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Chapter 1

Introduction

Humans have an incredible ability to understand what we see. We can classify the
objects we see in both general and specific terms – we can internally classify something
we as a dog, cat, or person, but we also further recognise it as the neighbour’s dog, the
neighbour’s cat, or the neighbour themselves as specific dogs, cats, and people. On top
of this we can recognise these objects, and specific objects, when we do not see them
in the 3D world we live in; we can still recognise them when depicted as 2D images,
both natural and artistic. We can easily recognise Mickey Mouse in all the variations
included in Figure 1-1. We may be most used to seeing Mickey in the standard style (top
left) but are not troubled when he is presented as a stuffed toy, printed on a t-shirt, in
a new artistic style, or as an arrangement of flowers. Cross-depiction object recognition
has historically been under-researched compared to the photographic recognition. And
yet, we posit that cross-depiction problems are intriguing as they demonstrate the
limitations of the latest and greatest recognition systems.

Human understanding of an image does not end at knowing what object is being
depicted. In Figure 1-1 we can understand how each instance is depicted and even
what stuff, or material, is being used to depict it e.g. the material of the soft toy (top
middle). Consider too the example depictions of bicycles in Figure 1-2. Not only are
these varying artistic depictions themselves that are all equally recognisable, but there
is also more information and context we understand from it. From the top left, we can
infer the both the presence and direction of movement of her bicycle from the sway
of the scarf and the “speed lines” of the wheels. We similarly feel the bike’s speed in
the bottom right example from the motion blur of the background and the stance of
the rider. In the top right and bottom left examples, we recognise bicycles from the
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Figure 1-1: Some samples from the spectrum of depictions Mickey Mouse appears in,
including our source training data and what we aim to recognise him in. Our source
training data comprises original character artwork (top left) and some stylised artwork
(bottom left). For our end goal, we wish to detect Mickey Mouse across a wide range
of in-the-wild depictions, such as those presented in the remaining examples.
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very simple shape outline as both the solid black lines and the negative space between
the background. Furthermore, we understand the context of the street sign and the
warning of potential hazards.

The problem of recognising objects regardless of their depiction has been termed “The
Cross-Depiction Problem” [2, 3] and in modern terminology it is a task of artistic gen-
eralisation and adaptation. Humans are very good at recognising across depictions, but
state-of-the-art computer vision algorithms exhibit a characteristic drop in performance
when attempting to recognise objects in artistic depictions [2, 4]. The cross-depiction
problem is of particular interest when considering artwork as a human abstraction of
visual content. The common approach to creating better visual recognition methods
is, often, to use bigger models and more data. In the cross-depiction problem, this
is not necessarily a suitable path to success. The availability of artistic data is in-
herently constrained as it requires people to create it, so simply finding more data is
not feasible. Additionally, it is unlikely any dataset would exhaustively cover every
possible depictive style. Consider then that artwork is human-generated abstractions
of objects and visual content, and the importance of the cross-depiction problem is
clear i.e. learning to understand artistic abstractions and use this to recognise objects
regardless of depiction.

Improving the ability of computer vision algorithms to recognise regardless of depiction,
and particularly novel depictions is valuable as the out-of-distribution generalisation
that recognition of new depictions represents is a significant limitation of state-of-the-
art methods. Beyond simply improving performance on open-source benchmarks in
literature, many related applications could benefit from this. The application for my
work is recognising Disney branding on images in the wild, given only the original
artist’s drawings as training data – e.g. from Figure 1-1 this is using two left-most
images as labelled or annotated training data to tag the instances on the remaining
images where Mickey is depicted on or as a product. Interesting prior work includes
similarly broad image retrieval problems across diverse artistic depictions of objects
[5, 6], sketch-based image retrieval [7, 8], style transfer [9], and potentially into human
cognition of objects or visual understanding [10]. A better understanding of artistic
abstraction has the potential for improving non-photorealistic rendering too. Creating
artwork is not as simple as swapping the texture distribution as most neural style
transfer assumes – better understating of artistic abstraction by such algorithms could
allow more human-like artistic creations that can vary more than texture alone while
maintaining recognisability.

Even from these narrow sets of examples, it is evident the gamut of human visual

6



Figure 1-2: Comparison of bicycle depictions from the OfficeHome dataset [1]. All
examples are equally recognisable to humans despite their deviation from the usual
photorealistic depiction, and we can also infer more than what is there. We can infer
motion, even the velocity, of both the top left cartoon and bottom right photograph
despite differing depictions of both the object and its motion: the gentle waving of
the cartoon cyclists’ scarf versus the intense motion blur as the photographed cyclist
speeds by. We also recognise the bicycle in the top right and bottom left sign despite
the lack of any high-resolution detail, and for the latter even recognise the additional
meaning of the road sign itself.
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understanding is vast. Object classification, recognition and detection in computer
vision literature generally restrict the task to understanding what semantic object is
shown by categorisation into a set of labels. In most cases, this requires robustness
to all the range of variations that can occur within an object class. We appear to
be simultaneously robust to variations but also aware of them – understand both the
object, its depiction and how these are entangled in the generation of the image as
it is presented. Our visual understanding of objects and artistic depictions opens a
Pandora’s Box of further questions both philosophical and practical. When depicting
an object, e.g. a dog, in some artistic style, e.g. as a cartoon, is this still a dog? Is
the cartoon an out-of-distribution or out-of-domain compared to a photograph or other
artistic styles? Is a cartoon dog its own distinct class from photographic dog? Is what
defines “a dog” some causal relationship between pixels, patches, parts, objects or just
concepts? To address all these questions is beyond the scope of this work. Instead,
I proceed with the assumptions that are common to object recognition research in
literature. That is, (1) when depicting an object, e.g. a dog, in some artistic style,
e.g. as a cartoon, it is still indeed classified as a dog and (2) this newly depicted object
may be considered an out-of-distribution or out-of-domain example as compared to a
photographic version, or some other differently depicted version. This is how most
modern visual object classification approaches the problem of recognition regardless of
depiction.

1.1 Object Classification and Detection

Object and image classification is often used interchangeably to describe the task of
assigning an object label to an image of an object.

Given an example image, I x , then the classifier ! provides a mapping to its target class
label, y,

Φ(I x ) = y (1.1)

and such a classifier does so for set of all images, I x , and object classes, Y

Φ(á) : I x ! Y (1.2)

In modern visual recognition algorithms, the function ! (á) is generally a convolutional
neural network which outputs a discrete probability distribution ŷ over the set of Nc

possible classes, which may or may not include a negative or background class label.

! (I x ) = ŷ (1.3)
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The probability distribution is converted to a class label prediction either by taking
the index of the maximum class probabilities, ŷi , in the predicted distribution

y = arg max
i

(ŷi ). (1.4)

for ŷi " ŷ . But, in the situation with a background class, then a probability threshold
is often needed to accept an example as positive versus a negative/background exam-
ple. This may be implemented as its own class index in ŷ , or a separate probability
distribution of only two classes, positive (any object class) and negative (background
or negative class).

Object detection extends beyond discriminating the class label for an image of an
object. Object detection is the act of both classifying and locating all desired objects
within an image. For a given object, the convolutional neural network function now
produces two distinct outputs: the class label yc and its corresponding bounding box
yb,

Φ(I x ) = (yc, yb) (1.5)

Most object detection models output a class probability distribution that includes a
negative class, NC +1 total classes, and in practice, the probability threshold to accept
positive detections is set via cross-validation. The localisation of the object is defined
by a bounding box. The bounding box is given in either format of two opposite corners
(e.g. top-left and bottom-right), or a single corner coordinate and the bounding box’s
height and width.

1.2 Depicting an Object

Modern visual recognition research typically only considers trying to learn the concep-
tual model described in the previous section. With recognition regardless of depiction,
it is helpful to consider a model of how an object, or even a specific object, is trans-
formed from a real or imagined 3-dimensional scene to a 2-dimensional depiction. We
extend a definition from art historian John Willats [11] and consider its implications
on how modern visual recognition approaches the cross-depiction problem as this Art
history literature offers possible routes for progressing computer vision.

Willats points out that childrens’ art preserves connectivity between parts. The spatial
relations between parts can be variable within limits, whereas some rigid shapes and
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geometric factors cannot be varied so much. He goes on to differentiate “projection”
and “denotation” as the mechanisms of spatial representation of the object or scene
and how the artist applies their chosen medium to canvas, respectively. These two
steps combine to define the “depiction” of the object, or scene. By these definitions,
the focus of our research is actually the denotation rather than depiction in this formal
sense. In the proceeding chapters we use depiction and denotation interchangeably to
refer to, at least, a quantifiable difference in denotation.

Consider an artisti generating an instance of a visual object class in a particular depic-
tion. They begin with a canonical class model, Ω, that comprises a structural model
(how parts connect), geometric pose information (where parts are), texture informa-
tion (what parts look like) which is then projected and denoted to form the artistic
representation. That is, the object example that is classified in the previous section,
I x , is synthesised by

I x = " # µ # Ω (1.6)

In this equation, # represent generic functions by which the denotation the individ-
uation, projection and denotation transforms are applied. Thus, this takes the class
model Ω, then creates the instance by individuating the specific instance through some
transformation µ # Ω to make a specific class model (e.g. the appearance of specific
person features and the length of their arms, legs, etc) and posing the individual. This
individual instance or scene is then depicted through transformation " # (µ # Ω) which
projects it onto the 2D canvas and denotes the images with the desired medium and
artistic effects. As in this description, each process may be further deconstructed.
The individuation µ into the deformation each structural connection of a general class
model into a specific instance and defining the pose, (#, $). The depiction may equally
be separated, as Willats prescribed, into the projection and denotation, (%, !).

I x = (%# ! ) # (# # $) # Ω (1.7)

This model presents a high-level method for synthesising an image. The process pro-
vides a framework for what invariances are desirable in a system for recognition regard-
less of depiction. The general cross-depiction problem is to recognise visual objects with
invariance to denotation, projection, and individuation. For recognising specific objects
the invariances to denotation and projection are still desired, but now only the invari-
ance to the pose component of individuation is the aim; invariance to adjustments that
transform the general class model to the specific class instance are no longer desired.
In theory, invariance to these attributes would lead to abstracted content that is con-
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sistent across the range of most artistic depictions. Creating this understanding of how
objects and scenes are depicted provides a framework to design and analyse computer
vision models for recognition regardless of depiction. While the process of image syn-
thesis here is fit for that purpose, to yield benefits for NPR and image synthesis a more
fine-grained definition of the process is likely preferable.

1.3 The Cross-Depiction Problem

The majority of computer vision research is concerned with photographic data, whereas
the remit of this dissertation is the recognition of objects regardless of depiction. The
task is to determine the underlying class models Ω (in Equation 1.6), correspond-
ing class label yc, and perhaps bounding boxes yb too (in Equation 1.5). Typical
benchmarks frame this with photographic images [12, 13, 14], either as a detection or
classification task. In classification problems, there is rarely a background or nega-
tive class. There is a greater availability of multi-depiction datasets nowadays, and
largely these frame the problem as domain adaptation (DA) or domain generalisation
(DG) [15, 16, 1, 17, 18, 19]. Under this paradigm, each depiction comprises a sepa-
rate domain, and the problem is framed as learning to generalise to an unfamiliar and
out-of-distribution target domain. These DA and DG are more challenging extensions
of prior problems where domains comprised separate photographic datasets with dif-
ferent biases [20, 21, 22]. Motivations for DG in cross-depiction align to the idea that
visual recognition should generalise novel, out-of-distribution depictions. Additionally,
DA aligns with the challenge that there are fewer labelled artistic datasets therefore
unsupervised or semi-supervised methods can allow learning to utilise available but
unlabelled artistic data. In the following chapter, we discuss the advances in artistic
domain generalisation and adaptation over the years and assess these through the lens
of our general model for depicting an object.

When humans look at artwork, they understand more than just the underlying object
class. It is more than the task of object classification or detection in computer vision.
Art Historians like Willats understand what is being depicted i.e. how it is projected
and denoted to fully categorise the piece amongst other artwork. With this in mind
there are more challenges in the general cross-depiction problem than determining the
underlying object class. Consider the importance of the projection, and the resulting
perspective, in understanding and categorising the depiction – Figure 1-3 presents
classical Byzantine art that uses inverse perspective, and a Song dynasty watercolour
with oblique projection. A further diagram and description of inverse projection are
provided in Figure 1-4. In addition to faraway objects appearing larger in inverse
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(a) Source: National Gallery
of Art, Public domain, via
Wikimedia Commons

(b) Source: Pericles o fAthens, Public domain, via Wiki-
media Commons.

Figure 1-3: Two examples of non-linear projection in Artwork. Subfigure a) presents
13th century Byzantine using reverse perspective. The throne and footstool in this piece
highlight the reverse perspective with lines converging towards the viewer; Subfigure
b) presents a watercolour that uses oblique projection, from the Song dynasty in the
12th century.

perspective, parallel lines from the three-dimensional scene become diverging against
the horizon versus converging as they would with linear perspective [23]. Monocular
depth estimation has made tremendous strides with deep learning, and now attention
transformers, but said research has focussed only on photographic which, importantly,
is almost always linear projection except in niche examples where it intentionally is
not, e.g. in 360¡ images and video. Understanding the depth field of Byzantine and
Song dynasty artwork is surely beyond the capabilities of the best monocular depth
estimation algorithms.

In addition to the depiction, as denotation and projection, the model for depicting
an object includes the constituent parts of that object and how they are arranged in
the scene. Multi-task artistic classification of style and genre integrate similar ideas
to the model for depicting a scene – these often use multiple resolutions to capture
both semantic and stylistic attributes [25]. Pre-deep learning computer vision saw
the creation of deformable part models [26, 27] that described how pose can change,
this work was also deployed for recognising the artwork on Greek vases [28] and a
similar graph-based model offered a solution that is relatively stable across depictions
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Figure 1-4: Diagrams of linear perspective of a cube versus reverse perspective,
left and right respectively. Inverse perspective (right) places objects between the
projective point and the viewing plane. Therefore, objects further away in the
scene are depicted as larger on the canvas. In linear perspective (left), objects
that are closer to the view plane are shown as larger, as in most natural images
[24]. License: Rocchini (https://commons.wikimedia.org/wiki/File:Reverse_
perspective.svg#filelinks ), Reverse perspective“, https://creativecommons.
org/licenses/by-sa/3.0/legalcode.

[29]. Part-based models for recognition have largely fallen to the wayside with deep
learning, although some interesting recent examples include DPM-style models from
deep learning [30] and constellation models created via neural attribution for fine-
grained recognition [31].

1.4 Overview and Contributions

The target application is the recognition of Disney characters in the wild using only Dis-
ney Artists’ character artwork as training data. This artwork itself is already labelled
but covers only a narrow span of depictions. Therefore, our challenges are primarily
domain generalisation and adaptation in the modern visual recognition terminology.
Our task is further differentiated from the general task as these are specific objects
(i.e. characters) rather than general object classes, and the potential target domains
are much more broad and ill-defined. DG and DA benchmarks provide labelled and
annotated ground-truth data for a set of quite distinct artistic styles. Our ask is to
use the original artwork to find character and branding instances in any depiction or
medium where it may be a new artistic style, or more complex instances such as a
photograph of a stuffed doll rather (see Figure 1-1). Additionally, this problem goes
beyond sole classification – to also classify if the given image is a product of a Disney
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character or associate branding, and even detect instances of multiple characters e.g.
Mickey and Minnie on the backpack in Figure 1-1. To this end, the chapters of this
dissertation begins by investigating the general task to understand the failings and
successes of the algorithms proposed. The final chapters take a pragmatic approach to
directly solving our problem of recognising Disney characters and branding in the wild
using state-of-the-art methods which resonate with our understanding of the challenge.

1.4.1 Literature Review

In the next chapter, we provide a review of the relevant literature of relevant spanning
classical methods far predating our work to the most recent state-of-the-art. We first
summarise general advances in visual object classification, detection and recognition.
Following this, we move on to the broader problem of the cross-depiction problem –
this we present ordered by relevance in approximate alignment with our subsequent re-
search chapters. In general, this comprises object classification and detection of artistic
images, rather than natural/photographic images, and discusses the modern manifes-
tation of recognition regardless of depiction as a domain generalisation and adaptation
problem. Overall, this plethora of literature helps solidify recognition regardless of
depiction as an interesting and challenging problem with continual relevance to wider
visual recognition.

1.4.2 Datasets

Throughout our research, we utilise many datasets comprising a range of artistic depic-
tions. This includes both our own Disney data and open-source datasets. Furthermore,
we utilise these datasets in ways outside their originally defined benchmarks as well as
in their intended way. In Chapter 3 we summarise each of the datasets we use through-
out our research and provide some illustrative examples. The datasets comprise many
different tasks, artistic styles and object classes; object classification, object detection,
photographic images, products, paintings, cartoons, sketches, silhouettes, and more.
In the case of our own Disney datasets, we discuss the acquisition and cleaning of this
data. Finally, we provide an overall summary to compare the difficulty of our chosen
datasets as multi-depiction benchmarks.

1.4.3 Exploring Cross-Depiction and Cross-Denotation Generalisa-
tion

Our initial research in Chapter 4 begins our of investigation of cross-depiction recogni-
tion with modern deep learning methods. We explore the artistic generalisation of some
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popular CNN architectures when trained on a single depiction and tested on several
novel depictions. Our own experiments on multiple datasets and supporting literature
demonstrate that the cross-depiction problem is still prevalent – artistic generalisation
tasks are reliably accompanied by a severe drop in performance. Our further contribu-
tion is to demonstrate that the characteristic performance decrease when generalising
novel artistic depictions, or even just denotations, is not symmetric. That is, the clas-
sification accuracy of models trained on a particular style and tested on another is
not the same as vice versa. Finally, we observe that this asymmetric generalisation is
related to the level of abstraction of the source artistic depictions – for generalisation,
there is a “sweet spot” of abstraction for optimal performance.

1.4.4 Domain Generalisation with Fixed Random Classifiers

After we established the current state of the cross-depiction problem, we discuss the
state-of-the-art domain generalisation methods on the PACS datasets [15]. Research of
the time addressed domain generalisation primarily by advanced regularisation systems,
with a particular focus on the fully connected layers. In Chapter 5 we show that such
methods do not significantly outperform simply fixing the classifier weights as random,
then finetuning the convolutional weights as normal. We show that fixing the last layer
of AlexNet to random values provides performance comparable to state-of-the-art DA
and DG algorithms on the PACS benchmark. Our contention is that applying such
regularisation methods to the classifier is not the best route for artistic generalisation –
these all only obtain very minor performance boosts versus the baseline. Additionally,
our findings of Chapter 4 demonstrated weakness to even slight changes in denotation,
i.e. the low-level image features, and we redirect our efforts to further understanding
this.

1.4.5 Exploring Style Clustering in Convolutional Representations

Our preceding research and supporting literature highlighted the convolutional rep-
resentations as a more problematic component of neural architectures than the fully
connected layers for cross-depiction generalisation. In this Chapter 6 we qualitatively
investigate the internal behaviour of CNN models to understand how they represent ex-
amples across the object classes and depiction spectrum. Our contribution is two-fold.
Firstly, we present a novel method for the classification of artistic style using low-level
convolutional responses – importantly, this is entirely implicit as the model is purely
trained to classify objects and not their artistic style. As a secondary contribution, we
illustrate how depiction and object classification rates vary through the depth of the

15



CNN and posit that overfitting to source depiction develops in the low-to-mid layers
and prevents good generalisation – our final two chapters follow this intuition.

Chapter 6 is an extension of our paper “Under Material Skin Lie the Bones of Iden-
tity” [32]. In this paper, we explored the recognition of objects and materials in artis-
tic depictions as well as classifying the depictions themselves. It was presented to a
multi-disciplinary audience rather than computer vision researchers, whereas Chapter
6 provides an in-depth study with more technical details.

1.4.6 Internal Style Transfer for Domain Generalisation and Adapta-
tion

In Chapter 7 we begin looking more pragmatically at recognising Disney-specific char-
acters regardless of depiction. The preceding chapters developed our understanding in
state of the cross-depiction recognition with deep learning models. We established both
the failures of deep learning for the task and a direction for improving such models.
There are multiple contributions in this chapter. Primarily, we thoroughly benchmark
multiple modern domain generalisation and adaptation algorithms on both open source
datasets and our own Disney data. We benchmark classification algorithms as a starting
point for extending to detecting Disney characters in the wild in the following chap-
ter – it is generally far faster and simpler to rapidly prototype and benchmark many
classification models versus detection models. Additionally, we utilise our own imple-
mentations across these datasets as validation prior to applying them to our detection
task. Our focus is on generalisation methods that use style-transfer-like transforma-
tions as we consider these promote robustness to denotation and low-level textures.
Which addresses the most challenging aspect of the cross-depiction problem. As a sec-
ondary contribution, we propose our own modifications to improve the internal style
transfer (IST) they apply and experiment with “whitening” transforms for the transfer
itself rather than standardisation. Finally, we update and apply the semi-supervised
learning algorithm [33] to work in synergy with these IST-based methods of artistic
DG.

1.4.7 Detecting Disney Characters In-the-Wild

Our contribution of Chapter 8 is a framework for recognising Disney characters in the
wild, regardless of depiction. In our applied setting, the task of recognising specific
objects regardless of depiction is to produce an object detection system for recognising
characters and their branding on the in-the-wild images. In the wild, characters may be
depicted in a multitude of ways: from a simple paste of the standard character artwork
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on a t-shirt to entirely novel depiction as a stuffed toy, and beyond. This chapter
utilises the knowledge and contributions of the preceding work, and itself represents a
demonstration of how the previous research led this project to a satisfying conclusion.

This chapter instead takes a pragmatic look at how to best utilise Disney character
artwork to recognise character and branding instances in the wild and on Amazon
product images. Taking the pragmatic focus, we utilise domain generalisation and
adaption algorithms from more recent literature than the work in previous chapters –
it is important that many modern algorithms produce better empirical performance,
but we can also motivate why these fit within our understanding of the cross-depiction
problem based on previous chapters of this thesis. The contribution here is a guide on
how the many tools at a researcher’s disposal may be combined to recognise specific
objects regardless of depiction.

Our task in Chapter 8 in challenging in many ways. Firstly, our labelled training
data only comprises the narrow set of depictions from the “standard” Disney artwork.
Secondly, our training data only comprises labelled images and not bounding boxes
annotated instances of characters. We present a framework to generate synthesised
annotated examples with Disney characters, extend the previously benchmarked in-
ternal style transfer methods (IST) to object detectors, and experiment with utilising
more artistic depictions in the training data both with and without IST. This final
contribution fulfils the requirements of our original industrial task by building on all
preceding chapters and contributions. Our framework achieves mean average precision
values of 39.9% mAP50:95 and 68.3% AP50 with evaluation criteria of COCO [13] and
Pascal VOC [34] AP, respectively. In comparison to detectors in literature, this is a
strong performance level. Considering this is (1) domain generalisation to novel out-
of-distribution depictions, and (2) we do not have any real bounding box annotated
training data, this is excellent performance. Finally, we provide a detailed plan for fu-
ture development of our Disney detection framework through domain adaptation and
extension to object segmentation in addition to ideas for continuing research into the
general cross-depiction problem.
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Chapter 2

Background

2.1 Introduction

The overall goal of this project is to recognise specific objects, i.e. Disney characters,
regardless of their depiction. In general, this is a task of visual object recognition with
the added complexity of generalising artistic depictions, and the fine-grained classifica-
tion of specific characters versus general object classes. This chapter is predominantly
a review of relevant literature, with each sections’ content synchronised to the proceed-
ing chapters in roughly chronological order. In later chapters, we provide summaries
of the most pertinent literature and background work that is covered more broadly in
this chapter.

The literature review first surveys the visual object classification, detection and recogni-
tion as a general problem within computer vision and machine learning. As algorithms
and models for object recognition have continued to rapidly evolve through the age of
convolutional neural networks (CNN’s), the focus has been on photographic objects.
While designed and benchmarked on photographic benchmarks [12, 13, 34], the state-
of-the-art models are applied to artistic data in much the same way. There, we first
discuss the progressive development of visual recognition models from classical to con-
volutional methods. With the current, industry-preferred CNN models being those we
apply to our classification and detection tasks.

The success of deep learning in object detection and classification literature is typically
confined to narrow benchmarks of independent and identically distributed datasets.
Tasks in which target data is known to come from different distributions are termed
domain generalisation and domain adaptation depending on the availability of the
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out-of-distribution (OOD) target data at training time. In domain generalisation, the
target data is only available during test time so models must generalise zero-shot to
OOD examples. In domain adaptation, the target is available at training time so models
may have explicit measures applied to optimise for the target distribution – with varying
label availability depending on the specific task e.g. supervised, weakly-supervised or
unsupervised domain adaptation. Ultimately, when presented with out-of-distribution
test data, most CNN’s exhibit a characteristic (and often severe) performance decrease.
This is problematic for both real applications in-the-wild and equally for applications
featuring novel artistic depictions.

2.2 Overview

The groundwork for all our computer vision research is described in the first sections of
this literature review. This spans object classification and detection in both classical
and the latest deep learning methods. Al subsequent literature discussed and research
undertaken builds upon methods and models described in these sections on general
object detection or classification.

The existence of “The Cross Depiction Problem” predates this project. Our starting
point was to investigate the continuing presence of the cross-depiction with the latest
deep-learning based models. Thus, relevant literature we discuss for this is a summary
of how the Cross-depiction problem manifests in various applications and benchmarks.
From this we can understand what aspects of the cross-depiction problem are partic-
ularly challenging, and uncover known ways to ease such difficulties. In addition to
reviewing relevant examples of visual recognition in artwork, we discuss research that
has aimed to understand how CNNs “see” as well as review some tools and methods
for how to analyse the internal representations of CNNs. Expanding our understanding
the thew internal representations of CNNs was valuable knowledge that informed our
research path.

Given the more pragmatic perspective much research takes on now, most literature and
benchmarks propose the cross-depiction problem as domain generalisation or adapta-
tion task. We discuss such methods on popular benchmarks split in two parts, with
each pertaining to the trend of the time. Firstly, we review methods applying meta-
learning to domain generalisation that was prevalent in the early days of PACS dataset
[15]. However, these regularisation-type methods do not truly address the character-
istic visual change in the object depiction. As time progressed, researchers looked to
promote robustness to low-level texture variations as the quintessential attributes that
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distinguish depictions. Our second look at artistic domain generalisation for object
classification primarily reviews these methods.

Ultimately our goal object detection, rather than just classification, of Disney char-
acters regardless of their depiction. There was minimal literature that truly aligned
perfectly with our task, but lessons may be taken from more generic domain adap-
tation and generalisation tasks for object detection. Therefore, we can discuss some
relevant methods from literature and draw from these inspiration for our framework,
and consider design decisions to ensure we could achieve our goal.

2.3 Object Classification and Detection

Object classification, detection and recognition are closely related and heavily studied
areas within computer vision. “Object classification” is the task of determining what
objects are present in an image, whereas “object detection” also localises where an
object is in the image. In modern literature detection often refers to a combined
task of both localising and classifying objects within an image – “object recognition”
previously referred to as this task, but now is often used as a generic catch-all term
for either classification, detection, or both depending on the context. In part, this
may be due to how modern deep learning models perform detection and classification
versus classical methods, which we expand on later in this section. Regardless, object
classification and detection are core challenges within the wider umbrella of visual
understanding.

In this section, we first discuss some important methods of object classification and
detection from before the deep learning era. While these methods are all but obso-
lete, there are some conceptual considerations and design decisions introduced that
are interesting to consider regarding the task of recognition regardless of depiction.
This literature also formalised the tasks of object classification and detection with the
definitions that persist today. After classical methods, our attention is turned to the
milestones in deep learning for these tasks, although these are benchmarked almost
entirely on photographic datasets. High-level descriptions of the architectural and al-
gorithmic setup of these milestones are provided, but the most specific details are only
discussed where relevant in later sections.

