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Abstract：Technological advances in unmanned aerial vehicles (UAVs) have enabled the extensive 

application of UAVs in various industrial domains. For example, UAV-based inspection in engineering 

management is a more efficient means of searching for hidden dangers in high-risk construction 

environments than traditional inspections in the artifactual field. Against the above background, this 

paper investigates the optimization of the UAV inspection routing and scheduling problem. A mixed-

integer linear programming model is devised to optimize decisions on the assignment of inspection 

tasks, the monitoring sequence schedule, and charge decisions. The comprehensive consideration of no-

fly zones, monitoring-interval time windows and multiple monitoring rounds distinguish the devised 

problem from the typical vehicle routing problem and make the mathematical model intractable for a 

commercial solver in the case of large-scale instances. Thus, a tailored variable neighborhood search 

metaheuristic is designed to solve the model efficiently. Extensive numerical experiments are conducted 

to validate the efficiency of the proposed algorithm for large-scale and real-scale instances. In addition, 

sensitivity experiments and a case study based on an engineering project are conducted to derive insights 

that will enable an engineering manager to improve the efficiency of inspection works.  

 

Keywords: engineering management, unmanned aerial vehicle, inspection routing and scheduling 

optimization, MILP model, VNS metaheuristic 

1. Introduction 

Due to advances in the remote sensing technology of unmanned aerial vehicles (UAVs), UAVs have 

recently been applied in a wide range of fields, such as package delivery (Sajid et al., 2022; Salama and 

Srinivas, 2022), military reconnaissance (Manyam et al., 2020; Sundar et al., 2017), post-disaster rescue 

(Zheng et al., 2019), traffic monitoring (Li et al., 2018), and medical aid (Khan et al., 2021). UAVs are 

typically small, highly mobile and low cost, which means they are well suited for use in inspection and 

monitoring missions. Moreover, using UAVs to conduct such missions has the potential not only to 
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greatly reduce labor investment, but also to avoid some of the risks inherent to manual inspection 

processes. However, although there has been extensive research on the routing and scheduling 

optimization of UAVs performing inspection and monitoring tasks in various fields (Chowdhury et al., 

2021; Liu et al.,2022; Shen et al., 2022; Munishkin et al., 2022), there has been little work on UAV-

based inspection in engineering management, especially for mega-projects in engineering construction. 

This paper develops a novel approach to study the optimization of the inspection and monitoring mode 

of UAVs in an engineering project, aiming to improve the quality and efficiency of engineering 

management. 

In engineering construction, managers commonly need to perform inspection tasks periodically 

within a certain construction area to judge whether there are hidden dangers—such as unlocked fences, 

cracks in concrete, or objects that could fall—that could result in major accidents. However, the 

application of the inspection approach adopted in the traditional artifactual field to engineering mega-

projects can result in high labor costs, low inspection efficiency, and slow responses. In addition, it can 

be dangerous for people to carry out inspection tasks in areas featuring complex facilities or terrain. 

Fortunately, using UAVs for inspections effectively eliminates the above problems, as UAVs are a non-

contact solution (Spencer et al., 2019). In addition, using UAVs in inspections enables not only the 

collection of real-time images of monitoring sites within a short time, but also the uploading of 

information to a cloud platform for historical archiving. Moreover, in order to meet periodic inspection 

demands, managers can use UAVs to visit monitoring sites repeatedly instead of having to manually 

perform inspections. Most importantly, UAV-based inspection prevents the managers of an inspection 

task being placed in danger. 

Nevertheless, although UAV-based inspections are highly efficient in an engineering project, UAV 

battery limitations require managers to plan scientific inspection routes for UAVs by taking many 

factors into account. First, inspection missions cannot be completed by one UAV powered by one battery, 

owing to the wide scope of inspections required in a construction project. Therefore, scheduling of 

UAVs of multiple types and their charging demands must be considered. Second, a construction 

environment varies dynamically, so inspection tasks must be conducted periodically to search for hidden 

dangers. Therefore, a scientific inspection route for UAVs needs to ensure not only that UAVs return to 

charging stations before their power runs out, but also that all monitoring sites are visited by UAVs at 

intervals within a planning horizon (e.g., one day). Third, to prevent collisions between UAVs and 

engineering facilities, no-fly zones are needed to limit the route accessibility of UAVs traveling from 

one monitoring site to another. All of the above factors constrain the planning of inspection routing and 

scheduling of UAVs, and it is difficult to obtain an optimal solution through experience, especially for 
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a real-scale engineering project. 

Against the above background, this paper explores the application of UAV-based inspection in 

engineering projects by considering the inspection routing and scheduling optimization of UAVs. A 

mathematical model and a tailored algorithm are designed for planning UAV inspection routes to search 

for hidden dangers in an engineering project. In contrast with classical vehicle routes for target 

surveillance or delivery of parcels, where each customer or target is visited only once, UAV inspection 

routes for an engineering project require each UAV visits monitoring sites in multiple rounds. Thus, 

consecutive inspection tasks for a given site need to be separated by a time window. In addition, a 

mathematical model is used to consider the limitations of electric batteries and no-fly zones in the 

planning of realistic and practical inspection routes that allow UAVs to monitor various sites. The need 

for comprehensive consideration of the above factors and constraints leads to complex decisions having 

to be made on monitoring task assignment and monitoring sequence scheduling for UAVs. 

The scientific contribution of this paper is as follows. A mixed integer linear programming (MILP) 

model is formulated to determine inspection routing and scheduling of heterogeneous UAVs, with 

consideration of periodic inspection demands and charging and no-fly zone constraints. A tailored 

algorithm based on a variable neighborhood search (VNS) is designed to solve the devised model, which 

can only be solved for small-scale instances by commercial solvers. In addition, numerical experiments 

are conducted to confirm the effectiveness of the model and the efficiency of the algorithm. Sensitivity 

analyses are performed to provide engineering managers with insights into inspection tasks. 

Furthermore, the Shiziyang Bridge (SZYB) project, a world-class engineering project, is used as an 

example of the application of the devised mathematical model and designed algorithm to inspection 

works in a real-life engineering project. 

The remainder of this paper is organized as follows. The related work is reviewed in the next section. 

Problem backgrounds for the inspection routing and scheduling optimization in mega-bridge project are 

elaborated in Section 3. The mathematical model and the tailored algorithm are described in Section 4 

and Section 5, respectively. Experimental results are reported and discussed in Section 6. Section 7 

presents the case study on the Shiziyang Bridge. Conclusions are then outlined in the last section. 

 

2. Related works 

In recent years, many studies have investigated the application of UAVs in various fields, from the 

viewpoint of technology frameworks (Perry et al., 2020; Hu et al., 2022; Bailon-Ruiz et al., 2022; Meng 

et al., 2022) and operational research (Xia et al., 2017; Zheng et al., 2019; Mbiadou Saleu et al., 2022). 

This section reviews three streams of research. The first stream is the application fields and tasks of 
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UAVs. The second stream is the optimization of the routing and scheduling of UAVs. The third stream 

is the optimization of inspection and monitoring tasks performed by UAVs.  

The first research stream focuses on the application fields and tasks of UAVs. The tasks assigned to 

UAVs can be categorized as emergency management, product or package delivery, real-time monitoring 

and patrolling missions, and military combat missions. Chowdhury et al. (2021) studied UAV inspection 

routing optimization for post-disaster management. They developed a MILP model to minimize the 

post-disaster inspection cost for a disaster-affected area. Khan et al. (2021) addressed the vital role of 

UAVs in the efficient delivery of first aid and medical supplies and demonstrated the value of UAVs in 

a medical rescue response. Studies on package delivery have mainly focused on the scheduling of trucks 

and drones for cooperative delivery (Sacramento et al., 2019; Salama and Srinivas, 2022; Zhen et al., 

2022). The last-mile delivery problem is well solved by adopting a delivery mode of cooperative trucks 

and drones, according to the scheduling solution provided by scholars. Shen et al. (2022) conducted a 

pioneering study on the application of UAVs to the monitoring of vessel air emissions. They jointly 

optimized routing and scheduling decisions for ship-deployed multiple UAVs in the monitoring of 

pollution from vessels. Rajan et al. (2022) used a two-stage stochastic programming approach to 

optimize the routing problem of UAVs in the context of a patrolling mission, revealing the value of 

UAVs in information collection. In addition, Li et al. (2018) investigated the UAV scheduling problem 

for the multi-period real-time monitoring of road traffic under demand uncertainty, where UAVs 

equipped with different imaging sensors are used for capturing multi-period targets images of road 

traffic. A MILP model is formulated to minimize the operating cost of UAVs. In the field of military 

combat missions, UAVs commonly perform target surveillance and reconnaissance missions, in which 

they depart from a depot and travel to targets to collect information, within their power limitations. Liu 

et al. (2022) designed a hybrid optimization framework, in which the reconnaissance mission planning 

problem is decomposed into a target selection subproblem and a path planning subproblem. They 

respectively devised an evolutionary algorithm and a deep reinforcement learning method to solve the 

target selection subproblem and the path planning subproblem, respectively. However, although UAVs 

have been widely applied in medical, logistics, urban management and military fields, there has been 

little discussion on applying UAVs to engineering fields, especially in terms of exploring the value of 

UAVs in engineering management. The present paper therefore explores the UAV routing and 

scheduling problem for an engineering project. 

The second stream is optimization research on the UAV routing and scheduling problem. Most UAV 

routing and scheduling problems can be regarded as variants of the classical vehicle routing problem 

(VRP) or of the traveling salesman problem (TSP). However, decision making in various scenarios with 
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different targets varies greatly in the planning of the routing and scheduling of UAVs, compared with 

decision making in the VRP and the TSP. Xia et al. (2017) studied routing planning for a fleet of UAVs 

collecting information from a set of regions in enemy territory within a given mission time window. 

The optimization objective was to maximize the total expected reward collected by the fleet. Similarly, 

Xu et al. (2020) investigated multi-UAV cooperative routing planning within a complex confrontation 

environment. They developed a multi-constraint objective optimization model to guarantee that each 

UAV reaches the mission area rapidly, and hence reduce the possibility of a UAV being captured and 

destroyed. Other research (Qin et al., 2021; Hu et al., 2019) in the military field has considered joint 

planning of the routing and scheduling of UAVs and vehicles (i.e., the use of mobile charging vehicles 

or inspection-assisted vehicles). Zhen et al. (2019a) formulated an integer programming model to 

minimize the total time for completing monitoring tasks in a routing problem by adopting UAVs to 

monitor a set of areas with different accuracy requirements, thereby optimizing routing and scheduling 

for monitoring. Wang et al. (2022) investigated the UAV monitor routing problem in the context of 

unattended offshore oil platforms. They established a multi-objective mathematical model with the 

shortest flight path and minimum correction times for the intelligent UAVs. The field of logistic delivery 

involves the scheduling of multiple heterogenous UAVs (Coelho et al., 2017; Mbiadou Saleu et al., 

2022), and the joint planning of the routing and scheduling of UAVs and trucks (Moshref-Javadi et al., 

2020; Zhen et al., 2022). The main optimization objectives are the sum of the waiting times of customers, 

the total distance traveled by UAVs, the total delivery time of UAVs and the total cost of cooperative 

delivery. In the engineering management field, UAVs possess remarkable advantages for performing 

inspection and monitoring missions. Similar to the above-described applications of UAVs, the routing 

and scheduling of UAVs in an engineering project must be determined by considering the limitations of 

batteries and charging stations, the complexity of multiple heterogenous UAVs, and the sets of 

monitoring areas. In addition, inspection routes must be planned for the collection of images of each 

monitoring site in multiple rounds at certain intervals, and there must be consideration of terrain 

obstacles (i.e., construction facilities) that make routes inaccessible. However, no study has 

comprehensively considered the afore-mentioned factors and a realistic decision demand, so there is a 

dearth of guidance for making UAV inspection routing and scheduling decisions in engineering projects.  

