation. In Chapter 3, I show AR
prototypes which include intelligent virtual avatars that can recognise real objects, understand

29

speech and act upon it. In Chapter 4 and Chapter 5, I state in more detail the contributions of
the thesis, and how I address the two problems I stated, improving long-term localisation and
then speeding it up. In Chapter 4, I introduce a novel method for maintaining an offline point
cloud using a concept borrowed from nuclear physics, and improving long-term localisation. In
Chapter 5, I propose a learning-based method to reduce the number of 2D image keypoints to
be matched in a point cloud significantly down from their original number, hence speeding up
the pose estimation pipeline. For each Chapter 4 and Chapter 5, I include a relevant literature
section.

30

Chapter 3

Industrial Application Prototypes

3.1 Introduction

In this chapter, I introduce and describe the technical and commercial aspects of this thesis.
This chapter will be less research-oriented but more industry-focused, given the nature of the
Engineering Doctorate (EngD) in the UK. Applications development and technical requirements
understanding, together, form the other work component of the Engineering Doctorate, apart
from the research component. Here, I will discuss the application prototypes I have developed
during my work in accordance with my industrial supervisors. This includes the intelligent
avatars requirements mentioned in Chapter 1.

The first prototypes were developed using the Unity graphics engine [186]. This provided an
opportunity to develop cross-platform prototypes and target as many potential users as possible.
However, I will explain in this chapter, I had to switch to native development due to limitations
of the Unity engine.

In this chapter, I also present a prototype that was used to create 3D models of real environments.
The 3D models were used as offline maps to localise within. I will explain why localising in 3D
scanned environments was quickly dropped. At the end of this chapter, I will also present the
pose estimation pipeline that was used to help produce the results in Chapter 4 and Chapter 5 and
as well as two intelligent avatar prototypes. This pose estimation pipeline had to be developed
within a certain time period and have a visual debugger. Personally, I found debugging the pose
estimation pipeline with a visual debugger much more efficient and intuitive than only reading
numerical output on the console. The visual debugger shows a camera object in a 3D space that
reflects the mobile device’s pose in space, in real-time.

As with every software deliverable, a list of requirements is firstly agreed upon before develop-
ment starts. In the next section, I list and elaborate on the overall project architecture and the
industrial requirements, and the intelligent avatars and their use cases.

31

3.1.1 Shopper Mindsets

It is important to explain what a shopper mindset is, before the next sections, to understand
the use cases for the intelligent avatars. Modelling customer behaviour and understanding their
mindsets is an ongoing separate research task of the industrial partner. I had minimal exposure
to it, as comprehensive documentation was not available yet, and the details are out of the scope
for the work in this thesis. My industrial partner’s research focuses on retail shops, and more
specifically toy stores. A shopper’s mindset can belong to a small number of categories. For
example, a focused shopper will focus on finding the specific toy that was requested by the
child, parents or buying a gift for a special occasion. These shoppers have already done their
research and know what they want to buy. On the contrary, the impulsive shopper has done
minimal research beforehand and the product they buy will often be used as an unexpected
treat. This type of shopper usually has done minimal to zero background research. Impulsive
buyers tend to be driven by price and ease of shopping. By identifying these shopper types early
on, an employee can then make the right decisions and offer the most appropriate products,
hence increasing commercial success and sales. The shopper identification is a skill that requires
learning based on roleplay training, i.e. a person takes up the role of a certain shopper and then
the trainee interacts with them.

3.1.2 Intelligent Avatars

In Chapter 1, I briefly described the desired capabilities and expectations for the virtual avatars,
according to my industrial partner. In this section, I will dive into more details and describe the
capabilities the intelligent avatar should have.

The project aims to create intelligent avatars for training staff and shopper (customer) interaction.
Staff can ask the avatar some questions, to which the avatar responds while considering back-
ground knowledge regarding the products, sales techniques and local cultural factors. The avatar
should at anytime hold information about the environment it is deployed in and react accordingly.
For example, if the platform is deployed in a retail shop in an airport, then most likely shoppers
are more willing to buy a small toy rather than a big one due to luggage restrictions. The avatar
should suggest products small in physical size. Another example question that a shopper can
ask a virtual avatar is, ‘Can you show me how to build this NINJAGO LEGO set?’ This will
require a set of instructions, e.g. a physical demonstration by the avatar, that will have to be
communicated to the shopper in an engaging visualisation. The avatar will need to articulate and
animate in a convincing way to instruct the shopper on how to build a set. Customers may also
ask about the location of a product; the avatar should then be able to guide them to the product’s
location. Depending on the location of the avatar, the relevant information has to be loaded
dynamically and asynchronously. The specific information stored on the avatar will enable to
construct meaningful human-avatar interactions that draw from a database while at the same
time being responsive to the environment of a real-world retail shop.

The set of questions that may be asked should be as comprehensive as possible. From a retail
shop manager, an example question can be, ‘How many Star Wars units did we sell last week?’
During training, the avatar will take the form of different shopper types. The goal of the training

32

sessions is to familiarise the trainee with the different types of shoppers. There will be scripted
training scenarios where the avatar will have to adopt a random mindset out of the six shopper
mindsets, focused, diverted, brand-oriented, budget-oriented, impulsive and experienced. The
avatar must behave accordingly to the current trainee’s mindset.

3.1.3 Intelligent Avatars Use Cases

The avatars will be used in three main use cases:

1. Shopper Research. Most shopper research is still done manually. It usually includes a
series of discussions (sometimes via telephone) or group sessions and vouchers that are
given for participation in some cases. The experience for many is not an engaging one
[153]. An intelligent avatar can bring an exciting interactive experience to the shopper
research area. An interactive shopper assessment that uses the intelligent avatar to discuss
with shoppers can identify the shopper mindset they are currently in. Lastly, the avatar can
make suggestions that fit the shoppers’ current mindset accordingly. More specifically,
the intelligent avatar can ask the shoppers specific questions, understand their needs
and finally identify what type of shopper they are. Once the shopper mindset has been
identified, the avatar can react accordingly, e.g. suggesting relevant products.

2. Learning Roleplays. Current learning methodology for roleplays involves using costly
human resources, such as experienced consultants and trainers, and does not currently
involve technology-based tools. There is a need for tech solutions that start to replicate
some of the roleplay learning methodology, so it can be scaled more efficiently. Interactive
augmented reality avatars can roleplay as either shoppers, store staff or retail customer
contacts, and can discuss a given scenario with the learner, introducing learning content
as the scenario plays out. The users that will benefit the most from this use case are
retail shop employees. Avatars in augmented reality will interact with trainees (shop
employees), take up different shopper mindsets and test the trainee. Multiple learners can
take part in these roleplays simultaneously. Learners can have the choice of watching the
avatars or controlling them from a third–person view, or alternatively take a first–person
view. For the third–person view, this means that avatars will interact between other avatars
and the human trainee will watch or answer questions during the process. The trainees’
speech is assessed and this drives the roleplay direction and response of the avatars. After
a training session, the learner’s results will be measured by a change in their knowledge,
attitude and behaviour. The metrics that will be used are part of the industrial research
that I did not have access to at the time.

3. Brand Retail Consistency. One of the challenges of retail businesses is consistency in
how a brand is represented in a store environment. A chain of retail shops will have
store designs, merchandising and consumer experience guidelines and principles that are
not entirely consistent with other shops from the same chain, in their retail shop. This
consistency across retail shops is tied to a store’s staff knowledge, attitude and behaviour.
An AR avatar that knows the surrounding of a retail shop, given there is an offline map of
it, can help in maintaining consistency across retail shops. The avatar can intelligently
make recommendations on executional retail matters such as the placement of products

33

Figure 3.1: A sample high–quality store that will be used as an AR environment. The avatars
will be placed in such a model, giving them a sense of their surroundings. Source: From the
industrial partner (Dc-activ) in-house renderings.

or store furniture. The target audience for this will be the store managers. Given the
shopper’s journey data, the avatar can suggest placing a specific product in the place of
a shop that customers visit the most. A product’s location on a shelf has a significant
impact on its sales according to Russell and Urban [149]. A virtual part of a shop can be
overlaid to showcase product rearrangements in a more realistic fashion. This use case
will require the avatar to have a constant up-to-date map of the store and speech capability
to communicate with the shop’s manager(s).

I have listed the three main use cases for an intelligent avatar. Of course, there are more that
can be defined and help in a retail shop management and employee training; three were agreed
upon, as a starting point. In the next section, I will present the overall final system.

3.2 Overall Architecture

This section, describes the different components of the final intelligent avatars platform. As
discussed in previous chapters, the platform needs a reliable localisation back–end so users can
reliably localise in the retail shop and experience an augmented reality environment. An offline
point cloud will be used to localise users’ phones, and a second high–quality 3D model will be
used to place the avatars in. An example high–quality store is shown in Figure 3.1.

Apart from creating and deploying intelligent avatars in retail shops, the industrial supervisor

34

has expressed interest in also annotating the shop with virtual elements. Annotations can be
navigation clues to a part of a shop for a shopper, or products’ details, such as price or stock
availability.

3.2.1 Industrial Requirements

The end goal of the overall industrial project is to deploy intelligent virtual avatars in retail
shops. The avatars must be multi-lingual and realistically imitate (and interact with) shoppers
(adults), consumers (adults/children), staff (for training), or even other avatars. The avatar must
be able to generate speech (users will get the audio feedback from their phone speakers). The
avatars must be able to use different dialogues, have the appropriate appearance and behave
according to given retail shop data, such as product stock availability. Then the avatar should be
adaptable and able to parse input from the environment and context in which it is placed. For
example, a type of input can be speech from a shopper, or a trainee employee. The avatar should
flex and animate in a convincing and pleasant manner to keep the user’s engagement.

The avatar should hold information relevant to its current task and retail shop. For example, if
the avatar is receiving queries from a shopper about a product it should have access to the latest
products database and be able to present the information to the customer. The avatar should
have a basic understanding of its surroundings in a shop, for basic tasks, such as guiding the
customer to a specific aisle in the shop and pointing to a specific product. Once the avatar has
access to information about the products it can present prices and offers on-demand and can
also suggest similar products, hence increasing sales.

The avatar should be able to use the information given in training scenarios to educate trainees
to make better decisions and thus increasing commercial impact. The shopper mindsets should
be uploaded to the avatar as a set of instructions, predefined questions and answers, so they can
be used in training.

The medium to view the avatars and interact with them in AR will be smartphones, because of
their wide availability. To reach as many users as possible, the industrial partner and I decided
to use a cross-platform framework for the final release.

3.2.2 Main Components

The final product that has been agreed upon between the university and the industrial partner
is a platform that can be deployed in a retail shop and includes intelligent virtual avatars.
The experiences will be provided to the user through mobile devices in an augmented reality
environment. This platform is feasible only if a robust localisation system is in place. It is
worth noting that, at the time of writing the final product has not been deployed in a production
environment yet. Once the localisation system is in place, then the final product will have to
address three main work packages:

1. Data input understanding: An evolving set of data will have to be fed into the avatar.
Streaming the data to the avatar can be provided in an one-off and/or continuous set of

35

information. This part will require further research into what range of data is necessary
for the avatar to perform in accordance with the retail shop demands. Once the necessary
information has been fed into the avatar, then it will need to translate into exciting visual
examples between the avatar, users, other avatars and the environmental context. This
leads to the next main component, how to generate impactful avatar interactions.

2. Adaptable, impactful and convincing avatar visualisations: This component deals
with the creation of a system that uses the provided data to generate the appearance
and behaviour of an avatar throughout its interaction with the users, other avatars and
environments. Flexible and digitally malleable characters; the appearance and behaviour
of avatars should be adaptable enough to represent a wide range of characters and targets.
This is to be achieved through the use of mini-figures, generated or chosen by system
admins based on their intended representation. The different representations will allow
for diverse training scenarios with various types of shoppers.

3. Integration into current and future applications: The industrial supervisor has ex-
pressed future interest for other formats, such as, videos and even 2D presentations
(images) or virtual environments such as virtual reality. The implementation of the avatar
visualisation within a range of current and future technology solutions will require a
platform–agnostic application programming interface (API). The API will be able to
provide data to clients that use different methods of visualising the information.

At the beginning of this project, it was agreed between the University of Bath and my industrial
partner that a portion of the work packages related to the avatars’ speech-mediated interaction
would be picked up by a post-doctoral research assistant via an Innovate UK project, or another
university through a collaboration. The latter decision was made because the project’s sheer
size brings enormous complexity and requires significant software development time. It was
understood between the parties that the complete project will require more time than available
in my EngD. Additional tasks were offloaded to third-party services, such as creating a virtual
model of a shop that will be used in augmented reality and the intelligence component of the
avatar. The industrial supervisors though asked for a number of prototypes that would act as
proofs-of-concepts. As a result, later in this chapter, I show prototype demos developed that were
demonstrated to the industrial partner. The prototypes showcase avatars’ speech functionality
and basic avatar intelligence.

3.3 Prototypes and Demos

In this section, I will start off by briefly describing the initial attempts of creating a replica 3D
model of a retail shop. The main software suite used for the first demos was the cross-platform
real-time game engine Unity [186]. The starting idea for this project was to scan a whole retail
shop and then localise mobile devices in the resulting scanned 3D model. At the time, the most
affordable 3D scanning sensor I could afford with my budget was the Structure sensor [127]
from Occipital.

36

Figure 3.2: The first-gen structure sensor used for initial scans. It is attached to an iPad and
using a proprietary app, the user can the environment facing them. The user points and moves
the devices in the area that they want to scan.

3.3.1 3D Models Acquisition

A Structure sensor is shown in Figure 3.2. The 3D model should be an accurate replica of a
real retail shop. This would have allowed for the avatar to know where products are in the shop,
where to guide customers, and also apply correct occlusions, i.e there is depth data available.
Occlusion was a driving factor for having a 3D model of a retail shop. With a 3D model available,
the avatar could walk behind static store furniture and be occluded because the 3D model would
provide accurate depth information.

The sensor returned satisfactory results for its price range. The scanned models contained
reasonably accurate depth and colour. Figure 3.3 shows two examples: a meeting room on
university grounds and the departmental kitchen. In Figure 3.4, I show a sample colour-less
scan of our departmental kitchen, imported into Unity with three mini avatars placed in it. The
aim was to replicate a small scale scenario.

Figure 3.3: Two scans using the Structure sensor. The left is a meeting room on university
grounds, and the right is the departmental kitchen. Both are accurate, and there is a good
representation of colour and depth. The sensor is also capable of capturing thin structures such
as the handles of the chairs in the left image.

37

Figure 3.4: One of my scans of a real environment using the Structure sensor. In the model, I
placed a number of avatars, one sitting on a couch and two standing around a table. Doing so I
aimed to replicate a real-life scenario, e.g. avatars around a table in a store. The QR marker on
the couch was later used to align with the real environment.

The Structure sensor’s software was closed source and so it was cumbersome to extract more
than the 3D model, for example, camera poses, frames and depth data, without rewriting some of
the device’s firmware. Nevertheless, I used the scanner to build one of my first pose estimation
pipelines. Based on the JavaScript framework Electron [130], I set up a small sandbox that would
reconstruct a scanned 3D model using the Structure sensor. Figure 3.5 shows a reconstructed 3D
model in the centre of the area and, in the lower right, a camera frame that is used as a sample
query image. The query image would be used to estimate a camera pose for it.

Figure 3.5: One of the first pose estimation pipelines prototypes. It runs a full graphical user
interface, and it attempts to match a real camera frame to a computer-generated viewpoint of the
3D model before estimating a final pose. The real camera query frame is shown in the bottom
right, for which a camera pose is estimated, which was shown in the top right blue boxes.

Figure 3.6, at the top left, shows the set of views (called viewpoints) that were generated by

38

Figure 3.6: The 3D scanned model and the quarter sphere that was used to place the camera at
its vertices. Then from each placement, a frame was captured, all shown in the top left and in
the bottom row a subset of the frames is magnified. Then these frames were used in my initial
pose estimation pipeline to estimate a pose.

placing the camera at the vertices of the quarter sphere and pointing the camera at the origin.
These viewpoints were later used for the image retrieval stage of the pose estimation pipeline.
The model was placed at the origin. A query image, as seen in the bottom right in Figure 3.5, is
used to estimate a pose for it. The camera used for the query images was calibrated beforehand,
using Matlab’s camera calibration toolbox [17], so the intrinsics were known. For the prototype,
I used a Google Pixel 2 to simulate real-life scenarios, i.e. using the phone as a customer. The
prototype’s goal was to demonstrate two points: first, that it is able to scan an accurate enough
3D model with as low cost as possible and second, to localise a camera frame in the resulting
3D model. The final production version would be used in the retail shops, assuming the staff
was trained on how to use the system.

3.3.2 Prototype Pose Estimation Pipeline

The pose estimation pipeline described further in detail, in this section, was the first attempt
to create a prototype pipeline to deploy in a retail shop. I decided to choose a hybrid method,
i.e. combining an image-retrieval stage at the beginning of the pose estimation process to get a
coarse estimate of the pose, and then follow a geometric approach to refine the pose. From the
literature I read, a hybrid solution would provide a good enough solution. Also, the proposed
solution should be used as a basis, to build a production-ready pipeline in the future. At the
time of development, following the hybrid approach was the most optimal and time-efficient
approach.

39

I will now list the stages of my prototype pose estimation pipeline. Following the list I will
then elaborate on the most important steps which are: first, creating 2D–2D matches between
the camera query image and one of the most similar retrieved viewpoints and second, creating
2D–3D matches between the camera query image and the scanned model.

The stages of my initial prototype were:

1. Load the 3D model to localise the query frame in.

2. Use a quarter-sphere around the model to capture numerous viewpoint frames from each
vertex.

3. For each viewpoint extract a GIST global image feature [128].

4. Extract the GIST descriptor for the query image.

5. Use nearest neighbours (k = 3) [135], match the query image to its nearest viewpoint
image.

6. Extract AKAZE features [3] from the query image and its nearest viewpoint image.

7. The two sets of features from the query image and the nearest viewpoint are then matched
using brute force nearest neighbours, to create 2D–2D matches.

8. The coordinates of the 2D viewpoint matches are then used to raycast from the 2D
keypoint coordinates to the 3D model. At the intersection of the ray from the 2D viewpoint
image keypoint on the 3D model, I save the 3D coordinates.

9. Using the 3D–2D putative matches from the 3D coordinates and the 2D camera frame
keypoints, I run a PnP solver to get the pose of the query frame.

Image Retrieval (steps 3-7):

The localisation pipeline followed a hybrid approach, first fetch the most similar database
viewpoint to the query image, and then form 2D–3D matches to solve for a pose. The 2D–2D
matches between the camera frame and viewpoint image were used as an intermediate step to
acquire the 2D–3D putative matches between the camera frame, and the scanned 3D model.
There were alternative attempts such as extracting SIFT [108] descriptors for each viewpoint
and using a bag-of-words approach [25] based on K-means [72] to retrieve similar viewpoints to
the query image, but the process took more than one hour. The GIST-based viewpoint retriever
took on average 20 minutes to complete, which is still far from real-time performance. To be
more specific the slowest part was extracting the GIST global feature from each frame. Even
if the precomputed GIST viewpoints’ feature was stored, just extracting one GIST feature for
each query image was far from real–time performance. Both retrieval methods were tested on a
conventional 4-core CPU laptop with 16 GB of RAM. The number of viewpoint images depends
on the number of vertices on the sphere. The more viewpoint images to choose from the finer
the result will be. This means that the viewpoint will tend to be more similar to the query image.
But generating more viewpoints leads to more memory consumption and increased runtime. In
Figure 3.6, there are 79 viewpoints that the image retrieval system can return.

40

Figure 3.7: The features detected on both the camera query image (left) and the most similar 3D
scanned model viewpoint image on the right. There are more features detected on the edge of
the desk on the viewpoint image than on the camera query image, in which there are almost
none. The vice-versa for the plastic cover in the middle of the desk.

Figure 3.7 shows the number of AKAZE [3] keypoints detected on both the real query image
(left) and the 3D model’s most similar viewpoint image (right). The majority of the features are
detected in both images around the plug, coffee mug, and set of plates. There are differences
between the keypoints detected in both images; no keypoints are detected on the edge of the
desk in the camera query image compared to the desk edge in the 3D model viewpoint image.
Vice-versa, there are no keypoints detected on the rectangular plastic piece in the middle of the
desk in the viewpoint image compared to the real camera query frame. This shows that even
though the 3D desk model viewpoint and the camera images can look very similar to the human
eye, the keypoint detector fails to detect the keypoints in similar places in both images. I also
tested ORB [147] and BRISK [100], but I ended up using AKAZE as I got similar results with
the former. SIFT [108] and SURF [14] was too slow for real-time performance.

The detected keypoints’ features in Figure 3.7 are then used for matching, to establish 2D–2D
correspondences. The number of matches does not reflect the number of keypoints detected in
both images, as shown in Figure 3.8. The number of keypoints in Figure 3.7, is visibly higher
compared to the number of matches between the two images, seen in Figure 3.8.

The matches between the camera frame and the viewpoint were derived by brute-force matching
and without using Lowe’s ratio [108]. The reason that I did not use Lowe’s ratio was the low
number of keypoints detected. Using Lowe’s ratio, would reduce the number of keypoints even
further, to a number that a pose could not be estimated using a PnP solver. Despite not using
Lowe’s ratio, the number of matches returned given the number of features in both images is
low.

Establishing the 2D–3D correspondences (steps 8,9):

Given the closed-sourced nature of the Structure sensor, I did not have access to the sensor’s
RGB frames or points’ 3D coordinates associated with the relevant RGB frames. This led to
implementing my own custom method to retrieve the corresponding 3D point of a 2D image

41

Figure 3.8: The matches between the scanned mode viewpoint and the camera frame. The total
number of matches is below 15. The matches also are not evenly distributed in the images but in
the centre portion of both images. For more accurate pose estimates, matches should be evenly
distributed [146].

Figure 3.9: The yellow spheres highlighted with red circles, are the 3D points on the scanned
model where a ray from the 2D viewpoint image detected keypoint intersects the 3D model’s
surface.

keypoint. I then acquired the 2D–3D matches between the query image and the scanned 3D
model.

The 2D–3D matches are then retrieved by raycasting from the 2D viewpoint image keypoints on
the 3D model. At the intersection of each raycast on the 3D model, the 3D coordinates are saved.
This is achieved with ThreeJS [28]. Where the rays intersect with the 3D model is shown in
Figure 3.9. The yellow spheres are positioned with their centre at the intersected 3D coordinates.

Finally, the pose is estimated using the OpenCV [21] PnP solver, using the 2D–3D matches
between the camera frame and the scanned 3D model.

Due to the black-box nature of the sensor software it was quickly dropped from further usage.
I had almost no access to metadata such as camera poses, camera frames, or depth maps. It
required large amounts of processing power, more specifically, the image retrieval part was too
slow. Also, the sensor was too costly to use on a large-scale, and required additional training for

42

a retail shop’s staff to appropriately use the software. It would mean that each shop would need
to buy a scanner to scan their environment, plus carry out training sessions on how to use the
sensor’s software. At a price of nearly £400 for each sensor, this would have been an expensive
solution to sell to potential clients.

The dense model file size in Figure 3.4, is about 60 MB and after post-processing in software
such as MeshLab [38] the size reached more than 120 MB. Possible avenues could have been
to compress the mesh using mesh decimation, but it was not explored due to time restrictions.
Storing point clouds is more efficient as the same model requires less than 900 kB. The quality
of the scanned 3D model was visually acceptable, but it did not perform well at the feature
matching stage. There were insufficient high-quality matches as shown in Figure 3.8. Even
though there were similar textured areas in both the camera frame and the scanned 3D model’s
viewpoint image, almost no matches were generated between the areas.

Before any further testing and investigation happened, the industrial partner and I decided to
stop with the 3D scanning. We also decided to decouple the 3D scanning process and focus on
the localisation in a retail shop. The creation of a retail shop’s digital-twin would be taken offline
and outsourced to third party solutions. We decided to focus on building an AR solution that
will allow users to localise in a shop without requiring a high-fidelity 3D model reconstruction.

3.3.3 Augmented Reality Frameworks

The next step was to explore mobile augmented reality AR frameworks for smartphone apps.
At the very early time of development (2018), the available AR frameworks were Vuforia
[139], Wikitude [208], ARKit (Apple) [6], and ARCore (Google) [66]. A secondary framework,
EasyAR [52] was considered, but at the time, the quality of tracking it offered was not up to par
compared to its competitors, and documentation was not comprehensive enough.

The first framework I started experimenting with was Vuforia, using Unity [186]. Simultaneously
I developed a small number of prototypes with Wikitude using the IDE, Unity. Developing with
Vuforia and Wikitude is faster, meaning they abstract the majority of the technicalities and offer
comprehensive and detailed documentation. Vuforia and Wikitude are closed-sourced, and their
API at the time of development did not offer functions such as retrieving the 3D coordinates
of the triangulated 3D points while tracking. Also, the pricing plans they offered were not an
attractive option for my industrial partner, so they were quickly discarded.

During the very early stages of developing AR prototypes, ARFoundation [196] was released.
The advantage of ARFoundation compared to the other platforms is that it runs on both iOS
and Android devices, which means it is a cross-platform framework. There is also no pricing
fee for using ARFoundation. The next prototypes described in Section 3.4 were developed
using ARFoundation. ARFoundation also came with its limitations. ARFoundation’s API was
minimal at the time of writing; it did not have access to the phone’s intrinsic camera parameters.
This meant that for localising frames from ARFoundation, the phone’s camera had to be pre-
calibrated. Calibrating a phone’s camera before use is not a user–friendly experience; users can
not be expected to do so before using the app, while in a shop.

The ARFoundation framework was then dropped in favour of ARCore. ARCore is a more open

43

framework, as its API provides more data to the developer. For example, ARCore provides
intrinsic camera parameters, necessary for SfM-based localisation, and the coordinates of the 3D
points in the local point cloud it creates. At the early time of development I had access to iOS
devices and Android devices, but due to time limitations, my industrial partner and I decided
it would be more time-efficient to focus on developing on one platform. This way, I would
produce a prototype within more reasonable time limits. The limitation while developing was to
use only features from ARCore (Android) that were also available in ARKit (iOS). By using
common features between the two frameworks, it would make the transition to a cross-platform
framework smoother.

3.4 Intelligent Avatar Prototypes

In this section, I present the two main prototypes that I have developed using the AR frameworks
from the previous section. These prototypes show a very rudimentary intelligence.

3.4.1 First Prototype

The first prototype was developed using Vuforia. It was using small scale avatars in AR and
image targets to position them. Image targets are images that the user uploads on Vuforia
servers. Once the app has been set up with an API key and has internet access, then it can
recognise the image targets when the user is using the phone and place 3D objects on them. The
image recognition happens in Vuforia’s backend and is abstracted from the developer, making
developing prototypes fast and less cumbersome. The image targets also act as local coordinate
systems. If multiple image targets are detected at the same time, then the first image’s position
is set as the global origin, and all the subsequent image targets’ positions are set relative to that
origin. The avatar would start from a red marker image target as shown in Figure 3.10. This is
the global origin.

Figure 3.10, shows the viewport of an Android app running on a Galaxy Samsung S7 at 30
frames per second. The product image targets were the front face of a product’s box. The
products on shelves are always forward-facing, hence the target image markers used were the
front face of the products’ box.

A visualisation of the local coordinate system on the image target is shown in Figure 3.11.
Each product image was associated with the product code. For example the product code in
Figure 3.11 is 31073.

Every time the front face of the product appears in front of the avatar, an event is triggered, and
the avatar is updated with the product code. The shopper could be holding a product in front of
a virtual human-sized avatar, and get any relevant information needed, about the product. The
avatar knows at this point every metadata that the shop staff can associate with the product, e.g.
stock availability, price, and current offers. Future versions of this avatar can use this elementary
intelligence and can make basic decisions when asked a question about a product.

44

Figure 3.10: The first version of a small-scale virtual avatar in AR, which can recognise front
faces of products and follow them. Its starting and spawn position is the red marker. The view is
a screenshot from a Samsung Galaxy S7 android smartphone. The app is running at 30 frames
per second.

Figure 3.11: Vuforia’s Target Manager, creates a local coordinate system on each target image
marker as seen on the left, a mock up was drawn. The black borders represent the image (right)
that is uploaded to Vuforia servers the is hence tracked using the mobile phone app.

45

Figure 3.12: The intelligent avatar recognises the product, and the product code shows up on the
top left of the screen. Then the avatar starts walking towards the product showing basic spatial
awareness. The order is clockwise.

In Figure 3.12 a product number shows up on the upper left corner of the mobile phone’s screen
once a real product box is shown to the virtual avatar. The avatar then starts walking towards the
product as the product is moved away from it, as shown in Figure 3.12 clockwise. A video is
available online, https://youtu.be/h5YJh2pWrCo. This prototype minimises the gap between
real environments and virtual environments as the avatar has a basic spatial understanding of its
environment, i.e. it knows where a product is.

This was a very early prototype that was demonstrated to my industrial supervisor as a proof of
concept that intelligent avatars are possible. But the Vuforia approach was discarded because at
the time it only offered a maximum of 100 maximum registered image targets and also because
the pricing for enterprise licenses was too high.

3.4.2 Second Prototype

The next prototype tackles the two main limitations of the first prototype. It uses the free-to-use
AR framework ARFoundation, which discards the need for an image target to be registered
and adds speech recognition (with IBM Watson API) so customers can communicate with the
avatar. ARFoundation is a wrapper for ARCore and ARKit and uses the common features of
both frameworks. The resolution of the frames is only 640 pixels by 480 pixels, and this is a
limitation of the current AR framework. It is set to that resolution on purpose because it is more
efficient to run the proprietary SLAM algorithm at that resolution. This makes it possible to
compile and run on both iOS and Android platforms.

There is no need for image targets anymore, because ARFoundation automatically detects
planes, horizontal (floors) and vertical (walls), on which the avatar can walk. For this scenario, I

46

https://youtu.be/h5YJh2pWrCo

Figure 3.13: Replacing the image targets from the second prototype with dynamic plane detection
and creation. The avatar can now move freely in the place shown, and the plane’s surface areas
increases as the user moves the phone around the space.

only enabled the horizontal plane detection. ARFoundation performs SLAM and creates a plane
from enough 3D points detected on a surface. An example of a plane detected, and the avatar
walking in it is shown in Figure 3.13. The avatars can only walk on the plane detected, but it
expands as the user moves the phone.

The avatar shown in Figure 3.13 is a small scale avatar. By scaling the avatar to a human
height level, the avatar can exist in a retail shop, and users would invoke it at any place in
the store as long as there is enough free textured space on the floor. An app that uses plane
detection eliminates the need for markers which can be inconvenient to install. Markers need
to be placed at certain places in the retail shop hence restricting the customer’s movement.
If a shop’s furniture is rearranged or the shop is renovated, then the markers will have to be
reallocated. Also, markers have a distance limit; a shopper using the app has to be close enough
to the marker so it is picked up by the phone’s camera. If numerous shoppers want to use the
same marker at once, it might create congestion at places where the markers are placed.

The second prototype has the capability of speech recognition. This was achieved by using a
third-party service IBM Watson Studio cloud services [78]. IBM Watson Studio offers a plethora
of services such as speech-to-text, text-to-speech and requires an active internet connection to
communicate with its services. From the available IBM Watson services, I used the speech-
to-text, text-to-speech and Watson assistant. Watson assistant is an online service that lets the
user build conversational interfaces. The user is presented with an online interface that allows
to structure the conversation in a tree form. Each node in the tree is called a dialogue node
[78] and it represents a number of phrases the user might ask. The input to build a tree is a set
of questions that the customers are expected to ask, a set of answers and the aforementioned
organised in a tree, called the dialogue. The dialogue decides how the conversation will flow,

47

Figure 3.14: The avatar understood my request ‘Tell me more about your products’, and shows
it in text on the upper left corner of the screen. It replies by asking me about which products I
am interested in.

what the end response will be, and how users’ responses are matched to each node.

The app for the second intelligent avatar prototype was developed in Unity, using IBM Watson
Unity SDK. The IBM Watson SDK plug-in for Unity had just been released at the time. There
were initial authentication problems with the API that I managed to overcome by modifying the
Watson plug-in source code. It was later fixed by IBM in a future release [79]. The app uses
Unity coroutines which are similar to conventional threads, to handle the concurrent background
communication with IBM Watson services. This is needed as the app uses multiple concurrent
processing streams, mainly communicating with the IBM Watson speech-to-text and text-to-
speech services. Also, the app connects to the industrial partner’s servers to fetch 3D models of
toys and products.

In Figure 3.14 I show a demonstration of me talking to the virtual avatar. The avatar stops
walking and waves his arm at me while I say to it: ‘Tell me more about your products’. The
animations are achieved with Unity’s default animation system. On the top left, in green font,
my speech is shown in text, and the avatar’s response is shown on the top right of the phone’s
screen. My reply activates the relevant node in the dialogue tree of IBM Watson Assistant, and
the avatar replies by asking me which products I am interested in: ‘Star Wars’ or ‘Batman’? The
speech-to-text and vice versa are accomplished in real-time by IBM Watson. Even though the
text has to be sent over the internet, I noticed the delay was minimal and did not affect the user
experience or introduce any additional lag.

Figure 3.15 shows the next stage of my conversation with the little avatar. I reply to it saying
that I am interested in the ‘Star Wars’ products. The interpretation of my response is seen on
the top left of the phone’s screen in Figure 3.15. Then the avatar triggers another network call
to fetch a 3D model, including its textures and reconstruct it locally on the phone. Once the

48

Figure 3.15: The avatar understands my second oral answer about what products I want to see,
which is Star Wars, and fetches a 3D model of a Star Wars product.

download is completed, the avatar lifts up its arms and the 3D model shows up, implying that
the Star Wars product is in stock. At the time of development, the avatar had access to limited
products from the database, because my industrial supervisor had no complete set of 3D models.

Even though this example is minimal, it proves that an intelligent avatar with rudimentary
intelligence is possible. A human-sized avatar can be placed similarly using a detected plane in
a shop. The avatar can be connected to multiple data sources at once and fetch not only a 3D
model of the products’ package but also product metadata such as prices, offers, and number
of recent purchases. The avatar can also show shoppers the completed product after assembly.
A demo video is available online at https://youtu.be/QX8mFBk6lF8. Unfortunately, the audio
recording was not supported on the device. This was showcased to the industrial partner, and
the next step agreed was to proceed with the localisation platform. The localisation platform
would then allow human-sized avatars to be tested in actual stores.

In the next section, I describe the research pose estimation pipeline software I used as a sandbox
that contributed to the work in Chapter 4 and Chapter 5.

3.5 Research Software

This section describes more the software I developed to help produce the results in Chapter 4 and
Chapter 5. The research software includes an Android app written in Java and a server written in
JavaScript. The Android app can localise and save frames that are later used to reconstruct a point
cloud. The code for the server and the app is available online https://github.com/alexs7/Mobile-
Pose-Estimation-Pipeline-Prototype. The reason I moved from ARFoundation to a native An-
droid app using ARCore is because at the time of development ARFoundation did not provide

49

https://youtu.be/QX8mFBk6lF8
https://github.com/alexs7/Mobile-Pose-Estimation-Pipeline-Prototype
https://github.com/alexs7/Mobile-Pose-Estimation-Pipeline-Prototype

Figure 3.16: The app that was used to collect data from the retail shop. The app has the capability
to communicate to a remote server and also save locally captured frames. On the left, the small
green points represent the SLAM points from ARCore, and on the right, the red points are
the points from the offline map rendered and aligned correctly in ARCore’s world coordinate
system.

the intrinsics of the camera. The ARFoundation SDK was only updated recently (2020-21)
to provide the intrinsics of the camera it is using. Without the intrinsics, it was impossible to
use the available perspective-and-point (PnP) solvers from OpenCV. The intrinsics were also
required for validating the poses, by estimating the re-projection error. The 3D points were
reprojected on the query camera frames during development to quickly validate if the pose
estimation was reasonably correct and the intrinsics were needed to do so.

I named the setup I used to generate the results in Chapter 4 and Chapter 5 the ‘ARCore
sandbox’.

3.5.1 ARCore Sandbox

To collect the data from the retail shop, I had to develop an Android app that uses ARCore, as
it provided the camera intrinsics and I had an Android phone available for development. The
app was developed on a Google Pixel 2 smartphone. Once the app launches and the user moves
the phone around, ARCore creates a local environment. In Figure 3.16, I show a demo of the
app running in a retail shop. This local environment is created using SLAM, and it is shown in
Figure 3.16 on the left. The green points are triangulated points from ARCore and are in world
space coordinates, in metric space. The red points seen on the right image in Figure 3.16 are the
points from the offline map, created beforehand using COLMAP.