2.3.1 Classical Methods

Before convolutional neural networks (CNN), object recognition combined hand-crafted
features and separate classifiers. Simple Bag-of-Words [35] models extracted features,
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typically SIFT [36] or SURF [37] features, from examples then established visual “dic-
tionaries” of features by clustering. For each example, a feature vector is generated
from the frequency of visual word occurrences in the image. Classification can then be
performed via any preferred method. Support vector machines (SVM) are a common
favourite for the classification, although as SVM are inherently binary classifiers then
additionally strategies must be applied to produce a multi-class model, i.e. one-versus-
one and one-versus-many.

Important detection methods to mention are the Viola-Jones face detector [38, 39] and
the Dalal-Triggs person detector [40]. These both learn templates for object detection
– Viola-Jones using Haar features to detect faces [38, 39] and the Dalal-Triggs using
Histogram of Oriented Gradients (HOG) for person detection [40]. Template-based
detection is typically very constrained by pose, particularly for faces and people who
look very different when viewed front-on versus side-on. Regardless, both detectors
performed exceptionally well at the time. Viola-Jones [38, 39] and Dalal-Triggs [40] fit
the classical object detection task where a single model finds instances of one object
class and reports the localised bounding boxes.

Recognising the importance of shape, or structure, and the nature of pose variations
led to the development of deformable part models [26]. Felzenswalb et al. [26] was a
prominent success in this respect. Their deformable part models use multiple rigid parts
to capture the local appearance properties of the object, essentially by using multiple
smaller Dalal-Triggs-like sub-models. The deformability is applied with cost function
on the magnitude of parts movement to create “spring-like” connections between the
constituent parts. Other developments include the use of a “cascade detection algo-
rithm”, also present in Viola-Jones [38, 39] that recursively represents each part as
another mixture of parts [27].

Like other template-based methods, the weakness of their approach is the sensitivity
to view angle. Therefore multiple models for a single class are learned for separate
views [26, 29]. Additionally, in many cases a single deformable model is often not
expressive enough to represent a rich object category – they give an example with
the appearance of bicycles. There are many different types of bicycles, e.g. mountain
bikes and tandems, and these can have significantly differing geometry that requires
separate models. Additionally, as mentioned, the view angle of a bicycle is also critical,
as the appearance when viewed from the front is drastically different from the side-on
views. Full class models are then a mixture of per-view class DPMs to deal with such
variations.
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Another DPM-style model of interest to us is the Wu et al. [29] multi-graph model
which learned fully connected graphs to recognise objects across artistic styles, where
graph nodes visually described object parts and the graph structure the object structure
(or, arrangement of parts). Each part had multiple visual attributes; each was learned
from visually different artistic styles. Wu et al. [29] interesting innovation was utilising
a consistent spatial model across styles but style-specific visual features. This is very
much in line with our model for depicting an object (Equation 1.6) and its motivation
from the work of Willats [11]. That is, the underlying spatial model or arrangement
of semantic parts is consistent across depictions, but the denotation and therefore
representation as a visual feature varies across depictions.

2.3.2 Object Classification with Convolutional Neural Networks

In 2012, Krizhevsky et al. [41] published one of the most influential papers in modern
computer vision by very successfully applying a convolutional neural network to object
classification – although CNN’s were originally introduced as early as 1989 [42] and
achieved ‘near-human” performance on the MNIST dataset [43]. Krizhevsky et al. [41]
won the 2012 ImageNet challenge [12] – AlexNet achieved a top-5 test error of 15.3%,
compared to 26.2% achieved by the second-best entry. The substantial performance
improvement put convolutional neural networks at the centre of image classification
research. Since then, particular milestones [41, 44, 45, 46, 47] have influenced the field
by introducing new concepts into deep networks and have since continued to improve
object classification and detection capabilities.

In addition to the leap forward in image recognition performance, Krizhevsky et al [41]
included many aspects, such as ReLU activation, which are still present in the state-of-
the-art networks today. Although, many ReLU alternatives have been proposed [48, 49,
50] – usually, comprising continuously differentiable interpretation of ReLU. Regardless,
it was the resulting pairing of high-end GPU compute with their well-optimised imple-
mentation of 2D convolution, which allowed the training of interestingly-large CNN’s.
By today’s standards, AlexNet is a rather shallow network although Krizhevsky et al
[41] recognised the importance of network depth: removing any convolutional layer
(each of which contains no more than 1% of the model’s parameters) reduced perfor-
mance noticeably [41]. Despite the optimised convolutions, AlexNet originally took
between five and six days to train on two GTX 580 3GB GPUs. Krizhevsky et al.
[41] noted that their experiments suggested that larger datasets would improve perfor-
mance, additionally GPU technology advances would allow faster training with those
larger datasets and deeper networks. Making their 2D convolution on GPU publicly
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available was valuable and allowed wider research into this new and powerful computer
vision tool. Since then, the development of deep networks has snowballed, as the avail-
ability of deep learning libraries (PyTorch [51, 52], Tensorflow [53], etc. ) and better
GPU support has made CNN’s easily accessible to the research community and beyond
[44].

Improved software and hardware supported continued the investigations into deeper
and deeper CNN’s. From LeNet with 5 layers [42], AlexNet with 8 layers, [41], VGGs
with 16 and 19 layers [44], to modern networks with over 100 [45, 46, 54] and sometimes
over 1000 [46]. AlexNet and VGG highlighted the importance of depth, ResNets then
allowed even deeper networks by solving optimisation issues through skip connections,
then DenseNet [47] looked at both expanding the skip connections and increasing width.
In DenseNets [47], the width increases linearly with depth due to concatenation rather
than the addition of feature maps, so parameters grow quadratically [55] hence efficient
use of resources remains important despite it being far easier to distribute networks
across many GPUs. Each milestones’ advancement was rarely due to the addition of a
single addition but a combination of new overall architecture, layers, algorithm, regu-
larisation, etc. but usually with some “headline” addition, such as residual connections
[46]. These improvements to optimisation schemes, augmentation and preprocessing
and loss functions have also provided notable boosts – and these sorts of supplemen-
tary improvements have received less attention and are more briefly mentioned in their
respective literature, but can be “easy” methods increasing performance [56].

As illustrated by many researchers, the seemingly most straightforward way of improv-
ing the performance of deep neural networks is to increase the size [41, 44, 45]. Given
the large datasets CNN’s require, then increasing the depth (number of layers) and
width (number of filters) has historically yielded improvement but this is not sustain-
able performance gain. CNN’s are understood to generate low, middle and high-level
features in convolutional layers in an end-to-end, multi-layer fashion, and the levels of
features can be enriched with deeper architectures [46] – providing some explanation
for the depth’s contribution to accuracy [41, 44, 45, 46].

Designing architectures become increasingly difficult with the growing number of hyper-
parameters (width, filter sizes, strides, etc.) when there are many layers. VGG [44]
stacked successive filters of the same size to build very deep networks, something also
seen in ResNet [46, 57]. These reduced the number of hyper-parameters one must set,
and highlighted the importance of depth in neural networks. Xie et al. [57] argue that
the simplicity of this successive stacking prevents over-adapting networks to a specific
dataset, as VGG and ResNets have been proven on many various visual recognition
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tasks as well as speech and language tasks [58, 59].

In modern literature, the contribution can often be novel algorithms, learning metrics,
or conceptual approaches rather than brand-new neural architectures. ResNet tends
to be the favoured baseline model and AlexNet before that. Equally, ResNet tends
to be the go-to backbone for many detection models. ResNets themselves had further
variations including Wide ResNets [60] , DenseNets [61], and ResNeXt [57]. These
have taken models wider rather than deeper, added residual connections between each
layer and every prior layer, and split features into multiple lower-dimensional maps,
respectively. Often, researchers have found improvement by combining properties from
separate successful architectures [47, 62, 57, 55]. These advancements of ResNet have
seen success on the various benchmarks and image recognition challenges but have not
had the same widespread use in research as the original ResNet architectures.

Convolutional neural networks have remained the favoured architectures for computer
vision tasks, but there are alternatives with active research. Geometric deep learning
with graph neural networks [63] and graph convolutional networks [64], while mostly
applied to more classical graph-based problems, have had success in some visual recog-
nition tasks [65]. The most recent trend, is the application of “vision transformers” for
detection and classification [66]. Transformers themselves have seen excellent success
in NLP, where such models show excellent transfer learning and generalisation for new
tasks [67, 68].

2.3.3 Object Detection with Convolutional Neural Networks

Object detection extends classification to also where each object is. Detecting where an
object is can also be the start of more complex visual understanding tasks e.g. detecting
a person, or people, is often the first stage in reconstructing their pose, counting the
people in a crowd, or identifying and tracking a specific individual.

Deep learning models for object detection may be roughly categorised as two-stage or
one-stage detectors. Two-stage detectors first generate a set of generic region proposals
for possible object instances in the image, then these region proposals are extracted
to classify the object and perform more specific bounding box regression. One-stage
detectors predict objects and bounding boxes without formal region proposals – instead,
they use a set of pre-defined anchor boxes which are classified and adjusted via bounding
box regression in a single pass. One-stage detectors tend to be higher throughput than
two-stage but are far more demanding in terms of memory. Typically, two-stage were
preferable for detecting small objects but feature pyramid networks [69] have helped
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close this gap between the two achitectures.

Researchers found most early success by combining deep architectures and classical
computer vision [45], as in R-CNN [70]. Similarly, more niche applications, such as
neural style transfer [71, 9, 72], semantic segmentation [55] and person re-identification
[73] also utilise deep convolutional features in a larger pipeline. In general, deep ar-
chitectures make very good feature extractors for tasks beyond the classification they
are trained for [45, 47]. Many authors find that convolutional features are, in fact,
relatively similar to original hand-crafted ones [36, 37, 40] and can learn invariance
to similar photometric properties. Convolutional features have continued to eclipse
handcrafted ones as networks produce increasingly descriptive features with compact
internal representations and reduced feature redundancy [47].

For two-stage detectors, the models and algorithm at the forefront are RCNN family
models. From the original R-CNN [70] to Fast R-CNN [74], Faster R-CNN [75] and
Mask R-CNN [76]. These advancements provided consistent improvements in mean
average precision and inference speed, and incorporated segmentation as a secondary
capability. For example, Mask R-CNN [76] also extended the model to semantic seg-
mentation as well as detection, and incorporates the FPN of feature pyramid networks
for an additional performance improvement [69].

Significant one-stage detectors include YOLO models [77], RetinaNet [78] and Single-
shot Multi-box detector (SSD) [79]. These methods are often faster than two-stage
alternatives, and because they require a single forward pass are often simpler. Different
models use varying backbone architectures and loss functions. For example, the YOLO
series use DarkNet backbone extractors and the newer variants include the residual
connections in backbone similar to ResNet [46] and added the FPN [69], both of which
proved successful for RetinaNet [78].

Lin et al. ’s [78] main contribution with RetinaNet was Focal Loss, a modification to
the classification component of the objective function. This introduced an important
adjustment to the handling of easy versus hard examples, and the background class
in object detection algorithms. Many previous methods would simply data-mine hard
negatives from background regions, with some heuristically defined ratio of positives
to negatives, then use these to train a negative class in the object classifier. Focal Loss
addresses the class imbalance and down-weights easy negatives, to focus training on
the harder negatives.

RetinaNet also improved upon previous single-stage models, e.g. SSD [79] and YOLO
[77, 80], in terms of small object recognition rates – which tends to be a particular
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Figure 2-1: Diagram of the RetinaNet architecture, with FPN [69] and separate task
heads/subnets, from Lin et al. ’s paper [78]. The ResNet backbone is used with an
FPN to pass high-level features to early representations to classify and regress bounding
boxes from early layers with both high-resolution but low-level features and semantic
features from later layers.

weakness of these systems. In addition to their Focal Loss, they included feature
pyramid network (FPN) methodology [69] to improve detections across different scales.
In RetinaNet, illustrated in Figure 2-1, the classification and bounding box regression
tasks are also split between decoupled task heads with separate convolutional layers,
where alternative methods tend to be a single set of shared convolutions with a multi-
task output.

For our problem of fine-grained recognition, it is also worth considering that RetinaNet
uses sigmoid activation for prediction probabilities and loss computation, rather than
Softmax activation. That is, RetinaNet produces mutually inclusive class predictions
for a single bounding box, where Softmax-based predictions produce a probability dis-
tribution over all categories with the assumption they are mutually exclusive. In the
context of fine-grained recognition, we consider each Character as its specific cate-
gory. Although, there may be a more complex taxonomy of how broader “visual object
classes” relate e.g. whether to consider all Characters under a set of “Disney charac-
ters”, or even “People” as many are humanoid, or as both of these. Our assumptions
have bearing on the problem formulation and therefore will impact how and what mod-
els learn to recognise. We further compare SSD [79], Faster-RCNN [75] and RetinaNet
[78] in Chapter 8, to discuss these types of relevant design decisions based on literature
and our own background work.
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2.4 The Cross Depiction Problem

The cross-depiction problem is the name given to the recognition of visual objects
regardless of whether presented as a photograph, cartoon, painting, sketch, etc. [2,
3, 81]. Our applied task looks at the cross-depiction problem for specific objects, i.e.
Disney characters, regardless of whether they are depicted in their original films, made
into a toy, printed on products, like the characters at Disney parks, and beyond. A
discussion of our Disney characters dataset is provided in Chapter 3. In summary, we
have 10 characters with 8 specific people (all well-known fairytale Princesses) and 2
specific humanoid mice (Mickey and Minnie). Returning to our model for depicting
an object, Equation 1.6, a set of standardised projections and denotations are used to
depict each instance and the canonical class model of our Characters is the same (i.e.
humanoid) – the differentiator between Characters is the individuation that creates
each specific character to set the biometrics and create their iconic attributes. This
task is easy for humans – we can recognise objects, both specific and generic, across all
kinds of depictions whether they are familiar with said artistic depiction or not. People
can understand figurative art unfamiliar to their culture, see castles in clouds, and so
on. By contrast, state-of-the-art image recognition models and algorithms are unable to
generalise artwork with the ease of humans and, instead, usually show a characteristic
drop in classification and detection rates on unfamiliar depictions [15, 16, 19].

The cross depiction is fascinating as it poses the question of what is required to recog-
nise an object. Humans recognise the object, or a specific object, despite different
depictions. As object recognition algorithms largely fail, what is the cause of this fail-
ure – do CNN’s learn the wrong properties for cross-depictive recognition? Are they
mechanically unfit to learn the correct properties? Do they simply overfit the training
data’s depictive distributions? Is it some combination of these, or is there a different
cause entirely? Furthermore, finding the key to cross-depiction representation – learn-
ing to understand what truly defines a visual object – has great potential for helping
advance visual object recognition and wider Computer Vision.

Research on the cross-depiction problem in literature is scarce in comparison to pho-
tographic recognition. Recently more multi-depiction datasets have become available
with the modern incarnation of the cross-depiction problem as domain generalisation
and adaptation to a held-out target domain [15, 16, 1]. Previously the majority of
visual recognition research literature focussed on more niche applications, typically
recognition in a single artistic depiction, style or genre that was quite detached from
the favoured photographic tasks.
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2.4.1 Applied Visual Recognition in Artwork

Looking back at these classical methods there are some interesting examples of the
difficulties. Crowley and Zisserman use a subset of the “Your Paintings” dataset [6, 82]
annotated with some Pascal VOC categories [34]. With 11 object classes they report an
overall drop in per class P recision@k (at k = 5) from 0.98 when trained and tested on
paintings alone, to 0.66 when trained on photographs and tested on paintings. Hu and
Collomosse [83] use 33 shape categories in Flickr to compare a range of descriptors:
SIFT, multi-resolution HOG, Self Similarity, Shape Context, Structure Tensor, and
(their contribution) Gradient Field HOG. They test a collection of 8 distance measures,
reporting low mean average precision rates in all cases. A relatively successful use
was Crowley and Zisserman’s DPM for learning figurative art on Greek vases [28] – a
good example of using a consistent spatial model between depictions, but depiction-
specific appearance [29]. Similarly, Wu et al. [29] provided a non-neural fully-connected
constellation model that is stable across depictions.

Deep learning represents a truly significant development in computer vision research
and has become the default method for many problems. It has been successful on
numerous popular benchmarks and over a wide range of tasks beyond classification
and recognition. Classification rates are reportedly greater than human performance in
some cases. However, deep learning success is far less prominent in the cross-depiction
problem. Crowley and Zisserman [6, 5] can retrieve paintings in 10 classes at a success
rate that does not rise above 55%; Ginosar et al [84] use deep learning for detecting
people in Picasso paintings, achieving rates of about 10%.

As discussed in Section 2.3.1, visual recognition methods began classifying histograms
and aggregations [35] of low and almost mid-level handcrafted features [36, 37], and
matching templates for whole objects [38, 39, 40]. They then progressed to deformable
part and graph-based models [26, 27, 29]; DPM and graph-based models showed sur-
prising robustness across artistic depictions [28, 29]. These models encoded constraints
on how parts may move about one another, and the spatial component of the model
should be kept near-fixed across depictions but the appearance of the movable parts
can vary far more [29]. With the advent of CNN’s, the performance of DPM has
been vastly eclipsed and they have not seen much attention since. There has been
some interest in supplementing convolutional representations with more strict spatial
components with neural constellations for fine-grained classification [31], and there is
potential for similar spatial representations with graph neural networks [63, 64, 65] and
possibly transformers [66].
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2.5 Domain Generalisation with Meta-Learning

The cross-depiction problem has manifested in modern visual recognition literature as
artistic domain generalisation (DG) and domain adaptation (DA) [15, 16, 1, 17, 18, 19].
The underlying problem is to recognise the same set of visual objects regardless of de-
piction, but the framing of it is as DG/DA is learning the object from a set of source
depictions (domains) and generalising/adapting to a target depiction (domain). Do-
main generalisation aligns with how humans can recognise objects not only regardless
of their depiction but also regardless of whether the depiction has been seen before.
Thus, artistic domain generalisation is motivated by, conceptually, creating more “hu-
man” recognition systems but also the nature of artwork makes it fundamentally more
constrained versus photographic images [15]. Somewhat similarly, domain adaptation
utilises the situation where multiple sources of data are available but the target data
is not as abundant or sufficiently annotated. Alternatively, it may be viewed as a
slightly more pragmatic task, where the known target distribution may be utilised for
additional model optimisation.

In the early stages of this project, the relevant literature of the time approached the
cross-depiction problem as an artistic domain generalisation on the PACS benchmark,
which features four visual domains: Photos, Art paintings, Cartoons, and Sketches.
Prominent methods favoured regularisation and meta-learning based approaches to
aggregate learning from the three source domains. In this section, we discuss the
motivation for domain generalisation in general, as well as the reason for framing the
cross-depiction problem in this way. We then discuss two prominent meta-learning-
based methods of domain generalisation [85, 86] on PACS [15] that were the state-of-
the-art algorithms we compared ourselves to at the time.

2.5.1 The Motivation for Artistic Datasets

The constrained nature of any datasets causes them to exhibit biases, which can be
problematic. In photographic image recognition, a bias for particular camera settings
and other attributes can prevent models from generalising well [87]. This motivated the
collection of the multi-domain VLCS dataset: an aggregation of photos from Caltech,
LabelMe, Pascal VOC 2007 and SUN09 [87]. Until recently, domain adaptation and
generalisation in image recognition focused on transfer between separate photographic
datasets. Now, more datasets are available that cover larger domain shift across vary-
ing depictive styles [29, 15, 19] and better reflect the cross-depiction problem. PACS
proposes a domain generalisation benchmark where one domain is an unseen target
domain, and the remaining 3 are source domains for training models. The generalisa-
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tion itself is a more challenging task than on purely photographic benchmarks. This is
reflected in the domain-shift across the dataset – Li et al. [15] measured the average
domain shift across PACS as 10 times that of VLCS.

Domain-shift in literature is typically addressed with methods that attempt to adapt
from plentiful, and often more rigorously annotated, source to a target data distribu-
tion. In Domain Adaptation (DA), one attempts to compensate for bias by adapting
a model constructed on one domain to a target domain using examples from that new
domain [88]. DA has been used in the cross depiction problem with both non-neural [3]
and neural algorithms [89]. With PACS, Domain Generalisation (DG) approaches have
gained more attention. These differ from DA in that DG algorithms have no access to
the target domain. General approaches include learning domain invariant representa-
tions or deriving domain agnostic classifiers by assuming individual domains’ classifiers
consist of domain-specific and domain-agnostic components, then extracting the latter
[90].

2.5.2 Learning Metrics, Meta-Learning and Regularisation

One broad approach to DG and DA is applying alignment metrics to undo any domain
gap between source and target distributions, such as using maximum mean discrepancy
(MMD) [16, 91] and contrastive losses between domains [7, 8, 92]. Another common
theme in generalisation is simply regularisation – regularisation itself being ubiquitous
to the point where is it employed in most machine learning models by default. In
neural networks, regularisation ranges from mainstays such as weight decay, dropout,
and batch normalisation to more complex, learned regularisations [93, 94], or meta-
learned regularisation [85, 86].

An early trend for domain generalisation on the PACS benchmark [15] was using meta-
learning where episodic training iterations switch between meta-training and meta-
testing across source domains for both few-shot learning problems [95] and multi-source
domain generalisation [85, 86]. The original authors of PACS presented multiple meta-
learning-esque techniques. Starting from learning how to best share weights between
style-specific models [15], then extended MAML [95] to domain generalisation to meta-
learn the CNN weight updates to favour following a gradient descent trajectory which
optimises for source domains equally [85], and most recently to their framework that
aggregates between combinations of style-specific classifiers and feature extractors in an
episodic manner [96]. Meta-learning existed before these applications and the concept
of “learning to learn” continues to appeal to computer vision and broader machine
learning [97, 95, 98, 99].
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2.5.3 Meta-Learning Comparator Algorithms

We describe the MLDG [85] and MetaReg [86], two early success on the PACS [15] that
utilised meta-learning for the DG task. Our experiments in Chapter 5 were designed to
test the efficacy of meta-learning algorithms that have been used on the cross-depiction
problem when compared to a much simpler algorithm. These advanced algorithms
we experiment with are Meta-Learning for Domain Generalisation (MLDG) [85] and
Meta-Regularisation (MetaReg) [86]. Pseudo-code for these networks can be found in
Algorithms 1, and 2, respectively.

Both MLDG [85] and MetaReg [86] are trained end-to-end, and both achieved similar
state-of-the-art performance on PACS through meta-learning. These meta-learning
algorithms partition PACS into three parts, each comprising one or more of its domains.
The “meta-train” set is used to train a network conventionally, a “meta-test” set is akin
to a validation set that is used to update meta-parameters, while a hold-out set is used
to simulate an unseen domain. The meta-train and meta-test sets are the only domains
used during learning, the hold-out set is used to test the full trained network and plays
no role at all in learning.

MLDG learns optimisation updates that minimise losses over the meta-train and meta-
test domains in a coordinated way. Broadly, network parameters Θ are updated using
two loss functions: F (á) over the meta-train set and G(á) over the meta-test set. The
gradient of F (Θ) is used to estimate a new parameter vector Θ!; this new parameter is
then used to update the original using the combined gradient Θ $ Θ%&' [F (Θ)+G(Θ!)]
(note the use of two different model parameters). See Algorithm 1 for further details.

Algorithm 1 MLDG Training Algorithm [85]
Require: Niter : Number of training iterations
Require: (, ), & : Learning rate hyper-parameters

1: for t in 1 : Niter do
2: Split p train domains into meta-train a and meta-tests b
3: Sample meta-train set { (x(a)

j , y(a)
j ) & Da} nb

j =1
4: Perform supervised classification updates with meta-train
5: Meta-train gradients ' ! = F !

! (S̄; Θ)
6: Meta-updated parameters Θ! = Θ %( ' !

7: Sample meta-test set { (x(b)
j , y(b)

j ) & Db}
nb
j =1

8: Meta-test loss G(Ŝ; Θ!)
9: Meta-optimisation Θ = Θ %&! (F ( øS;!)+ " G( öS;! " ## ! )

! !
10: end for

MetaReg harmonises a collection of classifiers, each of which is fed from a common
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convolutional network and each of which feeds a common regularising network. With-
out the regulariser, each network would be trained as a conventional neural classifier,
with that step being the first stage of the MetaReg algorithm. The second step then
randomly selects a pair of domains, one of which is updated using the regulariser (meta-
train), the second of which is used to update the regulariser (meta-test). Each iteration
selects a new random pair of domains until the regulariser is fully trained. At this point,
the regulariser is fixed and the final task network is trained ab initio on the aggregation
of source domains. Algorithm 2 provides pseudo-code for the meta-learning stages of
MetaReg.

Algorithm 2 MetaReg Training Algorithm [86]
Require: Niter : Number of training iterations
Require: ( 1, ( 2: Learning rate hyper-parameters

1: for t in 1 : Niter do
2: for i in 1 : p do
3: Sample nb labelled images { (x(i )

j , y(i )
j ) & Di }

nb
j =1

4: Perform supervised classification updates:
5: %(t) $ %(t" 1) %( 1' $ L (i )(%(i ) , #(t" 1)

i )
6: #(t)

i $ #(t" 1)
i %( 1' %i L

(i )(%(i ) , #(t" 1)
i )

7: end for
8: Choose a, b" { 1, 2, ...p} randomly such that a (= b
9: ) 1 $ #(t)

a

10: for i = 1 : l do
11: Sample meta-train set { (x(a)

j , y(a)
j ) & Da} nb

j =1

12: ) i = ) i " 1 %( 2' " i ! 1 [L (a)(%(t) ) i " 1) + R%() i " 1)]
13: end for
14: #̂(t )

a = ) l

15: Sample meta-test set { (x(b)
j , y(b)

j ) & Db}
nb
j =1

16: Perform meta-update for regulariser ! (t ) = ! (t " 1) %( 2' &L (b)(%(t) , #̂(t )
a )|&= &( t )

17: end for

When Li et al. [15] they originally proposed PACS [15] and their later meta-learning
research [85], they use a standard AlexNet architecture as their base model. Subsequent
work, including our own, followed their example to compare the algorithms rather than
the architectures. MLDG [85] does not add any additional parameters to the model,
but instead computes a meta-loss over source domains. In contrast, MetaReg has both a
more complex training algorithm and a more complex model. Again, they use AlexNet
but they split the network into a feature network (the convolutions) F and task network
(the classifier) T . F comprises the top layers up to the ‘pool5’ layer, while T contains
the fully connected layers fc 6, fc 7 and fc 8. MetaReg features a single shared feature
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network but p task network (one per training domain). They use weighted L 1 loss as
the learned regularisation function, R&(#) =

!
i ! i |#i | with parameters ! i , estimated

using meta-learning.

Both MetaReg and MLDG require domain-level supervision. Li et al. use domain
supervision for learning their parameterised weight sharing [15] and their meta-learned
weight updates [85]. Although the meta steps differ, they both split training domains
for their meta-learning. This may not be plausible in real scenarios where depictions or
artistic styles of training examples are not necessarily known, or taxonomic definitions
of “depiction” do not align with visual distributions or domains. Previously, depictions
have been separated by clustering their visual attributes rather than depiction labels
[29]. Clustering visual attributes is not without flaws, as any visual attribute will likely
be an inherent entangling of both depiction and object.

2.6 Visual Understanding of Artistic Depictions

We aimed to build an understanding of what makes the cross-depiction problem a
challenge for convolutional models by attempting to reconcile the internal behaviour
responsible. This overlaps with many active areas of research in computer vision. We
explore qualitative methods of understanding these high-dimensional features repre-
sentations (e.g. T-SNE [100]) and other visual representations [101, 102]. Additonal
relevant areas include more intentional artistic style classification [81, 25] and style
transfer [72, 103, 71, 9]

2.6.1 Art in the Eyes of a CNN

Research has suggested that neural networks “see” similar ways to humans. CNNs
can recognise silhouettes of objects and animals to high accuracy [10] and can per-
form well given familiar depictions. While Kubilius et al. [10] state CNN’s can learn
to recognise silhouettes when trained with said images, the now documented texture
bias [104, 105] demonstrates that this shape-knowledge is not learned without explicit
efforts to promote it. Our research considers these qualities of CNN’s in the context
of their poor generalisation across novel artistic styles. The research presented in this
section discusses how CNN’s mechanisms and representations can be tied to their poor
generalisation across the artwork – this helped to build the knowledge of why artistic
generalisation is a challenge, and allow us to infer ways to improve it. Texture, or
in art history terms denotation[11], is heavily tied to how CNN’s process images and
similarly important to characterising depiction. Interestingly, we are aware CNN’s can
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recognise within a wide range of depictions, e.g. silhouettes [10], but their ability to
generalise to novel depictions depends significantly on any difference in denotation due
to texture bias [104, 105].

