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Communication-aware Drone Delivery Problem
Cihan Tugrul Cicek, Çağrı Koç, Hakan Gultekin, Güneş Erdoğan

Abstract—The drone delivery problem (DDP) has been
introduced to include aerial vehicles in last-mile delivery
operations to increase efficiency. However, the existing studies
have not incorporated the communication quality requirements
of such a delivery operation. This study introduces the
communication-aware DDP (C-DDP), which incorporates
handover and outage constraints into the conventional
multi-depot multi-trip green vehicle routing problem with time
windows. In particular, any trip of a drone to deliver a
customer package must require less than a certain number of
handover operations and cannot exceed a predefined outage
duration threshold. A mixed integer programming (MIP) model
is developed to minimize the total flight distance while
satisfying communication constraints. We present a genetic
algorithm (GA) that can solve large instances and compare its
performance with an off-the-shelf MIP solver. Computational
study shows that the GA and MIP solver performances are
equivalent to solving smaller instances. @R1.C1 We also
compare the GA performance against another evolutionary
algorithm, particle swarm optimization (PSO), for larger
instances and find that the GA outperforms the PSO with
slightly longer CPU times. The results indicate that ignoring
the communication constraints would cause significant
operational disruption risk and this risk can be easily mitigated
with a slight sacrifice from flight distances by incorporating the
proposed communication constraints. In particular, the
communication performance can be improved by up to 28.9%
when the flight distance is increased by 19.1% at most on
average.

Index Terms—Drone delivery, genetic algorithm, outage,
handover.

I. INTRODUCTION

In the past decades, rapid technological advances have
resulted in the increasing use of unmanned aerial vehicles
(UAVs) in diverse sectors [1]. Among others, last-mile
delivery has been one of the promising areas to utilize UAVs
[2], [3]. In [4], it has been shown that the integration of
drones into conventional delivery operations would
substantially reduce the total cost of delivery operations.
Industry leaders like Amazon [5] and UPS [6] have already
implemented UAVs in their parcel delivery process, and it’s
predicted that the number of robots including these vehicles
in the transportation industry will double by 2030 [7].

Following this trend, there have been several studies to
optimally design drone routing operations. However, none of
those studies have integrated the communication perspective
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into the problem, and consequently have fallen short of
providing a comprehensive operation planning. This study
addresses this gap and introduces a new variant of the drone
delivery problem (DDP). The objective of the DDP is to
determine the optimal routes of a set of drones that are
dispatched from a fixed base point, e.g. depot, deliver an
order to a customer, and return to its base.

This problem has been studied as a sub-class of routing
problems with drones and distinguishes it from the
truck-drone routing problem, where trucks and drones are
jointly used for delivery tasks and trucks are used as
launching/reverting platforms for drones [2]. In their recent
survey paper, Macrina et al. [2] have argued that the DDP
studies have been scarce, considered only the drone
characteristics, and require more investigation by
incorporating environment-related conditions into the
problem description to achieve more realistic results. Note
that while there are studies on routing problems involving
multiple depots and multiple trips, as well as
environmentally-friendly vehicles, such as those discussed in
[8], [9], these studies did not include aerial vehicles in their
analyses. As a result, we limit our literature review to
routing problems specifically involving aerial vehicles. Based
on that, our major contribution is to demonstrate how
communication-related constraints affect the overall route
planning and more precisely the total travel distance. To the
best of our knowledge, this is the first study that considers
communication constraints in the DDP together with
common drone characteristics, such as limited battery
capacity.

There have been several research attempts to study
different variants of drone routing problems. The stochastic
drone routing problem is addressed in [10], which monitors
and directs drone traffic under uncertainty. The authors
developed a policy by adapting the Bellman equation and
using an approximate algorithm. The multi-trip drone routing
problem is studied in [11], where the energy consumption of
the drones is modeled as a nonlinear function of payload and
distance traveled. The authors developed logical and
subgradient cuts in the solution process to implement the
complex convex energy function. [12] developed a genetic
algorithm to solve the heterogeneous UAV routing problem.
The problem of scheduling and sequencing drone routes for
the delivery of medical items is studied in [13], where
locations for charging stations (CSs), as well as the
assignment of clinics to providers, are determined. The
vehicle routing problem (VRP) with drones that incorporates
time windows for customers and requires coordination
between trucks and drones is addressed in [14]. The authors
provided a mathematical model to minimize the total travel
time of trucks and proposed a variable neighborhood search
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algorithm. The drone routing problem with recharging stops
is studied in [15]. The authors developed a learning-based
heuristic algorithm to solve the problem. The drone routing
for parcel delivery has been investigated in [16]–[18].

One of the important drawbacks of the above studies is
the lack of communication environment in the problem
description. To operate safely and effectively, a drone needs
to stay connected to a reliable backhaul node like a ground
base station. This connection is necessary for various
reasons, including caching, authentication, navigation, and
traffic updates [19]. It allows the drone to communicate with
its control unit to complete assigned tasks, such as delivering
a package [20]. Maintaining this connection is also crucial
for the safety of people, the environment, and property. This
is the main reason that countries have put regulations and
guidelines into action to ensure drones stay connected, e.g.,
[21]. Even when in autopilot mode, a drone might still need
a backhaul connection to send status updates. For example,
if a delivery is unsuccessful, the drone needs to re-plan its
return trip to consider the added weight of the undelivered
package. In this case, a reliable connection would help the
planner monitor the status of the drone and reroute the drone
to a CS or a depot to prevent a dead battery. Maintaining the
connection also enables real-time data collection, which can
be used for performance analysis and optimization of the
operations. Therefore, the underlying communication
infrastructure must be considered in drone routing problems.
We aim to address this requirement and attempt to solve a
new problem for aerial package delivery applications. In
particular, we introduce the communication-aware drone
delivery problem (C-DDP), which addresses how to
determine optimal drone trips to deliver customer packages
subject to communication quality constraints.

Figure 1 presents an illustration of the C-DDP. Two
alternative trips for a package delivery plan are depicted. In
the first route, a drone is dispatched from the depot and
follows a straight-line path to the customer, delivers the
order, and visits a CS before returning to the depot. This trip
requires the drone to pass through three different coverage
areas, risking handover. In the second route, the drone
modifies its trajectory and visits only two coverage areas.
There is a trade-off between these two routes regarding flight
distance and communication quality. The first route requires
less flight distance but more handover operations, whereas
the second route requires fewer handover operations, but
more flight distance.