The Android app can stream data, including RGB frames, camera poses and SLAM points, in

50

Figure 3.17: The companion application that was used as a visual debugger for my experiments.
The UI shows all the data the onboarding phone’s SLAM system produces, camera poses and
3D map points. It also stores the pre-built map that is only shown after a query frame has been
localised. The white dots represent the phone and the added arrow indicates the phone’s look-at
direction.

real-time back to a Node.js [150] server. The GUI for the companion application server was built
using Electron [130]. The Electron app visualises in real-time the ARCore’s world coordinate
system the phone as it moves in that space and the green SLAM points. The server can also use
one of the incoming frames from the phone to localise the phone in the offline map.

Figure 3.17 shows an alpha version of the companion application. It loads a world coordinate
system that imitates the real environment. The green 3D points in the centre of the UI are the
SLAM points ARCore detects. The red points are the 3D points of the point cloud that show up
after a frame has been localised. The top left image shows incoming frames from the phone.
The top right image is the resulting query frame after it has been localised, with the point cloud
points projected on. Both frames are rotated 90 degrees because ARCore’s default pose includes
that rotation. The white dots represent the phone. The phone’s look-at direction in space is
shown with the white arrow added in Figure 3.17, for better interpretation. The phone would
transmit all of the information its on-board ARCore SLAM system generates, such as poses,
3D map points and camera frames. Due to the size of the data transmitted, the phone had to be
connected by USB cable to the laptop. Mobile 3G or 4G networks speeds were inadequate for
smooth wireless communication.

To the best of my knowledge, this is the first augmented reality debugger. I have used it as an
educational tool to explain how ARCore pose estimation works to other developers on GitHub
[65]. A video demo is available online at https://youtu.be/fTeVNiGEgkY.

Due to the differences in coordinate spaces between ARCore’s and COLMAP’s local coordinate

51

https://youtu.be/fTeVNiGEgkY

systems, a transformation has to be applied to the offline maps’ 3D points so they render
correctly and are aligned in ARCore’s world coordinate system. COLMAP uses a left-handed
local coordinate system and ARCore uses a right-handed. Poses in COLMAP and ARCore
are defined differently as well; a pose in COLMAP represent a transform from world to local
camera space, but in ARCore, a pose is a transformation from local to world coordinate system.

The transformation that aligns the offline maps’ 3D points from COLMAP to ARCore’s coordi-
nate system is, X = PARz(�90°)PC!APCY, where P stands for pose, C stands for COLMAP
and A stands for ARCore.

Y are the maps’ 3D points in COLMAP world coordinates. X are the maps’ 2D image projected
points. PC will transform the 3D points from COLMAP world space coordinates to COLMAP’s
camera local coordinate system. PC is estimated after sending an ARCore frame to the server
and using my ARCore sandbox pipeline. PC!A in turn, will transform the 3D points from
COLMAP’s camera local coordinate system to ARCore’s camera local coordinate system.

At this stage, when the pose can be estimated, I need to include scale, because COLMAP and
ARCore worlds use different scales. ARCore is metric based but COLMAP’s is not. In order
to estimate the scale between the ARCore world and COLMAP world, I run a one-time scale
calculation before localisation starts. This process only runs once and must be run every time a
new offline map is set up. I localise several ARCore frames in the offline map and I calculate
the camera centre, C = �RT t [73]. I choose two random pairs of camera frames. Each pair
contains an ARCore frame and its corresponding frame localised in the offline map. I calculate
the Euclidean distance between the frames’ centres in each pair d1 and d2 and then calculate the
scale between d1 and d2. d1 and d2 are defined as the distances between each pair of frames. I
repeat the process 5000 times and use the mean of 5000 scales as the scale value. The scale is
applied lastly on the resulting X points.

Next term isRz(�90�). This is a rotation of�90� around the z-axis. The frame that is generated
from ARCore is rotated 90° around the z-axis, so the rotation term is added to cancel that rotation.
Lastly, the matrix PA will transform the 3D points from the ARCore camera local coordinate
system to ARCore world coordinate system. The end result is seen in Figure 3.16 on the right
(red points) defined as X. Figure 3.16 shows an indoor example in a retail shop.

In Figure 3.18, we see the efficacy of the app localising also in outdoors environments. I scanned
an outdoor area in the early afternoon, and reconstructed a point cloud. On the same day but
in the evening, I re-localised in the same area. What I wanted to test, was how the different
lighting conditions between afternoon and evening would affect the localisation result of my
app. In Figure 3.18, the point-cloud 3D points shown in the bottom frame have a lighter colour
compared to the real environment colour. For example, the real tree leaves are darker than the
leaves in the point cloud. Although there is a minor offset between the point-cloud and the real
world this result is still acceptable, given the time difference between creating the point-cloud
and localising in it.

Note the frames from ARCore have a low resolution, at 640 by 480 pixels. The low resolution
allows for the processing to happen on mobile devices, and this is unfortunately a restriction of
the framework. A video is available at https://youtu.be/kb0Ro5BxDH8e.

52

https://youtu.be/kb0Ro5BxDH8

Figure 3.18: The ARCore sandbox app, was used to localise in an outdoor environment aswell,
to test its efficacy and stability. The area was scanned using the same app early in the day. A
point cloud was constructed, and then later in the evening, I re-localised. The result is seen here.
The point–cloud aligns with the real environment. Most points are on the trees and at the edge
of the green barriers.

The app was used not only to collect the retail shop data used further in my work, but also as
a proof of concept that the proposed method, used in the ARCore sandbox pipeline, can be
applied in real-life scenarios, with low-cost hardware and free software.

3.6 Conclusion

In this chapter, I have shown all the necessary tools that I developed in order to help produce
the results in Chapter 4 and Chapter 5. The visual AR debugger shows in a 3D scene all the data
streamed from an Android phone. The debugger allowed me to get a solid understanding of the
ARCore SLAM system and the different coordinate systems. It was also used to verify that the
alignment of COLMAP’s and ARCore’s coordinate system is correct. In this chapter, I have
also attempted to 3D scan my own offline map and localise in it but without avail. The idea was
dropped because of high costs and time demands. Nevertheless, I have shown that intelligent

53

avatars are possible with two prototypes, both on small scale. The first prototype shows the
avatar understanding an actual product and can fetch information about them, such as their item
code. In the second prototype, the avatar can understand speech and can reply with on-screen
text. The second virtual avatar has the capability of conducting a brief dialogue between the
user and itself about products availability.

54

Chapter 4

Long-term Localisation in Dynamic
Scenes using Exponential Decay

4.1 Introduction

Figure 4.1: I propose a new approach for long-term localisation in dynamic environments that
updates a base map (left) over time as new data arrives to maintain an up-to-date live map (right).
I introduce new stability scores for each world point that take into account both visibility and
recency of observation (using an exponential decay) to distinguish reliable static and unreliable
dynamic world points. I show that this enables the localisation of unseen query images in the
live map with higher accuracy and speed compared to using the initial base map.

In Chapter 1, I discussed the challenge of achieving long-term localisation in dynamic environ-
ments such as a retail shop and proposed a solution. Chapter 2, provided a brief description of
the foundation that is useful to understand the following work in this thesis. In this chapter, I
will provide a more comprehensive description of the proposed method from Chapter 1.

Camera localisation is vital in many fields, such as robotics, mobile applications and augmented
reality. Many traditional approaches assume that the camera moves through a static world, such
that a map can be reconstructed once and then reused afterwards. Structure-from-Motion [163]
provides the most accurate results and assumes a static map. However, this is not the case
for many real-world environments, which are full of dynamics, including moving people,

55

cars or trees, and changing weather, daylight and seasons. Factories and warehouses have
objects reallocated, and moving parts, such as robot arms. Retail shops have products picked
up constantly, and can restock as often as twice a day. Temporary marketing promotions might
lead to products being rearranged, advertising posters are rotated regularly, and people may
pass in front of the camera and occlude the scene. This makes long-term localisation in retail
environments particularly challenging. If a point cloud is constructed at one point in time
and then reused to localise, without considering environment changes over time, then future
localisation performance will worsen or even fail.

In this chapter, I focus on long-term localisation within retail environments, which have to date
received little attention compared to other environments, such as outdoor street scenes [184].
The method presented in this chapter aims to achieve long-term localisation by appending
information to a static map as more cameras are localised in the map itself. The proposed
method is evaluated on an outdoor dataset, a dataset that includes a mixture of indoor and
outdoor scenes, and a new retail shop dataset also published along with this work.

4.1.1 Motivation

Long-term localisation in retail environments enables a range of new applications, particularly
for AR on consumer smartphones, which have the potential to revolutionise the sector. Many
retail shops are keen to target specific shoppers through personalisation. For example, a shopper
might be shown additional information about a product, a comparison between similar products
nearby, or a map of the shop could be adapted to show promotions based on a shopper’s
preferences. In large shops, localisation can be used for in-shop navigation or for finding a
specific product. In addition to that, there is an increasing interest in monitoring the paths
of customers, and therefore enabling analysis of their behaviour [152, 173]. In the future,
localisation could also be useful for robots that automatically restock products. From a business
point of view, variations of product arrangements can be visualised on top of an aisle for preview
and planning purposes, and maps can be rendered in AR for training new personnel using AR
headsets such as the HoloLens.

4.1.2 Challenges

I consider the difficulty of maintaining an offline SfM map that is able to reflect temporal changes
in a fast-paced and frequently visited retail shop environment. When a map is constructed at a
specific point in time, new images with significant differences, such as products moved around,
will fail to localise or lead to increased pose estimation errors, in terms of translation and
rotation.

An illustration of the temporal differences in a retail shop is seen in Figure 4.2. My method
aims to address the main challenge of maintaining a constantly updated map, thus sufficient
feature matches occur between a new query frame and the updated map. If sufficient matches
are established then a camera pose can be estimated.

56

Figure 4.2: A highly dynamic retail environment, only eight hours apart. Only some features
remain reliable for localisation (in green), while others (in red) would lead to mismatches and
thus errors.

Lastly, there is no known retail shop dataset that contains data such as camera frames, and poses,
over a certain period of time. I address the last challenge by collecting my own data from a local
retail shop. I present a map maintenance method that is suitable for dynamic environments and I
provide an appropriate dataset to prove the method’s efficacy.

4.1.3 Contributions

I propose a new long-term localisation approach that is specifically tailored for fast-paced and
highly dynamic retail environments. I build and maintain a live map that is regularly updated
based on new observations made during shoppers’ AR sessions. A session is a series of frames
collected during using an AR device, more in Section 4.3. The key to maintaining my live
maps is to deduce which 3D scene points remain stable over time, and which are changing
and thus unreliable for localisation, based on their visibility over time. Specifically, I calculate
a stability store for each point that decays exponentially over time if a point is not observed
regularly. In combination with progressive sampling, this reduces the influence of unreliable
points during pose estimation, and thus makes localisation more robust in the long term. The
main contributions are:

1. A new map maintenance method that enables long-term localisation in dynamic scenes
by prioritizing stable 3D points over time.

57

2. Two novel time-varying point stability scores for use with progressive samplers like
PROSAC [36].

3. A new dataset for benchmarking and evaluating long-term localisation in dynamic indoor
environments.

It is important to note that if a point is not seen by subsequent future traversal in the point cloud,
then is not removed, but its associated weight is reduced. Therefore, it reduces its chances of
being chosen for estimating a camera pose later in the future. The method proposed introduces
minimal overhead as it adds a weight value to the 3D points in a point cloud. Future maintenance
is also kept minimal as the method does not remove or add points, thus there is no need to keep
track of points, or re-triangulate points which can be an expensive operation [131].

4.2 Related Work

In Chapter 2, Section 2.2, I explained the main camera localisation approaches and what long-
term camera localisation is. In this section, I present prior work to long-term localisation. I start
by listing the current state of camera localisation in indoor and outdoor environments and then
continue to review long-term camera localisation prior work.

Camera localisation can be applied in indoor or outdoor environments. Indoor localisation
[106, 167, 203] has not received a lot of attention compared to outdoor localisation [12, 35,
64, 67, 81, 104, 105, 113, 116, 160, 193, 207, 213, 214]. The reason could be that indoor
localisation is a harder problem compared to outdoor/urban localisation. Small variations in
viewpoint can cause significant alterations in image appearance when the scene geometry is
located at a short distance. Similarly, obstructive objects like humans or chairs tend to have a
more pronounced effect than urban environments for this reason [184]. The aforementioned
methods assume a static environment. Indoor localisation is particularly challenging because of
symmetric and repetitive elements, large image changes as furniture/items can move around,
and the lack of features in texture-less areas [184]. Recent work has considered indoor-dynamic
environments [48, 184, 202].

Localisation in retail shops has received even less attention [173]. Retail shops are different as
they are full of various products and thus tend to be more textured. The most related work to
mine is by Spera et al. [173, 174], who have benchmarked image-based retrieval techniques
and methods based on regression against a dataset of images from a retail shop. Spera et al.
[173] aimed for the 3DoF pose of a shopping trolley, while I aim for full 6DoF poses to support
handheld mobile AR. They did not investigate 3D structure-based localisation methods due
to hardware limitations and complexity. To the best of my knowledge at the time of writing
this is the only work that focuses on long-term camera localisation for retail shops using
structure-from-motion localisation.

58

4.2.1 Map Maintenance

The approach I explore is map maintenance for structure-from-motion long-term localisation and
identifying stable points over time. Map maintenance for long-term localisation is the process of
updating a point cloud such that localisation can still be achieved after some time, for instance
by exploiting additional images from new user sessions. Utilising information from multiple
traversals at different points in time has been explored before [15, 50, 51, 121]. Keeping a static
map in memory, and localising against it, is insufficient for long-term localisation given that the
scene’s appearance changes frequently [50]. For example, a retail shop will look different after
customers have emptied the shelves at the end of the day.

Early work from Konolige and Bowman [91], maintains an offline map to reflect temporal
changes. They perform incremental updating of offline maps with new data and view deletion.
View deletion was introduced to restrict stress on memory demands. My approach differs as I
do not alter the number of views but only the number of descriptors per 3D point.

Dymczyk et al. [50] maintain a point cloud of fixed size by determining which points from new
sessions to keep and which ones to discard from the old map. Similar to Mühlfellner et al. [121],
they use scoring and sampling functions to determine which points are worth keeping. One
potential scoring function is the number of times a point has been observed [121]. The more
often a point was seen, the more likely it is to be stable and thus a good match for localisation.
Another proposed sampling function prefers points with similar descriptors that show little
variance. If a map point’s descriptors show high variance, then it is assumed to be dynamic and
discarded. With my method, all the points are kept in the map, but instead their score increases
or decreases depending on whether they were observed or not, using my own cost function.

Churchill and Newman [37] save complete past sessions and use multiple localisers to associate
session data to previous sessions. If a low number of localisers succeeded, then the current
session is added as new, and it is used for future localisations. However, in areas with many
daily changes, such as retail shops, the number of stored sessions increases quickly, resulting
in large memory consumption. A similar approach is proposed from Berrio et al. [15], where
two maps are kept in memory: a prior map and a temp map that include lidar sensor data. In
a parallel process the two maps are accessed, points are removed from the prior map or kept
in the temp map. My approach differs from Churchill and Newman [37] and Berrio et al. [15]
approaches as I only append descriptors on 3D points, and compute a time-variant score per
point. Contrary to Berrio et al. [15], I do not use lidar data that requires expensive sensors. By
only storing metadata about a map’s 3D points, the storage amount required drops significantly.
FAB-MAP [40] has been one of the most used place recognition (or visual based localisation)
algorithms [50]. It is appearance-based, uses a bag of words representation of sensor data, and
scenes are represented as words from a vocabulary. Incoming data is then matched to the closest
word. While it provides a level of robustness, its matching still fails over large changes in
environmental appearance [115].

Previous work has performed incremental updates on a static map [57]. An initial map is
constructed from an initial trajectory. Subsequent new trajectories are aligned and merged on
top of the initial map. Dynamic objects are discarded immediately if they are in motion in the
new trajectory or move at negligible velocities in the new trajectory’s map. A resulting dense

59

map is created, that does not contain dynamic objects. I use as an offline map a point cloud and
not a dense map. The data I append to the map from new trajectories, over time, is 3D points
descriptors.

Pomerleau et al. [137], follow a point-based approach. To identify moving elements within a
scene, they rely on visibility assumptions. If a laser point appears behind a previously observed
point, they may infer that the prior point was in motion. Ray-tracing is the conventional method
employed for their process. Lidar data is also used here. I target conventional mainstream mobile
devices that do not use expensive lidar sensors. So instead, I use RGB frames solely as the input
in my method.

An interesting client-side approach is to filter out the points that are considered to be dynamic
before they are sent to the offline map [51]. This reduces bandwidth between the client and the
server. A drawback is that it introduces more processing on the mobile device or robot, as the
filtering has to happen online. I avoid such methods as I aim for a light-weight solution that can
be run on generic shoppers’ smartphones.

The limited availability of datasets for long-term localisation benchmarking or research was
stated in work from Burki et al. [26]. I present my own dataset in this chapter, which contains
data from multiple temporal sessions in a retail shop. A ranking function is introduced that
assigns a probability of observing a point, at a timestamp [26]. The ranking function uses the
vehicle’s pose and nearby points’ visibility information. In the context of this study, I establish a
temporal score that indicates the degree of stability of a point and, thus, its probability of being
observed in the future.

My method aims to rank all points in an offline map, with respect to time, and frequency of
visits. I evaluate my method on multiple datasets to prove its efficacy.

4.3 Methodology

Localisation over time is a hard problem due to the challenge of establishing reliable corre-
spondences between an image and a world map. In this section, I introduce a map maintenance
method that accumulates data from incoming sessions and updates an offline map to reflect the
effect of time. In this context, a session refers to a collection of camera frames that are taken at
predetermined time intervals throughout the duration of the user’s AR device usage, starting
from the beginning and concluding at the end. My method assumes that the same dynamic place
is visited multiple times a day. For example, it can be a robot in a warehouse stacking boxes,
a self-driving car or shoppers in a retail shop. My goal is to maintain an offline high-quality
map but augment the points in the map with metadata that reflects changes over time, such
that localisations are most likely to succeed. Given the various scenarios, a session can be the
camera frames, from the journey of an autonomous car from point A to point B, or the up-time
of a warehouse robot and its path in the warehouse. A session can also come from a human
user using an AR device in a retail shop from starting using their phone or headset, looking at a
product or walking around in the shop.

I build upon a standard feature-based pose estimation pose pipeline as described in Chapter 2.

60

The maps used in the pipeline are structure-from-motion point clouds. Each 3D point has a
number of descriptors assigned to it, from the cameras it was observed from. From each session,
a set of new timestamped images arrives which are used to update the offline map, by appending
new descriptors to the existing 3D points’ descriptors and recomputing a score for each 3D
point using exponential decay.

Features are extracted from a query image and matched to the mean descriptors of 3D points.
The matching is done using nearest-neighbours. At this stage, the new descriptors are appended
to the 3D point. It has been shown that saving descriptors over time for the same 3D point can
improve feature matching [178]. Lowe [108] proposed a simple method for filtering keypoint
matches by removing matches when the second-best match is almost as good as the first one.
Lowe’s [108] ratio is applied for outlier filtering before estimating camera poses using PROSAC
[36] or RANSAC [59]. Finally, I refine the pose matrix by refitting it to all inliers. This process
is applied for each image in a session. Then, I update the map by changing the score value for
each 3D point by applying exponential decay. I call this updated map the live map.

The visibility matrix V represents which points (columns) are visible in which image (rows).
It is a N �M matrix where N is the number of images and M the number of 3D points. An
element vi;p in this matrix is 1 if and only if point p is visible in image i, and it is zero otherwise.
This is easily obtainable from SfM software. After every session, points will have a new stability
score defined as �, inferred by applying exponential decay. I aim to show that a point with a
high stability score with fused temporal information is more likely to be observed in future
sessions, compared to a point with a low score. Using these scores, I focus on the subsequent
pose estimation stage, that is improving the matching-filtering stage. I include temporal data
in RANSAC and PROSAC as a score as I explain further in this section. To the best of my
knowledge, this is the first work that integrates the effects of time in a SfM visibility matrix.

For evaluation and comparison purposes, I also prepare a base map, i.e. a map constructed using
data only from a single session without any subsequent updates.

4.3.1 Exponential Decay of Visibility

The key insight in this work is that once a point has been observed in an image, the value of this
visibility information decreases over time, becoming increasingly unreliable as time passes due
to the dynamic nature of the world. I model this decrease over time as an exponential decay:

dN
dt

= ��N (4.1)

By solving Equation (4.1) for N , one ends up with

N(t) = N0e��t, (4.2)

where N(t) denotes the value of the quantity at a specific time t. N0 is the initial value at t = 0.
Lastly, � is the decay constant. By replacing e with 2, Equation (4.2), becomes

N(t) = N02��t. (4.3)

61

This is inspired by nuclear physics, where exponential decay models how radioactive atoms
decay over time, i.e. how they lose energy by emitting ionizing particles. In that scenario, ��1

is called the half-life and measures the time required for a quantity to decay to half its initial
value. The term half-life, was first coined by Ernest Rutherford as half-life period. In this work,
I set N0 = 1, as it is more intuitive, as when a point is viewed from a camera its value is set to 1
in the visibility matrix. For example, for a decay of � = 1, each time step results in decay by
half, i.e. N(0) = 1, N(1) = 0:5, N(2) = 0:25, and so on. I use the exponential decay to define
two scores: Per-Session Stability Score and Per-Image Stability Score. I illustrate the effect of
applying the two scores in Table 4.1.

Per-Session Stability Score Each new session of localised images from SfM is appended
to the bottom of the visibility matrix V as a set of rows, one row for each localised image.
The values of the visibility matrix are then weighted per session, as illustrated in Table 4.1.
Specifically, for session number s 2 [1; S], the weight is N(S � s+ 1), for a decay of � = 1,
which corresponds to a half-life of one session. The last session in the database is defined to
be already decayed, i.e. when s = S, the weight N(1) = 0:5. I sum the weighted visibility for
each point p across all images to obtain the per-session stability score:

�s
p =

IX

i=1

N(S � si + 1) � vi;p, (4.4)

where I is the number of images (number of rows of visibility matrix V), si is the session
number of image i, and vi;p is the visibility of point p in image i.

Per-Image Stability Score The second stability score provides more granularity by weighting
points on a per-image basis, giving more recent observations a higher weight:

�i
p =

IX

i=1

N(I � i+ 1) � vi;p. (4.5)

To achieve a similar speed of decay as the per-session stability score �s
p, I set the decay constant

to � = S=I , such that the half-life ��1 = I=S corresponds to the average number of images
per session. This is why images 1, 3 and 5 in Table 4.1 have the same weight for both stability
scores.

To avoid storing the visibility matrix, leading to increased storage requirements, the scores can
be stored for each 3D point and then updated when a new image is localised in the map. The
points in the images’ field-of-view will have their scores updated. To calculate the per-image
score, the total number of images, I , must be stored, which is always available. To calculate the
per-session score the numbers of images for each session need to be stored.

Toy Example Table 4.1 shows an illustrative toy example with a visibility matrix of four
points and six images. I show two cases where the exponential decay has been applied on a
per-session or per-image basis, which I defined earlier.

62

Table 4.1: Toy example that illustrates two types of stability scores, per session and per image,
applied to an example visibility matrix of 4 points (columns) and 6 images (rows), captured
in 3 sessions (bottom entries are the most recent images). The columns under ‘session’ and
‘image’ illustrate the corresponding weights given to each visibility value in the row. The per-
session stability score (Equation (4.4)) treats all images in a session the same and thus cannot
distinguish between points 2 and 3. The per-image stability score (Equation (4.5)) favors more
recent observations, even in the same session.

Session Image Visibility matrix
weight # weight P1 P2 P3 P4

1 0.125 1 0.125 1 0 0 1
1 0.125 2 0.177 1 0 0 1

2 0.250 3 0.250 0 1 0 0
2 0.250 4 0.354 0 0 1 0

3 0.500 5 0.500 0 0 0 0
3 0.500 6 0.707 1 0 0 0

stability per session – �s
p 0.750 0.250 0.250 0.250

stability per image – �i
p 1.009 0.250 0.354 0.302

For example, point 1 (P1) in Table 4.1 was seen in the most recent image (#6) and session
(#3), and is thus weighted highly. I consider images in the visibility matrix already decayed
because I treat all images in V as past images. Both methods provide coarse and fine accuracy
accordingly. In Table 4.1, point 2 (P2), point 3 (P3) and point 4 (P4) have the same ss value. The
si distribution, i.e. (1:009; 0:250; 0:354; 0:302) though differentiates between the two points,
and assigns a higher value to point 3, than point 4 and point 2 that have been seen before point 3.

To add to the toy example from Table 4.1, I also provide a visual example of the difference
between a base map, a live map and adding time-infused scores to the live map. Figure 4.3
shows a query image’s matches against a base map (left) and a live map (middle). The matches
on the right are just scored based on a 3D point score, i.e. per image, per session, that was
calculated using exponential decay, or the visibility score. Note that the values will be different
for each score. Also, there are more matches established in a live map compared to the base
map, because the live map 3D points’ descriptors are richer in information, i.e. they have more
descriptors assigned. The green lines represent inlier matches and the red outlier matches, i.e.
3D points that will not reproject under an error threshold.

Both stability scores summarise how recently and frequently points have been observed over
time. A high score likely identifies a point that was visible in the last few sessions. Points on
permanent structures, such as shop shelves, furniture or long-term decorations will have the
highest scores. This is because points on stable structures will be seen more frequently and
they thus accumulate more and higher weights in their stability scores. Another point, even if
seen multiple times in the past, might still receive a lower score compared to the former. This
accurately models changes in a dynamic scene such as a retail store or outdoor environment.
Products that are on a shelf and seen by a recent customer will tend to be better candidates

63

Figure 4.3: A visualisation of matches in a base map (left), live map (middle), and showing the
scores of the 3D points on the right. Notice the increased number of matches in the live map
compared to the base map. The green lines are inlier matches and the red are outlier matches.
The blue dot is the camera centre.

for localisation, than products that were not seen either because of occlusion or having been
bought or removed. If products are bought or removed, the stability score of associated points
will continue to decay over time. Once products are restocked or put back, the stability score of
points on the product will increase again. In most retail shops, products tend to be at the same
spot when restocked. Images with scores below a user-defined threshold could be culled to save
memory and computational resources.

4.3.2 Pipeline Used For Experiments

In this sub-section, I present the long-term localisation pipeline used for the experiments that
generated the results in Section 4.4, in more detail. The first stage is to create a base map from
the initial session. For this, I use COLMAP [164] with default settings and extract up to 2000
features for reconstruction. For reconstruction, I set the features to 2000 because the end result
is higher quality point clouds, than using a lower number of extracted features. The high quality

64

point cloud will be used as a map for future sessions to be localised in. For incoming new query
images, I extract 800 SIFT features and use brute-force matching between the descriptors of
the 2D keypoints and the mean descriptor for each 3D point in the map. I use 800 features to
match modern SLAM frameworks, such as ORB-SLAM2 [123], which use numbers of around
1,000. Every time a new image is added to the map, I append the newly extracted descriptors
to the corresponding 3D points’ list of descriptors to update the mean descriptors of each 3D
point. I fetch the two nearest neighbours for a query descriptor, and I pick the one with the lower
Euclidean distance from the query descriptor. I use a value of 0.9 for Lowe’s ratio test [108],
similar to Toft et al. [191], to avoid rejecting correct matches.

As a baseline, I run RANSAC [59], and PROSAC [36] on the base map. For the live map, I
additionally use weighted variations of RANSAC (“with scores �s”, “�i” and “v1”) similar to
Toft et al. [191]. These variations do not pick random matches uniformly, but according to a
predefined probability density, which I obtain by normalising the scores of all identified matches.
For example, if there are 50 matches between a query image’s descriptors and the corresponding
3D points in the live map, then 50 �s scores will be normalised and used as a distribution to
sample from. This way, I promote that more stable points are selected preferentially. I use a
maximum of 3,000 iterations for both RANSAC versions.

To optimally utilise the new stability scores, I use PROSAC [36], which stands for progressive
sample consensus. Unlike RANSAC, which treats all matches the same by drawing random
samples uniformly, PROSAC adds a notion of quality or priority to matches. When using
PROSAC, matches must be sorted in descending order based on some score, the higher the
score, the better the match. By default, PROSAC uses the inverse of Lowe’s ratio [36]. In
Section 4.4, I evaluate and compare a variety of PROSAC versions using different combinations
of the stability scores and Lowe’s ratio. For both RANSAC and PROSAC, I use an inlier
threshold of 5 pixels for the reprojection error, and a maximum number of iterations of 3,000,
like Sattler et al. [160]. Once I have the correspondences from RANSAC or PROSAC, I estimate
the camera pose using EPnP [98] based on all inlier matches. More details regarding the baseline
and comparison methods in Section 4.4.2.

4.4 Experiments and Evaluation

In this section, I evaluate and compare my proposed approach to baseline methods on two
datasets. Next, I introduce these datasets and baselines, and the tool developed to capture the
retail shop data. I define the baselines I compare to, and the metrics I use for evaluation and
comparison. Lastly, I present and discuss the results.

4.4.1 Datasets

Most long-term localisation datasets, such as CMU Extended Seasons [160] and RobotCar
Oxford [116], are focused on outdoor environments, which mostly exhibit cyclical changes,
such as day/night, seasonal and weather changes. At the time of developing this work, I decided
to use the CMU Extended Seasons as the data format was more convenient to extract and use

65

compared to other datasets. The CMU dataset is provided in sub-datasets (slices) that make it
easier to work with, due to smaller size. In addition, the vast size of data of other datasets made
it challenging to work with and impossible with my current hardware. Indoor scenes, especially
retail shops, arguably exhibit less cyclical and more random changes, mostly caused by human
interactions, such as moving objects around. Current outdoor datasets for long-term localisation
are therefore not ideal for evaluating methods proposed in this thesis that are targeted for indoor
localisation. It is worth noting that at the time of writing this work a new indoor long-term
camera localisation dataset that contains changes over time was released. RIO10 [202] is a
dataset that captures everyday indoor environments such as messy laundry basements, offices or
bathrooms. Even if this is an indoor dataset is still not tailored to the needs of this project as I
focus on retail environments. Since there are no available datasets for long-term localisation in
retail shops, I created a new dataset for this specific purpose. I call it the Retail shop dataset.
In addition to the CMU dataset and the retail shop dataset, I also used the LaMAR dataset
[156]. The LaMAR dataset contains a mixture of ourdoor and indoor scenes. Similar to the
other datasets, it comprises various traversals of the same area over time. Sarlin et al. [156]
published LaMAR primarily for augmented reality benchmarks, which makes it more relevant
to our application.

Extended CMU Seasons [12, 160] This dataset contains 100,000 images taken over a period
of 12 months in Pittsburgh, PA, USA. Images were captured with a stereo rig mounted on an
SUV. The two cameras were placed on the front left and front right of the SUV’s roof, at 45
degrees. I only used the left camera view for my benchmarks to simulate a standard monocular
session. The dataset contains 24 slices, each representing a traversal of a specific sub-area of the
complete route. I use all slices for benchmarking. These slices represent urban and suburban
scenes, with various differences in their scenes, as seen in Figure 4.4, Figure 4.5, and Figure 4.6.
The figures show that each CMU slice is different compared to the others. For example, CMU
slice 25 contains no vegetation compared to CMU slice 5.

Figure 4.4: Sample images from CMU slice 2. This slice contains cars, houses, and some
vegetation.

In Figure 4.7, I list one random viewpoint and all its session images from CMU slice 11. This
shows how sessions are different. For example in, Figure 4.7, there is a car in the second picture
from the top left but in the other images, there is no car.

Each slice contains images taken at different times, months apart, in 12 different conditions.
These conditions are my sessions and are listed in Table 4.2 [160]. I reconstruct the base map

66

Figure 4.5: Sample images from CMU slice 5. This slice’s images depict some moving cars,
less building and more vegetation compared to CMU slice 2.

Figure 4.6: Sample images from CMU slice 25. The sky takes up a large portion of the frames’
area. There are no houses no vegetation, and many frames show a highway.

Figure 4.7: Sample images from CMU slice 11. The images show (in reading order, starting
from the top left) the same area from the same point of view for all the live maps sessions.
Notice the leaves in the fourth image, only appear in one frame.

from the ‘sunny/no foliage’ condition, similar to Sattler et al. [160], and all poses are in metric
space. This base map is visualised in Figure 4.8.

I set aside one session to use as a query session. I use the remaining sessions as additional
sessions to create the live map on top of the base map. To create the base map and obtain
ground-truth poses for the query session images, I use COLMAP [164]. I obtain the query
images’ ground-truth poses by localising them with COLMAP in the live map after localising
all other remaining sessions, but do not keep the poses in that map. In a real-life scenario, the
data will be continuously and perpetually added as it is received. For now, I only have a fixed

67

Table 4.2: All the 12 Extended CMU Seasons conditions are listed below. Even though some
have the same condition, they were captured at different timestamps. The Sunny + No Foliage is
used for creating the base map, and the following condition are used as sessions to localise in
the base map. One condition is kept as a query session. For example, slice 10 has query session
2, slice 4 has query session 9. The query sessions were chosen at random.

Condition Capture Date

Sunny + No Foliage (Reference) 4 Apr 2011
Sunny + Foliage 1 Sep 2010
Sunny + Foliage 15 Sep 2010
Cloudy + Foliage 1 Oct 2010
Sunny + Foliage 19 Oct 2010
Overcast + Mixed Foliage 28 Oct 2010
Low Sun + Mixed Foliage 3 Nov 2010
Low Sun + Mixed Foliage 12 Nov 2010
Cloudy + Mixed Foliage 22 Nov 2010
Low Sun + No Foliage + Snow 21 Dec 2010
Low Sun + Foliage 4 Mar 2011
Overcast + Foliage 28 Jul 2011

Figure 4.8: The base map for the CMU dataset is constructed using only the left camera images
in the ‘sunny/no foliage’ condition. The starting point is shown in the bottom right.

number of sessions in a particular dataset.

Not all query images localise, as expected. For those that do localise, I save their pose as ground
truth for later evaluation. To validate that the query images localised accurately, I visually
inspected the latest live map’s 3D points projected on each query image, using COLMAP
camera poses and intrinsics, and found the results were satisfactory as points were projected
correctly on the images.

68

Retail Shop Dataset Since there are no available datasets for long-term localisation in retail
shops, I created my own. I collected the dataset over the span of 5 days, in which I visited a
local shop twice a day, once at opening time in the morning and once later in the evening before
closing time (see previous example in Figure 4.2).

This allowed for sufficient time in between for customers to interact with the scene by picking
up products, and for the shop to be restocked twice a day. Each session contains about 450
RGB images of 640�480 resolution obtained from ARCore [66], and covered both sides of a
small shopping aisle. ARCore also saves camera poses along with the RGB frames in world
coordinates and a metric space.

I used ARCore as a foundation for a larger augmented reality application. I chose a low image
resolution to reduce network bandwidth and transfer time when sending images to a server.

I use images from the first day to construct the base map. For the live map, I use the session
images taken subsequently and hold out one session for querying, similarly for the CMU
Extended Seasons dataset. Considering that most sessions in the retail shop were captured close
in time, most images were localised successfully.

Figure 4.9: Sample images from the retail shop. All products are likely to move or be removed
by the end of the day, i.e. in a span of only 8 hours. This shows how dynamic a retail shop is as
an environment.

Figure 4.10: Sample images from the last session (query) of the retail shop dataset. Most
products have been bought and removed from the shelves.

In Figure 4.9, I show a set of images from the retail shop, specifically images used to build the
base point cloud. All products move places or are completely removed from the shop by the end

69

Figure 4.11: Sample images from the HGE subset of the LaMAR dataset. The figure shows
various images taken in an outdoor campus, humans (dynamic objects), and indoor rooms and
hallways with repetitive structures.

of the day. Products can be picked up and put back in another place. Figure 4.10, shows frames
from the last session. Most products have moved away from the shop.

LaMAR Dataset The LaMAR [156] dataset, is a large-scale recent dataset captured using an
iPhone and a Microsoft Hololens in various environments. Three environments were scanned: a
historical building, a multi-story office building, and part of a city centre. The dataset contains
both indoor and outdoor images with illumination / semantic changes and dynamic objects,
such as humans and cars. The first version of the dataset features three major areas that reflect
typical applications of AR: 1) HGE, which is a 18,000 square meters area on the first floor of
a historic university building, including multiple large halls and open spaces on both sides. 2)
CAB, which is a 12,000 square meters multi-story office building including various small and
large offices, a kitchen, storage rooms, and two courtyards. 3) LIN, which encompasses 15,000
square meters of a few blocks in an old town, including shops, restaurants, and narrow alleys. I
use all the slices from LaMAR, i.e. the complete dataset; HGE, CAB and LIN.