The final stream reviews the optimization works about the inspection and monitoring tasks. Huang 

et al. (2018) investigated the bridge inspection routing problem. Different from the traditional VRP, the 

bridge inspection problem also needs to consider the lodging accommodation selection for inspection 

team to rest overnight since the visited bridges are located in a large geographical area. Therefore, the 

inspection route not only needs to determine the sequence for visiting bridges, but also the 
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accommodation selection for lodging. Zhen et al. (2019b) studied an inspection routing problem under 

a background of coal mine safety personnel in underground mines, which is defined as a multi-depot 

VRP with time windows. Tasks and the workload balance, multiple inspector-vehicle docking sites and 

the time windows for inspection tasks are considered in a MILP model. Similar to inspection tasks, 

routing optimization for patrolling missions (Rajan et al., 2022) could be a novel VRP variant. The 

distinction lies in the decisions on the routes for patrolling missions needed to visit a set of targets in 

the initial routes and a set of additional targets in the adjusted routes when information collected by 

UAVs is incomplete. As for monitoring tasks, the related optimization research (Li et al., 2018; Zhen et 

al., 2019a; Shen et al., 2022) is commonly dedicated to minimizing the total monitoring time for 

completing the tasks. Data capacity for storing information, specific monitoring requirements for 

monitoring sites or areas and power limitation of UAVs are major factors that are considered in their 

mathematical models. However, there is little optimization research on the routing problem associated 

with inspecting each monitor site at intervals with a fixed time window. Besides, different from the 

environment where no construction would obstruct the flying of UAVs, there are many obstacles 

resulting from engineering construction. Thus, a no-fly zone is novel constraint factor that needs to be 

considered when determining the UAVs inspection routing in an engineering project. 

In summary, this paper explores the UAV inspection routing problem in the field of engineering 

management and comprehensively considers multiple heterogenous UAVs, the periodic monitoring 

requirement and no-fly zone constraints in a mathematical model. To the best of our knowledge, 

although the technologies for object identification and image collection are sufficiently mature for UAV 

inspection and monitoring tasks in engineering construction (Spencer et al., 2019; Jeong et al., 2022), 

little effort has been devoted to UAV inspection routing and scheduling optimization in this field. Thus, 

this paper fills a research gap by providing a practical approach on solving the UAV inspection routing 

and scheduling problem for engineering projects. 

3 Problem description 

We consider a set of sites to be periodically inspected by UAVs in a construction area. A fleet of 

UAVs with various performances, such as different flying velocities, battery capacities and charging 

times, are required to visit each site at certain intervals to collect images to assist the engineering 

manager to screen for hidden dangers in a construction environment. The engineering manager therefore 

needs to assign inspection tasks to each UAV and plan corresponding routes through the monitoring 

sites. First, the inspection routes should ensure that each monitoring site is visited by a UAV at certain 

intervals (e.g., one day) within a planning horizon. Second, the inspection routes should guarantee that 
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the UAVs return to a nearby charging station for charging before powering off. Finally, the inspection 

routes should prevent UAVs from colliding with construction facilities. Thus, there are no-fly zones that 

render some routes inaccessible. In addition, to simplify the problem, this paper considers two-

dimensional routes of UAVs, so that the flying altitude of a UAV is approximately constant.  

Figure 1 depicts an example of UAV inspection routes in which two UAVs monitor four sites in a 

construction area. Two sites need to be inspected in at least three rounds and two sites need to be 

inspected in at least two rounds. The UAVs upload the images collected at each monitoring site to a 

cloud platform in real time. The managers responsible for the inspection missions then record the 

inspection results in logs (shown in the bottom part of the figure) to trace the construction safety of an 

area. If a hidden danger is detected at a monitoring site, the managers immediately issue a warning to 

the supervisors on site and guide them to inspect the situation and take measures to eliminate the hidden 

danger. Thus, UAV-based inspection not only reduces the labor cost of wide patrolling but also 

efficiently and dynamically discovers the hidden dangers of an engineering project through the 

optimization of the inspection routes.  

The objective of an engineering manager is to determine the inspection routes of heterogeneous 

UAVs to minimize the total working time for completing multiple-round inspection missions. The 

challenges in this decision problem are that (1) battery limitations require a UAV to return to a charging 

station for recharging in the process of inspection, which complicates decision making on inspection 

routes; (2) no-fly zones constrain the accessibility of flying routes, which complicates inspection task 

assignment and route planning; and (3) multiple-round monitoring demand with a time window requires 

the scheduling of an inspection sequence and time for each monitoring site to satisfy rolling interval 

constraints, which complicates decision making on routing and scheduling. An optimal solution should 

comprehensively address the above-mentioned challenges and schedule an appropriate sequence for 

visiting each monitoring site, in such a way that the time spent charging and waiting is as short as 

possible. In addition, no-fly zones sometime result in detours that increase the inspection time, so the 

optimal solution should ensure that UAVs fly from one site to the next (including the charging station) 

via the shortest route possible. 

The following assumptions are made before formulating the mathematical model in Section 4. 

(1) Each UAV performs monitoring missions at an approximately constant altitude. Thus, the vertical 

movement of the UAVs is not considered. 

(2) All of the UAVs start flying from an origin site and fly to a destination site only after completing 

all of their monitoring missions. 

(3) The requirements for each monitoring site, such as the inspection-interval time window, the 
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required monitoring time and the number of inspection rounds, are known in advance. 

(4) The flying distance of any pair of locations and the performances of heterogeneous UAVs are 

known, as they are deterministic parameters. 

 
Figure 1: An example of two UAVs performing inspection missions of four sites 

4 Mathematical model 

In this section, an MILP model is formulated for the integrated optimization problem. The objective 

is to minimize the total time—comprising the flying time, waiting time, inspection time, and charging 

time—for completing periodic inspection missions. As is usual practice for a transportation network 

formulation, the MILP model considers a direct connection for each origin-destination pair. The UAVs 

can fly from one node (where nodes are monitoring sites and charging stations) to another, provided 

that there is no no-fly zone between the two nodes. The transportation time within a node is set to zero.  

4.1 Notations 

The parameters and decision variables used in the model are first outlined and then the mathematical 

model is elaborated. For clarity, we use Roman and Greek letters to denote the parameters and decision 

variables, respectively. 

Indices and sets 

𝐾   set of all UAVs, indexed by 𝑘, 𝑘 ∈ {1, … , |𝐾|}. 

𝐼   set of all monitoring sites, indexed by 𝑖, 𝑖 ∈ {1, … , |𝐼|}. 

𝐵   set of all charging stations, indexed by 𝑏, 𝑏 ∈ {1, … , |𝐵|}. 

𝑒, 𝑒̇  origination and destination for all UAVs. 

𝑄𝑖  set of all rounds that monitoring site 𝑖 need to be inspected (𝑖 ∈ 𝐼 ⋃{𝑒, 𝑒̇}), indexed by  

𝑙, 𝑙 ∈ {1, … , |𝑄𝑖|}, |𝑄𝑖| ≤ 𝑄 which is the maximum monitoring rounds. 
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Parameters  

𝑇   duration of the planning period. 

𝑟𝑘   maximum battery capacity of UAV 𝑘. 

ℎ𝑘  power consumption per unit distance of UAV 𝑘. 

𝑣𝑘  average velocity of UAV 𝑘. 

𝑐𝑘  charge power per unit time of UAV 𝑘. 

𝑓𝑖,𝑗
1   set to one if there are no-fly zones between monitoring site 𝑖 and monitoring site 𝑗, 

otherwise zero (𝑖, 𝑗 ∈ 𝐼 ⋃{𝑒, 𝑒̇}). 

𝑓𝑖,𝑏
2  set to one if there are no-fly zones between monitoring site 𝑖 and charging station 𝑏, 

otherwise zero (𝑖 ∈ 𝐼 ⋃{𝑒, 𝑒̇} , 𝑏 ∈ 𝐵). 

𝑑𝑖,𝑗
1   distance from monitoring site 𝑖 to monitoring site 𝑗, (𝑖, 𝑗 ∈ 𝐼 ⋃{𝑒, 𝑒̇}). 

𝑑𝑖,𝑏
2   distance from monitoring site 𝑖 to charging station 𝑏, (𝑖 ∈ 𝐼 ⋃{𝑒, 𝑒̇} , 𝑏 ∈ 𝐵). 

𝑡𝑘,𝑖  required time for completing inspection task of site 𝑖 for UAV 𝑘. 

𝑔𝑘,𝑖  required electricity to complete inspection task of site 𝑖 for UAV 𝑘. 

𝑚𝑖  minimum interval time between two consecutive visits at monitoring site 𝑖. 

𝑛𝑖   maximum interval time between two consecutive visits at monitoring site 𝑖. 

𝑀   a sufficiently large positive number. 

Decision variables 

𝛼𝑘,𝑖,𝑙  binary, equal one if the 𝑙th inspection task of monitoring site 𝑖 is completed by UAV 𝑘,  

   otherwise zero. 

𝛽𝑘,𝑖,𝑙,𝑗,𝑙′ binary, equal one if UAV 𝑘 completes the 𝑙′th inspection task of site 𝑗 immediately  

after finishing the 𝑙th inspection task of monitoring site 𝑖, otherwise zero. 

𝜑𝑘,𝑖,𝑙,𝑏  binary, equal one if UAV 𝑘 flies to charging station 𝑏 immediately after completing  

the 𝑙th inspection task of monitoring site 𝑖, otherwise zero. 

𝜆𝑘,𝑖,𝑙  time when UAV 𝑘 starts the 𝑙th inspection task of monitoring site 𝑖. 

𝜃𝑘,𝑖,𝑙  remaining electricity when UAV 𝑘 starts the 𝑙th inspection task of monitoring site 𝑖. 

𝜋𝑘  total operating time of UAV 𝑘, including the flying time, waiting time, inspection  

time, and charging time. 

