

Citation for published version:
Al-Kuwari, S, Davenport, JH & Bradford, RJ 2010, Cryptographic hash functions: recent design trends and
security notions. in Short Paper Proceedings of 6th China International Conference on Information Security and
Cryptology (Inscrypt '10). Science Press of China, pp. 133-150.

Publication date:
2010

Link to publication

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 04. Dec. 2024

https://researchportal.bath.ac.uk/en/publications/46ff6ef9-d2d5-4ba0-837f-a690d4a59b10

Cryptographic Hash Functions: Recent Design Trends and

Security Notions∗

Saif Al-Kuwari1 James H. Davenport2 Russell J. Bradford3

Department of Computer Science,
University of Bath, Bath, BA2 7AY, UK

1S.Alkuwari@bath.ac.uk, 2J.H.Davenport@bath.ac.uk,
3R.J.Bradford@bath.ac.uk

Abstract

Recent years have witnessed an exceptional research interest in cryptographic hash func-
tions, especially after the popular attacks against MD5 and SHA-1 in 2005. In 2007, the U.S.
National Institute of Standards and Technology (NIST) has also significantly boosted this
interest by announcing a public competition to select the next hash function standard, to be
named SHA-3. Not surprisingly, the hash function literature has since been rapidly growing
in an extremely fast pace. In this paper, we provide a comprehensive, up-to-date discussion
of the current state of the art of cryptographic hash functions security and design. We first
discuss the various hash functions security properties and notions, then proceed to give an
overview of how (and why) hash functions evolved over the years giving raise to the current
diverse hash functions design approaches.

∗A short version of this paper is in [1]. This version has been thoroughly extended. An identical version has
been uploaded to the Cryptology ePrint Archive: eprint.iacr.org/2011/565

1

eprint.iacr.org/2011/565

Contents

1 Introduction 3

I Hash Functions Security 4

2 Security Properties 4
2.1 Collision-Resistance (CR) . 5
2.2 Pre-image Resistance (Pre) . 5
2.3 2nd Pre-image Resistance (Sec) . 6
2.4 Other Properties . 6

3 Security Notions 7
3.1 Indifferentiability from RO . 7
3.2 Indistinguishability from PRF . 11
3.3 Unforgeability . 11
3.4 Other Notions . 12

4 Multi-Property-Preserving 12

5 Cryptographic Proofs 14

II Hash Functions Design 14

6 Keyless vs. Keyed Hash Functions 15

7 Iterative Hash Functions 15
7.1 Merkle-Damg̊ard Construction . 15
7.2 Generic Attacks Against Merkle-Damg̊ard . 16
7.3 Variants of Merkle-Damg̊ard . 19
7.4 Sponge Construction . 24

8 Tree-based Hash Functions 25

9 Compression Functions 25
9.1 Hash Functions Based on Block and Stream Ciphers 26
9.2 Hash Functions Based on Mathematical Problems 27
9.3 Other Approaches . 27

10 Conclusion and Summary 28

2

1 Introduction

Cryptographic hash functions have indeed proved to be the workhorses of modern cryptography.
Their importance was first realised with the invention of public key cryptography (PKC) by
Diffie and Hellman [43] in 1976, where it became an integral part of PKC ever since. Unfor-
tunately, recent advances in cryptanalysis revealed inherent weaknesses in most of the popular
hash functions triggering an urgent call for further research in this area. In response, two main
approaches have been adopted: either patching the existing constructions by slightly modifying
them to fix a particular set of weaknesses, or designing new hash functions from scratch. In
the first approach, if inherent weaknesses were discovered, they imply that the design princi-
ples on which the hash function is based are flawed and unless they are thoroughly revised, it
is most likely that those weaknesses will still exist, even if they appear to have been fixed by
some minor modifications. Likewise, in the second approach, if a hash function is designed from
scratch, it may sufficiently resist a particular set of weaknesses, but may also covertly suffer from
other (possibly more severe) weaknesses that might not have been spotted at early development
stages. Existing constructions, on the other hand, have the advantage that they have been ex-
tensively studied and analysed over time, thus, unless very carefully designed, structurally new
hash functions may well be susceptible to more attacks than those that they resist.

Hash functions are essentially many-to-one functions since they map arbitrary length inputs
to fixed length outputs and the input is usually larger than the output (hash functions are
compressing primitives). Thus, collisions (different messages hashing to the same value) in hash
functions are unavoidable due to the pigeonhole principle1. Yuval [117] was the first to discuss
how to find collisions in hash functions using the Birthday Paradox, leading to what is commonly
known today as the birthday attack. In this attack, a collision is found with probability q2/2n

after q queries to a hash function outputting values of length n-bit [18]. While collision resistance
is certainly an important property that hash functions are expected to possess, it is not the only
one, and in some applications it is not even required. Pre-image resistance (non-invertibility),
for example, is a more difficult and more practical property. In fact, in most applications
it is more devastating to be able to invert a hash value, than finding a collision between two
arbitrary messages. Therefore, it is the application at which the hash function is being used that
determines the security properties that it should preserve. In this paper, we present and discuss
hash functions’ most common security properties and notions followed by a thorough discussion
of the different approaches that were adopted to build hash functions, which, of course, the
security of hash functions have influenced significantly as we will show.

SHA-3 Competition. For a long time, SHA-1 and MD5 hash functions have been the closest
to a hashing de facto, this, however, has changed in 2004 and 2005 when Wang et al. [109, 110,
111] showed that finding collisions for MD5 can be easy while substantially reducing the work
needed to find collisions on SHA-1 to 269, which is much less than the expected 280. Although
a break with complexity of 269 is still (at the time of writing) theoretical, it showed that SHA-1
is not as strong and collision-resistant as it is supposed (and thought) to be. This has driven
the National Institute of Standards and Technology (NIST) in November 2007 to announce an
open competition2 to select a new hash functions standard, to be named SHA-3 [80]. NIST
received 64 submissions, 51 of which were accepted for round 1 of the competition in December
2008. In July 2009, only 14 round 1 candidates successfully progressed to round 2; these are
briefly analysed in [5]. In December 2010, the 5 finalist candidates where chosen (these are,

1The pigeonhole principle states that if m pigeons are distributed over n holes, and m > n, then there is at
least one hole with more than one pigeon.

2For comprehensive resource about SHA-3 competition and all its candidates, see http://ehash.iaik.tugraz.
at/wiki/The_SHA-3_Zoo

3

http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo
http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo

BLAKE, Grøstl, JH, Keccak and Skein), and the winner is expected to be announced in the
second quarter of 2012

Paper Organisation. This paper consists of two main parts. In this first part, we discuss
security of hash functions as follows. First, we provide a discussion about the three classical
hash function security properties in section 2, namely collision resistance in section 2.1, pre-
image resistance in section 2.2 and 2nd pre-image resistance in section 2.3, as well as some
other properties (including statistical and application-specific ones) in section 2.4. We then
describe in length the indifferentiability framework in section 3.1. Brief descriptions of the
indistinguishability from Pseudorandom Function (PRF) and the unforgeability notions are
provided in sections 3.2 and 3.3, respectively. We also talk about some other security notions
in 3.4. We conclude the first part In section 4, where we discuss the multi-property-preserving
paradigm (MPP) and give a few examples of recent MPP constructions. In the second part, we
discuss the design of hash functions as follows. In section 6, we classify hash functions as keyed
and keyless. Section 7 then provides a relatively lengthy and up-to-date discussion about various
iterative hash functions, this is indeed the most common approach (at least contemporarily) in
designing hash functions. In particular, we discuss the Merkle-Damg̊ard construction in section
7.1, generic attacks against Merkle-Damg̊ard in section 7.2, and how accordingly the research
community tried to patch the construction in section 7.3. Beside iterative functions, tree-
based ones have also been proposed, these are briefly discussed in section 8. We then discuss
compression function design in section 9, in particular hash functions based on block/stream
ciphers in section 9.1, and provably secure (based on mathematical problems) hash functions in
section 9.2.

Part I

Hash Functions Security

2 Security Properties

The basic (classical) properties a hash function is expected to preserve are: collision resis-
tance, pre-image resistance and 2nd pre-image resistance; figure 1 illustrates these properties
graphically. Although these are thought to be the universal security properties that most hash
functions should preserve, there may be other application-specific security properties that hash
functions should additionally (or instead) preserve if they are to be used in a given application.
In this section we provide an elaborate discussion on the basic definitions of these properties.
Generally, when we say that an attack succeeds in breaking a particular hash function, that
does not necessarily mean that the hash function is deemed broken in practice. If an attack
succeeds to prove that a hash function can be exploited (e.g. finding a collision, or pre-image,
or second pre-image) with work less than that required by the birthday or brute force attack,
the hash function is considered broken, even if the work required to break it is still infeasible in
practice (this is called a theoretical break). Indeed, finding such flaws in a hash function is an
evidence of structural weaknesses that may be exploited at later stages to turn this theoretical
break into a practical one; the primary example is MD5, which was first theoretically broken,
then the attacks eventually evolved and today practical collisions can easily be found in MD5
[64, 103].

4

??? H

??? H

(a) Collision resistance

??? H

(b) Pre-image resistance

H

??? H

(c) 2nd pre-image resistance

Figure 1: Graphical representation of the collision resistance, pre-image resistance and 2nd
pre-image resistance properties

2.1 Collision-Resistance (CR)

A hash collision occurs when two (arbitrary) different messages hash to the same value. That is,
for a collision resistant hash function H, it should be computationally infeasible to find any two
messages M and M ′ such that H(M) = H(M ′) while M 6= M ′. This also applies to families of
hash function (i.e. keyed hash functions, where members of the family are indexed by different
keys). Formally, the advantage of an adversary A of finding a collision in a hash function H is
defined as follows:

Advcr
H(A) = Pr

[
(M,M ′)

$←− A : M 6= M ′ ∧H(M) = H(M ′)
]

For a secure hash function, the best attack to find a collision should not be better than the
birthday attack (i.e. not better than work complexity of 2n/2 for a hash function outputting n-bit
hash values). Collision resistance was first formally defined by Damg̊ard [37], and is sometimes
called Strong Collision Resistance. Some authors use the term multi-block collision to refer
to 2 colliding messages, each consisting of at least 2 blocks. This is not to be confused with
multi-collision, where multiple messages collide at the same hash value regardless of their sizes
(sometimes also called K-collision, where K is the number of the colliding messages). Finding
a K-collision should have a complexity of at least 2(K−1)n/K . In [93], Rogaway discussed the
foundation-of-hashing dilemma which states that collision resistance cannot be formally defined
for keyless hash functions, that is, there will always be collisions, it is just that us, humans, may
not be able to find them, but such a concept cannot be formalised mathematically for keyless
hash functions. Rogaway proposed a solution to this dilemma by means of explicit security
reduction, which he called the human-ignorance framework.

2.2 Pre-image Resistance (Pre)

For all practical purposes, hash functions should be computationally non-invertible. When a
message is hashed, it should be (computationally) infeasible to retrieve the original message from
which the hash value was obtained. That is, for a pre-image resistant hash function H, given a
hash value H(M) of a particular message M , it should be computationally infeasible to retrieve
the original message M , or indeed generate any message M ′ 6= M such that H(M ′) = H(M).
Succinctly,

Adv
pre[m]
H (A) = Pr

[
M

$←− {0, 1}m;Y ← H(M);M ′
$←− A(Y) : H(M ′) = Y

]
For a hash function to be pre-image resistant, the best attack against the hash function should be
the brute force attack (i.e. work complexity of 2n operations for a hash function with output size

5

n). Pre-image resistance is also sometimes called One-wayness. Generally, collision resistance
does not guarantee pre-image resistance [37], but in [94] it was shown that pre-image resistance
can be implied by collision resistance if the hash function was sufficiently compressing (i.e. its
domain is much larger than its range). Similarly, Stinson [105] argued that it is possible to obtain
good reduction from collision resistance to pre-image resistance under several assumptions, but
he then showed that these assumptions are difficult/impossible to satisfy in practice. Stinson
also introduced the zero pre-image notion, where an attacker finds the message M such that
H(M) = y = 0. He remarked that there is no obvious reduction between zero-pre-image (where
a specific value of y is inverted) and normal pre-image (where a random value of y is inverted),
and that one may be harder or easier to find than the other.

2.3 2nd Pre-image Resistance (Sec)

Given a 2nd pre-image resistant hash function H, and a message M , it should be computationally
infeasible for an adversary A to find a different message M ′ such that M 6= M ′ and both M and
M ′ hash to the same value, H(M) = H(M ′). Succinctly,

Adv
sec[m]
H (A) = Pr

[
M

$←− {0, 1}m;M ′
$←− A(M) : M 6= M ′ ∧H(M) = H(M ′)

]
For H to be considered 2nd pre-image resistant, the best attack against H should be the
brute force attack (i.e. with work complexity of 2n for a hash function with output size n).
2nd pre-image resistance is also sometimes called Weak Collision Resistance. Although it is
frequently claimed in the literature that collision resistance implies 2nd pre-image resistance
[73, 94], Contini et al. [32] argued that interpreting some formal definitions of 2nd pre-image
resistance in the literature (e.g. [73]) invalidates this claim, but generally this claim is true if
both collision and 2nd pre-image resistance are defined properly. Like collision and K-collisions,
a generalisation of 2nd pre-image is K-way 2nd pre-image where, given a message M and
its hash value H(M), an adversary A finds K different messages colliding in H(M), that is,
H(M1) = H(M2) = · · · = H(MK) = H(M), while M1 6= M2 6= · · · 6= MK 6= M . Similarly,
K-way pre-image occurs when, given H(M), an adversary A finds K different messages colliding
in H(M). Finding a K-way (2nd) pre-image should have a complexity of at least K.2n.