Unlike the retail shop and CMU datasets, the LaMAR dataset includes multi-sensor data streams,
Bluetooth sampling data, IMU, and depth data. I chose this dataset because of its structure:
the novel method in this chapter relies on continuous and repeated traversals of the same areas
in short period of times. The traversals total more than 100 hours using the HoloLens 2 and
hand-held iPhone and iPad devices, covering 45,000 square meters over a year. The dataset
is divided into separate sessions. The map session is the equivalent of our base model, and it
contains poses in metric space. The rest sessions are the traversals over time of the same area,
and are used to build the live map similarly to the CMU and retail shop datasets. I preserve one
session as the query session that I use to test my methods on, just like in the CMU and the retail

70

shop dataset.

In Figure 4.11, I show images from the LaMAR dataset subset called HGE, which consists
of a collection of images captured in various environments, including outdoor campus scenes,
indoor rooms and hallways, and locations that feature humans as dynamic objects. The images
displayed in this sample represent a diverse range of settings, including outdoor spaces with
natural elements such as trees and buildings, as well as indoor spaces that have a more repetitive
structure, such as hallways and rooms. These images provide a glimpse into the range of
environments and subjects captured in the HGE subset of the LaMAR dataset.

It is worth noting that LaMAR does not have the same session route consistency as the CMU or
the Retail shop, i.e. the subsequent sessions might start at and offset compared to the previous
sessions. For example, a future session in LaMAR might start 1–2 meters away from the same
spot where the previous session started.

4.4.2 Baselines and Comparisons

I quantitatively compare several versions of my proposed method to vanilla RANSAC [59]
and vanilla PROSAC [36], on both the base and live map. PROSAC uses the inverse Lowe’s
distance ratio of d2=d1, where d1 is the distance of the closest 3D point’s descriptor, and d2 the
distance of the second-closest match. I also compare to my modified RANSAC version, using
the per-session stability score �s (“with �s”) and per-image stability score �i (“with �i”) against
the same version of RANSAC using vp =

PI
i=1 vi;p, which is simply the sum of each column

in the visibility matrix (“with v1”). This equates to the number of cameras a point was viewed
from, which is one scoring function proposed by Dymczyk et al. [50]. In both cases, I normalise
the scores across all matches to construct a probability distribution to sample from. This enables
us to preferentially sample stable matches during the inner RANSAC loop.

Finally, I estimate two poses for each query image, one in the base map and one in the live map,
using a brute force nearest-neighbour feature matcher. I compare both poses to the ground-truth
poses obtained from COLMAP as described in Section 4.4.1 and measure the error between
them.

In this paragraph, I elaborate on the scoring system used in RANSAC, including its variations
as well as PROSAC scores. A 3D point from a live map is associated with two scores, �s and
�i - only available to a live map. From the feature matching stage, an image’s query feature
will be associated with the two nearest neighbours, i.e. 3D points. Each 3D point from the live
map has scores �s and �i and a vi (the latter can also be found in a base map). An image’s
query feature after matching will be associated with 6 scores, used in evaluation. Two for its
nearest neighbour (�s

1, �i
1) and two for its second nearest neighbour (�s

2, �i
2). Finally, two v1

and v2 for each neighbour. In Figure 4.12, I visualise the difference between the stability score
�i and the simple score of v. Darker points indicate more dynamic points, thus will have a lower
probability of being used in pose estimation, which is the case using score �i. On the contrary,
using the score v, products (dynamic objects) have a higher value, lighter colour, which is
undesirable. In the tables listed in Appendix A, for example Table A.1, I show the scores I used
for PROSAC’s scoring list and my RANSAC’s distribution.

71

Figure 4.12: To illustrate the difference between the proposed time-infused score and the plain
visibility score (i.e. the number of cameras a point was viewed from), I selected a random
picture from the live map and project the visible 3D map points onto it. Each image feature
point here is associated with a stability score �i (left image) and a visibility score v1 (right
image). The higher the value, the more stable the point is. Most of the products’ points from the
left cropped-image are darker from the ones in the right. This confirms my hypothesis, that 3D
points from products (i.e. dynamic objects) are less likely to be used for pose estimation using
my score �i.

The rationale behind the inverse of Lowe’s ratio is that the higher the ratio d2=d1, the more
informative the match is [36]. Using the same logic, I assume a match is more informative when
the ratio between the stability score per image values is higher, �i

1/�i
2. Similarly for the stability

score per session, �s
1/�s

2. A high value for �s
1 means that this is a more static point compared to

a low value of �s
2, the value of the second nearest neighbour. Similarly for �i

1;2. There needs to
be enough difference between the best and second-best matches [108]. A higher value of the
inverse Lowe’s ratio, d2=d1 and �s

1/�s
2 or �i

1/�i
2 indicate a more discriminative and stable point

respectively.

In the RANSAC versions for the live map, I used, �i
1, �s

1 and v1. For each set of matches, I
normalised the values and use them to sample potential inliers, similarly to Toft et al. [191],
instead of uniformly drawing samples as in vanilla RANSAC.

4.4.3 Metrics

In this subsection, I explain the metrics I use to measure and compare the performance and
accuracy of methods in Table 4.4, Table 4.5, Table 4.6 and in Appendix A tables. All reported
metrics are averaged over 5 independent runs. I measure performance using the performance of

72

inliers (higher better), outliers (lower the better), RANSAC and PROSAC iterations and run
time. Generally, the higher the number of inliers and the lower the number of outliers, the more
robust the estimated camera pose is. A higher percentage of inliers also tends to decrease the
maximum number of iterations used by the RANSAC and PROSAC model fitting, and thus
decreases the total run time. Run times are measured on a computer with a quad-core 4 GHz
CPU and 16 GB RAM. All methods are implemented in Python. Lastly, I evaluate the camera
pose quality of each method using the mean rotation and translation error and Mean Average
Accuracy (mAA). Below, I explain the camera pose metrics in detail.

Mean Rotation and Translation Errors There is no straightforward procedure to combine
translation and rotation errors in a single combined metric. I measure the accuracy of poses
similar to Sattler et al. [160]. The position error is computed as the Euclidean distance between
the estimated and ground-truth camera centres,

Cest � Cgt

2. Since the poses are in metric
space, a distance of one means one meter, similar for other values. The absolute orientation
error is calculated from the estimated rotation matrix Rest and the ground-truth rotation matrix
Rgt exactly as in Sattler et al. [160] and based on standard practice [75]. The rotation error
is calculated using 2 cos(j�j) = trace(R�1

gt Rest) � 1, which measures the minimum rotation
angle that is required to align both rotations. R�1

gt Rest is the difference rotation matrix that
represents the difference rotation. The absolute value sign in j�j is required to account for
the sign ambiguity in cos(�). The positive sign is chosen so that the angle � lies in the range
0 � � � �, as required [75]. According to Hartley et al. [75], given rotations R and S, the
product RS�1 is also a rotation, about some axis by an angle � in the range 0 � � � �. Hartley
et al. [75] provide more insight into the measurement of angular distance between two matrices
in SO(3).

Mean Average Accuracy (mAA) The mean errors can be misleading in cases where the
results returned deviate in a significant degree. For example, a method can fail with high
error numbers 49% of the time and simultaneously performs well 51% of the time with low
error numbers; then the mean errors can give a false impression of perfectness. The research
community now focuses on threshold-based metrics proposed in work from Jin et al. [82].

For each dataset, I use ten specific thresholds as suggested by Jin et al. [82]. It would not be
reasonable to use the same thresholds for outdoor dataset such as the CMU dataset that span
hundreds of meters and the retail shop indoor dataset that span less than ten meters. For the
CMU dataset, I use rotation values from one to ten degrees and for translation, I used ten values
from 0.2 to 5 meters. I choose a maximum of 10 degrees for the rotation component based on
the same argument from Jin et al. [82], i.e. a pose with 30 degrees of error and a pose with 180
degrees of error are both still bad poses. The mAA metric is calculated using the camera pose
errors, i.e. the Euclidean distance and the angle between two quaternions. The rotation error for
mAA is calculated using the angle between the quaternions p; q [82, 211]. The angle is defined
as � = arccos(1�2(p1q1+p2q2+p3q3+p4q4)2), where cos(�=2) = p1q1+p2q2+p3q3+p4q4.
The derivation used the identity, cos2(�) + sin2(�) = 1. The thresholds I used for each dataset
are seen in Table 4.3. The camera pose errors are thresholded over ten values both for rotation
and translation. A pose is added (or accepted) only if its rotation and translation error parts are

73

Table 4.3: The 10 thresholds used for each dataset CMU, Retail shop and LaMAR (Note that
centimetres used for the Retail Shop).

CMU

Rotation [°] 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Translation [m] 0.20 0.29 0.41 0.58 0.84 1.20 1.71 2.45 3.5 5.5

Retail Shop

Rotation [°] 0.5 0.67 0.83 1.0 1.2 1.3 1.5 1.7 1.8 2.0
Translation [cm] 1.0 1.4 1.9 2.3 2.8 3.2 3.7 4.1 4.6 5.0

LaMAR Dataset

Rotation [°] 1.0 1.4 1.8 2.3 2.8 3.2 3.7 4.1 4.6 5.0
Translation [m] 0.10 0.14 0.19 0.23 0.28 0.32 0.37 0.41 0.46 0.50

within a threshold out of the ten thresholds. A simple example is: an estimated camera pose
with rotation error of 2.0 degrees and translation error of 0.26 meters will belong to the second
threshold values for both the rotation and translation (for CMU). Any poses outside of the ten
thresholds are discarded. Once this process is repeated for all poses, the number of poses that
fall into the thresholds is returned as a percentage value (the higher the better). Jin et al. [82]
illustrated this process as computing the area under the curve that the thresholds render. Since
this value is 0–1, and counts the number of camera poses that fall into the ten thresholds I report
a percentage, so it is easier to interpret. I consider the Mean Average Accuracy (mAA) as the
most informative metric and I use it to score the methods proposed [82, 211].

The thresholds, for the CMU dataset are based on work from Jin et al. [82]. For the Retail
shop, I used thresholds of minimum 0.5 degrees and maximum two degrees for rotation, and
minimum 1cm and maximum 5cm for translation. For both datasets, the rotation is linear and
the translation is calculated from a geometric series, similar to Jin et al. [82]. The reason I chose
strict thresholds for the retail shop dataset is because the requirements are different and the space
is of smaller scale, than an outdoor scenario as in the CMU dataset. For example, the CMU
dataset can be used to simulate autonomous driving scenarios. In a retail shop, which product
the user is looking at matters, and products can be a few centimetres apart. The LaMAR dataset
was collected in a university campus. An application of augmented reality could be visualising
a banner on a building facade or displaying navigation directions, both cases allow me to relax
thresholds more compared to the retail shop as less accuracy is needed. The thresholds I chose
for LaMAR are linear for both rotation and translation, and fall between the values of CMU and
the Retail shop, as the LaMAR dataset contains a mixture of indoor and outdoor environments.

4.4.4 Results

In this subsection, I present and discuss the results of my map maintenance method compared
to a vanilla approach that does not use a live map, but a base map. I further analytically discuss
the results. In addition to comparing only the base map and the live map, I also pick the top

74

Table 4.4: Total matches, inliers and outliers for the CMU dataset slices. The two leftmost
columns show the increase in matches compared to using a base map to a live map. RANSAC
base map, RANSAC live map, and the best-performing methods based on a reliability score
are compared. For each of the three methods, I list the inlier percentage and the mean Average
Accuracy (mAA). Using a time-related score shows a consistent increase in performance
compared to a live map. For CMU slice 24, there is a 9% increase in mAA, and 15% for slice
15; both significant.

Slice # Map Matches RANSAC Base RANSAC Live Top Scored Method
Base Live In.(%) mAA(%) In.(%) mAA(%) In.(%) mAA(%)

2 26,536 30,901 40 87.09 49 89.66 49 90.67
3 50,179 54,418 32 78.07 37 85.30 37 85.69
4 32,176 36,699 43 82.10 49 92.20 49 93.15
5 6,842 7,605 14 60.44 21 76.00 21 78.22
6 31,652 34,560 19 65.11 27 87.01 25 91.06
7 28,594 31,865 21 86.86 28 95.95 26 96.49
8 24,414 28,348 22 77.50 32 89.44 32 89.65
9 10,700 10,940 18 66.03 18 70.37 18 77.97

10 16,524 17,296 19 78.00 21 82.56 20 86.86
11 7,971 8,712 9 37.21 17 70.90 16 74.93
12 12,043 12,384 26 83.66 28 88.31 28 88.34
13 8,988 9,918 13 38.63 22 72.86 19 78.51
14 10,954 11,617 13 61.19 17 74.03 17 82.56
15 7,626 8,135 15 55.93 22 72.22 21 80.33
16 24,525 26,619 11 38.04 19 68.70 19 79.54
17 11,421 12,390 19 73.50 23 84.31 24 86.03
18 2,919 3,561 15 61.33 28 87.05 28 88.00
19 5,847 7,068 10 40.89 26 82.11 26 83.04
20 15,014 15,836 24 72.39 26 78.45 27 79.36
21 26,609 30,595 36 80.10 44 81.68 44 82.08
22 23,535 25,677 39 77.31 42 78.76 42 79.60
23 4,340 4,761 19 52.72 25 59.06 25 62.78
24 6,218 6,723 16 63.91 21 77.13 22 86.35
25 28,306 29,822 22 74.56 25 80.03 26 86.50

75

Table 4.5: I report the total matches, inliers and outliers for the retail shop. The two leftmost
columns show the increase in matches compared to using a live map. RANSAC base map,
RANSAC live map, and the best-performing method based on a reliability score are compared.
For each of the three methods, I list the inliers percentage, and the mean Average Accuracy
(mAA). Using a time-infused score shows an increase in performance compared to a live map.
The version of RANSAC with �i, per image score, returns the highest mAA, 72.78%, followed
by the RANSAC version that uses �s, per session score, with an mAA of 72.50%, only a 0.28%
difference. All methods’ results are listed in Table A.25.

Slice # Map Matches RANSAC Base RANSAC Live Top Scored Method
Base Live In.(%) mAA(%) In.(%) mAA(%) In.(%) mAA(%)

1 6,7092 7,4497 40 65.96 45 71.95 45 72.78

Table 4.6: I report the total matches, inliers and outliers for the LaMAR dataset. The two leftmost
columns show the increase in matches compared to using a live map. RANSAC base map,
RANSAC live map, and the best-performing method based on a reliability score are compared.
For each of the three methods, I list the inliers percentage, and the mean Average Accuracy
(mAA). Using a time-related score shows an increase in performance compared to a live map.
For the CAB slice there is an increase of 20% in mAA and the CAB top-scoring method is
PROSAC with (�i

1=�i
2).

Slice # Map Matches RANSAC Base RANSAC Live Top Scored Method
Base Live In.(%) mAA(%) In.(%) mAA(%) In.(%) mAA(%)

HGE 147,264 147,694 23 61.34 23 64.00 21 74.24
CAB 39,054 39,748 9 39.20 10 42.48 12 62.78
LIN 121,372 122,631 28 76.89 28 78.74 26 84.09

76

performing methods for across the CMU slices, LaMAR, and Retail separately (sorted by mean
Average Accuracy, mAA). For CMU, the best performing method is the RANSAC with �i, per
image score, for 5 CMU slices, with an average mAA of 85%. To provide more details about the
other slices: The second best performing CMU method is the RANSAC with the v1 visibility
score, for 5 CMU slices, but with a lower average mAA of 80%. The third best performing
CMU method is the PROSAC with the (�s

1=�s
2) score, for 4 CMU slices, with an average mAA

of 88%. For the Retail shop, the best performing method is the RANSAC with �i (same as the
CMU) and returns the highest mAA, 72.78%, followed by the RANSAC version that uses �s, per
session score, with an mAA of 72.50%, only a 0.28% difference. For LaMAR-HGE/CAB/LIN,
the best performing methods are PROSAC with (�s

1=�s
2), PROSAC with (�i

1=�i
2) and PROSAC

with (�s
1=�s

2) respectively. Overall, all the best performing methods for LaMAR were PROSAC-
based. I believe this is happening because the maximum iteration number for PROSAC and
RANSAC are the same across all datasets, i.e. 3000 [160]. The LaMAR dataset and its slices,
introduce a significant increase of images and 3D points compared to CMU and the Retail shop.
PROSAC tends to converge faster as it is using a progressive approach, whereas RANSAC and
the modified versions do not. With LaMAR’s data, RANSAC reaches the maximum iterations
and returns the pose estimate at that point, without having more iterations to refine that pose.
Future work entails also to examine the performance of RANSAC when the maximum iterations
are raised to a higher limit. All the methods benchmarked on all the datasets are listed in
Appendix A, sorted by mAA.

Table 4.4 shows the number of total final matches for all CMU query images, the inliers
percentage and mAA. Table 4.5 and Table 4.6 list the same metrics but for the Retail Shop and
the three LaMAR slices respectively. The total number of matches consists of the inliers and
outliers for each image. The matches are counted after RANSAC and PROSAC. All metrics in
Table 4.4, were averaged over five runs. I compare the vanilla RANSAC on the base and live
map with the best performing method based on a score, the right most column in the tables. At
each method’s run, the total number of inliers and outliers is summed and averaged over the
number of images. The process repeats for all metrics. Then the results are saved in a .csv file
for each method from each run, i.e. five runs equals to five .csv files one for each run. At this
point, all the results are averaged over the runs (.csv files).

On the left of Table 4.4, Table 4.5 and Table 4.6, the base map and live map matches are listed.
The live map consistently outperforms the base map, in terms of total matches in all datasets.
The increase in matches is also an increase in inliers, e.g. for CMU slice #5, the base map
returns 6,842 matches and the live map 7,605. For the base map, 14% of the 6,842 matches are
inliers. For the live map, 21% of 7,605 are inliers. Even when the percentages are the same as in
the LaMAR-HGE slice, in Table 4.6, (23% in both the base and live map) the live map’s inliers
are still higher in number compared to the base map.

All datasets in tables Table 4.5, Table 4.6, and Table 4.4 have a higher mAA when using a live
map compared to a base map. Introducing a stability score increases overall performance further
compared to only using a live map.

Tables in Appendix A, report additional metrics such as iterations, run-time in milliseconds, as
well as translation and rotation errors of all the query images for all slices of the CMU dataset,
the retail shop dataset, and the LaMAR slices. The results show that the live map consistently

77

Table 4.7: CMU Slice #21 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average accuracy (mAA)
for all methods. The best performing method is highlighted in bold (by mAA). The values were
obtained by averaging all the metrics over all the query images in the slice, and then averaging
over 5 benchmark runs.

Total M. Inl.(%) Outl.(%) Iters Time (ms) Er.[m] Er.[°] mAA(%)

Slice #21
Base Map
RANSAC [59] 26,609 36 64 859 168.98 2.10 1.89 80.10
PROSAC [36] (d2=d1) 26,609 32 68 9 2.04 1.25 0.83 69.10

Live Map
RANSAC with �i

1 30,595 44 56 407 81.33 0.65 0.82 82.08
RANSAC with v1 30,595 44 56 410 82.00 0.65 0.86 81.86
RANSAC with �s

1 30,595 44 56 411 82.12 0.62 0.94 81.82
RANSAC [59] 30,595 44 56 410 82.05 0.61 0.89 81.68
PROSAC [36] (d2=d1) 30,595 37 63 5 1.59 1.44 1.12 61.24
PROSAC with (�i

1=�i
2) 30,595 34 66 115 18.79 2.10 1.54 50.28

PROSAC with (�s
1=�s

2) 30,595 34 66 107 17.66 2.26 1.44 50.01
PROSAC with �s

1 30,595 30 70 166 27.07 3.35 2.28 44.30
PROSAC with v1 30,595 28 72 184 30.73 3.18 1.64 42.99
PROSAC with �i

1 30,595 27 73 201 32.50 3.78 2.37 41.68

increases the number of inliers compared to the base map, for all RANSAC and PROSAC
versions. The live map also consistently reduces run time and pose errors compared to using the
base map. The reduction in runtime occurs from the increase in inliers. The more inliers, the
faster RANSAC and PROSAC convergence [73]. I suggest that versions of PROSAC are a good
alternative to RANSAC on the live map if speed is a priority and not accuracy. All PROSAC
versions were faster than RANSAC, with the vanilla live map PROSAC being the fastest.

In Table 4.7, I show an example of a table from Appendix A, for CMU slice #21. In Table 4.7
the best performing methods in terms of higher mAA is in bold, RANSAC with �i

1, per image
score. The live map as expected returns more matches, and better results in translation and
rotation. The appendix tables for CMU, can be found starting from Table A.1, for the retails
shop in Table A.1, and lastly for LaMAR starting from Table A.26. All rows are sorted by name
so they can be compared easily while turning Appendix A’s pages.

To examine further how a live map increases localisation performance, we borrow an idea from
Yu et al. [212], where the authors define the set of 3D points viewed from an image as S0::i,
where i is the number of images. Ground truth 3D point data is available for the query images.
This means I know which 3D points, S, are in the field of view of each query image. Given the
latter, I can compare how many of these 3D points are matched using a base map and using a
live map. For example, let’s assume for query image #23 there are 400 known 3D points (from
the ground truth data) in its field of view, i.e. S23. The same query image is matched in a base

78

Table 4.8: CMU Dataset: The table reports the average matches of all the query images in a
base map and a live map. The two sets of matches are compared in the two left most columns.
There is a clear increase in matches in all the CMU slices using a live map. The mean number
of matched base and live 3D points are counted and compared to the ground truth data, i.e.
the number of 3D points a query image contains in its field of view. The live map consistently
outperforms the base map by matching more query image keypoints to 3D map points than the
base map.

Base M. Matches Live M. Matches Base M. 3D points Live M. 3D points

#2 228 266 (+38) 48% 65% (+17%)
#3 190 206 (+16) 44% 56% (+12%)
#4 228 260 (+32) 47% 65% (+18%)
#5 152 169 (+17) 49% 73% (+24%)
#6 147 160 (+13) 36% 53% (+17%)
#7 162 181 (+19) 39% 57% (+18%)
#8 152 177 (+25) 37% 60% (+23%)
#9 164 168 (+4) 59% 63% (+4%)

#10 138 145 (+7) 49% 57% (+8%)
#11 137 150 (+13) 36% 58% (+22%)
#12 156 160 (+4) 51% 54% (+3%)
#13 142 157 (+15) 33% 56% (+23%)
#14 152 161 (+9) 46% 60% (+14%)
#15 141 150 (+9) 39% 57% (+18%)
#16 153 166 (+13) 27% 48% (+21%)
#17 178 193 (+15) 44% 58% (+14%)
#18 139 169 (+30) 29% 70% (+41%)
#19 108 130 (+22) 31% 72% (+41%)
#20 134 141 (+7) 60% 70% (+10%)
#21 171 197 (+26) 38% 56% (+18%)
#22 213 233 (+20) 60% 73% (+13%)
#23 120 132 (+12) 46% 66% (+20%)
#24 135 146 (+11) 50% 66% (+16%)
#25 176 186 (+10) 49% 58% (+9%)

79

Table 4.9: Retail Shop Dataset: The table reports the average matches of all the query images
in a base map and a live map. Then, the two sets of matches are compared in the two leftmost
columns. There is a clear increase in matches using a live map. The average number of matched
base and live 3D points are counted and compared to the ground truth data, i.e. the number of
3D points a query image contains in its field of view. Again the live map outperforms the base
map by matching more query image keypoints to 3D map points than the base map.

Base M. Matches Live M. Matches Base M. 3D points Live M. 3D points

209 232 (+23) 51% 67% (+16%)

Table 4.10: LaMAR Dataset: The table reports the average matches of all the query images in
a base map and a live map. Then the two sets of matches are compared in the two left most
columns. There is a clear increase in matches in all the LaMAR slices using a live map. The
average number of matched base and live 3D points are counted and compared to the ground
truth data, i.e. the number of 3D points a query image contains in its field of view. Again the
live map outperforms the base map by matching more query image keypoints to 3D map points
than the base map.

Slice Base M. Matches Live M. Matches Base M. 3D points Live M. 3D points

HGE 382 383 (+1) 49% 51% (+2%)
CAB 246 250 (+4) 44% 50% (+6%)
LIN 271 274 (+3) 45% 49% (+4%)

map and a live map that contains the same number of 3D points. In the base map, 100 3D points
out of 400 are matched. In the live map, 200 3D points out of 400 are matched. From the simple
example, I can derive that more 3D points of image #23 are matched, hence more possible
inliers are passed to the pose estimation pipeline, increasing performance. A reminder here, is
that a live map and a base map have the exact same number of 3D points, while a live map has
more descriptors over time attached to its 3D points.

In Table 4.8, Table 4.9, and Table 4.10, I show the increase in matched 3D points that come
with using a live map. The first column is simply the number of the slice. The two columns on
the left, show the average matches per image for each dataset (or slice). The two columns on
the right, show the average percentage of the query images’ 3D points that are matched, from
the base map and live map, respectively. From the tables, there is a clear increase in number
of matches and number of a query image’s 3D points that are matched. This proves that if a
3D point’s descriptors are appended with descriptors of the same 3D point’s image keypoint
viewed at separate timestamps, it increases its chances of being matched again to an image from
a different timestamp.

Figure 4.13 and Figure 4.14 show that the live map keeps improving over time as more and
more sessions of images are added. As shown in Figure 4.14, there is a consistent increase in
the number of inlier matches during both RANSAC and a PROSAC version. At the same time,
Figure 4.13 shows that both the run time and the translation and rotation errors are steadily

80

Figure 4.13: Decrease in run time, translation and rotation errors as more sessions are added to
the live map of the retail store dataset. On the left, I show vanilla RANSAC [59], and on the
right, I show a PROSAC version. The values in the y-axis are different because of different
methods.

Figure 4.14: Number of inliers as 7 sessions are added over time for the retail shop live map,
for vanilla RANSAC (red) and a PROSAC version. In both cases, there is a steady increase of
inliers as more sessions are added to the live map, indicating more robust long-term localisation.

81

reduced as additional sessions are integrated into the live map of the retail shop dataset. These
results demonstrate that including information about time for a 3D point leads to improved long-
term localisation results compared to relying only on appearance information, as represented by
SIFT features.

4.5 Conclusion

4.5.1 Summary

In this chapter, I propose a new method that exploits the value of time in structure-from-motion
data to enable more robust long-term localisation in dynamic environments. I show that by
applying exponential decay on a visibility matrix extracted by structure-from-motion, SfM, I
can score the stability of all 3D points over time on a per–session or even per–image basis. A
note that I do not remove dynamic points, nor add new points. Adding new points is a process
that requires an expensive operation, i.e. triangulation, hence lowering map maintenance costs.
My method associates only a score with each point that represents its confidence over time. The
score value decreases if the point is not seen in subsequent map visits. The results demonstrate
that live maps continuously improve over time as new data is integrated.

Collecting data over a year so all the seasonal cyclic changes are captured could be a possible
“bootstrap” stage before deploying an ExMap [146]. The findings also confirm earlier statements
by Mühlfellner et al. [121] and Stylianou et al. [178] that merging data from multiple sessions
and keeping SIFT data over time helps improve long-term localisation. This provides an
improvement over static maps, which are not updated over time and thus quickly become
outdated, leading to an increased failure rate of localisation.

The experiments carried out have shown that along with appearance information such as SIFT
descriptors when my time-related scores are combined, I can improve the number of inliers
returned by PROSAC/RANSAC and increase the pose accuracy, without increasing the number
of points in a map. Over time, I only keep the descriptors of previous localised images for each
existing 3D point, thus my method is not memory-expensive. The exponential decay can be
applied to the last values stored for the per–image scores and per–session scores as long as the
number of sessions and images are saved, thus avoiding storing the whole visibility matrix. In
future work, I would like to explore adding new points or compressing existing maps based on
these scores.

I released the source code of my method1 and the retail shop dataset2. However, as with all
methods, mine also presents limitations, as I discuss in the next section.

1https://github.com/alexs7/ExMaps-Long-Term-Localization-in-Dynamic-Scenes-using-Exponential-Decay-
Code

2https://researchportal.bath.ac.uk/en/datasets/dataset-for-exmaps-long-term-localisation-in-dynamic-scenes-
using

82

4.5.2 Limitations

My method requires frequent data input from users, which might be a limitation in some
circumstances. Also, new session data should be able to localise uniformly. If only segments
of a session localise, the live map then will contain parts that are not updated hence useful for
future localisations. The parts that are not updated, i.e. seen in future sessions, will have their
scores lowered by exponential decay and will less likely be matched even though they might
belong to static structure. The latter is the reason why my proposed method is more suitable for
environments that are frequently visited, and the visits cover the majority of the map.

4.5.3 Future Work

The information I use for this method is merely the SIFT descriptors, and time information using
exponential decay. I plan in future work to use semantic information similarly as in Stenborg
et al. [177], Toft et al. [191]. Products can then be identified on the camera frame and segmented.
For example, feature points detected on areas of the frame that represent products can then
be discarded. Semantic segmentation can also be applied to urban and mixed datasets such as
the CMU dataset and LaMAR, to remove people, vegetation and cars. In future work, I would
also like to explore adding new points or compressing existing maps based on these scores. By
having fewer but more static 3D points in a map, this will lead to faster localisation as there will
be fewer points to match against the query frames.

The following chapter presents my next piece of work that focuses on improving localisation
speeds.

83

Chapter 5

Neural Feature Filtering for Faster
Structure-from-Motion Localisation

5.1 Introduction

Figure 5.1: Overview of the proposed approach. The proposed method, augments a conventional
pose estimation pipeline by adding a neural filtering stage that can filter out non-matchable
features detected from a query image. The neural filtering stage can be easily plugged into
existing pose estimation pipelines to efficiently select the most reliable features from all detected
features. This reduces the number of features to be matched down to 30% on average (40%
shown in the current example) for all datasets tested and improves feature matching times by
increasing its speed while maintaining the final pose estimates. Such speed improvements are
important for augmented reality applications for a satisfactory user experience.

In Chapter 4, I proposed a method that provides robust long-term localisation in dynamic
environments. Chapter 2 provided a brief description of the foundations that are necessary to
understand the following work in this chapter. This chapter leverages work from Chapter 4, by
using live maps to train a neural network that can reduce the number of feature points to be fed
in a pose estimation pipeline, hence increasing the pipeline’s execution speed. The question I ask
in this chapter is, can I determine in advance which descriptors are capable of being matched,
thereby minimising the number of interest points, increasing the speed of feature matching, and
preserving the accuracy of subsequent processing stages?

In Chapter 2, I explained that camera localisation is the process of estimating a six-degree-of-
freedom pose matrix for an input image. This can be achieved in numerous ways; for example,

85

a camera pose can be estimated by fetching the most similar image and using its associated
pose from a database of posed images [162]. Deep learning can also regress a pose directly
from an image [87]. For this work, I estimate the camera pose of a single input image against
a structure-from-motion (SfM) map, as structure-based camera localisation tends to provide
the most accurate results [161, 163]. This is also called ‘absolute camera pose estimation’
[163]. These offline maps can be easily constructed by readily available software, such as
COLMAP [164].

In general, the process of registering an image in an SfM map follows these steps: keypoints
detection, keypoint description, descriptor matching (acquiring 2D-3D matches), outlier re-
jection using RANSAC (or similar), and lastly, solving a perspective-n-point (PnP) problem
returns the camera pose. This pose estimation process typically includes two types of outlier
filtering: (1) using Lowe’s ratio test [36] after the feature matching stage, and (2) robustly fitting
a pose matrix with a progressive or random sample consensus method [36, 59], discarding any
‘outlier’ 2D-3D matches that are not in the consensus set. A detailed description of the pose
estimation pipeline used in this chapter, is found in Section 5.3.3. Descriptor matching is an
important necessary stage for estimating the camera pose with respect to an offline map, and
also the slowest component. The matches need to be inliers, i.e. to be matched to the feature’s
corresponding 3D point, otherwise, the match is considered an outlier. Outliers can exponentially
increase RANSAC’s runtime [27]. In this chapter, I present a learning–based method that speeds
up the descriptor matching stage, by removing potential outliers.

5.1.1 Motivation

Fast localisation speed is a crucial element for a successful localisation system [49]. Higher
localisation speeds provide a more responsive and pleasant user experience and can recover
from failed re-localisation attempts faster. A user should be able to point their phone or AR
devices (i.e, glasses) and be immersed in an augmented reality world in real-time. Autonomous
vehicles or robots in a warehouse also could benefit from faster localisation times as it would
increase their responsiveness as well as accident avoidance and prevention. There are numerous
keypoints detected on query images that are not useful for SfM localisation [76, 132], and there
needs to be a filter stage before feature matching that removes this noise.

5.1.2 Challenges

In real-world scenarios, the thousands of keypoint descriptors detected in an image, and the
large offline maps with millions of points, greatly increase the computational cost of pose
estimation. Each individual keypoint descriptor (n) potentially has to be checked and matched
to each 3D map point (m), leading to a worst-case complexity of O(nm). Increasing the
number of keypoint descriptors can also lead to more outlier 2D-3D matches, which can
increase RANSAC’s convergence time exponentially [59]. Image keypoints that are outliers are
frequently located on vegetation and other dynamic objects, and it is troublesome to differentiate
which ones are useful to keep and which ones can be discarded before the feature matching
stage. This sets the objective for the rest of this chapter to filter out keypoints that are considered

86

to be noise for localisation, such as keypoints on dynamic objects like vegetation, cars and
humans. The training data that is used in these problems exhibits a significant degree of class
imbalance, attributable to the disparity between the number of detected keypoints and the
number of correspondingly matched keypoints. This means that a higher number of keypoints
are detected on a frame than the number of correct matches is established.

5.1.3 Contributions

In this work, I propose a neural feature filtering method that reduces the number of keypoint
descriptors passed to the pose estimation pipeline by classifying them into matchable or non-
matchable. This can reduce the number of features used in feature matching drastically, thus
improving feature matching speed. I train a binary classifier that is trained directly on SfM data,
with a custom loss function inspired by Wang et al. [204], to attempt and tackle the imbalanced
data of the problem. I train on live map data from Chapter 4. Points with a probability � 0:5
resulting from the binary classifier, e.g. points on permanent structures, such as buildings, or
retail shop shelves, tend to be more repeatable and thus useful in feature matching as they are
more likely to be matched correctly and less likely to be an outlier at the sample consensus
stage. Non-matchable descriptors with a probability of less than 50% scores are discarded and
not used in the pose estimation process.

My contribution is a neural network-based filtering method that can detect these matchable
features or highly static points’ features. The proposed approach in this work is able to prioritise
a higher number of features compared to methods from Hartmann et al. [76] and Papadaki and
Hansch [132], in the majority of datasets tested on. In cases where my neural filtering method
does not reduce the features to the same or higher percentage of features, I show that it still
returns lower errors. My approach can be utilised in existing SfM pipeline with negligible effort.
This leads to increased feature matching speeds, by 30%, compared to other methods with only
a negligible increase in pose estimation error. I also report datasets where my method returns
lower pose estimation errors in addition to faster feature matching times.

5.2 Related Work

In this section, I start off by briefly introducing related work to keypoint detection and description.
I show how keypoint detection can be accelerated then I discuss existing keypoints reduction
methods. My work focuses on reducing in an optimal way the features sent to the off-line map
for matching. I also mention how other parts of a pose estimation pipeline can be improved, such
as the feature matching once the matches have been acquired and the subsequent perspective-n-
point solver.

Keypoint detection and description is a classic problem in computer vision [114, 195]. Many
solutions have been proposed, from hand-crafted descriptors [14, 100, 108, 147] to recent
data-driven techniques [45, 94, 142] that show great results. Commonly used descriptors for
pose estimation are SIFT [108], SURF [14], or ORB [147], and more recently SuperPoint [45].
Keypoint detection and description can be sped-up, as demonstrated by SURF [14], ORB [147]

87

and BRISK [100]. I do not attempt to speed up keypoint detection and description; I filter the
set of extracted descriptors to reduce downstream computational complexity.

Reducing descriptor size. One way to reduce computation and increase matching speed is via
compacting descriptors with PCA-SIFT, proposed by Ke and Sukthankar [86]. PCA-SIFT uses
principal component analysis to reduce the dimensions of the SIFT descriptor from 128 to 20,
about one-sixth of its original size. The number of detected descriptors remains the same for
an image. The reduced descriptor size can significantly speed up individual comparisons but
for large sets of points, it can still be slow [76]. My work differs as I reduce the number of
descriptors, not their size.