II. SYSTEM MODEL

The C-DDP is defined on a complete directed graph
G = (V,A) with a set of vertices V and a set of arcs A. The
vertices consist of the communication nodes (CN), i.e., base
stations, V CN = {CN0, CN1, . . . , CNnCN−1}, depots,
V D = {D0, D1, . . . , DnD−1}, CSs,
V CS = {CS0, CS1, . . . , CSnCS−1}, and customers
V C = {C0, C1, . . . , CnC−1}. As a result, we have
V = V CN ∪ V D ∪ V CS ∪ V C. The arcs consist of the pairs
of vertices between which a drone can fly, i.e.,

Fig. 1: Illustration of the C-DDP. The dashed curves show
a trip in which communication performance is disregarded.
Consequently, the trip consists of straight flights between
nodes to minimize the total flight distance. The solid curves
show another trip in which the communication performance,
e.g., the number of handovers, is considered.

A = {(i, j) : i, j ∈ V F}, where V F = V D ∪ V CS ∪ V C

denotes the flyable nodes.

A. Communication Network

The communication network consists of multiple fixed,
ground CNs that have access to the core communication
network. The service area is divided into multiple coverage
areas corresponding to different CNs. During a trip, a drone
may not be within the line-of-sight (LoS) of a CN all the
time; therefore, it must establish reliable communication
links with the CNs to inform its status to a control center.
Reliability in this context can be defined as experiencing a
certain quality-of-service (QoS) level, e.g., spectral efficiency
(SE), higher than a predefined threshold.

Since a CN on the ground (i.e., GBS) is more capable of
supporting technologies, we assume that power domain
non-orthogonal multiple access (PD-NOMA) and orthogonal
frequency-division multiple access (OFDMA) are applied for
the CNs and drones, respectively. Such technologies have
already been proposed for aerial communications [22], [23].
We use the probabilistic pathloss model of [24] where some
of the connections have a higher LoS probability while the
remaining connections suffer from the lack of a LoS
connection and experiences lower LoS probability (see the
Appendix for the channel descriptions).

We assume that the drones operate at a fixed altitude HD

and establish a link with the closest CN in its corresponding
coverage area. Based on these connections, two different QoS
measures are considered. The first measure is the number of
handovers. In particular, every time a flying drone establishes
a new link to a new CN, a handover operation is required,
i.e., transferring the bandwidth from one CN to the other. We
expect to have as few handover operations as possible during
a trip. The second measure is the expected outage duration.
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The outage in this context can be defined as experiencing a
SE that is less than a predefined SE threshold (γ̄).

More precisely, let γi denote the SE when receiving from
CNi and let v1, v2 ∈ V F denote two different nodes in the
network. We divide the straight path between these two
nodes into R equal line segments, yielding R + 1 points on
this particular path (including v1 and v2), since this
discretization has been shown to be an effective approach for
computing communication measures in cellular-connected
trajectory design [25], [26]. Let br and γr denote the closest
CN and the SE at a particular point r receiving from this
closest CN, respectively. Then, the number of handovers,
(hv1v2 ), and the expected outage duration, (ov1v2 ), on the arc
(v1, v2) can be approximated as

hv1v2 =

R+1∑
r=2

1(br 6= br−1), (1)

ov1v2 =
tv1v2
R+ 1

R+1∑
r=1

1(γr < γ̄), (2)

where tv1v2 is the travel time on the arc (v1, v2) and 1(z) is the
indicator function that returns 1 if z is True, and 0 otherwise.

B. Delivery Network

We consider a delivery network in which drones, operated
by a control center, deliver orders directly from the depots to
customers. We assume that the customer locations are known,
the packages are not heavier than the payload capacity of the
drones, and a drone can deliver only one order on a trip. A trip
is defined as a sequence of arcs starting from a depot node,
visiting at most one customer node, and ending at a depot
node.

Drones operate within a finite working day, and each
drone is associated with a starting and an ending depot,
which are not necessarily the same. A drone starts the day at
its starting point, can operate multiple trips, and must return
to its ending point. We assume that any depot can fulfill
orders; thus, a drone is not forced to return to the same
depot from which it was loaded. Note that when we use the
term ”depot,” we refer to any type of storage facility that can
facilitate fast delivery. Essentially, depots are capable of
preparing final packages similar to warehouses in the
proposed network.

A drone may visit a CS on a trip to swap its battery with
a fully charged one to prevent crashing due to a depleted
battery. We assume that the CSs have infinite capacities, i.e.,
swapping starts immediately after a drone arrives at a CS
and requires a fixed and identical time at every station
independent of the battery level of the arriving drone. Hence,
the following constraints must be satisfied:
• The first trip of a drone must start from its starting depot.
• The last trip of a drone must end at its ending depot.
• Each trip starts from a depot, ends at a depot, and can

include at most one customer.
• Each customer is served exactly once by one drone.
• Each customer must be served within its time window.

C. Problem Statement

We consider a fleet of homogeneous drones
U = {U1, U2, . . . , UnU }. Each customer i ∈ V C has a time
window [ai, bi] within which the delivery must be
completed. Each flyable node i ∈ V F is associated with an
operation time wi denoting the time a drone must spend.
This includes loading a package or battery swapping at a
depot node, unloading a package at a customer node, or
swapping at a CS. Each drone u ∈ U is associated with a
starting and an ending depot DS

u , D
E
u ∈ V D. Each arc

(i, j) ∈ A is associated with a travel time tij , a travel
distance dij , a travel cost cij , e.g., required battery power, a
handover number hij , and an expected outage duration oij .

Let Tu = {T 1
u , T

2
u , . . . , T

nC
u } be the feasible set of trips of

drone u ∈ U , where each item in this set consists of arc
sequences used in a particular trip, i.e.,
T ku = {(v1, v2), . . . , (vnk−1, vnk) : v1 = DS

u , vnk = DE
u ,

(vi−1, vi) ∈ A, i = 2, . . . , nk} denotes the kth trip of drone u
with nk arcs flown. Note that the maximum number of trips
could be equal to the number of customers for a particular
drone since each trip can only serve a single customer. In
case a drone has fewer trips than the number of customers,
then, the corresponding trip is empty.