2.6.2 Feature Representations and Visualisation

Literature on features extracted from digital images typically assigns low-level, mid-
level and high-level attributes such as textures [101, 102, 104, 105], semi-semantic
parts or regions [106], and semantic parts or whole objects, respectively. Visualisation
of convolutional kernel responses in neural networks suggests they build up low-level
textures into patterns, then “semi-semantic” and “semantic parts” to classify objects
– as illustrated by examples from literature in Figure 2-2. Similarly, with handcrafted
features, methods began by classifying histograms and aggregations [35] of low level
features [36, 37].

Figure 2-2: Olah et al. [102] present this visualisations GoogLeNet [45] features when
trained on the ImageNet dataset [12]. The CNN represents images over many layers
and sequentially builds up from simple textures, patterns, semi-semantic and semantic
parts, and to final predictions. Neural networks are differentiable with respect to their
inputs, therefore Olah et al. [102] optimised inputs to produce maximum activation in
a chosen neuron using back-propagated derivatives [101].

2.6.3 Artistic Style Classification

Classifying the depiction of, or artist responsible for, a piece of artwork is another niche
field within visual recognition [81]. Visual recognition of objects across a range of artis-
tic styles has seen increasing interest with better availability of benchmarks. Material
recognition is an even more niche area, but interesting ideas arise when considering the
synergy of how humans understand and recognise objects, depictions, and materials.

Classifying the artist of a given piece has often been approached both with handcrafted
methods, neural networks and through combining specialist domain knowledge. The
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subtlety of the painter’s strokes has typically been of interest in style transfer and artis-
tic style recognition. Many approaches to depiction, genre and artistic classification
addressed the problem similar to standard transfer learning for object recognition: by
incorporating stylistic modifications to existing CNN classifiers using DECAF-type fea-
tures or finetuning the model. For the multi-task problem many researchers utilise both
high-resolution texture and high-level semantics for the simultaneous classification of
artistic, genre and style [25]. A recent trend for style classification incorporates autoen-
coder and GAN frameworks [107, 108], e.g. DeepPainter utilises an autoencoder’s rich
internal texture representations to capture the detail of painters’ denotation methods
[108].

2.7 Artistic Domain Generalisation

A previous section reviewed early efforts at artistic domain generalisation with PACS
[15] that utilised meta-learning. Here, we summarise more modern efforts. We highlight
recent research that finds more impressive improvements by reducing texture bias [109,
110] and introducing self-supervision that utilises the importance of structure [111].
We also discuss extending DG to unsupervised domain adaptation (UDA) with semi-
supervised learning (SSL) techniques [33]. Our motivation is to identify promising DG
and UDA methods for benchmarking and improving. The end goal is to produce the
best Disney character detection system possible, which will certainly build from and
incorporate existing ideas from classification benchmarks and integrate these robust
methods into our detection framework.

Many approaches to DG look at some alignment to undo the domain gap between source
and target domains [91, 92]. Alternatively, ensemble methods that combine multiple
domain-specific models for prediction [85, 86, 96, 112, 113]. The main comparators
in our early work aggregated learning across source domains through meta-learning
[85, 86, 96] rather than aggregate models as in ensembles. Our research lead to the use
of style transfer to apply novel “artistic denotation” (i.e. textures) to source images.
Many other researchers have followed a similar intuition and applied various methods
of data augmentation or other stylisation components [18, 114, 109, 110, 115, 116, 117],
We were inspired by style transfer as preprocessing [18, 114] whereas others deployed
it as an internal process during training [109].
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2.7.1 Style Transfer, Synthesis and Augmentation

A now common and fruitful theme in artistic DG, and by extension UDA, is synthesising
labelled images in novel styles via style transfer and similar techniques [116, 18, 114,
109, 115, 110, 118]. As we discuss throughout, such techniques effectively vary the
denotation of an example but the spatial arrangement and objects remain semantically
unchanged. It is a documented method for reducing texture bias [104], and modern DG
algorithms use internalised approximations of style transfer rather than a full stylisation
pipeline [109, 115, 110, 118]. The benefit of these IST-based methods for DG, is the easy
application to semi-supervised learning and unsupervised domain adaptation [119, 120,
114, 33] as neither object nor style labels are required – IST is simply applied randomly
between pairs of images during training.

We first describe the Ada-In style transfer and its application for unsupervised do-
main adaptation. Then, the extension of Ada-IN to internal style transfer in “Per-
muted Adaptive Instance Normalisation” (P-AdaIN) for general object classification
and artistic domain generalisation. We briefly discuss how these methods relate to
the mechanisms that prevent convolutional neural networks from generalising artistic
depictions.

Adaptive Instance Normalisation

Adaptive instance normalisation (AdaIN) is a method for fast style transfer, that uses
VGG-style encoder-decoder architectures in addition to the AdaIN transformation to
apply the “style attributes” of one image to the semantic content of another. Figure
2-3 provides their architecture schematic.

Figure 2-3: Diagram of the VGG encoder-decoder architecture in Ada-IN fast style
transfer [72].
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The adaptive instance normalisation transformation is defined as

AdaIN (x, y) = " (y)

"
x %µ(x)

" (x)

#

+ µ(y) (2.1)

that is, the content input, x, is normalised w.r.t. to its channel-wise statistics N (µ(x), " (x))
and shifted to the statistics of the style image, N (µ(y), " (y)). In AdaIN style trans-
fer, the image pair is first encoded to relu4 1 of the pre-trained VGG-19 encoder. At
this level the AdaIN transfer takes place, and the transformed feature map is decoded
to generate the stylised image. The decoder is trained using perceptual loss on the
output image with content loss and style loss components. The content loss is an L2
loss between the final feature maps of the AdaIN-stylised example and the decoded
image, whereas the style loss is an L2 between channel-wise statistics at prior layers
(relu2 1, relu3 1, relu4 1). Under this method of style transfer, the “style” is defined
by channel-wise statistics. This aligns with our findings in Chapter 6, where we high-
light that early and mid-layers channel-wise statistics are highly discriminative of style
but the final layers relate to object category.

AdaIN is a simple and widely utilised method for fast style transfer. It only re-
quires a single forward pass through the encoder-decoder model once trained, unlike
optimisation-based neural style transfer [71, 9]. Interestingly, Ada-IN has been found
more useful in unsupervised domain adaptation [114] than CycleGAN style transfer [18].
The benefit of AdaIN for such a task is that it does not require knowledge of images’
semantic content, only the style statistics which are then used to stylise the annotated
photographic training data. In these applications, the style transfer is a preprocess
to generate synthetic annotated artwork that demonstrably helps domain adaptation.
The shortfall of this method is the large computational and memory requirements. All
training and style source images are passed through the Ada-IN encoder-decoder before
being used in training the detector model.

Permuted Adaptive Instance Normalisation

Permuted AdaIN [109] is a recent application of style transfer which shifts it from
a preprocessing step to an internal transform applied stochastically during training.
The adaptive instance normalisation transform itself remains the same. In P-AdaIN,
it is applied randomly (p = 0.01) after every convolutional layer and before Batch
Normalisation. Each example in a training batch has the style statistics of another
applied while maintaining the spatial arrangement/content representation. We observe
both good and bad aspects of this implementation.

37



MixStyle

MixStyle builds upon the internal style transfer of P-AdaIN [109] in a few ways. Firstly,
they attempted to synthesise a “novel” style outside the set of source domains by mixing
style statistics of example pairs. Using a pair of image feature representations x and
y, they generate a novel style statistic pair of mean ) mix and variance &mix with the
mixtures,

&mix = *" (x) + (1 %* )" (y) (2.2)

) mix = *µ (x) + (1 %* )µ(y) (2.3)

MixStyle (x, y) = &mix

"
x %µ(x)

" (x)

#

+ ) mix (2.4)

where * is sampled from the beta distribution * & Beta(( = 0.1, ) = 0.1). Specifically,
this beta distribution is U-shaped (illustrated in Figure 2-4) i.e. the novel mixed style
will have a bias toward one particular examples statistics.

Figure 2-4: Probability density function that the MixStyle [110] variable is sampled
from, * & Beta(( = 0.1, ) = 0.1).

The second contribution of MixStyle is to restrict IST to early layers of the network,
where channelwise activation relates more to depiction styles than it does object class
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– we highlight this in Chapter 6 and research on style transfer has typically had similar
“style” layers and “content” layers [71, 9, 72].

2.7.2 Whitening and Colouring Transforms

AdaIN [72] and internal variations of it [109, 110, 115] transform the statistics of one
example to those of another. In these formulations, it is not a true mapping between
distributions as the standardisation does not account for the rotation of the distribu-
tion relative to the reference axes, and hence assumes the distribution eigenvectors are
orthogonal to them. It also assumes the distributions are embedded in the same dimen-
sional space – more exactly, they have the same number of significant Eigen-vectors. To
exactly map distributions to one another then whitening transforms [121, 122, 123, 124],
and their inverse [125], are required.

The whitening transform maps a set of variables into a new set whose covariance is
the identity matrix, i.e. maps an arbitrary shape distribution to a spherical distribu-
tion [121]. The colouring transform is the inverse of the whitening matrix [125]. ZCA
whitening [123], otherwise known as the Mahalanobis Transformation, is an attempt at
“zero-phase” component analysis. That is, it maintains the orientation of the original
distribution where PCA whitening does not necessarily do so. When applied to the
pixels of natural images, ZCA transformation results in maintaining the local correla-
tions between data points unlike PCA [121, 122] i.e. ZCA-whitened images, and by
extension image features, still resemble comprehensible images whereas PCA-whitened
may not. Standardisation, as in Batch Normalization [126], Instance Normalization
[127] and AdaIN [72], is not necessary before any whitening transform.

2.7.3 Domain Adaptation and Semi-Supervised Learning

In our application, the labelled character artwork comprises a narrow gamut of source
artistic domains whereas the target data comprises any data harvested in the wild from
wherever the recognition system is deployed. Target data of “in-the-wild” instances
of Disney characters in varying depictions and mediums can easily be obtained via
scraping search engines, e-commerce, or social media. However, such data does not
come with image-level labels beyond the search conditions used to scrape an image or
its meta-data and does not contain object bounding box annotations. Therefore, we
look to combine artistic domain generalisation over source depictions with unsupervised
domain adaptation (UDA) on the unlabelled or unannotated target data.

In theory, aligning the distributions of source and target data can achieve a “lower-
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upper-bound” of target domain error [128] and domain alignment-based approaches
are therefore common [120, 129, 130, 131]. For UDA across artistic domains, we assert
that the mismatch in source and target denotation (low-level textures) will still be
problematic, so any UDA should build upon a strong DG method that addresses this.

Pseudo-labelling, a form of self-training [18, 114, 33, 128], generates assumed labels
(or “pseudo-labels”) for unlabelled images then optimises the model to predict the
pseudo-label for the given examples [132, 133]. This is typically in the form of an
assumed-correct prediction [33, 134, 135, 132, 133] or matching the output predicted
distribution similar to knowledge distillation and teacher-student frameworks [133, 136].
A combination of style transfer and pseudo-labelling has already shown success for
object detection problems [18, 114, 137]. Pseudo-labelling is essentially based on a
“sensible” heuristic i.e. with predicted labels of high enough probability it is safe
enough to assume the label is correct.

Relevant examples of pseudo-labelling occur in both unsupervised domain adaptation
[114] and semi-supervised learning [33, 137], and for both object classification and
detection. In short, the unlabelled examples are evaluated by the model and instances
with high prediction probability are assigned to that class label and this example is
added to the training set with its new, assumed correct, label. Specifically, FixMatch
[33] generates pseudo-labels on weakly-augmented images (e.g. a large crop of the
target image) but weights are optimised with loss computed from a heavily-augmented
version. Weak augmentation is only a random crop that maintains the majority of the
image and pseudo-labels are allocated for examples with prediction probability above
the threshold of 0.95.

Pseudo-labels use has also been proven viable for weakly supervised DA [18] and UDA
[114] in object detection across artistic styles; likewise, an extension of a FixMatch-like
algorithm has been applied SSL for general object detection [137]. In UDA for object
detection [114], the pseudo-label detections are predicted on the original artwork ex-
amples and training comprises both this example and its stylised pair with a domain
consistency loss. Additionally, pseudo-labels are generated once whereas, in other ver-
sions these are generated on-the-fly [33, 137]. In object detection, there is the added
complexity of background labels and potential false negatives in pseudo-labels which
can be highly detrimental [114].
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2.8 Domain Generalisation and Adaptation in Object De-
tection

Our endtask is a more pragmatic endeavour – to conceive a practical and scalable
framework for detecting Disney characters in the wild and all novel depictions that
comprise this. We must also do so without any annotated training and only a narrow set
of source artwork for training. This will represent the culmination of the prior research
undertaken and all the lessons learned throughout this project. In that respect, much
of the relevant literature has already been covered. Therefore, this section comprises a
condensed literature and relevant design considerations for pursuing object detection
rather than classification.

2.8.1 Domain Adaptation with Style Consistency

We first discuss Rodriguez et al. [114] style consistency as a prominent example of
unsupervised domain adaptation for object detection we built upon. There are three
key components to this method. Firstly, using style transfer to synthesise annotated
artwork from the annotated photographs using artistic training images as the style
source. Second, the training step uses image pairs of the original and stylised versions
and applies a cross-depiction consistency loss between them i.e. this allows low-level
variation between styles but enforces high-level to show more depiction-agnostic consis-
tency. Unlike, the previous methods discussed, pseudo-labels here are generated once
in an offline stage rather than online throughout model training. Overall, this method
of progressive domain adaptation using texture-based style transfer of images’ low-
level statistics aligns with the deeper understanding of convolutional neural networks’
weakness to variations in depiction.

Domain adaptation problems comprise source domain photos (XS) and the target artis-
tic images (XT ). Style transfer is used to generate synthetic artwork (XS$T ) for an
initial training step. Their results showed AdaIN style transfer [72] was more robust
than using a photo-to-art CycleGAN [138] used in a previous method [18] – see Figure
2-5.

The first training stage comprises standard training of SSD [79], or a similar backbone.
SDD, R-CNN, YOLO, RetinaNet, etc. [79, 75, 77, 78] generally follow the same set of
loss functions, but differ in architecture. SSD places loss components on the proposed
locations of bounding boxes (localisation loss L loc) and corresponding class predictions
(confidence loss L conf ). Specifically,
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Figure 2-5: Stylisation methods used for unsupervised domain adaptation in object
detection. Naoto et al. [18] originally used CycleGAN [138] for 1-to-1 mappings of
high-quality stylised examples. Conversely, Rodriguez et al. [114] used AdaIN [72]
for 1-to-many mappings. Although AdaIN stylised images are often considered to
be subjectively worse quality compared to CycleGAN images, the resulting detector
performed better with AdaIN.
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L (x, c, l, g) =
1
N

(L conf (x, c) + (L loc(x, l, g)) (2.5)

where x, c, l, g are the ground truth labels, output confidences, predicted box and
ground truth boxes, respectively. N is the number of matched default boxes.

Localisation loss is a Smooth L1 loss between the predicted box and the ground truth
box, where the task is regressing offsets to transform anchor bounding boxes to the
correct prediction. Confidence loss includes both positive and negative examples, using
cross-entropy loss to maximise classification accuracy of positive examples and classify
all negative examples as a background class.

Rodriguez et al. [114] consistency loss is simply the L 2 loss, or MSE, between the
feature maps at the additional 6 layers of SSD adds to the VGG-19 backbone, as
illustrated in Figure 2-6. These layers are responsible for generating detections, and
their aim is to generate detections similarly regardless of depictive style.

Figure 2-6: Diagram highlighting the adding layers SSD [79] adds to the VGG backbone
[44], and indications of locations domain consistency loss is applied by Rodriguez et al.
[114].

A final domain adaptation to the target domain of real art (XT ) is achieved using
pseudo-labelling. Detections in real art are pseudo-labelled after the model trained on
stylised photos. Predictions are assigned as psuedolabels when the confidence score
exceeds a heuristic such that sc ) ++ for positive examples and s0 ) +" for negatives
(++ = 0.7, +" = 0.9. And maintaining the standard ratio 3:1 negative to positive
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example. They highlight the importance of very high confidence for negative pseudo-
labels, as false negatives can be highly detrimental to detector performance.

2.8.2 Design Considerations

The limitation of Rodriguez et al. [114] is that style transfer is performed as a pre-
process, whereas newer DG/UDA methods we discussed in the previous section, and
later benchmark, perform it as an internal process. Style transfer as data augmentation
either requires more computation or more storage, depending on whether stylisation
happens online or as an offline pre-process, respectively. As an online process, each
example must be passed through the full VGG19 encoder, perform the AdaIN trans-
fer, and then decoded through AdaIN-decoder, to produce the stylised image. Only
then may the image finally be used in the forward and backward pass of the classi-
fier/detector being trained. By comparison, internal style transfer only requires the
image be passed through the model being trained.

In theory, Rodriguez et al. [114]’s method is easily applicable to alternative detector
architectures. However, difficulties often arise with architectures other than SSD. The
stylise consistency loss must be applied at the “correct” layers, but this should be rela-
tively simple to infer. Difficulties are likely to arise with pseudo-labelling. For example,
Faster CNN [75] region proposal network locates “generic” proposals based on object-
ness score rather than a detection probability so it is less trivial, at that stage, to ensure
only “easy” background negatives (high confidence) are sample for training. Similarly,
the RetinaNet focal loss [78] is designed to amplify the loss contributions of hard ex-
amples versus easy examples. This is counterintuitive when exclusively computing loss
using high-confidence (i.e. easy) pseudo-labelled instances.

Rodrigez et al. [114] implementation with batches of sources photos and stylised paired
images, is essentially a domain adaptation extension of “Frustratingly simple few-shot
object detection” [139] – perhaps the title “Frustratingly simple Domain Adaptation”
was too close to occupied already [129]. Regardless, frustratingly simple few-shot object
detection trains with batches comprising the source dataset of abundant classes and
target dataset of few-shot classes. Training to detect the source classes ensure the
ability for “generic” object detection in addition to a focus on the target few-shot
object classes. Rodriguez et al. [114] formulation is analogous but instead combines the
general object detection with a focus on adapting to the target domain where a subset
of source classes are depicted in a new style. In Chapter 8 we synthesise annotated
training data with Disney characters by compositing them onto the annotated COCO
dataset [13], thus we investigate both Disney and COCO categories for the detection
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task in multiple ways to obtain the generic ability to recognise “things”.
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Chapter 3

Datasets

3.1 Introduction

Our research on the recognition of specific objects regardless of depiction explores the
cross-depiction problem across a series of datasets. In simple terms it may be framed
as reliably recognising objects in any photographic or artistic depictions. More recently
domain generalisation benchmarks have framed distinct depictions as separate domains,
and the task is to learn recognition models that can generalise novel hold-out depictions.
The domain generalisation task aligns with the cross-depiction problem of learning to
understand the underpinning identity of a visual object regardless of depiction. Here
we summarise each of the datasets used to conduct our research and benchmark our
solutions.

3.2 Photo, Art Painting, Cartoons, and Sketches (PACS)

The PACS dataset [15] helped popularise artistic generalisation and provided a more
challenging task than the photograph-to-photograph generalisation and adaptation of
the time. The domain shift between PACS’ distinct depictions is far greater than be-
tween the photographic domains – in the latter, each domain comprises a distribution
of photographs with a particular compositional, camera, and lighting bias. Not only
is the domain shift greater but PACS also provides us a benchmark for the addressing
cross-depiction problem. Figure 3-1 illustrates some examples. Considering the de-
pictions as distinct domains, we illustrate the paradigm of intra-class variation across
domains and intra-domain variation across object classes. PACS was proposed as a
domain generalisation task i.e. the aim is to extract domain-agnostic understanding of
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objects to allow generalisation to novel depictions. The motivation for a conceptually
“human” visual recognition system, but also the practicality that datasets of artwork
are fundamentally constrained in size compared to photographic ones.

Figure 3-1: Examples from the PACS dataset [15]. Artwork can range from discarding
redundant information (e.g. the cartoons and sketches are very simplified as compared
to photos) to adding stylistic expressions (e.g. the painting changes and adds stylised
colours and textures to the object and background). We highlight the intra-class varia-
tion across domains, and the intra-domain across classes. That is, the photograph dog
has more low-level visual similarity to the photographic horse but there is some under-
pinning high-level identity that allows dogs to be recognised across depictive domains.

Figure 3-2 provides the distribution of object classes across domains. By the standards
of many visual recognition datasets, PACS is a small task; only 7 object classes split
across 20k examples in 4 depictive domains. As the histograms illustrate, every object
class is represented in every domain with a relatively good balance. There is only
a slight under-representation of sketched people and houses, and guitars in all but
sketches. The benchmark itself is defined as artistic domain generalisation whereby 3
domains are used for training and the final domain is the holdout test domain upon
which classification accuracy is measured. The benchmark comprises 4 such sub-tests
with each of the test domains and overall the classification accuracy of these is averaged.
Train and cross-validation splits are provided for each domain, and the test split is their
aggregation. Their standard uses cross-validation to select the best model to assess
on the test dataset [15]. It does not appear that many algorithms optimise training
hyper-parameters and data augmentation via cross-validation – thus, we generally use
common hyper-parameters and data augmentation from in literature to ensure we are
comparing the algorithms rather than a complex collection of modifications to the
process.
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(a) Object Categories

(b) Domains

Figure 3-2: Histograms to illustrate the balance in object category and domain repre-
sentations across PACS dataset [15].
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3.3 Disney Datasets

Our overall aim of this project is the recognition of specific Disney characters regard-
less of depiction. Most algorithms and benchmarks view this problem from a domain
generalisation and adaption perspective. Our goal is to propose a methodology for
learning depiction generalising models using only narrow sets of source character art-
work, with the potential for supplementary adaptation depending on the availability of
target data. We have Disney character instances from two data sources:

1. Disney Character Artwork: These are the starting points for our Disney classifi-
cation and detection models. This was the original dataset of Disney characters
that comprises a narrow set of depictions for 10 characters. These present a single
character instance on relatively plain backgrounds. These have been provided by
Disney.

2. Disney In-the-Wild: We collected Disney character instances from in-the-wild
at a late stage of this project, to benchmark our algorithms’ ability to generalise
and adapt to these true in-the-wild examples. Unlike the character artwork, these
examples can contain multiple examples of characters per image. Characters in
the wild include depictions in new mediums (e.g. on a T-shirt) as well as novel
depictions far outside our narrow set of original character styles. These have
been obtained by scraping Google images and manually annotating character
instances.

Figure 3-3 illustrates the composition of the Character artwork and in-the-wild images.
Our particular focus is using the source character artwork to create models capable of
finding in-the-wild instances of characters on products. The source artwork illustrates
the constrained set of styles available; whereas the target products comprise some
instances of simply depicting the source artwork somewhere new (e.g. on a backpack
or wall art), but also heavily stylised instances (e.g. a headband of Mickey Mouse’s
ear, or texture silhouettes on a phone case).

Histograms in Figure 3-4 show the representation of Disney characters in each depiction.
Character representations are well balanced across the dataset, but domains are not
all equal in size. We follow the same protocol as the PACS benchmark where each
domain has train and validation splits, and full domain is used for testing when it is
the eld out target. However, In-the-wilds’ train, cross-validation, and test splits vary
more due to the collection and formulation of this sub-task. In Section 3.3.2 we discuss
in detail how and why the “in-the-wild” domain was obtained, processed, and its role
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Figure 3-3: Schematic of our industrial application for recognition regardless of depic-
tions. Original character artwork, with a narrow set of depictions, is used as source
training data (Left-hand side) to recognise characters depicted in the wild, in particular
when depicted on or as products. In-the-wild examples encompass both familiar and
novel artistic depictions of character artwork, but also more abstract representations
as character-branded products that are still equally recognisable (e.g. Mickey Mouse’s
ears on a headband).
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(a) Disney Character Representation

(b) Depiction Representation

Figure 3-4: Histograms of Disney character representation across the dataset, and the
rate at which they appear in the different depictions.
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Figure 3-5: Visualisation of the same individuation and projection, but different deno-
tation. From left to right there is the silhouette, line art, flat colour, shaded colour,
and fully textured colour art (with sparkles).

Figure 3-6: Examples of non-standard depictions from Character artwork dataset.
These usually represent more stylised interpretations of characters outside the well-
defined set of standard depictions illustrated in Figure 3-5.

in benchmarking both detection and classification algorithms.

3.3.1 Character Artwork

The Disney character artwork mainly comprises a set of standardised artistic styles
provided by Disney. As official Disney assets for merchandising and branding, the data
cannot be made publicly available. Figures 1-1 and 3-3 provide some examples alongside
some in-the-wild instances. Figure 3-5 presents the spectrum how the standardised
style is applied with different denotations. Standard art styles include: line artwork,
flat cartoon-style colour, shaded colours, and shaded colours with textured sparkles
etc. . We also generated silhouettes for this data by extracting the alpha channels
from each layer of the original photoshop files. A smaller portion of the dataset also
comprises some alternate stylisations unlike the standard artwork, illustrated in Figure
3-6. We organise the Disney artwork into a benchmark inspired by PACS [15] – each of
the distinct styles comprises a domain Colour, Line Art and Silhouettes. Non-standard
depictions, as illustrated in Figure 3-6, are grouped into whichever of these is most
appropriate rather than more specific sub-domains.
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3.3.2 Disney In-the-Wild

The motivation for obtaining an “in-the-wild” domain is to approximate the task and
target data of the industrial applications – where characters must be depicted in more
diverse ways that the narrow training artwork and in new mediums on or as products,
as illustrated in Figure 3-3. The industrial application for our research is toward the
development of detection and classification algorithms for finding Disney characters
in-the-wild across the huge gamut of depictions they can take.

Our early work focuses on understanding the cross-depiction problem and exploring
domain generalisation in object classification. The culmination takes a pragmatic ap-
proach to develop our framework for recognising specific Disney characters regardless
of depiction. An annotated dataset of in-the-wild Disney characters was required for
benchmarking detection algorithms, rather than only labelled – as illustrated in Figure
3-3, in-the-wild it is rarely a task of classifying a nicely cropped instance of a single
character.

These in-the-wild images are obtained by scraping google images with search conditions
for each character. For each character name, denoted by “character”, images are
downloaded for search conditions

¥ { disney “character”}

¥ { disney “character” product}

¥ { disney “character” toy}

¥ { disney “character” merchandise}

¥ { disney “character” tshirt }

to obtain 50-100 examples per condition. Sorting via image-level labels based on search
condition does not fully describe the instances of characters and branding. Therefore
we used the LabelImg annotation tool [140] to draw bounding box annotations for
a portion of the in-the-wild examples for each character – Figure 3-7 provides two
examples.

The primary role of annotating in-the-wild Disney examples is for benchmarking our
object detection framework presented in Chapters 8. We also evaluate domain gener-
alisation and unsupervised domain adaptation methods for object classification on our
in-the-wild Disney examples to validate promising methods before our object detection
research. For object classification the annotated character instances are cropped from
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Figure 3-7: Example of in-the-wild Disney character instances we annotated for our
Dataset. Character depictions range from entirely novel depiction, e.g. the Mickey
Mouse toy, to the original Character artwork in context, e.g. Mickey Mouse branding,
and novel artistic styles depicted on new mediums, e.g. Belle depicted on a T-shirt.

the respective images, e.g. those in Figure 3-7. These are target data for experimenta-
tion with domain generalisation and unsupervised domain adaptation. For the latter,
the target-domain training data is the unannotated in-the-wild examples i.e. unsuper-
vised examples are whole target-domain images rather than cropped instances – e.g.
they may depict multiple characters of various sizes. This is quite unlike most domain
adaptation tasks in literature [15, 1, 16] where “unlabelled” target domain examples are
single known (but unlabelled) object classes depicted in the target domain and closely
cropped to the object. In our unsupervised examples, the unlabelled examples may
contain more than a single known Character instance; they contain multiple Disney
characters and instances, unknown objects, or miscellaneous background content. This
more truly represents a real domain adaptation or semi-supervised learning problem
where target data may contain all such variations in content rather than conveniently
comprising the same objects as labelled examples in some novel domain.

