#==============================================================================
data_New_Global_Publ_Block
_publ_section_related_literature
;
For related literature, see: Bratton et al. (1997);
Crescenzi et al. (1988);
Hatanaka et al. (1972);
Hayashi & Koshimizu (1979);
Ischia et al. (1996);
Kubo & Schultz (1994);
Kuhn & Beinert (1944);
Lunte & Kissinger (1983);
Pascoe et al. (1988);
Wempe & Clauson (2008);
Wenke & Prota (1995);
Yamada et al. (1988).
;
# Added by publCIF - use a unique identifier for each data block
#==============================================================================
# SUBMISSION DETAILS
_publ_contact_author_name
'Simon E Lewis' # Name of author for correspondence
_publ_contact_author_address # Address of author for correspondence
;
Department of Chemistry
University of Bath
Claverton Down
Bath
BA2 7AY
U.K.
;
_publ_contact_author_email 'S.E.Lewis@bath.ac.uk'
_publ_contact_author_fax '+44-1225-386231'
_publ_contact_author_phone '+44-1225-386568'
_publ_contact_letter
;
Please consider this CIF for publication. I certify that this contibution is the
original work of those listed as authors; that it has not been published
before (in any language or medium) and is not being considered for publication
elsewhere; that all authors concur with and are aware of the submission; that
all workers involved in the study are listed as authors or given proper credit
in the acknowledgements; that I have obtained permission for and acknowledged
the source of any excerpts from other copyright works; and that to the best of
my knowledge the paper contains no statements which are libellous, unlawful or
in any way actionable. All coauthors have made significant scientific
contributions to the work reported, including the ideas and their execution,
and share responsibility and accountability for the results.
;
_publ_requested_journal 'Acta Cryst. C'
_publ_requested_category 'FO'
#==============================================================================
# TITLE AND AUTHOR LIST
_publ_section_title
;
L-Cysteinylhydroquinone: a model for biochemical drug design
;
_publ_section_title_footnote # remove if not required
.
# The loop structure below should contain the names and addresses of all
# authors, in the required order of publication. Repeat as necessary.
# NB if using publCIF, the Author database tool might prove useful
# (see the Tools menu in publCIF)
loop_
_publ_author_name
_publ_author_address
_publ_author_footnote
'Lewis, Simon E'
;
Department of Chemistry
University of Bath
Claverton Down
Bath
BA2 7AY
U.K.
;
.
'Kociok-K\"ohn, Gabriele'
;
Department of Chemistry
University of Bath
Claverton Down
Bath
BA2 7AY
U.K.
;
.
#==============================================================================
# TEXT
_publ_section_synopsis
.
_publ_section_abstract
;
The D-enantiomer of L-Cysteinylhydroquinone, C~9~H~11~NO~4~S at 150 K
crystallises in the orthorhombic form and has the lowest gauche conformation (
[\c = -46.19(17)\%],) found so far. The NH3+ cation alone is involved in four
hydrogen bonds.The compound forms an infinite three dimensional network
constructed out of four intermolecular hydrogen bonds.
;
_publ_section_comment
;
Cysteinylhydroquinone is the adduct formed by nucleophilic attack of cysteine
thiol on benzoquinone. It was investigated as a reducing agent (Hatanaka et
al., 1972) and has been reported in the context of a study on inhibitors
of betacyanin synthesis (Hayashi et al., 1979). It has also been the
subject of a mass spectrometry study (d'Ischia et al., 1996). It is an
extremely useful biochemical tool: it has been used in the investigation of
the metabolism of benzene, phenol and hydroquinone (Bratton et al.,
1997; Lunte et al., 1983) and the metabolism of
acetaminophen/paracetamol (Pascoe et al., 1988; Axworthy et al.,
1988). It has been shown to be cytotoxic to melanoma cells (Yamada et
al., 1988) and it is believed that the mode of action is tyrosinase
inhibition; indeed, the tyrosinase inhibitory activity of
cysteinylhydroquinone has been disclosed in a recent patent concerning the use
of the compound as a skin brightening agent (Wempe et al., 2008).
Applications of cysteinylhydroquinone in hair dyeing (Wenke et al.,
1995) and permanent waving (Kubo et al., 1994) have also been patented.