Complexity reduction methods focus on speeding up the matching process, e.g. using approx-
imate nearest neighbours based on KD-trees [9]; FLANN is a popular implementation [122].
A vocabulary tree [126] can be used for reducing matching time [2, 157, 158]. Agarwal et al.
[2] and Sattler et al. [157, 158] cluster feature descriptors into visual words and match image
descriptors to the visual words. Building a vocabulary tree adds time overhead similar to training
the neural networks in my proposed method. Both are a one-time pre-process only. Other
approaches reduce the number of images (instead of keypoints) passed in the pose estimation
pipeline using clustering [61, 103] or by parallelizing the matching process [2]. For speeding up
the last stage of a pose estimation pipeline, the pose solver, alternatives to the P3P-based solver
[109] have been introduced, such as Lambda Twist [134] and work by Nakano [125].

Reducing keypoint numbers. Knopp et al. [89] estimate a confusion score per patch in images
using geographic information. This patch score is calculated by normalising tentative feature
matches to images that are more than d meters away from the query image, by the number of
features detected in the patch. Descriptors detected from areas in an image with high confusion
scores (such as vegetation) are avoided, hence reducing the number of keypoints to work with.
I use the match data, i.e. zero for an unmatched feature and one for a matched feature, from
a live map, as described in Chapter 4, to avoid similar confusing points (e.g. vegetation), and
train a number of neural network models on them. Learning-based methods aim to prune
correspondences [155, 179, 211] for more robust wide-baseline stereo matching (image to
image matching) or point cloud object classification [179]. Sarlin et al. [154] train a network
on global and local image features to achieve coarse to fine localisation. This means a set of
images similar to the query image is fetched, and then the query pose is estimated using pose
information from the retrieved images.

In this work, I focus on 2D local image feature matching to 3D point matching, each point being
associated with multiple descriptors from multiple images localised over time. Yu et al. [212],
formulate the problem of finding reliable matches as a bipartite graph problem. They construct
a bipartite graph using already obtained 2D-3D matches. The bipartite graph network will then
predict the likelihood of a match being an inlier and outputs the globally optimal one-to-one
refined matches. The major difference with my work is that the matching already happens
before the testing stage, and then a bipartite graph is fed into the network. I filter out potential
outliers only by using the feature descriptor and then perform the matching. Hartmann et al.
[76] proposed a hard binary random-forest classifier that is trained on structure-from-motion
image pairs and splits the keypoints from an image into ‘matchable’ and ‘non-matchable’. They
do not explicitly handle the imbalanced data as my approach does, using a custom cost function

88

from Wang et al. [204]. Papadaki and Hansch [132] follow a similar approach to Hartmann
et al. [76], also using a random forest. They append more training data information per SIFT
descriptor, such as the keypoint’s image location, SIFT’s number of dominant orientations, size,
orientation, response, its octave and intensity of the green channel to avoid vegetation. Papadaki
and Hansch [132] do not explicitly handle the imbalanced data.

Using semantic information. The idea of exploring additional information has also been
explored by Stenborg et al. [177]. Their approach uses semantic segmentation during and after
the detection and description stage to choose points in image areas that represent buildings or
walls. Stenborg et al. [177] focus on long-term localisation, not speed improvement. In this
chapter, I only use the raw data from a SfM point cloud, i.e. just the SIFT vector descriptors, to
improve feature matching times.

Temporal Approach. It is worth noting that the effect of time has recently been introduced in
work from Doan et al. [47]. A neural network regressor is trained on image descriptors and a
timestamp. The output to predict is a vector that represents the repeatability of a description at a
particular timestamp. The effect of time in my work is considered because I use live maps that
contains information over time, i.e. descriptors of images that were successfully localised over a
period of time and appended to 3D points.

My method is more modular and can be more easily integrated into existing SfM pipelines than
Doan et al. [47]. The data that is required for my method, given a live map, is the localised
images’ SIFT descriptors and their 3D corresponding point, i.e. a 2D-3D match. The match
value is one if an image’s keypoint is matched to a 3D point and zero if not matched to a 3D
point. I provide more details in Section 5.3.1. This data is widely available in modern SfM
software Schönberger and Frahm [164]. Mean descriptors from SfM maps’ 3D points and
images’ 2D-3D matches can be used to create the training data. Once the networks are trained,
query images’ descriptors can be filtered through the networks before feature matching.

The neural network-based method from this chapter, is compared to the methods from Papadaki
and Hansch [132] and Hartmann et al. [76]. Their end goal is to reduce the number of keypoints
detected on a query image before feeding it to the feature matching procedure. To elaborate, the
Papadaki and Hansch [132] and Hartmann et al. [76] attempt to address is the same as mine: can
one determine in advance which descriptors are capable of being matched, thereby minimising
the number of interest points, increasing the speed of feature matching, and preserving the
accuracy of subsequent processing stages? The keypoint reduction happens by identifying
dynamic superfluous 2D image keypoints that would act as outliers in the pose estimation
pipeline. As a result of the reduction, an increase in feature matching speed occurs naturally as
fewer feature keypoints have to be matched to an offline 3D model. Both methods achieve this
by training hard classifiers using a Random Forest (RF) [23]. Both random forests predict if a
keypoint is matchable or not-matchable. If a keypoint is not matchable then it is discarded and
not used in the feature matching procedure. Both methods treat keypoints from two classes as
my proposed methods do.

In addition, both methods build upon SfM data similarly to the proposed method in this chapter.
Hartmann et al. [76] and Papadaki and Hansch [132] use a set number of image pairs to generate
training data for two distinct RF models. To be more exact Hartmann et al. [76], for each random

89

image selected 13 neighbours matched images are chosen to collect SIFT features, used as
training data. Papadaki and Hansch [132] use only a higher number of images in total and do
not use SIFT features but meta-data computed from the SIFT detector, i.e. the size, orientation,
response, octave, and number of dominant orientations. In addition, they use the x,y keypoint
coordinates and the keypoints’ intensity of the green channel (to discard vegetation).

In Section 5.4, I discuss more in-depth the evaluations of the methods from Papadaki and
Hansch [132] and Hartmann et al. [76] before comparing them to my proposed methods. I also
describe in detail how both methods obtain their training data, with additional visualisations,
and describe my code implementation of both methods.

5.3 Methodology

In this section, I describe the design and implementation of my neural feature filtering method. I
discuss the relevant choices I made given the available data from a SfM live map, from Chapter 4
and explain how I evaluate if a descriptor is matchable or not.

5.3.1 SfM Map Information

At the bare minimum, a SfM map contains posed images and a set of 3D points that those images
observe. Each 3D point will have a list of descriptors that belong to the images’ keypoints that it
was observed from. Each image’s keypoints will have information on if it was matched to a 3D
point or not. Most SfM software provides this information in an accessible format, such as a
database [164]. Those feature descriptors that are not matched to any 3D point are considered
noise. For example, a keypoint detector may detect 500 keypoints on an image, but only 100
or so may be triangulated to form 3D points when building a map. This is because each SfM
pipeline defines a number of criteria that a point needs to satisfy in order to be triangulated. For
example, in COLMAP [164], a point is only triangulated if it appears in a feature track that is
composed by concatenating a set number of two-view correspondences. To simplify, if a point
is matched in a number of continuous images, then it is more likely going to be triangulated.

When it comes to localisation, at query time, only a subset of the keypoint descriptors would
match 3D points in the map. My proposed method attempts to speed up feature matching by
reducing the number of descriptors from a query image before matching them. This is illustrated
in Figure 5.1. I show that this reduction can be achieved using a neural network that is trained to
classify keypoints into matchable or non-matchable, based on their descriptors.

A point cloud generated by SfM holds enough information that can be used to train a classifier
to predict if a point is matchable or not. This information is derived by the map images that
are already localised. COLMAP [164], provides a list of keypoints’ descriptors for each image.
Each keypoint is matched to a 3D point or not if that keypoint was not triangulated. I leverage
this distilled information from the SfM map and extract all the keypoints from the SfM database.
I end up with a list of SIFT [108] descriptors with their metadata, i.e. xy location on the image,
RGB value, sift metadata such as octave, size, orientation, response and the number of dominant

90

orientations, with a binary target value, zero (not matched to a 3D point) or one (matched
to a 3D point). The x,y location, octave, size, orientation, response, the number of dominant
orientations, and green channel value are also used in work from Papadaki and Hansch [132].

To elaborate on the metadata used, in additionally to the SIFT descriptor:

1. The x,y location, in a typical image sequence, the likelihood of a keypoint’s value being
useful for the matching process is often associated with its position. Specifically, keypoints
located near the image borders are more likely to overlap with other images compared to
those located at the centre. Also, in the CMU dataset, most buildings in the frames tend
to be in the centre of the camera frame.

2. The RGB value. Papadaki and Hansch [132], used only the green channel intensity to filter
out image points that belong to vegetation. I believe this can work for static environments,
but vegetation takes up different colours across the seasons. In the CMU dataset, for
example, leaves on the ground can be found that are orange or yellow, so I use all the
RGB values.

3. The number of dominant orientations can indicate how complex the texture is and how
reliable the keypoint’s orientation is compared to all other keypoints in the image.

4. The size tells us the diameter of the keypoint area (blob) that is considered for its
description. The size of the blob is determined by SIFT feature detector.

5. The response score helps determine if the detector found a keypoint at a certain image
location. It acts as a threshold value [132].

6. The octave refers to the pyramid layer where the detector detected the keypoint.

7. The orientation is the computed angle of the keypoint (-1 if not applicable); it’s in [0; 360)
degrees and measured relative to the image coordinate system, i.e. clockwise.

Table 5.1: I show the percentage of all the datasets’ keypoints. The localised image keypoints
from a SfM map, can be matched to a 3D point or not.

Dataset Negative (%) Positive (%)

CMU [160] 70 30
LaMAR [156] 86 14
Retail shop [146] 40 60

The SIFT vectors and the metadata are the training data for my network. The data from the SfM
map is unbalanced. This is because the majority of matches between images are not triangulated,
leading to more unmatched keypoints compared to matched keypoints. Table 5.1 shows the
percentage of the matched and unmatched keypoints for CMU Extended Seasons [160] (I show
the average for all 24 slices) the retail shop [146], and the LaMAR dataset [156] (average
from LIN/CAB and HGE datasets). For the retail shop, I notice a higher percentage of positive
examples rather than negative examples. This could be because of the small area of the SfM
map compared to the other datasets that span hundreds of meters and the density of the camera

91

frames. For example, in just a distance of less than five meters, a higher number of camera
frames are included than in the other datasets. This means that a point has a higher chance of
being triangulated as it will show up more times in a camera trajectory track, even though it can
be a noisy measurement.

5.3.2 Neural Feature Filtering Network

In this section, I describe the neural network architecture used in this chapter, and discuss
the custom cost function used from Wang et al. [204]. Larochelle et al. [95] have shown that
more depth, i.e. the number of layers, can reduce classification accuracy. I choose a neural
network with a short depth, i.e. six layers, compared to the eight-layer AlexNet [92], the 19-layer
VGG [169] and the 22-layer GoogLeNet [182]. I add more width, i.e. number of nodes, to my
network because it has been demonstrated to increase the network’s expressive power when
using the ReLU [1] activation function [110]. The expressive power describes neural networks’
ability to approximate functions [110]. The inputs to the neural network are the SIFT descriptor,
x and y pixel location, pixel RGB value, dominant orientations, size, response, octave, and
orientation from Section 5.3.1, totalling 138 features for the input vectors, one vector for each
images’ keypoints. The neural network has six layers consisting of an input layer of 138 nodes,
three more layers of 276 nodes, one layer of 138 nodes and the last output layer of one node.
The activation functions in the nodes are set to ReLU [1]. The last layer activation function is a
sigmoid function defined as f(x) = 1

1+e� x , because it produces continuous output values that
are between 0 and 1 thus the output of the sigmoid function can be interpreted as the probability
that the input belongs to the positive class. During training, the weights of the neural network are
updated to minimise the difference between the predicted output and the actual output (i.e., the
ground truth labels). The sigmoid function helps to ensure that the predicted output is between
0 and 1, which is useful for calculating the error or loss during training.

I now describe the loss function used from Wang et al. [204] to alleviate the imbalanced data
problem that is shown Table 5.1. Wang et al. [204] start off by presenting a basic classifier
that minimises a mean squared error (MSE). Although it is effective for balanced datasets, it
is inadequate for handling imbalanced ones [204]. This is because MSE considers errors in a
global sense, where it computes the loss by summing up all errors across the entire dataset and
subsequently taking the average [204]. Wang et al. [204] propose two cost functions called,
mean false error (MFE) together with its improved version mean squared false error (MSFE). I
use the latter, mean squared false error (MSFE). The main difference between the latter cost
functions and MSE is that MFE and MSFE calculate the average error in each class separately
and then add them together. The functions are:

MSE =
1
M

MX

i=1

X

n

1
2

(d(i)
n � y

(i)
n)2 (5.1)

MFE = FPE + FNE (5.2)

MSFE =
1
2

((FPE + FNE)2 + (FPE � FNE)2) (5.3)

92

where FPE and FNE are defined as,

FPE =
1
N

NX

i=1

X

n

1
2

(d(i)
n � y

(i)
n)2 (5.4)

FNE =
1
P

PX

i=1

X

n

1
2

(d(i)
n � y

(i)
n)2 (5.5)

The term n is the number of classes in my case n = 2, M is the number of all samples, N
and P are the numbers of negative and positive ground truth samples respectively; already
known before training. The term d(i)

n is the ground value of the i-th sample’s class, and y(i)
n is

the predicted value of the same sample. Since n = 2, a simplified example is: d(5) = [0; 1],
i.e. sample number 5 belongs to the second class, and it is predicted that sample number 5,
y(5) = [1; 0] belongs to the first class.

To elaborate, I present a toy example from Wang et al. [204] to show the difference between the
popular MSE function, MFE and MSFE functions. In Table 5.2 a confusion matrix with values
true positive, TP = 86, true negative TN = 5, false negative, FN = 4, and false positive
FP = 5. For this example binary classification problem, the error of a certain sample is 0
if the sample is predicted correctly, otherwise, the error is 1. The confusion matrix, although
it is not specified in the paper, I believe is the output of a generic binary classifier from an
imbalanced dataset. It can even be derived from each epoch during a neural network’s training
once a prediction has been made for each sample. The authors wanted to prove that choosing
either the MFE or the MSFE function returns a loss different than the MSE for the example
problem in Table 5.2. In the case of the example problem, the loss returned by MFE and MSFE
is higher.

Table 5.2: A toy example of a confusion matrix from Wang et al. [204].

Predicted Class
Positive Negative Total

True Class
Positive 86 4 90
Negative 5 5 10

Total 91 9 100

From Table 5.2 the classification accuracy is (86 + 5)=(90 + 10) = 91%, where TP = 86,
TN = 5. To simplify how the numbers in Table 5.2 were derived assume the previous samples
d(5) = [0; 1] and y(5) = [1; 0]. Taking sample d(5), this ground truth sample belongs to
the second class, and y(5) is its prediction that misclassifies it to the first class. Following
Equation (5.1), the MSE prediction error is 1, i.e. replacing the values in Equation (5.1)
1
2 � ((0 � 1)2 + (1 � 0)2) = 1. By expanding the same logic to a collection of ground truth
samples and their predictions, the equations return the number of incorrectly predicted samples
in a binary classification problem. This leads to the following values for the MSE, MFE and

93

MFSE loss functions, using the data from Table 5.2, where FP = 5 and FN = 4:

lossMSE =
4 + 5

90 + 10
= 0:09 (5.6)

lossMFE =
4
90

+
5
10

= 0:54 (5.7)

lossMSFE = (
4
90

)2 + (
5
10

)2 = 0:25 (5.8)

From Equation (5.6), the loss values from MFE and MSFE are higher than the MSE loss value.
Wang et al. [204] claim that since higher loss values can be achieved by using MFE and MSFE,
then it follows that under the condition that the loss values are the same for all three MSE,
MFE, and MSFE functions, higher classification accuracy can be achieved on imbalanced data
sets when MFE or MSFE is used as the loss function rather than MSE. To explain the authors’
statement with an example: assume a confusion matrix with values TP = 20, TN = 15,
FN = 10 and FP = 55, seen in Table 5.3. The ground truth positive examples are 30 and the
negative samples 70, i.e. it is an imbalanced dataset. The accuracy is (20+15)=(30+70) = 35%.

Table 5.3: Second confusion matrix example.

Predicted Class
Positive Negative Total

True Class
Positive 20 10 30
Negative 55 15 70

Total 75 25 100

The MSE error would be following Equation (5.6), 0:65. For MFE and MSFE to achieve the
same value of 0:65, from Equation (5.6), it is only possible if the FN and FP values drop.
When FN and FP values drop, it means that the number of TP , and TN will increase. Since
accuracy = (TP + TN)=100, the accuracy will increase aswell. In other words, if the same
loss value is returned for MSE, MFE, and MSFE, then the proposed loss functions MFE and
MSFE can have higher accuracy as claimed by Wang et al. [204]. To also visualise the latter, I
show Figure 5.2 a figure from the original paper [204]. The AUC is a measure of the overall
performance of a binary classifier system, [56], and is commonly used in imbalanced data
sets. It ranges from 0 to 1, with higher values indicating better performance. An AUC of 1
indicates perfect classification, while an AUC of 0.5 indicates that the classifier is no better than
random guessing. In Figure 5.2, for the same loss values, the MFE and MSFE outperform the
conventional MSE loss function. MSFE returns a higher AUC compared to all.

Another popular cost function used for binary classification problems, is the binary cross-entropy
loss [148]:

LBCE(y;y0) = �
X

i

y0i log(yi) + (1�y0i) log(1�yi), (5.9)

The predicted values are y, and the ground truth values are y0. It measures the difference
between the predicted probability distribution and the true probability distribution of the binary

94

Figure 5.2: For the same loss values the MFE and MSFE perform better than the MSE function.
MFE and MSFE return higher area under the curve (AUC). Figure from Wang et al. [204].

labels, and aims to minimise this difference during training. In Section 5.5.2, I discuss two
further implementations of my network, one using the binary cross-entropy loss instead of the
MSFE. The second is a more memory-efficient model other using fewer data features to train
compared to my proposed network. The memory-efficient network only uses SIFT, xy, and RGB
and does not use the other metadata defined in Section 5.3.1. I choose the network that uses the
MSFE loss function to compare to Papadaki and Hansch [132] and Hartmann et al. [76], more
details in Section 5.5.2.

Network Training Details: The neural network is trained using Adam [88] for 1,000 epochs
with a batch size of 4096 and a learning rate of 0.0001. The features of the training data are
defined in Section 5.3.1. The data is shuffled before training starts. I keep a separate validation
set which is 30% of the data that the network does not train on. The rest 70% of the data is
used solely for training. I train one neural network for each dataset. The loss function used is
the MSFE. In total, one network is trained for the retail shop, three for LaMAR, and 24 for
CMU. I train one network for each slice. The CMU slices training data is, on average, 2 million
rows across all slices. The LaMAR average number of training data vectors for HGE, CAB, and
LIN is 16 million rows. The retail shop’s training data is 3 million rows. Once the training is
completed for each of the datasets I then run the neural filtering pipeline by plugging in the
neural networks as a filter between the keypoint description and feature matching stages (see
the pipeline in Figure 5.1).

95

5.3.3 Neural Feature Filtering Pipeline

This section explains how I integrate my neural feature filtering network into the standard pose
estimation pipeline. In a preprocess, a live map is constructed for each of the 28 datasets, 24
CMU slices, 3 LaMAR sub-datasets, and 1 dataset for the retail shop. For all images, 800
SIFT vectors are extracted for the CMU slices, retail shop query images, and 2000 for LaMAR.
LaMAR contains higher-resolution images. Then I average the descriptors for each 3D point
in the SfM map. This ensures that each descriptor from a query image only needs matching
against a single descriptor per 3D point, using nearest neighbours matching similar to Ventura
et al. [201]. A random session of images is kept outside of the reconstruction to use as query
images. I explain the step of localising a query image below:

1. Keypoint Detection: For each query image to be localised, I detect and describe 800/2000
SIFT features, depending on the resolution of the query image. This is a similar number
to popular SLAM frameworks like ORB-SLAM2 [123].

2. Neural Feature Filtering: The extracted feature descriptors are then filtered using one of
the methods Papadaki and Hansch [132], Hartmann et al. [76], and my neural filtering. For
each query image, less than 800 keypoints are then fed to the rest of the pose estimation
pipeline. The more keypoints are deemed matchable, the slower the rest of the pose
estimation pipeline will be. The key idea is to filter out as many keypoints as possible
while keeping the highest pose accuracy possible. The query descriptors after the neural
network (or any of the comparison methods) filtering are reduced in number and then are
used in the subsequent pose estimation pipeline steps.

3. Feature Matching: The selected query image descriptors are then brute-force matched to
all the 3D points’ descriptors in the relevant SfM map. I fetch the nearest neighbour for a
query descriptor in terms of Euclidean distance, which produces a set of putative 2D–3D
matches. I rely only on the proposed methods for filtering matches before the sample
consensus stage. Once I obtain the 2D-3D matches, I do not use Lowe’s ratio [108]. I
omit Lowe’s ratio because I strictly rely on the filtering of my proposed method and the
comparison methods. FLANN [122] is an alternative approximate matching strategy that
can be used to reduce runtimes further. I decided to use the brute-force method as it is
guaranteed to find the best neighbour.

4. Sample Consensus: Once the putative 2D–3D matches have been acquired, I use RANSAC
[59] to identify the inlier matches and discard the outliers robustly. The hyper-parameters
of RANSAC are set to a minimum of 3,000 iterations and a maximum of 10,000 iterations.
The max re-projection error used to choose the best pose is set to four pixels.

5. Solving for Pose: As the final stage, I estimate the camera pose using an EPNP solver [99]
used in COLMAP [164].

The pipeline is modular, and it is easy to interchange between filtering methods and use one of
the three dataset-specific trained models from Papadaki and Hansch [132], Hartmann et al. [76]
or my neural filtering method to localise the query images. I count the time that it takes to predict
or load the models, but because implementations can vary (written in C++, Python) different
libraries even though providing the same models, might be slower or faster. For example, C++

96

code is used from Papadaki and Hansch [132] to run the predictions, which is faster than the
Python implementations of my proposed method and Hartmann et al. [76]. The next section
goes into more depth and describes in detail the comparison methods and how their training
data was acquired.

5.4 Comparison Methods

In this section, I describe the methods from Papadaki and Hansch [132] and Hartmann et al.
[76]. I explain how they extract their training data, and I show the evaluations of their models. I
have identically replicated the methods from Papadaki and Hansch [132] and Hartmann et al.
[76]. All methods were evaluated on the CMU Extended Seasons [12, 160], retail shop [146]
and LaMAR [156] datasets.

Papadaki and Hansch [132] and Hartmann et al. [76] base their methods on a hard binary
classifier model. A hard classifier is a model that makes definitive binary decisions about the
class membership of a given input. This means that a hard classifier assigns an input to one of
two possible classes, without any probabilistic or fuzzy interpretation.

Random Forests Both hard classifier methods from Papadaki and Hansch [132] and Hartmann
et al. [76] are based on a random forest classifier model. A random forest classifier is a machine-
learning algorithm that uses decision trees as its base classifier. It is a type of ensemble learning
method, which means that it combines the predictions of multiple individual decision trees to
make a final prediction. A decision tree is a flowchart-like tree structure in which an internal
node represents a feature (an attribute), the branch represents a decision rule, and each leaf node
represents the outcome. The topmost node in a decision tree is known as the root node. It learns
to partition on the input data to produce a prediction model. For a simple 2D case, an example
can be recursively dividing on the x and y plane until a stopping criterion. In a random forest
classifier, multiple decision trees are trained on different subsets of the training data. The final
prediction is made by taking the average (for regression tasks) or the mode (for classification
tasks) of the predictions of all the individual decision trees. Random forests are popular because
they are relatively easy to train and use, and they often perform very well on a wide range of
tasks. They are also resistant to overfitting, which means that they tend to generalise well to
unseen data. Random forests are often used for classification and regression tasks, but they can
also be used for other tasks such as feature selection and outlier detection [23].

Acquisition of Training Data Each comparison method obtains its training data using differ-
ent methods. Hartmann et al. [76] focus on the task which involves predicting the matchability
of descriptors before the matching stage. All comparison methods used different datasets to
mine and were smaller in size. All methods’ main goal, including mine’s, is to decrease the
number of interest points without negatively affecting the subsequent processing stages. The
data they use is SIFT vectors and their ‘matched’ value between image pairs. Papadaki and
Hansch [132] though, leverage information that goes beyond mere appearance, i.e. SIFT, but
also capture geometrical, textural, topological, and additional appearance properties, that are

97

quick and simple to compute. These are the x; y coordinates, size s, orientation �, response
r, octave o, computed by the keypoint detector. Lastly the number of dominant orientations
(do), which can be interpreted as a measure of textural complexity and as of reliability of the
computed keypoint orientation, and the green intensity g of the keypoint’s RGB value. Papadaki
and Hansch [132] claim that adding the green intensity can help classify keypoints on vegetation,
as non-matchable. Though, vegetation in the CMU dataset can contain other colours other than
green. For example from closely examining camera frames from the CMU dataset some trees
have more brownish colour and leaves can be orange, especially around autumn as seen in
Chapter 4, in Figure 4.7.

Papadaki and Hansch [132] trained on roughly 150,000 keypoints that were sampled after down-
sampling 150 training images, which were captured using different cameras and resolutions.
Additionally, they tested on 456 test images in total. I trained their model on a larger number of
image pairs. For CMU and the retail shop, I use 4,000 pairs, which is 8,000 images. For LaMAR
I use 10,000 pairs, which is 20,000 images. My datasets are larger than the datasets used from
Papadaki and Hansch [132] in the number of images, hence why I used these numbers. The
random forest Papadaki and Hansch [132] used, is compact, and has five trees of depth five.
Papadaki and Hansch [132] support the same point as I do, i.e. one should take into account
that as the number of images increases, the time for keypoint filtering also increases linearly,
while the matching cost increases quadratically. Therefore, it is reasonable to anticipate that
in larger image collections, the additional time spent on keypoint filtering is offset by the
reduced matching cost. Given a number of image pairs, the method returns a list of matched
and unmatched rows for each pair. Brute-force bi-directional matching is applied, keeping the
two nearest neighbours. Then the first set of matches is refined using Lowe’s ratio test with
the same threshold value as I used, i.e. 0.9, and the ratio test is applied in both directions from
the source image to the target and vice versa. The value 0.9 seems to be a popular option as it
discards fewer potential positive matches. From the refined image matches after the ratio test,
the fundamental matrix is estimated using RANSAC and a reprojection error of two pixels. The
inliers for the fundamental matrix are then used to determine which features are matchable
(inliers) or un-matchable (outliers) from the image pair matches. It is worth mentioning that
the code provided from Papadaki and Hansch [132] attempts to handle the imbalanced data
by discarding any negative samples over the positive samples. An example is, if 50 positive
samples are found, and 150 negative samples are found, then the first 50 negative samples are
picked up to create a ‘balanced’ set of feature rows, i.e. 50 positive and 50 negatives. I believe
this discards useful negative information. I used Papadaki and Hansch [132] original code that
is written in C++ to generate training samples and predictions.

Hartmann et al. [76]’s training dataset consists of 64 brief image sequences, containing a total
of 455 images that were captured at different locations and under varying lighting conditions.
These images were recorded using a fish-eye lens. Each training image is matched to 13 earlier
and 13 later images (in the order they were recorded) to provide training matches using an ANN
(approximate nearest neighbours) search and the application of distance and ratio thresholds. To
avoid scenarios with abnormally low field-of-view overlap, pairs with fewer than 50 matches
are eliminated. The class of all points that appear in at least one match is known as the positive
class; the class of all other points, which were always dismissed, is known as the negative class.
The Gini impurity [93] is used as the splitting criterion to train a random forest with 25 decision

98

Table 5.4: The percentage of all the positive and negative samples from the training data as
defined from Hartmann et al. [76]. After following the same instruction on how to gather the
training data, the ratios are seen below, showing that the data suffer from imbalanced data. There
are more negative samples than positive ones.

Dataset Negative (%) Positive (%)

CMU [160] 75 25
LaMAR [156] 86 14
Retail shop [146] 67 33

trees using 485,000 randomly chosen descriptors from each of the two classes. To avoid possible
over-fitting, the number of trees is capped at 25. Similarly here, I use a different number of
samples to train Hartmann et al. [76]’s model because of the larger data size of my datasets. For
CMU and the retail shop I used 1,200 image sequences, and for LaMAR 5,000, each sequence
composes of 13 neighbours on each side. For LaMAR I started off from 3,200 samples. The
results were not satisfactory at that number, then increased to 4,600 and finally to 5,000 in
order to get good results before making the training computationally infeasible. To prove the
imbalance between the positive and negative classes from Hartmann et al. [76]’s training data, I
list for each dataset below the number of total keypoints and the percentage of the negative and
positive ones. A positive keypoint is a matchable keypoint, and a negative is a non-matchable.
The imbalanced data is the reason why I chose a custom loss function for the neural network.
As mentioned in Section 5.3.2, Wang et al. [204] proposed a loss function that can promote
improved classification results given a highly imbalanced dataset. The percentages are shown in
Table 5.4. For CMU and LaMAR I report the mean values.

From Table 5.4, the training data from Hartmann et al. [76] is unbalanced. The dataset that is
less imbalanced compared to the others is the retail shop dataset. Further, we show that the
approach from Hartmann et al. [76] tends to over-classify points as negative, filtering keypoints
up to 99% for some datasets leading to less than four matches after the feature matching process,
hence unable to estimate a pose for a camera as minimum four matches are needed between the
image and the point cloud.

Hartmann et al. [76] and Papadaki and Hansch [132] train on matches between pairs of images.
Not all points that match between two images that share a baseline are guaranteed to be
triangulated to a 3D point. Points that are not triangulated are less likely to be matchable.
Hartmann et al. [76] use the 13 left and right neighbours of an image for training data but only
pick a point if it appears ‘at least’ in one match. That means that a point, could be matched to the
first right neighbour and then not again. Schönberger and Frahm [164] state that triangulating a
point is an elaborate method and propose the idea of feature tracks. They form feature tracks
by concatenating multiple two-view correspondences and formulate the problem of multi-view
triangulation using RANSAC. They consider the feature track of length N for triangulation if
all points satisfy a sufficient triangulation angle and have a positive depth. The track will be
accepted and triangulated if its depth is positive and the reprojection error for its images is below
a threshold t. For more details, we redirect the reader to Schönberger and Frahm [164]. My
method trains on the data that has already been triangulated, i.e. descriptors of points that have

99

been triangulated (base map) or registered on an existing point cloud (live map). This means
that the training data I use is less likely to contain outliers as the triangulation method from
Schönberger and Frahm [164] has already applied outlier filtering. Considering the imbalanced
data, none of the two comparison methods, Hartmann et al. [76] and Papadaki and Hansch [132],
explicitly handle the imbalanced data. Papadaki and Hansch [132] discard possible valuable
information by removing negative samples to match the number of positive samples. In the
next section, I describe my method and how I use the loss function from [204] that can equally
capture classification errors from both the majority and minority classes effectively.

5.5 Experiments and Evaluation

In this section, I evaluate my proposed neural filtering method (NF), work from Hartmann et al.
[76] (PM) and Papadaki and Hansch [132] (MnM). I briefly describe the datasets and metrics
used, including an additional metric for this proposed work.

5.5.1 Datasets

The datasets I use are the CMU Extended Seasons from Sattler et al. [160], the retail shop
[146], and the LaMAR dataset [156]. Both datasets contain RGB frames, poses over time, and
revisit the same place multiple times over a period of time. This allows me to build a live map
which has been shown to outperform a base map [146]. In this chapter, I use a live map, which
contains descriptors of points over time for its 3D points. More information on the three datasets,
LaMAR, CMU and retail shop, is found in chapter Section 4.4.1.

5.5.2 Baseline and Comparisons

In Section 5.3.2, I stated that the binary cross-entropy loss is a popular binary classification
loss. I train two more types of neural networks in addition to my proposed neural network (NF).
They both use the same architecture as NF. The first, trained on the same data as NF, uses the
binary cross-entropy loss NF (bce), and the second, Nf (small), uses less number of features
for the training data, making it more memory-efficient as less data has to be stored. NF (small)
trains only on just the SIFT descriptor, the x and y keypoint coordinates, and the RGB value of
the keypoint instead of using aswell the metadata described in Section 5.3.1, and uses MSFE
[204] cost function. NF (small) was the first network I trained.

Given the imbalance data explained in Section 5.3.1, balanced accuracy is a performance
metric that takes into account this class imbalance problem in the dataset. In imbalanced
datasets, where one class has a significantly larger number of samples than the other (in our
case, more negative samples than positive), accuracy alone can be misleading and not a good
indicator of model performance. Balanced accuracy is defined as the average of the sensitivity
(true positive rate) and specificity (true negative rate) of a binary classifier, calculated as,
balanced accuracy = (sensitivity+specificity)

2 . ‘Sensitivity’ is the recall of the positive class,

100

tp
tp+fn and ‘specificity’ is the recall of the negative class, tn

tn+fp . By taking the average of
sensitivity and specificity, the balanced accuracy provides a more accurate representation of the
classifier’s performance on both classes. It also ensures that the accuracy score is not dominated
by the class with the larger number of samples. For example, consider a binary classification
problem where the positive class is rare, and only 5% of the samples belong to this class. If
a classifier predicts all samples to be negative, it would achieve an accuracy of 95%, which
may appear impressive, but it would have failed to detect any positive samples. In such cases,
balanced accuracy would be a better metric to evaluate the model’s performance. I train three
networks for each dataset, one NF, NF (bce) and Nf (small), totalling 84 separate networks
(three networks for every 28 datasets). In table Table 5.5, I report the average balanced accuracy
for LaMAR, retail shop, and CMU, showing my proposed method returns a higher balanced
accuracy. The data used in Table 5.5 is all the test data from all test query images, separately for
each dataset. From Table 5.5, the NF network returns a higher balanced accuracy for LaMAR,

Table 5.5: The average balanced accuracy for NF (bce), Nf (small), my proposed method, NF
that uses the MSFE loss function [204]. NF outperforms in LaMAR and Retail Shop and returns
equal balanced accuracy for CMU compared to NF (bce), the network that uses the binary cross
entropy function.

Dataset Balanced Accuracy [%]

NF (bce) NF (small) NF

LaMAR [156] 58% 69% 71%
Retail shop [146] 63% 62% 63%
CMU [160] 65% 66% 67%

and CMU, compared to the other methods. For the retail shop, NF returns the same balanced
accuracy as NF (bce). For CMU, it is worth noting: upon examining each CMU slice separately,
the NF network returns a higher balanced accuracy in 16 out of 24 CMU slices, compared to NF
(bce) and NF (small). For LaMAR and the retail shop, NF returns a higher balanced accuracy,
by 12% for LaMAR and 2% for CMU.

For the rest of the chapter, I will use the following acronyms for my proposed method, NF,
which uses the MSFE loss function, for the comparison methods, Hartmann et al. [76]’s, PM,
and Papadaki and Hansch [132], MnM. I use the pipeline defined in Section 5.3.3, and for
each dataset, I test one query set of images. For each of the CMU slices (1-24) and LaMAR
sub-datasets (HGE, LIN, CAB) and the retail shop, I train one neural network (NF), one model
from PM, and one model from MnM. I let each method decide which keypoints are matchable
and which ones are not, from the detected query image keypoints. For the proposed neural
network method, I set any keypoint’s probability � 0:5 to one, i.e. set to matchable. The other
methods just return 0 or 1, not a continuous value as in the sigmoid function in my proposed
neural filtering method. Each time I run the query images through the pose estimation pipeline,
I report a number of metrics. The ground truth poses for the images were estimated using the
same method as in Chapter 4. I now describe the metrics I used and present the results.

101

5.5.3 Metrics

The metrics I use to evaluate the methods are similar as in Chapter 4, i.e. the average rotation
in degrees, translation in meters (centimetres for the retail shop), feature matching time in
milliseconds, consensus time (RANSAC runtime) in milliseconds and the mAA, mean average
accuracy as a percentage. I also use the same threshold values as in Chapter 4, listed in table
Table 4.3. All metrics are defined in Section 4.4.3. In this chapter, I also report an additional
metric called the Degenerate Pose. I believe this is necessary because when using the PM method,
the keypoints filtered out are more than 90 in certain cases, such as in LaMAR. I later show
that PM struggles to classify positive keypoints as true positives. This leads to less than four
keypoints, to be matched to a point cloud, which returns not pose for an image, i.e. degenerate
pose. A minimum of four matches are needed to estimate a pose using a perspective-n-point
solver [134], otherwise, that image is associated with a degenerate pose.