Distributions of the annotation attributes are presented in Figure 3-8. Relative few
examples are annotated due to the time-consuming nature of manual annotation. While
a larger set would be preferable, we find this dataset size adequate for benchmarking our
proof-of-concept detection framework. Subfigure 3-8b illustrates that dataset mostly
contains one character instance per image, but this is generally like Subfigure 3-7b
rather closely cropped examples of object classification benchmarks. The aspect ratio
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of annotations over the dataset demonstrates that the bounding boxes sizes tend to
be “humanoid” in value e.g. Art-5k primarily comprises humans and has a similar
distribution of annotation aspect ratios (see Figure 3-12b).

3.4 DomainNet

The authors of DomainNet [16] provide a sample of examples from their dataset, pre-
sented in Figure 3-9. These examples illustrate similarities and differences to other
cross-depiction datasets we utilise. The real, painting, clipart, and quickdraw of Do-
mainNet correspond to the photos, art painting, comic, and sketch domains of PACS
[15]. DomainNet also adds sketch and infograph domains. Sketch represents an artistic
mid-point somewhere between quickdraw and clipart similar to the Line art of our Dis-
ney dataset. Infograph represents a similar task to our industrial application, where
an object in question can be depicted in varying ways with additional visual content –
in our case, a character may be depicted on a product and/or with additional accom-
panying information.

Histograms in Figure 3-10 illustrate object and domain support in the DomainNet
dataset. This demonstrates some significant differences compared to other datasets
discussed. Firstly, the DomainNet dataset is much larger at approximately 600k im-
ages and with a much larger variety of object classes (345), [16]. Secondly, DomainNet
domains have significant imbalances – although, the object categories are only slightly
more imbalanced compared with other classification datasets. The size of DomainNet
dataset makes it less applicable for extensive testing with limited computation resources
and for visualising results qualitatively, as we do in this chapter. For example, in Chap-
ter 6 T-SNE visualisations [100] with datapoints coloured by 345 object classes of over
100k examples it is difficult to distinguish any class-coordinated attributes. There-
fore, we sometimes restrict visualisation to the Top 50 most abundant object classes in
DomainNet and refer to this sub-dataset as “DomainNet Top-50” or “DomainNet50”.
The top 50 object classes are realtively balanced but there is some discrepancy in do-
main representation. Figure 3-11 presents the object and domain label distributions
for DomainNet Top-50.

3.5 Pascal VOC, Clipart1k, Watercolour2k, Comic2k

Inoue et al. [18] provide this collection of smaller datasets for domain adaptation in
object detection. It comprises the popular Pascal VOC dataset [34] in addition to three
subsets of the BAM dataset [19] annotated for this task [18] that feature either the same

55



(a) Objects Categories

(b) Objects per Image (c) Aspect Ratio of Object Annotations

Figure 3-8: Distribution of annotation attributes for Disney in-the-wild examples. Sub-
figure a) presents the quantity of annotate instances for each Disney character; b) the
number of total character instances per image; c) the aspect ratio of bounding boxes
across the dataset,
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Figure 3-9: Visualised examples from the DomainNet presented in the original paper
[16]. In particular, we compare this to the PACS [15] datasets and describe qualitative
similarities in domains: The real, painting, clipart, and quickdraw of DomainNet [16]
correspond to the photos, art painting, comic, and sketch domains of PACS [15]. Fur-
thermore, Infograph represents a similar task to our industrial application, where an
object in question can be depicted in varying ways with additional visual content.

set or subset of the classes from Pascal VOC. The benchmark task is an adaptation
from the annotated Pascal VOC photographic images to each of the artistic domains.
Our main interest is the artistic examples – we provide a range of examples in each
style in Figure 3-13, and annotated examples in Figure 3-14. We refer to this dataset in
multiple ways depending on the context of its use: VOC-BAM when using the cropped
object instances for object classification tasks, Art-5k when using the aggregation of
5000 artistic examples.

3.6 OfficeHome

The OfficeHome dataset [1] offers a benchmark for domain generalisation and adap-
tation similar to PACS [15] . It contains 65 object classes across a set of four photo-
graphic and artistic domains. OfficeHome contains an average of 70 images per category
and 15k images in total. It represents an intermediate challenge that sits somewhere
between PACS and DomainNet [16]. Additionally, the OfficeHome domains are not
discrete artistic depictions like those of Disney, PACS and DomainNet – the four do-
mains of OfficeHome are Art, Clipart, Product, and Real World (Examples shown in
Figure 3-15 and earlier in Figure 1-2). PACS and DomainNet restrict domains to quite
distinct styles, whereas “Art” in OfficeHome contains any form “artwork” including
sketches, paintings, etc. but also some artistic photography (or perhaps it is photoreal-
istic artwork) as illustrated in the examples. “Clipart” appears to be the most discrete
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(a) Object Categories

(b) Domain

Figure 3-10: Histograms to illustrate the imbalance in object category and domain
representations across DomainNet dataset [16]. There are too many object classes to
label the histogram, but this provides a sufficiently belays the span of DomainNet
categories.
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(a) Object Categories

(b) Domains

Figure 3-11: Histograms to illustrate the balance in object category and domain repre-
sentations across DomainNet-Top50; our reduce subset of DomainNet [16] that discards
examples outside Top-50 most populated object categories to produce a smaller and
more balanced task. DomainNet Top-50 is more balanced dataset with respect to ob-
ject category, but the distribution of examples over domains varies relative to the full
DomainNet dataset.
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(a) Objects Categories

(b) Aspect Ratio of Object Annotations

(c) Depiction Categories

Figure 3-12: Distributions illustrating: a) the number of annotated object instances
and b) number of images of each style from Clipart1k, Watercolor2k and Comic2k
[18]. Watercolor2k and Comic2k contain more images but only a subset of Pascal VOC
object categories ( person, bird, car, dog, car and bicycle). People are the most common
object class by far, and the aspect ratio of boxes reflects this
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(a) Clipart1k

(b) Comic2k

(c) Watercolour2k

Figure 3-13: Examples of the artistic subsets of Clipart1k, Watercolour2k, and
Comic2k. Instances of object classes that appear in Pascal VOC are annotated and
labelled in these datasets, but these are not visualised here.
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(a) Pascal VOC (b) Clipart1k

(c) Watercolor2k
(d) Comic2k

Figure 3-14: Example annotations from Pascal VOC [34], Clipart1k, Watercolour2k,
and Comic2k. The 3 artistic domains have been collected by Inoue et al. [18] from BAM
[19], and annotated with object categories from Pascal VOC. Although, Watercolour2k,
and Comic2k only contain subset of Pascal VOC categories.
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domain. “Product” and “Real-World” have quite vague definitions and significant con-
ceptual overlap; the former is defined as images of objects on a static background and
Real-World as anything captured with a “regular camera”.

(a) Art (b) Clipart

(c) Product (d) Real World

Figure 3-15: Examples from each domain of the OfficeHome [1] dataset. Subfigure
presents a Radio (top left), Computer (top right), Alarm clock (bottom left), and
toothbrush (bottom right). Examples are included from a) Art, b) Clipart, c) Product,
and d) Real World domains. PACS [15] and DomainNet [16] discretise domains via
depiction, or style, whereas OfficeHome [1] domains have a more “blurred” boundary
between them e.g. the defining visual property that separates Product versus Real
World domains compared to any pair of domains from PACS or DomainNet.

Like many popular object classification benchmarks, OfficeHome [1] presents a rela-
tively equal balance of object categories, as shown in Figure 3-16. The most abundant
object classes contain approximately twice the examples of the smallest: this is im-
balance but not to an order where precision and recall become necessary performance
metrics. Each domain is roughly equal in size except for Art.
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(a) Object Categories

(b) Domains

Figure 3-16: Histograms to illustrate the balance in object category and domain rep-
resentations across OfficeHome dataset [1]. The most abundant object classes contain
approximate twice the examples of the smallest.
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3.7 PhotoArt50

The PhotoArt-50 dataset [17] comprises 50 object classes (a subset of those in Caltech-
256 [141]) that are depicted in approximately equal quantities of photographs and
artistic images with 90 to 138 examples for each class. The dataset presents a balanced
set of object categories, with a near equal share of photographs and artwork per object
class and overall. The distributions of object class and depiction are presented in
Figure 3-17, and cropped object instances in Figure 3-18. The artwork domain spans
all different styles and denotations — e.g. cartoons, sketches, paintings, watercolours,
and more – rather than distinct depictions like other datasets [15, 16, 18]. Additionally,
unlike the most open-source datasets discussed, PhotoArt50 is a detection dataset with
ground-truth annotations and object labels assigned by hand. Although annotated,
examples only contain one object category per image but can have multiple instances
of the category.

Despite its original use for object detection, we utilise PhotoArt-50 for benchmarking
object classification in the same manner as described for our Disney in-the-wild dataset.
The annotated bounding boxes are used to crop out individual class instances. However,
when we use this dataset for unsupervised domain adaptation then unlabelled training
examples use the full images but the test accuracy is computed using the cropped out
individual class instances – this is illustrated in Figure 3-19.

3.8 Common Objects in Context (COCO)

The preferred dataset for benchmarking modern object detection frameworks is Com-
mon Objects in Context (COCO) [13]. The COCO benchmark itself provides an ever-
expanding dataset for object detection, object segmentation, keypoint detection, pose
estimation, and more. Benchmarking our methods on COCO is not our concern as
it is an entirely photographic dataset. We do, however, utilise COCO to supplement
training data for our detection frameworks. We explore, in Chapter 8, how to best
combine the task of general object recognition on COCO with the detection of specific
Disney characters across depictive styles.

The distinguishing factor of COCO versus other detection datasets we utilise is firstly
the size, as illustrated in Figure 3-20. It is larger even than most classification datasets
we explore – such are the constraints of non-photographic images. The other factor is
the presentation of common objects in context. Objects instances appear in natural
images unlike the artistic depictions and product images we have discussed: these non-
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(a) Object Categories

(b) Domains

Figure 3-17: Histograms to illustrate the balance in object category and domain rep-
resentations across PhotoArt-50 [17].
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(a) Beer Mug Photo
(b) Butterfly Photo (c) Crab Photo

(d) Hot Air Balloon
Photo

(e) Beer Mug Art
(f) Butterfly Art

(g) Crab Art (h) Hot Air Balloon
Art

Figure 3-18: Pairs of photographic (top) and artistic (bottom row) object instances
from PhotoArt-50[17]. Object instances are annotated through the dataset, and images
typically contain a single object category but may contain multiple instances. These
instances have been cropped from their respective images.

Figure 3-19: Sampling for unsupervised domain adaptation with object classifications.
Unlabelled training examples would either use the whole image for UDA or a random
crop (e.g. green crop), whereas test images used to compute classification accuracy
would use a crop of the annotated “dog” in this case (e.g. red crop).
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natural depictions tend towards a single focal object instance with minimal background
clutter, as evident in many of previous examples (e.g. Figures 3-7, 3-13 and 3-14). The
visible Figure 3-21 where there are many object categories and instances per image;
Figure 3-20b provides the distribution of objects per image to further demonstrate
this. Further quantification of the context is illustrated in Figure 3-22 counters of
object instance height and width. COCO comprises mostly small object instances (e.g.
those in Figure 3-21), where the artistic depiction from Art-5k [18] have larger focal
images like those in Figure 3-14.

(a) Objects Categories (b) Objects per Image

Figure 3-20: Distributions on the number of examples of object categories over the
COCO [13] dataset, and of the number object instances per image. Subfigure a) illus-
trates the degree that “Person” is the most dominant object category in COCO, as is
common in general object detection benchmarks [34, 18]. Subfigure b) highlights the
high number of objects-per-image in COCO compared to previous datasets discussed.

3.9 Summary

In addition to the previous discussion of each dataset and how we use them individu-
ally, it is also important to compare them as benchmarks for our tasks. For this, we
provide Table 3.1 as a condensed comparison of the dataset size and balance of object
classes distribution, similar to what we have discussed previously. We also compare the
datasets domain settings in Table 3.2, for those with multiple domains or depictions.

The upper section of each table corresponds to detection datasets where object in-
stances have both class labels and bounding box annotations and there can be multiple
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(a)
(b)

Figure 3-21: Examples from the COCO dataset [13]. COCO is continually being de-
veloped to incorporate more data and define tasks including object detection, object
segmentation, keypoint detection, pose estimation, and more. Illustrated are object la-
bels, bounding boxes, and also the precise semantic segmentation each object instance.

Figure 3-22: Contour distributions of bounding box width and height of object instances
in COCO [13](Photographs), Clipart1k, Watercolour2k, and Comic2k [18]. The artistic
depictions tend towards large individual focal objects (a very few), whereas COCO
features many objects depicted in natural contexts.
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instances-per-image. The lower half are image classification datasets, therefore the
number of images and instances is the same. Most dataset names in Tables 3.1 and
3.2 correspond to those listed previously, but others need some clarification. Art5k

represents the combined dataset of Clipart1k , Comic2k and Watercolor2k which
typically form different splits of a domain adaptation task. In Table 3.1, Disney

in-the-wild refers to the annotated in-the-wild instances of Disney characters used
for object detection. In both tables, Disney Artwork + ITW comprises both the
original Disney artwork and in-the-wild examples, however, these include both the sub-
set of annotated examples for Disney in-the-wild and the remaining examples that
have been weakly labelled to a character but no annotated. Finally, the domain shift
value for Art5k also includes domain shift to COCO photographic images as we later
Art5k for promoting domain generalisation and adaptation of COCO trained detection
models.

From Table 3.1 the variation in range of object classes across datasets and the rela-
tive imbalance can be seen. In particular the object detection datasets tend to be far
more imbalanced. COCO [13] and the Art5k [18] datasets primarily contain people.
PhotoArt50 [17] and our Disney in-the-wild data were both assembled to more evenly
represent object classes, but both are still considerably less balanced than the classifi-
cation datasets. Including all in-the-wild images into the Disney dataset improves the
relative class balance, as every class gains a near-equal amount of examples so the vari-
ation in class representations shrinks relative to the number of examples. Additionally,
this table illustrates how our reduction of DomainNet to DomainNet50 significantly
improves the balance.

The statistics in Table 3.2 illustrate the domain shift and domain representation for the
multi-domain datasets. Across all datasets domains tend to be more equally represented
compared to object categories. There are several observations to be made. Once again
the addition of in-the-wild examples has an interesting effect. Here Disney Artwork

+ ITW slightly decreases the average domain shift versus Disney Artwork . The
in-the-wild examples are intentionally a broad set of depictions that comprises both
novel depictions and “simpler” re-representations of the original artwork on a product.
Therefore, the centroid of ”in-the-wild” may not correspond to a distinct depiction as
Colour, Line and Silhouette do.

Domain shift can be difficult to adequately quantify. In this table, our Euclidean
distance measure for domain shift highlights which datasets have domains that comprise
distinct depictions rather than just a different data source, which “domain” originally
referred to. For example PACS, DomainNet, and Disney all have high domain shift
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and discrete depictions as domains, whereas OfficeHome has much lower domain shift
and, as discussed previously, the domains are not assigned entirely based on depiction
by our definition – e.g. Product, Realworld, and Art can have significant visual overlap
[1].
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Chapter 4

Exploring Cross-Depiction and
Cross-Denotation Generalisation

4.1 Introduction

There exists a representation gap between how objects appear in real life, in pho-
tographs and in the countless variations of artwork. We as humans have no issue
recognising these new and novel depictions, but even the latest photograph-trained
object recognition systems begin to fail when deployed across artistic depictions [2, 3].
Even when modern object recognition models are trained on artistic data, performance
still drops relative to photographic image classification and models still fail to gen-
eralise novel artistic depictions as demonstrated by recent multi-domain benchmarks
[15, 16, 1]. This chapter is an experimental study to explore how image classification al-
gorithms fail to transfer between artistic styles and demonstrate that the representation
gap between depictions is asymmetric.

We investigate the ability of computer vision models to generalise across depictions
and transfer from one depiction to another. Models are trained on a single depiction
and tested on several other depictions, and we repeat this with multiple datasets.
Through our own experiments and supporting literature, we demonstrate that the
domain generalisation from one artistic depiction to another is accompanied by a severe
and characteristic drop in performance. We document that the cross-depiction problem
was still prevalent with deep learning based methods, and further demonstrate the
asymmetry in generalisation between depictions. That is, the classification accuracy of
models trained on a particular style and tested on another is not the same as vice versa.
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This same asymmetry in domain transfer may be observed in the existing literature
[19]. As our contribution we highlight that this asymmetric generalisation is related to
the level of abstraction in the artistic depictions e.g. Disney colour is discriminative
for colour artwork but generalise poorly to the line and silhouette images, whereas
silhouettes, representations devoid of detailed texture, generalise far better “up” to
the more richly textured representations. Furthermore, we observe that there appears
to be an optimal levels of artistic abstraction to both produce both generalising and
discriminative models.

Finally, our Disney artwork allowed us provide further novelty in showing that merely
a change in denotation (i.e. keeping individuation, projection, and even pose fixed)
is enough cause the characteristic behaviours observed in the cross-depiction problem.
Our Disney dataset offers this unique quality compared to open source artistic datasets.
The artwork itself follows strict rules for representing these iconic characters and only
the denotation changes – the individuation of each character is of course fixed, as is
the projection, and in even certain poses are shown in multiple styles. Datasets of gen-
eral object classes features objects of different individuation, and depictions of varying
projection and denotation. This offers the unique opportunity to understand the cross-
denotation problem in addition to the cross-depiction problem. By investigating the
ability of individual depictions, denotation, styles or domains to generalise we can iden-
tify methods to improve recognition regardless of depiction. Correctly utilising artistic
data is an important task as examples of artistically depicted objects are inherently
restricted in quantity [15]. Later in this thesis, we demonstrate how this may be used
to improve domain adaptation of recognition models to new depictions.

4.2 Related Work

Recognition of visual objects regardless of depiction touches upon many subareas of
computer vision research. As discussed in Chapter 2; current visual object recognition
problems are typically solved using convolutional neural networks (CNNs). For object
classification, there are many backbone architectures to choose from. Networks pre-
trained on the large ImageNet dataset are the starting point for many tasks.Whether
extending from photographic classification to recognition or performing a more niche
object recognition tasks, the standard approach begins from a pre-trained backbone.
Best practice for applying an existing network to a new classification task involves using
these pre-trained weights as initialisation, replacing the fully connected classification
with the appropriate number of output classes, then either fine-tuning all network
weights or training only the updated output layer while the convolutional weights are
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fixed as a feature extractor.

Research into domain adaptation, generalisation and transfer has predominantly con-
sidered the domain shift between photographic datasets. In recent years, more visually
diverse benchmarks that include artwork have been collated to allow more challenging
domain adaptation and generalisation tasks [15, 18, 16]. Some of the difficulty is due to
the lack suitable training data; better availability of these large annotated datasets of
artistic images [19] has facilitated the creation of new and challenging detection tasks
too [18]. Much of this research into domain adaptation and generalisation approaches
the problem in a task-agnostic manner; they tend to consider the depictions as sim-
ply different distributions of images with the same categories, rather than considering
that, regardless of depiction, a given object comes from a single “model” it only when
projected and denoted through a certain depiction they product different images (as
described by our model for depicting an object, Equation 1.6). The multi-graph model,
by Wu et al. [29] is the closest to the latter way of thinking; they used graph models
with features at each node learned from different depictions i.e. a domain-agnostic
structural models that allowed depiction-specific variation of node appearance. It per-
formed well as a pre-neural model and importantly it maintained performance well
across depictions.

This chapter does not attempt to solve the problem of domain adaptation or general-
isation, instead, we take a step back to observe and understand the current situation.
In our experiments we demonstrate that domain generalisation and the representa-
tion gap between artistic styles are not symmetrical; models trained on style A and
tested on style B produce different performance than vice versa, both in terms of pure
performance on the target depiction and performance relative to that on the source
depiction validation set. This same phenomenon is also present in experiments for the
BAM dataset [19] – their results are illustrated in Figures 4-1. The asymmetry is very
evident, for example when training on 3D render images and tested on comics it drops
37% accuracy from 81% on the validation set whereas vice versa 77% accuracy on the
comic validation set only drops to 66% on the 3D render test set. In our work demon-
strate this same phenomenon on new datasets. We make multiple further contributions.
We illustrate this asymmetric generalisation can be related to the level of abstraction
in the artistic depictions and that there appears to be some optimal level of artistic
abstraction to produce the best models. Additionally, our Disney artwork allows us to
demonstrate that only varying denotation, but keeping individuation, projection, and
even pose fixed, is enough cause this asymmetry and other characteristic behaviours of
the cross-depiction problem.
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Figure 4-1: Domain generalisation between BAM domains taken from [19]. Object
recognition performance when trained one artistic style (rows) and evaluated on another
(columns). Their “N-1 Baseline” model was trained on all style except the target
evaluation style.

4.3 Method

We explore the ability of both neural and classical object recognition models to gener-
alise from one artistic style to multiple others. Specifically, we experiment with AlexNet
[41] and ResNet-18 [46] implemented in PyTorch [51, 52] and Tensorflow [53]. We ex-
plore the finetuning of all network weights from ImageNet pre-trained initialisation
and training only the classification layer with fixed ImageNet convolutional weights as
a feature extractor.

As is favoured for classification networks, we train with cross-entropy loss given the
predicted and true labels, y and ŷ, where y " 1, 2, ..., Nc denotes the class label (with
no negative examples), then averaged over the batch of M examples.

L (y, ŷ) = %
1

M

M$

i =1

yi log ŷi (4.1)

To implement training neural networks on our chosen datasets, we have used training
parameters from similar experiments in the literature as a starting point. The base
parameters we choose produce relatively consistent results on the PACS benchmark
[15] – researchers have often used very similar training regimes but, we note, report
some fairly varying baseline results. The PACS benchmark is similar to the experiments
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conducted, however, our experiments analyse the ability to generalise classifier from one
artistic domain whereas the designated PACS benchmark aggregates a generalising
classifier from multiple styles. We train using stochastic gradient descent with batch
size 128, and a learning rate of 0.001 reduced by factor 0.1 after 80% of epochs, and
weight decay 5e-4. For PACS, this training runs for 30 epochs (learning rate decayed
at 24) and we train for the same number of epochs on our datasets, but as our datasets
here are smaller we also train to a lower bound of 3000 iterations. Model selection is
also the same as the PACS benchmark; the best model is selected based on performance
on the validation split from the source depiction.

An important aspect of the training is the data augmentation to prevent over-fitting.
For all setups examples images are randomly cropped to retain between 70% to 100%,
randomly flip horizontally and normalise values to the ImageNet mean and variance
(as pre-trained models are attuned to these). Some experiments on PACS randomly
set examples image greyscale with probably p = 0.1 [111, 94]; we instead have greyscale
versions of colour images as their own separate style which we investigate alongside the
others. Silhouettes and Line art images from our Disney art dataset receive a few extra
augmentations. Typical silhouettes and line art images are monochrome, so the colour
combination is randomly altered from black-and-white to a pair of random colours.
This is not the same as a greyscale colour image – here, information is not being
added or removed (like grey-scaled images) instead information is being changed to
prevent over-fitting to only black-and-white images. Some examples of augmented and
original images are illustrated in Figure 4-2. The Pascal VOC [34] include both instance
and object class segmentation with outlines; these silhouette images’ background and
foreground colours are varied randomly in the same way.

4.4 Results and Discussion

Throughout this discussion, “in-domain” accuracy refers to test examples from the
same depiction as the training data, and “out-domain” examples are those from unseen
depictions. Additionally, we use “domain”, “depiction” and “style” interchangeably;
each domain within a dataset comprises a single depictive style.

4.4.1 Performance Metrics

For each experiment, we present two confusion matrices. Red confusion matrices pro-
vide the absolute classification accuracy for the given combination of training and test
domains. The classification task features no negative class examples, so accuracy is the

78



Figure 4-2: Examples of data-augmented example pairs.
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rate at which the model correctly predicts y and given true label ŷ:

Ai,j =
! N

k zk

Nk
where zk =

%
1 : ŷk = yk

0
(4.2)

where i, j represent the training and test domains, and k " 1, ..., Nk for the Nk examples
in the test set. These red matrices provide the absolute accuracy of a given model in
each depictive domain which quantifies the discriminative model in each setting. Blue
confusion matrices provide an efficiency metric of the accuracy in a test domain j versus
the test accuracy in the model’s training domain i .

, i,j =
Ai,j

Ai,i
(4.3)

Thus, the leading diagonal of these efficiency matrices will be 1.0 as in that scenario
Aj * Ai . This efficiency metric provides a measure of how well the model generalises
to new domains; low values indicate a large loss in performance on out-domain versus
in-domain accuracy, whereas high values show a model better able to maintain in-
domain accuracy on unfamiliar depictions. In this relative measure and we assume
the in-domain performance to be the upper bound of performance in novel depictions.
When trained on all styles, the efficiency is instead normalised by the average accuracy.

In addition to confusion matrices of performance, we also include directed graph
schematics to visualise the domain shift between each datasets’ domains. We measure
domain shift using Kullback–Leibler divergence [143, 144], as it is a common metric for
quantifying domain shift. We quantify as described in PACS [15]. Kullback–Leibler
divergence (KLD) for discrete probability distributions is defined as

KLD (P||Q) =
$

x%X

P(x) log

"
P(x)
Q(x

#

(4.4)

where P and Q represent the observations and theory, respectively, and KLD quantifies
the entropy from Q to P . When applied for domain shift, we measure the KLD from the
source domain the model is trained, Q, to the target domain the model is attempting to
generalise, P . The discrete distributions P, Q are calculated as they were for PACS [15]
– mean DECAF7 [142] representation over each domains’ instances and then applying
Softmax normalisation. The domain shift between i th and j th domains is defined as
the KLD between their respective softmax mean DECAF7 features [142], Di and Dj ,
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which are substituted for P and Q.

Dshif t = KLD (Di ||D j ) (4.5)

In our domain shift schematic graphs, nodes represent domains and edges the domain
shift – edges are not to scale but show the direction of generalisation (from Q to P)
and numerical domain shift.

We explored two measures of domain shift: (1) KL divergence between continuous prob-
ability distributions that summarise each domain, and (2) Euclidean distance between
domain means. Measuring domain shift with Euclidean distance is achieved by sim-
ply calculating signed distance between domains mean DECAF7 [142] representations.
Regardless of how we quantify it, we find the qualitative results are the same despite
the different absolute values of domain shift. Therefore, we only include schematics of
the first method as it has previously been established as a measure of domain shift on
PACS.

4.4.2 Disney Character Artwork

This dataset represents a unique case for investigating recognition regardless of depic-
tion. Recalling the concept of how an object is visually depicted from Chapter 1 and
the 3 components: (1) individuation, (2) projection, and (3) denotation. Individuation
refers to how a base visual object model is deformed to an individual by setting physical
attributes and poses. Next, the 3D model of the individuated instance is projected to a
2D representation. Finally, denotation broadly defines the rendering medium and visual
texture of the medium application. This Disney character artwork is unique in that the
individuation of instances is near-fixed, as object classes are specific characters with
well-defined physical attributes. Thus, only the methods of denotation significantly
varies. Figure 3-5 illustrates an example of some specific individuations appearing in
multiple styles with only a change in denotation. In cross-depiction datasets of general
object classes, there are variations in all components of the depictive model.