Concerning the synthesis of cysteinylhydroquinone, an early reported procedure
(Kuhn et al., 1944) was subsequently reinvestigated (Crescenzi et
al., 1988) and it was found that under certain conditions, a mixture of
1,4-benzothiazine oligomers may be formed in preference to the desired
product. Spectroscopic characterization of cysteinylhydroquinone to date has
been incomplete; thus we report here the high-field ^1^H and ^13^C NMR
spectra, infra-red spectrum and optical rotation of cysteinylhydroquinone.(I)
CHEMDRAW PICTURE here
The asymmetric unit contains one molecule of L-cysteinylhydroquinone which
forms hydrogen bonds with every hetero atom except Sulphur. The protonated
amino group on its own forms two intramolecular hydrogen bonds H(1B)-O(2),
H(1C)-O(3) and two intermolecular hydrogen bonds H(1A)-O(1), H(1B)-O(4).
Combined with the two hydrogen bond forming OH groups of the hydroquinone
ligand an infinite three dimensional network of N-H...O and O-H...O is formed.
A summary of contacts indicating hydrogen bonds is given in Table 2 and the
hydrogen bond network is illustrated in Fig. 2.
As can be seen in Table I in the Cysteinyl unit N-C(2)-C(3)-S depicts a very
low gauche torsion angle of -46.19(17)\% due to the intramolecular H-bond of
N-H(1C)-O(3). In this conformation the smaller angle allows direct alignment
of O(3) along the N-H(1C) bond for optimal hydrogen bonding. This rare
restricted torsion angle was only previously decribed in the structures of
cysteine mandelic acid diastereomers (I. Fujii, H.Baba, Y.Takahashi, 2005)
where N-C-C-S torsion angles of -46.5(2)\% and -47.8(3)\%could be found.
Another low torsion angle of -48.2(3)\% with a similar cysteinyl substituent
as desribed here was found in the structure of S-benzyl-L-cysteine (W.T.A.
Harrison, 2001). Furthermore gauche angles below 50\% were found in
S-carboxymethyl-L-cysteine 48.8\% (C.R. Hubbard,1979) and L-Cysteine
L-Tartrate monohydrate 48.9\% (Y.Shan, S.D. Huang, 1999).
In literature only two other ring substituted S-Cysteinyl compounds have been
reported. 5-S-Cysteinyluracil Monohydrate (H.M.Berman, 1977) and
S-Benzyl-L-Cysteine (W.T.A. Harrison, 2001). Bond lenghts in these cysteinyl
units compare favourably with distances found in our compound.
The OH-functionality in the non-natural sulphur substituent of the cysteine
results in a significant change in the torsion angle in the amino acid moiety.
Use of this non-natural amino acid may allow the design of new protein
structures requiering this unusual torsion angle. Thus this accurate structure
may aid new drug design.
;
_publ_section_acknowledgements # remove if not required
;
We thank the University of Bath for funding.
;
_publ_section_references
;
Axworthy, D. B., Hoffmann, K. J., Streeter, A. J., Calleman, C. J., Pascoe, G.
A. & Baillie, T. A. Chem.-Biol. Interactions 68, 99-116.
Bratton, S. B., Lau, S. S. & Monks, T. J. (1997). Chem. Res. Toxicol.
10, 859-865.
Crescenzi, O., Prota, G., Schultz, T. & Wolfram, L. J. (1988).
Tetrahedron 44, 6447--6450.
Hatanaka, C., Omura, H. & Nomura, D. (1972). Nippon Nogeik. Kaishi
47, 341--347.
Hayashi, H. & Koshimizu, K. (1979). Agric. Biol. Chem. 43,
113--116.
Ischia, M. d', Pezzella, A., Prota, G., Donata, F. & Traldi, P. (1996). J.
Mass Spectrom. 31, 885--892.
Kubo, S. & Schultz, T. M. (1994). U.S. Patent 5352443.
Kuhn, R. & Beinert, H. (1944). Ber. 77, 606--608.
Lunte, S. M. & Kissinger, P. T. (1983). Chem.-Biol. Interactions
47, 195--212.
Pascoe, G. A., Calleman, C. J. & Baillie, T. A. (1988). Chem.-Biol.