Remark. In [113], Yasuda showed that the compression function of a Merkle-Damg̊ard hash
function does not have to be CR for the whole hash function to be Sec or Pre. The author
argued that it only suffices for a compression function to preserve weaker-than-CR properties,
namely cs-SPR (chosen suffix second pre-image) and cs-OW (chosen suffix one-wayness), for the
corresponding hash function to preserve Sec and Pre, respectively. This is indeed an important
result since many compression functions used with the Merkle-Damg̊ard construction were re-
cently found to be not CR, which directly implies that their corresponding hash functions are
not CR [74, 38], but that does not necessarily mean that they are also not Sec and/or Pre when
their compression functions are modelled as cs-SPR and cs-OW (which are weaker than CR).

2.4 Other Properties

Other desirable properties that hash functions should preferably preserve include [73] (some of
these properties are application specific, i.e., some hash function applications may not require
some of these properties):

• Near-collision resistance: hash values of two different messages should differ significantly
(even if the messages differ slightly), that is, a near-collision occurs if for two different
messages M 6= M ′, H(M) differs from H(M ′) by only a small number of bits.

6

• Semi-free-start collision resistance: a semi-free-start collision occurs when two different
messages with the same (but random) IV hash to the same value. In practice, though,
hash functions are usually specified with fixed IVs.

• Pseudo-collision resistance: a pseudo-collision (or free-start collision) occurs when it is
possible to find a collision between two messages by only controlling their IVs (again, this
attack is not practically relevant because most hash functions are shipped with fixed IVs,
so an attacker cannot control the IV in practice). A variant of this property is pseudo-
near-collision which results in a near-collision.

• Partial pre-image resistance: also sometimes called local one-wayness, states that it should
be equally difficult to retrieve part of the original message from its hash value as retrieving
the whole message, even if a portion of the message is already known.

• Non-correlation (correlation freeness): hash function inputs and outputs should not be
statistically correlated; that is, even a small change in the input should drastically affect
the output bits; this phenomenon is called the avalanche effect.

• Chosen Target Forced Prefix (CTFP) pre-image resistant [61]: applications that need to
resist the herding attack [61] (see section 7.2) need to preserve this property which prevents
an attacker from finding a string S such that given P and H, then H(P ||S) = F where F
is a hash value computed before learning P .

A particularly problematic situation arises when trying to evaluate the security of sponge-
based constructions [21] (see section 7.4). Traditionally, security bounds are based on the func-
tion’s output length n, where collision requires 2n/2 and pre-image/2nd pre-image require 2n.
However, the sponge construction produces a variable length output. Realising this problem,
the authors of the sponge construction introduced a reference security model, called the Ran-
dom Sponge, which they use in their security analysis. Detailed discussion of the security of the
sponge construction is beyond the scope of this paper.

3 Security Notions

Other than the basic (classical) security properties above, it has been suggested that hash
functions should also preserve several other properties, most of which are usually application
dependent. In this section, we try the shed the light on the most popular hash functions security
notions that are rapidly becoming common requirements for most applications.

3.1 Indifferentiability from RO

Security analysis and proofs of many cryptosystems are carried out in the random oracle model
(ROM) [15], which assumes the presence of a Random Oracle (RO). A RO is an abstract ideal
primitive that returns infinite random response every time it is queried [15], though such response
is usually truncated. Responses of RO are consistent for similar queries (a particular query will
always receive the same RO response regardless of when and how many times it is made) and
since RO is an atomic entity (i.e. it cannot be decomposed), it is often said to be monolithic.
In practice, ROs do not exist [27] and are instead instantiated by hash functions which are not
monolithic by nature since hash functions are structured entities that usually process messages by
repeatedly and iteratively calling an underlying primitive (commonly, a compression function).

7

Therefore, for proofs in the ROM3 to hold in practice, the adopted hash function should emulate
a RO. A hash function H emulating a RO in this sense implies that H cannot be differentiated
from a genuine RO and that systems proven secure in the ROM will remain secure if the RO is
replaced by H. In the context of cryptography, there is a distinction between indifferentiability
and indistinguishability. In indistinguishability, a distinguisher algorithm D is merely given
black-box4 access to the two systems. In indifferentiability, on the other hand, D is further
given access the underlying primitives of the systems and can query them independently. Thus,
indifferentiability is a generalisation of indistinguishability.

In [33] Coron et al., based on Maurer’s indifferentiability framework [71], introduced their
popular hash function indifferentiability from RO framework, which can be used to prove that
a hash function, with access to an ideal compression function, is indifferentiable from a genuine
RO. In this framework, the two building blocks of a hash function, namely a construction C
and an ideal compression function G, constitute a system (System 1) and the random oracle
F (which the hash function needs to emulate) constitutes another system (System 2), then a
distinguisher algorithm D with oracle access to both systems tries to challenge the systems and
distinguish between them. If we do not introduce an extra component in System 2, D can easily
distinguish between the two systems since System 1 consists of two components while System
2 consists of only one component. Thus, we introduce a simulator S in System 2 to simulate
the ideal compression function G of System 1. The simulator S should be defined very carefully
to simulate not only a conventional compression function operation such that given an input it
returns a random output, but also how to behave consistently with the way C and G interact
to handle D’s queries. This is indeed a non-trivial task for S because all messages sent to C
will be processed by G (i.e. G can see all messages sent to System 1, including those sent to C),
but that does not hold for S in System 2 because the random oracle F is an atomic component
and will return its responses independently from S (i.e. messages sent to F are not observable
by S). It is important to note that D here challenges the systems by sending multiple queries
to the different components of the systems and observes the responses, D then distinguishes
between the systems based on their overall observed behaviour not just the individual responses
of the queries. That is, if D sent a query to both systems and received different responses,
that does not necessarily mean that D has succeeded in the distinguishing game because both
responses are still random. However, if D observed a pattern in a series of responses from a
particular system but did not observe similar behaviour in the other system, then it is apparent
that one of them is behaving differently than the other and D succeeds in the distinguishing
game. Although D does not necessarily have to tell which system is which, it will be obvious
that the system that behaves in a more random manner is the RO system. Figure 2 illustrates
the general setting where D has oracle access to both Systems 1 and 2.

Systems 1 and 2 are also sometimes called the Real System and the Random System, re-
spectively. In System 1, C has oracle access to G, where in System 2, S has oracle access to F .
However, while in System 1, C always queries G to obtain responses for any query it receives,
in System 2, S may choose to query F or generate its responses uniformly at random. For
Systems 1 and 2 to be indifferentiable from each other, it is important that S is programmed
in such a way that F and S behave consistently with how C and G behave (note that S is the
only customisable component). To illustrate this point, let’s look at how G (which S should
simulate) behaves. When G receives a query (which may be from C or D) it merely generates a
random response since it is modelled as an ideal primitive. Having to simulate G, the simulator

3Even though proofs in the ROM may not always guarantee security when the RO is instantiated by a practical
hash function, if a scheme is proven secure in the ROM, there is strong evidence that this scheme exhibits sound
structure, or at least do not suffer from serious inherent structural weaknesses.

4When an adversary has a black-box access to a component G it can only send queries to that component and
receive responses back cannot access the internal components of G.

8

S, in turn, should do the same, but S is not an ideal primitive, so it can either query F to get
a random oracle response (i.e. a response from an ideal primitive), or just return a uniformly
random response from some randomness generation source. Since it is usually more expensive to
query F , S will always return uniformly random responses, unless it really has to query F ; when
exactly to query or not to query F is (the main) part of the simulator’s definition and depends
on how System 1 behaves. In the case of a Merkle-Damg̊ard hash function (when C is modelled
as a Merkle-Damg̊ard construction), the main differences between System 1 and System 2 can
be summarised as follows:

S

D

System 1 System 2

C

Figure 2: Distinguisher’s view in the indifferentiability game

1. C vs. F : since C is an iterative construction, it processes its input as a sequence of blocks
which are sent to G in turn; however, this is not the case with F because F processes the
whole message (no matter how long it is) independently at once.

2. G vs. S: it is clear that G will necessarily be aware of all queries sent to System 1 because
C will eventually process its queries through G, but S, on the other hand, cannot see
queries sent to F , and thus may not be aware of them.

It is, therefore, the job of the simulator S to account for these differences to resist D’s dis-
tinguishing attacks. However, this is only possible if C is a good construction; in fact, there
are cases where D will always succeed in exploiting these structural differences no matter how
intelligent and efficient S is. To illustrate how D can typically exploit the differences between
the systems and distinguishes them, we describe an attack against the Merkle-Damg̊ard con-
struction as reported in [33], which shows that the plain Merkle-Damg̊ard construction is not
indifferentiable from RO; figure 3 illustrates the steps of the attack. Basically, D here exploits
the fact that C processes its queries iteratively by calling G, and that S cannot see queries sent
to F (the differences listed above). The attack proceeds in three steps:

1. First, D sends the query m1 to both C and F and receives C(G(IV,m1)) = Z and F(m1) =
Z ′; the IV is hard coded at C and inserted automatically,

2. then, D sends the 2-block queries Z||m2 and Z ′||m2 to G and S, respectively, and receives
G(Z,m2) = Y , and S(Z ′,m2) = Y ′; here it will not make a difference whether S used F
to get Y ′ or it generated it uniformly at random.

3. finally, D sends the 2-block query m1||m2 to C and F and receives F(m1,m2) = W , and

C(m1,m2) = C(G(G(IV,m1),m2)) = C(G(Z,m2)) = Y

D then outputs 1 (i.e. success) in System 1 if G(Z,m2) = C(m1,m2), and 0 otherwise (note
that D decides on the success conditions which may be different when D interacts in different

9

settings). Similarly, D outputs 1 in System 2 if S(Z ′,m2) = F(m1,m2). It is easy to see that
D will always output 1 when interacting with System 1, but will output 0 with overwhelming
probability when interacting with System 2 (this is because S cannot see m1, so it can only
guess it, but this has a low probability of success). In this case, D succeeds in its distinguishing
game. In summary, proofs in the indifferentiability framework proceeds in two steps:

C
IV,m1

D

S

Z

Z m1
m1 Z’

(a) Step 1

C

D

S

Y Z,m2 Z’,m2

Y’

(b) Step 2

C
IV,m1

D

S

Y
m1, m2

W’m1, m2

Z

Z,m2

Y

(c) Step 3

Figure 3: Indifferentiability attack against the Merkle-Damg̊ard construction

1. First, we define a simulator S in System 2 (the Random System) to play the role of G in
System 1 (the Real System), and whose relationship to the random oracle F mimics that
of G to C.

2. Then, we prove that the view of a distinguisher D is similar when it has access to the
random oracle F and the simulator S system (System 2), and the construction C and
the ideal primitive G system (System 1), except with negligible probability. Formally, the
advantage of an adversary D to success in the indifferentiability game (also called the
Pseudorandom Oracle (PRO) game) is as follows:

Advpro
C (D) =

∣∣∣Pr
[
DCG ,G → 1

]
− Pr

[
DF ,S

F → 1
]∣∣∣

Game-playing The game-playing technique was first used in [63], then formalised in [17], and
has been a popular technique for analysing cryptographic primitives ever since. This technique
is usually used when we need to prove that two systems cannot be distinguished from each other.
Let these systems be System 1 and System 2. We start with System 1 and write it as a game
(pseudocode), we then introduce minor syntactical modification to the game and calculate the
probability that a distinguisher will be able to distinguish between the original game and the
one with the minor modification. The probability is usually calculated by introducing a flag bad

that is originally set to false, and upper bounded by the probability that a distinguisher will
set bad = true, where it succeeds in its distinguishing game. We then keep introducing similar
minor syntactical changes to the games and track the probability that the distinguisher will set
bad = true between every consecutive games. The simulation ends when we reach the game
that is identical to System 2. The overall distinguishing advantage is then easily upper bounded
by recalling all the probabilities of setting bad = true. This technique is primarily used in the
indifferentiability and indistinguishability proofs.

Salvaging differentiable Constructions A serious problem arises when trying to use Coron’s
indifferentiability framework with hash functions based on mathematical primitives (such as
those presented in section 9.2) because they are easily differentiable from RO due to the rig-
orous mathematical structure they exhibit (whereas RO are unstructured entities). However,

10

while it seems that this class of hash functions cannot be considered practical hash functions
(since they are differentiable from RO), Ristenpart and Shrimpton [90] pointed out (and proved)
that such hash functions can be slightly modified to be indifferentiable from RO. They proposed
a construction called Mix-Compress-Mix (MCM) which basically wraps the hash function with
two injective mixing steps to mix the input and the output of the hash function and hide its
(mathematical) structure.