4.2 Model formulation 

Based on the above introduced input parameter and decision variables, we formulate the following 

mixed integer programming model of this research.  
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[𝑀0] Minimize ∑ 𝜋𝑘𝑘∈𝐾                  (1 ) 

subject to: 

∑ 𝛼𝑘,𝑖,𝑙𝑘∈𝐾 = 1        ∀𝑖 ∈ 𝐼, 𝑙 ∈ 𝑄𝑖         (2 ) 

∑ ∑ 𝛽𝑘,𝑖,𝑙,𝑗,𝑙′𝑙′∈𝑄𝑗𝑗∈𝐼 ⋃{𝑒̇} = 𝛼𝑘,𝑖,𝑙 = ∑ ∑ 𝛽𝑘,𝑗,𝑙′,𝑖,𝑙𝑙′∈𝑄𝑗𝑗∈𝐼 ⋃{𝑒}   ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼, 𝑙 ∈ 𝑄𝑖   (3 ) 

∑ 𝜑𝑘,𝑖,𝑙,𝑏𝑏∈𝐵 ≤ ∑ ∑ 𝛽𝑘,𝑖,𝑙,𝑗,𝑙′𝑙′∈𝑄𝑗𝑗∈𝐼 ⋃{𝑒̇}   ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼, 𝑙 ∈ 𝑄𝑖       (4 )  

∑ ∑ 𝛽𝑘,𝑒,𝑙,𝑗,𝑙′𝑙′∈𝑄𝑗𝑗∈𝐼 ⋃{𝑒̇} = 1    ∀𝑘 ∈ 𝐾, 𝑙 ∈ 𝑄𝑒        (5 ) 

∑ ∑ 𝛽𝑘,𝑖,𝑙,𝑒̇,𝑙′𝑙∈𝑄𝑖𝑖∈𝐼 ⋃{𝑒} = 1    ∀𝑘 ∈ 𝐾, 𝑙′ ∈ 𝑄𝑒̇        (6 ) 

𝛽𝑘,𝑖,𝑙,𝑗,𝑙′ ≤ 𝑓𝑖,𝑗
1 + 𝑀 ∑ 𝜑𝑘,𝑖,𝑙,𝑏𝑏∈𝐵    ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒} , 𝑗 ∈ 𝐼 ⋃{𝑒̇} , 𝑙 ∈ 𝑄𝑖 , 𝑙′ ∈ 𝑄𝑗  (7 ) 

𝛽𝑘,𝑖,𝑙,𝑗,𝑙′ ≤ 𝑓𝑖,𝑏
2 + 𝑀(1 − 𝜑𝑘,𝑖,𝑙,𝑏)   ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒} , 𝑗 ∈ 𝐼 ⋃{𝑒̇} , 𝑙 ∈ 𝑄𝑖 , 𝑙′ ∈ 𝑄𝑗  (8 ) 

𝛽𝑘,𝑖,𝑙,𝑗,𝑙′ ≤ 𝑓𝑗,𝑏
2 + 𝑀(1 − 𝜑𝑘,𝑖,𝑙,𝑏)   ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒} , 𝑗 ∈ 𝐼 ⋃{𝑒̇} , 𝑙 ∈ 𝑄𝑖 , 𝑙′ ∈ 𝑄𝑗  (9 ) 

𝜆𝑘,𝑖,𝑙 + 𝑡𝑘,𝑖 +
𝑑𝑖,𝑗

1

𝑣𝑘
≤ 𝜆𝑘,𝑗,𝑙′ + 𝑀(1 − 𝛽𝑘,𝑖,𝑙,𝑗,𝑙′) ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒} , 𝑗 ∈ 𝐼 ⋃{𝑒̇} , 𝑙 ∈ 𝑄𝑖 , 𝑙′ ∈ 𝑄𝑗    (10 ) 

𝜆𝑘,𝑖,𝑙 + 𝑡𝑘,𝑖 +
𝑑𝑖,𝑏

2

𝑣𝑘
+

(𝑟𝑘−𝜃𝑘,𝑖,𝑙+ℎ𝑘𝑑𝑖,𝑏
2 )

𝑐𝑘
+

𝑑𝑏,𝑗
2

𝑣𝑘
≤ 𝜆𝑘,𝑗,𝑙′ + 𝑀(2 − 𝜑𝑘,𝑖,𝑙,𝑏 − 𝛽𝑘,𝑖,𝑙,𝑗,𝑙′)  

        ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒} , 𝑏 ∈ 𝐵, 𝑗 ∈ 𝐼 ⋃{𝑒̇} , 𝑙 ∈ 𝑄𝑖 , 𝑙′ ∈ 𝑄𝑗    (11 )  

𝜆𝑘′,𝑖,𝑙+1 ≥ 𝜆𝑘,𝑖,𝑙 + 𝑡𝑘,𝑖 + 𝑚𝑖 − 𝑀(2 − 𝛼𝑘,𝑖,𝑙 − 𝛼𝑘′,𝑖,𝑙+1) ∀𝑘, 𝑘′ ∈ 𝐾, 𝑖 ∈ 𝐼, 𝑙 ∈ 𝑄𝑖/{|𝑄𝑖|}    (12 ) 

𝜆𝑘′,𝑖,𝑙+1 ≤ 𝜆𝑘,𝑖,𝑙 + 𝑡𝑘,𝑖 + 𝑛𝑖 + 𝑀(2 − 𝛼𝑘,𝑖,𝑙 − 𝛼𝑘′,𝑖,𝑙+1) ∀𝑘, 𝑘′ ∈ 𝐾, 𝑖 ∈ 𝐼, 𝑙 ∈ 𝑄𝑖/{|𝑄𝑖|}    (13 ) 

𝜃𝑘,𝑗,𝑙′ ≤ 𝜃𝑘,𝑖,𝑙 − 𝑔𝑘,𝑖 − ℎ𝑘𝑑𝑖,𝑗
1 + 𝑀(∑ 𝜑𝑘,𝑖,𝑙,𝑏𝑏∈𝐵 + 1 − 𝛽𝑘,𝑖,𝑙,𝑗,𝑙′)  

∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒} , 𝑗 ∈ 𝐼 ⋃{𝑒̇} , 𝑙 ∈ 𝑄𝑖 , 𝑙′ ∈ 𝑄𝑗   (14) 

𝜃𝑘,𝑗,𝑙′ ≥ 𝜃𝑘,𝑖,𝑙 − 𝑔𝑘,𝑖 − ℎ𝑘𝑑𝑖,𝑗
1 − 𝑀(∑ 𝜑𝑘,𝑖,𝑙,𝑏𝑏∈𝐵 + 1 − 𝛽𝑘,𝑖,𝑙,𝑗,𝑙′)  

∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒} , 𝑗 ∈ 𝐼 ⋃{𝑒̇} , 𝑙 ∈ 𝑄𝑖 , 𝑙′ ∈ 𝑄𝑗   (15) 

    𝜃𝑘,𝑗,𝑙′ ≥ 𝑟𝑘 − ℎ𝑘𝑑𝑗,𝑏
2 − 𝑀(2 − 𝜑𝑘,𝑖,𝑙,𝑏 − 𝛽𝑘,𝑖,𝑙,𝑗,𝑙′) 

∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒} , 𝑏 ∈ 𝐵, 𝑗 ∈ 𝐼 ⋃{𝑒̇} , 𝑙 ∈ 𝑄𝑖 , 𝑙′ ∈ 𝑄𝑗 (16)  

    𝜃𝑘,𝑗,𝑙′ ≤ 𝑟𝑘 − ℎ𝑘𝑑𝑗,𝑏
2 + 𝑀(2 − 𝜑𝑘,𝑖,𝑙,𝑏 − 𝛽𝑘,𝑖,𝑙,𝑗,𝑙′) 

∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒} , 𝑏 ∈ 𝐵, 𝑗 ∈ 𝐼 ⋃{𝑒̇} , 𝑙 ∈ 𝑄𝑖 , 𝑙′ ∈ 𝑄𝑗 (17)  

    𝜃𝑘,𝑖,𝑙 ≥ 𝑔𝑘,𝑖 + ℎ𝑘min {min
𝑏∈𝐵

𝑑𝑖,𝑏
2 , 𝑑𝑖,𝑒̇

1 } − 𝑀(1 − 𝛼𝑘,𝑖,𝑙)  

∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼, 𝑙 ∈ 𝑄𝑖         (18) 

𝜋𝑘 = 𝜆𝑘,𝑒̇,0 − 𝜆𝑘,𝑒,0        ∀𝑘 ∈ 𝐾           (19) 

𝛼𝑘,𝑖,𝑙 ∈ {0,1}        ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒, 𝑒̇} , 𝑙 ∈ 𝑄𝑖       (20) 

𝛽𝑘,𝑖,𝑙,𝑗,𝑙′ ∈ {0,1}           ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒} , 𝑗 ∈ 𝐼 ⋃{𝑒̇} , 𝑙 ∈ 𝑄𝑖 , 𝑙′ ∈ 𝑄𝑗   (21) 

𝜑𝑘,𝑖,𝑙,𝑏 ∈ {0,1}        ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒} , 𝑏 ∈ 𝐵, 𝑙 ∈ 𝑄𝑖,        (22) 
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0 ≤ 𝜆𝑘,𝑖,𝑙 ≤ 𝑇        ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒, 𝑒̇} , 𝑙 ∈ 𝑄𝑖       (23) 

0 ≤ 𝜃𝑘,𝑖,𝑙 ≤ 𝑟𝑘        ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃ 𝐵 ⋃{𝑒, 𝑒̇} , 𝑙 ∈ 𝑄𝑖      (24) 

0 ≤ 𝜋𝑘 ≤ 𝑇        ∀𝑘 ∈ 𝐾.           (25) 

Objective (1) minimizes the total time for all of the UAVs to complete periodic inspection tasks, 

which comprises the flying time, the waiting time, the inspection time and the charging time. 

Constraints (2) guarantee that each inspection task at each monitoring site is assigned to one and only 

one UAV. Constraints (3) are the flow conservation constraints. Constraints (4) mean that if a UAV 

needs to fly to a charging station for recharging, this operation is scheduled after the completion of an 

inspection task. Constraints (5) and (6) ensure that each UAV departs from the origin site and arrives at 

the destination site. Constraints (7) guarantee that UAV 𝑘 does not fly directly from monitoring site 𝑖 

to monitoring site 𝑗 if there is a no-fly zone on the route from 𝑖 to 𝑗. Constraints (8) and (9) mean 

that UAV 𝑘 does not fly from monitoring site 𝑖 to charging station 𝑏 and then fly to monitor site 𝑗 

if there is a no-fly zone on the route from 𝑖 to 𝑏 or the route from 𝑏 to 𝑗. Constraints (10) and (11) 

are fly-time conservation constraints for the UAVs. Constraints (12) and (13) guarantee that the interval 

between two consecutive inspection tasks at one monitoring site is no shorter than the minimum interval 

time and no longer that the maximum interval time. Constraints (14) and (15) enforce power 

conservation when a UAV flies directly from one monitoring site to another monitoring site. Constraints 

(16) and (17) state that power is conserved when a UAV flies from a charging station to a monitoring 

site. Constraints (18) ensure that each UAV has sufficient power to travel to the destination site or the 

charging station closest to its current monitoring site. Constraints (19) compute the total time taken by 

a UAV to complete all of its inspection tasks. Constraints (20)–(25) define the decision variables. 

5 Solution methodology  

As is well known, the classical VRP is an NP-hard problem. The present study comprehensively 

considers the charging decisions, no-fly zone constraints and periodic-interval time windows in a VRP 

framework. The initial model M0  is therefore difficult to solve directly using CPLEX or other 

commercial solvers within an acceptable time, even for small-scale instances. Accordingly, this section 

develops a VNS-based metaheuristic for solving the model efficiently, based on the formulation and 

embedding of some simplified models. 

5.1. Algorithm framework 

Our problem can be divided into three subproblems. The first subproblem concerns the assignment 

of monitoring tasks (e.g., 𝛼𝑘,𝑖,𝑙). The second subproblem concerns the scheduling of each UAV to carry 
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out its task (e.g., 𝛽𝑘,𝑖,𝑙,𝑗,𝑙′). The third subproblem concerns the determination of which charging station 

each UAV should use for recharging after the UAV completes a monitoring task (e.g., 𝜑𝑘,𝑖,𝑙,𝑏). Since 

these three subproblems are intertwined, a non-optimized task-assignment plan could result in the 

monitoring interval constraints (12) and (13) not being satisfied, and a greedy scheduling plan could 

lead to the powering off of a UAV before it reaches a charging station or its next monitoring site. 

Therefore, a feasible initial solution must be generated to enable the model to be solved. In addition, 

effective neighborhood search strategies are needed to obtain improved solutions via iteration of the 

VNS algorithm. Finally, the charging decisions should be made from a global perspective, so that the 

performance of an inspection plan can be correctly evaluated. 

To address the above-described challenges and solve the devised model, the VNS-based approach 

was implemented via the following steps.  

Step 1: Initialize a feasible solution for conducting a neighborhood search. 

 Step 1.1: Obtain a feasible solution by iteratively solving the model 𝑀1_𝑛. 

 Step 1.2: Set the best inspection plan (𝐼𝑃∗) and the best objective value denoted 𝐹(𝐼𝑃∗), and set 

the local best inspection plan (𝐼𝑃̀) and local best objective value 𝐹(𝐼𝑃̀). 

Step 2: Repeat the following steps until one of the termination conditions is satisfied. 