Interactions 68, 85-98.
Wempe, M. F. & Clauson, J. M. (2008). U.S. Patent 2008/0286219.
Wenke, G. & Prota, G. (1995). U.S. Patent 5435810.
Yamada, I., Seki, S., Ito, S., Matsubara, O., Suzuki, S. & Kasuga, T. (1988).
Brit. J. Cancer 58, 776--778.
LAWKIE
CXMCYT
HIDGOQ
ICAMOO
CYSURC10
;
_publ_section_figure_captions
;
The crystal structure and atom-labeling scheme of (I). Displacement ellipsoids
are depicted at the 50% probability level
hydrogen bond network
;
_publ_section_exptl_prep
;
Cysteinylhydroquinone was prepared as described previously (Hayashi et
al., 1979). To L-cysteine (6.00 g, 49.5 mmol, 1.34 equiv) in H~2~O
(560 ml) at room temperature in air was added p-benzoquinone (4.00 g,
37.0 mmol, 1.00 equiv) in ethanol (240 ml). The reaction mixture was stirred
for 1 h, then solvent was removed under reduced pressure. The crude product
was dissolved in refluxing ethanol/H~2~O (100 ml) and filtered whilst hot. The
filtrate was allowed to cool to room temperature, then stored at 4 \%C for 3 d
to give cysteinylhydroquinone (6.54 g, 77%) as a brown crystalline solid of
sufficient quality for X-ray analysis. [\a]~D~^25^ +165\% (c 1.0,
1M HCl~(aq)~); ^1^H-NMR (500 MHz, DMSO-d~6~, 25 \%C) \d
8.50 (5H, br s, --ON and --NH), 6.84 (1H, d, J = 2.5 Hz,
Ar---H), 6.71 (1H, d, J = 8.5 Hz, Ar---H), 6.54 (1H, dd,
J = 8.5, 2.5 Hz, Ar---H), 3.35 (1H, dd, J = 13.5, 4.0 Hz,
--S---CHH--), 3.31 (1H, dd, J = 8.5, 4.5 Hz,
--S---CH~2~---CH-), 2.96 (1H, dd, J = 13.5, 9.0 Hz,
--S---CHH-) p.p.m.; ^13^C-NMR (75.4 MHz, DMSO-d~6~, 25 \%C)
\d 169.6, 150.5, 149.4, 120.1, 118.0, 116.4, 115.4, 53.4, 34.5 p.p.m.;
IR \n~max~ (film) 3093, 3000, 2692, 2581, 1630, 1578, 1440, 1388, 1339,
1251, 1206, 1132, 1051, 939, 904, 855, 820, 779, 659 cm^-1^.
;
_publ_section_exptl_refinement
;
All H atom attached to N and O were located in the difference Fourier map and
refined freely.
;
#==============================================================================
_publ_manuscript_text
# Used for convenience to store draft or replaced versions
# of the abstract, comment etc.
# Its contents will not be output
;
?
;
#==============================================================================
# Formatted by publCIF
data_h09sel6
_audit_creation_method SHELXL-97
_chemical_name_systematic
;
?
;
_chemical_name_common ?
_chemical_melting_point ?
_chemical_formula_moiety 'C9 H11 N O4 S'
_chemical_formula_sum
'C9 H11 N O4 S'
_chemical_formula_weight 229.25
_chemical_absolute_configuration ad
loop_
_atom_type_symbol
_atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
_atom_type_scat_source
'C' 'C' 0.0033 0.0016
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'H' 'H' 0.0000 0.0000
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'N' 'N' 0.0061 0.0033
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'O' 'O' 0.0106 0.0060
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
'S' 'S' 0.1246 0.1234
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
_symmetry_cell_setting orthorhombic
_symmetry_space_group_name_H-M 'P 21 21 21'
_symmetry_space_group_name_Hall 'P 2ac 2ab'
loop_
_symmetry_equiv_pos_as_xyz
'x, y, z'
'-x+1/2, -y, z+1/2'
'x+1/2, -y+1/2, -z'
'-x, y+1/2, -z+1/2'
_cell_length_a 5.16610(10)
_cell_length_b 10.3981(2)
_cell_length_c 18.2979(3)
_cell_angle_alpha 90.00
_cell_angle_beta 90.00
_cell_angle_gamma 90.00
_cell_volume 982.92(3)
_cell_formula_units_Z 4
_cell_measurement_temperature 150(2)
_cell_measurement_reflns_used 14443
_cell_measurement_theta_min 2.910
_cell_measurement_theta_max 30.034
_exptl_crystal_description block
_exptl_crystal_colour 'pale yellow'
_exptl_crystal_size_max 0.40
_exptl_crystal_size_mid 0.38
_exptl_crystal_size_min 0.38
_exptl_crystal_density_meas ?