In [79], the authors adopted a slightly different approach which gives hope to the construc-
tions that failed to be indifferentiable from RO. Their approach involves introducing weaker
RO variants and then proving that the constructions that failed to be indifferentiable from RO
are indifferentiable from these weaker RO variants. Major cryptosystems, such as FDH, OAEP
and RSA-KEM, are then secure under those constructions if they are secure in these RO vari-
ants. This approach was demonstrated on the Merkle-Damg̊ard construction which was shown
to be not indifferentiable from RO [33]. The authors proposed three RO variants as follows (in
descending order from strongest to weakest): Leaky RO (LRO)5, Traceable RO (TRO) and Ex-
tension attack simulatable RO (ERO). The authors proved that FDH is secure in LRO, OAEP
is secure in TRO, and RSA-KEM is secure in ERO, then they proved that Merkle-Damg̊ard
is indifferentiable from LRO, TRO and ERO, which means that Merkle-Damg̊ard is secure in
FDH, OAEP and RSA-KEM.

3.2 Indistinguishability from PRF

In the keyed setting, a hash function is indistinguishable from Pseudorandom Function (PRF)
if there is no adversary able to distinguish it from a random function. A random function is a
function that has been chosen randomly based on a given domain and range; this does not imply
that the output of the function should be random, the randomness here refers to the function
selection process not the output of that function. Indeed, the function with constant output (e.g.
always outputs 1) is a random function if it was selected randomly. Being a random function (or
indistinguishable from one) is an idealisation of hash functions because when a hash function is
modelled as a random function HK : K ×M → Y, every key K ∈ K trigger the selection of a
random function (member of the function family) that maps an input M ∈M from the domain
to a random output in the range Y ∈ Y. Given such hash function family, it should be infeasible
for an adversary A with black-box access to HK to distinguish a randomly chosen member of
HK from a genuinely random function. Succinctly,

Advprf
HK

(A) =
∣∣∣Pr
[
K

$←− K : AHK = 1
]
− Pr

[
R

$←− Func(Dom,Rng) : AR = 1
] ∣∣∣

where Func(Dom,Rng) denotes the set of all functions mapping inputs from the domain Dom
to outputs in the range Rng, with R a randomly chosen function from such a set. Basically, in
both the PRO game (section 3.1) and the PRF game the adversary A’s view should be similar
when it interacts with a RO or PRF (random function), respectively, as it is when it interacts
with the hash function H (A cannot distinguish between H and a genuine RO or PRF, except
with negligible probability).

3.3 Unforgeability

MACs (Message Authentication Code) are popular cryptographic primitives used for authenti-
cation and integrity checks. One of the most established approaches of designing MACs is based
on keyed hash functions, where the hash function is secretly keyed (and only legitimate parties
possess the key). That is, both the sender and the receiver share a secret key (that is assumed

5The LRO was proposed earlier by Yoneyama [116], also called pub-RO, in [46].

11

to have been exchanged securely) which they use in conjunction with a hash function to check
the integrity and authenticity of a particular message. Precisely, a MAC scheme consists of a
tag generation algorithm and a tag verification algorithm. The sender uses the tag generation
algorithm to generate a tag for a particular message (using its secret key), then it sends the
message and the tag to the receiver. Once the receiver receives the message-tag pair (which may
have been tampered with en-route), it runs them through the tag verification algorithm using its
own secret key. If the message-tag pair is valid, the tag verification algorithm returns 1 and the
message is authenticated, otherwise it returns 0 and the message is rejected. Note that here the
tag verification algorithm basically just runs the tag generation algorithm on the message and
the receiver’s secret key, then compares the tag it generates with the tag the receiver received.
Essentially, MACs are secret-key primitives, the counterpart of MACs in the public-key setting
is digital signatures, which is yet another central applications of hash functions, but we do not
address digital signatures in this paper. For a hash function to be a good MAC, it needs to be
unforgeable. Given an adversary (forger) A, the formal unforgeability definition is as follows:

Advmac
HK

(A) = Pr
[
K

$←− K, (M,T)
$←− AHK : HK(M) = T ∧M is not queried

]
The advantage definition of MAC implies that it should be difficult for A (a forger) to find a
valid pair of a message M and a tag T which can then be successfully validated by a MAC
algorithm (this message-tag pair is then called a MAC forgery). A’s aim is to find any valid pair
of M and T (it is not about recovering the secret key K that the MAC algorithm used while
generating T). That is, A builds the forgery pair (M ′, T ′) by repeatedly querying HK with a
set of adaptively chosen messages M1, . . . ,Ms and observes the returned tags T1, . . . , Ts, then
A succeeds if it can generate a new message M ′ 6∈ {M1, . . . ,Ms} and a valid tag T ′ such that
HK(M ′) = T ′.

3.4 Other Notions

It has also been suggested that hash functions should behave as a randomness extractor (extract-
ing uniformly random bits from an input generated by imperfect randomness source) [44, 45].
However, in order for a hash function to possess randomness extraction properties, it may be nec-
essary to make strong assumptions on the compression function that may not even be practically
relevant.

Another notion is PrA (Pre-image Awareness) proposed by Dodis et al. in [45], which states
that if an attacker can find a pre-image M of a previously published hash value Y , then it must
have already known (was aware of) M ; that is, a hash function is PrA if there is no adversary
that can find a pre-image of a previously published hash value, unless it is already aware of
that pre-image (Dodis et al. showed that strengthened Merkle-Damg̊ard preserves PrA). A
strengthened variants of PrA, called adaptive pre-image resistance [66], allows the adversary to
make adaptive queries to the underlying compression function. It was shown that a collision
resistant compression function that preserves the adaptive pre-image resistance property can
yield a hash function indifferentiable from RO.

4 Multi-Property-Preserving

One would naturally think that having a hash function provably preserving some strong security
property (such as indifferentiability from RO) is enough to imply a sufficient security margin.
However, in [13] Bellare and Ristenpart refuted this assumption by providing counterexamples
showing that the constructions proposed by Coron et al. in [33] are in fact not collision resistant

12

while they are still indifferentiable from RO, a supposedly strong security notion6. Thus, the
authors suggested that a reasonably secure hash function should be multi-property-preserving
(MPP).

In [94], Rogaway and Shrimpton provided a formal discussion about the relations between
collision resistance, pre-image resistance, second pre-image resistance and several variants of the
latter two. They considered families of hash functions (keyed hash functions) while studying
these properties, because the keyed setting is easier to formally analyse than the keyless setting
[93]. These properties are CR, Pre, Sec, aPre, ePre, eSec, aSec, whose advantages are as follows:

Advcr
HK

(A) = Pr
[
K

$←− K; (M,M ′)
$←− A(K) : M 6= M ′ ∧HK(M) = HK(M ′)

]

Adv
Pre[m]
HK

(A) = Pr

[
K

$←− K;M
$←− {0, 1}m;

Y ← HK(M);M ′
$←− A(K,Y) : HK(M ′) = Y

]

Adv
aPre[m]
HK

(A) = Pr

[
(K,St)

$←− A();M
$←− {0, 1}m;

Y ← HK(M);M ′
$←− A(Y, St) : HK(M ′) = Y

]

AdvePre
HK

(A) = Pr
[

(Y, St)
$←− A();K

$←− K;M ′
$←− A(K,St) : HK(M ′) = Y

]

Adv
Sec[m]
HK

(A) = Pr

[
K

$←− K;M
$←− {0, 1}m;

M ′
$←− A(K,M) : M 6= M ′ ∧HK(M) = HK(M ′)

]

Adv
aSec[m]
HK

(A) = Pr

[
(K,St)

$←− A();M
$←− {0, 1}m;

M ′
$←− A(M,St) : M 6= M ′ ∧HK(M) = HK(M ′)

]

Adv
eSec[m]
HK

(A) = Pr

[
(M,St)← A();K

$←− K;

M ′
$←− A(K,St) : M 6= M ′ ∧HK(M) = HK(M ′)

]

Let xxx ∈ {Pre, Sec}, then saying that HK is a-xxx means the hash function HK is always
xxx-resistant for a fixed key K and random challenge, while e-xxx means the hash function HK

is everywhere xxx-resistant for a fixed challenge and random key K. The challenge in Sec is the
original message M (domain point) to which we need to find a second pre-image, while it is the
hash value HK(M) (range point) in Pre which we need to invert to find M . Occasionally, the
adversary A may return a state variable St, which contains information that the adversary may
need in later stages of the attack (this is how extra information is usually modelled in formal
definitions). For example, if A generates a key K, A may wish to keep track of any random
choices he made during the generation of K, so A stores this information in St.

The eSec property is also called Target Collision Resistance (TCR) [16] which is, in turn,
another name for the popular Universal One Way Hash Function (UOWHF)7 notion of Naor
and Young [77]. Strengthened variants of some of these properties were proposed in [56, 113,

6However, that does not degrade the importance of the indifferentiability as a property.
7In UOWHF (or TCR or eSec), an adversary A generates a message M , then given a random key K, A

generates another message M ′ 6= M , such that HK(M) = HK(M ′). A strengthened variant of TCR is eTCR
where A aims at finding M 6= M ′ such that HK(M) = HK′(M ′) and K 6= K′.

13

89], namely s-CR, s-Sec, s-aSec, s-eSec, s-Pre, s-aPre. The authors argued that ePre cannot
be strengthened because if it was strengthened, then there will always be a trivial adversary
succeeding in the s-ePre game.

Backward Chaining Mode (BCM) proposed by Andreeva and Preneel in [8] preserves the
three classical security properties of hash functions, namely CR, Pre and Sec. Similarly, in [7]
Andreeva et al. proposed the ROX (Random Oracle XOR) construction which preserves seven
properties: CR, Pre, ePre, aPre, Sec, eSec and aSec. However, later work by Reyhanitabar et
al. in [88] showed that ROX is surprisingly not indifferentiable from RO even though ROX
uses two ROs in its padding algorithm. Moreover, in [14] Bellare and Ristenpart proposed the
ESh (Enveloped Shoup) construction that preserves: CR, eSec, PRO-Pr, PRF-Pr and MAC,
but later Reyhanitabar et al. [88] showed that ESh does not preserve Sec, aSec, Pre and aPre.

5 Cryptographic Proofs

There are two popular general approaches that proofs of cryptographic hash functions usually
adopt, either constructing the proof in the standard model, or in the ideal model (regardless
of whether the hash function was keyless or keyed). Proofs in the standard model assume the
presence of primitives preserving/possessing standard (practical) properties, such as collision
resistance, pre-image resistance, 2nd pre-image resistance etc. A standard model proof is then
developed to argue that a hash function preserves such properties if it is given access to (or built
from) primitives preserving those properties. For example, the hash function H is said to be
collision resistant if we can construct a standard model proof that demonstrates the following:

If a hash function HG has oracle access to a standard primitive G, and G is collision
resistant, then HG is also collision resistant.

Such proofs are said to be constructed in the standard model. On the other hand, proofs in
the ideal model assume the presence of ideal primitives and proceed by proving that if a hash
function has access to (or built from) such primitives, it possesses a particular property (or set
of properties). For example, a hash function H is said to possess the property xxx if a proof
can be develop to argue about the following:

If a hash function HG has oracle access to an ideal primitive G, then HG provably
possesses the property xxx, or indifferentiable from G.

The ideal primitive G can be any idealistic component, such as an ideal permutation, but the
most commonly used primitive in cryptography (in generally) is a random oracle, which we
discussed fairly thoroughly in section 3.1. Thus, the Random Oracle Model (ROM) can be
thought of as the most popular ideal model, but it is not the only one. In fact, in chapter
??, we will develop our indifferentiability proof by adopting the Ideal Cipher Model (ICM),
which assumes the presence of an ideal block-cipher since hash function are usually (directly or
indirectly) built from block-ciphers.

While proofs in the standard model are more practically relevant, it is sometimes extremely
difficult to carry out such proofs for for some schemes, potentially making the the ideal model
the only (feasible) option. Clearly, nonetheless, proofs in the ideal model obviously provide
weaker security guarantees because they assume the presence of ideal primitives that may not
exist in practice. In both approaches (an in this thesis), the adversary is usually assumed to be
have finite computational resources.

14

Part II

Hash Functions Design

6 Keyless vs. Keyed Hash Functions

Generally, hash functions are classified as keyless or keyed. Keyless hash functions accept a
variable8 length message M and produces a fixed length hash value, H : {0, 1}∗ → {0, 1}n.
Keyed hash functions, on the other hand, accept both a variable length message M and a fixed
length key K to produce a fixed length hash value, HK : {0, 1}k×{0, 1}∗ → {0, 1}n. Keyed hash
functions can be further classified based on whether the key is private or public. Secretly keyed
hash functions are usually used to build Message Authentication Codes (MAC), the canonical
example is HMAC [78]; see section 3.3 for more information about MACs. If, however, the
hash functions are publicly keyed, they are commonly known as dedicated-key hash functions
[38, 14]. Hash functions designed in the dedicated-key setting are families of hash functions
where individual member functions are indexed by different keys. In this setting, if a member
of the hash function family was broken, this should have minimal effect on the other members
of the same family (this is not the case in the keyless setting where a single attack against a
function breaks the function entirely, e.g. [110, 111]). An obvious drawback of hash functions
in the dedicated-key setting, however, is a degraded efficiency since in this case the function is
required to process an extra input (the key) beside the message input.