Accuracy and efficiency confusion matrices for AlexNet [41] finetuned and feature-
extractor models are included in Figures 4-3 and 4-4, respectively. ResNet-18 [46] is in
Figure 4-6. There are several broad observations that can be made from these results.
First of all, as is expected the best average performance across all depictions, regardless
of base CNN, is achieved by training on all styles. Additionally, the more recent ResNet-
18 architecture generally achieves greater accuracy than AlexNet. Interestingly, models
trained on all depictions can outperform domain-specific trained models on in-domain
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accuracy; e.g. Figures 4-3a and 4-4a both show improved accuracy on both line art and
silhouettes when trained on all styles versus models trained solely on the individual
styles. Unlike silhouettes and line art, accuracy on greyscale images drops when trained
on all styles – likely a result of the sampling rate of greyscale images when training on all
styles is a probability p = 0.1 on any image (as in many PACS DG methods [15, 85, 86]),
whereas other styles have near-equal sampling rate. Given that approximately half of
the examples are already monochrome any “true” greyscales have an even lower effective
sampling rate compared to others.

The ability of each individual domain to generalise novel depictions varies noticeably.
Throughout these confusion matrices, the leading diagonal contains each depictive style
in-domain performance. Each row presents the ability of that depiction to generalise
new ones, conversely, each column presents how well each depiction generalises to the
given column’s domain. Asymmetry can be observed between generalisation to and
from depictions, and sometimes accentuated in the efficiency confusion matrices. That
is, the row for a given domain (generalisation from) is not the same as the column for
that domains (generalisation to). Average performance is calculated over out-domain
performance only, to provide an overall metric of model generalisability. Darker colours
indicate higher accuracy and efficiency, which helps to visually present this. Specifically,
the highlights of Figure 4-3 are:

¥ Colour generalises poorly to other domains, whereas other domains generalise to
colour images noticeably better.

¥ Line art and greyscale images generalise best in terms of both pure accuracy and
efficiency ratio.

¥ Line art and greyscale trained models exhibit the least performance degradation
when transferring between each other. The asymmetry between these is much
less pronounced than elsewhere, particularly in terms of efficiency.

¥ No Depictions generalise well to silhouettes, but silhouettes are able to generalise
fairly well to both greyscale and colour images.

¥ The leading diagonal illustrates that in-domain performance decreases through
the domains, but generalisation improves until silhouettes that appear to pass a
“critical threshold” where information becomes too abstracted to be generalising.

¥ Finetuned ResNet-18 model, Figure 4-6, is the best performing model overall for
in-domain accuracy performance and cross-domain generalisation.
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Whether all weights of AlexNet have been finetuned (Figure 4-3) or only the classifier
layers (Figure 4-4), these observations largely remain the same. Finetuning all weights
slightly improves performance across the board versus using pre-trained AlexNet as a
fixed extractor.

Results illustrate that colour artwork produces the least generalising models but these
examples are the easiest to generalise to. Our results demonstrate that CNNs can, for
Disney artwork, learn good classifiers with needing colour. Additionally, this results in
a more depiction-generalising model than if colour artwork is available. this is evidenced
by the fact that greyscale images generalise well to colour images, but not vice versa.
Without colour, there is invariance to colour so good classifiers of both colour and
greyscale images are learned. On Disney character artwork, the classifier will learn
an evident bias towards colour if trained with colour examples. Disney characters
each have signature colour palettes that colour-trained models exploit during training
which leads to a colour bias that does not generalise well. Interestingly, it is much in
alignment with recent work that identified texture bias in neural networks [104, 105]
i.e. a denotation bias in this context.
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Figure 4-3: Confusion Matrices of (a) Accuracy and (b) Efficiency across Disney char-
acter art styles, using an AlexNet architecture with all weights finetuned.
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Figure 4-4: Confusion Matrices of (a) Accuracy and (b) Efficiency across Disney char-
acter art styles, using an AlexNet architecture with only classifier weights finetuned
(Layers fc 6, fc 7, fc 8).
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Line art and greyscale generalise best across all styles. An interesting case is that line
art generalises better to silhouettes than vice versa, although generalisation is poor
with anabsolute accuracy < 30%. The good generalisation from line art to silhouettes
is a little unexpected and is attributed to line art containing some examples which
are near-silhouettes themselves. Examples in Figure 4-5 illustrates examples of white
silhouettes on grey background, with line art sketching of character details. In gen-
eral, the observation still stands that abstracted styles are generalising up to richer
depictions, rather than the opposite.

(a) Ariel (b) Belle (c) Rupunzel

Figure 4-5: Some examples of silhouetted line art of Disney Characters.

Finetuning of both networks aligns with many of the ideas found in the literature.
Firstly, convolutional layers pre-trained on large scale datasets can be adapted well to
new domains. Results of finetuning both AlexNet and ResNet align with Kubilius et
al.’s [10] findings that CNNs are effective at learning with raw shapes; illustrated by
strong performance when presented only silhouettes of the characters. Indeed, net-
works’ performance on silhouettes in these and their experiments both produce around
75% accuracy with pre-trained weights. From Kubilius et al. [10] we see that neural
networks can be sensitive to understanding shapes, but equally if left to their own
devices neural networks become biased to texture [104, 105] – particularly the rich,
coloured artwork in these examples. In general, we wish to highlight weak transfer-
ability and generalisation of classifiers to novel depictions rather than applicability to
any available domain. Whether feature extractors are finetuned or fixed there is strong
performance on in-domain examples, but consistent failure to generalise new depictions.

When using a fixed extractor, a different backbone architecture effectively uses a differ-
ent handcrafted feature extractor. The newer architectures typically produce the more
compact and discriminative features – through the improvements of each generation
of neural architecture discussed in the Chapter 2. Training with a different neural
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backbone is analogous to using a different feature extractor. Comparing AlexNet and
ResNet-18, Figures 4-3 and 4-6 respectively, the behaviour of the models are consistent
in all respects. The literature agrees that ResNet, and more recent CNNs, produce
more discriminative features so higher accuracy is expected. Although, ResNet is not
significantly outperforming AlexNet on this task – the margin in the performance is
more pronounced on larger datasets, such as the ImageNet classification they were both
designed around. Broadly, however, both networks behave similarly: high in-domain
accuracy but poor generalisation in general and particularly when generalising from
Colour art, but not when generalising to colour art.

Wxisting literature supports our observation that transfer between domains is not
equal [15, 19], with BAM experiments [19] shown in Figure 4-1. The standard artwork
in this dataset progressively adds content from Silhouette to Line to Colour. The
more abstracted art styles generalise better to the richer domains than vice versa. We
consider this a demonstration that understand artistic abstraction of salience could
lead to better understanding, and exploiting, of how artistic depictions isolate salience.
This is a core part of the cross-depiction problem [2, 3] – understanding how objects
are depicted across artistic styles, and what the modes of abstraction maintain their’
identity.
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Figure 4-6: Confusion Matrices of (a) Accuracy and (b) Efficiency across Disney char-
acter art styles, using an ResNet-18 architecture with all weights finetuned.
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The difference between finetuned and extractor models is more extreme with ResNet-18
than AlexNet, due to the fact that ResNet architectures feature a single fully-connected
classifier layer versus the 3 successive fully-connected layers in AlexNet. Only training
the classifier layer of ResNet does not provide enough model complexity for good results
– the ResNet-18 classification layers contain only 5300 out of 11 million total model
parameters, versus 54.5 million out of 57 million total for AlexNet. In general the
overall behaviour of ResNet-18 is qualitatively the same as AlexNet. The key difference
being ResNet-18 achieves slightly higher accuracy in nearly every case. Typically, it
is the case that more recent architectures achieve higher performance even on domain
generalisation style tasks, and this is demonstrated on the PACS benchmark [15, 86].
In literature, experiments are often conducted with older architectures for the sake of
validation and comparison with previous algorithms or approaches. In practice, it is
typically beneficial to utilise the latest and greatest state-of-the-art neural architectures.

4.4.3 Pascal VOC, Clipart1k, Watercolor2k and Comic2k

Considering, once again, our schema of depicting an object this dataset is conceptually
most similar to PACS [15] rather than the Disney character artwork. Like PACS, the
photographs, watercolours, clipart and comic feature object classes rather than specific
instances so variations occur in individuation, projection and denotation. Although, the
silhouettes represent only a denotation variation versus the photographs’ from which
the semantic segmentation silhouettes are derived. This dataset exhibits a much greater
imbalance versus the previous two, in terms of both class imbalance and depiction-
imbalance. Furthermore, only clipart and silhouette contain all the Pascal VOC classes
[34]; comic and watercolour contain a subset of 6 out of 22 visual object classes [18].

Much like PACS [15], asymmetry is once again present when generalising between pho-
torealistic images and artistic depictions. Part of this phenomenon may be attributed
to the fact that the initial weights are obtained through photographic pre-training with
ImageNet. Therefore, in the absence of catastrophic forgetting [145] the network can
likely maintain some of the pre-trained photographic classification ability. While it
would be interesting to investigate how well neural networks generalise to photographs
with no photographic training whatsoever, there is no artistic dataset equal to Im-
ageNet. A possibility to investigate this instead would be to use self-supervised or
unsupervised pre-training on large artistic datasets that lack strict visual object an-
notations, such as BAM, and fine-tuning classifier on one or some smaller annotated
artistic datasets. However, due to the abundance of photographic datasets, practically
speaking there is minimal motivation to generalise to photographs specifically – in-
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stead, it may be used as a validation step in generalisation some unseen domains or
depictions.

Looking specifically at the generalisation between the artistic depictions and silhouettes
the artistic depictions generalise to silhouettes far better than vice versa. This is the
opposite of the results of Disney character artwork, where silhouettes generalised better
to all but line art. However, silhouettes here do generalise to photographs much better
than the opposite. As mentioned previously, the silhouette-photograph test pairing is
similar to the Disney dataset in that it is only the denotation of examples varies while
the individuation and projection are constant.

An interesting observation here is that artistic depictions offer improved generalisation
to both other artistic depictions as well as photorealistic images. However, there ap-
pears to be a sort of critical threshold where information becomes too abstracted to
be generalising – in some cases, models trained Disney or Pascal VOC silhouettes and
PACS sketches have worse average generalisation accuracy and efficiency than other
artistic depictions in their respective dataset.
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Figure 4-7: Confusion Matrices of (a) Accuracy and (b) Efficiency across Pascal VOC
photographs and BAM art styles, using an AlexNet architecture with all weights fine-
tuned. 91
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Figure 4-8: Confusion Matrices of (a) Accuracy and (b) Efficiency across Pascal VOC
photographs and BAM art styles, using an AlexNet architecture with only classifier
weights finetuned (Layers fc 6, fc 7, fc 8). 92



4.4.4 Photo, Art Painting, Cartoons and Sketches (PACS)

Although the behaviour may be less clear cut than those with Disney character art the
trends are quite similar. Once again, it is beneficial to finetune both the convolutional
layers and fully-connect classifier weight. Furthermore, the best performance across all
domains is, understandably, to train with all domains and this, as before, can improve
performance on individual domains versus the single training domain cases. Asymme-
try of inter-domain generalisation across PACS is most significant for photos, where
artistic domains, particularly art paintings and cartoons, generalise better to photos
than vice versa. Generalisation between these artistic depictions is noticeably more
symmetrical than between artistic and photographic images, or between depictions
in Disney character artwork. We discuss this further in the following section, where
generalisation between Pascal VOC and subsets of BAM artistic styles is investigated.
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Figure 4-9: Confusion Matrices of (a) Accuracy and (a) Efficiency across PACS do-
mains,using an AlexNet architecture with all weights finetuned.
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Figure 4-10: Confusion Matrices of (a) Accuracy and (a) Efficiency across PACS
domains, with a AlexNet architecture with only classifier weights finetuned (Layers
fc 6, fc 7, fc 8).
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4.4.5 Cross-Depiction Domain Shift

In this section, we review the domain shift across domains within each dataset, and
how it varies between the initial pre-trained ImageNet models to those trained on all
styles within a dataset. Additionally, we investigate how the domain shift changes
when models have been trained on a single style and how this relates to cross-depiction
generalisation. We present this information as directed graphs, where nodes are de-
pictive domains and a directed edge represents the domain shift between these styles
when generalising from the source to the target.

Figures 4-11, 4-12 and 4-13 illustrate these domain shift metrics on the three datasets we
experimented on. In all these Figures, subfigure (a) presents the domain shift between
depictive styles given a pre-trained ImageNet model in red versus that of a model
finetuned on all the given dataset’s styles in black. Edge values list the domain shift
are discussed early, and the direction of edges indicate the observations and theory
distributions in the KL-divergence calculation [143, 144, 15] – the theory being the
source style (node) from which the edge originates, and the observations being the
target style (node). In these subfigures, the graph is directed as KL divergence is
an asymmetric measure. Subfigures (b) present a slightly different scenario. Edge
values still quantify domain shift from a source to a target domain, however, domain
shift values are derived from models finetuned only on each edges’ source style (node).
Therefore, the direction of graphs indicates the domain shift of models trained on a
particular depiction rather than the best-case scenario of training with all depictions.
Additionally, on these graphs, we include the domain shift from training to the in-
domain validation data as nodes’ self-loops.

Empirical results from the previous sections show that the best method for improving
performance across many domains is to train with all those domains. While this is not
remarkable itself, the interesting facet was the improvement in performance on individ-
ual depictions compared to training only on that depiction. In terms of domain shift,
training on all depictions reduced the mean overall domain shift within each dataset.
Although it does not unilaterally decrease domain shift between every domain pairing,
it achieves the decrease in mean domain shift is due to reducing the KL divergence to
the most distant domains – in particular, silhouettes in Disney and BAM-VOC [18],
and sketches in PACS [15]. In fact, the variance in domain shift within each dataset
reduces in addition to the mean value.

Subfigure (b) in Figures 4-11, 4-12 and 4-13 visualise the domain shift of generalising
models trained on a single depiction. On these subfigures, the mean domain shift
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for each style (µi at each node) inversely correlates to the depictions’ generalising
performance – depictions with lower domain shift to others have better performance.
The exceptions to this are silhouettes in Disney and BAM-VOC, and sketches in PACS.
In these cases, although domain-shift is low this style does not generalise as well as styles
in each dataset in terms of pure classification performance. The features are generalising
well, but the representations are not discriminative enough to be useful judging by the
classification accuracy. There seems to be a critical point where too much information
has been abstracted, and while the features are generically useful across depictions they
are not discriminative with respect to specific visual object classes.

We can consider that features extracted from an image fall in a paradigm of being gen-
eralising and discriminative. Certain styles (e.g. photographs) produce very discrimi-
native features but they do not generalise well to others (e.g. sketches and silhouettes)
produce generalising features but not very discriminative so classification accuracy is
poor; finally, some art styles result in features that have both generalising and discrim-
inative features. Indeed, one benefit of artwork seems to be locating this sweet spot of
visual abstraction where it is both discriminative and generalising so anyone can easily
identify what is being depicted even when the depiction is unfamiliar – an enviable
property for visual recognition systems.

Domain-shift in Disney artwork, Figure 4-11, follows the general observations where
colour artwork represents the rich examples that produce discriminative but not gen-
eralising representations. Line and greyscale artwork are the styles which, of these
4 styles, produce representations that are both generalising and discriminative. Sil-
houettes are past the critical and generalisation increases, evident from the efficiency
ratios and low average domain shift, but the features are not discriminative features so
classification accuracy is poor.

The others datasets, PACS (Figure 4-12) and BAM-VOC (Figure 4-13), diverge from
the general observations in a few specific instances. The PACS dataset [15] contains a
slight anomaly where art paintings produce models that empirically classify in and out
of domain, but has a high mean domain shift relative to other styles in that dataset
– particularly compared to cartoons, which have similar empirical performance lower
average domain shift. For the BAM-VOC [18] styles, there is some disparity due to
the watercolour and comic styles only containing 6 of the 20 classes the others contain.
Therefore, these styles may show lower domain shifts between one another and other
domains – the domains with all 20 classes consistently exhibit notably higher domain
shifts than the others. Late-stage representations in classification networks aim to
distil class-specific representations, so class imbalance such as this will affect discrete
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probability distributions derived from DECAF7 [142] features and hence the domain
shift. By the standards of many visual object recognition benchmarks, these datasets
are fairly small, and while the domain shift metric is not perfect it does sufficiently for
quantifying variation between depictions in this instance.

4.5 Conclusions

Despite the good in-domain performance, all methods exhibit a noticeable drop when
presented with examples of a novel depiction, or out-of-distribution domain. Networks
may be over-fitting to the image distribution of in-domain examples. What we find
more interesting is the asymmetry of generalisation from each model. The difference in
performance and behaviour of fine-tuning all weights versus only the classifier weights
is not vastly significant.

This chapter has not been about solving or improving upon recognition regardless of
depiction. Rather, we have investigated and documented the extent to which different
artistic depictions generalise and transfer to new depictions. Two main findings of this
chapter are that depictions often generalise between one and another asymmetrically
and that while neural networks perform very on in-domain tests they typically do not
generalise well to new depictions. The training domain defines a depictive problem
space that the neural network performs very well within. However, when the target
depiction does not fall within that defined depictive problem space the performance
deteriorates. Therefore, without a fundamental change to the mechanisms of the con-
volutional neural network then one solution is to ensure the training data sufficiently
estimates the multi-depiction problem space we wish to operate in.

It is difficult to know exactly how the internals of a neural network are combining, re-
using and finding features to produce the final deep representation. Our results allow
us to infer some biases and quirks that develop in how neural networks are utilising
different artistic styles. These experiments have highlighted an asymmetry in general-
isation between artistic depictions. Two particular cases of interest are greyscaled and
line artwork images generalising well to colour images, but not vice versa. Greyscale
are simply a pre-processing of the colour images which prevents bias towards charac-
ters’ iconic colours – training with only greyscale images on other datasets does not
provide the same benefit but does provide a small boost to generalisation on PACS
[86, 111, 94]. Line art is a more complex variation where richer textures are substi-
tuted for lines and blank space to convey salience and artistic intent – essentially an
edge map of its source colour image. Interestingly, here we consider Colour-bias to
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particular character as problematic but in practical situations of Disney detection in-
the-wild it can be beneficial. The majority of depictions in-the-wild are colour images
so colour-bias towards characters’ iconic colour can be exploited – this can be seen in
the two chapters of this dissertation.

The knowledge that different artistic styles can improve generalisation motivates the
use of stylisation as data augmentation for recognition regardless of depiction. Equally,
this helps ensure the problem space defined by training data sufficiently approximates
the true problem that encompasses all depictions. As it will never be truly possible to
fully approximate every conceivable depiction through training data we believe styles
that comprise artistic salience abstraction, e.g. greyscale, line art and silhouettes,
are of particular interest. In addition to alleviating texture bias in neural networks
[104], high-quality synthesis of artistic abstractions represents a promising path for
recognition regardless of depiction.
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(a) Domain shift between depictive styles given a pretrained ImageNet model (Red) versus a
model finetuned on all Disney styles (black).

(b) Domain shift between depictive styles given models trained on the single source style to the
target style.

Figure 4-11: Domain shift directed graphs of Kullback–Leibler divergence for Disney
depictive styles. Nodes represent (C) colour, (L) line, (S) silhouette, and (G) greyscale
depictions.

100



(a) Domain shift between depictive styles given a pretrained ImageNet model (Red) versus a
model finetuned on all PACS styles (black)..

(b) Domain shift between depictive styles given models trained on the single source style.

Figure 4-12: Domain shift directed graphs of Kullback–Leibler divergence for Disney
depictive styles. Nodes represent (P) photographs, (A) art painting, (C) cartoon, and
(S) sketch depictions
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(a) Domain shift between depictive styles given pretrained ImageNet model (Red) versus model
finetuned on all VOC-BAM styles (black).

(b) Domain shift between depictive styles given models trained on the single source style.

Figure 4-13: Domain shift directed graphs of Kullback–Leibler divergence for Disney
depictive styles. Nodes represent (P) photograph, (W) watercolour, (S) silhouette, (Cl)
clipart, and (Co) comic depictions.
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Chapter 5

Domain Generalisation with
Fixed Random Classifiers

5.1 Introduction

Humans can recognise objects across an incredibly wide variety of different depiction
styles; a dog is a dog whether photographed by a professional, painted by an amateur,
or drawn by a child. Humans’ visual understanding of objects and depictions, and their
intertwined relationship is fascinating in itself. For us, object “identity” remains con-
stant over a far wider gamut of visual styles than is contained within popular datasets
used in Computer Vision [3, 4]. Furthermore, humans can generalise to previously un-
seen styles (e.g. people understand figurative art unfamiliar to their culture, see castles
in clouds, and so on). Even the latest and greatest automated recognition algorithms
cannot compete with humans in this way; such methods instead exhibit a character-
istic drop in performance when presented with more diverse or novel visual depictions
[2, 4]. This was termed the cross-depiction problem. Equally, the incarnation of the
cross depiction problem appearing in computer vision research now tends to be artistic
domain adaptation [2] and generalisation [4, 86, 85].

In this chapter, we present multiple methods for domain generalisation on PACS. First,
we show that using a fixed random classifier provides an easy boost to performance
comparable to state-of-the-art methods. We fix the last layer of AlexNet and ResNet
to random values and these are not updated during training. This provides a per-
formance comparable to state-of-the-art DA and DG algorithms when tested over the
PACS benchmark. With support from background literature, our results lead us to con-
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clude that texture alone is insufficient to support generalisation; rather, higher-order
representations such as structure and shape are necessary.

Our contention is that the inherent texture bias of neural networks produces deep
representations that do not generalise well to new depictions. Our simple representation
learning approach shifts the classification objective to the final deep representation
using fixed, random weights and we train with standard stochastic gradient descent.
Performance on the PACS somewhat plateaued with regularisation and meta-learning.
We equal the performance of state of the art meta-learning approaches on PACS. As
our method hinges on the final deep representation, we argue that the limiting factor
in artistic domain generalisation is the deep representation rather than the learning
metric.

As a contribution, we demonstrate that artistic domain generalisation methods are
limited by their deep representations. Ultimately, any good meta-learning algorithms
are limited by the deep representation for artistic domain generalisation. We follow a
representation learning approach by using random weights, which remain untrained, in
the final fully-connected layer of AlexNet, fc 8, and ResNet. Classification effectively
occurs in the final deep feature as random weights maintain feature vectors angular sep-
aration from the feature space to the label space. Our approach achieves performance
equal to state-of-the-art methods on the PACS benchmark. Applying off-the-shelf CNN
architecture to artistic domain generalisation makes the tacit assumption that texture
is domain invariant, due to the inherent texture bias of neural networks [104]. Our
contention is that texture is not domain invariant, and texture bias in deep networks
is a primary cause of this limitation.

5.2 Related Work

5.2.1 The Cross-Depiction Problem

Cross-depiction object classification and recognition are under-researched compared to
the popular photographic benchmarks. And yet, we find cross-depiction problems are
interesting as they clearly demonstrate the limitations of state-of-the-art recognition
systems. The fact of this brings into question assumptions, tacit or otherwise, that
are common in many algorithms. As a matter of practice, a machine able to recognise
objects in novel depictions with the versatility of humans would undoubtedly enhance
applications beyond pure classification or recognition, such as image-based search [5, 6],
sketch-based image retrieval [7, 8], image-to-image translation [9, 138], and possibly
support research in areas such as human cognition [10].
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The modern approach in which cross-depiction recognition is looked upon as multi-
source domain adaptation and generalisation has taken place quite firmly in the “neural
network” era of computer vision. Prior to this, there are many interesting problems
relating to visual recognition in artistic media based on classical computer vision meth-
ods. Constellation models and DPM [26, 27] have been deployed for learning figurative
art on Greek vases [28] and, quite significantly, fully-connected constellation models
offer a system that is relatively stable across depictions [29]. Elsewhere, hand-crafted
visual features have been used for generating sketch matching [83, 146] and sketch-based
retrieval [147, 148].

The focus of this chapter is generalisation across depictive domains, with emphasis on
proofing methods using the PACS benchmark. In general, this project addresses the
task of recognising visual objects regardless of their depictions; whether photographed,
painted, sketched, etc. In modern research, this type of problem typically falls under
domain adaptation (DA) or domain generalisation (DG). Earlier DA and DG tackled
a problem in which domains comprise separate photographic datasets with different
biased e.g. Office-31 [88]. PACS proposed the interesting benchmark of artistic do-
main generalisation where domains encompass distinct artistic styles – photographs, art
paintings, cartoons and sketches [15]. Even more recently the annual VisDa challenge
[16] that poses a domain adaptation task and dataset e.g. the DomainNet dataset for
VisDa2019 of multi-source domain adaptation and semi-supervised domain adaptation
[16], that resembles PACS [15] but on a larger scale.

5.2.2 Domain Generalisation on the PACS Dataset

The researchers who initially formulated the PACS benchmark were motivated by the
lack of availability artistic images due to the inherent constraints. Given this, it is im-
portant to maximise generalisation to unfamiliar depictions and maximise the knowl-
edge extracted from the data available. In addition to their benchmark, they proposed
a parameterised neural network where weight sharing is learned across source domains
to produce a generalising models [15]. It is also important to note that simply finetun-
ing a neural network on the aggregation of source domains provides a strong baseline,
and many algorithms of varying complexity only produce incremental gains versus this.

Approaches proposed for the PACS benchmark can broadly be categorised into a few
categories [94]. There is generic model regularisation which may be applied – much
like the original AlexNet [41] made use of random dropout, many recent methods
propose active dropouts. Alternatively, some methods aim specifically to address the
fact that depictions are visually different domains and construct objectives to learn
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domain-agnostic feature representations from source domains [85, 86, 96]. Finally, the
data itself may be augmented to artificially inflate the visual diversity of the training
data such that it may better describe unseen test domains – similar methods have seen
success in artistic domain adaption for object detection. The following paragraphs
discuss our main generalisation methods from the time of this work.

Meta-Learning and “learning to learn” have been a part of machine learning for a
long time [149, 150, 99], and remain relevant in deep learning. Learning to learn
is strongly related to DA and DG. The literature of relevance here tends to treat
domains as discrete; meta-learning approaches use multiple domain-specific classifiers
[86] or optimisation steps [85]. These effectively learn domain generalising models by
completing domain adaptation internally between the set of training domains.

After their initial work on PACS, Li et al. [15] also proposed two later algorithms,
MLDG [85] and Episodic DG [96]. Like multiple algorithms proposed for PACS, these
two meta-learning models essentially combined and learned regularisation schemes
across the source domains. In MLDG, Li et al. [15] regularise model weight up-
dates by meta-learning on batches of each source domain such that the optimisation
direction agrees for both routes – rather than minimising loss on whichever domain is
easiest. Episodic domain generalisation [96] now uses a collection of domain-specific
and domain-agnostic extractors and classifiers, then alternates their optimisation steps
in an episodic fashion. Their more recent episodic method also incorporates the eval-
uation with a random classifier as a regularisation term, which similarly demonstrates
the value of random classifiers as part of a larger framework. Balaji et al. [86] also pro-
pose a meta-learning approach, where a a weight L 1 regularisation function is directly
meta-learned. Additionally, Balaji et al. [86] focuses even more on the classifier than
the feature extractor. Chapter 2 provides a more detailed review of relevant literature
in Section 2.5. Additionally, we give a thorough overview of the state-of-the-art com-
parator at the time, MLDG [85] and MetaReg [86], in Section 2.5.3 of the Background
chapter.

5.3 Method

We show that contemporary DG classifiers that employ meta-learning perform no bet-
ter than an AlexNet furnished with fixed random weights for its final fully-connected
layer. The random weights are introduced before training and left untrained. Ran-
dom projection is a universal sampling strategy that separates data according to the
angles between points [151, 152, 153]. The weights of a network represent a projection
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which, when trained, adapts to preserve certain distances over others and prioritises
minimising intra-class angles over maximising inter-class ones [151]. Thus in domain
generalisation, a layer may learn latent domain-specific embeddings rather than a single,
generalising projection. Keeping fixed random weights reduces internal domain-specific
learning.

Our network has been inspired by our observations on the work of Collomosse et al.
[7, 8]. These authors were interested in sketch-based visual search; they used con-
trastive loss under a triplet network to disentangle content from style. In their context,
contrastive loss attempts to project examples of a single class onto a single point in
space regardless of style i.e. a domain-invariant representation of object class/content
but not style. Triplet [154] and siamese losses [155] are ultimately slightly flawed, as
the loss is zeroed below the margin. Thus, Collomosse et al. [7, 8] applying con-
trastive loss to artistic depictions took considerable effort, and other previous research
suggests it is better to allow variation due to depiction [29]. With this in mind, we
choose the dominant vector direction as a class indicator rather than the location in
space to allow variation due to depiction. Provided the dominant direction is correct,
the relative magnitude of a vectors’ components may more freely vary. We achieve
this by fixing random weights in the fully connected layer – as random projection is a
universal sampling strategy that separates data according to the angles between points
[151, 152, 153].