_exptl_crystal_density_diffrn 1.549
_exptl_crystal_density_method 'not measured'
_exptl_crystal_F_000 480
_exptl_absorpt_coefficient_mu 0.322
_exptl_absorpt_correction_type none
_exptl_absorpt_correction_T_min ?
_exptl_absorpt_correction_T_max ?
_exptl_absorpt_process_details ?
_exptl_special_details
;
?
;
_diffrn_ambient_temperature 150(2)
_diffrn_radiation_wavelength 0.71073
_diffrn_radiation_type MoK\a
_diffrn_radiation_source 'fine-focus sealed tube'
_diffrn_radiation_monochromator graphite
_diffrn_measurement_device_type 'Nonius Kappa CCD'
_diffrn_measurement_method '300 1.8 degree images with \v scans'
_diffrn_standards_number 0
_diffrn_standards_decay_% 0
_diffrn_reflns_number 22602
_diffrn_reflns_av_R_equivalents 0.0825
_diffrn_reflns_av_sigmaI/netI 0.0399
_diffrn_reflns_limit_h_min -6
_diffrn_reflns_limit_h_max 7
_diffrn_reflns_limit_k_min -14
_diffrn_reflns_limit_k_max 14
_diffrn_reflns_limit_l_min -25
_diffrn_reflns_limit_l_max 21
_diffrn_reflns_theta_min 3.92
_diffrn_reflns_theta_max 30.02
_reflns_number_total 2869
_reflns_number_gt 2500
_reflns_threshold_expression >2sigma(I)
_computing_data_collection 'Collect (Nonius BV, 1997-2000)'
_computing_cell_refinement 'HKL Scalepack (Otwinski & Minor, 1997)'
_computing_data_reduction
;
DENZO-SCALEPACK Z. Otwinowski and W. Minor, "
Processing of X-ray Diffraction Data Collected in Oscillation Mode ",
Methods in Enzymology, Volume 276: Macromolecular Crystallography,
part A, p.307-326, 1997,C.W. Carter, Jr. & R. M. Sweet, Eds., Academic Press.
;
_computing_structure_solution
;
SIR97- Altomare A., Burla M.C., Camalli M., Cascarano G.L., Giacovazzo C. ,
Guagliardi A., Moliterni A.G.G., Polidori G.,Spagna R.
(1999) J. Appl. Cryst. 32, 115-119
;
_computing_structure_refinement
;
SHELXL97 -Program for Crystal Structure Analysis (Release 97-2).
Sheldrick, G.M., Institut f\"ur Anorganische Chemie der Universit\"at
G\"ottingen, Tammanstrasse 4, D-3400 G\"ottingen, Germany, 1998
;
_computing_molecular_graphics
'ORTEP3 for Windows - Farrugia, L. J. J. Appl. Crystallogr. 1997, 30, 565'
_computing_publication_material
;
'WinGX publication routines, Farrugia,
L. J., J. Appl. Crystallogr., 1999, 32, 837-838
;
_refine_special_details
;
Refinement of F^2^ against ALL reflections. The weighted R-factor wR and
goodness of fit S are based on F^2^, conventional R-factors R are based
on F, with F set to zero for negative F^2^. The threshold expression of
F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is
not relevant to the choice of reflections for refinement. R-factors based
on F^2^ are statistically about twice as large as those based on F, and R-
factors based on ALL data will be even larger.