For a given trip T ku , we introduce the following equations:

H(T ku ) =
∑

(i,j)∈Tku

hij , (3)

O(T ku ) =
∑

(i,j)∈Tku

oij , (4)

D(T ku ) =
∑

(i,j)∈Tku

dij , (5)

where H(T ku ), O(T ku ), and D(T ku ) define the number of
handover operations, the outage duration, and the total flight
distance, respectively, for the kth trip of drone u. Let Ω be
the set of all feasible trip sets for all drones. Then, given the
handover and outage QoS thresholds Hmax and Omax,
respectively, the C-DDP is defined as:

minimize
∑
u∈U

∑
k∈{1,...,nC}

D(T ku )

subject to H(T ku ) ≤ Hmax, u ∈ U, k ∈ {1, . . . , nC}, (6)

O(T ku ) ≤ Omax, u ∈ U, k ∈ {1, . . . , nC}, (7)
T ∈ Ω, (8)

where T is the set of all possible trips of all drones, i.e.,
T = {TU1

, TU2
, . . . , TUnU }. The objective is to minimize the

total flight distance of trips while constraints (6) and (7) ensure
that the number of handovers and expected outage duration of
any trip do not exceed the QoS thresholds, respectively. For
example, if Hmax = 3 and Omax = 30, then a trip cannot have
more than 3 handovers and more than 30 seconds of outage.
Note that due to the massive number of trips, it is difficult to
define Ω even for small problems explicitly, thus, we propose
a MIP formulation in Section II-E.
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Trip1

Trip2

D0 D1

D2D3

CS0 CS1

CS2CS3
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C1

Total Flight Distance = 3086
Maximum Handoff per Trip = 4

Total Handoff = 8
Maximum Expected Outage Duration per Trip = 58

Total Expected Outage Duration = 111

BaseStation ChargingStation Customer Depot

(a) Hmax = ∞, Omax = ∞.

Tr
ip1
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D0 D1

D2D3

CS0 CS1

CS2CS3

C0

C1

Total Flight Distance = 3446
Maximum Handoff per Trip = 3

Total Handoff = 6
Maximum Expected Outage Duration per Trip = 45

Total Expected Outage Duration = 90

BaseStation ChargingStation Customer Depot

(b) Hmax = 3, Omax = 45.

Tri
p1

Trip2

D0 D1

D2D3

CS0 CS1

CS2CS3

C0

C1

Total Flight Distance = 3168
Maximum Handoff per Trip = 3

Total Handoff = 6
Maximum Expected Outage Duration per Trip = 51

Total Expected Outage Duration = 101

BaseStation ChargingStation Customer Depot

(c) Hmax = 3, Omax = 51.

Trip1

Trip2

D0 D1

D2D3

CS0 CS1

CS2CS3

C0

C1

Total Flight Distance = 3095
Maximum Handoff per Trip = 3

Total Handoff = 6
Maximum Expected Outage Duration per Trip = 54

Total Expected Outage Duration = 106

BaseStation ChargingStation Customer Depot

(d) Hmax = 3, Omax = 56.

Fig. 2: Illustrative example given γ̄ = 2. The thicker red parts of the trips indicate the expected outage. The top-left panel
shows the solution for the default problem. The top-right, bottom-left, and bottom-right panels show the case in which the
outage duration constraint is relaxed by 10%, 20%, and 30%, respectively, while the handover constraint is set to its optimum.

D. Illustrative Example

In Fig. 2, we illustrate the C-DDP on a 1000 × 1000
square region with two customers (C) located at [500, 150]
and [500, 900], four depots (D) located at [0, 0], [1000, 0],
[1000, 1000], and [0, 1000], and four CSs located at
[300, 300], [700, 300], [700, 700], and [300, 700]. The
communication network includes 9 base stations located on
equidistant diagonals and γ̄ is set to 2.

We assume that a single drone will deliver the customer
packages starting from depot “D0” and ending at depot
“D1”. For simplicity, we ignore the time windows in this
example. The different colored regions show the coverage
areas in the communication network, and the dashed lines
depict the boundaries of these areas. The top left panel
shows the optimal solution for the default case, where the
objective is to minimize the total flight distance and
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constraints (6), (7) are ignored. We have also solved the
same problem by considering handover and outage objectives
to determine optimal communication performance. In
particular, we set the objective function of C-DDP to
minimize the maximum number of handovers, i.e., minu∈U
maxk∈{1,...,nC}H(T ku ), and the maximum expected outage
duration per trip, i.e., minu∈U maxk∈{1,...,nC}O(T ku ), with
no additional constraints. We obtained the optimal handover
count and outage duration as 3 and 43, respectively.

We illustrate three different cases in Fig. 2, where we set
the objective function to minimize the total flight distance and
consider the optimal handover and outage duration as hard
constraints. Note that the problem becomes infeasible once
we enforce both the optimal handover and outage constraints,
i.e., Hmax = 3 and Omax = 43. Therefore, we illustrate the
cases in which we relax the maximum outage duration by 10%
(top right), 20% (bottom left), and 30% (bottom right).

We can easily observe that integrating the communication
constraints increases the total flight distance. In particular,
the flight distance increases by 12.3%, 11.7%, and 6.7%
respectively when at most 10%, 20%, and 30% relaxation
are allowed for the maximum expected outage duration.
However, discarding the communication constraints would
result in a 34.8% increase in the expected outage duration in
the default case compared to the optimal expected outage
duration per trip. Note that relaxing the handover constraint
would not affect these solutions since only the outage
constraint has become active in this particular example.

E. MIP Formulation of the C-DDP
Let K = {0, 1, 2, . . . , nC−1} denote the set of trips for each

drone. Similar to the four-indexed variables defined in [9], we
introduce the decision variables xijuk ∈ {0, 1} to denote if
arc (i, j) ∈ A is flown by drone u ∈ U on its kth trip, 0
otherwise; puk ∈ {0, 1} to denote if drone u ∈ U operates
trip k ∈ K, 0 otherwise; 0 ≤ yiuk ≤ 1 to denote the battery
level of drone u ∈ U at the time of arrival at node i ∈ V F

on its kth trip; sLiuk ≥ 0 and sAiuk ≥ 0, respectively, to denote
leaving and arrival time of drone u ∈ U at depot i ∈ V D

on its kth trip; and sViuk ≥ 0 to denote the arrival time of
drone u ∈ U at node i ∈ V F on its kth trip. Recall that dij ,
hij , oij , cij , tij denote, respectively, the distance, number of
handovers, expected outage duration, required battery power,
and required time associated with arc (i, j); ai and bi denote
the start and end of time window of node i, respectively; and
wi denotes the required operation time at node i. Then, the
MIP formulation of C-DDP can be defined as

minimize
∑

(i,j)∈A

∑
u∈U

∑
k∈K

xijukdij

subject to
∑

(i,j)∈A

hijxijuk ≤ Hmax, u ∈ U, k ∈ K, (9)