Convolutional neural networks are often conceptually partitioned into feature extrac-
tor and classifier subnets, as illustrated in Figure 5-1. DECAF considers final features
that run up to FC7 of AlexNet [142], the representation before the final fully-connected
layer that generates the probability distribution over the object classes. In this context,
the feature extraction comprises all non-linear layers of the network – both the con-
volutional layers and the ReLU activated fully-connected layers. We follow this same
split between feature extractor and classifier in this way. We fix the classifier with
random weights at the start of training, and only train the feature extractor weights
to demonstrate that representation produced by the feature extractor is the limitation
in artistic domain generalisation.

A fully connected layer of a neural network is defined by a N + M matrix W of column
vectors wi , bias b, and the equation y = W T x + b; N is the number of classes, and
M is the dimension of the “representation space” containing x. In a classifier, such as
we use, the elements yi are subject to the SoftMax function zi = exp(yi )/

!
j exp(yj )

that exponentially emphasises any dominant direction. The loss function used is cross-
entropy. Once trained, the resulting vector z = [z1, ..., zN ] can then be used to classify
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Figure 5-1: Diagram that illustrates how a CNN architecture can be divided into feature
extraction and classification subnets. The convolutional layers perform the feature
extraction to condense the salient visual content from image pixels to a feature vector.
The classifier is typically a fully-connected layer generates a probability distribution
over the object classes for the input feature vector.

the point x by selecting the dominant direction, the class index being given by: k& =
arg maxk zk .

We fix the final layer to random weights so that the wi are fixed basis vectors. Recalling
that we define a class to be a direction, this is sufficient for our purpose. Our training
is of network weights up to the last layer, which forces input images in a given class to
map to some point x such that its class direction wi is dominant. Different depiction
instances are free to spread along that direction by any amount, provided that it
remains the dominant direction. This allows for a wide variation in style – as spread
along a class basis vector – classes are separated by the angle between basis vectors.

Retroactively, one may liken the fixed random classifier weights to modern contrastive
losses SimCLR [156] and supervised contrastive loss [157]. With a fixed classifier
weights cross-entropy loss is applied on the feature representation, similar to the
temperature-scaled cross-entropy of such methods but without the contrastive imple-
mentation.

When we initially proposed the random classifier methodology, PACS algorithms were
typically assessed on AlexNet. Nowadays, algorithms generally compare themselves
based on ResNet architectures. With ResNet, we find it beneficial to include an ad-

108



ditional trainable fully connected layer prior to the randomised classifier. The role of
this is two-fold in that it adds some additional non-linearity similar to the successive
fully connected layers in other networks [41, 44]. Secondly, the final convolutional rep-
resentation of ResNet, by design, reuses the domain-specific low-level feature through
residual connections so the additional layer after the residual connection provides a
projection to a more domain-agnostic space. We demonstrate that the combination of
the learned FC layer and random FC layer is preferable to two learned layers, a single
random classifier layer, or the standard learned classification layer.

5.3.1 Orthogonal Random Weights

In general, randomly chosen weights for W will not produce wi that are orthogonal,
and neither will they be the same length. We can employ singular value decomposition
W = UΣV T . Keeping the first N vectors from the M + M unitary matrix V as
the random projection. In practice, high-dimensions give basis vectors wi that are
near-orthogonal and of near-equal length.

5.4 Results and Discussion

5.4.1 AlexNet Models

We compare our method to MLDG [85] and MetaReg [86] using the PACS benchmark
[4]. To provide comparison with other domain generalisation approaches we include
results from Domain Separation Network (DSN) [89], Domain Multi-Task Auto En-
coders (D-MTAE) [158], and the PACS authors’ baseline DG method (DBA-DG) [4],
all of which have been used on PACS (see [4]. We conform to the standard approach
for using PACS, described in Chapter 3, of using three source domains for training and
one held-out domain for testing with our “fixed random weight” classifier.

To make comparisons as direct and fair as possible, we follow recent work on PACS
(including DBA-DG [4], MLDG [85] and MetaReg [86]) in using AlexNet [41] as the base
architecture. In the literature, the baseline setup for the PACS benchmark consists of
training all layers of AlexNet on the aggregation of training domains [4, 85] (referred to
as simply “AlexNet” here). We recreate the training hyper-parameters of the literature
[85]: batch size 64, learning rate 5e%4 with exponential decay 0.96 every 15k steps. As
in AlexNet’s [41] original training we include momentum 0.9 and weight decay 5e%5.
We train our baseline models with ImageNet pretrained weights for initialisation and
subsequent models using our baseline weights for initialisation. PACS training domains
are split 9:1 into training and validation sets, like Li et al. [4, 85] we select the best
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performing model on the validation set after 45k iterations and deploy this onto the
test domain.

We report the performance of our model with random weights for the final fully con-
nected layer, fc8, of AlexNet. These are set as random before training and left fixed
while the remaining weights are trained. Our models are implemented in PyTorch,
weights sampled from a random uniform distribution U(a, b) where a, b are lower and
upper bounds. We use the default PyTorch initialisation where a = %b, b = 1/

,
Nn

and Nn is the number of neurons in the input layer (Nn = 4096 in AlexNet).

Table 5.1: AlexNet domain generalisation accuracy (in %) on the PACS dataset.

Art Painting Cartoon Photo Sketch Average
AlexNet 61.18 65.70 88.14 55.95 67.74

D-MTAE [158] 60.27 58.65 91.12 47.68 64.48
DSN [89] 61.13 66.54 83.25 58.58 67.37

DBA-DG [4] 62.86 66.97 89.50 57.51 69.21
MLDG [85] 66.23 66.88 88.00 58.96 70.01

MetaReg [86] 69.82 70.35 91.07 59.26 72.62
Ours 60.25 68.38 88.27 63.01 70.00

Ours Orthogonal (5.3.1) 60.81 67.46 87.96 61.96 69.55

Table 5.1 reports our results. All three methods (Ours, MLDG [85] and MetaReg [86])
produce a similar 2-3% improvement over their respective “AlexNet” baseline. Our
classifier compares well with each of the comparator algorithms, despite ours being
the least complex algorithm. MetaReg [86] is by far the most complex algorithm, and
although it achieves maximum performance on all styles (other than “sketches, where
we register the best performance) it still exhibits a significant fall in performance for all
“arty” styles compared to photographs. Such a fall is witnessed not just for MetaReg
[86] but for all algorithms in our table, and our results are consistent with those reported
elsewhere – the “cross depiction” problem can be regarded as the challenge to maintain
classification performance across depictions.

Forcing orthogonal class basis vectors makes only a small difference to our results –
it decreases average accuracy by 0.5%. We find performance on PACS, and artistic
domain generalisation overall, varies greatly from one training run to the next – and
discuss this further in Chapter 7. The drop in performance of orthogonal random
weights may simply be due to high variance in performance. There is also slight differ-
ence in magnitude of the weights between orthogonal weight and the original initialised
weights. Class basis vectors in the original random weights |zi | - 1 as they are sam-
pled from U(%1/

,
Nn , 1/

,
Nn) i.e. if every sampled value is 1/

,
Nn then zi would be
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a unit vector, but any other sampling will have |zi | < 1. Meanwhile, the orthogonal
class basis vectors are all unit vectors, so|zi | = 1. A slight difference in magnitude of
these weights may affect performance, or require adjusted hyper-parameters.

Experimental results show that our simple classifier with fixed random weights performs
comparably well to far more sophisticated algorithms. The results obtained here echo
the results obtained elsewhere: even high performance computer vision algorithms do
not generalise novel depictions well. More exactly, networks trained on one depictive
domain do not generalise well to other depictive domains. Our experiments show
this is true even in the case of meta-learning. In general, a good learning measure is
valuable; however, it does not necessarily provide a meaningful improvement in the
cross-depiction problem – as demonstrated here.
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Figure 5-2: Visual class centres for artwork (red) and photographs (blue) – pictures in
the same class but different depictions tend to be further apart than pictures in the
same depiction but different class (taken from [2]).

Recognition premised primarily on texture will fail to represent class models in a man-
ner that generalises across depictions. Using an example from Hall et al [2], Figure
5-2 shows the the centre of visual classes projected onto the largest two eigenvectors
of “image space” (for M + N RGB images this is an M + N + 3 dimensional space in
which each picture is a point specified by RGB-values at each pixel). In fact, each class
has two centres, one photographic (blue) and the other artistic (red): the photographs
and artworks tend to separate out. Looking at specific classes (horse and Eiffel tower)
illustrates the spread of depictions over classes, while individual images show that ob-
jects in the same class but different depictions are further apart than different objects
in the same depiction. Equally, Figure 5-3 illustrates how the spatial arrangement of
parts impacts significantly on the ability of humans to recognise.

5.4.2 ResNet Models

In this section, we explore the use of random classifiers with ResNet backbones rather
than AlexNet. First and foremost, it is apparent comparing ResNet performance with
AlexNet performance in Tables 5.1 and 5.2 respectively, as well as in literature [86], that
ResNet provides a greater base performance both on PACS and in visual recognition
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Figure 5-3: Three foods, photographed make a face when properly arranged in space.

tasks elsewhere. Furthermore, classification accuracy on photographs receives only an
incremental gain ( 4%) when upgrading to ResNet, while artistic depictions gain much
larger improvements (10 %20%).

Training hyper-parameters for ResNet all variants are all the same. Specifically, models
are trained for 30 epochs with momentum stochastic gradients descent with a learning
rate 0.01, momentum 0.9 and weight decay 1e % 5 and the learning rate is stepped
to 0.001 after 24 epochs. Data augmentation during training comprises random crops
in the range [0.8, 1.0] of the original image size with a random aspect ratio between
[0.75, 1.33] of the original aspect ratio, random colour jitter is applied to brightness,
contrast, saturation and hue up to a factor 0.4, image are randomly converted to
grayscale with probability 0.1, and finally, images are normalised to the ImageNet
mean and standard deviation. In Table 5.2 we present three baselines from the liter-
ature implemented as stated to illustrate that specific training hyper-parameters can
have a significant impact on PACS domain generalisation. We do not search exhaus-
tively for optimal training routines and instead focus on proposing methods to improve
generalisation whilst maintaining “standard” hyper-parameters.

In Table 5.2 we present ResNet baseline performance in which all layers of ImageNet
pre-trained model is finetuned on PACS source domains as defined in literature. The
difference between ResNet ([111]) and ResNet is the inclusion colour jitter, described
above, in the latter’s data augmentation. The often reported baseline for ResNet
[111] can actually be improved considerably by simply using slightly different training
hyperparameters shown here – most significantly by including random colour jittering,
which appears to be included in their JiGen method but not the baseline training [111].

Ours again corresponds to models in which the classification fully connected layer uses
fixed random values. Proj512 and Proj128 refer to architectures with projection
layers that output to 512 and 128 neurons respectively. We also try architectures with
projection layers and our fixed random classifier values, e.g. Ours + Proj128 , where
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the classifier uses the output of the projection layer. Interestingly, with a ResNet back-
bone, the random classifier does not provide the same “free” performance boost as
it does for AlexNet. However, the random classifier does improve performance when
combined with the additional projection layers, and a random classifier in these in-
stances is better than a trainable classifier. The addition of the extra fully-connected
layer pushes the ResNet architecture to resemble that of AlexNet, in which there are
multiple fully connected layers rather than a fully-convolutional system. The addi-
tional fully-connected layer adds additional non-linearity to the representation [41] but
also projects the convolutional representation to an intermediate space less influenced
by low-level features passed forward by residual connections. As will be illustrated in
the following chapter, the earlier network features tend to be depiction-specific there-
fore, so the residual connections are detrimental to producing a domain-agnostic final
representation and the additional layer after the final residual connection allows the
projection to a more agnostic space.

Art Painting Cartoon Photo Sketch Average
ResNet ([111]) 78.96 73.93 96.28 70.59 79.94

ResNet (No Jitter) 77.57 77.06 94.25 70.74 79.91
ResNet 79.38 76.66 93.66 75.50 81.30
Ours 78.48 77.18 93.88 73.67 80.80

Proj512 78.75 75.35 93.51 76.82 81.11
Proj128 78.51 76.31 94.31 76.58 81.43

Ours + Proj512 79.21 77.06 94.65 75.46 81.59
Ours + Proj128 79.74 77.01 94.54 75.86 81.78

Table 5.2: ResNet random classifier domain generalisation accuracy (in %) on the
PACS dataset. The upper section presents experiments with the baseline ResNet-18
trained by ourselves with and without jitter, and that quoted in JiGEN [111]. The
lower section presents results of ResNet with our fixed randomised classifier weights
and additional projection layers.

An interesting point to consider under this instance of generalisation to an unseen
domain is model selection. The original proposal of PACS [15] splits the source do-
mains into training and cross-validation splits. The selected model to test on the target
domain is selected as the model with the highest cross-validation performance. Alter-
natively, the final converged model after completing the full training routine may be
selected. We present the generalisation performance of these model selections in Table
5.3. Models are cross-validated and test-validated after each of the 30 training epochs.
In future more stable model selection could be tested, for example, modern methods
like Randomly Assign, Train, and Track (RATT) [159] – a system which is applicable
to domain adaptation as ground-truth labels are not used.
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With such high variance in model performance, perhaps it is better to compare the
performance of cross-validation selection, final ‘converged’ models, and best test accu-
racy to provide measures of both realistic and upper bounds of performance. Robust
comparison is surely important in benchmarks where such weight is given to empirical
results.

Cross-validation Final Model
Ours 80.80 82.08

Proj512 81.11 81.94
Proj128 81.43 82.47

Ours + Proj512 81.59 82.51
Ours + Proj128 81.78 82.80

Table 5.3: PACS domain generalisation accuracy for different model selection criteria.

Clipart Infograph Painting Quickdraw Real Sketch Average
ResNet 58.30 16.54 45.43 11.62 54.89 46.45 38.87
Ours 59.11 16.96 44.57 11.85 53.90 46.26 38.78

Table 5.4: ResNet-18 random classifier domain generalisation accuracy (in %) on the
DomainNet dataset.

Table 5.4 shows results on the DomainNet dataset with an equivalent test scenario to
the PACS benchmark. These experiments take far longer to train, due to DomainNet’s
much larger size and requiring approximately 100 epochs to converge versus 30 epochs
on PACS. There is too narrow of a margin between the baseline ResNet versus our
fixed random classifier without more rigorous experimentation. In this scenario, the
standard practice of training all layers is sensible. As the additional regularisation
from the fixed random layer does not offer any improvement on DomainNet, this may
suggest over-fitting occurs on PACS which the random layer reduces.

5.5 Conclusions

Experimental results show that our simple classifier with fixed random weights performs
comparably well to far more sophisticated algorithms. It is of course true that those
more sophisticated algorithms were not designed for the cross-depiction per se (but
neither was ours) and it is also true that our tests were limited to a single dataset
comprising discrete and very distinct styles. Even so, the results obtained here echo
the results obtained elsewhere: computer vision algorithms tend to perform well on
photographic imagery but not on artistic imagery. More exactly, networks trained on
one depiction “domain” do not generalise well to other “domains”. Our experiments
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show this is true even in the case of meta-learning. In general, a good learning measure
is valuable; however, it does not necessarily provide a meaningful improvement in the
cross-depiction problem.

With these domain generalisation experiments it can be difficult to concisely determine
what measures improve performance, due to the high variance in performance run to
run. PACS experiments with AlexNet indicate that keeping fixed random weights in
the classifier can provide a minor boost to performance. However, this is not the
case for ResNet experiments where performance can be harmed. These disagreements
between experiments can easily be due to the observed variances in run-to-run perfor-
mance introduced by large domains shifts and the insufficient model selection criteria
(Table 5.3). Additionally, with DomainNet being a much larger dataset with many
more object classes (345 class versus 7 for PACS) then the lost computation of the
linear classifier may be more impactful. We do show that, with ResNet-18, adding an
additional non-linear fully connected layer prior to the fixed random-weight classifier
can improve performance. But once again this is only a slight gain. Ultimately how-
ever, the main observation is that all these methods of artistic domain generalisation
do not significantly improve upon the baseline method of simply finetuning the CNN
in the usual way.

We conclude that the failure of networks, and indeed conventional algorithms, to gen-
eralise across depictions needs an explanation. We contend that the problem of cross-
depiction is not one of measure alone: no matter how sophisticated a measure is used,
the problem of recognition is primarily one of representation. The main recognition
algorithm we know of that does not exhibit a fall in performance across depictions is
that due to Wu et al. [29], which used a fully-connected weighted graph model. Fur-
thermore, recent work has shown that networks over-rely on texture for recognition
and highlighted the importance of shape [104]. That is, structure and shape are funda-
mental to object class recognition but can be discarded by CNNs. The cross-depiction
problem remains challenging exactly because it pushes at the basic assumptions com-
monly made.

Utilising artistic domain generalisation methods should be a good first step for any
cross-depiction recognition. A natural extension would be to include domain adaptation
methods to make use of any target data, or semi-supervised learning to make use of
any additional unlabelled data (whether in the target domain or not). Looking at
research since these experiments were originally undertaken, JiGen [111] has shown the
benefit of using their self-supervised pretext for the domain adaptation. And further
recent research has identified similarly extreme variations in baseline performance with
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different common augmentation sets and reproducing others’ benchmarking results
[111, 109, 94].
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Chapter 6

Exploring Style Clustering in
Convolutional Representations

6.1 Introduction

The previous chapters began our investigation into how well convolutional neural net-
works generalise novel artistic depictions. The best performance is achieved by, unsur-
prisingly, training with all styles the model is evaluated on. However, this would never
be possible. Ourselves and many others have demonstrated that generalisation to novel
depictive styles is a difficult challenge. The existing literature of the time focussed on
amending the classification layers through meta-learning to obtain a “domain agnostic”
classifier. Chapter 4 demonstrated that different levels of artistic abstraction and vary-
ing denotational, i.e. stylistic textures, generalise between one another asymmetrically.
In this chapter, we turn our focus toward classifying depictions rather than objects and
investigate how it is represented in convolutional features. Our contribution is a novel
method for the classification of artistic style using low-level convolutional responses.
We analyse clustering behaviour in deep representations of neural networks trained for
object recognition and observe that low-level features can be used for style recognition
without training for this task. As a secondary contribution, we illustrate how style and
object classification rates vary through the depth of the CNN.

Much of the contents of this chapter have already been published in our paper “Under
Material Skin Lie the Bones of Identity” [32]. In this paper, we explored the recogni-
tion of objects and materials in artistic depictions as well as classifying the depictions
themselves. Our paper [32] was presented to a multi-disciplinary audience rather than
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computer vision researchers, and this chapter provides a more robust study of our
findings with more detail on the technical specifics.

6.2 Related Work

There is a seemingly endless variety of depictions, photographs, oil paints, line drawings,
tapestry, stained glass, doodles, and many more. While there is an abundance of work
on recognising objects, there is very little on recognising depiction style. Authors often
use their own definitions of style mixed with more widely accepted terms. For example,
Karayev et al. [162] use terms “HDR”, “vintage”, and “Noir” all to label images in a
photographic dataset, while “Baroque”, “Cubism”, and “Impressionism” are used for
an artistic database. The authors utilise several different kinds of features to describe
images and then classify the images into their style terms. They obtain reasonable
results, with an error rate ranging from about 61% for “Romantic” photographs to
94% for Ukiyo-e and other artwork. Bar et al. [163] test a collection of low-level image
descriptors and conclude that a particular design of visual words called “Local Binary
Patterns” [164] are to be preferred. Likewise, Falomir et al. [165] use colour descriptors
to categorise artwork into “Baroque”, “Impressionism”, and “post-Impressionism” to
about 65% accuracy. Gultepe et al. [166] learn rather than pre-define features. These
approaches share a general methodology of extracting features from local image regions,
and then building the classifier using a collection of such measures. Our methodology
echoes these low-level approaches classically used to recognise both objects and their
depiction.

Section 2.6 in the literature review provides further in-depth study of the research relat-
ing this chapter. We explore the methods of understanding these high-dimensional fea-
tures representations [142] through visualisation with T-SNE [100], classification with
K-nearest neighbours [167] as a quantitative measure of style-clustering, and call upon
qualitative visualisations to help describe the appearance neural features in compre-
hendible images [101, 102]. Some tangentially related areas include intentional artistic
style classification [81, 25] and style transfer [72, 103, 71, 9]. In the former, Bianco
et al. [25] recognise the importance of both high and low-level features in the multi-
task classification of the Artist, Style, and Genre of classical artwork. Similarly, Neural
style transfer often uses “style” and “content” layers from the mid and high-level layers,
respectively [72, 103, 71, 9].
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Figure 6-1: CNNs learn visual words to detect similar patterns – much like classical
bag-of-words. The convolutional kernel responses encode the image as a point the
representation, and the fully connected layers separate classes.

6.3 Method

We have found a simple, incidental, approach that can be effective for the classification
of depiction. The depiction, which we also refer to as style, refers to the rendering
media and the way it is applied as opposed to artistic genre or school, etc. Recall
our previous observations that (1) object classification does not generalise well over
variations in depiction and (2) that this can be explained (in part) by the wide vari-
ation in low-level statistics, i.e. denotation changes between depictions. We turn this
to our advantage by conjecturing that depictions will respond differently to convolu-
tional kernels. This is justified given convolutional kernel tends to produce a maximum
response at image patches that resemble the kernel, and minimal values where the
pattern is the kernel’s negative. For example, a kernel that looks like a dark line on
a white background will tend to pick up “ridges”, whereas a kernel with dark on one
side and light on the other will detect contrast boundaries (commonly called “edges”).
Figure 6-1 provides a schematic example of such convolutional kernel responses, and
how this fits into the larger convolutional architecture. Photographs tend to contain
many contrast boundaries, especially at the small scales used by kernels, whereas (e.g.)
line drawings will contain a greater number of ridges. We can therefore expect that the
relative abundance of the kernels in an image (as measured by aggregating the signal
from each kernel over the whole image) is informative with respect to depiction.

We explore several different datasets that span multiple depictions and extract DECAF-
style feature vectors from convolutional neural networks at multiple depths. Our gen-
eral procedure is illustrated in Figure 6-2, and we discuss the implementation details
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Figure 6-2: A schematic of our approach to depiction classification. We provide further
detail for specific CNN architectures where relevant in this chapter.

for each architecture in the following section. First, we extract feature vectors using a
network with ImageNet [12] pre-trained weights as in DECAF features [142]. Addition-
ally, we extract feature vectors from neural networks trained on the target dataset. In
this second instance, we train AlexNet [41] and ResNet [46] models on the aggregation
of training examples from all depictive domains in each dataset. We then explore the
network behaviour and demonstrate that the network clusters artistic styles, despite
being trained only for object classification. Style can then be classified with a sim-
ple K-nearest neighbour classifier [167] to demonstrate this, and visualisation through
T-SNE [100] illustrates this clustering.

6.3.1 Feature Extraction

AlexNet

AlexNet, proposed by Krizhevsky et al. [41], was one of the early successes for classify-
ing ImageNet and represented a considerable leap forward compared to traditional com-
puter vision methods. They achieved top-1 and top-5 error rates of 39.7% and 18.9%
which was a considerable improvement of state-of-the-art at the time [41]. Krizhevsky
et al. combined many deep learning components that remain prevalent in neural net-
works today. Modern implementations of AlexNet have made a few revisions, namely
omitting local response normalisation (LRN) and modifying the parameters of some
convolutional layers [52].

AlexNet, illustrated in Figure 6-3, has a simple architecture compared to many modern
neural networks [44, 45, 62, 46, 57]. With LRN omitted and the revised layer attributes,
the modern AlexNet architecture follows:
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Feature extraction from AlexNet is relatively straightforward. Features are extracted
similar to DECAF [142]. As described in the schematic Figure 6-5, we take the ReLU-
activated outputs of each convolutional layer and fully connected layer. The fully
connected layer feature vectors are equivalent to DECAF5, DECAF6 and DECAF7
features. Convolutional layer outputs are features volumes, so we average-pool then
flatten these into vectors of the aggregated kernel responses in each output channel (i.e.
each set of convolutional filters). Another slight difference here is that the DECAF5
feature obtains a H + W + D -dimension vector by flattening the output of the final
max-pooling layer, whereas we obtain a D -dimension vector.

Figure 6-3: Diagram of the AlexNet architecture from Krizhevsky et al.’s [41] paper,
illustrating the explicit separation of the network across the two GPUs.

ResNet

Nowadays in literature ResNet [46] tends to be a preferred architecture for bench-
marking visual recognition problems. Although ResNet features many more layers it
contains fewer total parameters than AlexNet. Furthermore, whereas AlexNet [41] is
a single architecture with 57M weights, ResNet is a framework to create networks of
many sizes – i.e. the prominent once being ResNet-18, ResNet-34, and ResNet-50 with
approximately 11, 22, and 26 million weights, respectively. Notably, approximately
50M parameters in AlexNet come from the successive fully connected layers, with 4096
neurons each [41]. ResNet, as with other modern models, favour fully-convolutional
networks that only feature a single fully-connected layer for classification as the final
layer [47, 62, 57, 60].

ResNet may be described with a taxonomy of hierarchical components:

¥ “Convolutional layers” comprise a sequential convolution, batch normalisation,
then ReLU activation.
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Figure 6-4: ResNet Architecture diagram modified from diagrams in the original paper
[46]. The ResNet family of networks is split into 5 “ResNet Layers” with Layer 0 as
a single convolutional layer, and the remaining ResNet Layers a collection of “ResNet
Modules” i.e. multiple convolutional layers with residual connections.
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¥ “ResNet modules” or “ResNet blocks” comprise multiple convolutional layers
(labelled as weight layer) with a residual connection that adds original input to
the output of the final convolutional layer prior to its ReLU activation. (See.
Figure 6-4)

¥ “ResNet-layers” comprise multiple sequential ResNet modules, and the number
of modules varies depending on the exact ResNet variant.

We assign the initial 7+ 7 convolutional layer (and its ReLU, BatchNorm and Pooling)
as Layer0, then the subsequent 4 ResNet layers outputs as Layers 1-4 – this is illus-
trated in Figure 6-4. Regardless of exact ResNet variant (ResNet-18, ResNet-50, etc.
) the general structure remains the same. We extract then average pool convolutional
volumes to produce feature vectors from the outputs of ResNet layers (illustrated in
Figure 6-5). These feature vectors are used in the depiction classification via KNN and
visualisation via TSNE.

In this case, average pooling is preferred versus max pooling as a wish to condense the
large H + W + D feature volume into a D -dimensional vector. Average pooling computes
the mean over each channel and represents all values per channel. In contrast, Max
pooling discards all but the highest value so may not adequately quantify the values in
each channel and would be prone to outliers. In hindsight, a better representation of
style would be to concatenate vectors of channelwise means and variances into a single
vector to more accurately represent the distribution over each channel, much like in
style transfer [72].

6.3.2 K-NN Classification and T-SNE Visualisation

We analyse the representations of convolutional kernel responses, or neural activation,
through the depth of neural networks by investigating the classification of artistic style
versus depth with K-nearest neighbour (KNN) [167], and visualisation of the extracted
features through T-SNE [100].

The dimensionality of certain layers’ feature vectors make K-NN and T-SNE a com-
putationally demanding process. This is particularly problematic with the DomainNet
[16] dataset due to its size. To address this, we use random projection [168] as a simple
and computationally efficient way to reduce the dimensionality of the data for faster
processing times. Random projection is applied to reduce dimensionality down to 64
dimensions. For K-NN classifiers, principle component analysis (PCA) [169] is also
applied after random projection to lower dimensionality further whilst ensuring ) 95%
of the variance is explained.
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Figure 6-5: Diagram of the how the ResNet architecture is split into “ResNet Layers”
(labelled Layers 0 to 4), and we extract a features from each layer for KNN classification
[167] and TSNE visualisation [100]. These ResNet Layers are highlighted in Figure 6-4,
and each is a collection of multiple “ResNet modules”, also shown in Figure 6-4.