;
_refine_ls_structure_factor_coef Fsqd
_refine_ls_matrix_type full
_refine_ls_weighting_scheme calc
_refine_ls_weighting_details
'calc w=1/[\s^2^(Fo^2^)+(0.0405P)^2^+0.1522P] where P=(Fo^2^+2Fc^2^)/3'
_atom_sites_solution_primary direct
_atom_sites_solution_secondary difmap
_atom_sites_solution_hydrogens geom
_refine_ls_hydrogen_treatment mixed
_refine_ls_extinction_method none
_refine_ls_extinction_coef ?
_refine_ls_abs_structure_details
'Flack H D (1983), Acta Cryst. A39, 876-881, 1188 Friedel pairs'
_refine_ls_abs_structure_Flack -0.05(6)
_refine_ls_number_reflns 2869
_refine_ls_number_parameters 156
_refine_ls_number_restraints 0
_refine_ls_R_factor_all 0.0456
_refine_ls_R_factor_gt 0.0344
_refine_ls_wR_factor_ref 0.0793
_refine_ls_wR_factor_gt 0.0742
_refine_ls_goodness_of_fit_ref 1.042
_refine_ls_restrained_S_all 1.042
_refine_ls_shift/su_max 0.001
_refine_ls_shift/su_mean 0.000
loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_adp_type
_atom_site_occupancy
_atom_site_symmetry_multiplicity
_atom_site_calc_flag
_atom_site_refinement_flags
_atom_site_disorder_assembly
_atom_site_disorder_group
S S 0.67163(7) 0.64289(4) 0.59128(2) 0.02461(10) Uani 1 1 d . . .
N N 0.4825(3) 0.69243(15) 0.74702(8) 0.0292(3) Uani 1 1 d . . .
H1A H 0.644(6) 0.680(3) 0.7598(14) 0.055(7) Uiso 1 1 d . . .
H1B H 0.389(6) 0.714(3) 0.7881(15) 0.061(8) Uiso 1 1 d . . .
H1C H 0.417(5) 0.620(3) 0.7230(14) 0.053(7) Uiso 1 1 d . . .
O1 O 0.2120(2) 0.99598(10) 0.69054(6) 0.0291(3) Uani 1 1 d . . .
O2 O 0.0738(2) 0.83868(12) 0.76491(7) 0.0330(3) Uani 1 1 d . . .
O3 O 0.2634(2) 0.48597(12) 0.66833(6) 0.0291(3) Uani 1 1 d . . .
H3 H 0.140(6) 0.432(3) 0.6932(17) 0.079(9) Uiso 1 1 d . . .
O4 O 0.2971(3) 0.40052(12) 0.36985(6) 0.0303(3) Uani 1 1 d . . .
H4 H 0.426(4) 0.4326(19) 0.3506(11) 0.027(5) Uiso 1 1 d . . .
C1 C 0.2295(3) 0.88812(14) 0.72075(8) 0.0228(3) Uani 1 1 d . . .
C2 C 0.4670(3) 0.80792(15) 0.69904(8) 0.0225(3) Uani 1 1 d . . .
H2 H 0.6268 0.8609 0.7057 0.027 Uiso 1 1 calc R . .
C3 C 0.4437(3) 0.76865(14) 0.61874(8) 0.0228(3) Uani 1 1 d . . .
H3A H 0.4725 0.8454 0.5878 0.027 Uiso 1 1 calc R . .
H3B H 0.2652 0.7379 0.6096 0.027 Uiso 1 1 calc R . .
C4 C 0.4517(3) 0.53111(14) 0.55211(8) 0.0208(3) Uani 1 1 d . . .
C5 C 0.2672(3) 0.46594(13) 0.59398(9) 0.0222(3) Uani 1 1 d . . .
C6 C 0.0906(3) 0.38466(15) 0.55982(9) 0.0248(3) Uani 1 1 d . . .
H6 H -0.0383 0.3425 0.5881 0.030 Uiso 1 1 calc R . .
C7 C 0.1010(3) 0.36460(16) 0.48497(9) 0.0255(3) Uani 1 1 d . . .
H7 H -0.0213 0.3095 0.4621 0.031 Uiso 1 1 calc R . .
C8 C 0.2899(3) 0.42511(15) 0.44349(8) 0.0230(3) Uani 1 1 d . . .
C9 C 0.4618(3) 0.50918(15) 0.47656(8) 0.0224(3) Uani 1 1 d . . .