5.5.4 Results

In this section, I discuss the results of all three methods described in Section 5.3.2 and Section 5.4.
I start by reporting average metrics across all datasets, and then I examine each dataset separately.
Table 5.6 show the averaged results for CMU (24 slices), LaMAR (3 sub-datasets), and the
retail shop. Since the retail shop consists of one dataset, I just report its errors, there is nothing
to average. The translation is reported in centimetres (cm) for the retail shop, as the map spans
four/five meters, a small shop aisle. The CMU and LaMAR span hundreds of meters, and CAB
from LaMAR is also a multi-story map.

Table 5.6: I list the mean metrics for each dataset across all their slices. The first row is the name
of the dataset, the second is the name of the method, and the third row contains all the metrics
listed in this chapter. Only for the retail shop did I report the translation error in centimetres
(cm). The NF method reduces most keypoint numbers, which leads to faster feature matching,
but also does not deteriorate the pose errors, as PM.

Dataset CMU LaMAR Retail shop

Method MnM NF PM MnM NF PM MnM NF PM

Trans. Er.[m/cm] 0.59 1.30 12.13 2.58 2.65 19.27 0.52 0.54 1.52
Rot. Er.[°] 0.38 0.34 10.23 2.20 2.44 41.73 0.29 0.30 0.69
Consensus Time (ms) 32 10 6 187 105 4 12 10 6
Features Red.[%] 37.64 70.73 93.06 49.91 66.92 99.33 26.39 49.92 91.58
F.M. Time (ms) 104 66 19 2,254 1,703 45 1,020 754 142
mAA[%] 98.99 98.54 86.51 96.21 95.36 41.87 97.91 97.94 82.74

CMU Results: From Table 5.6, MnM returns the highest mAA for the CMU mAA = 98.99%,
followed by NF, mAA = 98.54%. At the same time, my proposed method, NF, is almost twice
as faster as the MnM, i.e. feature matching time is 66m on average for each query image (NF)

102

but 104ms for (MnM). NF return a higher translation error than MnM only by 71cm. CMU
slices span hundreds of meters. The method PM, although even faster than NF, the mAA is
lower at 86.51%, and returns the highest average translation and rotation errors compared to NF
and MnM for CMU. The task of my proposed method is to balance the reduction of keypoints
(or features) while keeping low camera pose errors. NF reduces the keypoints by a further
33%, hence is faster, compared to MnM, while keeping almost the same errors. PM is faster
than NF and MnM but fails to keep the pose errors low, and the mAA high. Adhering to this
line of reasoning, it would be unjustifiable to select the optimal technique based solely on the
mean average accuracy (mAA), since the objective of this chapter is not only to minimise pose
estimation errors but also to reduce the feature matching time. Hence why I did not bold a single
value in Table 5.6.

In Table 5.7, I emphasise the mAA, feature matching time (F.M time) and keypoint reduction
percentage. Table 5.7, shows in bold the percentage of keypoints reduction only if the mAA for
that slice is higher than the other two methods PM and MnM. From Table 5.7, the proposed
method NF reduces the keypoints more than the other two comparison methods while keeping
the same or returning higher mAA for 11 out of 24 CMU slices. PM outperforms NF and MnM
in only one slice, i.e. CMU slice 2, being the fastest and returning a mAA increase of only
0.34%. It is worth noting that in CMU slice 19, my method filters out 82.47% of the keypoints,
which is 58.56% more than the second-best performing method MnM, while returning a higher
mAA.

LaMAR Results: The fastest method is PM, but also returns the lowest mAA, at 41.87%.
From Table 5.6, NF is faster than MnM, at 1,703 milliseconds (ms) average feature matching
time, 551 milliseconds faster than MnM. NF maintains low pose estimation errors and a mAA
of 95.36%. MnM returns the higher mAA by only 0.85%, but it’s 551ms slower. PM returns the
fastest time at only 45ms average feature matching time but returns the highest average errors
and lowest mAA. I show why PM returns a mAA of only 56.56%, 47.91%, 21.13% in Table 5.8,
Table 5.9 and Table 5.10, respectively. The latter tables show the results for LaMAR for each
method, and for each sub-dataset, CAB, LIN, and HGE. The tables show that the method from
Hartmann et al. [76] struggles to learn the imbalanced dataset distribution of LaMAR, compared
to the NF and MnM methods. Hartmann et al. [76] define their own method to get the training
data as described in detail in Section 5.4. It does not account for the low number of positive
examples and the high number of negative samples. From Table 5.4, the percentage of positive
examples is 14% and the negative 86%.

To examine further why PM returns a lower mAA than NF and MnM, tables Table B.53,
Table B.54, Table B.55 report the precision, which I list here. The precision is the number of
positive class predictions that actually belong to the positive class. More specifically, precision
is defined as the fraction of true positives (TP) out of all positive predictions (TP + FP), i.e.
precision = TP

(TP+FP) . It measures how many of the predicted positive cases are actually
positive. The precision takes values from zero to one. One indicates perfect precision. More
info about the binary classifiers evaluation metrics and definitions in Appendix B.2. The true
positive samples (TP) are query image keypoints from the testing data that already have a match
to the point cloud. These keypoints are very likely to be matched to the map and less likely to

103

Table 5.7: In this table, I show only the keypoint reduction percentage, feature matching time
(F.M time) and, mAA, for all CMU slices. In bold are the keypoint reduction percentages of my
proposed method (NF) that also return an equal or higher mAA than the comparison methods
PM and MnM. For example, in slice 12, my NF method can filter out 70.25% of the keypoints
and return a higher mAA than PM and equal mAA to MnM. Another example in slice 19, my
NF method can filter out 58.56% of the keypoints and return a higher mAA than PM and MnM.

Keypoint Reduction[%] F.M Time[ms] MAA[%]

Method MnM NF PM MnM NF PM MnM NF PM

slice2 37.57 59.88 84.69 129 99 39 99.14 99.14 99.48
slice3 29.74 54.83 86.24 292 214 71 99.92 99.92 99.81
slice4 37.85 54.95 79.26 148 126 58 100.00 100.00 99.29
slice5 56.43 86.42 96.64 16 6 2 99.33 98.44 88.00
slice6 38.85 60.22 95.86 253 191 21 100.00 100.00 96.98
slice7 31.17 74.71 81.56 201 90 67 100.00 99.94 99.20
slice8 31.16 63.73 86.41 171 109 42 99.88 99.81 98.38
slice9 43.27 75.43 96.13 59 30 5 99.23 99.23 81.64
slice10 26.45 61.72 94.33 125 79 12 99.92 99.92 99.08
slice11 38.47 66.78 96.12 127 86 10 97.24 96.72 89.83
slice12 33.15 70.25 97.97 123 68 6 100.00 100.00 72.57
slice13 33.71 65.78 96.24 115 75 9 98.25 98.25 90.79
slice14 46.96 86.32 98.61 44 13 2 98.61 98.33 52.89
slice15 47.50 72.08 95.84 73 47 8 99.44 98.89 84.00
slice16 35.89 62.90 87.02 150 104 37 99.50 99.63 98.94
slice17 43.87 65.87 92.39 57 41 10 99.38 99.22 99.06
slice18 42.98 63.66 95.08 34 24 4 100.00 100.00 99.05
slice19 23.91 82.47 98.25 62 17 2 97.41 99.44 76.74
slice20 36.03 82.71 98.69 19 6 1 99.38 99.03 65.51
slice21 27.68 65.01 90.95 116 68 19 99.81 99.74 91.68
slice22 30.29 81.25 96.90 26 8 2 99.00 98.55 60.98
slice23 53.58 93.46 99.38 7 1 0 91.94 82.22 70.00
slice24 36.66 75.43 97.74 43 20 2 99.78 100.00 78.67
slice25 40.28 71.59 91.13 105 61 19 98.62 98.50 83.69

increase RANSAC’s runtime as they are already considered to be inliers. For PM, the precision
(and mAA) is 0.63 (mAA = 21.13%) for HGE, 0.73 (mAA = 47.91%) for CAB, and 0,88 (mAA
= 56.56%) for LIN, respectively. I notice that the higher the precision in LaMAR the higher
the mAA, for PM. Even when the precision is 0.88, the mAA is low at 56.56%. This indicates
that the number of TP samples predicted by PM is too low to be enough to estimate a pose with
low errors. Figure 5.4 shows a visualisation. In Figure 5.4, in the PM frame, the points that are
matchable and true positives are drastically reduced compared to the other methods, NF and
MnM. A low number of points are not desirable for pose estimation and can lead to poses with
high errors [217]. Points should be spread homogeneously across the camera frame for more

104

Table 5.8: The table shows the error metrics for the LaMAR LIN dataset.

Dataset LaMAR LIN

Method MnM NF PM

Translation Error[m] 0.03 0.03 23.03
Rotation Error[°] 0.11 0.12 25.85
Consensus Time (ms) 99 54 4.39
Features Reduction[%] 56.98 65.69 99.35
Feature Matching Time (ms) 3,026 2,631 64
mAA[%] 98.49 98.36 56.56
Degenerate Poses[%]. 0 0 57%

Table 5.9: The table shows the error metrics for the LaMAR CAB dataset.

Dataset LaMAR CAB

Method MnM NF PM

Translation Error[m] 1.99 0.81 16.23
Rotation Error[°] 2.63 2.43 30.11
Consensus Time (ms) 215 102 4.59
Features Reduction[%] 51.64 73.13 98.97
Feature Matching Time (ms) 1,034 632 36
mAA[%] 95.50 94.12 47.91
Degenerate Poses[%] 1 1 58%

Table 5.10: The table shows the error metrics for the LaMAR HGE dataset.

Dataset LaMAR HGE

Method MnM NF PM

Translation Error[m] 5.72 7.10 18.54
Rotation Error[°] 3.86 4.76 69.22
Consensus Time (ms) 247 157 3.76
Features Reduction[%] 41.10 61.94 99.67
Feature Matching Time (ms) 2,701 1,844 33
mAA[%] 94.64 93.60 21.13
Degenerate Poses[%] 0 0 73%

accurate pose estimation [44]. PM selects positive samples based on the criteria that a match is
positive if it appears at least once between any image pair of their training data. PM uses 13
left and right neighbours for a number of ransom images for their training data as described in
Section 5.4. For example, if point one is matched to point two in images 14 and 15, then point
one is a positive sample, and its SIFT descriptor is saved as positive. This can introduce noise as

105

one point can be only seen in two images and be a mismatch, e.g. a point on a tree matched to
another tree in the second image. If a point is matched across all the 13 left, or right images,
then it is most likely a point seen on a building or a static object.

Retail Shop Results: NF returns the highest mAA at 97.94% followed by MnM, which
returns an mAA of 97.91%. NF is faster than MnM by 26%, as it filters out 23.53% more
keypoints than MnM. NF is the best-performing method overall for the retail shop dataset. PM
follows the same trend as in the CMU and the LaMAR dataset, i.e. it discards too many true
positive samples and returns the lowest mAA and highest average translation and rotation errors
compared to MnM and NF. Even though PM is the fastest from NF and MnM, the mAA is
close to 15% less than NF and MnM All results for all methods and all CMU slices, LaMAR
sub-datasets and the retail shop are found in Appendix B.1. In addition, all binary classifiers
evaluation metrics are found in Appendix B.2 for all datasets. Table 5.11, shows the error metrics
for the retail shop.

Table 5.11: The table shows the error metrics for the retail shop dataset.

Dataset Retail shop

Method MnM NF PM

Translation Error[m] 0.01 0.01 0.02
Rotation Error[°] 0.29 0.30 0.69
Consensus Time (ms) 12 10 5.52
Features Reduction[%] 26.39 49.92 91.58
Feature Matching Time (ms) 1,020 754 142
mAA[%] 97.91 97.94 82.74
Degenerate Poses No. 0 0 0

Table 5.12, lists the total run times, including the inference time, for all the datasets, and the
mean mAA from Table 5.6. The timings are reported in milliseconds (ms). The total pose
estimation runtime is defined as the SIFT extraction time, the predictions models’ inference
time, the feature matching time, and the consensus time, which counts the PnP solver time
to estimate a pose in a RANSAC loop. The SIFT extraction time heavily depends on which
implementation the user chooses. I chose OpenCV, and for LaMAR’s query frames, I extracted
2000 SIFT features, taking an average of 443.0 milliseconds. For the retail and CMU datasets, I
extract 800 features, as described in Section 5.3.3. For the retail shop, it takes 40.6 milliseconds
on average. For the CMU slices, on average, SIFT extraction takes 10.34 milliseconds. The
frames for the retail shop and CMU have a lower resolution than the frames in LaMAR. The
prediction model from MnM is written in C++. The NF and PM prediction models are written in
Python. In all cases, PM is the fastest, with lower feature matching times and consensus times,
but also returns the lowest mAA compared to NF and MnM. For the retail shop, the NF method
is faster than MnM and returns a higher mAA. For LaMAR, NF is faster than MnM but returns
a slightly lower mAA. Note that the consensus time for NF for all datasets is lower than MnM,
but the mAA is still high and, in the retail shop, even the highest. This means that RANSAC is

106

getting less noisy matches with NF and is able to converge and estimate a pose fast.

Table 5.12: I report the total time it takes to estimate a pose for a query image. PM returns the
fastest feature matching times and consensus times but also the lowest mAA. Using PM, for
LaMAR, the mAA is only at 42% compared to NF and MnM, which are both over 95%. The
NF method offers a good balance between speed and accuracy. It is faster than MnM in LaMAR
and CMU but with a minor lower mAA, compared to MnM. For the Retail shop, the NF method
is faster than PM and MnM and also return the highest mAA.

CMU Avg Timings [ms]

Method MnM NF PM

SIFT Extraction 103.37 103.37 103.37
Inference Time 0.16 5.69 7.86
Feature Matching Time 104.42 63.71 19.11
Consensus Time 32.13 9.79 5.86
Total Time 240.08 182.56 136.20
mAA[%] 98.99 98.54 86.51

LaMAR Avg Timings [ms]

Method MnM NF PM

SIFT Extraction 443.00 443.00 443.00
Inference Time 0.28 6.50 9.20
Feature Matching Time 2,254 1,702 44
Consensus Time 186.80 104.64 4.25
Total Time 2,884.08 2,256.14 500.45
mAA[%] 96.21 95.36 41.87

Retail Avg [ms]

Method MnM NF PM

SIFT Extraction 40.62 40.62 40.62
Inference Time 0.15 5.23 8.27
Feature Matching Time 1,020 754 142
Consensus Time 12.16 9.97 5.52
Total Time 1,072.93 809.82 196.41
mAA[%] 97.91 97.94 82.74

5.5.5 Qualitative Results

In this section, I visualise a random number of images and their associated matchable, i.e.points
in green and non-matchable keypoints, i.e. points in red from the LaMAR, CMU and retail shop
dataset. I visualise the matchable keypoints from MnM, MF and PM and the live maps’ 3D
points projects on the image, i.e. the ground truth. I show that for random frames, my proposed

107

method can spot dynamic or static points that other methods fail to identify. In the examples
from the retail shop, it is more challenging to view the difference, as explained in Section 5.3.1,
the density of the localised camera frames is high than CMU and LaMAR. To elaborate on the
last statement, the retail shop data was collected over one week, and that is twice a day. This
means that product image points that were not bought during that time were triangulated into
3D points, even though they are dynamic points.

Figure 5.3: A random frame from LaMAR LIN, and the predictions non-matchable (red), and
matchable (green). For the ground truth, the green points are the keypoints that have a 3D point
matched in the live map, red if not. An area of interest is highlighted in yellow. MnM fails to
detect the leaves in the top left corner as non-matchable compared to NF, which discards more
points on leaves. PM fails to perform adequately and returns a small number of points on the
building.

108

Figure 5.4: A random frame from the retail shop, and the predictions non-matchable (red), and
matchable (green). For the ground truth, the green points are the keypoints that have a 3D point
matched in the live map, red if not. An area of interest is highlighted in yellow. MnM has a
minor difference from NF, but it detects more matchable points on products (bread) than NF.
NF’s central highlighted area is more similar to the ground truth’s highlighted area than MnM’s
highlighted area. PM result shows that it struggles to classify positives as true positives. Points
on permanent structures like the rail and grill, are all classified as non-matchable.

109

Figure 5.5: A random frame from CMU slice 4, and the predictions non-matchable (red), and
matchable (green). For the ground truth, the green points are the keypoints that have a 3D point
matched in the live map, red if not. An area of interest is highlighted in yellow. MnM classifies
a lot of vegetation as matchable in the highlighted areas. NF highlighted areas resemble the
highlighted areas in the ground truth frame. NF mostly classifies vegetation as dynamic points,
i.e. non-matchable. Similar to the previous figures, the PM result shows that it has difficulties
classifying even points on the church (static building) as matchable.

110

5.6 Conclusion

5.6.1 Summary of Contributions

In this chapter, I proposed and evaluated a single neural network to speed up feature matching
by discarding superfluous features before they are matched to an existing SfM map. I showed
that taking into consideration the imbalanced data nature of the problem, I can achieve a
better balance between feature matching speed and pose estimation errors compared to existing
methods. My results show a strong indication that neural networks are a promising option
for efficiently filtering out unmatchable image descriptors, which can significantly reduce
downstream computation time. My experiments show that keypoints can be reduced down to
30% and feature matching time almost down to half while keeping the pose error minimal
compared to other methods. The latter shows that having a large number of image feature points
does not necessarily improve pose estimates, and a large percentage of keypoints are noise
that do not contribute to lower camera pose errors. As with all methods, mine also presents
limitations, as I discuss in the next section.

5.6.2 Limitations

For some datasets, the feature matching time is decreased, because a large percentage of
dynamic keypoints are discarded by the network, but concurrently the pose errors might increase
compared to other methods such as the method from Papadaki and Hansch [132]. In many
cases, it may be desirable to tradeoff minimal pose accuracy for total runtime, e.g. to obtain
a sufficiently accurate pose estimate more quickly. Lastly, there is a preprocessing stage that
is the networks will have to be trained for each dataset separately, but that is necessary for the
comparison methods too.

5.6.3 Future Work

I believe that more dynamic keypoints can be discarded while keeping the pose errors minimal
or nonexistent. The latter might require more sophisticated neural network architectures as well
as additional input features beyond the raw SIFT descriptor I use, such as semantic information
[177, 191], can be appended in the input vectors for the networks, so points on permanent
structure, for example, are prioritised for feature matching. Additional adaptions also appear
necessary to develop a model that works well across different environments, from outdoor
environments with vegetation or suburban to indoor scenes, instead of having to train one neural
network for each outdoor dataset and indoor dataset. I release the source code of my work1,
which can be used to replicate the results from this chapter including the LATEX tables.

1https://github.com/alexs7/Neural-Feature-Filtering-for-Faster-Structure-from-Motion-Localization-Code

111

Chapter 6

Conclusions

6.1 Contributions Summary

In this thesis, I investigated the current state-of-the-art camera localisation methods focusing
more on long-term localisation. In this chapter, I re-state the research questions that this work
aimed to answer, summarise the contributions made and examine possible future work in
terms of research and industry. I started by introducing the importance of localisation and the
intelligent avatar deployment project. The work in this thesis is a collaboration between the
University of Bath, Dc-activ and LEGO. The initial requirements were tailored for developing
a solution to deploy intelligent avatars in a retail shop that could live in an augmented reality
environment. From early experiments and software application prototypes, I identified that to
capture a digital twin of a retail shop and use it for augmented reality localisation, the twin
needed to be robust against temporal changes, such as products moving around in the shop. The
digital twin or point cloud used for localisation must be memory efficient and utilise the vast
amount of incoming session data in a helpful way, such as it is updated and future localisation
attempts do not fail. There is no off-the-shelf solution or open-source software that addresses
the problem directly.

In Chapter 1, the two research questions are defined. The first one is how an agent with a
monocular camera can successfully and accurately localise over a long period. To answer the
above, I proposed a novel method in Chapter 4, for automatically discovering which points in a
map remain stable over time, and which are due to transient changes. To this end, I calculate
a stability store for each point based on its visibility over time, weighted by an exponential
decay over time. This allows me to consider the impact of time when scoring points, and to
distinguish which points are useful for long-term localisation. The method proposed updates
a base map over time as new data arrives to maintain an up-to-date live map. I show that this
enables the localisation of unseen query images in the live map with higher accuracy and speed
than using the initial base map. I evaluated my method on the 24 slices from CMU Extended
Seasons dataset (outdoors), a new indoor dataset of a retail shop that I collected over the span of
one week, and LaMAR a new state-of-the-art dataset used for augmented reality benchmarks.
I showed the benefit of maintaining a ‘live map’ that integrates updates over time using our

113

exponential decay-based method over a static ‘base map’. The experiments and results are
presented and discussed respectively in Chapter 4.

During the following experiments, I noticed that slow localisation speed had a major negative
impact on the user experience. I had to hold the phone steadily for a prolonged period to get a
camera pose estimate, before relying on the local device’s tracking. I additionally noticed that
a large number of keypoints, detected on dynamic objects are not needed and act as outliers
hence increasing RANSAC’s runtime exponentially. After investigating current approaches, I
decided to propose my own that utilises existing SfM data, i.e. the matched data for each 2D
detected keypoint to a 3D point. Because the bottleneck in localisation pipelines is typically
feature matching, which becomes slower as more features are considered, this work focuses on
improving feature matching speed. Naturally, this led to the second research question; how can
I improve localisation speed and, more specifically the feature matching stage? To answer the
above, I proposed a neural filtering stage that reduces the number of features, drastically hence
reducing feature matching time with very minimal to no loss in accuracy. This is achieved by
training a dataset-specific neural network to estimate how reliable (or matchable) each detected
feature descriptor is. This allows me to efficiently select only the top 30% most matchable
keypoints for the remaining pose estimation pipeline. This method is applicable to any existing
structure-from-motion data, because for each keypoint in the localised image the ‘matched
to a 3D point’ value is available. I evaluated my method on large datasets (both outdoors
and indoors), i.e. all 24 slices of CMU, retail shop and LaMAR and observed speed-ups in
feature matching. I compare my neural network to existing methods [76, 132] that attempt to
tackle the same problem and I show that my method outperforms the comparison methods by
keeping a higher balance between reducing features and keeping pose estimation errors low.
The experiments and results are presented and discussed respectively in Chapter 5.

Given the two methods mentioned above, i.e. my improvements in structure-from-motion based
long-term localisation, I hope they will be a contribution and helpful to the research community.

Keeping in mind my industrial supervisors’ needs and requirements, I also developed proof-
of-concept software applications that showcased; intelligent avatars are possible. In Chapter 3
I show practical examples of intelligent avatars deployed in an AR environment. I show that
the gap between the real and virtual world can be minimised; the virtual avatar recognised real
products in the first prototype. In addition, I add rudimentary intelligence to these avatars by
using existing APIs, in a second prototype. I can talk to the avatar and enquire about current
products. The avatar understands my question, using the speech-to-text IBM service and triggers
a query to a remote database that fetches information and the virtual product. All this happens
in an augmented reality environment. As with every method introduced, there are of course
limitations.

6.2 Limitations

This section will present the limitations of my two proposed contributions and the technical
limitations that I encountered while developing application prototypes for my industrial partner.

114

ExMaps has been shown to improve long-term localisation as long as certain assumptions hold.
For example, the map needs to be frequently updated with incoming query images that can be
localised. The frequent update from users’ mobile phones is expected for busy establishments
such as retail shops or malls, where people are most likely to use their devices frequently. If there
is a significant disparity between sessions and the natural environment changes, localisation
will likely suffer due to the difference between the query images and the offline map.

Neural Feature Filtering currently uses only SIFT vectors and its additional metadata for train-
ing the neural network. The available metadata is only available as of today from OpenCV [21].
This is a minor implementation limitation. If a third party was to implement a faster sift detector,
they will need to consider extracting the metadata as well. There is the overhead of training the
neural networks, and appropriate data pre-filtering makes the method more time-consuming
to deploy, but this also arises with the other comparison methods too. The methods do not
generalise yet well between scenes. If a network learns to differentiate between static and
dynamic keypoints in an indoor environment, it will not perform similarly well for an outdoor
scene. For example, I can’t train the network on a retail shop dataset and expect it to perform
reasonably well in an outdoor environment.

Industrial Application Prototypes. In Chapter 3, I have demonstrated that a 3D scan of an
environment is possible and can localise a camera frame against a 3D scanned model. Early
results showed slow and reduced pose estimation accuracy results compared to SfM-based
localisation. The localisation prototype was quickly dropped after the initial results per my
industrial supervisor’s request. The work I present in Chapter 3 was the two most successful
prototypes of intelligent avatars in AR. Even though they showcase that an intelligent version
of a small virtual avatar is possible, they are still planned to be deployed in a real shop at a
larger size. The research software for localisation used for the work in Chapter 3, Chapter 4 and
Chapter 5, is not yet production-ready. The code is available to be used, but not offered as a
scalable and deployable service. This means that it can be deployed on a GPU-enabled server as
the code can benefit from GPU acceleration. The current codebase will have to be modified to
deal with concurrent pose estimation queries from different users.

The limitations open new doors for future work that I discuss in the next section.

6.3 Future Work

This section proposes potential solutions that can address the limitation I mentioned earlier.

ExMaps has been proven to improve long-term localisation, but the slow application of ex-
ponential decay on the visibility matrix of a SfM can be sped up with the use of GPUs. An
alternative would be to parallelise the process. Because each column of the visibility matrix is
independent during the exponential decay application, the process can be distributed among
many processing units. Since each 3D point in the point cloud is now associated with a stability
score, the same score can be used for map compression. The 3D points can be sorted by the per
image or per session score that contains temporal information, and the top % can be chosen.
Compressing the map will result in static map points that are more likely to be matched to

115

query image keypoints for the simple reason that fewer static points or even dynamic points are
already purged. If an ExMap is deployed in an environment where users do not frequently visit
the shop, the most straightforward solution to combat this would be manually adding data to the
map, which can be cumbersome. For example, the admin responsible for the map could add
data at a particular frequency. Or an automated solution can be explored where synthetic views
are generated to fill the gaps.

The following limitation of ExMaps is that it only uses SIFT vectors for matching images
keypoints to 3D points. Although this is the standard for many conventional pipelines, I could
benefit from additional semantic information to attempt and solve the long-term localisation
problem. Image keypoints detected on buildings and pedestrian walks can be treated differently
from a keypoint detected on a human or a tree. An exciting avenue of future work would be
extending ExMaps and incorporating semantic information. A frame could be passed through
a semantics detecting neural network. By including semantic information, points detected on
buildings or any other permanent structure could have a different weighting from points detected
on trees. A different neural network can be trained to detect products on shelves for the retail
shop scenario. The points on the products can then be discarded for estimating a pose as they
tend to be highly dynamic objects. Points of dynamic objects tend to have high deviation values
between their descriptors. Investigating the descriptors of each 3D point and their properties,
such as deviation, could indicate which points are static and which are not.

Neural Feature Filtering, has shown to increase feature-based pose estimation speed. More
specifically, it speeds up feature matching by 30% times compared to comparison methods,
as shown in Chapter 5, keeping the pose estimation errors low. This shows the promising
potential of our work. Further modifications to the data can also include more information
instead of using only SIFT descriptors and their metadata. To avoid possible over-fitting, I could
include additional input data to the networks, such as pixel colour, and semantic class (building,
road, vegetation), but make sure that the extra prediction time is cancelled out by the further
increase in feature matching speed. Alternative learned descriptors can be explored, such as
SuperPoint [45].

Industrial Application Prototypes: A large portion of the future work can be allocated to the
industrial application prototypes. The first localisation prototype using a scanned 3D model
was dropped because of monetary and budgeting issues from my industrial partner. It is worth
exploring further as I believe that if the model is accurate enough then at least, a decent pose
estimate can be retrieved, compared to SfM-based localisation.

Intelligent avatars have unlimited potential, and that implies future work too. The first obvious
step will be to deploy the avatars in a real shop, in a certain area, i.e. using markers. The avatars
can have roughly the same height as the user (the height can be set after the shoppers’ pose is
estimated). They can be assigned a simple task of showcasing products asked by the shopper to
start. This opens further future work; the avatars can be used by human-computer interaction
(HCI) researchers as a sandbox for future research. Custom speech recognition solutions can be
developed that are more tailored to the retail shop scenario instead of relying on an external paid
API; bringing also costs down. Recent breakthrough improvements in large-language-models
such as ChatGPT[24] can be explored, given the industrial’s permission.

116

The next step will be a proper commercial deployment of my pose estimation pipeline, and the
development of a cross-platform app that can query the pipeline. Currently, the phone has to be
connected to the computer that runs the server because of the large bandwidth needed to transmit
the amount of data. Streaming data from the phone has to be compressed first and then sent over
a wireless network. Following that, I can then integrate my deployed pose estimation pipeline
with the intelligent avatars, using remote servers. This integration will allow for spawning with
avatars and interacting with them in a retail shop freely and available to customers.

6.4 Lessons Learned

This work resulted from a partnership between my industrial supervisors and the University
of Bath. I got exposed to the industrial work environment and simultaneously to the academic
environment. From my experience with both sides, I have noticed that academia and industry
have different end goals.

The industry cares about an outcome that will bring back monetary value to them, without
necessarily them needing to know the intricacies of how they will achieve their goal. The
expected outcome, e.g. a product, needs to satisfy a list of functional requirements and be sold
as a product to a client. A company will seek to create a minimum viable product to present
to the client as soon as possible and repeat the same process until the product is finalised and
ready to be handed off. In industry, there is usually limited to no time to carry out research,
e.g. reading papers, running other academics’ code, and comparing results with the hope of
delivering a state-of-the-art solution. During my time working in the industry, I noticed that
there is a lot of manual labour that could be automated, but there was no research carried out
to apply an automated solution. Off-the-shelve solutions are preferred as they save money and
time. Commercial solutions are not tailored to satisfy a project’s requirements, and during the
start of my work with my industrial partner, I found myself tweaking and heavily modifying
existing off-the-shelf software.

Pushing current available commercial solutions to their limits led me to a more research-
based task, i.e., developing my own localisation pipeline. Hence, when I started developing
my own localisation pipeline, I discovered that some open research problems needed to be
answered. Efficient and long-term localisation are still two unsolved problems, and that is when
I switched to academia. Academia is highly research and novelty-focused, and research is
done not for releasing a product or making money but sometimes simply for learning. Impact
and contributions in academia are measured with novelty, whereas in the industry are purely
monetary. I present two novel methods that improve localisation speed and long-term localisation.
Efficient and long-term localisation is needed so that the overall platform with intelligent avatars
could become a viable product.

I hope my current contributions will be helpful to other research community members and
valuable to the industry.

117

Appendix A

Detailed Results for Chapter 4

A.1 Chapter 4 Table Results

I list the comprehensive result for all datasets. Each table shows all methods and scores evaluated.
I show the total average matches, inliers, and outliers. In addition, I list the iterations required
for each method, and the time taken to converge to a pose estimate in milliseconds. Lastly, I
report the translation error in meters, the rotation error and the mean average accuracy. For
the retail shop, I use centimetres because of the smaller scene. Each method was evaluated
three times on the CMU and Retail shop datasets and five times for the LaMAR dataset. The
average of the runs is listed in the tables below. For example, the Total M. column shows the
total matches number divided by the number of images (mean), summed over the number of
runs, and then divided by the number of runs, similarly for the other metrics.

119

Table A.1: CMU Slice #2 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average accuracy (mAA)
for all methods. The best performing method is highlighted in bold (by mAA). The values were
obtained by averaging all the metrics over all the query images in the slice, and then averaging
over 5 benchmark runs.

Total M. Inl. (%) Outl. (%) Iters Time (ms) Er.[m] Er.[°] mAA(%)

Slice #2
Base Map
RANSAC [59] 26,536 40 60 665 146.28 0.48 0.82 87.09
PROSAC [36] (d2=d1) 26,536 36 64 5 1.75 1.08 1.78 70.12

Live Map
RANSAC with �s

1 30,901 49 51 367 81.94 0.32 0.46 90.67
RANSAC with �i

1 30,901 49 51 384 85.73 0.31 0.48 90.48
RANSAC with v1 30,901 49 51 374 83.85 0.33 0.47 90.41
RANSAC [59] 30,901 49 51 377 84.22 0.35 0.52 89.66
PROSAC with (�s

1=�s
2) 30,901 42 58 69 13.57 0.78 1.10 75.78

PROSAC with (�i
1=�i

2) 30,901 41 59 73 14.31 0.82 1.12 75.57
PROSAC [36] (d2=d1) 30,901 44 56 5 1.96 1.08 1.62 69.69
PROSAC with �s

1 30,901 31 69 23 5.45 1.95 1.65 52.33
PROSAC with �i

1 30,901 29 71 21 5.03 2.38 1.71 49.48
PROSAC with v1 30,901 27 73 34 7.18 2.98 2.17 46.38

120

Table A.2: CMU Slice #3 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average accuracy (mAA)
for all methods. The best performing method is highlighted in bold (by mAA). The values were
obtained by averaging all the metrics over all the query images in the slice, and then averaging
over 5 benchmark runs.

Total M. Inl. (%) Outl. (%) Iters Time (ms) Er.[m] Er.[°] mAA(%)

Slice #3
Base Map
RANSAC [59] 50,179 32 68 1,305 286.44 3.55 4.20 78.07
PROSAC [36] (d2=d1) 50,179 27 73 92 16.27 1.57 1.78 68.67

Live Map
RANSAC with �i

1 54,418 37 63 877 192.12 1.05 1.29 85.69
RANSAC with �s

1 54,418 37 63 895 196.91 1.18 1.37 85.39
RANSAC [59] 54,418 37 63 872 191.07 0.99 1.07 85.30
RANSAC with v1 54,418 37 63 890 196.52 1.15 1.39 84.89
PROSAC with (�i

1=�i
2) 54,418 34 66 142 26.87 1.01 1.18 78.05

PROSAC with (�s
1=�s

2) 54,418 34 66 139 26.15 1.01 1.18 77.86
PROSAC [36] (d2=d1) 54,418 30 70 21 4.51 1.43 1.69 66.83
PROSAC with �i

1 54,418 28 72 87 16.94 1.78 1.78 61.31
PROSAC with �s

1 54,418 28 72 80 15.69 1.76 1.71 61.19
PROSAC with v1 54,418 24 76 108 20.84 1.88 1.84 56.08

121

Table A.3: CMU Slice #4 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average accuracy (mAA)
for all methods. The best performing method is highlighted in bold (by mAA). The values were
obtained by averaging all the metrics over all the query images in the slice, and then averaging
over 5 benchmark runs.

Total M. Inl. (%) Outl. (%) Iters Time (ms) Er.[m] Er.[°] mAA(%)

Slice #4
Base Map
RANSAC [59] 32,176 43 57 1,306 274.86 4.57 7.67 82.10
PROSAC [36] (d2=d1) 32,176 37 63 79 13.89 1.63 2.92 69.46

Live Map
RANSAC with �i

1 36,699 49 51 833 179.15 1.39 1.45 93.15
RANSAC [59] 36,699 49 51 842 180.47 1.24 1.92 92.20
RANSAC with �s

1 36,699 49 51 842 180.71 1.29 1.68 92.04
RANSAC with v1 36,699 49 51 842 181.25 1.54 1.83 91.66
PROSAC with (�i

1=�i
2) 36,699 44 56 156 27.58 0.71 1.14 81.60

PROSAC with (�s
1=�s

2) 36,699 42 58 142 25.19 0.93 1.49 76.27
PROSAC [36] (d2=d1) 36,699 41 59 44 8.34 1.69 2.93 67.25
PROSAC with v1 36,699 38 62 112 20.08 1.69 2.89 66.07
PROSAC with �i

1 36,699 36 64 135 24.33 2.38 3.72 62.89
PROSAC with �s

1 36,699 37 63 121 22.14 2.25 3.41 62.11

122

Table A.4: CMU Slice #5 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average accuracy (mAA)
for all methods. The best performing method is highlighted in bold (by mAA). The values were
obtained by averaging all the metrics over all the query images in the slice, and then averaging
over 5 benchmark runs.