In general, a hash function (keyed or keyless) is built out of two components: a compression
function f and a construction H. The compression function is a function mapping a larger (but
fixed) sized input to a smaller fixed sized output f : {1, 0}m → {1, 0}n, where m > n. The
construction is the way the compression function is repeatedly called to process a message; refer
to table 1 for brief (informal) definitions of some hash functions terminology which will be used
interchangeably throughout the paper; also see [32] for discussion about the lack of standard
terminology and definitional consistency in the hash functions literature.

7 Iterative Hash Functions

When hash functions first emerged, it was realised that the most convenient way to hash a mes-
sage is by first dividing it into several blocks and then iteratively and systematically processing
these blocks. Today, this sequential hashing approach is still, by far, the most widely used, even
with the advent of parallel processors (which, at least in principle, should have given advantage
to the parallel hash functions). In the following subsections, we review some popular iterative
hashing constructions and discuss how recent designs tried to fix weaknesses in earlier ones. The
absence of a particular construction in the sections below does not imply that we disfavour it;
indeed it is nearly impossible to be exhaustive in such a rapidly growing literature.

7.1 Merkle-Damg̊ard Construction

Most of today’s popular hash functions, such as MD5 and SHA-1, are based on the infamous
Merkle-Damg̊ard construction (also called the cascade construction) proposed independently by
Merkle [74] and Damg̊ard [38] in 1989 (though, Damg̊ard’s construction was keyed while Merkle’s

8The term variable in this context indicates that the length of the message is upper bounded by a large number
of bits M = {0, 1}≤λ (e.g. λ = 64) that is sufficient to represent any message in practice. The term arbitrary
[72], on the other hand, describes messages with infinite length, M = {0, 1}∗. However, some authors use the two
terms interchangeably. In this paper, unless stated otherwise, we will always use variable length messages, but
for convenience, we will use the notation {0, 1}∗.

15

Terminology Informal Definition

Compression/Compressing Function A standard building block of a hash
function, with its domain larger than
its range

Construction, Transform, Mode of
Operation, Chaining Mode, Domain
Extension Transform, Composition
Scheme

An algorithm that systematically
makes repeated calls to a building
block(often a compression function) to
hash a message.

Chaining Variable, Chaining Value,
Intermediate Hash, Internal State

The output of a compression function
to be used as input to the following
compression function call.

Hash value, Final Hash Value, Hash
Code, Hash Result, Hash, Digest

The final result of hashing a message,
which is a fixed length string.

Table 1: Some Hash Function Terminology

was keyless). However, it appears that similar construction has previously been proposed by
Rabin [87] in 1978, raising some controversy in whether it should be called Rabin’s construction
instead. Nevertheless, while Rabin did indeed propose this construction, it was Merkle and
Damg̊ard who formally proved that it is collision resistant if its underlying compression function
is collision resistant. In the Merkle-Damg̊ard construction, the message M is first divided into
equally sized blocks, M = M1,M2, . . . ,M`. If the message M fell over or below the block
boundaries, it is padded. To be collision resistance, the length of the message is appended
to the message after padding it, this is termed Merkle-Damg̊ard strengthening (first coined by
Lai and Massey in [65], though already proposed by Merkle [74] and Damg̊ard [38]); figure 4
illustrates the padding algorithm, where L is a 64-bit encoding of the the length of the message9

and m is the length of a single block. The message is then iterated repeatedly by calling a
Fixed-Input-Length (FIL) compression function f : {0, 1}n × {0, 1}m → {0, 1}n accepting two
inputs: a message block Mi (of length m) and either an Initialisation Vector IV (when hashing
the first block) or a chaining variable (which is the output of the previous f call), both of length
n; figure 5 provides a depiction and a pseudocode of the Merkle-Damg̊ard construction.

M1 M2 LMl...

PadOriginal Message

10*

Algorithm Pads(M)

d = M + 1 + 64 mod m

M ||1||0d||〈M〉64 → M̂

M̂ →M1 . . .M`

Figure 4: (Strengthened) Merkle-Damg̊ard padding algorithm

7.2 Generic Attacks Against Merkle-Damg̊ard

Eventually, several weaknesses were found in the Merkle-Damg̊ard construction giving raise to
a class of generic attacks that is applicable to any hash function based on the plain Merkle-
Damg̊ard construction. Note the difference between generic and dedicated attacks, where dedi-
cated attacks exploit internal structures specific to a particular hash function and thus only affect

9While the padding algorithm illustrated in figure 4 is the most commonly used, it is not the only one. The
Enveloped constructions such as ESh and CS (section 7.3) use different padding algorithms.

16

M1 M2 Ml

IV ylf f f...
n

m

n

Algorithm MDf

M →M1 . . .M`

y0 = IV
for i = 1 to ` do
yi = f(Mi, yi−1)

return y`

Figure 5: The Merkle-Damg̊ard Construction

that hash function (e.g. the attacks against MD4, MD5 and SHA-1 by Wang et al. [110, 111] are
dedicated attacks). Below we discuss four generic attacks against the Merkle-Damg̊ard construc-
tion; even though the practical relevance of these attacks is not clear, they still demonstrate
intrinsic structural weaknesses in the Merkle-Damg̊ard construction (we will later show how
variants of the Merkle-Damg̊ard construction succeeded in thwarting some of these attacks).

The Extension Attack. It is often claimed that this attack was first reported by Ferguson
and Schneier [51] in 2003 where it was described as a “surprisingly serious (and simple) flaw”
in the Merkle-Damg̊ard construction. However, it seems that the basic idea of this attack was
discovered long before 2003 by Solo and Kent who called it the padding attack [107]. We present
four variants of this attack as follows:

• Collision Attack. Suppose we have a message M with length |M | = L that hashes to
H(M), then given any hash function H(.) based on the Merkle-Damg̊ard construction,
a collision is trivially found as follows: H(M ||pad||x) = H(H(M)||x) where pad is the
padding appended to the message M before being hashed and |pad| = L mod m, where m
is the length of a single block in M , which is usually |H(M)|; note that |pad| can indeed be
0 if the message was perfectly aligned at block boundaries. However, this attack does not
consider Merkle-Damg̊ard strengthening (appending the message length to the message
before hashing it).

• Second Collision Attack. In this attack, a collision can easily be found by extending
equally sized already colliding messages. That is, if we have H(M) = H(N) while M 6=
N and |M | = |N |, a second collision can be obtained by extending M and N with an
arbitrary string (suffix) S, H(M ||S) = H(N ||S). This will work with Merkle-Damg̊ard
strengthening, but without strengthening, a second collision is even easier as the colliding
messages no longer have to be equally sized.

• Related Message Attack. With Merkle-Damg̊ard, one can easily compute a related/extended
message M ′ for an unknown message M by only knowing L (length of M) and H(M),
that is, H(M ||L||x) is the hash of a message consisting of the original M and extended
by a suffix L||x; again, since the attacker knows L, it is trivial to figure out how M has
been padded before being hashed. This attack indeed does not affect collision resistance,
but it shows that the Merkle-Damg̊ard construction does not behave like a random oracle,
which is a desirable property that hash functions should possess; see section 3.1.

The Multi-collision Attack. In [60], Joux showed that finding multiple collisions (more than
two messages hashing to the same value) in a Merkle-Damg̊ard hash function is not much harder
than finding single collisions. In his multi-collision attack, Joux assumed access to a machine
Ċ that given an initial state, returns two colliding messages (Ċ may use the birthday attack or
any other attack exploiting weaknesses in the corresponding hash function). Figure 6 illustrates
the attack.

17

M1 M2 M3 M4 M5

y1 y2 y3
y5y4

yl

Ml

Ml

IV ...

'

1M
'

2M '

3M '

4M '

5M
y(l-1)

'

Figure 6: Multi-collision Attack

In figure 6, initially, the IV is sent to Ċ which returns M1 and M ′1 colliding at y1, then y1, in
turn, is sent to Ċ which returns M2 and M ′2 colliding at y2, this process continues until reaching
y` as shown in figure 6. It is easy to see that any combination of the messages preceding y` will
collide in y`. In fact, in the example in figure 6, there are 2` messages all colliding in y` and the
cost of generating these collisions is only ` times the cost of generating single collisions.

2nd Pre-image Attack. This attack was first proposed by Dean in [41] and later generalised
by Kelsey and Schneier in [62]. The attack assumes the existence of a set of expandable messages;
these are messages of different lengths but produce the same intermediate hash value (chaining
variable) given a particular IV. Expandable messages, however, do not produce the same final
hash value due to Merkle-Damg̊ard strengthening. These messages can easily be found if the
hash function contains fixed points10. While not an intrinsic weakness of the Merkle-Damg̊ard
construction, fixed points can be found in many Merkle-Damg̊ard implementations (e.g. SHA-1)
because the compression functions are usually modelled as Davies-Meyer functions where the
chaining variable input of the compression function is further XORed with its output. Let a
Merkle-Damg̊ard hash function be denoted by H, and suppose we have a set of such messages
E = E1, . . . , El which all produce an intermediate hash value yE . Let M = M1,M2 . . . ,M` be a
very long message consisting of ` blocks, and C = c1, . . . , c`−1 be the set of all the intermediate
hash values of M (for a message consisting of ` blocks, there are `−1 intermediate hash values).
Now, search for a block Mi in M , such that f(yE ,Mi) ∈ C. Suppose Mi is found (finding Mi has
complexity less than 2n since M is a very long message, where n is the length of the final hash
value of H) and it matches cj (the j-th intermediate hash value of M), now search E (the set of
expandable messages) for a message Es of length j-1 such that the number of blocks of Es||Mi

is j. Let the original message M without its first j blocks be M ′, then H(Es||Mi||M ′) = H(M).
This attack finds a 2nd pre-image for a message of size 2k in 2n/2+1+2n−k+1 steps rather than the
expected 2n. For example, using RIPEMD-160, it finds a 2nd pre-image for a 260 byte message
in around 2106 steps, rather than the expected 2160 steps, where RIPEMD-160 produces a hash
digest of size 160 bits [62].

The Herding Attack. This attack is due to Kelsey and Kohno [61] and is closely related to
the multi-collision and 2nd pre-image attacks discussed above. A typical scenario where this
attack can be used is when an adversary commits to a hash value D (which is not random) that
he makes public and claims (falsely) that he possesses knowledge of unknown events (events in
the future) and that D is the hash of that knowledge. Later, when the corresponding events
occur, the adversary tries to herd the (now publicly known) knowledge of those events to hash
to D as he previously claimed. The attack proceeds in two phases:

• phase 1: construct a diamond structure and calculate the value D.

• phase 2: given prefix, find a suitable suffix and herd it to D through the diamond.

10A fixed point is found when two consecutive chaining values collide, that is f(hi−1,Mi) = hi = hi−1, where
f is a compression function.

18

IV

M
F-1

M
F

D
M

1

M
2

…
…

…
.

…
…

…
…

……

……

Figure 7: Diamond Structure

In phase 1, the attacker constructs a diamond structure as shown in figure 7, where the
vertices are hash values and the edges are messages. If two messages meet in a vertex, they
collide at that vertex. Initially, the attacker randomly generates an arbitrary large number of
initial messages, M1, . . . ,MF , hashes them and tries to find collisions, then repeat until reaching
the root of the diamond, D. Once the diamond is constructed, any path from the initial messages
to D will hash to D. In phase 2, the attacker herds a given prefix P to hash to D as follows: first,
the attacker searches for a suitable 1-block suffix S that if concatenated with P , it will produce a
hash colliding with one of the hash values of the initial messages H(Mi) where i ∈ {1, 2, . . . , F};
for 2k initial messages, 2n−k trials are required to find such a suffix (where n is the length of
the final hash). Once a match is found, P , S and the sequence of messages from the matching
H(Mi) to D are concatenated, and this whole string will eventually hash to D. The herding
attack was recently extended to non-Merkle-Damg̊ard constructions [48, 3]. A more detailed
complexity analysis for the herding and diamond-based attacks are presented in [104], which
point out a flaw in the construction proposed in [61] to produce a diamond structure, and
provide computational complexity analysis for constructing the diamond. To resist this attack,
hash functions should possess the Chosen Target Forced Prefix (CTFP) pre-image resistance
property; see section 2.4.

7.3 Variants of Merkle-Damg̊ard

The discovery of the weaknesses reported in section 7.2 drove the research community to propose
modified variants of the Merkle-Damg̊ard construction that patch such weaknesses. In this
section, we present a few examples of both keyless and keyed constructions (most of which
trade off efficiency for security). Note that some of these constructions use different padding
algorithms than the standard one in figure 4.