∑
(i,j)∈A

oijxijuk ≤ Omax, u ∈ U, k ∈ K, (10)

∑
i∈V F,
(i,j)∈A

∑
u∈U

∑
k∈K

xijuk = 1, j ∈ V C, (11)

∑
j∈V F

(i,j)∈A

xijuk −
∑
j∈V F,
(j,i)∈A

xjiuk = 0, i ∈ V F \ V D,

u ∈ U, k ∈ K, (12)

pu0 ≤
∑
j∈V F

(DSu ,j)∈A

xDSu ,j,u,0, u ∈ U, (13)

puk − pu,k+1 ≤
∑
j∈V F

(j,DEu )∈A

xj,DEu ,u,k, u ∈ U,

k ∈ K \ {nC − 1}, (14)

pu,n−1 ≤
∑
j∈V F

(j,DEu )∈A

xj,DEu ,u,n−1, u ∈ U, (15)

xijuk ≤ puk, (i, j) ∈ A, u ∈ U, k ∈ K, (16)
pu,k+1 ≤ puk, u ∈ U, k ∈ K \ {nC − 1}, (17)∑
i∈V D

∑
j∈V F

(i,j)∈A

xijuk ≤ 1, u ∈ U, k ∈ K, (18)

∑
i∈V D

∑
j∈V F

(j,i)∈A

xjiuk ≤ 1, u ∈ U, k ∈ K, (19)

∑
i∈V C

∑
j∈V F

(j,i)∈A

xjiuk ≤ 1, u ∈ U, k ∈ K, (20)

∑
j∈V F

(i,j)∈A

xi,j,u,k+1 −
∑
j∈V F

(j,i)∈A

xjiuk ≤ 0, i ∈ V D, u ∈ U,

k ∈ K \ {nC − 1}, (21)
xijuk − 1 ≤ yjuk − (1− cij) ≤ 1− xijuk,

i ∈ V CS ∪ V D,

j ∈ V F, (i, j) ∈ A, u ∈ U, k ∈ K, (22)
xijuk − 1 ≤ yjuk − (yiuk − cij) ≤ 1− xijuk,

i ∈ V F \ {V CS ∪ V D},
j ∈ V F, (i, j) ∈ A,
u ∈ U, k ∈ K, (23)

ai −M

1−
∑
j∈V F

(j,i)∈A

xjiuk

 ≤ sViuk

≤ bi +M

1−
∑
j∈V F

(j,i)∈A

xjiuk

 ,

i ∈ V C, u ∈ U, k ∈ K, (24)

sAiuk −M(1− pu,k+1) ≤ sLi,u,k+1, i ∈ V D, u ∈ U,
k ∈ K \ {nC − 1}, (25)

sLiuk + wi + tij −M(1− xijuk) ≤ sVjuk,
i ∈ V D, j ∈ V F \ V D, (i, j) ∈ A,
u ∈ U, k ∈ K, (26)

sViuk + wi + tij −M(1− xijuk) ≤ sVjuk,
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i, j ∈ V F \ V D, (i, j) ∈ A, u ∈ U, k ∈ K,
(27)

sViuk + wi + tij −M(1− xijuk) ≤ sAjuk,
i ∈ V F \ V D, j ∈ V D, (i, j) ∈ A,
u ∈ U, k ∈ K, (28)

sLiuk + tij −M(1− xijuk) ≤ sAjuk,
i, j ∈ V D, (i, j) ∈ A, u ∈ U, k ∈ K, (29)

xijuk ∈ {0, 1}, (i, j) ∈ A, u ∈ U, k ∈ K, (30)
puk ∈ {0, 1}, u ∈ U, k ∈ K, (31)

0 ≤ yiuk ≤ 1, i ∈ V F, u ∈ U, k ∈ K, (32)

0 ≤ sLiuk, sAiuk, i ∈ V D, u ∈ U, k ∈ K, (33)

0 ≤ sViuk, i ∈ V F \ V D, u ∈ U, k ∈ K. (34)

The objective function minimizes the total flight distance.
Constraints (9) and (10) ensure that the entire delivery
operation is fulfilled without exceeding the handover and
outage thresholds, respectively. Constraints (11) state that
each customer is visited once by one drone. Constraints (12)
define the flow balance at each vertex. Constraints (13)-(15)
ensure that a drone starts the workday from its starting depot
and ends the day at its ending depot. In particular, (13)
enforces having an outgoing arc from the starting depot of a
drone if that drone is assigned its first trip, while (14) and
(15) enforce to have an incoming arc to the ending depot of
a drone if that drone is not assigned a new trip after
operating its last trip. Constraints (16) ensure that arcs can
be flown by a particular drone on a particular trip if that trip
is assigned to that drone. Constraints (17) organize the trip
sequences. Constraints (18)-(20) require that each trip can
have at most one leaving depot, one arrival depot, and a
customer.

Constraints (21) ensure that a drone can start its next trip
from a particular depot if and only if the previous trip ends
at that particular depot. More precisely, this constraint holds
for equality when a trip is immediately followed by another
trip for a drone. In this case, the left-hand side becomes 0.
However, it holds for inequality when a trip does not have a
successive trip. For example, given a problem with four
customers, if a drone only makes a single trip to one of
these customers, then, the left-hand side of this constraint
becomes −1 as some of the x variables corresponding to this
drone with k = 0 would be set to 1, and all other x variables
with k > 0 would be set to 0. Therefore, constraint (21)
holds for inequality for k = 0, and for equality for k = 1, 2.

Constraints (22)-(23) determine the battery levels. In
particular, if a trip involves traveling from a source node of
depot or CS i to a node j, i.e., xijuk = 1 for i ∈ V CS ∪ V D,
then the battery level at the source node i is assumed to be
full. The constraint (22) ensures that the battery level at the
node of interest j is equal to 1 minus the energy required to
travel between nodes i and j. On the other hand, if a trip
involves traveling from a source node i that is neither a
depot nor a CS to a specific node j, i.e. xijuk = 1 for
i ∈ V F \ {V CS ∪ V D}, then the battery level at node j is

equal to the battery level at the source node i minus the
energy required to travel between nodes i and j. Note that
constraints (32) ensure that the battery levels are always
within 0 and 1 at any node visited by any drone on any trip.