Total M. Inl. (%) Outl. (%) Iters Time (ms) Er.[m] Er.[°] mAA(%)

Slice #5
Base Map
PROSAC [36] (d2=d1) 6,842 15 85 465 75.68 0.68 1.46 73.91
RANSAC [59] 6,842 14 86 2,744 574.88 7.20 14.62 60.44

Live Map
RANSAC with �i

1 7,605 21 79 2,129 454.15 1.09 3.05 78.22
RANSAC with �s

1 7,605 21 79 2,147 459.20 1.38 3.24 76.04
RANSAC [59] 7,605 21 79 2,121 453.24 0.79 2.50 76.00
RANSAC with v1 7,605 21 79 2,133 457.36 1.04 2.93 74.27
PROSAC [36] (d2=d1) 7,605 18 82 109 20.05 1.00 1.77 63.56
PROSAC with (�i

1=�i
2) 7,605 18 82 213 36.42 1.03 1.67 63.33

PROSAC with (�s
1=�s

2) 7,605 17 83 178 30.19 1.19 1.94 58.40
PROSAC with �i

1 7,605 15 85 271 45.90 1.52 2.66 51.73
PROSAC with �s

1 7,605 15 85 287 48.38 1.57 2.67 50.71
PROSAC with v1 7,605 15 85 178 29.81 1.47 2.61 50.31

123

Table A.5: CMU Slice #6 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average accuracy (mAA)
for all methods. The best performing method is highlighted in bold (by mAA). The values were
obtained by averaging all the metrics over all the query images in the slice, and then averaging
over 5 benchmark runs.

Total M. Inl. (%) Outl. (%) Iters Time (ms) Er.[m] Er.[°] mAA(%)

Slice #6
Base Map
PROSAC [36] (d2=d1) 31,652 20 80 500 80.87 2.97 4.09 84.44
RANSAC [59] 31,652 19 81 2,422 491.61 16.67 21.80 65.11

Live Map
PROSAC with (�s

1=�s
2) 34,560 25 75 359 59.75 0.39 0.70 91.06

PROSAC with (�i
1=�i

2) 34,560 25 75 372 61.99 0.37 0.67 90.40
RANSAC with v1 34,560 27 73 1,749 359.58 3.94 3.80 87.66
RANSAC with �s

1 34,560 27 73 1,751 360.57 4.30 4.53 87.04
RANSAC [59] 34,560 27 73 1,751 360.18 4.34 5.15 87.01
PROSAC [36] (d2=d1) 34,560 25 75 123 20.62 0.61 1.00 86.86
RANSAC with �i

1 34,560 26 74 1,766 362.58 4.00 5.26 86.80
PROSAC with v1 34,560 23 77 285 47.54 1.34 1.08 85.76
PROSAC with �s

1 34,560 23 77 246 41.56 1.58 1.07 84.08
PROSAC with �i

1 34,560 22 78 263 44.59 0.95 1.11 83.94

124

Table A.6: CMU Slice #7 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average accuracy (mAA)
for all methods. The best performing method is highlighted in bold (by mAA). The values were
obtained by averaging all the metrics over all the query images in the slice, and then averaging
over 5 benchmark runs.

Total M. Inl. (%) Outl. (%) Iters Time (ms) Er.[m] Er.[°] mAA(%)

Slice #7
Base Map
PROSAC [36] (d2=d1) 28,594 20 80 213 34.35 0.21 0.81 94.19
RANSAC [59] 28,594 21 79 1,975 408.68 7.09 9.65 86.86

Live Map
PROSAC with (�s

1=�s
2) 31,865 26 74 255 43.28 0.19 0.34 96.49

PROSAC with (�i
1=�i

2) 31,865 26 74 262 45.04 0.20 0.35 96.33
RANSAC with v1 31,865 28 72 1,252 263.51 1.04 1.38 96.27
RANSAC with �s

1 31,865 28 72 1,258 264.61 1.35 2.39 96.09
RANSAC [59] 31,865 28 72 1,260 264.11 2.28 2.38 95.95
RANSAC with �i

1 31,865 28 72 1,256 263.74 1.05 2.62 95.73
PROSAC [36] (d2=d1) 31,865 25 75 35 6.88 0.18 0.63 95.40
PROSAC with v1 31,865 21 79 316 55.17 0.53 0.61 88.81
PROSAC with �s

1 31,865 21 79 210 37.10 0.49 0.64 88.16
PROSAC with �i

1 31,865 20 80 213 37.78 0.52 0.63 86.89

125

Table A.7: CMU Slice #8 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average accuracy (mAA)
for all methods. The best performing method is highlighted in bold (by mAA). The values were
obtained by averaging all the metrics over all the query images in the slice, and then averaging
over 5 benchmark runs.

Total M. Inl. (%) Outl. (%) Iters Time (ms) Er.[m] Er.[°] mAA(%)

Slice #8
Base Map
PROSAC [36] (d2=d1) 24,414 21 79 212 34.27 0.64 1.49 78.46
RANSAC [59] 24,414 22 78 1,815 367.33 12.02 11.99 77.50

Live Map
RANSAC with �s

1 28,348 32 68 927 191.67 2.48 3.26 89.65
RANSAC with v1 28,348 32 68 941 194.25 2.91 4.33 89.51
RANSAC [59] 28,348 32 68 937 193.27 5.22 4.02 89.44
RANSAC with �i

1 28,348 32 68 929 190.99 4.07 3.83 89.03
PROSAC with (�s

1=�s
2) 28,348 29 71 240 40.47 0.40 0.87 88.97

PROSAC with (�i
1=�i

2) 28,348 30 70 264 44.18 0.39 0.83 88.67
PROSAC with �i

1 28,348 23 77 229 38.74 0.99 2.09 78.95
PROSAC with �s

1 28,348 23 77 229 38.51 1.07 2.27 78.79
PROSAC [36] (d2=d1) 28,348 28 72 55 9.45 0.73 1.81 74.25
PROSAC with v1 28,348 21 79 190 32.99 1.21 2.57 67.86

126

Table A.8: CMU Slice #9 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average accuracy (mAA)
for all methods. The best performing method is highlighted in bold (by mAA). The values were
obtained by averaging all the metrics over all the query images in the slice, and then averaging
over 5 benchmark runs.

Total M. Inl. (%) Outl. (%) Iters Time (ms) Er.[m] Er.[°] mAA(%)

Slice #9
Base Map
RANSAC [59] 10,700 18 82 2,256 468.76 4.65 8.93 66.03
PROSAC [36] (d2=d1) 10,700 17 83 300 50.52 1.95 3.85 63.63

Live Map
PROSAC with (�i

1=�i
2) 10,940 18 82 393 66.12 0.75 1.47 77.97

PROSAC with (�s
1=�s

2) 10,940 18 82 375 63.11 1.05 1.99 75.57
PROSAC with �i

1 10,940 18 82 277 47.61 0.90 1.81 73.23
RANSAC with v1 10,940 18 82 2,258 471.46 4.17 5.83 73.23
PROSAC with �s

1 10,940 17 83 333 56.98 1.00 2.00 71.88
RANSAC with �i

1 10,940 18 82 2,204 460.23 3.41 6.12 71.85
PROSAC [36] (d2=d1) 10,940 17 83 248 42.45 1.43 2.82 70.71
RANSAC [59] 10,940 18 82 2,229 466.15 3.69 6.71 70.37
RANSAC with �s

1 10,940 18 82 2,267 472.17 5.10 7.62 69.02
PROSAC with v1 10,940 16 84 284 47.50 1.53 2.99 68.55

127

Table A.9: CMU Slice #10 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average accuracy (mAA)
for all methods. The best performing method is highlighted in bold (by mAA). The values were
obtained by averaging all the metrics over all the query images in the slice, and then averaging
over 5 benchmark runs.

Total M. Inl. (%) Outl. (%) Iters Time (ms) Er.[m] Er.[°] mAA(%)

Slice #10
Base Map
PROSAC [36] (d2=d1) 16,524 18 82 75 12.86 0.45 1.10 87.08
RANSAC [59] 16,524 19 81 2,299 455.41 5.00 9.06 78.00

Live Map
PROSAC [36] (d2=d1) 17,296 20 80 84 14.16 0.49 1.12 86.86
PROSAC with (�s

1=�s
2) 17,296 19 81 396 63.44 0.52 1.06 85.95

RANSAC with �s
1 17,296 21 79 2,140 427.62 2.81 6.01 85.60

PROSAC with (�i
1=�i

2) 17,296 19 81 417 66.38 1.11 2.25 85.50
RANSAC with v1 17,296 21 79 2,139 427.56 2.47 4.57 84.79
RANSAC with �i

1 17,296 21 79 2,132 426.88 3.15 5.38 84.77
RANSAC [59] 17,296 21 79 2,161 432.86 2.65 6.47 82.56
PROSAC with �s

1 17,296 17 83 393 63.67 0.63 1.37 80.42
PROSAC with �i

1 17,296 18 82 372 59.75 1.87 2.40 79.66
PROSAC with v1 17,296 17 83 376 60.35 0.77 1.64 79.01

128

Table A.10: CMU Slice #11 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average accuracy (mAA)
for all methods. The best performing method is highlighted in bold (by mAA). The values were
obtained by averaging all the metrics over all the query images in the slice, and then averaging
over 5 benchmark runs.

Total M. Inl. (%) Outl. (%) Iters Time (ms) Er.[m] Er.[°] mAA(%)

Slice #11
Base Map
PROSAC [36] (d2=d1) 7,971 11 89 795 125.74 1.02 2.22 65.17
RANSAC [59] 7,971 9 91 2,980 594.42 12.82 30.41 37.21

Live Map
PROSAC with (�i

1=�i
2) 8,712 16 84 68 11.99 0.79 1.73 74.93

RANSAC with �i
1 8,712 17 83 2,551 521.50 1.29 3.82 71.72

RANSAC [59] 8,712 17 83 2,556 521.22 1.17 3.35 70.90
PROSAC with �i

1 8,712 15 85 106 17.75 0.98 2.07 70.83
RANSAC with �s

1 8,712 17 83 2,548 519.54 1.07 2.39 70.45
PROSAC with (�s

1=�s
2) 8,712 16 84 73 13.04 0.98 2.09 69.62

RANSAC with v1 8,712 17 83 2,522 515.34 1.43 3.97 69.52
PROSAC [36] (d2=d1) 8,712 16 84 35 6.46 0.92 1.96 69.24
PROSAC with v1 8,712 15 85 26 4.94 1.06 2.08 68.72
PROSAC with �s

1 8,712 15 85 81 14.13 1.15 2.36 66.86

129

Table A.11: CMU Slice #12 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average accuracy (mAA)
for all methods. The best performing method is highlighted in bold (by mAA). The values were
obtained by averaging all the metrics over all the query images in the slice, and then averaging
over 5 benchmark runs.

Total M. Inl. (%) Outl. (%) Iters Time (ms) Er.[m] Er.[°] mAA(%)

Slice #12
Base Map
PROSAC [36] (d2=d1) 12,043 25 75 86 14.28 0.45 0.94 84.62
RANSAC [59] 12,043 26 74 1,538 310.99 1.77 2.98 83.66

Live Map
RANSAC with v1 12,384 28 72 1,385 281.16 1.91 3.45 88.34
RANSAC [59] 12,384 28 72 1,389 281.81 0.86 2.15 88.31
RANSAC with �s

1 12,384 28 72 1,387 281.13 1.45 3.02 87.09
RANSAC with �i

1 12,384 28 72 1,393 282.44 1.14 2.44 87.06
PROSAC [36] (d2=d1) 12,384 25 75 91 15.12 0.44 0.90 87.04
PROSAC with (�i

1=�i
2) 12,384 24 76 209 33.69 0.45 0.92 85.12

PROSAC with (�s
1=�s

2) 12,384 24 76 191 31.02 0.49 0.95 85.09
PROSAC with v1 12,384 23 77 187 30.18 0.58 1.08 79.84
PROSAC with �i

1 12,384 22 78 160 25.73 0.63 1.25 78.78
PROSAC with �s

1 12,384 21 79 185 29.64 0.84 1.64 77.17

130

Table A.12: CMU Slice #13 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average accuracy (mAA)
for all methods. The best performing method is highlighted in bold (by mAA). The values were
obtained by averaging all the metrics over all the query images in the slice, and then averaging
over 5 benchmark runs.

Total M. Inl. (%) Outl. (%) Iters Time (ms) Er.[m] Er.[°] mAA(%)

Slice #13
Base Map
PROSAC [36] (d2=d1) 8,988 14 86 992 156.24 4.71 4.61 64.54
RANSAC [59] 8,988 13 87 2,715 542.01 25.55 34.81 38.63

Live Map
PROSAC with �i

1 9,918 19 81 127 21.94 0.69 1.13 78.51
PROSAC with (�s

1=�s
2) 9,918 22 78 121 20.80 0.82 1.01 77.75

PROSAC with (�i
1=�i

2) 9,918 21 79 114 19.42 0.81 1.02 77.59
PROSAC with �s

1 9,918 20 80 164 27.80 0.77 1.23 76.89
RANSAC with �s

1 9,918 22 78 2,026 411.39 3.12 4.17 73.91
PROSAC with v1 9,918 21 79 139 23.16 0.97 1.33 73.52
RANSAC with v1 9,918 22 78 2,018 411.19 2.86 4.69 73.33
RANSAC [59] 9,918 22 78 2,041 414.12 1.94 3.86 72.86
RANSAC with �i

1 9,918 22 78 2,007 407.92 2.24 4.53 72.73
PROSAC [36] (d2=d1) 9,918 20 80 40 7.22 1.16 1.48 69.94

131

Table A.13: CMU Slice #14 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average accuracy (mAA)
for all methods. The best performing method is highlighted in bold (by mAA). The values were
obtained by averaging all the metrics over all the query images in the slice, and then averaging
over 5 benchmark runs.

Total M. Inl. (%) Outl. (%) Iters Time (ms) Er.[m] Er.[°] mAA(%)

Slice #14
Base Map
PROSAC [36] (d2=d1) 10,954 14 86 245 38.65 0.68 1.18 78.72
RANSAC [59] 10,954 13 87 2,786 562.23 8.35 16.37 61.19

Live Map
PROSAC with (�i

1=�i
2) 11,617 17 83 299 50.44 0.53 0.99 82.56

PROSAC with (�s
1=�s

2) 11,617 17 83 299 49.92 0.55 0.99 80.28
PROSAC with �i

1 11,617 15 85 347 57.65 0.67 1.23 78.25
PROSAC with �s

1 11,617 16 84 299 50.14 0.64 1.22 77.75
PROSAC with v1 11,617 15 85 524 87.17 0.78 1.39 77.58
PROSAC [36] (d2=d1) 11,617 17 83 175 28.74 0.88 1.52 75.69
RANSAC with �s

1 11,617 17 83 2,432 500.95 3.16 5.81 75.28
RANSAC with v1 11,617 17 83 2,422 500.47 3.17 6.89 74.36
RANSAC [59] 11,617 17 83 2,440 500.43 4.84 8.84 74.03
RANSAC with �i

1 11,617 17 83 2,444 502.24 3.49 6.15 73.47

132

Table A.14: CMU Slice #15 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average accuracy (mAA)
for all methods. The best performing method is highlighted in bold (by mAA). The values were
obtained by averaging all the metrics over all the query images in the slice, and then averaging
over 5 benchmark runs.

Total M. Inl. (%) Outl. (%) Iters Time (ms) Er.[m] Er.[°] mAA(%)

Slice #15
Base Map
PROSAC [36] (d2=d1) 7,626 16 84 528 82.28 0.66 1.07 75.37
RANSAC [59] 7,626 15 85 2,482 497.54 16.42 23.63 55.93

Live Map
PROSAC [36] (d2=d1) 8,135 21 79 11 2.34 0.53 0.88 80.33
PROSAC with (�i

1=�i
2) 8,135 22 78 201 33.34 0.57 0.90 79.52

PROSAC with (�s
1=�s

2) 8,135 22 78 157 26.27 0.66 1.04 77.63
RANSAC with v1 8,135 22 78 1,740 350.11 4.29 6.04 74.67
RANSAC with �s

1 8,135 22 78 1,744 350.82 3.77 5.78 74.19
RANSAC with �i

1 8,135 22 78 1,716 345.99 4.26 5.17 73.89
PROSAC with v1 8,135 21 79 97 16.69 0.70 1.12 73.37
PROSAC with �s

1 8,135 21 79 144 24.02 0.79 1.23 73.04
RANSAC [59] 8,135 22 78 1,716 345.29 5.99 6.20 72.22
PROSAC with �i

1 8,135 20 80 129 22.01 0.79 1.21 71.78

133

Table A.15: CMU Slice #16 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average accuracy (mAA)
for all methods. The best performing method is highlighted in bold (by mAA). The values were
obtained by averaging all the metrics over all the query images in the slice, and then averaging
over 5 benchmark runs.

Total M. Inl. (%) Outl. (%) Iters Time (ms) Er.[m] Er.[°] mAA(%)

Slice #16
Base Map
PROSAC [36] (d2=d1) 24,525 13 87 1,372 218.75 8.99 8.31 73.95
RANSAC [59] 24,525 11 89 2,688 547.84 37.02 44.10 38.04

Live Map
PROSAC with (�s

1=�s
2) 26,619 19 81 712 118.18 2.69 2.61 79.54

PROSAC with (�i
1=�i

2) 26,619 19 81 684 113.83 2.64 2.66 78.99
PROSAC [36] (d2=d1) 26,619 18 82 303 49.07 1.12 1.72 78.00
PROSAC with v1 26,619 16 84 505 83.06 1.90 2.13 71.84
PROSAC with �s

1 26,619 15 85 602 101.36 1.83 2.34 70.17
PROSAC with �i

1 26,619 15 85 690 115.73 2.86 3.26 69.34
RANSAC with v1 26,619 19 81 2,281 467.87 9.83 14.44 69.33
RANSAC with �s

1 26,619 19 81 2,297 470.33 10.69 13.85 69.16
RANSAC [59] 26,619 19 81 2,283 467.72 12.50 16.11 68.70
RANSAC with �i

1 26,619 19 81 2,285 467.74 10.54 14.69 68.66

134

Table A.16: CMU Slice #17 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average accuracy (mAA)
for all methods. The best performing method is highlighted in bold (by mAA). The values were
obtained by averaging all the metrics over all the query images in the slice, and then averaging
over 5 benchmark runs.

Total M. Inl. (%) Outl. (%) Iters Time (ms) Er.[m] Er.[°] mAA(%)

Slice #17
Base Map
PROSAC [36] (d2=d1) 11,421 18 82 164 29.03 0.97 1.40 75.91
RANSAC [59] 11,421 19 81 2,137 448.97 2.98 3.00 73.50

Live Map
RANSAC with v1 12,390 24 76 1,784 379.89 1.17 1.63 86.03
RANSAC [59] 12,390 23 77 1,770 377.92 1.17 1.23 84.31
RANSAC with �s

1 12,390 23 77 1,760 374.90 1.75 1.94 83.31
RANSAC with �i

1 12,390 24 76 1,770 376.98 2.92 3.60 82.47
PROSAC with (�i

1=�i
2) 12,390 19 81 444 77.45 1.31 1.22 69.78

PROSAC [36] (d2=d1) 12,390 19 81 8 2.17 1.49 2.20 68.31
PROSAC with (�s

1=�s
2) 12,390 18 82 486 84.36 1.73 1.33 66.56

PROSAC with v1 12,390 14 86 879 156.62 2.63 1.84 51.16
PROSAC with �s

1 12,390 15 85 961 167.60 3.53 2.06 47.78
PROSAC with �i

1 12,390 14 86 1,066 186.29 3.37 2.20 45.22

135

Table A.17: CMU Slice #18 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average accuracy (mAA)
for all methods. The best performing method is highlighted in bold (by mAA). The values were
obtained by averaging all the metrics over all the query images in the slice, and then averaging
over 5 benchmark runs.

Total M. Inl. (%) Outl. (%) Iters Time (ms) Er.[m] Er.[°] mAA(%)

Slice #18
Base Map
PROSAC [36] (d2=d1) 2,919 15 85 580 92.64 12.85 13.02 69.91
RANSAC [59] 2,919 15 85 2,504 504.04 13.76 26.67 61.33

Live Map
RANSAC with �i

1 3,561 28 72 1,212 251.34 1.18 1.61 88.00
RANSAC with v1 3,561 28 72 1,222 253.66 0.62 1.36 87.14
RANSAC [59] 3,561 28 72 1,233 255.78 0.57 1.26 87.05
RANSAC with �s

1 3,561 27 73 1,278 264.90 1.24 3.28 86.09
PROSAC with (�i

1=�i
2) 3,561 25 75 81 14.78 0.59 1.31 84.09

PROSAC with (�s
1=�s

2) 3,561 25 75 64 11.78 0.52 1.22 81.91
PROSAC with v1 3,561 21 79 57 10.37 0.80 1.95 74.29
PROSAC [36] (d2=d1) 3,561 21 79 150 25.82 0.94 2.24 69.62
PROSAC with �i

1 3,561 21 79 41 7.90 0.93 2.12 67.81
PROSAC with �s

1 3,561 20 80 34 6.63 1.03 2.34 65.43

136

Table A.18: CMU Slice #19 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average accuracy (mAA)
for all methods. The best performing method is highlighted in bold (by mAA). The values were
obtained by averaging all the metrics over all the query images in the slice, and then averaging
over 5 benchmark runs.

Total M. Inl. (%) Outl. (%) Iters Time (ms) Er.[m] Er.[°] mAA(%)

Slice #19
Base Map
PROSAC [36] (d2=d1) 5,847 14 86 646 96.87 4.90 6.66 74.52
RANSAC [59] 5,847 10 90 2,896 556.14 24.48 57.43 40.89

Live Map
RANSAC with v1 7,068 26 74 1,435 284.26 1.29 6.63 83.04
RANSAC with �s

1 7,068 26 74 1,443 285.89 2.35 6.22 82.30
RANSAC [59] 7,068 26 74 1,416 279.88 1.92 5.28 82.11
RANSAC with �i

1 7,068 26 74 1,401 277.57 1.50 6.07 81.78
PROSAC with (�i

1=�i
2) 7,068 24 76 13 2.69 0.51 3.37 71.41

PROSAC [36] (d2=d1) 7,068 23 77 6 1.48 0.59 3.50 68.33
PROSAC with (�s

1=�s
2) 7,068 22 78 26 4.72 0.58 3.70 67.41

PROSAC with �s
1 7,068 20 80 14 2.93 0.77 4.70 56.26

PROSAC with �i
1 7,068 20 80 16 3.16 0.81 5.00 54.96

PROSAC with v1 7,068 19 81 70 12.05 0.91 5.44 52.26

137

Table A.19: CMU Slice #20 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average accuracy (mAA)
for all methods. The best performing method is highlighted in bold (by mAA). The values were
obtained by averaging all the metrics over all the query images in the slice, and then averaging
over 5 benchmark runs.

Total M. Inl. (%) Outl. (%) Iters Time (ms) Er.[m] Er.[°] mAA(%)

Slice #20
Base Map
RANSAC [59] 15,014 24 76 1,742 342.79 3.69 3.15 72.39
PROSAC [36] (d2=d1) 15,014 21 79 60 9.58 0.99 1.16 69.45

Live Map
RANSAC with �s

1 15,836 27 73 1,481 295.02 1.25 1.28 79.36
RANSAC with v1 15,836 27 73 1,482 295.45 1.41 1.75 78.48
RANSAC [59] 15,836 26 74 1,499 298.48 1.15 1.03 78.45
RANSAC with �i

1 15,836 26 74 1,490 297.07 1.81 1.36 76.77
PROSAC with (�i

1=�i
2) 15,836 25 75 187 30.88 0.73 0.86 74.54

PROSAC [36] (d2=d1) 15,836 23 77 17 3.20 0.90 1.11 70.70
PROSAC with (�s

1=�s
2) 15,836 23 77 143 23.91 1.04 1.21 68.62

PROSAC with �i
1 15,836 22 78 64 11.10 1.06 1.26 66.07

PROSAC with v1 15,836 22 78 78 13.21 1.14 1.32 65.79
PROSAC with �s

1 15,836 22 78 104 17.58 1.19 1.41 65.25

138

Table A.20: CMU Slice #21 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average accuracy (mAA)
for all methods. The best performing method is highlighted in bold (by mAA). The values were
obtained by averaging all the metrics over all the query images in the slice, and then averaging
over 5 benchmark runs.

Total M. Inl. (%) Outl. (%) Iters Time (ms) Er.[m] Er.[°] mAA(%)

Slice #21
Base Map
RANSAC [59] 26,609 36 64 859 168.98 2.10 1.89 80.10
PROSAC [36] (d2=d1) 26,609 32 68 9 2.04 1.25 0.83 69.10

Live Map
RANSAC with �i

1 30,595 44 56 407 81.33 0.65 0.82 82.08
RANSAC with v1 30,595 44 56 410 82.00 0.65 0.86 81.86
RANSAC with �s

1 30,595 44 56 411 82.12 0.62 0.94 81.82
RANSAC [59] 30,595 44 56 410 82.05 0.61 0.89 81.68
PROSAC [36] (d2=d1) 30,595 37 63 5 1.59 1.44 1.12 61.24
PROSAC with (�i

1=�i
2) 30,595 34 66 115 18.79 2.10 1.54 50.28

PROSAC with (�s
1=�s

2) 30,595 34 66 107 17.66 2.26 1.44 50.01
PROSAC with �s

1 30,595 30 70 166 27.07 3.35 2.28 44.30
PROSAC with v1 30,595 28 72 184 30.73 3.18 1.64 42.99
PROSAC with �i

1 30,595 27 73 201 32.50 3.78 2.37 41.68

139

Table A.21: CMU Slice #22 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average accuracy (mAA)
for all methods. The best performing method is highlighted in bold (by mAA). The values were
obtained by averaging all the metrics over all the query images in the slice, and then averaging
over 5 benchmark runs.

Total M. Inl. (%) Outl. (%) Iters Time (ms) Er.[m] Er.[°] mAA(%)

Slice #22
Base Map
RANSAC [59] 23,535 39 61 831 174.03 1.68 2.30 77.31
PROSAC [36] (d2=d1) 23,535 34 66 5 1.52 1.06 1.09 65.51

Live Map
RANSAC with v1 25,677 42 58 651 138.17 0.68 1.02 79.60
RANSAC with �i

1 25,677 42 58 658 139.21 1.11 1.14 78.91
RANSAC [59] 25,677 42 58 656 139.05 0.94 0.98 78.76
RANSAC with �s

1 25,677 42 58 651 138.12 0.79 1.11 78.62
PROSAC [36] (d2=d1) 25,677 37 63 4 1.52 1.02 1.01 67.25
PROSAC with (�i

1=�i
2) 25,677 34 66 209 37.10 1.56 1.25 62.73

PROSAC with (�s
1=�s

2) 25,677 34 66 318 56.23 1.66 1.57 60.69
PROSAC with �i

1 25,677 32 68 222 39.82 1.67 1.36 55.53
PROSAC with �s

1 25,677 31 69 296 52.47 2.10 1.87 54.20
PROSAC with v1 25,677 33 67 289 51.08 1.97 1.76 53.49

140

Table A.22: CMU Slice #23 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average accuracy (mAA)
for all methods. The best performing method is highlighted in bold (by mAA). The values were
obtained by averaging all the metrics over all the query images in the slice, and then averaging
over 5 benchmark runs.

Total M. Inl. (%) Outl. (%) Iters Time (ms) Er.[m] Er.[°] mAA(%)

Slice #23
Base Map
RANSAC [59] 4,340 19 81 2,472 481.84 4.46 3.68 52.72
PROSAC [36] (d2=d1) 4,340 18 82 9 1.89 1.84 1.62 47.00

Live Map
RANSAC with v1 4,761 25 75 1,449 288.53 1.07 1.03 62.78
RANSAC with �s

1 4,761 25 75 1,460 290.66 1.03 0.94 61.06
RANSAC [59] 4,761 25 75 1,492 297.02 1.11 1.07 59.06
RANSAC with �i

1 4,761 25 75 1,521 302.85 1.51 1.88 55.89
PROSAC with (�i

1=�i
2) 4,761 23 77 103 17.61 5.89 3.96 50.44

PROSAC [36] (d2=d1) 4,761 23 77 6 1.60 1.69 1.46 50.17
PROSAC with (�s

1=�s
2) 4,761 22 78 113 18.95 1.92 1.86 44.61

PROSAC with �i
1 4,761 22 78 95 16.30 9.21 5.05 42.89

PROSAC with �s
1 4,761 21 79 93 15.86 2.49 1.98 37.89

PROSAC with v1 4,761 20 80 159 26.09 2.76 1.83 35.89

141

Table A.23: CMU Slice #24 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average accuracy (mAA)
for all methods. The best performing method is highlighted in bold (by mAA). The values were
obtained by averaging all the metrics over all the query images in the slice, and then averaging
over 5 benchmark runs.

Total M. Inl. (%) Outl. (%) Iters Time (ms) Er.[m] Er.[°] mAA(%)

Slice #24
Base Map
PROSAC [36] (d2=d1) 6,218 16 84 337 52.32 0.61 1.10 79.00
RANSAC [59] 6,218 16 84 2,407 477.10 10.61 16.94 63.91

Live Map
PROSAC with (�s

1=�s
2) 6,723 22 78 228 37.74 0.42 0.75 86.35

PROSAC with (�i
1=�i

2) 6,723 22 78 296 48.52 0.47 0.85 85.65
PROSAC with �i

1 6,723 21 79 206 34.12 0.56 1.00 81.09
PROSAC with v1 6,723 21 79 293 48.38 0.69 1.16 79.39
RANSAC with �s

1 6,723 21 79 1,969 394.90 2.55 3.99 79.04
RANSAC with v1 6,723 21 79 1,987 399.69 5.11 5.51 78.56
PROSAC with �s

1 6,723 21 79 229 38.00 0.63 1.08 78.44
RANSAC [59] 6,723 21 79 1,955 391.56 3.22 3.34 77.13
RANSAC with �i

1 6,723 21 79 1,986 399.12 4.28 4.84 75.83
PROSAC [36] (d2=d1) 6,723 20 80 86 14.58 0.82 1.42 74.35

142

Table A.24: CMU Slice #25 results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average accuracy (mAA)
for all methods. The best performing method is highlighted in bold (by mAA). The values were
obtained by averaging all the metrics over all the query images in the slice, and then averaging
over 5 benchmark runs.

Total M. Inl. (%) Outl. (%) Iters Time (ms) Er.[m] Er.[°] mAA(%)

Slice #25
Base Map
PROSAC [36] (d2=d1) 28,306 21 79 160 26.87 1.45 1.14 77.86
RANSAC [59] 28,306 22 78 1,884 394.26 8.91 6.72 74.56

Live Map
PROSAC with (�i

1=�i
2) 29,822 26 74 395 68.56 1.11 0.92 86.50

PROSAC with (�s
1=�s

2) 29,822 26 74 399 69.28 0.88 0.86 85.09
RANSAC with v1 29,822 25 75 1,602 340.29 3.66 3.37 81.72
RANSAC with �i

1 29,822 25 75 1,620 345.04 4.58 3.49 80.78
RANSAC with �s

1 29,822 25 75 1,614 343.85 3.89 3.16 80.56
RANSAC [59] 29,822 25 75 1,631 347.38 5.85 4.46 80.03
PROSAC with �s

1 29,822 24 76 407 70.26 1.55 1.52 79.72
PROSAC with �i

1 29,822 24 76 426 73.27 1.50 1.33 78.54
PROSAC [36] (d2=d1) 29,822 24 76 99 16.65 1.15 1.10 78.41
PROSAC with v1 29,822 22 78 427 73.34 2.51 1.97 70.28

143

Table A.25: Retail shop results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average accuracy (mAA)
for all methods. The best performing method is highlighted in bold (by mAA). The values were
obtained by averaging all the metrics over all the query images in the slice, and then averaging
over 5 benchmark runs.

Total M. Inl. (%) Outl. (%) Iters Time (ms) Er.[m] Er.[°] mAA(%)

Retail Shop
Base Map
RANSAC [59] 67,092 40 60 770 160.62 8.66 4.47 65.96
PROSAC [36] (d2=d1) 67,092 34 66 108 18.24 6.02 2.94 46.21

Live Map
RANSAC with �i

1 74,497 45 55 500 105.89 2.75 1.64 72.78
RANSAC with �s

1 74,497 45 55 502 106.24 2.63 1.38 72.50
RANSAC with v1 74,497 45 55 493 104.38 2.96 1.48 72.41
RANSAC [59] 74,497 45 55 502 106.39 3.33 1.80 71.95
PROSAC with (�i

1=�i
2) 74,497 41 59 101 18.24 3.22 1.71 57.18

PROSAC with (�s
1=�s

2) 74,497 41 59 87 16.05 3.33 1.74 56.90
PROSAC [36] (d2=d1) 74,497 37 63 19 3.92 5.19 2.70 44.81
PROSAC with �s

1 74,497 33 67 62 11.64 5.47 2.96 39.40
PROSAC with �i

1 74,497 33 67 62 12.10 5.72 3.17 39.31
PROSAC with v1 74,497 34 66 61 11.50 5.62 2.94 36.91

144

Table A.26: LaMAR HGE results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average accuracy (mAA)
for all methods. The best performing method is highlighted in bold (by mAA). The values were
obtained by averaging all the metrics over all the query images in the slice, and then averaging
over 5 benchmark runs.

Total M. Inl. (%) Outl. (%) Iters Time (ms) Er.[m] Er.[°] mAA(%)

LaMAR-HGE
Base Map
PROSAC [36] (d2=d1) 147,264 21 79 722 158.38 1.97 2.93 71.62
RANSAC [59] 147,264 23 77 2,135 568.57 10.01 19.47 61.34

Live Map
PROSAC with (�s

1=�s
2) 147,694 21 79 942 206.78 2.21 3.52 74.24

PROSAC with (�i
1=�i

2) 147,694 22 78 1,237 271.50 2.73 4.37 74.14
PROSAC with �s

1 147,694 19 81 842 185.52 1.31 2.83 71.91
PROSAC [36] (d2=d1) 147,694 21 79 658 142.56 1.95 3.05 71.32
PROSAC with �i

1 147,694 19 81 1,001 222.54 3.18 4.66 70.19
PROSAC with v1 147,694 17 83 924 202.82 1.94 3.17 67.51
RANSAC with �s

1 147,694 23 77 2,126 568.92 9.08 16.45 64.37
RANSAC with �i

1 147,694 23 77 2,124 567.58 7.25 14.25 64.28
RANSAC with v1 147,694 23 77 2,129 570.83 7.74 15.98 64.11
RANSAC [59] 147,694 23 77 2,128 569.68 8.65 15.83 64.00

145

Table A.27: LaMAR CAB results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average accuracy (mAA)
for all methods. The best performing method is highlighted in bold (by mAA). The values were
obtained by averaging all the metrics over all the query images in the slice, and then averaging
over 5 benchmark runs. Note that for CAB I remove one outlier pose that returned a translation
error of over 25,000 meters. This could be happening because the points used to estimate a pose
are co-planar or lie closely on the same line.

Total M. Inl. (%) Outl. (%) Iters Time (ms) Er.[m] Er.[°] mAA(%)

LaMAR-CAB
Base Map
RANSAC [59] 38,610 9 91 2,769 685.95 12.98 42.27 38.28
PROSAC [36] (d2=d1) 38,610 10 90 1,385 277.70 3.26 12.85 61.22

Live Map
RANSAC [59] 39,279 10 90 2,752 657.13 9.72 35.23 41.98
RANSAC with v1 39,279 10 90 2,753 662.48 9.71 35.94 41.74
RANSAC with �s

1 39,279 10 90 2,746 648.51 9.56 34.33 43.02
RANSAC with �i

1 39,279 10 90 2,751 641.39 9.89 35.02 43.68
PROSAC with v1 39,279 10 90 1,515 319.35 3.82 12.29 48.69
PROSAC with (�s

1=�s
2) 39,279 11 89 1,493 315.25 2.73 11.86 56.00

PROSAC with �s
1 39,279 10 90 1,415 300.75 3.17 11.57 54.17

PROSAC with (�i
1=�i

2) 39,279 12 88 1,695 357.14 3.70 12.34 63.07
PROSAC with �i

1 39,279 10 90 1,458 300.53 3.16 12.63 54.48
PROSAC [36] (d2=d1) 39,279 11 89 1,232 251.22 2.61 9.80 59.47

146

Table A.28: LaMAR LIN results, showing the total matches, inliers and outliers percentage,
iterations, time in milliseconds, translation, rotation error and mean average accuracy (mAA)
for all methods. The best performing method is highlighted in bold (by mAA). The values were
obtained by averaging all the metrics over all the query images in the slice, and then averaging
over 5 benchmark runs.

