The liquid-liquid phase transition in supercooled yttria-alumina

Adrian C. Barnes(1), Lawrie B. Skinner(1), Philip S. Salmon(2), Alexei Bytchkov(3), Irina Pozdnjakova(4), Thomas O. Farmer(1), and Henry E. Fischer(5)

(1) H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, UK
(2) Department of Physics, University of Bath, Bath, BA2 7AY, UK
(3) European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, F-38043, Grenoble, France
(4) CNRS-CEMHTI, University of Orleans, 14 avenue de la Recherche Scientifique, 45071, Orleans cedex 2, France and
(5) Institute Laue-Langevin, 6 rue Jules Horowitz, BP 156, F-38042, Grenoble, France
(Dated: November 9, 2009)

The structure and thermal characteristics of aerodynamically levitated samples of yttria-alumina in the liquid, supercooled liquid and solid phases were explored in an extensive series of high energy x-ray diffraction, small angle neutron scattering and pyrometric cooling measurements. Particular focus was placed on the compound \(\left(\text{Y}_2\text{O}_3 \right)_x \left(\text{Al}_2\text{O}_3 \right)_{1-x} \) with \(x = 0.2 \) for which a liquid-liquid phase transition at a temperature of 1788 K has recently been reported. No structural or thermal signature in support of this metastable phase transition could be found.

PACS numbers: 64.70.Ja, 61.05.cp, 61.20.Lc, 64.60.My, 61.20.Qg, 61.05.fg

First-order liquid-liquid transitions between phases with identical composition but different structures and thermodynamic characteristics provide one of the scenarios for rationalizing the anomalous properties of a wide range of materials such as water [1–5]. A growing body of evidence has been presented in support of liquid-liquid phase transitions, especially from computer simulation [4–7]. However, direct experimental evidence is limited and often disputed. For example, in phosphorus a structural transition occurs at high temperatures and high pressures with a large volume change of 40% that is indicative of a first order transition between a dense molecular fluid and a polymeric liquid [8–10]. In the case of yttria-alumina, the occurrence of a liquid-liquid phase transition with a volume change of 4% has been inferred from the two-phase glass recovered after the liquid is quenched rapidly from high temperatures [11, 12], although the composition range over which this phenomenon occurs, and the experimental conditions required to produce the effect, are not clear [13, 14]. In consequence, the direct observation by Greaves et al. [15] of a first-order liquid-liquid phase transition at temperature \(T_{LL} = 1788 \) K in aerodynamically levitated supercooled \(\left(\text{Y}_2\text{O}_3 \right)_x \left(\text{Al}_2\text{O}_3 \right)_{1-x} \) for the composition \(x = 0.2 \) is a milestone. The evidence in Ref. 15 comprised the measurement, as a function of temperature in the supercooled liquid, of changes in (i) wide angle x-ray scattering (WAXS) data, notably an abrupt shift in the position and intensity of the first diffraction peak, (ii) a rise and fall of the integrated small angle x-ray scattering (SAXS) intensity around a temperature corresponding to the changes observed in the WAXS data, and (iii) the observation of a so-called polyamorphic rotor effect for the levitated samples.

In this Letter we report on extensive high energy x-ray diffraction (HEXD), small angle neutron scattering (SANS) and pyrometry studies of aerodynamically levitated samples of \(\left(\text{Y}_2\text{O}_3 \right)_x \left(\text{Al}_2\text{O}_3 \right)_{1-x} \) \((0.2 \leq x \leq 0.375) \). In view of the observation of a first-order liquid-liquid phase transition by Greaves et al. [15] at \(x = 0.2 \), the focus of attention will be on this composition, henceforth referred to as AY20. HEXITD measurements were made for the liquid phase in equilibrium and in the stable supercooled regime at temperatures down to 1573 K i.e. spanning the reported transition at \(T_{LL} = 1788 \) K. In addition, time-resolved diffraction patterns were taken of the liquid as it was quenched from different starting temperatures. The new results for AY20 do not support the conclusions drawn in Ref. 15. Specifically, the HEXD results do not show any sharp changes in structure as the liquid is supercooled, there is no change in the SANS intensity, the pyrometry cooling curves do not show any thermal signature of a first-order liquid-liquid phase transition, and the polyamorphic rotor effect is not associated with a particular temperature such as \(T_{LL} \).