H9 H 0.5878 0.5524 0.4478 0.027 Uiso 1 1 calc R . .
loop_
_atom_site_aniso_label
_atom_site_aniso_U_11
_atom_site_aniso_U_22
_atom_site_aniso_U_33
_atom_site_aniso_U_23
_atom_site_aniso_U_13
_atom_site_aniso_U_12
S 0.02110(16) 0.02902(18) 0.02370(18) -0.00624(15) 0.00259(14) -0.00212(15)
N 0.0368(8) 0.0312(7) 0.0196(7) 0.0016(6) 0.0004(6) 0.0126(7)
O1 0.0375(7) 0.0218(5) 0.0280(6) -0.0009(4) -0.0067(5) 0.0017(5)
O2 0.0354(6) 0.0346(6) 0.0289(6) 0.0034(5) 0.0111(5) 0.0118(6)
O3 0.0326(6) 0.0363(6) 0.0184(5) 0.0001(4) 0.0047(5) -0.0075(5)
O4 0.0359(7) 0.0364(6) 0.0187(6) -0.0048(4) 0.0022(5) -0.0069(6)
C1 0.0270(8) 0.0243(7) 0.0171(6) -0.0051(5) -0.0041(6) 0.0006(6)
C2 0.0249(8) 0.0240(7) 0.0186(7) -0.0004(6) -0.0007(6) -0.0004(6)
C3 0.0256(8) 0.0227(7) 0.0202(7) -0.0020(5) 0.0015(6) 0.0006(6)
C4 0.0202(7) 0.0215(7) 0.0207(8) -0.0019(5) 0.0015(5) 0.0005(6)
C5 0.0255(7) 0.0227(6) 0.0184(7) 0.0003(5) 0.0032(6) 0.0029(6)
C6 0.0263(8) 0.0224(7) 0.0256(8) 0.0014(6) 0.0052(6) -0.0022(6)
C7 0.0253(7) 0.0227(7) 0.0283(8) -0.0031(6) 0.0005(6) -0.0029(6)
C8 0.0274(8) 0.0229(6) 0.0187(7) -0.0014(5) -0.0002(6) 0.0028(6)
C9 0.0239(7) 0.0229(7) 0.0205(7) -0.0001(6) 0.0029(6) -0.0001(6)
_geom_special_details
;
All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes.
;
loop_
_geom_bond_atom_site_label_1
_geom_bond_atom_site_label_2
_geom_bond_distance
_geom_bond_site_symmetry_2
_geom_bond_publ_flag
S C4 1.7764(16) . y
S C3 1.8302(16) . y
N C2 1.490(2) . y
N H1A 0.88(3) . n
N H1B 0.92(3) . n
N H1C 0.94(3) . n
O1 C1 1.2536(19) . y
O2 C1 1.251(2) . y
O3 C5 1.376(2) . y
O3 H3 0.97(3) . n
O4 C8 1.3721(17) . y
O4 H4 0.82(2) . n
C1 C2 1.536(2) . n
C2 C3 1.530(2) . n
C2 H2 1.0000 . n
C3 H3A 0.9900 . n
C3 H3B 0.9900 . n
C4 C5 1.398(2) . n
C4 C9 1.402(2) . n
C5 C6 1.392(2) . n
C6 C7 1.387(2) . n
C6 H6 0.9500 . n
C7 C8 1.387(2) . n
C7 H7 0.9500 . n
C8 C9 1.385(2) . n
C9 H9 0.9500 . n
loop_
_geom_angle_atom_site_label_1
_geom_angle_atom_site_label_2
_geom_angle_atom_site_label_3
_geom_angle
_geom_angle_site_symmetry_1
_geom_angle_site_symmetry_3
_geom_angle_publ_flag
C4 S C3 99.60(7) . . y
C2 N H1A 108.9(18) . . n
C2 N H1B 105.0(17) . . n
H1A N H1B 109(2) . . n
C2 N H1C 110.6(16) . . n
H1A N H1C 111(2) . . n
H1B N H1C 113(2) . . n
C5 O3 H3 112.8(18) . . n
C8 O4 H4 111.5(14) . . n
O2 C1 O1 127.30(15) . . y
O2 C1 C2 117.24(13) . . y
O1 C1 C2 115.44(14) . . y
N C2 C3 110.80(13) . . y