Total M. Inl. (%) Outl. (%) Iters Time (ms) Er.[m] Er.[°] mAA(%)

LaMAR-LIN
Base Map
PROSAC [36] (d2=d1) 121,372 22 78 493 94.56 0.47 1.24 78.75
RANSAC [59] 121,372 28 72 1,812 433.84 9.76 13.07 76.89

Live Map
PROSAC with (�i

1=�i
2) 122,631 26 74 855 163.24 1.11 1.91 84.09

RANSAC with �i
1 122,631 29 71 1,781 424.73 5.70 9.48 79.87

PROSAC with (�s
1=�s

2) 122,631 22 78 760 145.62 1.29 1.88 79.41
RANSAC with v1 122,631 29 71 1,773 423.07 6.73 10.27 79.09
RANSAC [59] 122,631 28 72 1,782 426.83 6.89 9.14 78.74
PROSAC [36] (d2=d1) 122,631 23 77 424 81.21 0.71 1.29 78.59
RANSAC with �s

1 122,631 29 71 1,771 421.90 7.02 10.53 78.35
PROSAC with �s

1 122,631 19 81 699 136.35 1.44 2.01 74.93
PROSAC with v1 122,631 17 83 740 142.59 1.18 2.02 72.93
PROSAC with �i

1 122,631 18 82 767 149.20 2.19 3.14 72.32

147

Appendix B

Detailed Results for Chapter 5

B.1 Chapter 5 Camera Pose Metrics Table Results

In this section, I list the comprehensive result for all datasets. Each table shows all methods
evaluated on 28 datasets, i.e. 24 CMU slices, one Retail Shop dataset, and three LaMAR sub-
datasets. I list all the tables here because these values were used to derive the results in Chapter 5.
The error metrics presented here are the average translation error, rotation error, features (or
keypoints) reduction in percentage, feature matching time, consensus runtime (for RANSAC),
mean Average Accuracy (mAA) and the total number of degenerate poses for all the query
images for each dataset.

Table B.1: The table shows the error metrics for the CMU slice 2 dataset.

Dataset CMU slice 2

Method MnM NF PM

Translation Error[m] 0.25 2.11 0.05
Rotation Error[°] 0.75 1.46 0.08
Features Reduction[%] 37.57 59.88 84.69
Feature Matching Time (ms) 129 99 39
Consensus Time (ms) 34 15 7.60
mAA[%] 99.14 99.14 99.48
Degenerate Poses No. 0 0 0

149

Table B.2: The table shows the error metrics for the CMU slice 3 dataset.

Dataset CMU slice 3

Method MnM NF PM

Translation Error[m] 0.03 0.03 0.04
Rotation Error[°] 0.04 0.05 0.06
Features Reduction[%] 29.74 54.83 86.24
Feature Matching Time (ms) 292 214 71
Consensus Time (ms) 12 10 5.51
mAA[%] 99.92 99.92 99.81
Degenerate Poses No. 0 0 0

Table B.3: The table shows the error metrics for the CMU slice 4 dataset.

Dataset CMU slice 4

Method MnM NF PM

Translation Error[m] 0.03 0.03 0.06
Rotation Error[°] 0.06 0.06 0.10
Features Reduction[%] 37.85 54.95 79.26
Feature Matching Time (ms) 148 126 58
Consensus Time (ms) 16 10 7.38
mAA[%] 100.00 100.00 99.29
Degenerate Poses No. 0 0 0

Table B.4: The table shows the error metrics for the CMU slice 5 dataset.

Dataset CMU slice 5

Method MnM NF PM

Translation Error[m] 0.05 0.09 2.52
Rotation Error[°] 0.12 0.19 4.16
Features Reduction[%] 56.43 86.42 96.64
Feature Matching Time (ms) 16 6 2
Consensus Time (ms) 59 8 4.84
mAA[%] 99.33 98.44 88.00
Degenerate Poses No. 0 0 0

150

Table B.5: The table shows the error metrics for the CMU slice 6 dataset.

Dataset CMU slice 6

Method MnM NF PM

Translation Error[m] 0.02 0.02 2.47
Rotation Error[°] 0.06 0.06 2.44
Features Reduction[%] 38.85 60.22 95.86
Feature Matching Time (ms) 253 191 21
Consensus Time (ms) 18 9 4.89
mAA[%] 100.00 100.00 96.98
Degenerate Poses No. 0 0 0

Table B.6: The table shows the error metrics for the CMU slice 7 dataset.

Dataset CMU slice 7

Method MnM NF PM

Translation Error[m] 0.02 0.03 3.85
Rotation Error[°] 0.05 0.06 1.07
Features Reduction[%] 31.17 74.71 81.56
Feature Matching Time (ms) 201 90 67
Consensus Time (ms) 55 8 12.78
mAA[%] 100.00 99.94 99.20
Degenerate Poses No. 0 0 0

Table B.7: The table shows the error metrics for the CMU slice 8 dataset.

Dataset CMU slice 8

Method MnM NF PM

Translation Error[m] 0.03 0.03 1.37
Rotation Error[°] 0.08 0.09 1.36
Features Reduction[%] 31.16 63.73 86.41
Feature Matching Time (ms) 171 109 42
Consensus Time (ms) 18 8 5.78
mAA[%] 99.88 99.81 98.38
Degenerate Poses No. 0 0 0

151

Table B.8: The table shows the error metrics for the CMU slice 9 dataset.

Dataset CMU slice 9

Method MnM NF PM

Translation Error[m] 0.04 0.05 19.12
Rotation Error[°] 0.09 0.11 23.97
Features Reduction[%] 43.27 75.43 96.13
Feature Matching Time (ms) 59 30 5
Consensus Time (ms) 20 11 5.93
mAA[%] 99.23 99.23 81.64
Degenerate Poses No. 0 0 4

Table B.9: The table shows the error metrics for the CMU slice 10 dataset.

Dataset CMU slice 10

Method MnM NF PM

Translation Error[m] 0.02 0.03 0.06
Rotation Error[°] 0.10 0.10 0.20
Features Reduction[%] 26.45 61.72 94.33
Feature Matching Time (ms) 125 79 12
Consensus Time (ms) 11 8 5.87
mAA[%] 99.92 99.92 99.08
Degenerate Poses No. 0 0 0

Table B.10: The table shows the error metrics for the CMU slice 11 dataset.

Dataset CMU slice 11

Method MnM NF PM

Translation Error[m] 0.12 0.13 1.32
Rotation Error[°] 0.27 0.31 5.19
Features Reduction[%] 38.47 66.78 96.12
Feature Matching Time (ms) 127 86 10
Consensus Time (ms) 35 11 4.71
mAA[%] 97.24 96.72 89.83
Degenerate Poses No. 0 0 0

152

Table B.11: The table shows the error metrics for the CMU slice 12 dataset.

Dataset CMU slice 12

Method MnM NF PM

Translation Error[m] 0.03 0.03 21.44
Rotation Error[°] 0.07 0.08 32.85
Features Reduction[%] 33.15 70.25 97.97
Feature Matching Time (ms) 123 68 6
Consensus Time (ms) 13 8 4.71
mAA[%] 100.00 100.00 72.57
Degenerate Poses No. 0 0 3

Table B.12: The table shows the error metrics for the CMU slice 13 dataset.

Dataset CMU slice 13

Method MnM NF PM

Translation Error[m] 5.55 26.43 11.87
Rotation Error[°] 0.85 2.83 8.70
Features Reduction[%] 33.71 65.78 96.24
Feature Matching Time (ms) 115 75 9
Consensus Time (ms) 25 15 5.33
mAA[%] 98.25 98.25 90.79
Degenerate Poses No. 0 0 0

153

Table B.13: The table shows the error metrics for the CMU slice 14 dataset.

Dataset CMU slice 14

Method MnM NF PM

Translation Error[m] 6.45 1.09 23.18
Rotation Error[°] 2.58 0.94 26.74
Features Reduction[%] 46.96 86.32 98.61
Feature Matching Time (ms) 44 13 2
Consensus Time (ms) 53 13 4.82
mAA[%] 98.61 98.33 52.89
Degenerate Poses No. 0 0 27

Table B.14: The table shows the error metrics for the CMU slice 15 dataset.

Dataset CMU slice 15

Method MnM NF PM

Translation Error[m] 0.07 0.08 17.65
Rotation Error[°] 0.13 0.15 15.72
Features Reduction[%] 47.50 72.08 95.84
Feature Matching Time (ms) 73 47 8
Consensus Time (ms) 15 13 5.56
mAA[%] 99.44 98.89 84.00
Degenerate Poses No. 0 0 14

Table B.15: The table shows the error metrics for the CMU slice 16 dataset.

Dataset CMU slice 16

Method MnM NF PM

Translation Error[m] 0.06 0.06 0.08
Rotation Error[°] 0.09 0.10 0.13
Features Reduction[%] 35.89 62.90 87.02
Feature Matching Time (ms) 150 104 37
Consensus Time (ms) 21 8 6.11
mAA[%] 99.50 99.63 98.94
Degenerate Poses No. 0 0 0

154

Table B.16: The table shows the error metrics for the CMU slice 17 dataset.

Dataset CMU slice 17

Method MnM NF PM

Translation Error[m] 0.04 0.05 0.11
Rotation Error[°] 0.09 0.10 0.15
Features Reduction[%] 43.87 65.87 92.39
Feature Matching Time (ms) 57 41 10
Consensus Time (ms) 36 11 5.82
mAA[%] 99.38 99.22 99.06
Degenerate Poses No. 0 0 0

Table B.17: The table shows the error metrics for the CMU slice 18 dataset.

Dataset CMU slice 18

Method MnM NF PM

Translation Error[m] 0.06 0.07 0.11
Rotation Error[°] 0.15 0.18 0.24
Features Reduction[%] 42.98 63.66 95.08
Feature Matching Time (ms) 34 24 4
Consensus Time (ms) 12 9 4.97
mAA[%] 100.00 100.00 99.05
Degenerate Poses No. 0 0 0

Table B.18: The table shows the error metrics for the CMU slice 19 dataset.

Dataset CMU slice 19

Method MnM NF PM

Translation Error[m] 0.63 0.03 9.99
Rotation Error[°] 2.69 0.20 22.43
Features Reduction[%] 23.91 82.47 98.25
Feature Matching Time (ms) 62 17 2
Consensus Time (ms) 71 9 4.05
mAA[%] 97.41 99.44 76.74
Degenerate Poses No. 0 0 11

155

Table B.19: The table shows the error metrics for the CMU slice 20 dataset.

Dataset CMU slice 20

Method MnM NF PM

Translation Error[m] 0.08 0.11 15.43
Rotation Error[°] 0.12 0.17 25.59
Features Reduction[%] 36.03 82.71 98.69
Feature Matching Time (ms) 19 6 1
Consensus Time (ms) 19 9 4.35
mAA[%] 99.38 99.03 65.51
Degenerate Poses No. 0 0 44

Table B.20: The table shows the error metrics for the CMU slice 21 dataset.

Dataset CMU slice 21

Method MnM NF PM

Translation Error[m] 0.07 0.08 16.17
Rotation Error[°] 0.07 0.08 7.36
Features Reduction[%] 27.68 65.01 90.95
Feature Matching Time (ms) 116 68 19
Consensus Time (ms) 52 16 7.26
mAA[%] 99.81 99.74 91.68
Degenerate Poses No. 0 0 0

Table B.21: The table shows the error metrics for the CMU slice 22 dataset.

Dataset CMU slice 22

Method MnM NF PM

Translation Error[m] 0.09 0.11 61.02
Rotation Error[°] 0.10 0.12 30.96
Features Reduction[%] 30.29 81.25 96.90
Feature Matching Time (ms) 26 8 2
Consensus Time (ms) 45 7 5.08
mAA[%] 99.00 98.55 60.98
Degenerate Poses No. 0 0 28

156

Table B.22: The table shows the error metrics for the CMU slice 23 dataset.

Dataset CMU slice 23

Method MnM NF PM

Translation Error[m] 0.31 0.42 0.60
Rotation Error[°] 0.30 0.42 0.56
Features Reduction[%] 53.58 93.46 99.38
Feature Matching Time (ms) 7 1 0
Consensus Time (ms) 42 7 3.86
mAA[%] 91.94 82.22 70.00
Degenerate Poses No. 0 0 31

Table B.23: The table shows the error metrics for the CMU slice 24 dataset.

Dataset CMU slice 24

Method MnM NF PM

Translation Error[m] 0.07 0.08 16.49
Rotation Error[°] 0.12 0.14 20.39
Features Reduction[%] 36.66 75.43 97.74
Feature Matching Time (ms) 43 20 2
Consensus Time (ms) 14 7 4.21
mAA[%] 99.78 100.00 78.67
Degenerate Poses No. 0 0 1

Table B.24: The table shows the error metrics for the CMU slice 25 dataset.

Dataset CMU slice 25

Method MnM NF PM

Translation Error[m] 0.08 0.09 66.20
Rotation Error[°] 0.11 0.13 14.99
Features Reduction[%] 40.28 71.59 91.13
Feature Matching Time (ms) 105 61 19
Consensus Time (ms) 74 15 9.21
mAA[%] 98.62 98.50 83.69
Degenerate Poses No. 0 0 0

157

Table B.25: The table shows the error metrics for the LaMAR LIN dataset.

Dataset LaMAR LIN

Method MnM NF PM

Translation Error[m] 0.03 0.03 23.03
Rotation Error[°] 0.11 0.12 25.85
Features Reduction[%] 56.98 65.69 99.35
Feature Matching Time (ms) 3,026 2,631 64
Consensus Time (ms) 99 54 4.39
mAA[%] 98.49 98.36 56.56
Degenerate Poses No. 0 0 223

Table B.26: The table shows the error metrics for the LaMAR CAB dataset.

Dataset LaMAR CAB

Method MnM NF PM

Translation Error[m] 1.99 0.81 16.23
Rotation Error[°] 2.63 2.43 30.11
Features Reduction[%] 51.64 73.13 98.97
Feature Matching Time (ms) 1,034 632 36
Consensus Time (ms) 215 102 4.59
mAA[%] 95.50 94.12 47.91
Degenerate Poses No. 1 1 94

Table B.27: The table shows the error metrics for the LaMAR HGE dataset.

Dataset LaMAR HGE

Method MnM NF PM

Translation Error[m] 5.72 7.10 18.54
Rotation Error[°] 3.86 4.76 69.22
Features Reduction[%] 41.10 61.94 99.67
Feature Matching Time (ms) 2,701 1,844 33
Consensus Time (ms) 247 157 3.76
mAA[%] 94.64 93.60 21.13
Degenerate Poses No. 0 0 333

158

Table B.28: The table shows the error metrics for the Retail Shop dataset.

Dataset Retail Shop

Method MnM NF PM

Translation Error[m] 0.01 0.01 0.02
Rotation Error[°] 0.29 0.30 0.69
Features Reduction[%] 26.39 49.92 91.58
Feature Matching Time (ms) 1,020 754 142
Consensus Time (ms) 12 10 5.52
mAA[%] 97.91 97.94 82.74
Degenerate Poses No. 0 0 0

159

B.2 Chapter 5 Binary Classifiers Metrics Table

In this section, I report standard binary classifier evaluation metrics for the models from Papadaki
and Hansch [132] (MnM), Hartmann et al. [76] (PM), and my neural filtering network (NF).
The evaluation metrics presented here are precision, recall, f1-score, true negatives (TN), false
negatives (FN), false positives (FP), true positives (TP), balanced accuracy, and accuracy.

TP are the samples correctly classified as positive. TN are the samples correctly classified as
negative. FP, occurs when the model predicts that an input belongs to the positive class, but it
actually belongs to the negative class. FN, occurs when the model predicts that an input belongs
to the negative, but it actually belongs to the positive class. Precision: Precision is the fraction
of true positives (TP) out of all positive predictions (TP + FP). It measures how many of the
predicted positive cases are actually positive. Recall: Recall is the fraction of true positives
(TP) out of all actual positive cases (TP + FN). It measures how many of the actual positive
cases were correctly identified by the model. F1-score: The F1-score is the harmonic mean of
precision and recall. It gives a balanced measure of precision and recall. True negatives (TN):
TN is the number of actual negative cases that were correctly identified as negative by the
model. False negatives (FN): FN is the number of actual positive cases that were incorrectly
identified as negative by the model. False positives (FP): FP is the number of actual negative
cases that were incorrectly identified as positive by the model. True positives (TP): TP is the
number of actual positive cases that were correctly identified as positive by the model. Balanced
accuracy: Balanced accuracy is the arithmetic mean of sensitivity (recall, TP=(TP +FN)) and
specificity TN=(TN +FP). It gives a measure of the model’s overall performance across both
positive and negative cases. The latter metric is more appropriate to use as our data is highly
imbalanced. Accuracy: Accuracy is the fraction of correct predictions (TP + TN) out of all
predictions (TP + TN + FP + FN). It measures how well the model predicts both positive
and negative cases. All values are averages for all query images.

Table B.29: The table shows the binary classifier metrics for the CMU slice 2 dataset.

Dataset CMU slice 2

Method MnM NF PM

Precision (Positive Class) 0.50 0.68 0.87
Recall (Positive Class) 0.75 0.66 0.32
F1 Score 0.60 0.67 0.47
True Negatives [%] 27.05 45.57 56.32
False Negatives [%] 10.51 14.32 28.38
False Positives [%] 31.26 12.75 2.00
True Positives [%] 31.18 27.36 13.30
Balanced Accuracy [%] 0.61 0.72 0.64
Accuracy [%] 0.58 0.73 0.70

160

Table B.30: The table shows the binary classifier metrics for the CMU slice 3 dataset.

Dataset CMU slice 3

Method MnM NF PM

Precision (Positive Class) 0.59 0.69 0.85
Recall (Positive Class) 0.81 0.61 0.23
F1 Score 0.68 0.64 0.36
True Negatives [%] 20.08 34.75 46.88
False Negatives [%] 9.67 20.08 39.37
False Positives [%] 28.89 14.21 2.09
True Positives [%] 41.37 30.96 11.67
Balanced Accuracy [%] 0.61 0.66 0.59
Accuracy [%] 0.61 0.66 0.59

Table B.31: The table shows the binary classifier metrics for the CMU slice 4 dataset.

Dataset CMU slice 4

Method MnM NF PM

Precision (Positive Class) 0.58 0.75 0.87
Recall (Positive Class) 0.73 0.68 0.36
F1 Score 0.65 0.71 0.51
True Negatives [%] 24.51 38.88 47.67
False Negatives [%] 13.34 16.07 31.58
False Positives [%] 25.85 11.49 2.69
True Positives [%] 36.29 33.56 18.05
Balanced Accuracy [%] 0.61 0.72 0.66
Accuracy [%] 0.61 0.72 0.66

Table B.32: The table shows the binary classifier metrics for the CMU slice 5 dataset.

Dataset CMU slice 5

Method MnM NF PM

Precision (Positive Class) 0.28 0.56 0.80
Recall (Positive Class) 0.83 0.51 0.18
F1 Score 0.42 0.53 0.30
True Negatives [%] 53.93 79.30 84.65
False Negatives [%] 2.50 7.13 12.00
False Positives [%] 31.40 6.03 0.68
True Positives [%] 12.17 7.55 2.67
Balanced Accuracy [%] 0.73 0.72 0.59
Accuracy [%] 0.66 0.87 0.87

161

Table B.33: The table shows the binary classifier metrics for the CMU slice 6 dataset.

Dataset CMU slice 6

Method MnM NF PM

Precision (Positive Class) 0.45 0.56 0.74
Recall (Positive Class) 0.73 0.59 0.08
F1 Score 0.56 0.57 0.14
True Negatives [%] 28.30 44.46 60.86
False Negatives [%] 10.46 15.77 35.03
False Positives [%] 33.64 17.48 1.08
True Positives [%] 27.61 22.29 3.03
Balanced Accuracy [%] 0.59 0.65 0.53
Accuracy [%] 0.56 0.67 0.64

Table B.34: The table shows the binary classifier metrics for the CMU slice 7 dataset.

Dataset CMU slice 7

Method MnM NF PM

Precision (Positive Class) 0.31 0.59 0.56
Recall (Positive Class) 0.79 0.53 0.37
F1 Score 0.45 0.56 0.45
True Negatives [%] 24.98 62.39 64.54
False Negatives [%] 5.84 12.87 17.37
False Positives [%] 47.44 10.04 7.89
True Positives [%] 21.74 14.70 10.20
Balanced Accuracy [%] 0.57 0.70 0.63
Accuracy [%] 0.47 0.77 0.75

Table B.35: The table shows the binary classifier metrics for the CMU slice 8 dataset.

Dataset CMU slice 8

Method MnM NF PM

Precision (Positive Class) 0.50 0.71 0.82
Recall (Positive Class) 0.81 0.62 0.27
F1 Score 0.62 0.66 0.40
True Negatives [%] 23.36 47.56 55.48
False Negatives [%] 7.79 16.18 30.93
False Positives [%] 34.55 10.34 2.42
True Positives [%] 34.31 25.92 11.17
Balanced Accuracy [%] 0.61 0.72 0.61
Accuracy [%] 0.58 0.73 0.67

162

Table B.36: The table shows the binary classifier metrics for the CMU slice 9 dataset.

Dataset CMU slice 9

Method MnM NF PM

Precision (Positive Class) 0.32 0.48 0.65
Recall (Positive Class) 0.73 0.48 0.10
F1 Score 0.44 0.48 0.17
True Negatives [%] 36.76 62.75 74.26
False Negatives [%] 6.52 12.68 22.10
False Positives [%] 38.79 12.80 1.29
True Positives [%] 17.94 11.77 2.36
Balanced Accuracy [%] 0.61 0.66 0.54
Accuracy [%] 0.55 0.75 0.77

Table B.37: The table shows the binary classifier metrics for the CMU slice 10 dataset.

Dataset CMU slice 10

Method MnM NF PM

Precision (Positive Class) 0.50 0.62 0.82
Recall (Positive Class) 0.82 0.53 0.10
F1 Score 0.62 0.57 0.18
True Negatives [%] 18.24 40.78 54.27
False Negatives [%] 8.22 20.94 40.06
False Positives [%] 37.06 14.51 1.02
True Positives [%] 36.49 23.76 4.65
Balanced Accuracy [%] 0.57 0.63 0.54
Accuracy [%] 0.55 0.65 0.59

Table B.38: The table shows the binary classifier metrics for the CMU slice 11 dataset.

Dataset CMU slice 11

Method MnM NF PM

Precision (Positive Class) 0.37 0.43 0.58
Recall (Positive Class) 0.77 0.48 0.08
F1 Score 0.50 0.45 0.14
True Negatives [%] 31.75 51.61 69.00
False Negatives [%] 6.72 15.16 27.12
False Positives [%] 38.86 19.00 1.61
True Positives [%] 22.67 14.23 2.26
Balanced Accuracy [%] 0.61 0.61 0.53
Accuracy [%] 0.54 0.66 0.71

163

Table B.39: The table shows the binary classifier metrics for the CMU slice 12 dataset.

Dataset CMU slice 12

Method MnM NF PM

Precision (Positive Class) 0.41 0.51 0.80
Recall (Positive Class) 0.81 0.45 0.05
F1 Score 0.54 0.48 0.09
True Negatives [%] 26.82 51.67 65.94
False Negatives [%] 6.33 18.57 32.09
False Positives [%] 39.52 14.66 0.40
True Positives [%] 27.33 15.09 1.57
Balanced Accuracy [%] 0.61 0.61 0.52
Accuracy [%] 0.54 0.67 0.68

Table B.40: The table shows the binary classifier metrics for the CMU slice 13 dataset.

Dataset CMU slice 13

Method MnM NF PM

Precision (Positive Class) 0.33 0.43 0.68
Recall (Positive Class) 0.78 0.52 0.09
F1 Score 0.46 0.47 0.16
True Negatives [%] 27.51 52.43 70.81
False Negatives [%] 6.21 13.34 25.44
False Positives [%] 44.49 19.56 1.19
True Positives [%] 21.80 14.67 2.57
Balanced Accuracy [%] 0.58 0.63 0.54
Accuracy [%] 0.49 0.67 0.73

164

Table B.41: The table shows the binary classifier metrics for the CMU slice 14 dataset.

Dataset CMU slice 14

Method MnM NF PM

Precision (Positive Class) 0.22 0.41 0.79
Recall (Positive Class) 0.68 0.32 0.04
F1 Score 0.34 0.35 0.08
True Negatives [%] 41.29 74.27 82.21
False Negatives [%] 5.67 12.04 16.85
False Positives [%] 41.11 8.13 0.20
True Positives [%] 11.93 5.55 0.75
Balanced Accuracy [%] 0.59 0.61 0.52
Accuracy [%] 0.53 0.80 0.83

Table B.42: The table shows the binary classifier metrics for the CMU slice 15 dataset.

Dataset CMU slice 15

Method MnM NF PM

Precision (Positive Class) 0.43 0.54 0.83
Recall (Positive Class) 0.66 0.43 0.07
F1 Score 0.52 0.48 0.14
True Negatives [%] 35.58 52.39 64.80
False Negatives [%] 11.92 19.69 32.09
False Positives [%] 29.74 12.93 0.52
True Positives [%] 22.76 14.99 2.59
Balanced Accuracy [%] 0.60 0.62 0.53
Accuracy [%] 0.58 0.67 0.67

Table B.43: The table shows the binary classifier metrics for the CMU slice 16 dataset.

Dataset CMU slice 16

Method MnM NF PM

Precision (Positive Class) 0.42 0.60 0.73
Recall (Positive Class) 0.72 0.60 0.26
F1 Score 0.53 0.60 0.38
True Negatives [%] 25.62 47.95 59.25
False Negatives [%] 10.28 14.95 27.76
False Positives [%] 37.10 14.76 3.46
True Positives [%] 27.01 22.34 9.52
Balanced Accuracy [%] 0.57 0.68 0.60
Accuracy [%] 0.53 0.70 0.69

165

Table B.44: The table shows the binary classifier metrics for the CMU slice 17 dataset.

Dataset CMU slice 17

Method MnM NF PM

Precision (Positive Class) 0.46 0.62 0.83
Recall (Positive Class) 0.67 0.55 0.16
F1 Score 0.55 0.59 0.27
True Negatives [%] 31.25 48.77 60.29
False Negatives [%] 12.61 17.10 32.10
False Positives [%] 30.34 12.83 1.31
True Positives [%] 25.79 21.30 6.30
Balanced Accuracy [%] 0.59 0.67 0.57
Accuracy [%] 0.57 0.70 0.67

Table B.45: The table shows the binary classifier metrics for the CMU slice 18 dataset.

Dataset CMU slice 18

Method MnM NF PM

Precision (Positive Class) 0.44 0.69 0.86
Recall (Positive Class) 0.64 0.64 0.11
F1 Score 0.52 0.67 0.19
True Negatives [%] 28.90 49.73 60.28
False Negatives [%] 14.08 13.93 34.81
False Positives [%] 32.05 11.22 0.67
True Positives [%] 24.97 25.11 4.24
Balanced Accuracy [%] 0.56 0.73 0.55
Accuracy [%] 0.54 0.75 0.65

Table B.46: The table shows the binary classifier metrics for the CMU slice 19 dataset.

Dataset CMU slice 19

Method MnM NF PM

Precision (Positive Class) 0.22 0.59 0.75
Recall (Positive Class) 0.93 0.59 0.06
F1 Score 0.35 0.59 0.11
True Negatives [%] 22.75 75.26 82.00
False Negatives [%] 1.16 7.21 16.55
False Positives [%] 59.62 7.11 0.37
True Positives [%] 16.48 10.43 1.09
Balanced Accuracy [%] 0.61 0.75 0.53
Accuracy [%] 0.39 0.86 0.83

166

Table B.47: The table shows the binary classifier metrics for the CMU slice 20 dataset.

Dataset CMU slice 20

Method MnM NF PM

Precision (Positive Class) 0.29 0.54 0.68
Recall (Positive Class) 0.82 0.41 0.03
F1 Score 0.43 0.47 0.05
True Negatives [%] 32.08 69.49 77.16
False Negatives [%] 3.95 13.22 21.95
False Positives [%] 45.36 7.95 0.28
True Positives [%] 18.61 9.34 0.61
Balanced Accuracy [%] 0.62 0.66 0.51
Accuracy [%] 0.51 0.79 0.78

Table B.48: The table shows the binary classifier metrics for the CMU slice 21 dataset.

Dataset CMU slice 21

Method MnM NF PM

Precision (Positive Class) 0.39 0.56 0.67
Recall (Positive Class) 0.82 0.57 0.18
F1 Score 0.53 0.56 0.28
True Negatives [%] 21.40 50.08 62.56
False Negatives [%] 6.27 14.93 28.39
False Positives [%] 44.14 15.46 2.98
True Positives [%] 28.18 19.52 6.07
Balanced Accuracy [%] 0.57 0.67 0.57
Accuracy [%] 0.50 0.70 0.69

Table B.49: The table shows the binary classifier metrics for the CMU slice 22 dataset.

Dataset CMU slice 22

Method MnM NF PM

Precision (Positive Class) 0.27 0.64 0.74
Recall (Positive Class) 0.84 0.54 0.08
F1 Score 0.41 0.58 0.14
True Negatives [%] 26.68 70.85 77.03
False Negatives [%] 3.61 10.40 20.60
False Positives [%] 50.96 6.79 0.61
True Positives [%] 18.75 11.97 1.76
Balanced Accuracy [%] 0.59 0.72 0.54
Accuracy [%] 0.45 0.83 0.79

167

Table B.50: The table shows the binary classifier metrics for the CMU slice 23 dataset.

Dataset CMU slice 23

Method MnM NF PM

Precision (Positive Class) 0.21 0.66 0.76
Recall (Positive Class) 0.80 0.35 0.01
F1 Score 0.34 0.46 0.03
True Negatives [%] 51.11 85.43 87.57
False Negatives [%] 2.47 8.03 12.21
False Positives [%] 36.52 2.20 0.05
True Positives [%] 9.91 4.35 0.16
Balanced Accuracy [%] 0.69 0.66 0.51
Accuracy [%] 0.61 0.90 0.88

Table B.51: The table shows the binary classifier metrics for the CMU slice 24 dataset.

Dataset CMU slice 24

Method MnM NF PM

Precision (Positive Class) 0.31 0.54 0.66
Recall (Positive Class) 0.73 0.49 0.05
F1 Score 0.44 0.52 0.10
True Negatives [%] 29.47 61.84 72.34
False Negatives [%] 7.19 13.59 25.43
False Positives [%] 43.62 11.25 0.75
True Positives [%] 19.72 13.31 1.47
Balanced Accuracy [%] 0.57 0.67 0.52
Accuracy [%] 0.49 0.75 0.74

Table B.52: The table shows the binary classifier metrics for the CMU slice 25 dataset.

Dataset CMU slice 25

Method MnM NF PM

Precision (Positive Class) 0.24 0.37 0.47
Recall (Positive Class) 0.77 0.55 0.21
F1 Score 0.37 0.44 0.29
True Negatives [%] 36.51 63.65 77.04
False Negatives [%] 4.28 8.37 14.80
False Positives [%] 44.85 17.72 4.32
True Positives [%] 14.36 10.26 3.84
Balanced Accuracy [%] 0.61 0.67 0.58
Accuracy [%] 0.51 0.74 0.81

168

Table B.53: The table shows the binary classifier metrics for the LaMAR HGE dataset.

Dataset LaMAR HGE

Method MnM NF PM

Precision (Positive Class) 0.20 0.25 0.63
Recall (Positive Class) 0.88 0.71 0.00
F1 Score 0.32 0.36 0.01
True Negatives [%] 39.64 57.92 86.79
False Negatives [%] 1.58 3.80 13.12
False Positives [%] 47.18 28.90 0.03
True Positives [%] 11.59 9.38 0.05
Balanced Accuracy [%] 0.67 0.69 0.50
Accuracy [%] 0.51 0.67 0.87

Table B.54: The table shows the binary classifier metrics for the LaMAR CAB dataset.

Dataset LaMAR CAB

Method MnM NF PM

Precision (Positive Class) 0.17 0.25 0.73
Recall (Positive Class) 0.82 0.66 0.04
F1 Score 0.28 0.36 0.07
True Negatives [%] 54.46 72.66 90.73
False Negatives [%] 1.67 3.13 8.78
False Positives [%] 36.41 18.21 0.13
True Positives [%] 7.46 6.01 0.35
Balanced Accuracy [%] 0.71 0.73 0.52
Accuracy [%] 0.62 0.79 0.91

169

Table B.55: The table shows the binary classifier metrics for the LaMAR LIN dataset.

Dataset LaMAR LIN

Method MnM NF PM

Precision (Positive Class) 0.25 0.29 0.88
Recall (Positive Class) 0.76 0.71 0.02
F1 Score 0.38 0.42 0.04
True Negatives [%] 54.66 62.29 86.04
False Negatives [%] 3.32 3.97 13.60
False Positives [%] 31.42 23.79 0.04
True Positives [%] 10.60 9.95 0.32
Balanced Accuracy [%] 0.70 0.72 0.51
Accuracy [%] 0.65 0.72 0.86

Table B.56: The table shows the binary classifier metrics for the Retail Shop dataset.

Dataset Retail Shop

Method MnM NF PM

Precision (Positive Class) 0.65 0.72 0.88
Recall (Positive Class) 0.81 0.61 0.13
F1 Score 0.73 0.66 0.22
True Negatives [%] 15.37 26.66 39.87
False Negatives [%] 10.96 23.21 51.70
False Positives [%] 25.49 14.20 0.99
True Positives [%] 48.17 35.93 7.44
Balanced Accuracy [%] 0.60 0.63 0.55
Accuracy [%] 0.64 0.63 0.47

170

Bibliography

[1] Agarap, A. F. (2018). Deep learning using rectified linear units (relu). arXiv preprint
arXiv:1803.08375.

[2] Agarwal, S., Snavely, N., Simon, I., Seitz, S. M., and Szeliski, R. (2009). Building Rome in
a day. In 2009 IEEE 12th International Conference on Computer Vision, pages 72–79.

[3] Alcantarilla, P. F. and Solutions, T. (2011). Fast explicit diffusion for accelerated features in
nonlinear scale spaces. IEEE Trans. Patt. Anal. Mach. Intell, 34(7):1281–1298.

[4] Amorim, I. (2018). Experiencing AR in retail: The influence of moment marketing and
avatars on consumer behaviour.

[5] Anoosheh, A., Sattler, T., Timofte, R., Pollefeys, M., and Van Gool, L. (2019). Night-to-day
image translation for retrieval-based localization. In 2019 International Conference on
Robotics and Automation (ICRA), pages 5958–5964. IEEE.

[6] Apple (2020). ARKit SDK. https://developer.apple.com/augmented-reality/arkit/, Last
accessed on 2022-01-24.

[7] Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., and Sivic, J. (2016). NetVLAD: Cnn
architecture for weakly supervised place recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 5297–5307.

[8] Arandjelović, R. and Zisserman, A. (2014). Dislocation: Scalable descriptor distinctiveness
for location recognition. In Asian Conference on Computer Vision, pages 188–204. Springer.

[9] Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., and Wu, A. Y. (1998). An optimal
algorithm for approximate nearest neighbor searching fixed dimensions. Journal of the ACM
(JACM), 45(6):891–923.

[10] Augray (2021). Augray. https://augray.com, Last accessed on 2021-12-01.
[11] Azuma, R. T. (1997). A survey of augmented reality. Presence: teleoperators & virtual

environments, 6(4):355–385.
[12] Badino, H., Huber, D., and Kanade, T. (2011). The CMU visual localization data set.

http://3dvis.ri.cmu.edu/data-sets/localization.
[13] Balntas, V., Li, S., and Prisacariu, V. (2018). RelocNet: Continuous Metric Learning

Relocalisation using Neural Nets. In Proceedings of the European Conference on Computer
Vision (ECCV).

[14] Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. (2008). Speeded-up robust features
(SURF). Comput. Vis. Image Underst., 110(3):346–359.

[15] Berrio, J. S., Worrall, S., Shan, M., and Nebot, E. (2021). Long-term map maintenance
pipeline for autonomous vehicles. IEEE Transactions on Intelligent Transportation Systems.

171

https://developer.apple.com/augmented-reality/arkit/
https://augray.com
http://3dvis.ri.cmu.edu/data-sets/localization

[16] Blanco-Claraco, J.-L., Moreno-Duenas, F.-A., and González-Jiménez, J. (2014). The
Málaga urban dataset: High-rate stereo and LiDAR in a realistic urban scenario. The
International Journal of Robotics Research, 33(2):207–214.

[17] Bouguet, J. (2000). MATLAB camera calibration toolbox.
[18] Brachmann, E., Humenberger, M., Rother, C., and Sattler, T. (2021). On the limits of

pseudo ground truth in visual camera re-localisation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages 6218–6228.

