#============================================================================== data_New_Global_Publ_Block _publ_section_related_literature ; For related literature, see: Bratton et al. (1997); Crescenzi et al. (1988); Hatanaka et al. (1972); Hayashi & Koshimizu (1979); Ischia et al. (1996); Kubo & Schultz (1994); Kuhn & Beinert (1944); Lunte & Kissinger (1983); Pascoe et al. (1988); Wempe & Clauson (2008); Wenke & Prota (1995); Yamada et al. (1988). ; # Added by publCIF - use a unique identifier for each data block #============================================================================== # SUBMISSION DETAILS _publ_contact_author_name 'Simon E Lewis' # Name of author for correspondence _publ_contact_author_address # Address of author for correspondence ; Department of Chemistry University of Bath Claverton Down Bath BA2 7AY U.K. ; _publ_contact_author_email 'S.E.Lewis@bath.ac.uk' _publ_contact_author_fax '+44-1225-386231' _publ_contact_author_phone '+44-1225-386568' _publ_contact_letter ; Please consider this CIF for publication. I certify that this contibution is the original work of those listed as authors; that it has not been published before (in any language or medium) and is not being considered for publication elsewhere; that all authors concur with and are aware of the submission; that all workers involved in the study are listed as authors or given proper credit in the acknowledgements; that I have obtained permission for and acknowledged the source of any excerpts from other copyright works; and that to the best of my knowledge the paper contains no statements which are libellous, unlawful or in any way actionable. All coauthors have made significant scientific contributions to the work reported, including the ideas and their execution, and share responsibility and accountability for the results. ; _publ_requested_journal 'Acta Cryst. C' _publ_requested_category 'FO' #============================================================================== # TITLE AND AUTHOR LIST _publ_section_title ; L-Cysteinylhydroquinone: a model for biochemical drug design ; _publ_section_title_footnote # remove if not required . # The loop structure below should contain the names and addresses of all # authors, in the required order of publication. Repeat as necessary. # NB if using publCIF, the Author database tool might prove useful # (see the Tools menu in publCIF) loop_ _publ_author_name _publ_author_address _publ_author_footnote 'Lewis, Simon E' ; Department of Chemistry University of Bath Claverton Down Bath BA2 7AY U.K. ; . 'Kociok-K\"ohn, Gabriele' ; Department of Chemistry University of Bath Claverton Down Bath BA2 7AY U.K. ; . #============================================================================== # TEXT _publ_section_synopsis . _publ_section_abstract ; The D-enantiomer of L-Cysteinylhydroquinone, C~9~H~11~NO~4~S at 150 K crystallises in the orthorhombic form and has the lowest gauche conformation ( [\c = -46.19(17)\%],) found so far. The NH3+ cation alone is involved in four hydrogen bonds.The compound forms an infinite three dimensional network constructed out of four intermolecular hydrogen bonds. ; _publ_section_comment ; Cysteinylhydroquinone