Tongue of Ionization Motion Estimation From Polar TEC Sequences

Matthew P. Foster, Student Member, IEEE, and Adrian N. Evans, Member, IEEE

Abstract—In this letter, a new approach to tracking the ionospheric-storm enhancements known as tongues of ionization (TOIs) is presented. In contrast to conventional model-based methods, the technique works by applying block-based motion estimation methods directly to ionospheric total electron content (TEC) image sequences. Solutions to the particular problems posed by the low image resolution and the nonrigid motion of the TOIs are proposed. Experimental results for an image sequence covering the 2003 “Halloween storm” establish that the approach produces estimated motion fields that show a good correspondence with the observable motion when the interframe differences are not extreme.

Index Terms—Image motion analysis, image sequence analysis, ionosphere.

I. INTRODUCTION

During geomagnetic storms, characteristically shaped enhancements can form in the ionosphere and be carried across the poles by convection. These enhancements are known as tongues of ionization (TOIs), and their motion is of interest to engineers trying to quantify their effect on communication systems and to scientists studying atmospheric dynamics [1], [2].

Previous approaches in analyzing the behavior of the TOIs during storms can broadly be categorized into two classes. The first of these uses convection patterns to provide information on the plasma motion, where the motion of interest is that of the TOIs itself. This has traditionally been performed using models, e.g., [3] or \(\mathbf{E} \times \mathbf{B}/B^2 \) velocity vectors provided by electric and magnetic field models and measurements. Whilst modeled data are very useful for providing large-scale overviews of expected behavior and increasing physical understanding, the benefits of their use to study ionospheric-storm time behavior are less clear as storms, by their nature, represent large deviations from normal conditions. Alternatively, radar observations of ion velocities can be used to provide direct motion estimates and, hence, information about the plasma convection patterns. However, the vectors provided by sources such as SuperDARN [4] and the EISCAT radar are typically sparse and can also have large uncertainties, making them unsuitable for the analysis of some storm events [5]. Furthermore, approaches based on observed or modeled vectors are unable to provide any information about plasma density.

As the TOIs are nonrigid features, their motion is hard to track using the MCC method alone. Previously, this problem has been addressed by the application of an additional smoothness constraint to the initial motion estimates, in the form of a relaxation-labeling stage [11]. This approach has been successfully applied to ocean currents, glacier surface motion [12], and

The second class of techniques for studying the TOIs are those based on tomographic imaging [6], [7]. Tomographic-imaging systems perform inversions on electron data, enabling 3-D time-varying total electron content (TEC) images of the polar ionosphere to be routinely produced. In contrast with convection-based approaches, tomographic imaging produces TEC image sequences in which regions of enhanced electron density such as TOIs can clearly be identified. However, they do not give any quantitative information about the motion of such enhancements. Consequently, previous motion analysis of TOIs based on tomographic imaging has employed qualitative description rather than quantitative measurements. For example, Spencer and Mitchell [7] presented data from TEC visualizations of the October 2003 storm and suggested that there was visible convection of uplifted plasma around the polar cap. Middleton et al. [6] examined a storm which occurred during November 2001 and found that a tongue of photoionization was drawn antisunward by the convection pattern.

This letter aims to provide a fuller picture of the evolution of TOIs by augmenting the visualizations of the TEC amplitude provided by tomographic imaging with quantitative motion vectors. In particular, it investigates the feasibility of applying image motion estimation techniques directly to the TEC sequences to derive full field estimates of the TOIs motion. This approach is similar in spirit to that of Bust and Crowley [8], who have combined the 3-D maps of ionospheric structure with 2-D trajectories obtained from an inversion-based assimilation algorithm. However, it differs in that the motion-vector fields are derived directly from the TEC sequences using template-based motion estimation algorithms, as opposed to being trajectories based on calculated convection patterns. In addition, the techniques presented in this letter are computationally simple and can be run in small fractions of a second on commodity hardware.

Template matching using the maximum cross-correlation (MCC) method has been widely used to estimate motion in many geoscience applications, for example, deriving cloud motion vectors [9] and estimating sea surface currents [10]. To successfully apply MCC-based motion estimation techniques to ionospheric TEC images, two main problems must first be overcome: 1) the nonrigid motion of the TOIs and 2) the low resolution of the TEC images.