Constraints (24)-(29) state the time relationships, where M
is a sufficiently large number. In particular, constraints (24)
ensure that a customer’s delivery is fulfilled within its time
window. Constraints (25) ensure that the leaving time of the
next trip for a drone cannot be earlier than the arrival time
of the previous trip. Constraints (26) set the visiting time of
the first non-depot node in a trip to the leaving time from
the starting depot of the trip plus the operation time at the
depot plus the travel time from the depot to the first node.
Constraints (27) determine the visiting time of a non-depot
node as the visiting time of the previous non-depot node
plus operation time spent in the previous node plus the travel
time from the previous node. The operation times in these
constraints correspond to loading, unloading, and charging
times for depots, customers, and charging nodes,
respectively. Constraints (28) set the arrival time to a depot
node from a non-depot node to the visiting time of the last
non-depot node plus the operation time at that last node plus
the travel time from that last node to the depot node.
Constraints (29) set the arrival time to a depot node from
another depot node to the leaving time of the outgoing depot
plus the travel time between depots. Note that this constraint
does not include any operation time since we assume that
flying between two depot nodes does not require any
loading/unloading operation. Finally, constraints (30)-(34)
define the domains of the variables.

III. SOLUTION APPROACH

The MIP formulation moves out of our computational
reach for large problem instances. Therefore, we propose a
Genetic Algorithm (GA) to solve larger instances effectively.
@R1.C1 / @R2.C1 In this section, we describe how to
represent a solution, how to create the initial population, how
to generate offspring, and how to mutate a solution. We have
used the pymoo package [27] to implement the special
crossover and mutation operators.

A. Solution Representation

A chromosome in GA defines how a solution is
represented. In our context, the chromosome is defined as
the combination of drone routes where each route consists of
labels. We use a classical label encoding scheme where each
node is represented with a unique integer. Fig. 3 illustrates
this chromosome scheme for a problem with 4 depots, 2
CSs, 2 customers, 16 waypoints, and 2 drones. Note that we
encode all nodes in the network plus waypoints (WPs)
representing the intersection points of coverage areas to
identify handovers.

B. Evaluation of Chromosomes

We use Eq. 5 as the basis of the fitness function. More
precisely, we first calculate the total flight distance over all
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Fig. 3: An illustration of the chromosome for a solution
where the starting and ending depots of Drone-1 are D0
and D2, while the starting and ending depots of Drone-2
are D2 and D1, respectively. The top and bottom rows in
the label encoding and routes indicate the nodes and their
corresponding labels, respectively.

drones that are used in a solution and then add the sum of
constraint violation values over all constraints to this total if
a chromosome does not satisfy the constraints. This approach
has been widely used in the GA literature to handle constraints,
e.g. [28], [29]. In this way, feasible solutions are encouraged
to be used in the subsequent generations of the algorithm.

C. Initial Population

We create the initial population with an approach similar
to [9]. We start with generating a uniform random number
between 0 and nu − 1 for each customer. The integer part of
this number is used to assign the customers to drones. Then,
we aggregate the customers that have been assigned to the
same drone and sort the customers based on their random
numbers in a non-decreasing order. Then, the initial route of
a drone starts from its starting depot, visits all customers in
this sorted order, where a random depot is inserted after each
customer visit to do the collection for the next customer, and
returns to the drone’s ending depot. However, the initial routes
might be infeasible due to the battery constraints. Therefore,

we introduce a greedy CS insertion to recover the initial routes.
In particular, we go through every route and if the battery level
drops down to zero at a particular node of a route, we insert the
CS that is closest to the predecessor of that particular node.
We make sure that the insertion of CSs guarantees that the
drone can finish its route. In case a route is still infeasible after
the CS insertion, the solution is removed from the population.
Fig. 4 illustrates how this process is executed for a problem
with 4 drones, 4 depots, and 6 customers.

D. Crossover

We use the binary tournament selection, i.e., random
selection with uniform probability, to create offspring from
two parents in the population. Let P1 and P2 be the parents
and ndP1

and ndP2
denote the number of customers assigned

to drone d in P1 and P2, respectively. We generate two
random numbers for each drone which denote the number of
customers inherited from different parents. Then, we
randomly select the customers to pass to the offspring while
ensuring that no duplicate customers are passed. When a
customer is passed to the offspring, we keep the partial route
from the collection depot to the depot visited after the
customer delivery in the same structure for this particular
customer. In case a customer is unassigned in this process,
we randomly select a drone to assign this customer. The
customer selection process is duplicated such that we create
two offsprings from every two parents selected. In the first
and second offsprings, the customers are selected by starting
from P1 and P2, respectively.

Fig. 5 illustrates the crossover operation for a problem
with 4 drones and 6 customers. Drone 0 visits customers 6
and 2 in Parent 1 while visiting customers 1 and 3 in Parent
2. To create an offspring, customers 6 and 2 from Parent 1
and customer 3 from Parent 2 are inherited for this drone. A
similar inheritance is applied to other drones and as a result,
Drone 2 becomes idle in the offspring. Note that we keep
the collection depot of customers inherited from Parent 2
when the route is reconstructed in the offspring. For
instance, after delivering customer 2 in the route of Drone 0
in the offspring, the drone visits depot 2 since the collection
depot of customer 3 was depot 2 in Parent 2. In case no
customer is inherited from Parent 2, we keep the same
partial route of a particular customer from Parent 1.

E. Mutation

We use the traditional customer reinsertion, customer
swap, CS insertion, and CS removal operators [30]. In the
customer reinsertion, a customer is removed and reinserted
to a different position in the same route. In the customer
swap, two customers from two different routes are swapped.
Note that these reinsertion and swapping operations are
executed by preserving the partial route structure of
customers, i.e., the partial route starting from the collection
depot of a customer and ending at another depot after the
delivery of the customer. In the CS insertion (removal), a CS
is inserted into (removed from) a random position in a route.
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Fig. 4: @R2.C1 An illustration of the initial chromosome generation including the CS insertion.

Fig. 5: @R2.C1 An illustration of the crossover operation.