is the adduct formed by nucleophilic attack of cysteine thiol on benzoquinone. It was investigated as a reducing agent (Hatanaka et al., 1972) and has been reported in the context of a study on inhibitors of betacyanin synthesis (Hayashi et al., 1979). It has also been the subject of a mass spectrometry study (d'Ischia et al., 1996). It is an extremely useful biochemical tool: it has been used in the investigation of the metabolism of benzene, phenol and hydroquinone (Bratton et al., 1997; Lunte et al., 1983) and the metabolism of acetaminophen/paracetamol (Pascoe et al., 1988; Axworthy et al., 1988). It has been shown to be cytotoxic to melanoma cells (Yamada et al., 1988) and it is believed that the mode of action is tyrosinase inhibition; indeed, the tyrosinase inhibitory activity of cysteinylhydroquinone has been disclosed in a recent patent concerning the use of the compound as a skin brightening agent (Wempe et al., 2008). Applications of cysteinylhydroquinone in hair dyeing (Wenke et al., 1995) and permanent waving (Kubo et al., 1994) have also been patented. Concerning the synthesis of cysteinylhydroquinone, an early reported procedure (Kuhn et al., 1944) was subsequently reinvestigated (Crescenzi et al., 1988) and it was found that under certain conditions, a mixture of 1,4-benzothiazine oligomers may be formed in preference to the desired product. Spectroscopic characterization of cysteinylhydroquinone to date has been incomplete; thus we report here the high-field ^1^H and ^13^C NMR spectra, infra-red spectrum and optical rotation of cysteinylhydroquinone.(I) CHEMDRAW PICTURE here The asymmetric unit contains one molecule of L-cysteinylhydroquinone which forms hydrogen bonds with every hetero atom except Sulphur. The protonated amino group on its own forms two intramolecular hydrogen bonds H(1B)-O(2), H(1C)-O(3) and two intermolecular hydrogen bonds H(1A)-O(1), H(1B)-O(4). Combined with the two hydrogen bond forming OH groups of the hydroquinone ligand an infinite three dimensional network of N-H...O and O-H...O is formed. A summary of contacts indicating hydrogen bonds is given in Table 2 and the hydrogen bond network is illustrated in Fig. 2. As can be seen in Table I in the Cysteinyl unit N-C(2)-C(3)-S depicts a very low gauche torsion angle of -46.19(17)\% due to the intramolecular H-bond of N-H(1C)-O(3). In this conformation the smaller angle allows direct alignment of O(3) along the N-H(1C) bond for optimal hydrogen bonding. This rare restricted torsion angle was only previously decribed in the structures of cysteine mandelic acid diastereomers (I. Fujii, H.Baba, Y.Takahashi, 2005) where N-C-C-S torsion angles of -46.5(2)\% and -47.8(3)\%could be found. Another low torsion angle of -48.2(3)\% with a similar cysteinyl substituent as desribed here was found in the structure of S-benzyl-L-cysteine (W.T.A. Harrison, 2001). Furthermore gauche angles below 50\% were found in S-carboxymethyl-L-cysteine 48.8\% (C.R. Hubbard,1979) and L-Cysteine L-Tartrate monohydrate 48.9\% (Y.Shan, S.D. Huang, 1999). In literature only two other ring substituted S-Cysteinyl compounds have been reported. 