 Step 2.1: Explore the neighborhood to find a new solution (𝐼𝑃̃) based on 𝐼𝑃̀ by adopting variable 

neighborhood descent (VND). 

 Step 2.2: Evaluate the new solution 𝐼𝑃̃ by solving the model 𝑀2 and obtain a new objective 

value 𝐹(𝐼𝑃̃). 

 Step 2.3: If 𝐹(𝐼𝑃̃) −  𝐹(𝐼𝑃∗) < 0, set 𝐼𝑃∗=𝐼𝑃̀ = 𝐼𝑃̃ and 𝐹(𝐼𝑃∗) =  𝐹(𝐼𝑃̃). 

 Step 2.4: Generate a new feasible solution (𝐼𝑃̇) adopting the shaking procedure and set 𝐼𝑃̃ = 𝐼𝑃̇. 

Step 3: Output the best inspection plan 𝑰𝑷∗ and its best objective 𝑭(𝑰𝑷∗). 

The stopping conditions are that (a) the iteration count exceeds a threshold and (b) 𝐹(𝐼𝑃∗) has not 

been improved by a given threshold. 

5.2. Initial solution generation 

In this paper, the UAV inspection plan comprehensively considers the constraints of the time interval, 

power limitations and no-fly zones. It is difficult to generate a feasible solution using heuristic rules 

without global considerations because the local heuristic strategy struggles to balance the conflict 

between charging constraints and monitoring time interval constrains. In addition, compared with the 

classical electric vehicle routing problem (EVRP) and electric vehicle routing problem with time 

windows (EVRPTW), it is difficult to use the original model 𝑀0 to obtain a feasible solution within a 
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short time using the CPLEX solver, given the expansion of the scale of the problem (as demonstrated 

in Section 6.2). We solve the problem in a rolling optimization manner to generate a feasible solution 

within a short time. Our core approach is to schedule the inspection routes for monitoring tasks one by 

one, according to the monitoring rounds (as shown in Figure 2). The procedure of this approach is 

illustrated in Figure 2. 

 

Figure 2: An example of the procedure for generating the initial inspection plan 

Each iteration solves a submodel 𝑀1_𝑛 (𝑛 = 1, . . . , max
𝑖∈𝐼

{|𝑄𝑖|}) listed in Appendix 1. The form of 

𝑀1_𝑛 is similar to that of the original model 𝑀0. However, there is only one round of monitoring tasks 

that need to be conducted by a certain number of UAVs. The first iteration (solving model 𝑀1_1) can 

be regarded as solving a classical EVRP and the subsequent iteration as solving a classical EVRPTW 

(solving model 𝑀1_2  to 𝑀1_𝑛 ) with a determined task assignment and routing sequence. A 

commercial solver cannot obtain the optimal solution within a short time but can generate a feasible 

solution within a reasonable time for conducting a neighborhood search. 

5.3. Neighborhood structure 

In the VNS process, diverse neighborhood structures need to be considered to adequately explore 

the search space. We thus designed four strategies to find a new solution, with consideration of the 

problem characteristics of multiple monitoring rounds and no-fly constraints. We denote the 𝑗𝑡ℎ 

inspection task for monitoring site 𝑖 as 𝑖 − 𝑗, to clarify the neighborhood structure in the following 

section. We also consider the constraints of no-fly zones that limit route accessibility. Therefore, we 

first examine the route accessibility of a new solution. If the inspection route violates constraints (7)–

(9), we search the corresponding neighborhood structure repeatedly until we obtain another new 

solution that does not violate constraints (7)–(9). A global tabu list is used to store the unsuccessful 

neighborhood searches and newly generated solutions to avoid the need for repeated searches. 

5.3.1 Strategy 1: Swapping monitoring tasks 
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Strategy 1 involves changing the inspection plan by swapping two monitoring tasks. Such a strategy 

can change a task assignment or monitoring sequence to obtain an improved inspection plan. Figure 3 

shows two options for applying Strategy 1 to search for a new solution. Under the first option, strategy 

1 changes the solution structure of 𝛼𝑘,𝑖,𝑙 and 𝛽𝑘,𝑖,𝑙,𝑗,𝑙′. However, under the second option, strategy 1 

only changes 𝛽𝑘,𝑖,𝑙,𝑗,𝑙′ . Specifically, taking option 1 as an example,  𝛼2,5,1 , 𝛼1,3,2 , 𝛽2,5,1,4,2  and 

𝛽1,1,2,3,2  have a value of 1 in the initial solution and a value of 0 after the neighborhood search 

adopting strategy 1. Subsequently, 𝛼1,5,1, 𝛼2,3,2, 𝛽2,3,2,4,2 and 𝛽1,1,2,5,1 equal 1.  

 
Figure 3: Examples for swapping monitoring tasks neighborhood structure 

5.3.2 Strategy 2: Inserting monitoring tasks 

In contrast to strategy 1, which keeps a constant total number of tasks assigned to a UAV, strategy 2 

changes the number of tasks assigned to a UAV because a better-performing UAV is sometimes able to 

complete more monitoring tasks than a poorer-performing UAV within the same period. In addition, 

strategy 2 locally changes the sequence of a UAV to make the inspection route more scientific than it 

was before. The above two options are illustrated on the right and left of Figure 4, respectively,. When 

performing strategy 2, we randomly select a monitoring task and insert it in a random location of the 

original sequence. The specific changes in the decision variables 𝛼𝑘,𝑖,𝑙  and 𝛽𝑘,𝑖,𝑙,𝑗,𝑙′  during a 

neighborhood search are similar to those described in Section 5.3.1. 
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Figure 4: Example for inserting monitoring task neighborhood structure 

5.3.3 Strategy 3: Inserting monitoring rounds 

Strategy 3 involves changing the solution by inserting monitoring tasks that belong to one monitoring 

round, thereby changing the task assignment and monitoring sequence from the perspective of the 

monitoring round. We use a monitoring-interval time window [𝑛𝑖, 𝑚𝑖] between two consecutive visits 

to a monitoring site. An optimal inspection plan should ensure that each UAV performs inspection work 

continuously, i.e., a UAV waits as little as possible before performing its next round of monitoring at a 

site. Therefore, strategy 3 randomly selects a round of monitoring tasks and reassigns some of the tasks 

to another UAV. In the example presented in Figure 5, in the initial solution, the monitoring tasks 3-2, 

4-2 and 2-2 are assigned to UAV 1 and conducted after task 1-2. After the neighborhood search via 

strategy 3, these tasks are inserted together into the start of the original sequence of UAV 2. The specific 

changes in the decision variables 𝛼𝑘,𝑖,𝑙 and 𝛽𝑘,𝑖,𝑙,𝑗,𝑙′ during the neighborhood search are similar to 

those described in Section 5.3.1. Strategy 3 finds an improved solution by assigning tasks to a better-

performing UAV and by optimizing the work continuity through separating the inspection tasks 

belonging to different rounds. 

 

Figure 5: Example for inserting monitoring rounds neighborhood structure 
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5.3.4 Strategy 4: Swapping inspection routes 

Strategy 4 involves changing the solution by swapping inspection routes of two UAVs. Such a 

strategy is motivated by the consideration of heterogenous UAVs. A better-performing UAV can 

complete the same monitoring tasks within a shorter time than a poorly performing UAV. Figure 4 

shows an example of a neighborhood search adopting strategy 4. The use of strategy 4 affects the 

solution structure of 𝛼𝑘,𝑖,𝑙 . There are at most |𝐾|(|𝐾| − 1)/2  neighborhood structures when |𝐾| 

UAVs perform the monitoring tasks. If all of the neighborhood structures have been searched for an 

input solution but no new solution has been generated, we use one of the other three strategies to search 

for a new solution.  

 
Figure 6: Example for swapping monitoring sequence neighborhood structure 

5.4 VND framework 

Using the neighborhood structures designed above, we devised a VND framework to search for a 

improved solution (where the pseudo-code is given in Appendix 3). The search procedure initially 

explores one neighborhood structure (i.e., it applies strategy 1 to generate a new solution) and then 

extends to the next neighborhood structure if no better solution is found. Once a better solution is found 

in the current neighborhood structure, the procedure returns to the first neighborhood and reiterates the 

above searching procedure until one of the stopping conditions is met.  

In the VND process, a simplified submodel M2 is used to evaluate the performance of the new 

inspection plan, as presented in Appendix 2. The difference between models M2 and M0 is that the 

decision variables 𝛼𝑘,𝑖,𝑙 and 𝛽𝑘,𝑖,𝑙,𝑗,𝑙′ are fixed in M2. In this way, most of the constraints, including 

the binary variables 𝛼𝑘,𝑖,𝑙 and 𝛽𝑘,𝑖,𝑙,𝑗,𝑙′, are eliminated, and the model retains only the binary variable 

𝜑𝑘,𝑖,𝑙,𝑏  and the continuous variables 𝜆𝑘,𝑖,𝑙 , 𝜃𝑘,𝑖,𝑙 , 𝜋𝑘 , and can be solved using a commercial solver 

within a short time, even for the large-scale instance. When the input inspection plan provides an 

infeasible solution, we set its objective value as 𝑀 and continue to search for a new solution in the 

next neighborhood.  
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5.5 Shaking strategy: regenerating a feasible solution 

At the beginning of each iteration, the shaking procedure needs to avoid becoming trapped in a local 

optimum. Thus, the shaking strategy for generating a new feasible solution is designed as the following 

heuristic, which is illustrated in Figure 7. In the first step, as far as possible, we assign the first round 

of inspection of each monitoring site to UAVs in a random but uniform manner to fix 𝛼𝑘,𝑖,1 for each 

monitoring site. We then solve model 𝑀1_1 given in Appendix 1 with the fixed variables 𝛼𝑘,𝑖,1 to 

generate the inspection route for the first round of monitoring tasks. Finally, we generate the inspection 

routes for the subsequent rounds through the rolling optimization process described in Section 5.2.  

 
Figure 7: Example for shaking strategy 

We take a problem with |𝐾|  UAVs and |𝐼|  monitoring sites as an example to illustrate the 

procedure for “assigning tasks in a random but uniform manner.” We assign 𝑄 tasks of the first -round 

inspection (e.g., inspection tasks 1-1, 2-1 and 3-1) to UAVs one by one, in decreasing order of UAV 

velocity, until all of the monitoring tasks are assigned. Here, 𝑄  equals ⌈|𝐼|/|𝐾|⌉.  Thus, the task 

assignment variables 𝛼𝑘,𝑖,1 are fixed by adopting the above heuristic. However, the assignment plan 

for the following round of inspection tasks may be infeasible when iteratively solving the model 

𝑀1_𝑛(𝑛 > 2). Thus, we randomly change the number of tasks assigned to a UAV in the range of [𝑄 −

𝜏, 𝑄 + 𝜏], where 𝜏 is an integer parameter that is randomly generated in the range of [1, ⌈𝑄/2⌉]. We 

then repeat the above procedure until a new feasible solution is generated via such a shaking strategy. 
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6 Numerical experiments 

This section reports on extensive numerical experiments conducted to assess the performance of the 

VNS algorithm, and sensitivity experiments are conducted to provide managerial insights. All of the 

experiments were conducted on a workstation equipped with two Intel Xeon Gold 5218R CPUs running 

at 2.10 GHz with 32 GB of memory on a Windows 10 operating system. The algorithm and models 

were programmed in C# (Visual studio 2022), and CPLEX 12.6.1 was used as the MILP solver. 

Considering that daily monitoring sites dynamically vary during construction (i.e., the sites can change 

daily), the design of a UAV inspection routing and scheduling plan should not be time consuming. The 

time limit was thus set to 3600 s to satisfy the demands of practical decision planning. 