Wide and Double Pipe. One of the earliest proposals to enhance the Merkle-Damg̊ard
construction is the wide/double pipe by Lucks [68] who showed that increasing the size of the
internal state (i.e. the chaining variables) to become larger than the size of the final hash value,
would significantly improve the security of the hash function. This modification clearly thwarts

19

the extension attack since in the wide/double pipe the final hash value is truncated, so in order to
append an extension, the unknown discarded bits have to be guessed, which is clearly difficult if
the number of the discarded bits is non-trivial. Furthermore, by increasing the size of the internal
state, finding collisions for the compression function becomes even harder, which complicates
the other generic attacks. An obvious drawback of the wide/double pipe, however, is a degraded
efficiency as the compression function now has larger input/output while keeping the hashing
rate constant (the size of the compression function input corresponding to a message block is
fixed) since the chaining variable input is increased. Also, adapting existing hash functions for
the wide/double pipe may be difficult since it might be the only reasonable way to increase
the internal state is to use multiple compression function calls in parallel for every iteration.
Recently, Yasuda [114] adopted a slightly modified variant of the double pipe construction and
proved its unforgeability beyond the birthday barrier.

The 3C Construction. Another variant of the Merkle-Damg̊ard construction is the 3C con-
struction [53] which basically maintains a variable containing a value produced by repeatedly
XORing the chaining variables while hashing a message; this variable is then processed in an
extra finalisation call to the compression function. Figure 8 illustrates the 3C construction. An
enhanced variant of 3C is 3C+ which uses extra memory, but makes finding multi-block colli-
sions more difficult (not to be confused with multi-collision attack, see section 2). However, in
[59], it was shown that both 3C and 3C+ are indeed susceptible for multi-block attack; this was
demonstrated using a recent attack against MD5 that was found to be applicable for both the
plain Merkle-Damg̊ard and 3C/3C+. Also, 3C does not seem to resist multi-collision attacks
since the internal states are not affected by the modification introduced in 3C.

M1 M2 Ml

IV yF
f f f... f

p...

n

n

m

n

Algorithm 3Cf

M →M1 . . .M`

y0 = IV, t = 0
for i = 1 to ` do
yi = f(Mi, yi−1)
t = t⊕ yi−1

return
yF = f(P (t), y`)

Figure 8: The 3C Construction

The Prefix Free, Chop, NMAC and HMAC Constructions. Several constructions were
proposed by Coron et al. in [33] as immediate fixes to the Merkle-Damg̊ard construction after
showing that the latter is not indifferentiable from RO (see section 3.1 for details about the
indifferentiability notion). However, Bellare and Ristenpart [13] later showed that even though
these constructions are indifferentiable from RO, they are not collision resistant. The prefix-free
construction does not modify the Merkle-Damg̊ard construction, instead it modifies the padding
algorithm to make sure that the message is prefix free. One way to do this is by prepending or
appending the length of the whole message to every message block. However, beside wasting a
few bits to represent the length of the message in every block and so degrading the efficiency,
this obviously does not work well with streaming applications (where the length of the message
is not known beforehand). The chop construction basically removes a non-trivial number of bits
from the final hash value. This, while it solves the indifferentiability issue, unfortunately lowers
the security bounds of the hash function. In NMAC, an independent function g is applied to the

20

output of the last application of the compression function, while in HMAC an extra compression
function call is introduced. The NMAC and HMAC constructions are illustrated in figure 2.

Ml

IV ylf f... g

M2

f
n

m

n

M1

Algorithm NMACf,g

M →M1 . . .M`

y0 = IV
for i = 1 to ` do
yi = f(Mi, yi−1)

return yF = g(y`)

Ml

IV f f...

M1

f
n

m

yF
f

n

0m 0m-n

Algorithm HMACf

M →M1 . . .M`

M0 = 0m, y0 = f(M0, IV)
for i = 1 to ` do
yi = f(Mi, yi−1)

return
yF = f(y`||0m−n, IV)

Table 2: The NMAC and HMAC Constructions

The Merkle-Damg̊ard with Permutation. In [58] Hirose et al. proposed the Merkle-
Damg̊ard with Permutation (MDP) construction which introduces very minor modification to
the plain Merkle-Damg̊ard. The only difference between the plain Merkle-Damg̊ard and MDP
is that in MDP the chaining variable input of the last compression function is permuted. The
authors proved that MDP is indifferentiable from RO while the collision resistance of MDP
follows trivially from the collision resistance of the Merkle-Damg̊ard construction as the former
introduces minimal changes to the latter. The authors also discussed the security of possible
simple MAC constructions based on MDP. However, although with such a simple modification,
the authors succeeded in proving a significant security gain, MDP seems to be able to thwart
only the extension attack, but not other Merkle-Damg̊ard generic attacks. Also, recently it was
shown that MDP is neither pre-image nor 2nd pre-image resistant [4]. Figure 9 illustrates MDP,
where π(.) is a permutation function.

M1 Ml

IV ylf f... P

M2

f
m

n

Algorithm MDPf

M →M1 . . .M`

y0 = IV
for i = 1 to `− 1 do
yi = f(Mi, yi−1)

return y` = f(π(y`−1),M`)

Figure 9: The MDP (Merkle-Damg̊ard with Permutation) Construction

Randomized Hashing. Randomized hashing [56] is not quite a variant of Merkle-Damg̊ard,
instead it is a generic fix that can be applied on any construction (including Merkle-Damg̊ard).
In randomized hashing the input of the hash function is randomised using a salt, leaving the con-
struction unmodified, figure 10 illustrates the RMX transform [55], which is an instantiation of
the randomized hashing paradigm. The authors claim that randomized hashing will strengthen
any hash function, even the weakest ones. Randomized hashing was originally proposed for
digital signatures where a message M is first randomised with a salt r to produce a randomised

21

message M ′. A digital signature sig is then generated from M ′. The original message M , the
salt r and the signature sig are then sent to the verifier. When the verifier receives these param-
eters, it first randomises M with r to produce M ′ and carries out standard signature verification
using M ′ and sig. Randomized hashing for digital signatures are standardised by NIST in [40].

M1 Ml

IV ylf f f...
n

m

n

r r

r
Algorithm RMXf

r

M →M1 . . .M`

y0 = f(r, IV)
for i = 1 to ` do
yi = f(Mi ⊕ r, yi−1)

return y`

Figure 10: The RMX Construction

HAIFA Framework. HAsh Iterative FrAmework (HAIFA) is a modified Merkle-Damg̊ard
construction proposed by Dunkelman and Biham [47], see figure 11 for an illustration. HAIFA
modifies Merkle-Damg̊ard by introducing extra input parameters to the compression function.
These are: a salt value (used as a key to create families of hash functions—if only one hash
function is needed, the salt is set to 0), and the number of bits hashed so far, which thwarts
many of the generic attacks against the plain Merkle-Damg̊ard construction since the input to
every compression function call becomes (with high probability) unique and highly dependent on
where the compression function call is made through the hashing chain. In fact, HAIFA can be
considered a dedicated-key hash function [14]. The idea of adding additional input parameters
to the compression function has been previously proposed by Rivest through a process called
dithering [91]; though a second pre-image attack against dithered hash functions was reported
by Andreeva et al. in [2]. An obvious drawback of HAIFA is efficiency degradation since the
compression function now has more input parameters to process. Furthermore, HAIFA cannot
be (easily) used to patch existing Merkle-Damg̊ard based hash functions because a compression
function designed for the Merkle-Damg̊ard construction would not naturally accommodate the
extra HAIFA parameter inputs.

IV ...

M2

h

bits
salt

Ml

h

bits
salt

M1

h

bits
salt

yl
n

m

s
b

n

Algorithm HAIFAh
s

M →M1 . . .M`

y0 = IV
for i = 1 to ` do
yi = h(Mi, yi−1, bi, s)

return y`

Figure 11: The HAIFA Framework

Enveloped Merkle-Damg̊ard. The Enveloped Merkle-Damg̊ard (EMD) construction was
proposed in [13] by Bellare and Ristenpart when they were introducing their multi-property-
preserving notion, where they recommend that a particular hashing scheme should preserve
multiple properties at the same time. This stemmed from the fact that they were able to prove
the four constructions proposed by Coron et al. in [33] are not collision resistant while still
being indifferentiable from RO. Bellare and Ristenpart showed that EMD preserves collision
resistance, indifferentiability from RO and indistinguishability from Pseudorandom Function
(PRF). Figure 12 illustrates EMD.

22

M1 M2 Ml-1

IV1

yl

f f f...
n

m

fIV2

Ml

nn

m

n

m-n

Algorithm EMDf
IV1,IV2

M →M1 . . .M`

y0 = IV1
for i = 1 to `− 1 do
yi = f(Mi, yi−1)

return
y` = f(yi−`||M`, IV2)

Figure 12: The EMD (Enveloped Merkle-Damg̊ard) Construction

Nested Iteration. An and Bellare proposed the Nested Iteration (NI) mode of operation
while they were proving that the Merkle-Damg̊ard construction can be used to construct a
Variable-Input-Length (VIL) MAC from a Fixed Input Length (FIL) MAC. NI is basically a
keyed variant of the Merkle-Damg̊ard construction making use of two keys k1, k2 ∈ {0, 1}k.
Figure 13 illustrates the NI construction. Beside being unforgeable, Bellare and Ristenpart
later proved in [14] that NI is also indistinguishable from PRF, indifferentiable from RO, and if
strengthening was used, NI is also collision resistant. However, neither NI nor its strengthened
variant is target collision resistant (TCR); see section 4 for discussion about the TCR property.

M1 M2 Ml

IV ylh h h...
n

m

n

K1 K1 K2

Algorithm NIhK1,K2

M →M1 . . .M`

y0 = IV
for i = 1 to `− 1 do
yi = h(K1,Mi, yi−1)

return y` = h(K2,M`, y`−1)

Figure 13: The NI (Nested Iteration) Construction

Shoup (Sh) Construction. In [99], Shoup proposed an elegant keyed construction. In addi-
tion to the key input of the compression function, the chaining variables of every compression
function iteration in Sh is further XORed with a key mask; figure 14 illustrates the Sh construc-
tion. A variant of the Sh construction has been proposed by Bellare and Ristenpart in [14] that
makes the last compression function call a wrapping call (this last application of the compression
function is called an envelop). Thus, this variant is called the Envelop Shop (ESh), which has
been proven to preserve five important properties, namely: collision resistance, unforgeability,
indifferentiability from RO, indistinguishability from PRF and TCR. In [88] Reyhanitabar et
al. further showed that ESh preserves the ePre property but not Sec, aSec, Pre and aPre (for
information about these properties, see section 4 and/or [94]).

M1 M2 Ml

IV ylh h h...
n

m

K K K

Kmask Kmask KmaskKmask

n

Algorithm Shh
K,Kmask

M →M1 . . .M`

y0 = IV
for i = 1 to `− 1 do
yi = h(yi−1 ⊕Kmask,Mi)

return y`

Figure 14: The Shoup Construction

23

Chaining Shift. The Chaining Shift (CS) construction CS: {0, 1}k × {0, 1}n+n × {0, 1}∗ →
{0, 1}n was proposed by Maurer and Sjödin in [72] as a more efficient solution than the NI
construction for constructing AIL-MAC from FIL-MAC; figure 15 depicts the CS construction,
which uses a FIL compression function f : {0, 1}m+n → {0, 1}n. The CS construction was shown
to be unforgeable [72], indistinguishable from PRF [14], indifferentiable from RO [13], and the
strengthened variant of it (with strengthened padding) is collision resistant. Maurer and Sjödin
have also simultaneously proposed the Chaining Rotate (CR) construction, which is similar to
CS.

M1 M2 Ml-1

IV1

yl

h h h...
n

m

hIV2

Ml

nn

m

n

K K K

Km-n

Algorithm CSh
K,IV1,IV2

M →M1 . . .M`

y0 = IV
for i = 1 to `− 1 do
yi = h(yi−1,Mi)

return
y` = h(IV2||y`−1,M`)

Figure 15: The CS (Chaining Shift) Construction

7.4 Sponge Construction

Based on totally different design principles than Merkle-Damg̊ard’s, the Sponge construction is
a newly proposed and promising hashing construction [21]. Basically, sponge hashing proceeds
in two phases, the absorbing phase and the squeezing phase (and hence its name). The sponge
operates on a fixed-length state b = {0, 1}r+c, composed of r bits (called bit-rate) and c bits
(called capacity), through a function p : {0, 1}r+c → {0, 1}r+c which produces a transformation
or permutation of b. In the absorbing phase, the message is divided into r-bit blocks (padded if
necessary) and each block is XORed with the r part of b (initially, b = 0r+c), p then iteratively
processes b until all blocks are exhausted. In the squeezing phase, the state continues to be
transformed/permuted by p but this time the r parts of the states are returned at every iteration
as output blocks. Since the sponge construction supports variable length output, the user
chooses the length of the final hash value which determines how many of the returned blocks
in the squeezing phase need to be returned. Figure 16 illustrates the sponge construction. An
example of a hash function based on the sponge construction is Keccak [23] which has recently
been selected (along with 4 others) to advance to the final stage of the SHA-3 competition.
Recently, Andreeva et al. introduced a generalisation of the sponge functions, which they call
“The Parazoa Family” [6].