As the TOIs are nonrigid features, their motion is hard to track using the MCC method alone. Previously, this problem has been addressed by the application of an additional smoothness constraint to the initial motion estimates, in the form of a relaxation-labeling stage [11]. This approach has been successfully applied to ocean currents, glacier surface motion [12], and
cloud tracking [13]. This letter investigates the suitability and performance of the combined correlation–relaxation labeling approach when applied to ionospheric TEC images.

The second problem is the low resolution of the TEC images. This is a direct consequence of the limited number of global positioning system (GPS) receivers in the northern polar region, through which TOIs flow. Direct application of block-based template matching to these low-resolution images results in a motion-vector field that is both spatially sparse and consists of vectors of limited resolution. In this letter, we seek to address these issues by using overlapping blocks to give denser motion vectors and subpixel motion estimation to provide higher resolution vectors. Finally, the use of a further smoothing stage consisting of a vector median filter (VMF) [14] is investigated.

The format of this letter is as follows. Section II describes the TEC data used in this letter. Section III briefly explains the template-matching method of estimating motion and the use of overlapping blocks and subpixel estimation. The relaxation labeling and postfiltering steps are also described. In Section IV, the results of applying the motion estimation techniques to the data described in Section II are presented. Finally, Section V presents conclusions and discusses the ramifications of these results for TOIs motion estimation.

II. POLAR IONOSPHERIC TEC MAPS

TOIs are convective patterns consisting of regions of enhanced electron density (for example, see [1], [2], [7]). The TOIs typically appear at lower latitudes before moving into the northern polar region. The data used for this letter consisted of a sequence of TEC images covering the peak of the well-known “Halloween storm,” from 2000 to 2300 UTC on October 30, 2003, with a temporal resolution of 5 min. The TEC sequence was produced using the MIDAS software from the University of Bath [7], [15]. MIDAS performs tomographic inversions using path measurements of electron content between GPS receivers and satellites. It has previously been demonstrated that this technique is accurate during this storm event by comparisons with data from EISCAT [7].

The maximum resolution of an output field from any given inversion algorithm is heavily dependent on the number of available path measurements. Thus, the number of GPS receivers is an important factor in determining output resolution. There is a strong correspondence between population density and the number of GPS receivers in a given area, such that the achievable resolution of the TEC images varies with geographic location. For example, over North America, there are over 500 GPS receivers operated by the International Global Navigation Satellite System Service, while in the northern polar region through which TOIs convects, the number of receivers is considerably lower. In practice, this means that the TEC images of TOIs produced by MIDAS are characterized by low resolution.

Each frame of the sequence was formed by inverting GPS path measurements onto a thin shell at an altitude of 400 km to produce a 25×25 pixel image corresponding to a grid covering a 10° square region centered on the north pole. The relationship between the pixel grid and the Earth’s surface, and the direction of incident solar radiation are shown in Fig. 1. To produce the inputs for the motion estimation algorithms, each frame was upsampled by a factor of two, resulting in a sequence of thirty-six 50×50 pixel TEC images covering the 3-h storm period.

Fig. 2 shows visualizations of four frames from the sequence, each separated by 50 min. These frames are typical of those used in TEC imaging of TOIs and were formed by upsampling each 25×25 pixel image by a factor ≈ 10 and, then, displayed using a false-color contour plot. Fig. 2(a)–(c) clearly shows a growing region of enhancement which then splits off in Fig. 2(d). In the full sequence animation provided, it is possible to track the TOIs by eye as it migrates northward. However, when the enhancement separates from the main body during the latter stages of the sequence, it is hard to determine the underlying motion. In particular, the direction of the apparent motion is reversed, as the TOIs appears to retreat due to electron recombination. This should be borne in mind when trying to automatically identify the motion of the TOIs; what is hard for humans is likely to be very challenging for computer vision.

This letter investigates the suitability of block-based template-matching techniques for estimating the interframe motions directly from the TEC image sequence, with the overall aim of tracking TOIs through the storm period. For template-based motion estimation techniques, the challenges to be overcome are those posed by the motion of the nonrigid TOIs and the low resolution of the images. These are addressed in the following section.