K-Nearest Neighbour ClassiÞers

For each layer in the chosen architecture, we perform the KNN classification of artistic
style. We also present object classification via KNN for comparison, but this is not the
immediate focus of this chapter. The same train and validation for sets are used for
both training the backbone neural network and for auxiliary K-NN classifiers.

Neither task features negative classes, so classification accuracy is simply the rate
at which the model correctly predicts y and given true label ŷ for i " 1, ..., N for
N examples. We present accuracy metrics for both object classification and style
classification.

Accuracy =
! N

i zi

N
where zi =

%
1 : ŷi = yi

0
(6.1)

Some datasets are very imbalanced in terms of object and/or style representation. In
these cases, dominant categories skew performance metrics, so we also include macro
average (averaging the unweighted mean per label) and weighted average (averaging
the support-weighted mean per label) for precision and recall. Where precision and
recall for each class may be calculated from the true positives TP , false positives FP

and false negatives FN .

precision =
TP

TP + FP
(6.2)
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and
recall =

TP

TP + FN
(6.3)

The macro average and weighted average values for precision and recall are

macro average=
! N

i mi

N
(6.4)

where mi is the metric being averaged (precision or recall) for the i th class and N is
the number of classes, and

weighted average=
! N

i Ai áni
! N

i ni
(6.5)

where ni is the number of examples of the i th class.

T-SNE Visualisation

Following any random projection necessary to reduce feature dimensionality, we employ
T-SNE [100] to generate the 2-dimensional embedding of the feature space. Multiple
variations of a T-SNE plot are presented. We present the same plot with data points
coloured by style category ystyle , and object category yobject for comparison. Addi-
tionally, we provide plots that track an individual object class in the styles it appears.
That is, data points xi are assigned a new label y(os)

i defined by:

y(os)
i =

%
ystyle

i if y object = ŷ
0

(6.6)

where each is assigned a colour and there is a negative class (y(os)
i = 0) assigned for all

examples which are not in the target object category haty .

Similarly to KNN classification, we present T-SNE visualisations of features from each
breakpoint layer in the chosen neural architectures. Only the validation/test set exam-
ples are used in generating and visualising the T-SNE embeddings.

125



6.3.3 Backbone Model Training

As a classification problem, the loss function is the standard cross-entropy loss averaged
over the batch of M examples

L (y.ŷ) = %
1

M

M$

i =1

yi log ŷi (6.7)

with the predicted and true labels, y and ŷ, where y " 1, 2, ..., Nc denotes the object
label. Each dataset has examples from multiple depictions, but no supervision is given
in terms of depiction. Labels pertain only to the visual object class and not its domain
or depiction. Examples are sampled randomly from an aggregation of all dataset’s
domains. An interesting facet of the depiction clustering we observe is that it occurs
despite the CNN itself being only trained for object classification.

For data augmentation and optimiser hyper-parameters we utilise settings commonly
applied on PACS [15] and DomainNet [16] artistic domain generalisation benchmarks.
Specifically, we use stochastic gradient descent with a learning rate of 0.001, momentum
of 0.9, weight decay of 0.0005, and batch size of 128. DomainNet models are trained for
100 epochs, whereas PACS and Disney models are trained for 30 due to their smaller
dataset size. In all cases, the learning rate reduces to 0.0001 after 80% of total training
epochs. Data augmentation during training consists of randomly resized cropping ratios
in the interval [0.8, 1.0], random colour jittering (p = 0.5), random greyscaling (p =
0.1), and random horizontal flipping. At both train and test time, image pixel values
are normalised to ImageNet mean and variance as is standard practice [41]. After
training as described, all weights are frozen and features are extracted as previously
described at network breakpoints for KNN classification [167] and T-SNE visualisation
[100].

6.3.4 Datasets

Chapter 3 provides detailed summaries of DomainNet [16], PACS [15] and our Disney
artwork dataset. In this work, we experiment with both the DomainNet dataset [16]
and our reduced version DomainNet Top-50. Due to the size of DomainNet, TSNE
visualisations can sometimes be too cluttered to easily understand.

The authors of DomainNet include image examples, provided in Figure 3-9of the
Datasets chapter. These examples illustrate similarities and differences to other cross-
depiction datasets we utilise. The real, painting, clipart and quickdraw of DomainNet
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correspond to the photos, art painting, comic and sketch domains of PACS. Domain-
Net also adds sketch and infograph domains. Sketch represents an artistic mid-point
somewhere between quickdraw and clipart similar to the Line art of our Disney dataset.
Infograph represents a similar task to our industrial application, where the object in
question can be depicted in varying ways and additional visual content is added too –
in our case, a character may be depicted on a product and/or with additional accom-
panying information.

Despite the above depicative similarities, DomainNet has some significant differences
compared to other datasets we experiment with. Firstly, the DomainNet dataset is
much larger at approximately 600k images and with a much larger variety of object
classes [16]. Secondly, DomainNet is more unbalanced with respect to both object class
and domain versus much more balanced where most show a near-balanced across these.
The size of DomainNet dataset makes it less applicable for extensive testing with limited
computation resources and for visualising results qualitatively, as we do in this chapter.
For example, when visualising T-SNE [100] data points coloured by 345 object classes
of over 100k examples it is difficult to distinguish any class-coordinated attributes. This
motivated our reduced sub-dataset of the top 50 object classses, DomainNet Top-50.
The top 50 object classes are roughly balanced, but there is still some discrepancy in
domain representation.

6.4 Results and Discussion

In each subsection, we follow a similar format. We explore the clustering in kernel
responses to depictive styles quantitatively via KNN classifier performance, and qual-
itatively via visualisation of the feature space through T-SNE [100]. In both cases,
results for AlexNet and ResNet-18 are presented for both fixed ImageNet weights and
finetuned weights for each dataset. Some supplementary areas of exploration include
KNN classifier confusion matrices and following a specific class, in each of its styles,
through the T-SNE visualisations.

6.4.1 DomainNet

In this section, we investigate both the full DomainNet and reduced DomainNet-Top50.
In either case, the same backbone feature extractors are trained on the full dataset.
The reduced DomainNet-Top50 enables easier inspection of the visualised feature spaces
and has the benefit of speeding up both the T-SNE and KNN classifiers computations
considerably.
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KNN ClassiÞcation Versus Depth

The graphs of KNN classification accuracy versus depth for both DomainNet and Do-
mainNet50 are presented in Figures 6-6 and 6-7. Each Figure includes classifier per-
formance for both ResNet-18 and AlexNet features, with both ImageNet-pretrained
and finetuned architectures. For finetuned models, we also include the classification
layer output (FC 8 in AlexNet and FC in ResNet) prior to and after SoftMax nor-
malisation. We do not include this for pre-trained models, as these models’ output
layer corresponds to ImageNet categories rather than DomainNet, PACS, or Disney
characters.
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(a) Finetuned AlexNet (b) Pretrained AlexNet

(c) Finetuned ResNet-18 (d) Pretrained ResNet-18

Figure 6-6: Performance of K-nearest neighbour classifiers for object and style classes
versus feature depth on the full DomainNet dataset.
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Style classification performs well even at early layers, then improves into the mid-layers,
then drops through the final and classification layers. Comparing this to object classifi-
cation, the low-level layers are quite style-specific, the mid-layers produce features that
are both style and object-specific. The final layers combine style-specific representa-
tions into a, theoretically, “style-agnostic” representation. This behaviour occurs with
both backbone architectures and for both pre-trained (i.e. DECAF-style representa-
tions [142]) and finetuned weights. However, the behaviour is far more exaggerated
on the finetuned weights as they are task-specified for the target dataset. The same
phenomenon can be seen for the DomainNet-50 (Figure 6-7) and in the alternative
artistic datasets, which we discuss in the following sections.
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(a) Finetuned AlexNet (b) Pretrained AlexNet

(c) Finetuned ResNet-18 (d) Pretrained ResNet-18

Figure 6-7: Performance of K-nearest neighbour classifiers for object and style classes
versus feature depth on the reduced DomainNet dataset (Top 50 classes only).
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T-SNE Visualisations of Deep Representations

Figures 6-9 to 6-12 present the TSNE [100] visualisations of the test example features
for the top 50 classes of DomainNet [16] with AlexNet [41] and ResNet-18 [46]. Each
Figure contains plots of features taken from 3 layers: (1) the first convolutional layer
output, (2) the middle convolutional layer where style classification peaks, and (3) the
object classification layer. For pretrained networks features, Figures 6-10 and 6-12,
the penultimate feature representations are instead of the classification layer outputs
i.e. F C 7 and Layer 4 for AlexNet and ResNet-18, respectively. In each figure, TSNE
feature plots are presented twice: the left column has data points coloured by object
label, and the right column coloured by style label. In general, the plots provide a
qualitative visual representation of the KNN classifiers behaviour

Early layer plots, Conv 1 for AlexNet, Layer 0 for ResNet-18: “sketch”, “quickdraw”
and “infograph” show some style-specific clustering while “real”, “clipart” and “paint-
ing” examples are somewhat mixed. This is exaggerated due to the fact there are
50 object classes superimposed onto the same plot, versus only 6 styles classes – but
the clustering is corroborated by the KNN-classifier performance. The mid-layers pre-
sented are Conv 4 for AlexNet, Layer 3 for ResNet-18. These are the layers where KNN
classifier performance peaks for style classification. At these layers, there is more clear
clustering of “sketch”, “quickdraw” and “infograph” data points, versus the overlap be-
tween “real” and “painting”. Consulting the style-confusion matrices for these layers
in 6-8, there is almost no style-confusion for “quickdraw” and the most significant con-
fusion is between real and painted examples which correspond with their overlap in the
TSNE space. Additionally, “clipart” has notable style confusion with multiple classes –
visually, data points can be seen scattered across many different style neighbourhoods.
In contrast, “quickdraw’ has almost no style confusion with a clearly defined cluster in
TSNE space.

The final layers visualised are the classification layer outputs prior to SoftMax classi-
fication: AlexNet FC 8 and ResNet-18 FC. In these late layers, we can infer there is
some style-clustering within object-specific clusters, as style can still be classified by
KNN. The visualisations do not provide any solid evidence for this from qualitative
inspection due to class imbalances in both object and style. By contrast, both AlexNet
variants (Figures 6-9 and 6-10) and pre-trained ResNet-18 (Figure 6-12) still notice-
able global style clustering at F C 8 and F C layers, as is also demonstrated by KNN
performance. The high style classification accuracy in these network layers is visually
reflected in their representations space visualisations.
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(a) AlexNet (b) ResNet-18

Figure 6-8: Domain label confusion matrices for KNN classifiers with features extracted
at a AlexNet [41]Conv 5 and b) ResNet-18 Layer 3 [46], for architectures finetuned on
DomainNet Top-50, our reduced subset of DomainNet [16].

The visualisations and classifier performance differences between AlexNet [41] and
ResNet-18 [46] highlight some of the benefits of the newer architecture. ResNet-18
better utilises a smaller representation space through the various improvements made
to deep learning e.g. residual connections [46], batch normalisations [126], and the
fully convolutional architecture [46, 62] . It is possible that there is some degradation
in KNN classification rates and TSNE visualisation quality for AlexNet models due to
the random projection post-processing step to reduce feature dimensionality. AlexNet
tends to use higher dimension features versus the compact representations in ResNet-
18, e.g. the penultimate resolutions are 4096 and 512 for AlexNet F C 7 and ResNet-18
Layer 4, respectively. The reduction to 64 dimensions via random projection may in-
duce greater information loss in the AlexNet features, and the large dataset size for
DomainNet [16] may also affect this further.
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(a) Content (b) Style

(c) Content (d) Style

(e) Content (f) Style

Figure 6-9: TSNE Visualisations of finetuned AlexNet features for DomainNet-50 ex-
amples.

134



(a) Content (b) Style

(c) Content (d) Style

(e) Content (f) Style

Figure 6-10: TSNE Visualisations of pretrained AlexNet features for DomainNet-50
examples.
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(a) Content (b) Style

(c) Content (d) Style

(e) Content (f) Style

Figure 6-11: TSNE Visualisations of finetuned ResNet-18 features for DomainNet-50
examples.
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(a) Content (b) Style

(c) Content (d) Style

(e) Content (f) Style

Figure 6-12: TSNE Visualisations of pretrained ResNet-18 features for DomainNet-50
examples.
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6.4.2 PACS

The PACS dataset [15] is a considerably smaller dataset than DomainNet [16], and
even versus our reduced DomainNet50 too. The smaller dataset provides less empirical
importance or quantitative significance than the much larger DomainNet, but this does
make qualitative assessment easier – particularly for inspection of TSNE [100] visuali-
sations of feature representations. Additionally, while PACS provides a narrower range
of objects and depictions it does provide a more balanced dataset. The PACS dataset
has been more widely adopted for benchmarking domain generalisation algorithms in
literature [15, 85, 86, 96, 109, 110, 115]. Overall, we demonstrate that the same internal
NN behaviours occur in both DomainNet and PACS in a qualitative sense, although
quantitatively there are some variations due to differences in depictive and semantic
diversity of the two datasets.

KNN ClassiÞcation Versus Depth

The performance of KNN classifiers versus depth follows the same general relationship
and progression as for DomainNet models. Style classification accuracy steeply drops
in the deep layers of finetuned models: this is evident in both Figure 6-6 (Domain-
Net) and Figure 6-13 (PACS). PACS does contain fewer style categories, fewer object
categories and fewer examples which do impact the specifics of quantitative results,
but the broad behaviour mimics that seen on DomainNet datasets. For DomainNet
the style classification increased from the low to mid-layers, then dropped through the
final layers as object classification was steadily increasing. In contrast, the style clas-
sification of PACS remains relatively consistent through the low and mid-layers, with
only a slight decrease at the final layers. Interestingly, pretrained model features (i.e.
similar to DECAF features [142]) with KNN classifiers perform worse on PACS than
DomainNet, despite PACS being an “easier” task for trained models.
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(a) Finetuned AlexNet (b) Pretrained AlexNet

(c) Finetuned ResNet-18 (d) Pretrained ResNet-18

Figure 6-13: Performance of K-nearest neighbour classifiers for object and style classes
versus feature depth on the PACS dataset.
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(a) Object (b) Style

Figure 6-14: Object and Domain prediction confusion matrices for the PACS dataset
[15] using features extracted from Layer 3 of Finetuned ResNet-18, where feature rep-
resentations are maximally discriminative of style.

T-SNE Visualisations of Deep Representations

For the PACS dataset, we only present T-SNE visualisations of finetuned ResNet-18
features – found in Figure 6-16. Once again, the organisation of object and style labelled
data points within the feature spaces correlate with the performance of the respective
KNN classifiers. As PACS has only 7 object classes the visualisations of object classes
can be more readily comprehended in the early and mid-layers. The plots in Figure
6-16 coloured by style category, subfigures (b), (d) and (f), correlate with the respective
classifiers. That is, style-clustering is clearly visible from the first layer and in mid-
layers, but less so in the final feature representations. These visualisations with respect
to style illustrate clear clustering of “sketch” and “photo”, while there is more overlap
between cartoon and art painting examples. The style confusion matrices for ResNet-
18 Layer3 in Figure 6-14b confirm this. PACS Sketches are unlike the sketches of
DomainNet, and perhaps more similar to DomainNet quickdraw images. Figure 6-15
compares examples of sketches from both PACS and DomainNet as well as quickdraw
images from DomainNet. PACS sketches are an abstraction somewhere between the
two DomainNet styles: PACS sketches feature more detail than quickdraw but do not
have the high-resolution textures of DomainNet sketches.
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(a) DomainNet Quickdraw (b) PACS Sketches (c) DomainNet Sketches

Figure 6-15: Qualitative comparison of DomainNet’s [16] “quickdraw” and “sketch”
domains versus the “sketch” domain of PACS [15]. We order the domains from left to
right from most to least visual abstraction. Quickdraw and PACS sketches are highly
abstracted versus other domains in each dataset and are easy to distinguish at almost
all layers. DomainNet sketches tend to comprise richer and “artistic” images than
PACS sketches, thus the latter sits somewhere between Quickdraw and DomainNet
sketches on the spectrum of abstraction.
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(a) Object (b) Style

(c) Object (d) Style

(e) Object (f) Style

Figure 6-16: TSNE Visualisations of finetuned ResNet-18 features for the PACS
dataset.
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6.4.3 Disney Artwork

As discussed in Chapter 4, the Disney artwork dataset is in many ways a unique
case. Returning to the depiction model, Equation 1.6, the Disney artwork features
examples that comprise the same individuation and projection, but different denotation
i.e. there is the exact same character instance depicted as Colour art, Line art and a
Silhouette. Other datasets image comprises entirely unique images in which specific
object instance, poses, projection onto the canvas, and denotation are specific to a
given image. Therefore, the Disney artwork helps focus on the prevalence of denotation,
or texture, responses to convolution kernels, and what impact this has on the cross-
depiction problem.

KNN ClassiÞcation Versus Depth

The style classification rate versus depth for Disney artwork progresses differently to
PACS and DomainNet. In part, the style classification is artificially decreased versus
other Datasets, as two Disney artwork styles are functionally the same: Greyscale and
Colour art are the same set of examples either with or without colour. Disney confusion
matrices, Figure 6-19, highlights the significant confusion between these styles. Fur-
thermore, in TSNE visualisations present 6-18 the Greyscale and Colour data points
are superimposed on one another so only the latter are visible. Thus, kernel responses
colour are far less prevalent than textural denotations, as is evident throughout this
chapter.
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(a) Finetuned AlexNet (b) Pretrained AlexNet

(c) Finetuned ResNet-18 (d) Pretrained ResNet-18

Figure 6-17: Performance of K-nearest neighbour classifiers for object and style classes
versus feature depth on the Disney Art dataset.
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(a) Object (b) Style

(c) Object (d) Style

(e) Object (f) Style

Figure 6-18: TSNE Visualisations of finetuned ResNet-18 features for Disney Artwork.
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(a) Object (b) Style

Figure 6-19: Object and Style prediction confusion matrices for Disney character Art-
work using features extracted from Layer 3 of Finetuned ResNet-18 i.e. where feature
representations are maximally discriminative of style. The is significant confusion be-
tween Colour and Greyscale as these comprise the exact same examples but with the
latter being monochrome versions. Interestingly, there is asymmetric confusion between
Greyscale and Colour the examples being effectively the same.

6.5 Conclusions and Future Work

In general, evidence from T-SNE visualisation [100], KNN classifiers [167], confusion
matrices and literature corroborate one another and indicate that deep learning models
learn depiction-specific features throughout many layers. Wider literature refers to a
texture bias to high-resolution visual properties, e.g. fur, [104]. Here we find clustering
with respect to artistic style, i.e. bias to denotation. Denotation being the final
“rendering” of the image with a brush or pen strokes and is strongly tied to the low-
level texture (See Equation 1.6). Similarly, Chapter 4 highlighted particular sensitivity
to denotation in the cross-depiction problem. Ultimately this is very relevant in artistic
domain generalisation and adaptation – the sets of domain-specific low-level features
learned are not guaranteed to be generalising and lead to poor performance on novel
visual domains. Considering the final representations as “domain agnostic” is not
necessarily true, as they are only agnostic with respect to the known domains and not
to novel domains (unless they have low-level similarity to a known domain). Reviewing
modern algorithms for artistic domain generalisation and adaptations, as we do in the
following chapters, many of the most successful and appealing methods now aim to
directly reduce the texture bias [18, 114, 109, 110, 115] rather than adjusting the final
learning metric [85] or regularisation as in the past [86, 94].

Work on neural style transfer (NST) methods often considers “style” and “content”
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layers. Our work demonstrates the clustering that occurs in the early “style” layers,
then becomes “content” in later layers. In early style layers, the activations in each
channel correspond to the style and the spatial arrangement of activations places these
denotational textures to “render” the image in the given style. As subsequent lay-
ers increase the receptive field of neurons and down-sample the feature columns, the
channel-wise activation distribution no longer describes styles but instead describes the
object (or, likely whatever the classifier loss function ascribes). Our work extends the
idea of “style” and “content” layers [72, 103, 71, 9]to propose that the content features
are not necessarily accurate on unfamiliar depictions due to overfitting to the source
styles denotations and textures.

Our evidence also suggests that photographs of different things (e.g. horse, Eiffel tower)
are closer together in image space (more similar) than the same thing in different
depictions [2, 3]. Consequently, other posit that high-dimensional boundaries that
separate “photo objects” objects must be very closely specified (with a lot of data) to
separate classes in the photo-region of image space [2, 3]. When extended to reach novel
artwork, the incorrectly extrapolated decision boundaries are prone to produce false
inferences. Simply put: the boundaries do not extrapolate well. Comparing these ideas
to T-SNE visualisations, this is certainly true in early and mid-layers the convolutional
networks.
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Chapter 7

Internal Style Transfer for
Domain Generalisation and
Adaptation

7.1 Introduction

Previous chapters have provided a strong foundation for understanding desrible algo-
rithmic and model properties for tackling recognition regardless of depiction. There are
multiple contributions in this chapter. Firstly, this chapter is a thorough benchmarking
of many domain generalisation and adaptation algorithms that use style-transfer-like
transformations. It is important to benchmark our own implementations across mul-
tiple datasets, to ensure such algorithms can be readily applied to our main task in
Chapter 8: detecting Disney characters in the wild. Secondly, we propose our own mod-
ifications to these artistic DG algorithms to apply the internal style transfer (IST) more
effectively, and experiment with “whitening” transforms for the transfer itself rather
than standardisation. Our final contribution is a proposed update to the FixMatch
semi-supervised learning algorithm [33] to work in synergy with IST-based methods
for artistic unsupservised domain adaptation (UDA). This provides a significant boost
versus rely on domain generalisation alone.

7.2 Related Work

A full review of related work for this chapter is provided in Section 2.7. The summary
here covers how artistic DG has been approached throughout this project, including

148



many newer algorithms since the previous chapters’ research took place. Addition-
ally, this covers some discussion of domain adaptation methods and semi-supervised
learning which we combine with artistic DG to provide a simple, but effective, frame-
work for unsupervised artistic domain adaptation. In the literature review there are
in-depth descriptions of P-AdaIN [109] and MixStyle [110], which we use as the main
comparators and as our starting points for research in this chapter.

Firstly, our previous work has demonstrated that it is most beneficial to train with as
diverse a range of styles as possible – or at least utilise some data of the target artistic
style. For this reason, we explore both domain generalisation and unsupervised domain
adaptation (UDA). General literature finds that heuristic approaches applied correctly
can be both conceptually understandable and empirically strong, whether they are
applied for few-shot learning [139], pseudo-labelling for SSL and UDA [114, 33, 110],
and data augmentation [170, 171, 172].

Recent literature [109, 110, 115] and the contributions of our previous chapters highlight
leveraging neural style transfer-based methods of DG and UDA is preferable to simply
using regularised or meta-learned classifiers [85, 86, 94, 173, 174]. This is because
the domain shift between source styles themselves, and any target styles, begins at
the early layers. Neural style transfer (NST) [71, 9, 72], or internal style transfer
(IST) [109, 110, 115], based DG methods improve shape bias by varying the low-level
features with linear transformations that maintain the shape [104] – that is, style
transfer causes the textures to vary but the spatial distribution of them remains. In
recent months, multiple research contributions have proposed similar uses of adaptive
instance normalisation within the neural network to reduce stylistic texture-bias and
improve domain generalisation [109, 110, 115]. We consider strong artistic domain
generalisation model a good first step for addressing the cross-depiction problem – the
better the initial model, the better any semi-supervised learning [33] or unsupervised
domain adaptation [18] on the unlabelled target data is very likely to be. None of this
is to say the meta-learning or regularisation based domain generalisation methods are
not useful, but rather that stylisation based approaches to improve and address artistic
domain generalisation in line with our knowledge of the problem.

7.3 Domain Generalisation

Firstly, we summarise the current state-of-the-art domain generalisation and adapta-
tion algorithms from the literature that we consider the best candidates for integration
into our framework for Disney character detection in the wild – which we present
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in Chapter 8. Visual recognition research and whatever may be state-of-the-art in a
given task changes very quickly. Taking the holistic approach, where the framework is
designed around using easily changeable domain generalisation algorithms and compo-
nents have enabled us to move with the advances and continually update our approach
with emerging technology.

7.3.1 The Denotation Problem

The previous chapters, and much of the literature discussed, have demonstrated that
purely treating artistic domain generalisation as an inherent capability of CNNs is
wrong. In particular, the texture bias [104, 105] plays a significant role in poor recog-
nition rates in novel depictions, as the denotation of artistic styles is heavily tied to
texture. Chapter 6 illustrates that, even when trained on multiple styles, kernel re-
sponse can remain denotation-specific for almost all the network and only becomes truly
“depiction agnostic” at the output classification probability distribution. Older work
starts with a domain-agnostic structural class model with domain-specific appearance
attributes,can more readily fit to novel depictions [29], and is very much in line with
our method of depiction object in artwork [11], Equation 1.6.

While there are interesting possibilities for improving the classifier [85, 94, 173, 174] and
the representation learning objective [111, 156, 157], these do not address the issue of
texture bias’ highly detrimental effect in the cross depiction problem. Methods in this
section address the low-level feature representations that, as highlighted previously, ap-
pear to overfit texture biased convolutions to the denotation of source depiction. This
significantly limits artistic domain generalisation. Style transfer as data-augmentation
has been beneficial for unsupervised domain adaptation in object detection [18, 114],
and an internal style-transfer process has been applied for both general object classifi-
cation and domain generalisation [109]. We develop an internal style transfer to better
address to issue of low-level style-specific features and demonstrate its value in both
object classification and object detection.

7.3.2 Internal Style Transfer

We first describe the Ada-In style transfer [72], and the extension of this as internal
style-transfer in “Permuted Adaptive Instance Normalisation” (P-AdaIN) [109] for gen-
eral object classification and artistic domain generalisation. These are given a detailed
description in Section 2.7 of the Background chapter. Here, we add further discus-
sion on how these methods relate to the mechanisms that prevent convolutional neural
networks from generalising artistic depictions.
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Adaptive instance normalisation [72] is a method for fast style transfer to robustly
apply the “style attributes” of one image to the semantic content of another, Figure
2-3 provides their architecture schematic.

The adaptive instance normalisation transformation (AdaIN) is defined as

AdaIN (x, y) = " (y)

"
x %µ(x)

" (x)

#

+ µ(y) (7.1)

that is, the content input, x, is normalised w.r.t. to its channel-wise statistics N (µ(x), " (x))
and shifted to the statistics of the style image, N (µ(y), " (y)).

Permuted AdaIN [109] is a recent application of style transfer, which shifts from data
preprocessing to an internal transform applied stochastically during training. The
adaptive instance normalisation transform itself remains the same. In P-AdaIN the
transform is applied randomly (p = 0.01) after every convolutional layer and prior to
Batch Normalisation [126]. Each example in a training batch has the style statistics
of another applied while hopefully maintaining the semantic content. We assert there
are both good and bad aspects of this implementation. Chapter 6 demonstrates that
channel-wise statistics of early and mid-layers in ResNet [46] describe the style, there-
fore any AdaIN or style transfer at these layers should be effective at reducing texture,
or denotation, bias by synthesising new stylised examples. This is achieved via a slight
short cut compared to full AdaIN style transfer. We also posit that in later layers
channel-wise statistics define the object content therefore, at these layers, the style
transfer risks modifying the object rather than style representation.