[19] Brachmann, E., Krull, A., Nowozin, S., Shotton, J., Michel, F., Gumhold, S., and Rother,
C. (2017). DSAC-differentiable RANSAC for camera localization. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 6684–6692.

[20] Brachmann, E., Michel, F., Krull, A., Yang, M. Y., Gumhold, S., and Rother, c. (2016).
Uncertainty-driven 6D pose estimation of objects and scenes from a single RGB image. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21] Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools.
[22] Brahmbhatt, S., Gu, J., Kim, K., Hays, J., and Kautz, J. (2018). Geometry-aware learning

of maps for camera localization. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2616–2625.

[23] Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.
[24] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan,

A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners.
arXiv preprint arXiv:2005.14165.

[25] Brownlee, J. (2020). A gentle introduction to the bag-of-words model.
[26] Burki, M., Gilitschenski, I., Stumm, E., Siegwart, R., and Nieto, J. (2016). Appearance-

based landmark selection for efficient long-term visual localization. 2016 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS).

[27] Bustos, A. P. and Chin, T.-J. (2017). Guaranteed outlier removal for point cloud registration
with correspondences. IEEE transactions on pattern analysis and machine intelligence,
40(12):2868–2882.

[28] Cabello, R. (2010). Three.js. https://threejs.org, Last accessed on 2022-02-06.
[29] Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., and

Leonard, J. J. (2016). Past, present, and future of simultaneous localization and mapping:
Toward the robust-perception age. IEEE Transactions on robotics, 32(6):1309–1332.

[30] Calonder, M., Lepetit, V., Strecha, C., and Fua, P. (2010). BRIEF: Binary robust inde-
pendent elementary features. In European conference on computer vision, pages 778–792.
Springer.

[31] Campos, C., Elvira, R., Rodriguez, J. J. G., M. Montiel, J. M., and D. Tardos, J. (2021).
ORB-SLAM3: An accurate open-source library for visual, visual–inertial, and multimap
slam. IEEE Transactions on Robotics, page 1–17.

[32] Camposeco, F., Cohen, A., Pollefeys, M., and Sattler, T. (2018). Hybrid camera pose
estimation. In CVPR.

[33] Canorea, E. (2020). What companies use metaverses for and why the big tech companies
are so interested. https://www.plainconcepts.com/metaverse-companies/, Last accessed on
2022-02-06.

[34] Cao, S. and Snavely, N. (2014). Minimal scene descriptions from structure from motion
models. In CVPR, pages 461–468.

172

https://threejs.org
https://www.plainconcepts.com/metaverse-companies/

[35] Chen, D. M., Baatz, G., Köser, K., Tsai, S. S., Vedantham, R., Pylvänäinen, T., Roimela,
K., Chen, X., Bach, J., Pollefeys, M., Girod, B., and Grzeszczuk, R. (2011). City-scale
landmark identification on mobile devices. In CVPR.

[36] Chum, O. and Matas, J. (2005). Matching with PROSAC – Progressive sample consensus.
In CVPR.

[37] Churchill, W. and Newman, P. (2013). Experience-based navigation for long-term locali-
sation. The International Journal of Robotics Research, 32(14):1645–1661.

[38] CNR, I. (2020). MeshLab. http://www.meshlab.net/, Last accessed on 2022-01-25.
[39] Cruz, E., Orts-Escolano, S., Gomez-Donoso, F., Rizo, C., Rangel, J. C., Mora, H., and

Cazorla, M. (2019). An augmented reality application for improving shopping experience in
large retail stores. Virtual Reality, 23(3):281–291.

[40] Cummins, M. and Newman, P. (2008). FAB-MAP: Probabilistic localization and mapping
in the space of appearance. The International Journal of Robotics Research, 27(6):647–665.

[41] Davison, A. J., Reid, I. D., Molton, N. D., and Stasse, O. (2007). MonoSLAM: Real-
time single camera slam. IEEE transactions on pattern analysis and machine intelligence,
29(6):1052–1067.

[42] DBoW3 (2017). DBoW3. https://github.com/rmsalinas/DBow3.
[43] De Pace, F., Manuri, F., and Sanna, A. (2018). Augmented reality in industry 4.0. Am. J.

Comput. Sci. Inf. Technol, 6(01):1–7.
[44] Demirtas, F., Gulmez, B., Yildirim, I., Leloglu, U., Yaman, M., and Guneyi, E. (2019).

Investigation of the effects of false matches and distribution of the matched keypoints on the
pnp algorithm.

[45] DeTone, D., Malisiewicz, T., and Rabinovich, A. (2018). SuperPoint: Self-supervised
interest point detection and description. In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), pages 337–33712.

[46] Ding, M., Wang, Z., Sun, J., Shi, J., and Luo, P. (2019). Camnet: Coarse-to-fine retrieval
for camera re-localization. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV).

[47] Doan, A.-D., Turmukhambetov, D., Latif, Y., Chin, T.-J., and Bae, S. (2021). Learning to
predict repeatability of interest points. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pages 10294–10301. IEEE.

[48] Dong, S., Fan, Q., Wang, H., Shi, J., Yi, L., Funkhouser, T., Chen, B., and Guibas, L. J.
(2021). Robust neural routing through space partitions for camera relocalization in dynamic
indoor environments. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 8544–8554.

[49] Duong, N.-D. (2019). Hybrid Machine Learning and Geometric Approaches for Single
RGB Camera Relocalization. Theses, CentraleSupélec.

[50] Dymczyk, M., Lynen, S., Cieslewski, T., Bosse, M., Siegwart, R., and Furgale, P. (2015).
The gist of maps – summarizing experience for lifelong localization. In ICRA.

[51] Dymczyk, M., Schneider, T., Gilitschenski, I., Siegwart, R., and Stumm, E. (2016). Erasing
bad memories: Agent-side summarization for long-term mapping. In IROS.

[52] EasyAR (2021). EasyAR. https://www.easyar.com, Last accessed on 2022-01-30.
[53] Edward Miller, H. H. (2018). Scape technologies. https://www.scape.io/, Last accessed on

2019-10-01.

173

http://www.meshlab.net/
https://github.com/rmsalinas/DBow3
https://www.easyar.com
https://www.scape.io/

[54] Engel, J., Schöps, T., and Cremers, D. (2014). LSD-SLAM: Large-scale direct monocular
slam. In European conference on computer vision, pages 834–849.

[55] Faisal Galaria (2017). Blippar. https://www.blippar.com, Last accessed on 2022-02-06.
[56] Fawcett, T. (2006). An introduction to roc analysis. Pattern recognition letters, 27(8):861–

874.
[57] Fehr, M., Dymczyk, M., Lynen, S., and Siegwart, R. (2016). Reshaping our model of the

world over time. In ICRA, pages 2449–2455.
[58] Fernández Alcantarilla, P., Bartoli, A., and Davison, A. (2012). KAZE features.
[59] Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: A paradigm for

model fitting with applications to image analysis and automated cartography. Commun. ACM,
24(6):381–395.

[60] Fraga-Lamas, P., Fernandez-Carames, T. M., Blanco-Novoa, O., and Vilar-Montesinos,
M. A. (2018). A review on industrial augmented reality systems for the industry 4.0 shipyard.
IEEE Access, 6:13358–13375.

[61] Frahm, J.-M., Fite-Georgel, P., Gallup, D., Johnson, T., Raguram, R., Wu, C., Jen, Y.-H.,
Dunn, E., Clipp, B., Lazebnik, S., et al. (2010). Building Rome on a cloudless day. In
European Conference on computer vision, pages 368–381. Springer.

[62] Gálvez-López, D. and Tardos, J. D. (2012). Bags of binary words for fast place recognition
in image sequences. IEEE Transactions on Robotics, 28(5):1188–1197.

[63] Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013a). Vision meets robotics: The kitti
dataset. Int. J. Rob. Res., 32(11):1231–1237.

[64] Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013b). Vision meets robotics: The kitti
dataset. International Journal of Robotics Research (IJRR).

[65] GitHub, Inc. (2008). Github. https://github.com, Last accessed on 2022-02-04.
[66] Google (2020). ARCore SDK. https://developers.google.com/ar, Last accessed on 2022-

01-24.
[67] Gronát, P., Obozinski, G., Sivic, J., and Pajdla, T. (2013). Learning and calibrating

per-location classifiers for visual place recognition. In CVPR.
[68] Guven, S., Oda, O., Podlaseck, M., Stavropoulos, H., Kolluri, S., and Pingali, G. (2009).

Social mobile augmented reality for retail. In 7th Annual IEEE International Conference on
Pervasive Computing and Communications, PerCom 2009.

[69] Haralick, B. M., Lee, C.-N., Ottenberg, K., and Nölle, M. (1994). Review and analysis of
solutions of the three point perspective pose estimation problem. International journal of
computer vision, 13(3):331–356.

[70] Haralick, R. M. and Hyonam, J. (1988). 2D-3D pose estimation. In 9th International
Conference on Pattern Recognition, pages 385–386. IEEE Computer Society.

[71] Harris, C. and Stephens, M. (1988). A combined corner and edge detector. In Proceedings
of the 4th Alvey Vision Conference, pages 147–151.

[72] Hartigan, J. A. and Wong, M. A. (1979). A k-means clustering algorithm. JSTOR: Applied
Statistics, 28(1):100–108.

[73] Hartley, R. and Zisserman, A. (2003). Multiple View Geometry in Computer Vision.
Cambridge University Press, New York, NY, USA, 2 edition.

[74] Hartley, R. I. (1997). In defense of the eight-point algorithm. IEEE Transactions on
pattern analysis and machine intelligence, 19(6):580–593.

174

https://www.blippar.com
https://github.com
https://developers.google.com/ar

[75] Hartley, R. I., Trumpf, J., Dai, Y., and Li, H. (2012). Rotation averaging. International
Journal of Computer Vision, 103:267–305.

[76] Hartmann, W., Havlena, M., and Schindler, K. (2014). Predicting matchability. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 9–16.

[77] Hobbs, R. (2020). Gucci partners with snapchat for AR try-on. https://www.stylus.com/
gucci-partners-with-snapchat-for-ar-tryon, Last accessed on 2022-02-06.

[78] IBM (2022). Watson studio. https://cloud.ibm.com, Last accessed on 2022-01-30.
[79] IBM Unity SDK (2019). Watson studio. https://github.com/watson-developer-cloud/

unity-sdk/, Last accessed on 2022-02-03.
[80] Irschara, A., Zach, C., Frahm, J.-M., and Bischof, H. (2009a). From structure-from-motion

point clouds to fast location recognition. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 2599–2606. IEEE.

[81] Irschara, A., Zach, C., Frahm, J.-M., and Bischof, H. (2009b). From structure-from-motion
point clouds to fast location recognition. In CVPR.

[82] Jin, Y., Mishkin, D., Mishchuk, A., Matas, J., Fua, P., Yi, K. M., and Trulls, E. (2021).
Image matching across wide baselines: From paper to practice. International Journal of
Computer Vision, 129(2):517–547.

[83] Johnson, J., Douze, M., and Jégou, H. (2017). Billion-scale similarity search with GPUs.
arXiv preprint arXiv:1702.08734.

[84] Johnson, P. (2021). Augmented reality in fashion. https://rockpaperreality.com/
ar-use-cases/augmented-reality-in-fashion/, Last accessed on 2022-02-06.

[85] Kalantidis, Y., Tolias, G., Avrithis, Y., Phinikettos, M., Spyrou, E., Mylonas, P., and Kollias,
S. (2011). Viral: Visual image retrieval and localization. Multimedia Tools and Applications,
51(2):555–592.

[86] Ke, Y. and Sukthankar, R. (2004). PCA-SIFT: A more distinctive representation for
local image descriptors. In Proceedings of the 2004 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2004. CVPR 2004., volume 2, pages II–II. IEEE.

[87] Kendall, A., Grimes, M., and Cipolla, R. (2015). PoseNet: A convolutional network for
real-time 6-DOF camera relocalization. In ICCV.

[88] Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In Bengio,
Y. and LeCun, Y., editors, International Conference on Learning Representations, ICLR
2015.

[89] Knopp, J., Sivic, J., and Pajdla, T. (2010). Avoiding confusing features in place recognition.
In European Conference on Computer Vision, pages 748–761. Springer.

[90] Konolige, K. and Agrawal, M. (2008). Frameslam: From bundle adjustment to real-time
visual mapping. IEEE Transactions on Robotics, 24(5):1066–1077.

[91] Konolige, K. and Bowman, J. (2009). Towards lifelong visual maps. In IROS, pages
1156–1163.

[92] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60(6):84–90.

[93] Laber, E. S. and Murtinho, L. (2018). Minimization of gini impurity via connections with
the k-means problem. CoRR, abs/1810.00029.

[94] Laguna, A. B., Riba, E., Ponsa, D., and Mikolajczyk, K. (2019). Key.net: Keypoint
detection by handcrafted and learned CNN filters. CoRR, abs/1904.00889.

175

https://www.stylus.com/gucci-partners-with-snapchat-for-ar-tryon
https://www.stylus.com/gucci-partners-with-snapchat-for-ar-tryon
https://cloud.ibm.com
https://github.com/watson-developer-cloud/unity-sdk/
https://github.com/watson-developer-cloud/unity-sdk/
https://rockpaperreality.com/ar-use-cases/augmented-reality-in-fashion/
https://rockpaperreality.com/ar-use-cases/augmented-reality-in-fashion/

[95] Larochelle, H., Bengio, Y., Louradour, J., and Lamblin, P. (2009). Exploring strategies for
training deep neural networks. Journal of machine learning research, 10(1).

[96] Laskar, Z., Melekhov, I., Kalia, S., and Kannala, J. (2017). Camera relocalization by
computing pairwise relative poses using convolutional neural network. In Proceedings of the
IEEE International Conference on Computer Vision Workshops, pages 929–938.

[97] Lee, N., Kim, C., Choi, W., Pyeon, M., and Kim, Y. (2017). Development of indoor
localization system using a mobile data acquisition platform and bow image matching. KSCE
Journal of Civil Engineering, 21(1):418–430.

[98] Lepetit, V., Moreno-Noguer, F., and Fua, P. (2009a). Ep n p: An accurate o (n) solution to
the p n p problem. International journal of computer vision, 81:155–166.

[99] Lepetit, V., Moreno-Noguer, F., and Fua, P. (2009b). EPnP: An Accurate O(n) Solution to
the PnP Problem. International journal of computer vision, 81(2):155.

[100] Leutenegger, S., Chli, M., and Siegwart, R. Y. (2011). BRISK: Binary robust invariant
scalable keypoints. In 2011 International Conference on Computer Vision, pages 2548–2555.

[101] Li, M., Kim, B. H., and Mourikis, A. I. (2013). Real-time motion tracking on a cellphone
using inertial sensing and a rolling-shutter camera. In 2013 IEEE International Conference
on Robotics and Automation, pages 4712–4719. IEEE.

[102] Li, M. and Mourikis, A. I. (2013). High-precision, consistent ekf-based visual-inertial
odometry. The International Journal of Robotics Research, 32(6):690–711.

[103] Li, X., Wu, C., Zach, C., Lazebnik, S., and Frahm, J.-M. (2008). Modeling and recognition
of landmark image collections using iconic scene graphs. In European Conference on
Computer Vision, pages 427–440. Springer.

[104] Li, Y., Snavely, N., Huttenlocher, D., and Fua, P. (2012). Worldwide pose estimation
using 3D point clouds. In ECCV.

[105] Li, Y., Snavely, N., and Huttenlocher, D. P. (2010). Location recognition using prioritized
feature matching. In Daniilidis, K., Maragos, P., and Paragios, N., editors, ECCV.

[106] Lim, H., Sinha, S. N., Cohen, M. F., and Uyttendaele, M. (2012). Real-time image-based
6-DOF localization in large-scale environments. In CVPR.

[107] Lockhart, J. W. (2021). Augmented reality in ecommerce: How ar, vr
and 3d are changing online shopping. https://www.shopify.com/enterprise/
augmented-reality-ecommerce-shopping, Last accessed on 2022-02-06.

[108] Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60(2):91–110.

[109] Lu, X. X. (2018). A review of solutions for perspective-n-point problem in camera pose
estimation. Journal of Physics: Conference Series, 1087:052009.

[110] Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. (2017). The expressive power of neural
networks: A view from the width. Advances in neural information processing systems, 30.

[111] Lynen, S., Sattler, T., Bosse, M., Hesch, J. A., Pollefeys, M., and Siegwart, R. (2015).
Get out of my lab: Large-scale, real-time visual-inertial localization. In Kavraki, L. E., Hsu,
D., and Buchli, J., editors, Robotics: Science and Systems XI, Sapienza University of Rome,
Rome, Italy, July 13-17, 2015.

[112] Lynen, S., Zeisl, B., Aiger, D., Bosse, M., Hesch, J., Pollefeys, M., Siegwart, R.,
and Sattler, T. (2019). Large-scale, real-time visual-inertial localization revisited. Arxiv,
https://arxiv.org/abs/1907.00338.

176

https://www.shopify.com/enterprise/augmented-reality-ecommerce-shopping
https://www.shopify.com/enterprise/augmented-reality-ecommerce-shopping

[113] Lynen, S., Zeisl, B., Aiger, D., Bosse, M., Hesch, J., Pollefeys, M., Siegwart, R., and Sat-
tler, T. (2020). Large-scale, real-time visual–inertial localization revisited. The International
Journal of Robotics Research, 39(9):1061–1084.

[114] Ma, J., Jiang, X., Fan, A., Jiang, J., and Yan, J. (2021). Image matching from handcrafted
to deep features: A survey. International Journal of Computer Vision, 129(1):23–79.

[115] Maddern, W., Milford, M., and Wyeth, G. (2013). Towards persistent localization
and mapping with a continuous appearance-based topology. In Roy, N., Newman, P., and
Srinivasa, S., editors, Robotics: Science and Systems.

[116] Maddern, W., Pascoe, G., Linegar, C., and Newman, P. (2017). 1 Year, 1000km: The
Oxford RobotCar Dataset. The International Journal of Robotics Research, 36(1):3–15.

[117] Marchand, E., Uchiyama, H., and Spindler, F. (2016). Pose estimation for augmented
reality: A hands-on survey. IEEE Transactions on Visualization and Computer Graphics,
22(12):2633–2651.

[118] Middelberg, S., Sattler, T., Untzelmann, O., and Kobbelt, L. (2014). Scalable 6-DOF
localization on mobile devices. In ECCV.

[119] Miksik, O. and Mikolajczyk, K. (2012). Evaluation of local detectors and descriptors
for fast feature matching. In Proceedings of the 21st International Conference on Pattern
Recognition (ICPR2012), pages 2681–2684. IEEE.

[120] Moreno-Noguer, F., Lepetit, V., and Fua, P. (2007). Accurate Non-Iterative O(n) Solution
to the PnP Problem. In 2007 IEEE 11th International Conference on Computer Vision, pages
1–8. IEEE.

[121] Mühlfellner, P., Bürki, M., Bosse, M., Derendarz, W., Philippsen, R., and Furgale, P.
(2016). Summary maps for lifelong visual localization. J. Field Robot., 33(5):561–590.

[122] Muja, M. and Lowe, D. G. (2009). Fast approximate nearest neighbors with automatic
algorithm configuration. VISAPP (1), 2(331-340):2.

[123] Mur-Artal, R. and Tardós, J. D. (2017). ORB-SLAM2: an open-source SLAM system for
monocular, stereo, and RGB-D cameras. IEEE Transactions on Robotics, 33(5):1255–1262.

[124] Muñoz-Salinas, R. and Medina-Carnicer, R. (2020). Ucoslam: Simultaneous localization
and mapping by fusion of keypoints and squared planar markers. Pattern Recognition, page
107193.

[125] Nakano, G. (2019). A simple direct solution to the perspective-three-point problem. In
Proceedings of the British Machine Vision Conference (BMVC). BMVA Press.

[126] Nister, D. and Stewenius, H. (2006). Scalable recognition with a vocabulary tree. In 2006
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06),
volume 2, pages 2161–2168.

[127] Occipital (2018). Structure io. https://structure.io, Last accessed on 2022-01-25.
[128] Oliva, A. and Torralba, A. (2001). Modeling the shape of the scene: A holistic represen-

tation of the spatial envelope. International Journal of Computer Vision, 42(3):145–175.
[129] Oliva, A. and Torralba, A. (2006). Building the gist of a scene: The role of global image

features in recognition. Progress in brain research, 155:23–36.
[130] OpenJS Foundation (2013). Electron. www.electronjs.org/, Last accessed on 2022-01-25.
[131] Panek, V., Kukelova, Z., and Sattler, T. (2022). MeshLoc: Mesh-Based Visual Localiza-

tion. In European Conference on Computer Vision (ECCV).

177

https://structure.io
www.electronjs.org/

[132] Papadaki, A. I. and Hansch, R. (2020). Match or No Match: Keypoint Filtering based on
Matching Probability. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, pages 1014–1015.

[133] Papagiannis, H. (2021). How AR Is Redefining Retail in the Pandemic. https://hbr.org/
2020/10/how-ar-is-redefining-retail-in-the-pandemic, Last accessed on 2022-02-06.

[134] Persson, M. and Nordberg, K. (2018). Lambda Twist: An accurate fast robust perspective
three point (p3p) solver. In Proceedings of the European conference on computer vision
(ECCV), pages 318–332.

[135] Peterson, L. E. (2009). K-nearest neighbor. Scholarpedia, 4(2):1883.
[136] Pion, N., Humenberger, M., Csurka, G., Cabon, Y., and Sattler, T. (2020). Benchmarking

image retrieval for visual localization. In 2020 International Conference on 3D Vision (3DV),
pages 483–494. IEEE.

[137] Pomerleau, F., Krüsi, P., Colas, F., Furgale, P., and Siegwart, R. (2014). Long-term 3D
map maintenance in dynamic environments. In 2014 IEEE International Conference on
Robotics and Automation (ICRA), pages 3712–3719. IEEE.

[138] Poushneh, A. (2018). Augmented reality in retail: A trade-off between user’s control of
access to personal information and augmentation quality. Journal of Retailing and Consumer
Services, 41:169–176.

[139] PTC Inc (2015). Vuforia Augmented Reality SDK. https://developer.vuforia.com, Last
accessed on 2022-01-30.

[140] Qin, T., Li, P., and Shen, S. (2018). Vins-mono: A robust and versatile monocular
visual-inertial state estimator. IEEE Transactions on Robotics, 34(4):1004–1020.

[141] Quan, L. and Lan, Z. (1999). Linear n-point camera pose determination. IEEE Transac-
tions on pattern analysis and machine intelligence, 21(8):774–780.

[142] Revaud, J., Weinzaepfel, P., de Souza, C. R., and Humenberger, M. (2019). R2D2:
Repeatable and Reliable Detector and Descriptor. In NeurIPS.

[143] Riar, M., Korbel, J. J., Xi, N., Zarnekow, R., and Hamari, J. (2021). The use of augmented
reality in retail: A review of literature. Hawaii International Conference on System Sciences.

[144] Rosten, E. and Drummond, T. (2006). Machine learning for high-speed corner detection.
In European conference on computer vision, pages 430–443. Springer.

[145] Rotsidis, A. (2021). OmniAR. https://www.omniar.tech, Last accessed on 2021-05-01.
[146] Rotsidis, A., Lutteroth, C., Hall, P., and Richardt, C. (2021). ExMaps: Long-Term

Localization in Dynamic Scenes Using Exponential Decay. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV), pages 2867–2876.

[147] Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011). ORB: An efficient
alternative to SIFT or SURF. In 2011 International Conference on Computer Vision, pages
2564–2571.

[148] Ruby, U. and Yendapalli, V. (2020). Binary cross entropy with deep learning technique
for image classification. Int. J. Adv. Trends Comput. Sci. Eng, 9(10).

[149] Russell, R. A. and Urban, T. L. (2010). The location and allocation of products and
product families on retail shelves. Annals of Operations Research, 179(1):131–147.

[150] Ryan Dahl, OpenJS Foundation, B. C. (2022). Node.js. https://nodejs.org/en/, Last
accessed on 2022-02-04.

[151] Santarcangelo, V. (2018). Visual behavior analysis in retail scenario.

178

https://hbr.org/2020/10/how-ar-is-redefining-retail-in-the-pandemic
https://hbr.org/2020/10/how-ar-is-redefining-retail-in-the-pandemic
https://developer.vuforia.com
https://www.omniar.tech
https://nodejs.org/en/

[152] Santarcangelo, V., Farinella, G. M., and Battiato, S. (2016). Egocentric vision for visual
market basket analysis. In Hua, G. and Jégou, H., editors, ECCV Workshops, pages 518–531.

[153] Sarantopoulos, P., Theotokis, A., Pramatari, K., and Doukidis, G. (2016). Shopping
missions: An analytical method for the identification of shopper need states. Journal of
Business Research, 69(3):1043–1052.

[154] Sarlin, P.-E., Cadena, C., Siegwart, R., and Dymczyk, M. (2019). From coarse to fine:
Robust hierarchical localization at large scale. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 12716–12725.

[155] Sarlin, P.-E., DeTone, D., Malisiewicz, T., and Rabinovich, A. (2020). SuperGlue:
Learning feature matching with graph neural networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 4938–4947.

[156] Sarlin, P.-E., Dusmanu, M., Schönberger, J. L., Speciale, P., Gruber, L., Larsson, V.,
Miksik, O., and Pollefeys, M. (2022). LaMAR: Benchmarking Localization and Mapping
for Augmented Reality. In ECCV.

[157] Sattler, T., Leibe, B., and Kobbelt, L. (2011). Fast image-based localization using direct
2D-to-3D matching. In ICCV.

[158] Sattler, T., Leibe, B., and Kobbelt, L. (2012a). Improving image-based localization by
active correspondence search. In European conference on computer vision, pages 752–765.
Springer.

[159] Sattler, T., Leibe, B., and Kobbelt, L. (2017a). Efficient effective prioritized matching for
large-scale image-based localization. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 39(9):1744–1756.

[160] Sattler, T., Maddern, W., Toft, C., Torii, A., Hammarstrand, L., Stenborg, E., Safari, D.,
Okutomi, M., Pollefeys, M., Sivic, J., Kahl, F., and Pajdla, T. (2018). Benchmarking 6DOF
outdoor visual localization in changing conditions. In CVPR.

[161] Sattler, T., Torii, A., Sivic, J., Pollefeys, M., Taira, H., Okutomi, M., and Pajdla, T.
(2017b). Are large-scale 3D models really necessary for accurate visual localization? In
CVPR.

[162] Sattler, T., Weyand, T., Leibe, B., and Kobbelt, L. (2012b). Image retrieval for image-
based localization revisited. In BMVC.

[163] Sattler, T., Zhou, Q., Pollefeys, M., and Leal-Taixe, L. (2019). Understanding the
limitations of CNN-based absolute camera pose regression. In CVPR.

[164] Schönberger, J. L. and Frahm, J.-M. (2016). Structure-from-motion revisited. In CVPR.
[165] Sevensense (2021). Autonomy for your Robots. https://www.sevensense.ai.
[166] Shavit, Y., Ferens, R., and Keller, Y. (2021). Learning multi-scene absolute pose regres-

sion with transformers. arXiv preprint arXiv:2103.11468.
[167] Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A., and Fitzgibbon, A. (2013).

Scene coordinate regression forests for camera relocalization in RGB-D images. In CVPR.
[168] Shuhaiber, J. H. (2004). Augmented reality in surgery. Archives of surgery, 139(2):170–

174.
[169] Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556.
[170] Sivic, J. and Zisserman, A. (2003). Video Google: A text retrieval approach to object

matching in videos. In Computer Vision, IEEE International Conference on, volume 3, pages
1470–1470. IEEE Computer Society.

179

https://www.sevensense.ai

[171] Snavely, N., Seitz, S. M., and Szeliski, R. (2006). Photo tourism: exploring photo
collections in 3d. In ACM siggraph 2006 papers, pages 835–846.

[172] Snavely, N., Seitz, S. M., and Szeliski, R. (2008). Modeling the world from internet
photo collections. International journal of computer vision, 80(2):189–210.

[173] Spera, E., Furnari, A., Battiato, S., and Farinella, G. M. (2018). Egocentric shopping cart
localization. In ICPR.

[174] Spera, E., Furnari, A., Battiato, S., and Farinella, G. M. (2020). EgoCart: a benchmark
dataset for large-scale indoor image-based localization in retail stores. IEEE TCSVT.

[175] Spreer, P. and Kallweit, K. (2014). Augmented reality in retail: Assessing the acceptance
and potential for multimedia product presentation at the pos. Transactions on Marketing
Research, 1:20–25.

[176] Spreer, P., Kallweit, K., and Gutknecht, K. (2012). Improving the in-store customer
information process using mobile augmented reality.

[177] Stenborg, E., Toft, C., and Hammarstrand, L. (2018). Long-term visual localization
using semantically segmented images. 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 6484–6490.

[178] Stylianou, A., Abrams, A., and Pless, R. (2015). Characterizing feature matching
performance over long time periods. In WACV, pages 892–898.

[179] Sun, W., Jiang, W., Trulls, E., Tagliasacchi, A., and Yi, K. M. (2020). Acne: Attentive
context normalization for robust permutation-equivariant learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11286–11295.

[180] Sünderhauf, N., Konolige, K., Lacroix, S., and Protzel, P. (2006). Visual odometry using
sparse bundle adjustment on an autonomous outdoor vehicle. In Autonome Mobile Systeme
2005, pages 157–163. Springer.

[181] Sutherland, I. E. (1974). Three-dimensional data input by tablet. Proceedings of the
IEEE, 62(4):453–461.

[182] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,
V., and Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1–9.

[183] Szeliski, R. (2010). Computer vision: algorithms and applications. Springer Science &
Business Media.

[184] Taira, H., Okutomi, M., Sattler, T., Cimpoi, M., Pollefeys, M., Sivic, J., Pajdla, T., and
Torii, A. (2018). InLoc: Indoor visual localization with dense matching and view synthesis.
In CVPR.

[185] Tan, Y.-C., Chandukala, S. R., and Reddy, S. K. (0). Augmented reality in retail and its
impact on sales. Journal of Marketing, 0(0):0022242921995449.

[186] Technologies, U. (2005). Unity. https://unity.com/, Last accessed on 2022-01-24.
[187] Tesla (2021). Tesla: Electric Cars, Solar & Clean Energy. https://www.tesla.com.
[188] Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P.,

Gale, J., Halpenny, M., Hoffmann, G., et al. (2006). Stanley: The robot that won the darpa
grand challenge. Journal of field Robotics, 23(9):661–692.

[189] Toft, C. (2019). Towards Robust Visual Localization in Challenging Conditions. Chalmers
Tekniska Hogskola (Sweden).

180

https://unity.com/
https://www.tesla.com

[190] Toft, C., Maddern, W., Torii, A., Hammarstrand, L., Stenborg, E., Safari, D., Okutomi,
M., Pollefeys, M., Sivic, J., Pajdla, T., et al. (2020). Long-term visual localization revisited.
IEEE Transactions on Pattern Analysis and Machine Intelligence.

[191] Toft, C., Stenborg, E., Hammarstrand, L., Brynte, L., Pollefeys, M., Sattler, T., and Kahl,
F. (2018). Semantic match consistency for long-term visual localization. In ECCV.

[192] Torii, A., Arandjelovic, R., Sivic, J., Okutomi, M., and Pajdla, T. (2015). 24/7 place
recognition by view synthesis. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1808–1817.

[193] Torii, A., Sivic, J., Pajdla, T., and Okutomi, M. (2013). Visual place recognition with
repetitive structures. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 883–890.

[194] Triggs, B., McLauchlan, P. F., Hartley, R. I., and Fitzgibbon, A. W. (1999). Bundle
adjustment—a modern synthesis. In International workshop on vision algorithms, pages
298–372. Springer.

[195] Tuytelaars, T. and Mikolajczyk, K. (2008). Local invariant feature detectors: A survey.
Found. Trends. Comput. Graph. Vis., 3(3):177–280.

[196] Unity (2018). Arfoundation. https://unity.com/unity/features/arfoundation, Last accessed
on 2022-01-30.

[197] Vaidyanathan, N. (2020). Enriching Retail Customer Experience Using Augmented
Reality. PhD School of Economics and Management.

[198] Valentin, J., Niessner, M., Shotton, J., Fitzgibbon, A., Izadi, S., and Torr, P. H. S. (2015).
Exploiting uncertainty in regression forests for accurate camera relocalization. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[199] Van Loan, C. F. and Golub, G. (1996). Matrix computations (johns hopkins studies in
mathematical sciences).

[200] Vávra, P., Roman, J., Zonča, P., Ihnát, P., Němec, M., Kumar, J., Habib, N., and El-Gendi,
A. (2017). Recent development of augmented reality in surgery: a review. Journal of
healthcare engineering, 2017.

[201] Ventura, J., Arth, C., Reitmayr, G., and Schmalstieg, D. (2014). Global localization from
monocular slam on a mobile phone. IEEE Transactions on Visualization and Computer
Graphics, 20(4):531–539.

[202] Wald, J., Sattler, T., Golodetz, S., Cavallari, T., and Tombari, F. (2020). Beyond controlled
environments: 3d camera re-localization in changing indoor scenes. In European Conference
on Computer Vision (ECCV).

[203] Wang, S., Fidler, S., and Urtasun, R. (2015). Lost shopping! Monocular localization in
large indoor spaces. In ICCV.

[204] Wang, S., Liu, W., Wu, J., Cao, L., Meng, Q., and Kennedy, P. J. (2016). Training deep
neural networks on imbalanced data sets. In 2016 international joint conference on neural
networks (IJCNN), pages 4368–4374. IEEE.

[205] Wang, X. (2009). Augmented reality in architecture and design: Potentials and challenges
for application. International Journal of Architectural Computing, 7(2):309–326.

[206] Welch, G. and Foxlin, E. (2002). Motion tracking: No silver bullet, but a respectable
arsenal. IEEE Computer graphics and Applications, 22(6):24–38.

181

https://unity.com/unity/features/arfoundation

[207] Weyand, T., Kostrikov, I., and Philbin, J. (2016). Planet-photo geolocation with con-
volutional neural networks. In European Conference on Computer Vision, pages 37–55.
Springer.

[208] Wikitude GmbH (2018). Wikitude. https://www.wikitude.com, Last accessed on 2022-
01-20.

[209] Wu, Y. (2016). Image based camera localization: an overview. CoRR, abs/1610.03660.
[210] Xue, F., Wu, X., Cai, S., and Wang, J. (2020). Learning multi-view camera relocalization

with graph neural networks. In 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 11372–11381. IEEE.

[211] Yi, K. M., Trulls, E., Ono, Y., Lepetit, V., Salzmann, M., and Fua, P. (2018). Learning to
find good correspondences. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2666–2674.

[212] Yu, H., Ye, W., Feng, Y., Bao, H., and Zhang, G. (2020). Learning bipartite graph
matching for robust visual localization. In 2020 IEEE International Symposium on Mixed
and Augmented Reality (ISMAR), pages 146–155. IEEE.

[213] Zamir, A. R. and Shah, M. (2010). Accurate image localization based on Google maps
street view. In Daniilidis, K., Maragos, P., and Paragios, N., editors, ECCV.

[214] Zeisl, B., Sattler, T., and Pollefeys, M. (2015). Camera pose voting for large-scale
image-based localization. In Proceedings of the IEEE International Conference on Computer
Vision, pages 2704–2712.

[215] Zhang, W. and Kosecka, J. (2006). Image based localization in urban environments.
In Third international symposium on 3D data processing, visualization, and transmission
(3DPVT’06), pages 33–40. IEEE.

[216] Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Trans. Pattern
Anal. Mach. Intell., 22(11):1330–1334.

[217] Zheng, Y., Kuang, Y., Sugimoto, S., Astrom, K., and Okutomi, M. (2013). Revisiting the
pnp problem: A fast, general and optimal solution. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV).

[218] Zhou, Q., Sattler, T., Pollefeys, M., and Leal-Taixe, L. (2020). To learn or not to learn:
Visual localization from essential matrices. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pages 3319–3326. IEEE.

182

https://www.wikitude.com

	Introduction
	Motivation
	Research Aims and Objectives
	Contributions
	Thesis Outline

	Background
	Foundations
	The Pinhole Camera Model

	Camera Localisation
	Augmented Reality
	Conclusion

	Industrial Application Prototypes
	Introduction

	Long-term Localisation in Dynamic Scenes using Exponential Decay
	Neural Feature Filtering for Faster Structure-from-Motion Localisation
	Conclusions
	Contributions Summary

	Detailed Results for chap:chapter-4
	chap:chapter-4 Table Results

	Detailed Results for chap:chapter-5
	chap:chapter-5 Camera Pose Metrics Table Results
	chap:chapter-5 Binary Classifiers Metrics Table