5-S-Cysteinyluracil Monohydrate (H.M.Berman, 1977) and S-Benzyl-L-Cysteine (W.T.A. Harrison, 2001). Bond lenghts in these cysteinyl units compare favourably with distances found in our compound. The OH-functionality in the non-natural sulphur substituent of the cysteine results in a significant change in the torsion angle in the amino acid moiety. Use of this non-natural amino acid may allow the design of new protein structures requiering this unusual torsion angle. Thus this accurate structure may aid new drug design. ; _publ_section_acknowledgements # remove if not required ; We thank the University of Bath for funding. ; _publ_section_references ; Axworthy, D. B., Hoffmann, K. J., Streeter, A. J., Calleman, C. J., Pascoe, G. A. & Baillie, T. A. Chem.-Biol. Interactions 68, 99-116. Bratton, S. B., Lau, S. S. & Monks, T. J. (1997). Chem. Res. Toxicol. 10, 859-865. Crescenzi, O., Prota, G., Schultz, T. & Wolfram, L. J. (1988). Tetrahedron 44, 6447--6450. Hatanaka, C., Omura, H. & Nomura, D. (1972). Nippon Nogeik. Kaishi 47, 341--347. Hayashi, H. & Koshimizu, K. (1979). Agric. Biol. Chem. 43, 113--116. Ischia, M. d', Pezzella, A., Prota, G., Donata, F. & Traldi, P. (1996). J. Mass Spectrom. 31, 885--892. Kubo, S. & Schultz, T. M. (1994). U.S. Patent 5352443. Kuhn, R. & Beinert, H. (1944). Ber. 77, 606--608. Lunte, S. M. & Kissinger, P. T. (1983). Chem.-Biol. Interactions 47, 195--212. Pascoe, G. A., Calleman, C. J. & Baillie, T. A. (1988). Chem.-Biol. Interactions 68, 85-98. Wempe, M. F. & Clauson, J. M. (2008). U.S. Patent 2008/0286219. Wenke, G. & Prota, G. (1995). U.S. Patent 5435810. Yamada, I., Seki, S., Ito, S., Matsubara, O., Suzuki, S. & Kasuga, T. (1988). Brit. J. Cancer 58, 776--778. LAWKIE CXMCYT HIDGOQ ICAMOO CYSURC10 ; _publ_section_figure_captions ; The crystal structure and atom-labeling scheme of (I). Displacement ellipsoids are depicted at the 50% probability level hydrogen bond network ; _publ_section_exptl_prep ; Cysteinylhydroquinone was prepared as described previously (Hayashi et al., 1979). To L-cysteine (6.00 g, 49.5 mmol, 1.34 equiv) in H~2~O (560 ml) at room temperature in air was added p-benzoquinone (4.00 g, 37.0 mmol, 1.00 equiv) in ethanol (240 ml). The reaction mixture was stirred for 1 h, then solvent was removed under reduced pressure. The crude product was dissolved in refluxing ethanol/H~2~O (100 ml) and filtered whilst hot. The filtrate was allowed to cool to room temperature, then stored at 4 \%C for 3 d to give cysteinylhydroquinone (6.54 g, 77%) as a brown crystalline solid of sufficient quality for X-ray analysis. [\a]~D~^25^ +165\% (c 1.0, 1M HCl~(aq)~); ^1^H-NMR (500 MHz, DMSO-d~6~, 25 \%C) \d 8.50 (5H, br s, --ON and --NH), 6.84 (1H, d, J = 2.5 Hz, Ar---H), 6.71 (1H, d, J = 8.5 Hz, Ar---H), 6.54 (1H, dd, J = 8.5, 2.5 Hz, Ar---H), 3.35 (1H, dd, J = 13.5, 4.0 Hz, --S---CHH--), 3.31 (1H, dd, J = 8.5, 4.5 Hz, --S---CH~2~---CH-), 2.96 (1H, dd, J = 13.5, 9.0 Hz, --S---CHH-) p.p.m.; ^13^C-NMR (75.4 MHz, DMSO-d~6~, 25 \%C) \d 169.6, 150.5, 149.4, 120.1, 118.0, 116.4, 115.4, 53.4, 34.5 p.p.m.; IR \n~max~ (film) 3093, 3000, 2692, 2581, 1630, 1578, 1440, 1388, 1339, 1251, 1206, 1132, 1051, 939, 904, 855, 820, 779, 659 cm^-1^. ; _publ_section_exptl_refinement ; All H atom attached to N and O