Although still considered an iterative construction, the sponge is completely different from
the Merkle-Damg̊ard construction; which obviously means that the generic attacks discussed
in section 7.2 are not applicable. Moreover, the sponge construction has been proven to be
indifferentiable from RO in [22]. However, that does not mean that the sponge construction is
not susceptible to other kinds of attacks, it is just that (at the time of writing) such attacks
have not been discovered yet. Recently, Gorski et al. [54] showed that hash functions based
on the sponge framework may be susceptible to slide attack. On the other hand, an obvious
disadvantage of sponges is that their relatively large state slows down the full diffusion of bits,
hence, the sponge construction may be more suitable for hashing large messages.

24

p p p p p p

0

0

M1 M2 Ml y1 y3y2

...

...

...

...

c

r

Absorbing Squeezing

Algorithm Spngpn
M →M1 . . .M`

r = 0, c = 0
for i = 1 to ` do
p(r ⊕Mi, c) = (r, c)

for i = 1 to n do
Y = Y ||r
p(r, c)

return Y

Figure 16: The Sponge Construction

8 Tree-based Hash Functions

Figure 17 illustrates a typical tree-based hashing construction. This is the most parallelisable
class of constructions and is mainly suited for multi-core platforms where multiple processors
can independently operate on different parts of the message simultaneously. An early tree-based
mode of operation was proposed by Damg̊ard [38] which was later optimised by Sarkar and
Scellenberg [98], and Pal and Sarkar [81]. Similarly, Bellare and Rogaway [16] used a tree-based
approach to build UOWHFs (Universal One Way Hash Functions) [77] which, although weaker
than collision-resistant hash functions, are suitable for some applications. More recent works
for building tree-based UOWHFs include [67] and [97]. In [12] Bellare and Micciancio proposed
the randomize-and-combine paradigm, where the message is split into blocks, randomised in-
dividually and finally combined by an operation such as XOR (but XOR-based combiners are
broken by a linear algebra attack on long messages [69]). Although this structure was originally
proposed to build incremental functions11, it can be thought of as a 2-level tree and can still be
parallelised since the randomisation process of the individual blocks are independent (i.e. can be
carried out by different threads/processors). Tree-based constructions are slightly less popular
than the iterative ones because they are not as suitable for low-end platforms such as smart
cards and RFID, which limits their utility. Skein [50] and MD6 [92] hash functions (SHA-3
candidates) provide a tree hashing mode beside the conventional iterative mode.

M1 M2 M3 M4 M5 M6

c c cc

h(M)

M7 M8

cc

Figure 17: Sample tree construction

9 Compression Functions

Some hash functions are built from scratch such as MD5 and SHA-1, these are called dedicated
hash functions. Others are built based on existing cryptographic or mathematical components
that were not originally designed to be used for hashing but could be tailored to. So far, we

11An incremental function can efficiently update the digest of a previously hashed message to reflect any changes
without having to re-hash the whole message.

25

have not explicitly discussed how to construct compression functions because when we design a
hash function, one would assume the presence of a “good” compression function and design a
construction accordingly. This obviously becomes an issue in the implementation phase. Thus,
some proposals were exclusively concerned with building a compression function that preserves
some property X and then adopt a suitable construction that is provably preserves X if the
underlying compression function also preserves X (e.g. the Merkle-Damg̊ard construction is
collision resistant if the underlying compression function is also collision resistant).

9.1 Hash Functions Based on Block and Stream Ciphers

Building hash functions based on block ciphers is the most popular and established approach.
In this approach, the compression function is a block-cipher with its two inputs representing a
message block and a key. Preneel, Govaerts and Vandewalle [86] studied the 64 possible ways
of constructing hash functions from a block-cipher E : {0, 1}n × {0, 1}n → {0, 1}n. These 64
constructions are sometimes called PGV constructions after the authors’ initials who used an
attack-based12 analysis approach to study the security of these constructions. It was then re-
ported that 12 out of the 64 PGV constructions are collision resistant, but later Black et al.
[25] showed (using proof-based approach this time) that another 8 PGV constructions are also
collision resistant if they were properly iterated, even if their underlying compression functions
are not collision resistant. The most widely adopted construction of these 20 PGV construction
is the one attributed to Davies and Meyer [73]: yi = f(hi−1,Mi)⊕ yi−1, where yi−1 and Mi are
the input of the compression function f , and yi is its output. Another popular PGV construction
is the Matyas-Meyer-Oseas construction [25], which is the opposite of the Davies-Meyer one. In
Matyas-Meyer-Oseas, the output of the compression function yi is further XORed with the mes-
sage block input Mi (rather than the chaining variable yi−1 in Davies-Meyer). Further analyses
and proofs of the collision resistance and pre-image resistance of these PGV constructions in the
ideal cipher model can be found in [49] and [102].

Although PGV functions are provably secure, they are inefficient because the key (which rep-
resents the message block input of the compression function) is changed with every compression
function call, and this is undesirable with block-ciphers since changing the key rapidly requires
huge amount of computation (due to key setup). Thus, another approach is to use fixed-key
block-cipher based compression functions [24, 95, 100, 101]. In this approach, a small non-empty
set of keys are fixed and used for the block-cipher (when called by the compression function),
while wrapping the block-cipher with other arbitrary functions to process the other compression
function’s input that was previously used as a key (which is now fixed). However, Black et al.
[24] proved that such construction, making a single call to the fixed-key block-cipher, although
efficient, cannot be collision resistant.

An inherent problem with designing hash functions based on block-ciphers is that block
ciphers usually have small block size (e.g. 128 bit) which is insufficient to maintain an acceptable
hash function security13, unless the result of the hash function can be expanded, which proved
to be even more difficult. A particularly interesting solution to this dilemma is designing double
block length (DBL) compression functions where the compression function outputs double the
size of the underlying block-cipher [76, 57]. Clearly, however, DBL based hash functions still
scarify some efficiency.

Although the stream-cipher based approach is less popular than the block-cipher based
approach, in the recent SHA-3 competition, some of the successful second round candidates were
based on stream-ciphers (e.g. CubeHash [19]). The main differences between block-cipher-based

12Constructions that resisted the authors’ attacks were deemed secure.
13For a block size of 128 bit, a collision can be found in 264 operations due to the birthday attack, which may

be at the edge of feasibility with the recent supercomputers processing technologies.

26

and stream-cipher-based hash functions are the size of the block and the number of rounds.
In block-cipher-based, the message blocks are usually large, and iterated a small number of
rounds, while in stream-cipher-based, the block size is small, with more rounds. Thus, in block-
cipher-based, a good compression function is necessary but in stream-cipher-based, even a weak
compression function may provide sufficient security.

9.2 Hash Functions Based on Mathematical Problems

The majority of today’s well known hash functions process the message by mixing its bits in
such a way that fulfils the various security and statistical requirements, but their security cannot
usually be mathematically proven since they are not based on mathematical models. Provably
secure cryptographic hash functions, on the other hand, is a class of hash functions that are
based on mathematical problems where a rigorous mathematical proof can be derived such that it
reduces breaking these hash functions to finding a solution to some hard mathematical problems.
Examples of such hash functions include: hash functions based on the discrete logarithm problem
[26, 30], hash functions based on the factorisation problem [31], hah functions based on finding
cycles in expander graphs [29], etc. Designing several cryptographic primitives, including hash
functions, based on the Knapsack problem14 was more popular during the 90’s. Although these
schemes had good software and hardware performance, most of them are broken [84] which made
knapsack based design approach less attractive. An example of such hash functions is the one
proposed by Damg̊ard [38] based on additive knapsack which was cryptanalysed in [82], and
LPS hash function [29] based on a multiplicative knapsack, which was cryptanalysed in [106].

Another example of provably secure hash functions is syndrome-based hash functions [10, 11]
which are based on an NP-complete problem known as Regular Syndrome Decoding. However,
even though syndrome-based hash functions are provably secure, cryptanalytic results were pub-
lished against several versions of these functions [34, 96, 52]. A recent syndrome based hash
function is FSB [9] which was submitted to the SHA-3 competition, but failed to progress to
round 2 of the competition, mostly due to its slow performance and excessive memory consump-
tion, which seems to be the case with most hash functions based on mathematical problems
(e.g. while the authors of DAKOTA [39] claim that it performs better than many other mod-
ular arithmetic-based hash functions, it is still approximately 18 times slower than SHA-256).
Recently, Bernstein et al. [20] proposed an enhanced variant of FSB, called RFSB (Really fast
FSB), and claimed that it runs at 13.62 cycles/byte, which is faster than SHA-2.

9.3 Other Approaches

Occasionally, attempts were made to adopt less common approaches when designing hash func-
tions, most of which haven not attracted much interest. In this section, we discuss two such
approaches: chaos-based and cellular automata based hash functions.

Chaos-based Hash Functions. Chaos theory is the mathematical representation of dynamic
systems. These systems possess many desirable properties that suit the requirements of hash
functions. For example, chaotic systems are very sensitive to changes in their initial values,
potentially fulfiling the desirable hash function property requiring the output of the hash function
to be highly sensitive to changes in its input; this phenomena is called the avalanche effect
(also called butterfly effect in the chaos theory literature). Moreover, chaotic systems are one
way functions and unpredictable. Hash functions based on chaos theory use chaotic maps,

14Knapsack is a famous combinatorics problem, where it is required to optimise the selection of items d1, . . . , dn,
where each item has a value vi and a weight wi, in such a way that the sum of the values

∑n
i=1 vi is maximised

while keeping the sum of the weights
∑n
i=1 wi less than a particular threshold T .

27

which are functions that exhibit a particular chaotic behaviour; examples of these maps include:
logistic map [70], tent map [115], and cat map [42]. Unfortunately, most chaos-based hash
functions suffer from poor efficiency due to their inherent complex structure, which makes them
unattractive as a practical approach for building hash functions.

Cellular Automata-based Hash Functions. Cellular Automata (CA) are discrete time
models consisting of collections of cells organised in a grid, and each cell has a current state.
The states of the cells evolve over time depending on their current states and the states of
the neighbouring cells. CA were originally used by von Neumann [108] while he was studying
self-reproducing systems and then popularised by Wolfram’s substantial work in this area [112]
who observed that based on simple rules, very complex behaviours can be obtained. Damg̊ard
was the first to propose a hash function based on CA [38], but his proposal was cryptanalysed
by Daemen et al. [35] who, in turn, proposed another CA-based hash function, called CellHash.
The same authors later proposed SubHash [36] which is an improved version of CellHash; both
CellHash and SubHash are hardware-oriented and were cryptanalysed in [28]. Another hash
function based on CA was proposed by Mihaljevie et al. [75].

10 Conclusion and Summary

Research in cryptographic hash function has recently witnessed an unprecedented spike of inter-
est. According to [83], around 50-60 hash functions were available in 1993, followed by at least
30-40 others developed since then [85], in addition to the 64 SHA-3 submissions in 2007. This
has lead to a rapidly expanding literature that we tried to survey in this paper. We discussed
(both formally and informally) the most popular hash functions security properties and notions
and showed how these requirements have influenced the design of hash functions over the years.
In the first part of this paper, we elaborated on the three classical notions of collision resistance,
pre-image resistance and 2nd pre-image resistance. We then provided a lengthy discussion on
the indifferentiability from random oracle framework and showed how proofs in this framework
are structured. In the keyed setting, a hash function should also be indistinguishable from a
pseudorandom function, and, further, be unforgeable when used as a MAC. We talked about the
multi-property-preserving (MPP) paradigm, where hash functions preserve multiple properties
simultaneously; we also discuss a few examples of constructions from the literature exhibiting
the MPP approach.

In the second part of this paper, we provided a thorough discussion of the state of art of
hash functions design. Roughly speaking, hash functions can either be keyless or keyed. Each
class has different applications and is based on different design principles. Hash functions can
also be classified as iterative or parallel. While iterative functions are indeed the most common,
parallelisable hash functions are increasingly being popularised with the rapid advent of parallel
systems. We provided a lengthy discussion about the popular Merkle-Damg̊ard construction,
how it fell prey to several generic attack, and what approaches were adopted to strengthen it.
Finally, we also discussed how compression functions are being designed and what approaches
are adopted.