6.1. Generation of test parameters 

Instances were generated to simulate a series of scenarios in which UAVs carry out inspection tasks 

in an engineering project. In practice, inspection tasks are normally performed during periods of 

construction work (e.g., from 8h to 12h or from 14h to 17h) and monitoring sites can be different in the 

morning and afternoon (or night). In addition, different construction areas have different types of hidden 

dangers that need to be monitored by UAVs. Thus, the present study took four hours as a planning 

horizon (|𝑇|) for determining the inspection plan of UAVs. Monitoring sites and charging stations were 

distributed over a square area of 100 km2 and the Euclidean distance was calculated as the distance 

between any two nodes for a UAV. Regarding the performance of UAVs used for inspection, Table 1 

gives the parameter settings of UAVs, with reference to the M300 RTK UAV of Dajiang Company (Dji, 

2023). The interval time windows of different monitoring sites were set as [0.5 ×
|𝑇|

max
𝑖∈𝐼

{|𝑄𝑖|}
,

|𝑇|

max {
𝑖∈𝐼

|𝑄𝑖|}
] 

to enable UAVs to search for hidden construction dangers at monitoring sites periodically over one 

planning horizon. The number of no-fly zones affects the route accessibility for UAVs, and it was 

assumed that 20% of all arcs were inaccessible because of no-fly zones.  

Table 1: Parameter setting for heterogenous UAVs 

Parameter Range setting Unit Parameter Range setting Unit 

𝑟𝑘 [5000,7000] mA 𝑐𝑘 [6000,6400] mA/h 

ℎ𝑘 [180,220] mA/km 𝑡𝑘,𝑖 [0.03,0.05] h 

𝑣𝑘 [36,72] km/h 𝑔𝑘,𝑖 [200,400] mA/h 
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On the basis of the settings given in Table 1, we generated nine instance groups (ISGs) to assess the 

efficiency of our algorithm. Table 2 gives the key parameter settings of the different ISGs. ISG1, ISG2 

and ISG3 were regarded as small-scale instances; ISG4, ISG5 and ISG6 were regarded as medium-scale 

instances; and ISG7, ISG8 and ISG9 were regarded as large-scale instances.  

Table 2: Key parameters settings for different problem instance groups 

Group 

ID 

No.of UAVs 

(|𝐾|) 

No.of monitoring 

sites (|𝐼|) 

No.of charging 

stations (|𝐵|) 

No.of maximum 

monitoring 

round (|𝑄|) 

No.of duration 

of planning 

horizon (|𝑇|) 

ISG1 2 4 3 2 4 

ISG2 2 5 3 2 4 

ISG3 2 6 3 3 4 

ISG4 3 7 3 3 4 

ISG5 3 8 3 3 4 

ISG6 4 9 3 4 4 

ISG7 5 12 4 4 4 

ISG8 5 14 4 4 4 

ISG9 6 16 5 4 4 

6.2. Investigation of the solution quality of the algorithm 

The first series of numerical experiments were conducted on small-scale instances to compare the 

results obtained using the CPLEX solver, the VNS-based metaheuristic and the initial generation 

strategy introduced in Section 5.2. Table 3 gives a comparison of the results for the objective value and 

the computing time, showing that CPLEX obtained an optimal solution only for the first two small-

scale instance groups (i.e., ISG1 and ISG2) within 3600 s. In contrast, our algorithm obtained an same 

solution for ISG1 and ISG2 within 30 s. When CPLEX could not obtain the optimal solution within 

3600 s, we compared its upper bound solution value with the solution value of our algorithm. The 

average difference between two values was −13.86%, and the computing time of the devised algorithm 

was less than 120 s, which indicates that it obtained a better solution than the CPLEX solver within a 

short time for the ISG3 problem scale. In addition, the average differences between the solutions of the 

devised algorithm and initial generation strategy for ISG1, ISG2 and ISG3 were 17.54%, 17.56% and 

23.85% respectively. The neighborhood structures described in Section 5.3 were therefore effective in 

finding improved solutions within the VND search framework.  

The second series of numerical experiments were conducted on the medium-scale instances. Table 4 

shows that our algorithm obtained a solution far better than that obtained by CPLEX within 3600 s 
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(with the average difference being –30.74%). With increases in the number of monitoring sites and 

monitoring rounds, CPLEX could not obtain a feasible solution for ISG5 and ISG6 within 3600 s, 

whereas the devised algorithm solved the model within 300 s. In addition, the average difference 

between the solutions of devised algorithm and the initial generation strategy on the medium-scale 

instances was 19.21%, which confirms the good performance of the VNS-based metaheuristic in 

searching for better solutions.  

The third series of numerical experiments were conducted on the large-scale instances. As the CPLEX 

solver could not obtain a feasible within a reasonable time on large-scale instances, Table 5 gives the 

differences between the solutions (i.e., Gap2) obtained via the VNS-based approach and via the initial 

generation strategy. The average value of Gap2 was 21.87%, which was larger than the value for the 

medium-scale instances (19.21%) and that for the small-scale instances (19.65%). This indicates that 

our algorithm was stable and effective in finding the best solution on different instances sizes. Most 

importantly, the computing times required for solving the nine ISGs were much shorter than 3600 s, 

indicating that our algorithm can effectively help an engineering manager plan a UAV inspection for 

application in a dynamically changing engineering schedule. 

Table 3: Algorithm performance for small-scale instances 

Instance  CPLEX Strategy VNS  Gap 

Group ID  Obj (h) Time (s) Obj (h) Obj (h) Time (s)  Gap1 Gap2 

ISG1 

 

1  1.39 8 1.66 1.39 24  0.00% 20.03% 

2  1.51 7 1.83 1.51 13  0.00% 21.28% 

3  1.45 8 1.75 1.45 13  0.00% 20.57% 

4  1.78 13 1.94 1.78 15  0.00% 9.29% 

5  1.71 9 2.05 1.71 12  0.00% 19.87% 

Average  0.00% 17.54% 

ISG2 

1  1.59 143  1.82 1.59 12   0.00% 14.80% 

2  1.66 91  1.94 1.66 10   0.00% 17.25% 

3  1.53 294  1.90 1.53 25   0.00% 24.37% 

4  1.61 186  1.79 1.61 13   0.00% 11.51% 

5  1.56 271  1.87 1.56 19   0.00% 19.86% 

Average  0.00% 17.56% 

ISG3 

 

1  3.66 >3600 3.82 2.91 30  –20.56% 31.46% 

2  3.85 >3600 3.88 3.23 86  –16.04% 19.93% 

3  3.79 >3600 4.14 3.19 25  –15.72% 29.71% 

4  3.78 >3600 3.72 3.09 46  –18.28% 20.38% 

5  3.91 >3600 3.97 3.37 23  –13.64% 17.75% 

Average  –16.85% 23.85% 

Average –5.62% 19.65% 

Note: (1) “Gap1” and “Gap2” represent the optimality gap between the objective values of solutions obtained by 

CPLEX, the initial generation strategy and the VNS-based solution approach, respectively; (2) “>3600” means 

that the computing time of obtaining the optimal solution for CPLEX is more than 3600 seconds; (3) “Obj” 

represents the objective value of proposed model solved by each solution methodology; (4) “ID” represents the 

different instances for the same instance size. 
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Table 4: Algorithm performance for medium-scale instances 

Instance  CPLEX Strategy VNS  Gap 

Group ID  Obj (h) Time (s) Obj (h) Obj (h) Time (s)  Gap1 Gap2 

ISG4 

 

1  5.53 >3600 4.70 4.23 76  –23.61% 11.16% 

2  4.39 >3600 3.99 3.18 72  –27.51% 25.45% 

3  6.11 >3600 4.55 3.64 74  –40.33% 24.93% 

4  6.27 >3600 4.76 4.32 89  –31.04% 10.10% 

5  4.55 >3600 3.91 3.13 79  –31.18% 24.64% 

ISG5 

1  —— >3600 7.06 6.16 134   —— 14.56% 

2  —— >3600 5.23 4.65 187   —— 12.35% 

3  —— >3600 5.39 4.80 177   —— 12.23% 

4  —— >3600 7.13 6.28 74   —— 13.50% 

5  —— >3600 6.35 4.99 174   —— 27.22% 

ISG6 

 

1  —— >3600 8.33 6.50 288   —— 28.27% 

2  —— >3600 5.18 4.40 197   —— 17.75% 

3  —— >3600 7.85 6.72 166   —— 16.90% 

4  —— >3600 8.56 6.86 155   —— 24.87% 

5  —— >3600 5.59 4.50 218   —— 24.20% 

Average –30.74% 19.21% 

Note: (1) A dash means the computation time of CPLEX for obtaining a feasible solution exceeds 3600 seconds; 

(2) “Gap1” and “Gap2” represent the optimality gap between the objective values of solutions obtained by CPLEX, 

the initial generation strategy and the VNS-based solution approach, respectively; (3) “>3600” means that the 

computing time of obtaining the optimal solution for CPLEX is more than 3600 seconds. (4) “Obj” represents the 

objective value of proposed model solved by each solution methodology; (5) “ID” represents the different 

instances for the same instance size.  

Table 5: Algorithm performance for large-scale instances 

Instance  Strategy VNS  Gap 

Group ID  Obj (h) Obj (h) Time (s)  Gap2 

ISG7 

 

1  10.41 8.24  947   26.45% 

2  9.91 7.73  731   28.19% 

3  10.92 8.69  553   25.61% 

4  12.92 10.60  617   21.87% 

5  9.69 8.39  1029   15.46% 

ISG8 

1  12.94 10.72  1872   20.63% 

2  10.69 8.62  1495   24.05% 

3  11.16 9.40  878   18.74% 

4  10.47 8.36  1343   25.29% 

5  10.60 8.96  845   18.31% 

ISG9 

 

1  13.56 10.77  1684   25.91% 

2  14.32 11.64  1482   23.06% 

3  12.56 10.68 1194   9.44% 

4  13.25 11.95  1560   10.89% 

5  14.78 11.73  2548   25.97% 

Average 21.87% 

Note: (1) “Gap2” represents the gap between the solutions obtained by optimality and the initial generation 

strategy; (2) “Obj” represents the objective value of proposed model solved by each solution methodology; (3) 

“ID” represents the different instances for the same instance size.  
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6.3 Derivation of managerial insights from sensitivity analyses 

This subsection reports on sensitivity analyses performed to derive managerial insights into 

optimizing planning of UAV inspections. The sensitivity analyses were conducted from two 

perspectives. The first was the number of UAVs and the second was the speed of the UAVs.  

6.3.1 Sensitivity analysis on the number of UAVs used for the inspections 

The number of UAVs used for inspections affects the total working time of UAVs. However, too 

many UAVs could result in low efficiency (e.g., only a few inspection tasks being assigned to a UAV), 

whereas too few UAVs could require a long time to complete all of the inspection tasks (e.g., the UAVs 

need to recharge frequently during the process of inspection). It is thus necessary for an engineering 

manager to determine the suitable number of UAVs to use for conducting inspection tasks. We took the 

small-scale instances (ISG1, ISG2 and ISG3) as examples to investigate the relationship between the 

number of UAVs and the total working time. In addition, we excluded the effect of the UAV 

performance (e.g., the velocity or battery capacity) by assuming that the performance of the UAVs was 

homogenous when changing the number of UAVs. Figure 8 shows the effect of the number of UAVs 

used for the inspections on the total working time. It can be seen that two UAVs was suitable for ISG1 

and ISG2 and five UAVs was suitable for ISG3. 