III. TEMPLATE-BASED TOIs MOTION ESTIMATION

Template matching is a motion estimation methodology based on matching small image patches between temporally adjacent frames. Typically, this is performed by splitting the input image into a number of tiles and, then, matching each tile with overlapping areas within a predefined search area in the second image. The goodness of the matches is assessed using
similarity or dissimilarity measures; the most popular of which is the cross-correlation coefficient (CCC). The result of the matching stage is a correlation surface which gives the CCC for all displacements in the search area. Selecting the position with the highest CCC gives rise to the well-known MCC method of motion estimation [10].

Although the MCC motion estimation method is widely used in remote sensing, for example, to derive cloud motion vectors from infrared imagery [9], its underlying assumption of rigid body motion does not always hold for objects such as clouds, ocean currents, and TOIs. In these cases, the correlation surfaces are typically both multimodal and noisy, making the simple MCC strategy ineffective. For example, Dransfeld et al. [10] recently applied MCC-based motion estimation to high-resolution thermal imagery and found that it was unable to provide locally consistent fields which were representative of small-scale ocean currents. One way to overcome this problem is to use relaxation labeling to impose an additional smoothness constraint on vectors from the correlation surface.

Correlation relaxation labeling was first proposed by Wu [11] and provides a probabilistic framework for regularizing vector fields using a local smoothness constraint. Unlike the MCC method, which only selects a single match position for each template, correlation relaxation labeling considers a set of candidate vectors, typically consisting of the N highest CCC positions. If \(\mathcal{C}_j \) is the set of candidate vectors for template \(J \), the initial probability that the template has a vector \(j \) is denoted \(P^{(0)}(J \rightarrow j) \) and found by normalizing the CCC for the \(N \) vectors \(j \in \mathcal{C}_j \).

The initial match probabilities are then iteratively refined according to their compatibilities, with the candidate vectors belonging to templates within a local neighborhood using a nonlinear relaxation formula [12]

\[
P^{(n+1)}(J \rightarrow j) = \frac{P^{(n)}(J \rightarrow j)Q(J \rightarrow j)}{\sum_{\lambda \in \mathcal{C}_j} P^{(n)}(J \rightarrow \lambda)Q(J \rightarrow \lambda)}
\]

(1)

\(Q(\cdot) \) is the support function that assesses how compatible the proposed vector labeling \(J \rightarrow j \) is with those in the local neighborhood \(G_j \)

\[
Q(J \rightarrow j) = \prod_{I \in G_j} \sum_{i \in \mathcal{C}_j} P^{(n)}(I \rightarrow i)R(J \rightarrow j, I \rightarrow i)
\]

(2)

where the mutual information measure \(R(J \rightarrow j, I \rightarrow i) \) gauges the compatibility between the vectors \(J \rightarrow j \) and \(I \rightarrow i \). Here, a simplified form of \(R(J \rightarrow j, I \rightarrow i) \) is used, that only considers candidate vectors for neighboring templates [13]. The overall number of iterations used can be set manually or by using a predetermined stopping criterion.

By imposing local consistency on the motion vectors, the relaxation-labeling technique can be used to reliably estimate the motion of nonrigid objects in situations where the MCC motion fields are noisy and inconsistent. This has previously been demonstrated for a number of remote-sensing applications (see, for example, [11]–[13]). Here, the ability of this approach to estimate the nonrigid TOIs motion is investigated.

The second problem is the low spatial resolution of the TEC image sequence. This leads to several small issues, each of which must be addressed. First, an appropriate block size must be selected. In general, smaller blocks provide vectors that are well localized but noisy, while larger blocks provide less localized vectors but with better noise immunity. When using low-resolution images, the problem of selecting a block size to satisfy these two conflicting requirements is exacerbated. Using overlapping blocks is a suitable compromise, as it produces vector fields that are both smooth and dense, albeit at the expense of increased computational cost.

The low resolution of the TEC images results in estimated motion vectors with correspondingly low resolution. This issue has been addressed in part by upsampling the original images by a factor or two. While not adding any new information, this procedure also allows the use of larger block sizes in the template-matching stage. To further mitigate the problem, motion vectors can be found with subpixel accuracy by upsampling the second image before the correlation-matching process is carried out.