References

[1] Saif Al-Kuwari, James Davenport, and Russell Bradford. Cryptographic Hash Functions:
Recent Design Trends and Security Notions. In Short Paper Proceedings of Inscrypt ’10,
pages 133–150. Science Press of China, 2010. (Full version available at opus.bath.ac.uk/
20815). 1

28

opus.bath.ac.uk/20815
opus.bath.ac.uk/20815

[2] Elena Andreeva, Charles Bouillaguet, Pierre-Alain Fouque, Jonathan Hoch, John Kelsey,
Adi Shamir, and Sebastien Zimmer. Second Preimage Attacks on Dithered Hash Functions.
In Eurocrypt ’08, volume 4965 of LNCS, pages 270–288. Springer-Verlag, 2008. 22

[3] Elena Andreeva, Orr Dunkelman, Charles Bouillaguet, and John Kelsey. Herding, Second
Preimage and Trojan Message Attacks Beyond Merkle-Damg̊ard. In SAC ’09, volume
5867 of LNCS, pages 393–414. Springer-Verlag, 2009. 19

[4] Elena Andreeva, Bart Mennink, and Bart Preneel. Security Properties of Domain Ex-
tenders for Cryptographic Hash Functions. Journal of Information Processing Systems,
6(4):453–480, 2010. 21

[5] Elena Andreeva, Bart Mennink, and Bart Preneel. Security Reductions of the Second
Round SHA-3 Candidates. In ISC ’11, volume 6531 of LNCS, pages 39–53. Springer-
Verlag, 2011. 3

[6] Elena Andreeva, Bart Mennink, and Bart Preneel. The Parazoa Family: Generalizing the
Sponge Hash Functions, 2011. (eprint.iacr.org/2011/028). 24

[7] Elena Andreeva, Gregory Neven, Bart Preneel, and Thomas Shrimpton. Seven-Property-
Preserving Iterated Hashing: ROX. In Asiacrypt ’07, volume 4833 of LNCS, pages 130–
146. Springer-Verlag, 2007. 14

[8] Elena Andreeva and Bart Preneel. A Three-Property-Secure Hash Function. In SAC ’09,
volume 5381 of LNCS, pages 228–244. Springer-Verlag, 2009. 14

[9] Daniel Augot, Matthieu Finiasz, Philippe Gaborit, Stephane Manuel, and Nicolas Sendrier.
SHA-3 Proposal: FSB, 2008. (www-rocq.inria.fr/secret/CBCrypto). 27

[10] Daniel Augot, Matthieu Finiasz, and Nicolas Sendrier. A Fast Provably Secure Crypto-
graphic Hash Function, 2003. (eprint.iacr.org/2003/230). 27

[11] Daniel Augot, Matthieu Finiasz, and Nicolas Sendrier. A Family of Fast Syndrome Based
Cryptographic Hash Functions. In Mycrypt ’05, volume 3715 of LNCS, pages 64–83.
Springer-Verlag, 2005. 27

[12] Mihir Bellare and Daniele Micciancio. A New Paradigm for Collision-free Hashing: In-
crementality at Reduced Cost. In Eurocrypt ’97, volume 1233 of LNCS, pages 163–192.
Springer-Verlag, 1997. 25

[13] Mihir Bellare and Thomas Ristenpart. Multi-Property-Preserving Hash Domain Extension
and the EMD Transform. In Asiacrypt ’06, volume 4284 of LNCS, pages 299–314. Springer-
Verlag, 2006. 12, 20, 22, 24

[14] Mihir Bellare and Thomas Ristenpart. Hash Functions in the Dedicated-Key Setting:
Design Choices and MPP Transforms. In ICALP ’07, volume 4596 of LNCS, pages 399–
410. Springer-Verlag, 2007. 14, 15, 22, 23, 24

[15] Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: a Paradigm for De-
signing Efficient Protocols. In CCS ’93, pages 62–73, 1993. 7

[16] Mihir Bellare and Phillip Rogaway. Collision-resistant Hashing: Towards Making
UOWHF’s Practical. In Cryptgo ’97, volume 1294 of LNCS, pages 470–484. Springer-
Verlag, 1997. 13, 25

29

eprint.iacr.org/2011/028
www-rocq.inria.fr/secret/CBCrypto
eprint.iacr.org/2003/230

[17] Mihir Bellare and Phillip Rogaway. Code-Based Game-Playing Proofs and the Security of
Triple Encryption, 2004. (eprint.iacr.org/2004/331). 10

[18] Mihir Bellare and Tadayoshi. Hash Function Balance and its Impact on Birthday Attacks.
In Eurocrypt ’04, volume 3027 of LNCS, pages 401–418. Springer-Verlag, 2004. 3

[19] Dan Bernstein. CubeHash Specification, 2008. (cubehash.cr.yp.to). 26

[20] Daniel J. Bernstein, Tanja Lange, Christiane Peters, and Peter Schwabe. Really Fast
Syndrome-based Hashing, 2011. (eprint.iacr.org/2011/074). 27

[21] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Sponge Functions.
In ECRYPT Hash Workshop, 2007. 7, 24

[22] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. On the Indiffer-
entiability of the Sponge Construction. In Eurocrypt ’08, volume 4965 of LNCS, pages
181–197. Springer-Verlag, 2008. 24

[23] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. The Keccak Sponge
Function Family, 2008. (keccak.noekeon.org). 24

[24] John Black, M Cochran, and Thomas Shrimpton. On the Impossibility of Highly-Efficient
Blockcipher-Based Hash Functions. Journal of Cryptology, 22:311–329, 2009. 26

[25] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-Box Analysis of the Block-
Cipher-Based Hash-Function Constructions from PGV. In Crypto ’02, volume 2442 of
LNCS, pages 320–335. Springer-Verlag, 2002. 26

[26] Johannes Buchmann and Sachar Paulus. A One Way Function Based on Ideal Arithmetic
in Number Fields. In Crypto ’97, volume 1294 of LNCS, pages 385–394. Springer-Verlag,
1997. 27

[27] Ran Canetti, Oded Goldreich, and Shai Halevi. The Random Oracle Methodology, Revis-
ited. Journal of the ACM, 51(4):557–594, 1998. 7

[28] Donghoon Chang. Preimage Attacks on CellHash, SubHash and Strengthened Versions of
CellHash and SubHash, 2006. (eprint.iacr.org/2006/412.pdf). 28

[29] Denis Charles, Kristin Lauter, and Eyal Goren. Cryptographic Hash Functions from
Expander Graphs. Journal of Cryptology, 22(1):93–113, 2007. 27

[30] David Chaum, Eugene van Heijst, and Birgit Pfitzmann. Cryptographically Strong Un-
deniable Signatures, Unconditionally Secure for the Signer. In Crypto ’91, volume 576 of
LNCS, pages 470–484. Springer-Verlag, 1991. 27

[31] Scott Contini, Arjen Lenstra, and Ron Steinfeld. VSH, an Efficient and Provable Collision-
Resistant Hash Function. In Eurocrypt ’06, volume 4004 of LNCS, pages 165–182. Springer-
Verlag, 2006. 27

[32] Scott Contini, Ron Steinfeld, Josef Pieprzyk, and Krystian Matusiewicz. A Critical Look
at Cryptographic Hash Function Literature. In ECRYPT Hash Function Workshop, 2007.
6, 15

[33] Jean-Sebastien Coron, Yevgeniy Dodis, Cecile Malinaud, and Prshant Puniya. Merkle-
Damg̊ard Revisited: How to Construct a Hash Function. In Crypto ’05, volume 3621 of
LNCS, pages 430–448. Springer-Verlag, 2005. 8, 9, 11, 12, 20, 22

30

eprint.iacr.org/2004/331
cubehash.cr.yp.to
eprint.iacr.org/2011/074
keccak.noekeon.org
eprint.iacr.org/2006/412.pdf

[34] Jean-Sebastien Coron and Antoine Joux. Cryptanalysis of a Provably Secure Cryptographic
Hash Function, 2004. (eprint.iacr.org/2004/013.pdf). 27

[35] Joan Daemen, Rene Govaerts, and Joos Vandewalle and. A Framework for the Design
of One-Way Hash Functions Including Cryptanalysis of Damg̊ard’s One-Way Function
Based on a Cellular Automaton. In Asiacrypt ’91, volume 739 of LNCS, pages 82–96.
Springer-Verlag, 1991. 28

[36] Joan Daemen, Rene Govaerts, and Joos Vandewalle. A Hardware Design Model for Cryp-
tographic Algorithms. In ESORICS ’92, volume 648 of LNCS, pages 419–434. Springer-
Verlag, 1992. 28

[37] Ivan Damg̊aard. Collision Free Hash Functions and Public Key Signature Schemes. In
Eurocrypt ’87, volume 304 of LNCS, pages 203–216. Springer-Verlag, 1987. 5, 6

[38] Ivan Damg̊ard. A Design Principle for Hash Functions. In Crypto ’89, volume 435 of
LNCS, pages 416–427. Springer-Verlag, 1989. 6, 15, 16, 25, 27, 28

[39] Ivan Damg̊ard, Lars Knudsen, and Soren Thomsen. DAKOTA – Hashing from a Combi-
nation of Modular Arithmetic and Symmetric Cryptograph. In ACNS ’08, volume 5037
of LNCS, pages 144–155. Springer-Verlag, 2008. 27

[40] Quynh Dang. NIST Special Publication 800-106: Randomized Hashing for Digital Signa-
tures. Technical report, National Institute of Standards and Technology, 2009. 22

[41] Richard Drews Dean. Formal Aspects of Mobile Code Security. PhD thesis, Princeton
University, 1999. 18

[42] Shaojiang Deng, Yantao Li, and Di Xiao. Analysis and Improvement of a Chaos-based
Hash Function Construction. Communications in Nonlinear Science and Numerical Sim-
ulation, 15(5):1338–1347, 2009. 28

[43] Whitfield Diffie and Martin Hellman. New Directions in Cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976. 3

[44] Yevgeniy Dodis, Rosario Gennaro, Johan H̊astad, Hugo Krawczyk, and Tal Rabin. Ran-
domness Extraction and Key Derivation Using the CBC, Cascade and HMAC Modes. In
Crypto ’04, volume 3152 of LNCS, pages 494–510. Springer-Verlag, 2004. 12

[45] Yevgeniy Dodis and Prashant Puniya. Getting the Best Out of Existing Hash Functions;
or What if We Are Stuck with SHA? In ACNS ’08, volume 5037 of LNCS, pages 156–173.
Springer-Verlag, 2008. 12

[46] Yevgeniy Dodis, Thomas Ristenpart, and Thomas Shrimpton. Salvaging Merkle-Damg̊ard
for Practical Applications. In Eurocrypt ’09, volume 5479 of LNCS, pages 371–388.
Springer-Verlag, 2009. 11

[47] Orr Dunkelman and Eli Biham. A Framework for Iterative Hash Functions – HAIFA. In
2nd NIST Cryptographich Hash Workshop, 2006. 22

[48] Orr Dunkelman and Bart Preneel. Generalizing the Herding Attack to Concatenated
Hashing Schemes. In ECRYPT Hash Function Workshop, 2007. 19

[49] Lei Duo and Chao Li. Improved Collision and Preimage Resistance Bounds on PGV
Schemes, 2006. (eprint.iacr.org/2006/462). 26

31

eprint.iacr.org/2004/013.pdf
eprint.iacr.org/2006/462

[50] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Tadayoshi
Kohno, Jon Callas, and Jesse Walker. The Skein Hash Function, 2008. (www.skein-hash.
info). 25

[51] Niels Ferguson and Bruce Schneier. Practical Cryptography. John Wiley & Sons, 2003. 17

[52] Pierre-Alain Fouque and Gaetan Leurent. Cryptanalysis of a Hash Function Based on
Quasi-cyclic Codes. In CT-RSA ’08, volume 4964 of LNCS, pages 19–35. Springer-Verlag,
2008. 27

[53] Praveen Gauravaram, William Millan, Ed Dawson, and Kapali Viswanathan. Constructing
Secure Hash Functions by Enhancing Merkle-Damg̊ard Construction. In CISP ’08, volume
4058 of LNCS, pages 407–420. Springer-Verlag, 2006. 20

[54] Michael Gorski, Stefan Lucks, and Thomas Peyrin. Slide Attacks on a Class of Hash
Functions. In Asiacrypt ’08, volume 5350 of LNCS, pages 143–160. Springer-Verlag, 2008.
24

[55] Shai Halevi and Hgo Krawczyk. The RMX Transform and Digital Signagures. In 2nd
NIST Hash Workshop, 2006. 21

[56] Shai Halevi and Hugo Krawczyk. Strengthening Digital Signatures via Randomized Hash-
ing. In Crypto ’06, volume 4117 of LNCS, pages 41–59. Springer-Verlag, 2006. 14, 21

[57] Shoichi Hirose. How to Construct Double-Block-Length Hash Functions. In 2nd NIST
Cryptographic Hash Workshop, 2006. 26

[58] Shoichi Hirose, Je Hong Park, and Aaram Yun. A Simple Variant of the Merkle-Damg̊ard
Scheme with a Permutation. In Asiacrypt ’08, volume 4833 of LNCS, pages 113–129.
Springer-Verlag, 2008. 21

[59] Daniel Joscak and Jiri Tuma. Multi-block Collisions in Hash Functions Based on 3C and
3C+ Enhancements of the Merkle-Damg̊ard Construction. In ICISC ’06, volume 4296 of
LNCS, pages 257–266. Springer-Verlag, 2006. 20

[60] Antoine Joux. Multicollisions in Iterated Hash Functions: Application to Cascaded Con-
structions. In Crypto ’04, volume 31252 of LNCS, pages 306–316. Springer-Verlag, 2004.
17

[61] John Kelsey and Tadayoshi Kohno. Herding Hash Functions and the Nostradamus Attack.
In Eurocrypt ’06, volume 4004 of LNCS, pages 183–200. Springer-Verlag, 2006. 7, 18, 19