 
Figure 8: Sensitivity analysis on the number of UAVs for the inspections 

The above results indicate that on the scale of ISG1 and ISG2, two UAVs were sufficient to complete 

all of the inspection tasks. Thus, investing in more UAVs to conduct the same number of inspection 

tasks would increase the total working time for no gain, as this would simply increase the amount of 

unnecessary flying time and prolong the waiting time. However, the maximum number of monitoring 

rounds and number of monitoring sites are both much larger for ISG3 than for ISG1 and ISG2, and the 

UAVs thus need to perform more inspection tasks at the same number of monitoring sites for ISG3 than 

for ISG1 and ISG2. Thus, increasing the number of UAVs for inspection tasks for ISG3 would reduce 

the total working time for completing all of the inspection tasks. These results reveal to an engineering 

manager that it is necessary to consider an appropriate ratio of the number of UAVs for inspection to 

the total number of inspection tasks, and that this ratio is affected by the performance of UAVs and the 

range of inspection areas. 
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6.3.2 Sensitivity analysis of the variation in UAV performance 

The performance of UAVs used for the inspections greatly affects their total working time. This 

subsection discusses the effect of variations in different parameters of UAVs on their total working time, 

thereby showing each parameter’s importance in terms of reducing the total working time. The battery 

power (𝑟𝑘), the average velocity (𝑣𝑘) and the power consumption per unit distance (ℎ𝑘) were the three 

parameters considered in the sensitivity experiment. To explore the importance of variations in these 

three parameters, we set a benchmark for each and varied the parameters from their benchmark settings 

by −20% to 20%. In addition, it is intuitive that compared with a UAV traveling at a lower speed, a 

UAV traveling at a higher speed requires more power, which means that the power consumption per 

distance increases. We thus made the variation in ℎ𝑘  the same as that in 𝑣𝑘  when changing the 

average velocity of a UAV. The above three parameters were varied on the scales of ISG1, ISG2 and 

ISG3, and the results are shown in Figure 9. 

 
Figure 9: Sensitivity analysis on the variation of UAVs’ performance 

These experiments provided interesting insights. First, increasing only the battery power above a 

threshold decreased the total working time, owing to a decrease in the charging time. Second, increasing 

the average velocity of the UAVs did not always reduce the total working time when there were a low 

number of monitoring tasks and a low maximum number of monitoring rounds (Figures 9a and 9b). 

This is because the power consumption per unit distance typically increases with the average velocity 

for the current technology standard, resulting in an increase in the time spent charging or waiting. 

However, increasing the velocity of UAVs was an effective way to shorten the total working time when 

there were many inspection tasks (at least up to the scale of ISG3). Finally, an increase in power 

consumption per unit distance resulted in an increase in the working time required to completing the 

inspection tasks. This is because an increases in power consumption per unit distance results in a 

decrease in the distance that a UAV can fly within one charging cycle. The above analysis should be 

helpful to a project manager purchasing UAVs for inspection tasks in an engineering project, as it shows 

that to effectively improve the efficiency of inspection works, UAV velocity should be the primary 

consideration, followed by UAV endurance. 
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7 Case study 

In this section, the SZYB engineering project is taken as an example of the use of the devised model 

and algorithm to decide on an inspection plan. As the SZYB is still under construction, it provides a 

simulated real-world problem scale for our investigation. Numerical experiments were conducted using 

real-world parameter settings, and several analyses were performed. 

7.1. Case background 

As mentioned in the Section 1, the UAV-based inspection approach has great advantages for 

performing inspection tasks in such complex and high-risk construction environment to continuously 

screen out the potential hidden-danger (illustrated by the Figure 10). The proposed mathematical model 

and algorithm provide a scientific tool for a project manager to determine the inspection plan of UAVs 

(inspection tasks assignment, monitoring sequence and charging decisions). Thus, in order to show the 

practical application of the solution approach for determining the UAVs’ inspection plan, we take SZYB 

for case study and simulate the decision-making based the estimated data from the real-world cases. 

 
Figure 10: The application of the UAV-based inspection approach in the engineering management 

The SZYB crosses the Pearl River and has a length of 2180 m. It is located in Guangzhou, Guangdong 

province, and serves as an engineering control project of the Shiziyang Channel dedicated to 

strengthening the connectivity of the surrounding cities and regions. Figure 11 shows the approximate 

location and a concept graph of the SZYB. Such an ultra-large span, high load and ultra-wide deck 

suspension bridge is technically difficult to construct to a world-class standard. In addition, there are 

additional difficulties associated with construction of the SZYB, since engineering characteristics such 

as the ultra-large scope of construction, high technical difficulties and long construction period mean 

that there are many construction areas at high risk throughout the construction cycle. It is therefore 

essential for project managers to carry out continuous screening operations to identify hidden dangers 

and hence reduce the incidence of major accidents. 
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Figure 11: The concept graph of Shiziyang Bridge 

7.2. Case results 

This subsection describes the parameter settings based on estimation data for the real-scale case of 

the SZYB. The performance of the devised approach for solving the real-world instance is as follows. 

7.2.1. Performance in solving the real-scale instance 

The parameter settings for the real-world instance were first clarified before we conducted numerical 

experiments to validate the efficiency of the devised algorithm in solving our model. 

According to planning files kept by the Department of Transport of Guangdong Province (DTGP, 

2021), the construction areas of the SZYB could be approximately simulated as a 12 km long and 2 km 

wide rectangle (as illustrated in Figure 12). We estimated a likely problem scale that was much larger 

than the scale of ISG9 (listed in Table 6) for determining the UAV inspection plan in the case of the 

SZYB, and we refer to this new instance group as ISG10. The other parameters were set the same as in 

Section 6.1. The following computing results were obtained for ISG10 and from the problem simulation 

shown in Figure 12. 

 
Figure 12: An example of the distribution of monitoring tasks based the real case of SZYB 
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Table 6: Parameter setting in the real-scale instance 

Group 

ID 

No.of UAVs 

(|𝐾|) 

No.of monitoring 

sites (|𝐼|) 

No.of maximum 

monitoring round (|𝑄|) 

No.of charging 

stations (|𝐵|) 

No.of duration 

of planning 

period (|𝑇|) 

ISG10 8 22 4 6 4 

Table 7 shows that the devised algorithm obtained the best solution for most of the real-world instance 

within 3600 s. There was an average difference of 23.64% between the results obtained using the 

devised algorithm and those obtained using the strategy described in Section 5.2. The results confirmed 

the efficiency of the devised algorithm in solving the real-world instance. 

Table 7: Results of solving the proposed model on the real-scale instance 

Instance  Strategy VNS  GAP 

Group ID  Obj (h) Obj (h) Time (s)  𝐺𝑎𝑝2 

ISG10 

1  15.87 12.69  2403   25.08% 

2  14.12 11.67  1900   20.95% 

3  14.29 11.70  3447   22.09% 

4  14.53 11.42  2271   27.15% 

5  15.66 12.74  2697   22.92% 

Average 23.64% 

If the computing time for solving the devised model were required to be much shorter than 3600 s, it 

would be helpful to cluster the monitoring sites into a series of smaller areas (i.e., separate to four 

rectangular areas that are 4 km long and 2 km wide). Then, the devised model and algorithm could be 

adopted to obtain the inspection plan of the corresponding areas separately; i.e., we could solve four 

subproblems (involving two UAVs, five or six monitoring sites and two charging stations) 

simultaneously to obtain a series of inspection plans for the different smaller areas. Although this would 

incur some loss of optimality, owing to the separate solving of a series of medium-scale problems, it 

would be a practical approach for reducing the computing time of the real-world instance having many 

monitoring sites, because the computing time for any medium-scale instance is no more than five min. 

An effective method of clustering monitoring sites to different sub-areas is left as future work.  

7.2.2. Practical application of our approach for making an inspection plan 

The above numerical experiments provided the computing results of the objective value to validate 

the effectiveness and efficiency of the devised algorithm in solving a real-world instance, but they did 

not present the obtained UAV inspection plan. This subsection demonstrates the practical application 

our approach for making real-world inspection plans.  

To simulate the real-world instance as realistically as possible, we generated an instance with six 
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UAVs, 20 monitoring sites and eight charging stations, based on the realistic situation where (1) the 

monitoring sites were averagely placed within the construction area of the SZYB, (2) the charging 

stations were distributed in corresponding construction areas to satisfy the charging demand, and (3) 

each UAV begins its inspection tasks on one side of the SZYB and ends these tasks on the other side. 

On the basis of these requirements, a real-world instance is illustrated in Figure 13. Here, we needed to 

generate a practical inspection plan for a certain number of UAVs.  

 
Figure 13: A real-world instance for making the practical inspection plan of UAVs 

The inspection plan obtained using our approach is presented in Table 8, and the Gantt chart of the 

inspection plan is presented in Figure 14. Owing to space limitations, information on the charging 

decisions of UAVs is omitted from the chart. The following insights were gained from the results for 

the real-world case. First, it was found that all of the UAVs, except UAV 3 and UAV 4, continuously 

performed inspection tasks for a long time. UAV 3 and UAV 4 could be regarded as emergency workers 

dedicated to performing inspection tasks that may not be completed by other busy UAVs. Second, the 

time intervals between two consecutive inspection tasks of a UAV were usually shorter than 10 min but 

sometimes much longer than 10 min (e.g., 18 min between tasks 13-1 and 2-2). Except in a case of a 

long distance between two inspection tasks, the time was mainly spent on charging. All time intervals 

were shorter than 30 min, meaning that UAVs tended to charge frequently instead of returning to a 

charging station once nearly depleted of power. The latter charging strategy would result in UAVs 

spending a long time waiting to fully charge, which would violate the time interval requirement.  

 
Figure 14: The Gantt chart of the inspection work  
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Table 8: The timetable of inspection work for the real-world instance illustrated at Figure13 

U

A

V 

Inspection tasks of 1𝑠𝑡 

round 

Inspection tasks of 2𝑛𝑑 

round 

Inspection tasks of 3𝑟𝑑 

round 

Inspection tasks of 4𝑡ℎ 

round 

𝐼_𝑖𝑛𝑑𝑒𝑥 𝐼_𝑡𝑖𝑚𝑒 𝐼_𝑖𝑛𝑑𝑒𝑥 𝐼_𝑡𝑖𝑚𝑒 𝐼_𝑖𝑛𝑑𝑒𝑥 𝐼_𝑡𝑖𝑚𝑒 𝐼_𝑖𝑛𝑑𝑒𝑥 𝐼_𝑡𝑖𝑚𝑒 

1 

0 8:53 2 9:27 2 10:05 2 10:38 

2 8:54 3 9:31 3 10:09 3 10:42 

3 8:58 9 9:37 16 10:16 9 10:49 

9 9:04 13 9:41 13 10:21 13 10:53 

13 9:09       

21 10:59     Total Time: 2h6min 

2 

0 8:30 10 9:09 17 9:58 17 10:31 

17 8:36 17 9:20 14 10:04 14 10:36 

6 8:41 14 9:25 18 10:09 18 10:42 

14 8:47 18 9:31 8 10:26 12 10:46 

18 8:52 12 9:36     

12 8:56       

7 9:03       

8 9:06       

21 10:51     Total Time: 2h21min 

3 
0 9:51 8 9:54 12 10:08 10 10:13 

21 10:19     Total Time: 28min 

4 

0 10:26   5 10:27 1 10:48 

21 11:04   7 10:30 6 10:54 

        

      Total Time: 38min 

5 

0 8:57 1 9:23 11 10:06 11 10:46 

11 9:01 11 9:34 9 10:10 16 10:51 

16 9:09 6 9:38 1 10:16 5 11:00 

5 9:17 16 9:43 6 10:21 7 11:03 

21 11:11 5 9:52     

  7 9:58     

  15 9:09   Total Time: 2h14min 

6 

0 8:00 20 9:16 15 9:09 15 9:45 

15 8:05 19 9:19 20 9:16 20 9:49 

20 8:09 4 9:28 19 9:19 19 9:52 

19 8:12 10 9:41 4 9:28 4 10:00 

1 8:21   10 9:41   

4 8:24       

10 8:31       

21 10:10     Total Time: 2h10min 

Note: (1) “𝐼_𝑖𝑛𝑑𝑒𝑥” and “𝐼_𝑡𝑖𝑚𝑒” denote the index of different monitoring sites and corresponding monitoring 

time, respectively; (2) The time of monitoring sites “0” and “21” indicate the departure time of the corresponding 

UAV from the origination and the arriving time at the destination, respectively; (3) The planning horizon is set as 

8h to 12h in the above experiment.  
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8 Conclusion 

This paper explored the UAV inspection routing and scheduling problem in the context of engineering 

project construction, and an MILP model was formulated to optimize the total working time of UAVs 

completing a set of monitoring tasks. The devised model comprehensively considers the limitations of 

no-fly zones, interval windows and the power of a UAV when developing UAV inspection routing and 

scheduling plans. A VNS-based metaheuristic was developed to solve the devised model efficiently. 