N C2 C1 109.16(13) . . y
C3 C2 C1 109.29(12) . . n
N C2 H2 109.2 . . n
C3 C2 H2 109.2 . . n
C1 C2 H2 109.2 . . n
C2 C3 S 113.81(11) . . y
C2 C3 H3A 108.8 . . n
S C3 H3A 108.8 . . n
C2 C3 H3B 108.8 . . n
S C3 H3B 108.8 . . n
H3A C3 H3B 107.7 . . n
C5 C4 C9 119.14(14) . . n
C5 C4 S 122.14(11) . . y
C9 C4 S 118.71(11) . . y
O3 C5 C6 121.75(14) . . y
O3 C5 C4 118.57(13) . . y
C6 C5 C4 119.67(14) . . n
C7 C6 C5 120.64(14) . . n
C7 C6 H6 119.7 . . n
C5 C6 H6 119.7 . . n
C6 C7 C8 119.95(14) . . n
C6 C7 H7 120.0 . . n
C8 C7 H7 120.0 . . n
O4 C8 C9 121.95(15) . . y
O4 C8 C7 118.15(15) . . y
C9 C8 C7 119.89(14) . . n
C8 C9 C4 120.62(14) . . n
C8 C9 H9 119.7 . . n
C4 C9 H9 119.7 . . n
loop_
_geom_torsion_atom_site_label_1
_geom_torsion_atom_site_label_2
_geom_torsion_atom_site_label_3
_geom_torsion_atom_site_label_4
_geom_torsion
_geom_torsion_site_symmetry_1
_geom_torsion_site_symmetry_2
_geom_torsion_site_symmetry_3
_geom_torsion_site_symmetry_4
_geom_torsion_publ_flag
O2 C1 C2 N -9.73(19) . . . . y
O1 C1 C2 N 171.62(13) . . . . y
O2 C1 C2 C3 111.60(15) . . . . n
O1 C1 C2 C3 -67.05(17) . . . . n
N C2 C3 S -46.19(17) . . . . y
C1 C2 C3 S -166.52(11) . . . . n
C4 S C3 C2 127.19(12) . . . . n
C3 S C4 C5 -66.60(14) . . . . n
C3 S C4 C9 112.49(13) . . . . n
C9 C4 C5 O3 178.46(14) . . . . n
S C4 C5 O3 -2.45(19) . . . . y
C9 C4 C5 C6 -2.6(2) . . . . n
S C4 C5 C6 176.53(11) . . . . n
O3 C5 C6 C7 -179.04(14) . . . . n
C4 C5 C6 C7 2.0(2) . . . . n
C5 C6 C7 C8 0.5(2) . . . . n
C6 C7 C8 O4 178.59(15) . . . . n
C6 C7 C8 C9 -2.4(2) . . . . n
O4 C8 C9 C4 -179.19(15) . . . . n
C7 C8 C9 C4 1.8(2) . . . . n
C5 C4 C9 C8 0.7(2) . . . . n
S C4 C9 C8 -178.47(12) . . . . n
loop_
_geom_hbond_atom_site_label_D
_geom_hbond_atom_site_label_H
_geom_hbond_atom_site_label_A
_geom_hbond_distance_DH
_geom_hbond_distance_HA
_geom_hbond_distance_DA
_geom_hbond_angle_DHA
_geom_hbond_site_symmetry_A
O3 H3 O2 0.97(3) 1.66(3) 2.6214(16) 179(3) 4_546
O4 H4 O1 0.82(2) 1.82(2) 2.6404(19) 179(2) 3_566
N H1A O1 0.88(3) 2.25(3) 2.8230(18) 123(2) 4_646
N H1B O4 0.92(3) 2.14(3) 2.8412(19) 132(2) 2_565
N H1B O2 0.92(3) 2.13(3) 2.6226(19) 113(2) .
N H1C O3 0.94(3) 1.89(3) 2.822(2) 174(2) .
_diffrn_measured_fraction_theta_max 0.993
_diffrn_reflns_theta_full 30.02
_diffrn_measured_fraction_theta_full 0.993
_refine_diff_density_max 0.211
_refine_diff_density_min -0.289
_refine_diff_density_rms 0.059