The HEXD measurements were made by mounting a conical nozzle aerodynamic levitation system on beamline ID11 at the European Synchrotron Radiation Facility (ESRF). An incident energy of 101.5 keV was used for which the sample has a small x-ray attenuation coefficient \(\sim 0.2 \text{ mm}^{-1} \) so that scattering comes from the bulk material and any positioning errors will have a minor effect on the measured intensity. The sample composition was carefully controlled [13]. Temperature gradients in the molten spherical samples, of diameter \(\approx 3 \) mm, were minimized by using two lasers, one directed at the top of the sample and the other directed at the bottom through the nozzle. The incident x-ray beam, of size 400×400 μm, passed through the upper hemisphere of the sample just above its center. A FreLoN 2k16 charge coupled device (CCD) detector was used to collect the data [16] and was set perpendicular to the incident beam at a distance of 160 mm from the sample center. For the time resolved studies it was operated in a reduced resolution mode in
order to achieve a rate of 30 frames s^{-1}. The centering of the diffraction image on the CCD and the wavevector Q calibration were found by measuring the powder diffraction patterns for crystalline LaB$_6$ and silicon standards.

For each run, the sample was heated to above the melting point and then cooled, by gradually reducing the laser power, to the starting temperature where it was left to equilibrate for a few minutes. Diffraction patterns with high counting statistics (10 s duration) were then taken for the stable liquid. The time resolved diffraction patterns were taken in ~ 30 ms steps for a total time of ~ 5 s as the laser power was instantaneously cut. The cooling curve was simultaneously measured by a pyrometer directed at the top of the sample at an angle of $\approx 20^\circ$ to the vertical. The 2D diffraction images were processed using FIT2D [17] and were corrected with dark field images of the same acquisition time before they were reduced to 1D powder patterns. These patterns were then corrected for background scattering and normalized by fitting to the sum of the self and Compton scattering contributions to the x-ray differential scattering cross-section [18]. Neutral atom form factors were used for Y, Al and O.

Fig. 1 shows the structure factor $S(Q) [18]$ measured for liquid AY20 at a constant temperature between 2273 and 1573 K. The data sets are remarkable for how little they change over the whole of this 700 K interval. This is emphasized by the insets in Fig. 1 which show (A) details of the first peak in $S(Q)$ and (B) its height as a function of temperature. The results reveal no evidence, within the errors of the correction and normalization procedures, for a step change in the first peak height.

Fig. 2 shows the position of the first peak in $S(Q)$ as measured in the time-resolved diffraction experiments as the sample was quenched at an initial rate of between ≈ 250 and 500 K s$^{-1}$ depending on the starting temperature of 1573–2273 K given in Fig. 1. The peak positions obtained for the stable liquids at these starting temperatures are also shown. Over the complete temperature range, a small and steady increase by 0.25 nm$^{-1}$ is observed in the peak position as the liquid is cooled. Also shown in Fig. 2 are the points taken from Ref. 15 that were used to signpost a liquid-liquid phase transition. The new results, which straddle the reported value of $T_{\text{LL}} = 1788$ K, therefore show no evidence, within a precision of $< \pm 0.1$ nm$^{-1}$, for any abrupt change in the first peak position in either the constant temperature or the time-resolved diffraction experiments.

The SANS experiment was made on the D22 beamline at the Institut Laue-Langevin (ILL) using the same levitation system and procedures as for the HEXD measurements. An incident wavelength of 0.45 nm with collimation and sample-to-detector distances of 8 m gave a range $0.08 \leq Q \leq 2$ nm$^{-1}$. Background and transmission corrections were made using GRASP [19]. The SANS measurements covered temperatures between 1643 and 2023 K in steps of ≈ 20 K. Data was accumulated in 100 s intervals with a total time per temperature of 1000 s. As shown in Fig. 2(B), no change in the SANS signal, and hence the integrated intensity, was observed at any temperature down to the point of recrystallization. In particular, no enhancement in the SANS was observed close to the reported liquid-liquid transition at 1788 K.