were located in the difference Fourier map and refined freely. ; #============================================================================== _publ_manuscript_text # Used for convenience to store draft or replaced versions # of the abstract, comment etc. # Its contents will not be output ; ? ; #============================================================================== # Formatted by publCIF data_h09sel6 _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C9 H11 N O4 S' _chemical_formula_sum 'C9 H11 N O4 S' _chemical_formula_weight 229.25 _chemical_absolute_configuration ad loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'O' 'O' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'S' 'S' 0.1246 0.1234 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M 'P 21 21 21' _symmetry_space_group_name_Hall 'P 2ac 2ab' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y, z+1/2' 'x+1/2, -y+1/2, -z' '-x, y+1/2, -z+1/2' _cell_length_a 5.16610(10) _cell_length_b 10.3981(2) _cell_length_c 18.2979(3) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 982.92(3) _cell_formula_units_Z 4 _cell_measurement_temperature 150(2) _cell_measurement_reflns_used 14443 _cell_measurement_theta_min 2.910 _cell_measurement_theta_max 30.034 _exptl_crystal_description block _exptl_crystal_colour 'pale yellow' _exptl_crystal_size_max 0.40 _exptl_crystal_size_mid 0.38 _exptl_crystal_size_min 0.38 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.549 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 480 _exptl_absorpt_coefficient_mu 0.322 _exptl_absorpt_correction_type none _exptl_absorpt_correction_T_min ? _exptl_absorpt_correction_T_max ? _exptl_absorpt_process_details ? _exptl_special_details ; ? ; _diffrn_ambient_temperature 150(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Nonius Kappa CCD' _diffrn_measurement_method '300 1.8 degree images with \v scans' _diffrn_standards_number 0 _diffrn_standards_decay_% 0 _diffrn_reflns_number 22602 _diffrn_reflns_av_R_equivalents 0.0825 _diffrn_reflns_av_sigmaI/netI 0.0399 _diffrn_reflns_limit_h_min -6 _diffrn_reflns_limit_h_max 7 _diffrn_reflns_limit_k_min -14 _diffrn_reflns_limit_k_max 14 _diffrn_reflns_limit_l_min -25 _diffrn_reflns_limit_l_max 21 _diffrn_reflns_theta_min 3.92 _diffrn_reflns_theta_max 30.02 _reflns_number_total 2869 _reflns_number_gt 2500 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'Collect (Nonius BV, 1997-2000)' _computing_cell_refinement 'HKL Scalepack (Otwinski & Minor, 1997)' _computing_data_reduction ; DENZO-SCALEPACK Z. Otwinowski and W. Minor, " Processing of X-ray Diffraction Data Collected in Oscillation Mode ", Methods in Enzymology, Volume 276: Macromolecular Crystallography, part A, p.307-326, 1997,C.W. Carter, Jr. & R. M. Sweet, Eds., Academic Press. ; _computing_structure_solution ; SIR97- Altomare A., Burla M.C., Camalli M., Cascarano G.L., Giacovazzo C. , Guagliardi A., Moliterni A.G.G., Polidori G.,Spagna R. (1999) J. Appl. Cryst. 32, 115-119 ; _computing_structure_refinement ; SHELXL97 -Program for Crystal Structure Analysis (Release 97-2). Sheldrick, G.M., Institut f\"ur Anorganische Chemie der Universit\"at G\"ottingen, Tammanstrasse 4, D-3400 G\"ottingen, Germany, 1998 ; _computing_molecular_graphics 'ORTEP3 for Windows - Farrugia, L. J. J. Appl. Crystallogr. 