The above operators do not consider the variety in
handover and outage constraints and do not allow changing
the collection depot of a particular customer in a route. To
incorporate these, we introduce three new mutation
operators: waypoint insertion, waypoint removal, and depot
replacement.

Waypoint insertion: A waypoint is inserted in a route
with an expectation to improve the fitness value. Our
motivation is that inserting a waypoint would decrease the
degree of communications constraint violations, and so
would the fitness value. To insert a waypoint, we randomly
select a route and a node. We then insert the closest
waypoint to this node as a predecessor.

Waypoint removal: A waypoint is removed from a
random route among all routes that have at least one
waypoint. If no route has a waypoint, then this mutator is
skipped. Our motivation is that removing a waypoint would
decrease the total flight distance which would have a more
significant impact on the fitness value compared to the
degree of communications constraint violations.

Depot replacement: An intermediate depot, which is the
depot visited to collect the order before a customer delivery,
is replaced with another depot. Since all other mutation

operators preserve the depots before and after a customer
delivery, this operator is expected to reduce the impact of
bad depot selections in the initial population.

The mutation operators are applied to randomly selected
10% of the population. Then, any chromosome that becomes
infeasible after the mutation is recovered using the same
recovery operation applied to the initial population. In case
the recovery operation fails, the mutated chromosome is
removed from the population.

IV. COMPUTATIONAL STUDY

In this section, we present the results of our computational
experiments to validate and assess our proposed model as well
as the performance of the GA. We conducted all experiments
on a desktop computer with an Intel i-7@3.50 GHz processor,
16 GB RAM, and Windows 10 operating system. The MIP
models were solved with Gurobi 9.5 [31].

A. Test Bed
Since there are no publicly available benchmark instances

for the C-DDP, we have generated test instances to conduct
numerical experiments1. We built our instances using a

1Instances are available at https://github.com/cihantugrulcicek/CDDP.

https://github.com/cihantugrulcicek/CDDP
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5 × 5 km zone for a working day of 8 hours (28,800
seconds). We located the depot and CSs for all instances
such that there exists one depot every 2 km and one CS
every 1 km. Then, we generated the communication network
with respect to two different spatial distributions. In
particular, we first created a hexagonal grid with 1 km radius
and located one GBS at the center of each hexagon for the
uniform case. We generated another network setting where
we perturbed the center location of hexagons such that the
coverage areas overlap asymmetrically.

To determine the customer locations, we used two
different distributions. For the first case, the locations were
determined according to Uniform (U) distribution. For the
second case, we used the Poisson Point process, where we
first generated multiple hotpoints, and then determined
customer locations around these hotpoints. The number of
customers around each hotpoint was also determined based
on a discrete uniform distribution.

The time window for visiting a customer was determined
as follows: we first determined the earliest time that a
customer can be visited according to its travel time to the
closest and the farthest depot. Let D′ and D′′ be the closest
and farthest depots to customer i ∈ V C, respectively. We set
the center of the time window by generating a uniform
random number from āi = U(tD′,i, 8 − ti,D′′). We then
generate another uniform random number as the width of the
time window and modify the exact time window with respect
to this width. Note that in case of having the earliest time
less than tD′,i or the latest time greater than (8 − ti,D′′ ), we
adjust the time window such that the earliest time is set to
tD′,i and the latest time is set to (8 − ti,D′′ ). To test the
impact of time windows, we generate the width from two
different Uniform distributions, i.e., we draw a random
integer number from U(2, 8) for the loose case, and U(1, 4)
for the tight case.

In all instances, the number of drones is determined based
on one drone per 25 customers. The starting and ending
depots of drones are randomly determined, assuring that
each depot hosts at least one drone at the beginning and end
of the planning horizon if the number of drones is greater
than the number of depots. The communication parameters
are set to dense-urban settings provided by [32]: α1 = 12.08,
α2 = 0.11, α3 = 2.5, µLoS = 1.6, µNLoS = 23,
σ2 = −173 dB, Pi = 46 dBm for all i ∈ V CN.

To succinctly describe the instances, we use a three-digit
notation. “U” or “P” in the first digit denotes Uniform and
Perturbed communication network, “U” or “P” in the second
digit denotes Uniform and Poisson Process customer
distribution, and “L” or “T” in the last digit denotes loose
and tight time windows, e.g., “PUT” indicates the setting
with the Perturbed communication network, Uniform
delivery network, and Loose time windows.

B. Results

We set the Gurobi parameters to their defaults except that
the time limit has been set to @R2.C2 7,200 seconds. In GA,
we set the initial population size to 10,000 and the number

of offsprings to 2,000. The GA is terminated whenever the
run time exceeds @R2.C2 7,200 seconds, or the number of
generations exceeds ten times the number of customers (10nC)
in a particular instance, e.g., 500 generations for an instance
with 50 customers.

We first compare the GA solution performance (optimality
gap) against Gurobi. In particular, let P best denote the best
bound reported by Gurobi and PG denote the best feasible
Gurobi objective value when it terminates with a time limit.
Also, let PGA denote the best feasible GA objective value.
Then, (PG−P best)/P best×100 and (PGA−P best)/P best×
100 are the optimality gaps of Gurobi and GA, respectively.

Table I presents the optimality gaps of Gurobi and the GA
in percentages for different settings. We first solve each
instance to find singular optimal values of maximum
handover and expected outage. In particular, we first disabled
the communication constraints, Eqs. (9) and (10), modified
the objective function to find singular optimal values for the
maximum number of handovers, i.e., minu∈U
maxk∈{1,...,nC}H(T ku ), and outage duration, i.e.,
minu∈U maxk∈{1,...,nC}O(T ku ), at a time. Then, we solve
the same instances to find the optimal flight distances where
we include the communication performance as hard
constraints based on these singular optimal values. The
columns in Table I denote how much we have relaxed each
communication constraint where the default case indicates
that the singular optimal values were used without any
relaxation and the other cases indicate the percentage we
relaxed Hmax and Omax, respectively, e.g., if the singular
optimal values for handovers and outage was 5 and 30,
respectively, then we set Hmax = 6 and Omax = 33 for the
(20,10) case. Note that the more relaxed these constraints
are, the more we are closer to the conventional drone routing
problem with no communication consideration.