As shown in Fig. 3, the samples eventually recrystallized [13] at a temperature $T_{\text{rec}} = 1473 \pm 15$ K. In all cases the time resolved diffraction patterns showed that T_{rec} coincides with the onset of crystallization and the timescale (~ 1 s) for the slow recrystallization phenomenon corresponds to the time it takes for the sample to fully crystallize. There is no evidence in Fig. 3 for any phase transition taking place before T_{rec}. A first order liquid-liquid phase transition at temperature T_{LL} would be noticeable as a marked reduction or flattening in the slope of the cooling curve as the sample loses latent heat at constant temperature or, if the sample supercools below T_{LL}, as a recrystallization event similar to that observed on crystallization.

To illustrate this point, a simple model for a sphere of mass m cooling by simple black-body radiation at temperature T was used to rationalize the main features of the cooling curves in a semi-quantitative way. The radiated power, P, is given by Stefan’s law $P = \epsilon \sigma A (T^4 - T_0^4)$ where ϵ is the emissivity (assumed to be unity for simplicity), σ is Stefan’s constant, A is the surface area of the sphere, and T_0 is the ambient temperature. In equilibrium P should correspond to the absorbed laser power, in agreement with experiment. When the laser power is cut abruptly the sample temperature will decrease at a rate dT/dt as energy is lost from its surface and Stefan’s law can be re-written as $mc(dT/dt) = \epsilon \sigma A (T^4 - T_0^4)$ where c is the specific heat capacity at constant pressure. This equation may be
solved to give the time taken to reach temperature T

$$ t(T) = \frac{1}{K T_0} \left[-\frac{1}{4} \ln(T + T_0) - \frac{1}{2} \tan^{-1} \frac{T}{T_0} \right] + \text{constant} \tag{1} $$

where $K = \frac{\epsilon \sigma A}{mc}$ and the constant may be set according to the boundary conditions to give $t = 0$ for the starting temperature. Eq. (1) gives good agreement with the cooling rates observed (before recalescence) for samples of YAG ($x = 0.375$) and alumina ($x = 0$).

There are two main scenarios if a first-order phase transition occurs at temperature T_p on cooling. Firstly, if the sample does not supercool it will remain at T_p for a time Δt until all the enthalpy for the transition ΔH_p has radiated away, at which point the temperature will again start to fall. By integrating Stefan\'s law with respect to time and rearranging it follows that

$$ \Delta t = \frac{\Delta H_p}{\epsilon \sigma A (T_p^4 - T_0^4)}^{-1} \text{.} $$

Alternatively, if the sample does supercool below T_p the enthalpy for the transition will be released into the sample. If nucleation of the second phase is extremely rapid with a rate much faster than the free cooling rate of the sample then a sudden rise in temperature (the recalescence) will be observed. For instant and complete nucleation the temperature rise ΔT can be calculated from $mc\Delta T = \Delta H_p$ where c now corresponds to the lower temperature phase. This would be observed as an abrupt increase in temperature followed by a cooling curve dependent on the heat capacity of the nucleated phase as typically observed for supercooled liquid alumina. If the nucleation is not, however, instantaneous as in the case of AY20 then the cooling equations need to be solved numerically using a model for the nucleation rate $R(t)$ of the second phase where $-mc(dT/dt) + R(t) = \epsilon \sigma A (T^4 - T_0^4)$. A simple gaussian model for $R(t)$ of width 0.2 s was used in the
FIG. 4: Typical examples of the steady oscillations observed at different temperatures for AY20 when the sample is heated by a single laser. The traces show oscillations with an amplitude of ≈ 60 K occurring at 2373 or 1923 K.

In summary, following an exhaustive set of HEXD, SANS and pyrometry studies we have not been able to find any convincing evidence for a liquid-liquid transition in levitated liquid AY20 as proposed by Greaves et al. [15]. Further studies are required to unravel the complexity of behaviour for the full yttria-alumina system.