Internal Style Transfer Hyperparameters

There are two hyperparameters for internal style transfer we consider for P-AdaIN [109].
Nuriel et al. [109] provide an empirical validation study for how they set p = 0.01, the
probability that IST is applied at each layer. We investigate another hyperparameter
that should be set: a depth limit on where to apply P-AdaIN. Based on the findings of
Chapter 6, kernel responses in early and mid describe the style i.e. the channel-wise
P-AdaIN will transfer styles, the kernel responses in final layers describe object class so
any channel-wise transformation risks changing object representation rather than style.
When applied at the final layers, P-AdaIN is potentially akin to training with incorrect
labels that applies an object rather than style transfer. In light of this, we investigated
the use of both application probability of P-AdaIN as well as limiting what depth of
layers to apply it.
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Figure 7-1 illustrates the domain generalisation accuracy on PACS [15] with various
setups of probability to apply P-AdaIN [109] as well as how deep into the ResNet [46]
to apply it. Depth corresponds to the layer labels in Figures 6-4 and 6-5). ResNet
comprises an initial 7x7 convolutional layer (depth = 0) and 4 subsequent ResNet
layers (each comprising many convolutional layers with residual connections, and the
number of convolutional depends on the ResNet variant). Plots on Figure 7-1present
DG accuracy versus P-AdaIN probability for multiple depth limits on P-AdaIN layers,
whereas Subfigure presents DG accuracy versus P-AdaIN depth for multiple proba-
bilities. Subfigure illustrates that a higher probability of applying P-AdaIN is only
beneficial if the depth of AdaIN layers is limited to the early layers, and the optimal
setup is a probability p = 0.01 at layers up to (and including) the 2nd ResNet layer.

Figure 7-1: Hyperparameter optimisation of applied probability and depth limit for
P-AdaIN [109]. The higher probability of applying P-AdaIN is only beneficial if the
depth of AdaIN layers is limited to the early layers, and the optimal setup is a prob-
ability p = 0.01 at layers up to (and including) the 2nd ResNet layer. In the original
implementation p = 0.01 and applied at all layers (depth=4) [109], but we demonstrate
the application of P-AdaIN at deeper layers can be detrimental.

The benefit of AdaIN at early and mid-layers is evident for many application prob-
abilities. However, applying the “style transfer” frequently at later layers could be
detrimental because the style transfer of channel-wise statistics at later layers instead
degrades object class representations, so is analogous to training with mislabelled ex-
amples which is known to be highly detrimental. Due to this, we instead only apply
stylisation at early layers of CNN architectures, and this is now supported by similar
research [110, 115].
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Whitening Transforms

In addition to limiting stylisation to the most appropriate layers of the convolutional
architecture, we also experiment with the definition of the style representation itself.
The convolutional architecture encodes the image into a feature volume of D + H + W

with the number of convolutional kernels, height and width. Equally, this may be
considered a set of H + W column vectors with dimensionality D . AdaIN computes the
mean and variance across each channel in D separately. That is assuming a covariance
of the form,

" = diag(" i ) (7.2)

with channel index, i . This assumes the features as an elliptical Gaussian, with principal
components orthogonal to the dimensions of D . The standardisation in the AdaIn
function, Equation 7.1, does not account for the rotation of the distribution. Whitening
is the linear transform, W , applied to input random vector x from the

z = W (x %µ) (7.3)

that rotates and standardises x such that becomes C(z) = Σz = I . The standardis-
ation in AdaIN does not achieve this, as it does not account for the rotation of the
distribution. The whitening transform may be derived from the input data X , that is
the D + HW set of column vectors, with covariance " and mean vector µ,

" =
(X %µ)(X %µ)T

N
(7.4)

The Eigendecomposition of the covariance provides,

U#U " 1 = " (7.5)

Alternatively, the SVD decomposition of the data itself gives,

USV ! =
X %µ
,

N
(7.6)

When computing on the feature distribution from a convolutional feature, it is generally
faster to compute with the covariance matrix but this can be unstable in PyTorch on
GPU [51]. While slower, the SVD decomposition of the data itself is more stable.
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Regardless, to continue deriving the whitening transform,

USV !(USV !)! = USS!U ! (7.7)

# = SS! (7.8)

From these derivations, the whitening may be defined in two ways. Whitening with
PCA is defined as [121]

W PCA = # " 1
2 U T (7.9)

Additionally, ZCA whitening [123] includes an additional rotation by U ,

W ZCA = U# " 1
2 U T (7.10)

Whitening, via either method, produces a new distribution Z with covariance " z = I .
Colourisation [125], in this case stylisation, is applied with the by the transformation
W " 1 . Similarly to P-AdaIN [109], stylisation is applied by permuting the batch indices
to get example pairs to swap denotations via whitening-and-stylisation transforms.
That is, the whitened i th example in the batch is stylised with the inverse whitening
transform of the j th example.

X stylised
i = W " 1

j Zi (7.11)

We demonstrate the difference of our whitening-based versus the AdaIN [72, 109]
method on a toy example, with 2 dimensions for visualisation purposes. We de-
fined three visually distinct multidimensional distributions N (µ1, " 1), N (µ2, " 2) and
N (µ3, " 3) with means µ1 = [8, 12]T and µ2 = [12, 8]T , µ3 = [10, 10]T and covariances

" 1 =

&
3 2
2 3

'

(7.12)

" 2 =

&
6 %3.5

%3.5 6

'

(7.13)
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" 3 =

&
4 0
0 2

'

(7.14)

Figure 7-2 shows the probability distribution contours and three sets of columns vectors
X 1 , X 2 and X 3 sampled from the respective distributions.

The distributions and sampled points in Figure 7-2 represent a convolutional layer
output of size D + H + W reshaped to D + HW . In this case, D = 2 so it can be
visualised and N = HW = 100. Under the current methodology, at early layers, the
denotation or style is described by distribution over this distribution (D ). Much like
a neural feature representation, all values xi > 0 due to ReLU activation. From these
distributions, the means and covariances of the population can be accurately estimated
and the resulting distribution is contoured behind the data points.

The result of whitening methods on each distribution are shown in Figures 7-3,7-4 and
7-5. The covariances of whitened examples become " = I , whereas for standardisation
the covariances become

" 1 =

&
1.01 0.677
0.677 1.01

'

, " 2 =

&
1.01 %0.619

%0.619 1.01

'

, " 3 = I (7.15)

On the distributions which are not orthogonal to the axes, X 1 and X 2 , there are two
significant observations to make. First, this illustrates how both PCA [121] and ZCA
[123] whitening both produce a spherical Gaussians where standardising dimensions
independently does not. Second, The difference between PCA and ZCA whitening
is the additional rotation by U in the latter. ZCA preserves the original orientation
of data points, while PCA maps the Eigenvector of the first eigenvalue onto the first
dimension in the coordinate system. Each distribution shown in these Figures, as well
as those prior, contains “outliers” in red (in this case, defined as 10 data points with
the greatest L 2-norm) that help demonstrate the effects of this ZCA or “Zero-phase”
whitening that maintains the data’s original phase [123]. When the distribution of data
points is orthogonal to the axes then standardisation is sufficient to produce spherical
Gaussian, as indicated by " 3 = I and Figure 7-5.

After whitening, then a set of data points may be stylised by un-whitening with
the inverse of the target denotations whitening transform. That is, define the whole
whitening-based stylisation to stylises
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(a) N (µ1, Σ1) (b) X 1

(c) N (µ2, Σ2) (d) X 2

(e) N (µ3, Σ3) (f) X 3

Figure 7-2: Diagram of three example distributions (left hand side) and sampled dat-
apoints from each distribution (right hand side). These are used in later figures to
qualitatively demonstrate the difference between theAdaIN [72] standardisation-based
distribution mapping versus our whitening-based distribution mapping.
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(a) PCA (b) ZCA (c) Standardised

Figure 7-3: Comparison of the distribution, N (µ1, Σ1), and sampled datapoints, X 1,
after (a) PCA whitening, (b) ZCA Whitening, and (c) Standardising. Standardisation
assumes the distribution has no rotation relative to the axes, which is incorrect for
N (µ1, Σ1), therefore it does not produce a spherical Gaussian, where PCA and ZCA
whitening do.

(a) PCA (b) ZCA (c) Standardised

Figure 7-4: Comparison of the distribution, N (µ2, Σ2), and sampled datapoints, X 2,
after (a) PCA whitening, (b) ZCA Whitening, and (c) Standardising. Once again stan-
dardisation does not produce a spherical Gaussian while whitening does, as N (µ2, Σ2).
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(a) PCA (b) ZCA (c) Standardised

Figure 7-5: Comparison of the distribution, N (µ3, Σ3), and sampled datapoints, X 3,
after (a) PCA whitening, (b) ZCA Whitening, and (c) Standardising. In this case,
there is no rotation relative to the axes so standardisation does product a spherical
Gaussian. PCA and ZCA Whitening always produce spherical Gaussians.

STk(X i , X j ) = W " 1
j

(
W i (X i %µi )

)
+ µj (7.16)

where the i th example is having the style of the j th example transferred onto it, and
k " { PCA, ZCA } to denote the whitening mode. The data points to be stylised
are translated to the origin, whitened with its’ computed transform, “stylised” by
multiplication with the inverse whitening transform of the target style, then translated
to the target style mean. Using whitening and inverse-whitening as style transfer will
always exactly map the statistics of one distribution to another, where AdaIN only
does this when both distributions have covariances of the form " i = diag (" i ).

Figures and visualise the resul of applying each method (AdaIN , STP CA , and STZCA )
to style transfer the denotation of X 2 and X 3 onto X 1 , respectively. For image pro-
cessing, ZCA whitening is generally preferred as the output should still resembles a
recognisable image as ZCA applies a minimal transformation to the data to maintain
the original phase. For natural images, and convolutional features, it is important the
outputs still spatially resemble their input [123, 124].

Research into the use of both instance normalisation and instance whitening as a stan-
dard part of neural architecture as both replacements or supplements to batch normal-
isation [126, 127]. Ultimately, such additions are yet to become permanent additions
to convolutional architectures. Style transfer methods here are instance normalisation,
or whitening, then “un-normalisation” to the target statistics.

158



(a) X 1 Source Content (b) X 2 Target Style

(c) AdaIN (d) STP CA (e) STZCA

Figure 7-6: This shows a qualitative example of how each transform map one style
distribution to another. From literature and our own work, style is described by the
distributions of each set of points. The style of the data points a) X 1 are being
mapped to that b) X 2 . With AdaIN [72, 109] style transfer, the standardisation-based
transform does not capture the rotation of input distributions so c) AdaIN (X 1, X 2)
does resemble to target distribution X 2 . Whitening rotates and scales distributions to
a spherical Gaussian, and the colouring/stylisation (inverse-whitening) will rotate this
too, so d) PCA and e) ZCA stylised outputs to resemble the target distribution. The
difference between the ZCA and PCA whitening is in the rotation they apply – the
former maintains the phase/orientation of the data points once whitening (illustrated
in Figure 7-3), whereas PCA maps the Eigenvector with the i th largest eigenvalue to
the i t h dimension.
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(a) X 1 Source Content (b) X 3 Target Style

(c) AdaIN (d) STP CA (e) STZCA

Figure 7-7: This shows a qualitative example of how each transform map one style
distribution to another. From literature and our own work, style is described by the
distributions of each set of points. The style of the data points a) X 1 are being mapped
to that b) X 3 . With AdaIN [72, 109] style transfer, the standardisation-based transform
does not capture the rotation of input distributions so c) AdaIN (X 1, X 3) does resemble
to target distribution X 3 . The difference is less pronounced in this case as X 3 has no
relative rotation, whereas in Figure 7-6 the pair of distributions are near-orthogonal
to eachother. As before, both PCA and ZCA whitening-based transform near exactly
map to the target distribution.
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Figure 7-8: Schematic of the internal style transfer process on a ResNet architecture.
We experimented with restricting IST to early layer and found improvement over the
original P-AdaIN [109]. Zhou et al. [110] and Nam et al. [115] took similar routes. We
found that Zhou et al. ’s [110] location and probability for IST was preferable overall,
although their “MixStyle” was often suboptimal.
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Figure 7-9: Diagram of feature visualisations from [102] and an estimation of what
feature types our internal style transfer may be applied to.

7.3.3 Unsupervised Domain Adaptation

A popular and successful method for unsupervised domain adaptation [18, 114, 110]
and semi-supervised learning (SSL) [33, 137] in both object classification and detection
is through pseudo-labels. In short, the unlabelled examples are evaluated by the model
and instances with high prediction probability are assigned to that class label and this
example is added to the training set with its new, assumed correct, label. In UDA
for object detection [114], the pseudo-label detections are predicted on the original
artwork examples and training comprises both this example and its stylised pair for
domain consistency loss. Additionally, pseudo-labels are generated once whereas, in
FixMatch [33] and STAC [137] pseudo-labels are generated on-the-fly. FixMatch applies
weak augmentation when predicting pseudo-labels: it is a random crop that maintains
the majority of the image. Pseudo-labels are allocated for examples with prediction
probability above the threshold of 0.95.

MixStyle [110] also apply FixMatch for unsupervised domain adaption in addition to
their internal style-transfer. However, their implementation differs in a small but signifi-
cant way. When generating pseudo-labels internal style transfer is still applied, whereas
our implementation generates pseudo-labels with the CNN architecture operating as
it would in inference. That is, pseudo-labels are predicted on examples where internal
style transfer is not applied and batch normalisation statistics are fixed (Denoted by
model %test (á)). Therefore, the weak augmentation comprises only a large random crop.
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The strong augmentation, upon which optimisation is performed, comprises the stan-
dard training augmentations (random cropping resizing, and photometric distortions)
as well as the internal style transfer of the model (denoted by the model %(á)). Figure
7-10 illustrates this update FixMatch method for unsupervised domain adaptation with
internal style transfer. The loss function, L (p, q), is simply SoftMax cross-entropy for
the object classification task.

Figure 7-10: Schematic of the updated FixMatch [33] pseudo-labelling algorithm for
unsupervised domain adaptation with internal style transfer architectures. pseudo-
labels are generated on-the-flye with weakly augmented and un-stylised examples, and
used for supervised training of strongly augmentation with IST applied.

FixMatch [33] resembles a self-contained versions of many knowledge-distillation and
Teacher-student models, which are equally popular methods of SSL and UDA [136].
Thus, our modified FixMatch for artistic UDA is analogous to have a teacher ! test (á)
and student ! (á) are a single network – the “teacher network” infers with frozen batch
normalisation statistics (i.e. inference mode) on un-augmented examples, while the stu-
dent learns weight and batch normalisation updates from the augmented and internally-
style-transferred images.

7.3.4 Proposed Modifications

We propose and benchmark multiple changes to existing IST-based methods for artistic
domain generalisation. Additionally, we benchmark our own implementations of state-
of-the-art comparator methods. Both these tasks are important for our work. In the
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following chapter, we take a pragmatic approach to detecting Disney characters in-the-
wild using domain generalisation and adaptation techniques, therefore it is important
to document what methods we can obtain the best performance with. In particular,
researchers working PACS, including ourselves, have often had great difficulty repro-
ducing the others’ results [111, 96].

Our primary focus is internal style transfer-based methods, and we use MixStyle [110]
and P-AdaIN [109] as starting points we several modifications. Firstly, we experiment
with replacing the standardisation-based style transforms in these methods with our
PCA and ZCA whitening-based style transforms. Secondly, MixStyle [110] and P-
AdaIN [109] differs in two ways: (1) they apply subtly different style transforms, and
(2) P-AdaIN applies stylisation at any layer with low probability, whereas MixStyle only
applies it at early layers but with higher probability. Our own research and experiments
led us to restrict P-AdaIN to early layers, similar to the conclusions in MixStyle (see
Figure 7-1). We compare swapping these building blocks of style transform and depth-
probability combination to find the optimal pairing. Additionally, we benchmark our
implementations of some non-IST methods of domain generalisation including Self-
Challenging [94] and supervised contrastive loss [157].

We also extend from artistic domain generalisation to unsupervised domain adaptation.
We propose an update to the FixMatch semi-supervised learning algorithm [33] to
synergise with the internal style transfer – pseudolabels are inferred from un-stylised
images, then used for training with the internally stylised versions. We benchmark
our updated algorithm on several of the best methods from domain generalisation
experiments to follow our reasoning that better DG base model will adapt better.

7.4 Results and Discussion

7.4.1 Domain Generalisation

For methods that address the denotation, which we consider the most prominent prob-
lem for CNNs in artistic generalisation and the cross-depiction problem, we conduct
robust experimentation. We conduct the similar DG experiments on PACS [15] as in
previous chapters, and also include 3 additional datasets; PhotoArt50 [17], OfficeHome
[1], and our Disney dataset. We utilise multiple methods of extracting the test per-
formance of a model, as this can cause large variances in test performance. On these
benchmarks, we also expand the problem to unsupervised domain adaptation (UDA).

Tables 7.1, 7.2, and 7.3 present the results of domain generalisation on PACS, Office-
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Home, and PhotoArt50, respectively. To quantified an estimated upper bounds on DG
and UDA tasks, we also include the classification accuracy on each domain when trained
on all source domains, in Tables 7.4, 7.5, and 7.6. All results correspond to our own
implementations of the algorithms and all use the same training hyper-parameters and
train/test splits, although our setup is similar to many other PACS DG experiments
[15, 109, 110, 115]. Specifically, all model uses ResNet-18 [46] as a base model, with all
weights and batch normalisation statistics initialised with pre-trained ImageNet [12]
values as is standard practice. The optimisation uses SGD with cosine annealing learn-
ing rate starting a 0.004, momentum 0.9, and weight decay 0.0001 for 30 epochs of the
training datasets. Data augmentation during training is the same for every benchmark
and sub-set with randomly resized crop (random crops with a ratio sampled from the
uniform distribution U(0.5, 1.0) of the image area, and resized to 224 + 224 pixels),
photometric distortion (with brightness, contrast, saturation and hue ratio sampled
from U(0, 0.5)), and randomly grayscaling with p = 0.1. Any internal style transfer,
or self-regularisation (for RSC), is disabled at inference. A schematic of the train and
test splits, and how these relate to model selection criteria, is presented in Figure 7-11.
Each sub-experiment, with particular set of training and test domains set, is repeated
5 times and the accuracy is averaged for each model selection method.

Model names listed in all the following tables list several options for internal style
transfer. Baseline refers to training ResNet in the “standard” way, referred to as
“Deep All” in some literature [15, 85, 86]. MixStyle [110], P-AdaIN [110] and RSC

[94] refer to our implementations reproduced with consistent train-test splits, training
parameters, and data augmentation. MixStyle with P-AdaIN is the MixStyle im-
plementation that uses the P-AdaIN transform (Equation 7.1) rather than the MixStyle
(Equations 2.2 to 2.4) i.e. Apply P-AdaIN after ResNet layers 1 and 2 with probabil-
ity p = 0.5. The opposite, P-AdaIN with MixStyle , uses P-AdaIN implementation
with MixStyle transforms i.e. apply MixStyle prior to every batch normalisation with
probability p = 0.01. PCA Transfer and ZCA Transfer refer to the respective
whitening-based internal styles transfer. PCA/ZCA Transfer refers to a combined
internal style transfer, where either PCA or ZCA whitening and stylisation is ran-
domly selected at each iteration with equal probability. Domain-RSC and SupCon

[157] are methods from the previous work on DG/UDA methods focus on high-level
representations and regularisation, rather than addressing denotation issues. Unless
otherwise stated, our tables list performance metrics for our experiments with each
model or algorithm rather than those quoted in their original papers, as such the only
variable change between experiments is the modification being tested.
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Figure 7-11: Schematic of data splits for domain generalisation experiments and model
selection. Each domain has a main split and cross-validation split. In these multi-source
domain generalisation tasks, one domain is a held-out target domain upon which test
accuracy is measured, and the remaining domains are used for training. Each domain
is separated into the main split and a cross-validation split. Main splits are used for
training data if a given domain is the source domain and the test data if it is the
target domain. The test classification accuracy is reported from 3 model selection
methods. (1) The best model is selected from performance cross-validation splits of
training domains (the per-domain breakdown and their averaged value quoted in results
tables). (2) Select models from performance on the cross-validation split of the target
domain, referred to as “Oracle” selection. (3) The best test performance recorded
during training. For (2) and (3), only the average performance across each of the sub-
tests is quoted in the results tables.
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Experiments on PACS (Table 7.1), illustrate that ZCA internal transfer is competitive
with the best alternatives from literature in this application. The same is true for ZCA
on the PhotoArt-50 [17] DG task. Compared to PCA, the important differentiator
of ZCA is maintaining the orientation of the distribution by the additional rotation
by U . The basic standardisation used in AdaIN does not apply any rotations so also
maintains the orientation of the distribution. This is visualised in Figures 7-6 and 7-7
where one tip of the original distribution has been coloured in red to provide reference
to rotations. Similarly, ZCA whitening as data preprocessing has been previously found
preferable to simple mean standardisation for image classification where the additional
rotation was similarly important [175].

While ZCA transfer performs well on PACS and PhotoArt50, the performance catas-
trophically deteriorates on the OfficeHome task. PCA whitening also fails catastroph-
ically on the OfficeHome task, in addition to underperforming versus other methods
on all other experiments. There are several possible explanations for such behaviour.
Firstly, OfficeHome is the largest dataset, and has the largest number of classes, of
the datasets we explore. The most prominent possibility is the previously mentioned
difficulties computing the eigen-decomposition in PyTorch, which is required for both
PCA and ZCA methods. With OfficeHome there was a higher rate of failure to compute
with the covariance matrix from the covariance matrix, so there may be error in our
implementation for whitening with the SVD decomposition of the data itself. This is a
further thread to follow for future work. While ZCA achieves some good performance
this must be weighed versus potential serious failures such as this. Our priority was
to determine reliably strong IST methods for the following chapter. We have found
AdaIN-based methods can perform better and without these stability issues, so further
research into the failures of ZCA and PCA in this instance has not been pursued.

MixStyle [110] and P-AdaIN [109] based internal style transfer performs more consis-
tent across the benchmarks, although there is an interesting paradigm that may be
observed. P-AdaIN and MixStyle differ in two ways (1) the IST transformation itself
and (2) the implementation of when and where in the architecture the transform is
applied. Therefore, we also experiment with alternate combinations of their implemen-
tations and transforms. MixStyle with P-AdaIN is the MixStyle implementation
but the P-AdaIN transform i.e. apply P-AdaIN after ResNet layers 1 and 2 with
probability p = 0.5. Whereas, P-AdaIN with MixStyle uses P-AdaIN implementa-
tion with MixStyle transforms i.e. apply MixStyle prior to every batch normalisation
with probability p = 0.01. On the smaller benchmarks, PACS and PhotoArt-50, the
MixStyle implementation is preferred but with the P-AdaIN transform rather than the
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original MixStyle i.e. MixStyle with P-AdaIN performs best followed by MixStyle .
On OfficeHome, the P-AdaIN implementation performs best, again with its standard
transform. Evidently, the P-AdaIN seems preferable to the MixStyle transform – the
former simply swaps style between statistics of random pairs, whereas the latter at-
tempts to synthesise “novel” styles by mixing style statistics of two examples with factor
sampled from U-shape beta distribution, ) (0.1, 0.1). The difference in implementation
is MixStyle comprises 2 locations where stylisation can occur with p = 0.5, whereas
P-AdaIN implement can occur prior to every batch normalisation with p = 0.01. In
most modern CNNs, batch normalisation occurs after every convolutional layer and
before ReLU activation, therefore for this ResNet-18 backbone there are 14 points IST
may be applied. The probability of either method applying IST in at least one layer
during single forward pass is

P(k ) 1) = 1 %P(k = 0) = 1 %(1 %p)n (7.17)

therefore,
PMixStyle (k ) 1) = 1 %(1 %0.5)2 = 0.75 (7.18)

PAdaIN (k ) 1) = 1 %(1 %0.01)14 = 0.13 (7.19)

demonstrates a significant difference in the rate at which IST is applied during training,
and the smaller benchmarks benefitting from the higher IST rate of MixStyle [110]
compared to the larger OfficeHome [1]. Larger ResNet models still gain a performance
benefit from P-AdaIN [109], as for ResNet-50 PAdaIN = 0.39 and ResNet-152 PAdaIN =
0.78. Furthermore, the P-AdaIN implementation can apply IST at later layers which
would more represent “content transfer” and may be detrimental to performance. As
discussed previous there is an optimal balance of depth and application probability,
and this demonstrates that depends upon the nature of both the dataset and model
architecture.

7.4.2 Unsupervised Domain Adaptation

Results tables for unsupervised domain adaptation on PACS [15], OfficeHome [1] and
PhotoArt-50 [17] are presented similarly as those of DG. Training and data augmenta-
tion setups are the same, except now a mini-batch comprises 64 labelled source exam-
ples (of assorted depictions) and 64 unlabelled target domain examples. Additionally,
experiments comprises each IST methods combined with our updated FixMatch [33]
algorithm for cross-depiction adaptation (Diagram in Figure 7-10). In the results for
PACS UDA (Table 7.7) we also include FixMatch (from [110]) and MixStyle (from
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

Throughout this project, we have explored how neural networks recognise objects across
artistic styles. Unsurprisingly, the best performance was generally achieved by training
with all styles the model is evaluated. It would be impractical to obtain images of ev-
ery possible depiction one may want to classify, let alone obtain labels and annotations
for all that data. Equally, we and many others have demonstrated that generalisa-
tion to novel depictive styles is a difficult challenge. The contributions of recognition
regardless of depiction are the classification and detection systems that are robust to
novel depictions that can be entirely unfamiliar. Conceptually, this represents a more
“human-like” recognition model but also circumvents the impossible need for labelled
and annotated examples in every conceivable depiction.

Chapter 8 represents the culmination of our research to date and reflects many con-
clusions of the preceding chapters. Our contribution in Chapter 8 is the framework for
recognising specific Disney characters regardless of depiction. The test data comprises
instances of Disney characters depicted in the wild – namely, with characters depicted
on products, as products, or otherwise as Disney branding. With in-the-wild examples,
we achieve mean average precision (AP) values of 39.9% and 68.3% with evaluation cri-
teria of COCO [13] and Pascal VOC [34], respectively – more than double the average
precision of the baseline solution with AP of 13.5% and 27.1% with the same respective
criteria. We also achieve average recall (AR) of 41.1% and 56.9% for top-1 and top-10
detections per image [13]; compared to values of 23.7% and 48.8% for the baseline so-
lution. Work undertaken throughout this project provided an excellent understanding
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Chapter 7 begins our more pragmatic approach to recognising Disney characters re-
gardless of depiction. We benchmark our own artistic domain generalisation method
that uses internal style transfer to prevent overfitting to source depictions and deno-
tations, based on our prior findings of denotational texture bias’ role in preventing
generalisation. Taking the pragmatic focus, we conduct a robust benchmark of our
implementations of similar IST-based domain generalisation methods literature, in ad-
dition to our updates to these algorithms which better align with our previous findings
on the denotational bias. Our IST-based domain generalisation method was not the top
performer – however, we can justify the strong performance of better methods within
our understanding of the cross-depiction problem. We also extend our DG to unsuper-
vised domain adaptation, using our modified FixMatch [33] algorithm that synergises
with IST-based generalisation. Our domain adaptation algorithm outperforms existing
methods on multiple benchmarks, despite our more difficult train-test split of target
data. The contribution here is a guide on the many tools at a researchers’ disposal that
may be combined to recognise specific objects regardless of depiction – this task we
undertake in Chapter 8 to present a novel framework for recognition of specific Disney
characters regardless of depiction. Not only does Chapter 8 apply our research to the
applied task, we also demonstrate the value of our larger process for identifying scal-
able DG/UDA methods, assessing these on classification benchmarks, then successfully
applying these to object detection.

9.2 Future Work

We consider there are two distinct avenues of future work for our research. For con-
tinued industrial impact, we presented a detailed idea for further development of our
Disney character detection framework in Chapter 8. For general research contribution,
we would investigate and apply the principles of non-photorealistic rendering (NPR) for
a deeper understanding of the cross-depiction problem in CNNs. We began our study
from a high-level model for depicting an object in artwork, Equation 1.6. Our research
focussed on the denotation component of this model – our work and wider literature
identified this bias towards these low-level textures significantly contributed to CNNs
poor artistic generalisation. Future work could further assess the roles of other compo-
nents in the depiction model i.e. applying the principles of NPR to further understand
the cross-depiction in convolutional neural networks. As presented in the introduction,
artwork often projects objects onto the canvas in ways unlike photographs or our own
eyes. Monocular depth estimation is its own area of computer vision research, and its
application to artistic images presents a significant challenge due to non-photorealistic
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