@R2.C2 As can be seen in Table I, the GA effectively solves
small instances with up to 20 customers to near-optimality in a
short time. The average difference in the gap values is less than
0.01% where the worst and the best performances occur for
the PPT setting with 0.02% higher objective value and for the
UPT setting with 1.1% lower objective value, respectively. The
average solution times of the GA were almost 19 times shorter
than Gurobi and more than 32 times shorter for instances with
20 customers. The average CPU time of Gurobi was 1025
seconds, while the GA terminated under 55 seconds.

Fig. 6 shows the impact of communication constraints on
the total flight distance. Note that the figure depends on the
results obtained from the GA due to the limited
computational reach of Gurobi in solving large instances.
This figure confirms our theoretical expectation that the
lower the relaxation of a communication measure is, the
higher the total flight distance. @R2.C2 The average total
flight distance compared to the default case decreases by
6.6%, 11.4%, 15.25%, and 19.1% for communication cases
(10,10), (10,20), (20,10), and (20,20), respectively. On the
other hand, the default case has 12.1%, 9.6%, 7.5%, and
6.9% improvement in the number of handover activities, and
28.9%, 24.4%, 19.6%, 15.3% improvement in the expected
outage duration on average for communication cases (10,10),
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TABLE I: Optimality gaps of Gurobi and the GA in percentages.The gap values are calculated against the best bound found
by Gurobi. The default column indicates that the Hmax and Omax were set to their singular optimal values. The following
columns indicate the % relaxations on handover and outage constraints.

Gurobi GA

Setting nC Default (20,20) (20,10) (10,20) (10,10) Default (20,20) (20,10) (10,20) (10,10)

PPL 5 0 0 0 0 0 0 0 0 0 0
10 2 0 0 0 0 2.1 < 1 0 0 0
20 1.3 < 1 < 1 < 1 < 1 1.8 < 1 < 1 < 1 < 1

PPT 5 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 < 1 0 0 0 0
20 1 0 0 0 < 1 < 1 < 1 < 1 < 1 0

PUL 5 0 0 0 0 0 0 0 0 0 0
10 1.5 0 0 0 0 < 1 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0

PUT 5 0 0 0 0 0 0 0 0 0 0
10 6.1 0 < 1 0 < 1 4.4 < 1 < 1 < 1 0
20 14.3 6.5 10.1 10.7 11.7 9.5 9.9 8.7 5.8 5

UPL 5 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0

UPT 5 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 1.4 0 0 0 0
20 11.1 2.5 3.6 4.2 6.1 5.4 1.6 < 1 < 1 < 1

UUL 5 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0
20 7.2 1.9 5.1 2.8 6.5 7.7 3.5 2.2 1.9 1.9

UUT 5 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0
20 8.4 1.4 2.9 3.6 4.8 11.4 < 1 3.1 3.3 4.4

(10,20), (20,10), and (20,20), respectively. This supports our
claim that ignoring the communication constraints would
result in operational disruption risk, which can be mitigated
by sacrificing slightly from flight distance by the
incorporation of Hmax and Omax.
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Fig. 6: The change in total flight distance concerning
different levels of communication constraints.

@R1.C1 Since Gurobi was unable to provide a lower
bound or a feasible solution for larger problems with more
than 20 customers, we assess the performance of GA on
larger instances with another evolutionary algorithm. To
make the comparison fair in terms of the implementation of
the algorithm, we select the Particle Swarm Optimization
(PSO) algorithm, that is included in pymoo. PSO was
introduced by [33] and has been used in different variants of
routing problems [34]–[36]. The PSO utilizes the swarm of

particles, which are analogous to the chromosomes in the
GA. Each particle has a velocity and can be influenced by
local neighbors as well as the globally best-found solutions
while moving in the search space. At each iteration, a
particle determines its new location based on its historical
locations as well as the best locations obtained by the other
particles in the swarm. A fitness function is used to evaluate
the performance of a particle at each location. Ultimately,
the swarm is expected to move towards the global best
solution while the members are collectively informing the
other members. A more detailed explanation of the PSO can
be found in [37].

Table II shows the gaps of GA and PSO in percentages
for different numbers of customers. In particular, let PPSO

denote the objective value found by the PSO and P best denote
the best objective value found among the GA and the PSO.
Then, the values in Table II can be calculated as (PGA −
P best)/P best and (PPSO − P best)/P best for the GA and the
PSO, respectively. The CPU times of PSO and GA were 67
and 84 seconds on average. Although the GA was slightly
slower, it outperformed the PSO in all settings and customer
numbers. On average, the objective values obtained by the
PSO were 7% worse than the objective values obtained by the
GA. Additionally, the improvement in the GA’s performance
was more pronounced with the higher number of customers.
The GA was able to achieve 4.2%, 7.9%, and 8.7% better
objective values on average for the problems with 50, 100,
and 200 customers, respectively.

Fig. 7 and 8 illustrate the impact of time windows and
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Fig. 7: The impact of time windows on (a) maximum number
of handovers and (b) maximum expected outage per trip. The
transparent bars show the total flight distance in both figures
while the boxplots show the maximum number of handovers
and maximum expected outage in the top and bottom figures,
respectively. The default in the x-axis indicates the cases
where the maximum handover and outage thresholds were set
to their singular optimal values. The other cases show the
percentage of relaxation from these thresholds.

clustering of customer requests on the total flight distance,
number of handovers, and expected outage duration. The
transparent bars in the background denote the average total
flight distances, and the boxes indicate the corresponding
communication measure. Fig. 7 indicates that it is likely to
make longer flights when the time windows are tight, e.g.,
the total flight distance is 2% higher in the tight case on
average. This can be considered normal in routing problems
because it is typically harder to meet tighter time windows
than looser ones. However, the type of time windows does

TABLE II: @R1.C1 Comparison of PSO and GA for the large
instances. The results are averaged over all communication
cases and show the gap against the best solution obtained by
the GA or the PSO concerning different numbers of customers.

GA PSO

Setting 50 100 200 50 100 200

PPL 0 0 0 0.9 0.8 0.8
PPT 0 0 0 0.1 0.4 0.9
PUL 0 0 0 4.7 11.2 12.3
PUT 0 0 0 7.9 8.9 9.9
UPL 0 0 0 4.4 11.8 9.6
UPT 0 0 0 2.6 7.5 9.8
UUL 0 0 0 6.4 11.9 13.7
UUT 0 0 0 6.9 11.2 12.5
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Fig. 8: The impact of customer locations on (a) maximum
number of handovers and (b) maximum expected outage
per trip. The transparent bars show the total flight distance
in both figures while the boxplots show the maximum number
of handovers and maximum expected outage in the top and
bottom figures, respectively. The default in the x-axis indicates
the cases where the maximum handover and outage thresholds
were set to their singular optimal values. The other cases show
the percentage of relaxation from these thresholds.

not have a statistically significant effect on the number of
handovers and the expected outage.