Numerical experiments were performed to validate the effectiveness of the devised model and algorithm. 

Finally, a case study of the SZYB project was conducted to derive practical insights for engineering 

managers that would enable them to optimize the efficiency of inspection works. The major 

contributions of the study are summarized as follows. 

(1) From a modeling perspective, we comprehensively considered specific constraints in determining 

a UAV inspection plan using a devised MILP model; i.e., no-fly zone limitations, rolling monitoring 

interval time window constraints and power limitations. These specific constraints distinguish the 

devised model from typical models dedicated to the EVRP or EVRPTW. To the best of our knowledge, 

few papers have incorporated the above practical constraints in the context of engineering management 

into a mathematical model or focused on the routing and scheduling of UAVs against the above 

background. 

(2) From an algorithmic perspective, we developed a VNS-based metaheuristic to efficiently solve 

the devised model, as even a commercial solver struggles to find a feasible solution for this model on 

the large-scale instances. Tailored neighborhood structure and initialization methods based on the 

specific features of the problem were developed. Extensive numerical experiments validated the 

efficiency of the devised algorithm for solving large-scale instances within 30 min. 

(3) From a practical perspective, we gained several managerial insights from sensitivity experiments. 

For example, the suitable number of UAVs for performing different numbers of inspection tasks should 

be evaluated. Investing extensively in purchasing UAVs for inspections may not necessarily reduce the 

total working time; instead, it may increase unnecessary costs. A comparative experiment showed that 

an engineering manager purchasing UAVs within a limited budget should prioritize the velocity of 

UAVs, followed by their power consumption per unit distance, and finally their battery power. Finally, 

it is best for UAVs—especially those conducting many inspection tasks—to charge frequently, as this 

reduces the time they have to wait to become fully charged.  

This paper makes contributions to the inspection routing and scheduling optimization of UAVs in the 

context of engineering management, but there remain topics deserving of investigation. As mentioned, 
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the optimal number of UAVs for different scales of inspection work should be further explored. In 

addition, the uncertainty in inspection time for a monitoring site and in power consumption should be 

considered. Finally, a dynamic or stochastic programming method should be introduced so that the 

model and decision making are practical. 
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Appendices 

Appendix 1: A submodel for iteratively generating a feasible inspection plan 

Before addressing the model, a new set are defined: 𝑃𝑛
𝐹 = {1, … , 𝑛 − 1}, 𝑃𝑛

𝐵 = {𝑛}, 𝑛 ∈

{1, … , max
𝑖∈𝐼

{|𝑄𝑖|}}. For the first iteration, 𝑃1
𝐹 = ∅. The model for the 𝑛𝑡ℎ iteration is formulated as 

follows. It is noted that the decisions on the inspection routes for the first round of monitoring sites 

would not consider the time interval constraints (40)–(41), thus the 𝑀1_1  could be regarded as a 

classical EVRP and is easily to generate a feasible solution for CPLEX within a short time. Begin with 

the second iteration, constraints (40)–(41) would be considered to guarantee that the time interval of 

consecutive visit of monitoring site 𝑖 is limited in the range of [𝑚𝑖,𝑛𝑖]. It could be regarded as an 

EVRPTW for which it may be difficult to generate a feasible solution with the CPLEX solver within a 

short time under large-scale instances. Thus, we further fix the 𝛼𝑘,𝑖,𝑙  and 𝛽𝑘,𝑖,𝑙,𝑗,𝑙′  , ∀𝑘 ∈ 𝐾, 𝑖, 𝑗 ∈

𝐼, 𝑙, 𝑙′ ∈ 𝑃𝑛
𝐵 with the corresponding value as set 𝑃𝑛

𝐹 to speed up the solving. The procure is illustrated 

as the Figure 15. 

 

Figure 15: Strategy for speeding up the generation of a feasible solution in the large-scale instances 
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𝐼𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎: all the input data for the original model  

𝛼𝑘,𝑖,𝑙 , 𝛽𝑘,𝑖,𝑙,𝑗,𝑙′ , 𝜆𝑘,𝑖,𝑙 , 𝜃𝑘,𝑗,𝑙′      ∀𝑘 ∈ 𝐾, 𝑖, 𝑗 ∈ 𝐼, 𝑙, 𝑙′ ∈ 𝑃𝑛
𝐹 

[𝑀1_𝑛] Minimize ∑ 𝜋𝑘𝑘∈𝐾                  (26 ) 

subject to: 

∑ 𝛼𝑘,𝑖,𝑙𝑘∈𝐾 = 1        ∀𝑖 ∈ 𝐼, 𝑙 ∈ 𝑃𝑛
𝐵           (27 ) 

∑ ∑ 𝛽𝑘,𝑖,𝑙,𝑗,𝑙′𝑙′∈𝑄𝑗𝑗∈𝐼 ⋃{𝑒̇} = 𝛼𝑘,𝑖,𝑙 = ∑ ∑ 𝛽𝑘,𝑗,𝑙′,𝑖,𝑙𝑙′∈𝑄𝑗𝑗∈𝐼 ⋃{𝑒}   ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼, 𝑙 ∈ 𝑃𝑛
𝐵     (28 ) 

∑ 𝜑𝑘,𝑖,𝑙,𝑏𝑏∈𝐵 ≤ ∑ ∑ 𝛽𝑘,𝑖,𝑙,𝑗,𝑙′𝑙′∈𝑄𝑗𝑗∈𝐼 ⋃{𝑒̇}   ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼, 𝑙 ∈ 𝑃𝑛
𝐹         (29 ) 

𝛽𝑘,𝑖,𝑙,𝑗,𝑙′ ≤ 𝑓𝑖,𝑗
1 + 𝑀 ∑ 𝜑𝑘,𝑖,𝑙,𝑏𝑏∈𝐵    ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒} , 𝑗 ∈ 𝐼 ⋃{𝑒̇} , 𝑙, 𝑙′ ∈ 𝑃𝑛

𝐵      (30 ) 

𝛽𝑘,𝑖,𝑙,𝑗,𝑙′ ≤ 𝑓𝑖,𝑏
2 + 𝑀(1 − 𝜑𝑘,𝑖,𝑙,𝑏)   ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒} , 𝑗 ∈ 𝐼 ⋃{𝑒̇} , 𝑙, 𝑙′ ∈ 𝑃𝑛

𝐵     (31 ) 

𝛽𝑘,𝑖,𝑙,𝑗,𝑙′ ≤ 𝑓𝑗,𝑏
2 + 𝑀(1 − 𝜑𝑘,𝑖,𝑙,𝑏)   ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒} , 𝑗 ∈ 𝐼 ⋃{𝑒̇} , 𝑙, 𝑙′ ∈ 𝑃𝑛

𝐵     (32 ) 

𝜆𝑘,𝑖,𝑙 + 𝑡𝑘,𝑖 +
𝑑𝑖,𝑗

1

𝑣𝑘
≤ 𝜆𝑘,𝑗,𝑙′ + 𝑀(1 − 𝛽𝑘,𝑖,𝑙,𝑗,𝑙′) ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒} , 𝑗 ∈ 𝐼 ⋃{𝑒̇} , 𝑙, 𝑙′ ∈ 𝑃𝑛

𝐹 ∪ 𝑃𝑛
𝐵   (33 ) 

𝜆𝑘,𝑖,𝑙 + 𝑡𝑘,𝑖 +
𝑑𝑖,𝑏

2

𝑣𝑘
+

(𝑟𝑘−𝜃𝑘,𝑖,𝑙+ℎ𝑘𝑑𝑖,𝑏
2 )

𝑐𝑘
+

𝑑𝑏,𝑗
2

𝑣𝑘
≤ 𝜆𝑘,𝑗,𝑙′ + 𝑀(2 − 𝜑𝑘,𝑖,𝑙,𝑏 − 𝛽𝑘,𝑖,𝑙,𝑗,𝑙′)  

        ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒} , 𝑏 ∈ 𝐵, 𝑗 ∈ 𝐼 ⋃{𝑒̇} , 𝑙, 𝑙′ ∈ 𝑃𝑛
𝐹 ∪ 𝑃𝑛

𝐵    (34 )  

𝜆𝑘′,𝑖,𝑙+1 ≥ 𝜆𝑘,𝑖,𝑙 + 𝑡𝑘,𝑖 + 𝑚𝑖 − 𝑀(2 − 𝛼𝑘,𝑖,𝑙 − 𝛼𝑘′,𝑖,𝑙+1) ∀𝑘, 𝑘′ ∈ 𝐾, 𝑖 ∈ 𝐼, 𝑙 ∈ 𝑃𝑛
𝐵     (35 ) 

𝜆𝑘′,𝑖,𝑙+1 ≤ 𝜆𝑘,𝑖,𝑙 + 𝑡𝑘,𝑖 + 𝑛𝑖 + 𝑀(2 − 𝛼𝑘,𝑖,𝑙 − 𝛼𝑘′,𝑖,𝑙+1) ∀𝑘, 𝑘′ ∈ 𝐾, 𝑖 ∈ 𝐼, 𝑙 ∈ 𝑃𝑛
𝐵     (36 ) 

𝜃𝑘,𝑗,𝑙′ ≤ 𝜃𝑘,𝑖,𝑙 − 𝑔𝑘,𝑖 − ℎ𝑘𝑑𝑖,𝑗
1 + 𝑀(∑ 𝜑𝑘,𝑖,𝑙,𝑏𝑏∈𝐵 + 1 − 𝛽𝑘,𝑖,𝑙,𝑗,𝑙′)  

∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒} , 𝑗 ∈ 𝐼 ⋃{𝑒̇} , 𝑙, 𝑙′ ∈ 𝑃𝑛
𝐹 ∪ 𝑃𝑛

𝐵      (37 ) 

𝜃𝑘,𝑗,𝑙′ ≥ 𝜃𝑘,𝑖,𝑙 − 𝑔𝑘,𝑖 − ℎ𝑘𝑑𝑖,𝑗
1 − 𝑀(∑ 𝜑𝑘,𝑖,𝑙,𝑏𝑏∈𝐵 + 1 − 𝛽𝑘,𝑖,𝑙,𝑗,𝑙′)  

∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒} , 𝑗 ∈ 𝐼 ⋃{𝑒̇} , 𝑙, 𝑙′ ∈ 𝑃𝑛
𝐹 ∪ 𝑃𝑛

𝐵      (38 ) 

    𝜃𝑘,𝑗,𝑙′ ≥ 𝑟𝑘 − ℎ𝑘𝑑𝑗,𝑏
2 − 𝑀(2 − 𝜑𝑘,𝑖,𝑙,𝑏 − 𝛽𝑘,𝑖,𝑙,𝑗,𝑙′) 

∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒} , 𝑏 ∈ 𝐵, 𝑗 ∈ 𝐼 ⋃{𝑒̇} , 𝑙, 𝑙′ ∈ 𝑃𝑛
𝐹 ∪ 𝑃𝑛

𝐵    (39 ) 

    𝜃𝑘,𝑗,𝑙′ ≤ 𝑟𝑘 − ℎ𝑘𝑑𝑗,𝑏
2 + 𝑀(2 − 𝜑𝑘,𝑖,𝑙,𝑏 − 𝛽𝑘,𝑖,𝑙,𝑗,𝑙′) 

∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒} , 𝑏 ∈ 𝐵, 𝑗 ∈ 𝐼 ⋃{𝑒̇} , 𝑙, 𝑙′ ∈ 𝑃𝑛
𝐹 ∪ 𝑃𝑛

𝐵    (40 )  

    𝜃𝑘,𝑖,𝑙 ≥ 𝑔𝑘,𝑖 + ℎ𝑘min {min
𝑏∈𝐵

𝑑𝑖,𝑏
2 , 𝑑𝑖,𝑒̇

1 } − 𝑀(1 − 𝛼𝑘,𝑖,𝑙)  

∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼, 𝑙 ∈ 𝑃𝑛
𝐵         (41) 

𝜋𝑘 = 𝜆𝑘,𝑒̇,0 − 𝜆𝑘,𝑒,0        ∀𝑘 ∈ 𝐾           (42) 

𝛼𝑘,𝑖,𝑙 ∈ {0,1}        ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒, 𝑒̇} , 𝑙 ∈ 𝑃𝑛
𝐵       (43) 

𝛽𝑘,𝑖,𝑙,𝑗,𝑙′ ∈ {0,1}           ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒} , 𝑗 ∈ 𝐼 ⋃{𝑒̇} , 𝑙, 𝑙′ ∈ 𝑃𝑛
𝐹 ∪ 𝑃𝑛

𝐵   (44) 

𝜑𝑘,𝑖,𝑙,𝑏 ∈ {0,1}        ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒} , 𝑏 ∈ 𝐵, 𝑙 ∈ 𝑃𝑛
𝐵        (45) 
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0 ≤ 𝜆𝑘,𝑖,𝑙 , 𝜋𝑘 ≤ 𝑇       ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒, 𝑒̇} , 𝑙 ∈ 𝑃𝑛
𝐵       (46) 

0 ≤ 𝜃𝑘,𝑖,𝑙 ≤ 𝑟𝑘        ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃ 𝐵 ⋃{𝑒, 𝑒̇} , 𝑙 ∈ 𝑃𝑛
𝐵      (47) 

Appendix 2: A submodel employed for evaluating the performance of a new inspection plan 

Input: 𝛼̅𝑘,𝑖,𝑙 and 𝛽̅𝑘,𝑖,𝑙,𝑗,𝑙′     ∀𝑘 ∈ 𝐾, 𝑖, 𝑗 ∈ 𝐼, 𝑙, 𝑙′ ∈ 𝑄𝑖 

Output: 𝜑𝑘,𝑖,𝑙,𝑏 , 𝜆𝑘,𝑖,𝑙 , 𝜃𝑘,𝑖,𝑙 and 𝜋𝑘 

[𝑀2] Minimize ∑ 𝜋𝑘𝑘∈𝐾                      (48 ) 

subject to: 

𝜆𝑘,𝑖,𝑙 + 𝑡𝑘,𝑖 +
𝑑𝑖,𝑗

1

𝑣𝑘
≤ 𝜆𝑘,𝑗,𝑙′ + 𝑀(1 − 𝛽̅𝑘,𝑖,𝑙,𝑗,𝑙′) ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒} , 𝑗 ∈ 𝐼 ⋃{𝑒̇} , 𝑙 ∈ 𝑄𝑖 , 𝑙′ ∈ 𝑄𝑗    (49 ) 

𝜆𝑘,𝑖,𝑙 + 𝑡𝑘,𝑖 +
𝑑𝑖,𝑏

2

𝑣𝑘
+

(𝑟𝑘−𝜃𝑘,𝑖,𝑙+ℎ𝑘𝑑𝑖,𝑏
2 )

𝑐𝑘
+

𝑑𝑏,𝑗
2

𝑣𝑘
≤ 𝜆𝑘,𝑗,𝑙′ + 𝑀(2 − 𝜑𝑘,𝑖,𝑙,𝑏 − 𝛽̅𝑘,𝑖,𝑙,𝑗,𝑙′)  

        ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒} , 𝑏 ∈ 𝐵, 𝑗 ∈ 𝐼 ⋃{𝑒̇} , 𝑙 ∈ 𝑄𝑖 , 𝑙′ ∈ 𝑄𝑗    (50 )  

𝜆𝑘′,𝑖,𝑙+1 ≥ 𝜆𝑘,𝑖,𝑙 + 𝑡𝑘,𝑖 + 𝑚𝑖 − 𝑀(2 − 𝛼̅𝑘,𝑖,𝑙 − 𝛼̅𝑘′,𝑖,𝑙+1) ∀𝑘, 𝑘′ ∈ 𝐾, 𝑖 ∈ 𝐼, 𝑙 ∈ 𝑄𝑖/{|𝑄𝑖|}    (51 ) 

𝜆𝑘′,𝑖,𝑙+1 ≤ 𝜆𝑘,𝑖,𝑙 + 𝑡𝑘,𝑖 + 𝑛𝑖 + 𝑀(2 − 𝛼̅𝑘,𝑖,𝑙 − 𝛼̅𝑘′,𝑖,𝑙+1) ∀𝑘, 𝑘′ ∈ 𝐾, 𝑖 ∈ 𝐼, 𝑙 ∈ 𝑄𝑖/{|𝑄𝑖|}    (52 ) 

𝜃𝑘,𝑗,𝑙′ ≤ 𝜃𝑘,𝑖,𝑙 − 𝑔𝑘,𝑖 − ℎ𝑘𝑑𝑖,𝑗
1 + 𝑀(∑ 𝜑𝑘,𝑖,𝑙,𝑏𝑏∈𝐵 + 1 − 𝛽̅𝑘,𝑖,𝑙,𝑗,𝑙′)  

∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒} , 𝑗 ∈ 𝐼 ⋃{𝑒̇} , 𝑙 ∈ 𝑄𝑖 , 𝑙′ ∈ 𝑄𝑗   (53) 

𝜃𝑘,𝑗,𝑙′ ≥ 𝜃𝑘,𝑖,𝑙 − 𝑔𝑘,𝑖 − ℎ𝑘𝑑𝑖,𝑗
1 − 𝑀(∑ 𝜑𝑘,𝑖,𝑙,𝑏𝑏∈𝐵 + 1 − 𝛽̅𝑘,𝑖,𝑙,𝑗,𝑙′)  

∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒} , 𝑗 ∈ 𝐼 ⋃{𝑒̇} , 𝑙 ∈ 𝑄𝑖 , 𝑙′ ∈ 𝑄𝑗   (54) 

    𝜃𝑘,𝑗,𝑙′ ≥ 𝑟𝑘 − ℎ𝑘𝑑𝑗,𝑏
2 − 𝑀(2 − 𝜑𝑘,𝑖,𝑙,𝑏 − 𝛽̅𝑘,𝑖,𝑙,𝑗,𝑙′) 

∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒} , 𝑏 ∈ 𝐵, 𝑗 ∈ 𝐼 ⋃{𝑒̇} , 𝑙 ∈ 𝑄𝑖 , 𝑙′ ∈ 𝑄𝑗 (55)  

    𝜃𝑘,𝑗,𝑙′ ≤ 𝑟𝑘 − ℎ𝑘𝑑𝑗,𝑏
2 + 𝑀(2 − 𝜑𝑘,𝑖,𝑙,𝑏 − 𝛽̅𝑘,𝑖,𝑙,𝑗,𝑙′) 

∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒} , 𝑏 ∈ 𝐵, 𝑗 ∈ 𝐼 ⋃{𝑒̇} , 𝑙 ∈ 𝑄𝑖 , 𝑙′ ∈ 𝑄𝑗 (56)  

    𝜃𝑘,𝑖,𝑙 ≥ 𝑔𝑘,𝑖 + ℎ𝑘min {min
𝑏∈𝐵

𝑑𝑖,𝑏
2 , 𝑑𝑖,𝑒̇

1 } − 𝑀(1 − 𝛼̅𝑘,𝑖,𝑙)  

𝜋𝑘 = 𝜆𝑘,𝑒̇,0 − 𝜆𝑘,𝑒,0        ∀𝑘 ∈ 𝐾           (57) 

𝜑𝑘,𝑖,𝑙,𝑏 ∈ {0,1}        ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒} , 𝑏 ∈ 𝐵, 𝑙 ∈ 𝑄𝑖        (58) 

0 ≤ 𝜆𝑘,𝑖,𝑙 , 𝜋𝑘 ≤ 𝑇       ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃{𝑒, 𝑒̇} , 𝑙 ∈ 𝑄𝑖       (59) 

0 ≤ 𝜃𝑘,𝑖,𝑙 ≤ 𝑟𝑘        ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼 ⋃ 𝐵 ⋃{𝑒, 𝑒̇} , 𝑙 ∈ 𝑄𝑖.      (60) 
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Appendix 3: Pseudo-code of the VND procedure 

The VND procedure 

Input:   local_best_solution 𝐼𝑃̀, best_solution 𝐹(𝐼𝑃∗),  

1: While (true) 

2:    Switch (𝜔) 

3:        Case 1: Performing insert monitoring task to generate new inspection plan 𝐼𝑃̃ with      

4:              the given 𝐼𝑃̀ and solving M2 to evaluate the objective value 𝐹(𝐼𝑃̃) 

5:              If (𝐹(𝐼𝑃̃) < 𝐹(𝐼𝑃∗)) 

6:                  𝐹(𝐼𝑃∗) ←  𝐹(𝐼𝑃̃), 𝐼𝑃∗ ← 𝐼𝑃̃, 𝐼𝑃̀ ← 𝐼𝑃̃ 

7:                  𝜔 = 1; 

8:              break; 

9:        Case 2: Performing swap monitoring task to generate new inspection plan 𝐼𝑃̃ with      

10:              the given 𝐼𝑃̀ and solving M2 to evaluate the objective value 𝐹(𝐼𝑃̃) 

11:              If (𝐹(𝐼𝑃̃) < 𝐹(𝐼𝑃∗)) 

12:                  𝐹(𝐼𝑃∗) ←  𝐹(𝐼𝑃̃), 𝐼𝑃∗ ← 𝐼𝑃̃ 

13:                  𝜔 = 1; 

14:              break; 

15:        Case 3: Performing insert monitoring round to generate new inspection plan 𝐼𝑃̃ with      

16:              the given 𝐼𝑃̀ and solving M2 to evaluate the objective value 𝐹(𝐼𝑃̃) 

17:              If (𝐹(𝐼𝑃̃) < 𝐹(𝐼𝑃∗)) 

18:                  𝐹(𝐼𝑃∗) ←  𝐹(𝐼𝑃̃), 𝐼𝑃∗ ← 𝐼𝑃̃ 

19:                  𝜔 = 1; 

20:              break; 

21:        Case 4: Performing swap monitoring sequence to generate new inspection plan 𝐼𝑃̃            

22:              with the given 𝐼𝑃̀ and solving M2 to evaluate the objective value 𝐹(𝐼𝑃̃) 

23:              If (𝐹(𝐼𝑃̃) < 𝐹(𝐼𝑃∗)) 

24:                  𝐹(𝐼𝑃∗) ←  𝐹(𝐼𝑃̃), 𝐼𝑃∗ ← 𝐼𝑃̃ 

25:                  𝜔 = 1; 

26:              break; 

27:        default; 

28:              return; 

29:     𝜔 ← 𝜔 + 1 

30: End while 
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