Finally, the low-resolution TEC images are characterized by limited textural content. This is a problem which manifests in smooth images which lack the high-frequency information that is requisite for successful template matching. Limited texture results in correlation surfaces that are smooth and contain many high CCC values. These problems mean that accurately discriminating between the true motion and anomalous matches is very difficult. Although the relaxation-labeling process can overcome this to some degree, when the quality of the input vectors is low, it can only select the “least bad” vector from the candidate set. To fully overcome this problem, we propose applying a VMF [14] to the relaxed motion field.
Fig. 3. Motion vectors for the frame from 2050 UTC [see Fig. 2(b)] using 5×5 blocks. (a) MCC with nonoverlapping blocks, (b) MCC with overlapping blocks, and (c) overlapping blocks with relaxation labeling. For clarity, the vectors in (b) and (c) are subsampled before displaying.

Fig. 4. Motion vector field after applying a VMF to the vectors produced by the relaxation-labeling stage, such as from Fig. 3(c). For clarity, the vectors are subsampled before displaying. (a) 2000 UTC. (b) 2050 UTC. (c) 2140 UTC. (d) 2230 UTC.

IV. EXPERIMENTAL RESULTS

The effectiveness of the various motion estimation methods was evaluated using the TEC image sequence described in Section II. All experiments used 5×5 blocks and a search radius of five pixels. Motion vectors were found to a half-pixel accuracy which gives rise to a spatial resolution of 1°. As we are only interested in TOIs motion, templates in the image background were not considered for matching. In practice, this was achieved by thresholding the variance of the templates, such that $\sigma^2 > 16$. Finally, for display purposes, the vector fields were all downsampled by a factor of three, allowing easier comparisons to be made throughout and between the images in the sequences.

Fig. 3(a) shows the motion fields produced using the MCC method with nonoverlapping blocks for the 50×50 pixel TEC image from 2050 UTC whose visualization is shown in Fig. 2(b). Results for the entire sequence for this and subsequent figures are included with this letter. The vectors produced by this method are sparse and show some local inconsistencies. The sparsity of the output can be reduced by applying the MCC method to overlapping blocks [see Fig. 3(b)]. However, while this improves the visualization of the motion of the TOIs, there are still many instances of locally inconsistent vectors, for example, where adjacent vectors have very disparate directions, which show a flow that is not consistent with the underlying physical models. This clearly demonstrates that the MCC method alone is unable to accommodate the nonrigid motion of the TOIs.

Applying relaxation labeling to the motion fields produces smoothed fields such as that shown in Fig. 3(c). The candidate vector sets required for the relaxation labeling were generated by thresholding the CCC at 0.2. This contrasts with previous studies (e.g., [13]) which used higher threshold values, as the smaller templates used in this letter yield fewer high-quality matches. Ten iterations of the relaxation-labeling algorithm were applied. The relaxed results are clearly an improvement on those produced by the MCC method, particularly in the earlier part of the sequence. This is shown by comparing the rightmost group of vectors in Fig. 3(b) and (c), where the latter are more locally consistent, and in the full sequences provided. Despite the improved smoothness relative to Fig. 3(b), problems with large changes in direction are still prevalent toward the end of the sequence, where the TOIs extends and then splits into two regions of enhanced density.

The motion fields produced by relaxation labeling can be further smoothed by the application of a VMF, as proposed in Section III. Fig. 4 shows results created by applying a VMF using a 3×3 window to the relaxed vectors produced for the 50×50 pixel frames shown in Fig. 2. Comparing these vectors with the observable motion (in the sequence) shows good agreement in the earlier frames. The results from approximately 2140 UTC onwards prove problematic, particularly along the ridge toward the top right. Nevertheless, they show a substantial improvement in vector quality, particularly when compared with the MCC results, for example, those shown in Fig. 3(a) and (b).
that TEC image-derived motion estimates are a useful tool for the analysis of TOIs during ionospheric storms. The presented comparison with model vectors was largely qualitative and also limited by the fact that the model does not represent ground truth. To accurately assess the vector fields, a quantitative comparison with real data should ideally be performed. However, this is problematic, as only sparse convection measurements are available. One way to overcome this problem is the use of an assimilation algorithm such as assimilative mapping of ionospheric electrodynamics procedure [8], and performing such a comparison is an area of further work.

ACKNOWLEDGMENT

The authors would like to thank Dr. P. Yin at the University of Bath for supplying the ionospheric-storm data used in this work.

REFERENCES