[62] John Kelsey and Bruce Schneier. Second Preimages on n-bit Hash Functions for Much Less
than 2n work. In Eurocrypt ’05, volume 3494 of LNCS, pages 474–490. Springer-Verlag,
2005. 18

[63] Joe Kilian and Phillip Rogaway. How to Protect DES Against Exhaustive Key Search (an
analysis of DESX). Journal of Cryptology, 14(1):17–35, 2001. 10

[64] Vlastimil Klima. Tunnels in Hash Functions: MD5 Collisions Within a Minute, 2006.
(eprint.iacr.org/2006/105). 4

[65] Xucjia Lai and James Massey. Hash Functions Based on Block Ciphers. In Eurocrypt ’93,
volume 658 of LNCS, pages 55–70. Springer-Verlag, 1993. 16

32

www.skein-hash.info
www.skein-hash.info
eprint.iacr.org/2006/105

[66] Jooyoung Lee and Je Hong Park. Adaptive Preimage Resistance and Permutation-based
Hash Functions, 2009. (eprint.iacr.org/2009/066). 12

[67] Wonil Lee, Donghoon Chang, Sangjin Lee, Soohak Sung, and Mridul Nadi. New Parallel
Domain Extenders for UOWHF. In Asiacrypt ’03, volume 2894 of LNCS, pages 208–227.
Springer-Verlag, 2003. 25

[68] Stefan Lucks. A Failure-Friendly Design Principle for Hash Functions. In Asiacrypt ’05,
volume 3788 of LNCS, pages 474–494. Springer-Verlag, 2005. 19

[69] Stephane Manuel and Nicolas Sendrier. XOR-Hash: A Hash Function Based on XOR. In
WEWRC ’07, 2007. 25

[70] Mahmoud Maqableh, Azman Samsudin, and Mohammed Alia. New Hash Function Based
on Chaos Theory (CHA-1). International Journal of Computer Science and Network
Security, 8(2):20–27, 2008. 28

[71] Ueli Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, Impossibility
Results on Reductions, and Applications to the Random Oracle Methodology. In TCC
’04, volume 2951 of LNCS, pages 21–39. Springer-Verlag, 2004. 8

[72] Ueli Maurer and Johan Sjödin. Single-key AIL-MACs from any FIL-MAC. In ICALP ’05,
volume 3580 of LNCS, pages 472–484. Springer-Verlag, 2005. 15, 24

[73] Alfred Menezes, Paul Oorschot, and Scott Vanstone. Handbook of Applied Cryptography,
chapter Hash Functions and Data Integrity, pages 321–384. CRC Press, 1996. 6, 26

[74] Ralph Merkle. One Way Hash Functions and DES. In Crypto ’89, volume 435 of LNCS,
pages 428–446. Springer-Verlag, 1989. 6, 15, 16

[75] Miodrag Mihaljevie, Yuliang Zheng, and Hideki Imai. A Cellular Automaton Based Fast
One-Way Hash Function Suitable for Hardware Implementation. In PKC ’98, volume 1431
of LNCS, pages 217–233. Springer-Verlag, 1998. 28

[76] Mridul Nandi. Toward Optimal Double-Length Hash Functions. In Indocrypt ’05, volume
3797 of LNCS, pages 77–89. Springer-Verlag, 2005. 26

[77] Moni Naor and Noti Yung. Universal One-Way Hash Functions and their Cryptographic
Applications. In STOC ’89, pages 33–43. ACM, 1989. 13, 25

[78] NIST. The Keyed-Hash Message Authentication Code (HMAC), 2002. (FIPS PUB 198).
15

[79] Yusuke Nito, Kazuki Yoneyama, Lei Wang, and Kazuo Ohta. How to Prove the Security
of Practical Cryptosystems with Merkle-Damg̊ard Hashing by Adopting Indifferentiability,
2009. (eprint.iacr.org/2009/040). 11

[80] National Institute of Standards and Technology. Announcing Request for Candidate Al-
gorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3) Family. Federal
Register, NIST, 72(212):62212–62220, 2007. 3

[81] Pinakpani Pal and Palash Sarkar. PARSHA-256 – A New Parallelizable Hash Function
and a Multithreaded Implementation. In FSE ’03, volume 2887 of LNCS, pages 347–361.
Springer-Verlag, 2003. 25

33

eprint.iacr.org/2009/066
eprint.iacr.org/2009/040

[82] Jacques Patarin. Collisions and Inversions for Damg̊ard’s Whole Hash Function. In Asi-
acrypt ’95, volume 917 of LNCS, pages 305–321. Springer-Verlag, 1995. 27

[83] Bart Preneel. Analysis and Design of Cryptographic Hash Functions. PhD thesis, Katholiek
Universiteit Leuven, 1993. 28

[84] Bart Preneel. Cryptographic Hash Functions. In 3rd Symposium on State and Progress of
Research in Cryptography, pages 161–171, 1993. 27

[85] Bart Preneel. The State of Hash Functions and the NIST SHA-3 Competition. In Inscrypt
’09, volume 5487 of LNCS, pages 1–11. Springer-Verlag, 2009. 28

[86] Bart Preneel, Rene Govaerts, and Joos Vandewalle. Hash Functions Based on Block
Ciphers: A Synthetic Approach. In Crypto ’93, volume 773 of LNCS, pages 368–378.
Springer-Verlag, 1993. 26

[87] Michael Rabin. Foundations of Secure Computations, chapter Digitalized Signatures, pages
155–166. Academic Press, 1978. 16

[88] Mohammed Reyhanitabar, Willy Susilo, and Yi Mu. Analysis of Property-Preservation
Capabilities of the ROX and ESh Hash Domain Extenders. In ACISP ’09, volume 5594
of LNCS, pages 153–170. Springer-Verlag, 2009. 14, 23

[89] Mohammed Reza Reyhanitabar, Willy Susilo, and Yi Mu. Enhanced Security Notions for
Dedicated-Key Hash Functions: Defintions and Relationships, 2010. (eprint.iacr.org/
2010/022). 14

[90] Thomas Ristenpart and Thomas Shrimpton. How to Build a Hash Function from any
Collision-Resistant Function. In Asiacrypt ’07, volume 4833 of LNCS, pages 147–163.
Springer-Verlag, 2007. 11

[91] Ronald Rivest. Abelian Square-Free Dithering for Iterative Hash Functions. In 1st NIST
Cryptographic Hash Workshop, 2005. 22

[92] Ronald Rivest, Benjamin Agre, daniel Bailey, Christopher Crutchfield, Yevgeniy Dodis,
Kermin Elliott Fleming, Asif Khan, Jayant Krishnamurthy, Yuncheng Lin, Leo Reyzin,
Emily Shen, Jim Sukha, Drew Sutherland, Eran Tromer, and Yiqun Lisa yin. The MD6
Hash Function: a Proposal to NIST for SHA-3, 2008. (groups.csail.mit.edu/cis/md6).
25

[93] Phillip Rogaway. Formalizing Human Ignorance: Collision-Resistant Hashing Without the
Keys. In Vietcrypt ’06, volume 4341 of LNCS, pages 211–228. Springer-Verlag, 2006. 5,
13

[94] Phillip Rogaway and Thomas Shrimpton. Cryptographic Hash-Function Basics: Defini-
tions, Implications, and Separations for Preimage Resistance, Second-Preimage Resistance,
and Collision Resistance. In FSE ’04, volume 3017 of LNCS, pages 371–388. Springer-
Verlag, 2004. 6, 13, 23

[95] Phillip Rogaway and John Steinberger. Constructing Cryptographic Hash Functions from
Fixed-Key Blockciphers. In Crypto ’08, volume 5157 of LNCS, pages 433–450. Springer-
Verlag, 2008. 26

[96] Markku-Juhani Saarinen. Linearization Attacks Against Syndrome Based Hashes. In
Indocrypt ’07, volume 4859 of LNCS, pages 1–9. Springer-Verlag, 2007. 27

34

eprint.iacr.org/2010/022
eprint.iacr.org/2010/022
groups.csail.mit.edu/cis/md6

[97] Palash Sarkar. Masking Based Domain Extenders for UOWHFs: Bounds and Construc-
tions. In Asiacrypt ’04, volume 3329 of LNCS, pages 187–200. Springer-Verlag, 2004.
25

[98] Palash Sarkar and Paul Scellenberg. A Parallel Algorithm for Extending Cryptographic
Hash Functions. In Indocrypt ’01, volume 2247 of LNCS, pages 40–49. Springer-Verlag,
2001. 25

[99] Victor Shoup. A Composition Theorem for Universal One-Way Hash Functions. In Euro-
crypt ’00, volume 1807 of LNCS, pages 445–452. Springer-Verlag, 2000. 23

[100] Thomas Shrimpton and Martijn Stam. Building a Collision-Resistant Compression Func-
tion from Non-compressing Primitives. In ICALP ’08, volume 5126 of LNCS, pages 643–
654. Springer-Verlag, 2008. 26

[101] Martijn Stam. Beyond Uniformity: Better Security/Efficiency Tradeoffs for Compression
Functions. In Crypto ’08, volume 5157 of LNCS, pages 397–412. Springer-Verlag, 2008. 26

[102] Martijn Stam. Blockcipher-Based Hashing Revisited. In FSE ’09, volume 5665 of LNCS,
pages 69–83. Springer-Verlag, 2009. 26

[103] Marc Stevens, Alexander Sotirov, Jacob Appelbaum, Arjen Lenstra, and David Molnar.
Short Chosen-Prefix Collisions for MD5 and the Creation of a Rogue CA Certification. In
Crypto ’09, volume 5677 of LNCS, pages 55–69. Springer-Verlag, 2009. 4

[104] D Stinson and J Upadhyay. On the Complexity of the Herding Attack and Some Related
Attacks on Hash Functions, 2010. (eprint.iacr.org/2010/030). 19

[105] Douglas Stinson. Some Observations on the Theory of Cryptographic Hash Functions.
Designs, Codes and Cryptography, 38(2):259–277, 2006. 6

[106] Jean-Pierre Tillich and Gilles Zemor. Collisions for the LPS Expander Graph Hash Func-
tion. In Eurocrypt ’08, volume 4965 of LNCS, pages 254–269. Springer-Verlag, 2008. 27

[107] Gene Tsudik. Message Authentication with One-Way Hash Functions. ACM SIGCOMM
Computer Communication Review, 22:29–38, 1992. 17

[108] John von Neumann. The World of Physics: A Small Library of the Literature of Physics
from Antiquity to the Present, chapter The General and Logical Theory of Automata,
pages 606–607. Simon and Schuster, New York, 1987. (Originally presented at the Hixon
Symposium on September 20, 1948, at the California Institute of Technology). 28

[109] X. Wang, D. Feng, X. Lai, and H. Yu. Collisions for hash functions MD4, MD5, HAVAL-
128 and RIPEMD, 2004. (eprint.iacr.org/2004/199). 3

[110] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full SHA-1.
In Crypto ’05, volume 3621 of LNCS, pages 17–36. Springer-Verlag, 2005. 3, 15, 17

[111] Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions. In
Eurocrypt ’05, volume 3494 of LNCS, pages 19–35. Springer-Verlag, 2005. 3, 15, 17

[112] Stephen Wolfram. A New Kind of Science. Wolfram Media, 2002. 28

[113] Kan Yasuda. How to Fill Up Merkle-Damg̊ard Hash Function. In Asiacrypt ’08, volume
5350 of LNCS, pages 272–289. Springer-Verlag, 2008. 6, 14

35

eprint.iacr.org/2010/030
eprint.iacr.org/2004/199

[114] Kan Yasuda. A Double-Piped Mode of Operation for MACs, PRFs and PROs: Security
beyond the Birthday Barrier. In Eurocryp ’09, volume 5479 of LNCS, pages 242–259.
Springer-Verlag, 2009. 20

[115] Xun Yi. Hash Function Based on Chaotic Tent Maps. IEEE Transactions on Express
Briefs, 52(6):354–357, 2005. 28

[116] Kazuki Yoneyama, Satoshi Miyagawa, and Kazuo Ohta. Leaky Random Oracle (Extended
Abstract). In ProvSec ’08, volume 5324 of LNCS, pages 226–240. Springer-Verlag, 2008.
11

[117] Gideon Yuval. How to Swindle Rabin. Cryptologia, 3(3):187–191, 1979. 3

36

	Introduction
	I Hash Functions Security
	Security Properties
	Collision-Resistance (CR)
	Pre-image Resistance (Pre)
	2nd Pre-image Resistance (Sec)
	Other Properties

	Security Notions
	Indifferentiability from RO
	Indistinguishability from PRF
	Unforgeability
	Other Notions

	Multi-Property-Preserving
	Cryptographic Proofs

	II Hash Functions Design
	Keyless vs. Keyed Hash Functions
	Iterative Hash Functions
	Merkle-Damgård Construction
	Generic Attacks Against Merkle-Damgård
	Variants of Merkle-Damgård
	Sponge Construction

	Tree-based Hash Functions
	Compression Functions
	Hash Functions Based on Block and Stream Ciphers
	Hash Functions Based on Mathematical Problems
	Other Approaches

	Conclusion and Summary