1997, 30, 565' _computing_publication_material ; 'WinGX publication routines, Farrugia, L. J., J. Appl. Crystallogr., 1999, 32, 837-838 ; _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0405P)^2^+0.1522P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881, 1188 Friedel pairs' _refine_ls_abs_structure_Flack -0.05(6) _refine_ls_number_reflns 2869 _refine_ls_number_parameters 156 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0456 _refine_ls_R_factor_gt 0.0344 _refine_ls_wR_factor_ref 0.0793 _refine_ls_wR_factor_gt 0.0742 _refine_ls_goodness_of_fit_ref 1.042 _refine_ls_restrained_S_all 1.042 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group S S 0.67163(7) 0.64289(4) 0.59128(2) 0.02461(10) Uani 1 1 d . . . N N 0.4825(3) 0.69243(15) 0.74702(8) 0.0292(3) Uani 1 1 d . . . H1A H 0.644(6) 0.680(3) 0.7598(14) 0.055(7) Uiso 1 1 d . . . H1B H 0.389(6) 0.714(3) 0.7881(15) 0.061(8) Uiso 1 1 d . . . H1C H 0.417(5) 0.620(3) 0.7230(14) 0.053(7) Uiso 1 1 d . . . O1 O 0.2120(2) 0.99598(10) 0.69054(6) 0.0291(3) Uani 1 1 d . . . O2 O 0.0738(2) 0.83868(12) 0.76491(7) 0.0330(3) Uani 1 1 d . . . O3 O 0.2634(2) 0.48597(12) 0.66833(6) 0.0291(3) Uani 1 1 d . . . H3 H 0.140(6) 0.432(3) 0.6932(17) 0.079(9) Uiso 1 1 d . . . O4 O 0.2971(3) 0.40052(12) 0.36985(6) 0.0303(3) Uani 1 1 d . . . H4 H 0.426(4) 0.4326(19) 0.3506(11) 0.027(5) Uiso 1 1 d . . . C1 C 0.2295(3) 0.88812(14) 0.72075(8) 0.0228(3) Uani 1 1 d . . . C2 C 0.4670(3) 0.80792(15) 0.69904(8) 0.0225(3) Uani 1 1 d . . . H2 H 0.6268 0.8609 0.7057 0.027 Uiso 1 1 calc R . . C3 C 0.4437(3) 0.76865(14) 0.61874(8) 0.0228(3) Uani 1 1 d . . . H3A H 0.4725 0.8454 0.5878 0.027 Uiso 1 1 calc R . . H3B H 0.2652 0.7379 0.6096 0.027 Uiso 1 1 calc R . . C4 C 0.4517(3) 0.53111(14) 0.55211(8) 0.0208(3) Uani 1 1 d . . . C5 C 0.2672(3) 0.46594(13) 0.59398(9) 0.0222(3) Uani 1 1 d . . . C6 C 0.0906(3) 0.38466(15) 0.55982(9) 0.0248(3) Uani 1 1 d . . . H6 H -0.0383 0.3425 0.5881 0.030 Uiso 1 1 calc R . . C7 C 0.1010(3) 0.36460(16) 0.48497(9) 0.0255(3) Uani 1 1 d . . . H7 H -0.0213 0.3095 0.4621 0.031 Uiso 1 1 calc R . . C8 C 0.2899(3) 0.42511(15) 0.44349(8) 0.0230(3) Uani 1 1 d . . . C9 C 0.4618(3) 0.50918(15) 0.47656(8) 0.0224(3) Uani 1 1 d . . . H9 H 0.5878 0.5524 0.4478 0.027 Uiso 1 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 S 0.02110(16) 0.02902(18) 0.02370(18) -0.00624(15) 0.00259(14) -0.00212(15) N 0.0368(8) 0.0312(7) 0.0196(7) 0.0016(6) 0.0004(6) 0.0126(7) O1 0.0375(7) 0.0218(5) 0.0280(6) -0.0009(4) -0.0067(5) 0.0017(5) O2 0.0354(6) 0.0346(6) 0.0289(6) 0.0034(5) 0.0111(5) 0.0118(6) O3 0.0326(6) 0.0363(6) 0.0184(5) 0.0001(4) 0.0047(5) -0.0075(5) O4 0.0359(7) 0.0364(6) 0.0187(6) -0.0048(4) 0.0022(5) -0.0069(6) C1 0.0270(8) 0.0243(7) 0.0171(6) -0.0051(5) -0.0041(6) 0.0006(6) C2 0.0249(8) 0.0240(7) 0.0186(7) -0.0004(6) -0.0007(6) -0.0004(6) C3 0.0256(8) 0.0227(7) 0.0202(7) -0.0020(5) 0.0015(6) 0.0006(6) C4 0.0202(7) 0.0215(7) 0.0207(8) -0.0019(5) 0.0015(5) 0.0005(6) C5 0.0255(7) 0.0227(6) 0.0184(7) 0.0003(5) 0.0032(6) 0.0029(6) C6 0.0263(8) 0.0224(7) 0.0256(8) 0.0014(6) 0.0052(6) -0.0022(6) C7 0.0253(7) 0.0227(7) 0.0283(8) -0.0031(6) 