On the other hand, the delivery network structure
significantly affects the communication performance and has
a slight impact on the flight distance for all communication
cases. In particular, the average number of handovers and
expected outage duration decreases by 18% and 16% for
instances with clustered customers. The clustered requests
have also decreased the total flight distance by 3% as the
trips are likely to be organized from the closest depot to a
hot point rather than flying to different depots in subsequent
trips. This trip strategy requires fewer handover activities and
consequently decreases the expected outage duration.

V. CONCLUSIONS

In this study, we have addressed an emerging problem in
last-mile delivery networks which we believe will attract
more attention soon. In particular, we have integrated two
significant communication performance measures, handover,
and expected outage duration, to the classical multi-depot
multi-trip DDP. These measures help to improve
communication performance without significantly sacrificing
operational efficiency. Although it is not a straightforward
task to determine the budget on these measures, e.g.,
determining the Hmax and Omax values, we introduced an
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intelligent procedure to set the maximum allowed values and
presented the results showing how sensitive the solutions
were against these changes. These measures could be also
determined by a trial-and-error procedure, e.g., starting from
an initial value and increasing/decreasing the value by a step
size until the desired operational performance is satisfied.

We have developed a new mathematical formulation,
which can be solved by the off-the-shelf MIP solver Gurobi
for instances with up to 20 customers. @R2.C1 To solve
larger problems, we have implemented a GA based on a
special chromosome representation and introduced
problem-specific crossover and mutation operators. Our
numerical study has shown that the GA can find
near-optimal solutions in small instances within reasonable
times. @R1.C1 We compared the GA performance against
the PSO for the larger instances and the results indicated that
the GA performs better within slightly higher CPU times.

We believe that our MIP model and solution approach can
easily be adapted for various applications that involve the
use of aerial vehicles. For instance, our model can be
modified for use in a UAV-aided wireless sensor network
where drones collect data from sensor nodes. In this
scenario, the sensor nodes can be considered as the customer
nodes and the service time of a customer can be considered
as the time required to collect the package that a sensor must
deliver. Another potential application area is the agriculture
industry where drones can transport protective chemicals to
vulnerable plants within a specific time frame. The number
of applications can be increased, however, it is important to
note that all these applications require a reliable
communication system and our study can be used as a guide
to manage this system.

Before we conclude, it is important to acknowledge some
limitations of our study and suggest areas for future research
to address these limitations. The communication constraint
introduced in our MIP formulation is an approximation to
the actual handover and outage definitions. However, due to
the complexity of these metrics, we had to use a
discretization approach that assumes the communication link
is the same in each segment. This assumption may not hold
in real-time applications where wireless communications can
be highly sensitive to slight changes in a segment.
Conversely, using the exact formulations of these metrics
could result in non-linear equations. A promising research
area could be to develop a non-linear MIP model and
propose a solution approach based on the characteristics of
this model. @R3.C1 Integrating bilevel optimization
approaches [38] could be another area to research. This is
particularly suggested as we used a min−max problem in
the experiments stage where we first found the singular
optimal values for the communication measures. This
approach can be extended to include the flight distance.

APPENDIX
COMMUNICATION NETWORK DETAILS

Recall that our pathloss model assumes that there exist
two groups with different LoS probabilities. The first group

is assumed to have a LoS connection with probability PLoS,
while the second group can have a poor LoS connection with
probability (1 − PLoS). Now, assume that we have a drone
flying at an altitude of HD in the coverage area of a
particular CNi ∈ V CN. Given the location of this CN (gCN

i )
and the projected location of the drone on the ground (gD),
the probability of LoS connection can be defined as

PLoS
i =

1

1 + α1e
−α2

(
180
π tan−1

(
HD

‖gCN
i
−gD‖

)
−α1

) , (35)

where α1 and α2 are environment-dependent parameters.
Then, the mean pathloss between the drone and CNi, (Li),
can be formulated as,

Li = 10α3 log10

(
4πfc
c

√
‖gCN

i − gD‖2 + (Hd)2
)

+
(
µLoSPLoS

i + µNLoSPNLoS
i

)
, (36)

where fc is the carrier frequency in Hz, c is the speed of
light in m/s, α3 is the pathloss exponent, and µLoS and
µNLoS are the environment-dependent average additional
losses to the free-space propagation for LoS and
non-line-of-sight (NLoS) connections, respectively [39].
Then, the signal-to-interference-plus-noise-ratio (SINR) at the
drone receiving from CNi, (ρi), is defined as,

ρi =
Pi10−Li/10

σ2 +
∑
j∈V CN,j 6=i Pj10−Lj/10

(37)

where Pi is the transmit power of CNi and σ2 is the noise
power at the drone receiver. Consequently, the SE when
receiving from CNi, (γi), is given as

γi = log2(1 + ρi). (38)
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(2007-2008) as a post-doctoral fellow, Ozyegin
University (2008-2011) as an Assistant Professor,
and University of Southampton (2011-2014)
as a Lecturer. He started working at the University
of Bath in 2014 as a Reader and was appointed
as a Professor in 2019. His research focuses
on the applications of optimization algorithms
to the problems arising in logistics and healthcare.

Thank you for allowing the second resubmission of our
manuscript with an opportunity to address the reviewers’
comments. Special thanks are due to the reviewers for their
careful reading of the paper and for providing valuable
comments and suggestions which have helped to improve
both the content and the presentation.

Our responses to all reviewers’ comments and
corresponding revisions are outlined in the “Response to
Reviewers” letter. Once again we would like to thank all the
reviewers, associate editor, and editor-in-chief for their time
and effort.


	Introduction
	System Model
	Communication Network
	Delivery Network
	Problem Statement
	Illustrative Example
	MIP Formulation of the C-DDP

	Solution Approach
	magentaSolution Representation
	magentaEvaluation of Chromosomes
	magentaInitial Population
	magentaCrossover
	magentaMutation

	Computational Study
	Test Bed
	Results

	Conclusions
	Appendix: Communication Network Details
	References
	Biographies
	Cihan Tugrul Cicek
	Çağrı Koç
	Hakan Gultekin
	Güneş Erdoğan