0.0005(6) -0.0029(6) C8 0.0274(8) 0.0229(6) 0.0187(7) -0.0014(5) -0.0002(6) 0.0028(6) C9 0.0239(7) 0.0229(7) 0.0205(7) -0.0001(6) 0.0029(6) -0.0001(6) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag S C4 1.7764(16) . y S C3 1.8302(16) . y N C2 1.490(2) . y N H1A 0.88(3) . n N H1B 0.92(3) . n N H1C 0.94(3) . n O1 C1 1.2536(19) . y O2 C1 1.251(2) . y O3 C5 1.376(2) . y O3 H3 0.97(3) . n O4 C8 1.3721(17) . y O4 H4 0.82(2) . n C1 C2 1.536(2) . n C2 C3 1.530(2) . n C2 H2 1.0000 . n C3 H3A 0.9900 . n C3 H3B 0.9900 . n C4 C5 1.398(2) . n C4 C9 1.402(2) . n C5 C6 1.392(2) . n C6 C7 1.387(2) . n C6 H6 0.9500 . n C7 C8 1.387(2) . n C7 H7 0.9500 . n C8 C9 1.385(2) . n C9 H9 0.9500 . n loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C4 S C3 99.60(7) . . y C2 N H1A 108.9(18) . . n C2 N H1B 105.0(17) . . n H1A N H1B 109(2) . . n C2 N H1C 110.6(16) . . n H1A N H1C 111(2) . . n H1B N H1C 113(2) . . n C5 O3 H3 112.8(18) . . n C8 O4 H4 111.5(14) . . n O2 C1 O1 127.30(15) . . y O2 C1 C2 117.24(13) . . y O1 C1 C2 115.44(14) . . y N C2 C3 110.80(13) . . y N C2 C1 109.16(13) . . y C3 C2 C1 109.29(12) . . n N C2 H2 109.2 . . n C3 C2 H2 109.2 . . n C1 C2 H2 109.2 . . n C2 C3 S 113.81(11) . . y C2 C3 H3A 108.8 . . n S C3 H3A 108.8 . . n C2 C3 H3B 108.8 . . n S C3 H3B 108.8 . . n H3A C3 H3B 107.7 . . n C5 C4 C9 119.14(14) . . n C5 C4 S 122.14(11) . . y C9 C4 S 118.71(11) . . y O3 C5 C6 121.75(14) . . y O3 C5 C4 118.57(13) . . y C6 C5 C4 119.67(14) . . n C7 C6 C5 120.64(14) . . n C7 C6 H6 119.7 . . n C5 C6 H6 119.7 . . n C6 C7 C8 119.95(14) . . n C6 C7 H7 120.0 . . n C8 C7 H7 120.0 . . n O4 C8 C9 121.95(15) . . y O4 C8 C7 118.15(15) . . y C9 C8 C7 119.89(14) . . n C8 C9 C4 120.62(14) . . n C8 C9 H9 119.7 . . n C4 C9 H9 119.7 . . n loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag O2 C1 C2 N -9.73(19) . . . . y O1 C1 C2 N 171.62(13) . . . . y O2 C1 C2 C3 111.60(15) . . . . n O1 C1 C2 C3 -67.05(17) . . . . n N C2 C3 S -46.19(17) . . . . y C1 C2 C3 S -166.52(11) . . . . n C4 S C3 C2 127.19(12) . . . . n C3 S C4 C5 -66.60(14) . . . . n C3 S C4 C9 112.49(13) . . . . n C9 C4 C5 O3 178.46(14) . . . . n S C4 C5 O3 -2.45(19) . . . . y C9 C4 C5 C6 -2.6(2) . . . . n S C4 C5 C6 176.53(11) . . . . n O3 C5 C6 C7 -179.04(14) . . . . n C4 C5 C6 C7 2.0(2) . . . . n C5 C6 C7 C8 0.5(2) . . . . n C6 C7 C8 O4 178.59(15) . . . . n C6 C7 C8 C9 -2.4(2) . . . . n O4 C8 C9 C4 -179.19(15) . . . . n C7 C8 C9 C4 1.8(2) . . . . n C5 C4 C9 C8 0.7(2) . . . . n S C4 C9 C8 -178.47(12) . . . . n loop_ _geom_hbond_atom_site_label_D _geom_hbond_atom_site_label_H _geom_hbond_atom_site_label_A _geom_hbond_distance_DH _geom_hbond_distance_HA _geom_hbond_distance_DA _geom_hbond_angle_DHA _geom_hbond_site_symmetry_A O3 H3 O2 0.97(3) 1.66(3) 2.6214(16) 179(3) 4_546 O4 H4 O1 0.82(2) 1.82(2) 2.6404(19) 179(2) 3_566 N H1A O1 0.88(3) 2.25(3) 2.8230(18) 123(2) 4_646 N H1B O4 0.92(3) 2.14(3) 2.8412(19) 132(2) 2_565 N H1B O2 0.92(3) 2.13(3) 2.6226(19) 113(2) . N H1C O3 0.94(3) 1.89(3) 2.822(2) 174(2) . _diffrn_measured_fraction_theta_max 0.993 _diffrn_reflns_theta_full 30.02 _diffrn_measured_fraction_theta_full 0.993 _refine_diff_density_max 0.211 _refine_diff_density_min -0.289 _refine_diff_density_rms 0.059