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Abstract 

This thesis is concerned with the subject of the economic operation of real-time 

power systems. The areas of concern are load forecasting and generation scheduling, 

which are at the heart of economic and secure operation of a power system. An 

overview of the current load forecasting techniques has been conducted. Focus is 

placed on using artificial intelligence and other statistical techniques in order to find 

the most suitable technique, which is then used to set up new hybrid techniques that 

improve the load forecast accuracy. Two types of time horizon dependent forecasting 

problems are proposed; these are mid- and short-term load forecasting using two 

different sets of real data. New adaptive hybrid techniques based on the artificial 

neural network "ANN" and the Auto-Regressive Integrated Moving Average 

"ARIMA" technique are used to forecast the monthly peak load demand of leddah 

City in the western region of Saudi Arabia. Several methods to extract the load 

demand trend are examined to ensure enhanced forecast accuracy. The forecast 

results of the proposed techniques demonstrate improved accuracy over other works 

carried out with the same characteristics of the time series based on traditional 

models. A new adaptive hybrid technique based on the ANN and fuzzy neural 

network (FNN) is also developed herein to predict the peak load demand of the 

National Grid of Egypt, and the test results attained from the two hybrid techniques 

viz. ANN/ARIMA and ANN/FNN, also show improved performance in predicting 

peak load. Furthermore, it is found that the adaptation tracking scheme applied to 

different techniques (whether traditional or hybrid) used shows a significant 

improvement in load forecasting accuracy compared to the techniques without the 

tracking scheme. 

Having accurately predicted the load demand, this demand forecast then become the 

vital input to the generation scheduling problem which is the theme of the second 

part of this thesis. The current methods to solve the generation scheduling problem 

have been reviewed and discussed. In this work, advanced hybrid techniques based 

on genetic algorithm (GA), priority list (PL) and ANN are introduced and tested on 

.. 
11 



Abstract 

two different sizes of power systems (small and medium) consisting of 6 and 26 

units, respectively. Different problem formulations are introduced depending upon 

the type of the fuel cost and start up functions together with a group of set 

constraints. In all cases, the hybrid technique comprising of ANN with GA and PL is 

the best choice; this shows a superior performance over other recently reported 

approaches utilising Lagrangian relaxation (LR), and other hybrid techniques based 

on combined ANN with PL, and dynamic programming with ANN. Also, its ability 

to deal with more practical scheduling problems is verified by testing it on the IEEE 

reliability test systems. A quadratic cost function and exponential start up costs are 

considered to meet system demand, transmission line losses and reserve 

requirements. It is shown that the net saving in cost achieved using the hybrid 

technique developed herein, over a one year period is approximately 1.1 % over that 

achievable with the traditional technique based on a GA alone. 
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Chapter 1 

1.1 Energy production 

Introduction 

Chapter 1 

Introduction 

1 

An electrical power system has increasingly become larger and more complex. In its 

simplest form, it can be categorised as generating power stations, transmission and 

distribution networks, and load demand centre. The function of an electrical power 

system is to convert energy from one of the naturally available forms to the electrical 

form and transport it to the consumers. The electrical power is produced at 

generating stations and transmitted to consumers through an intricate network of 

apparatuses including transmission lines, underground cables, transformers and 

switching devices that are operating at certain voltage levels. The transmission 

system interconnects all majors generating stations and main load centres in the 

system. It forms the backbone of an integrated power system and operates at the 

highest voltage levels. The subtransmission system transmits power at a lower 

voltage and in smaller quantities from the transmission substation to the distribution 

substations. The distribution system is the final stage in the transfer of power to the 

individual customers. However, energy is seldom consumed in an electrical form but 

is rather converted to other forms such as heat, light and mechanical energy. The 

advantage of the electrical form of energy is that it can be transported and controlled 

with relative ease and with a high degree of efficiency and reliability [1]. 



Chapter 1 Introduction 2 

The generation of electrical power is a fundamental requirement for the operation of 

power systems. It requires both, energy sources and electrical energy production 

methods. Prime energy sources in use for electrical power generation can be broadly 

classified as renewable and non-renewable resource based. Hydrocarbon fossil fuels 

such as oil, natural gas, coal and nuclear fuel are non-renewable resources, which are 

used for electrical power generation in thennal plants. The most widely used 

renewable resources for electric power generation is hydropower. The future 

promises exciting developments with other renewable resources such as wind power, 

solar energy, tidal power, etc. 

There are several basic methods of producing electrical energy, such as: mechanical, 

chemical, and direct conversion. The production of electrical energy by mechanical 

mean always requires prime movers, which are used to convert some energy source 

to mechanical movement to drive generators. Such energy sources can be falling 

water, heat and wind [2]. Probably the most common means of producing electrical 

energy by chemical means is batteries. Energy is stored chemically and is converted 

to electrical energy by chemical reaction when there is a closed circuit between the 

anode and cathode of the battery. In the power system, storage batteries of Edison 

nickel-iron types are frequently used to provide power to operate the mechanism to 

open circuit breakers when relay contacts close in cases of line faults and to close the 

circuit breakers for line restoration after fault clearance. Batteries also supply energy 

lighting. Finally, there are several methods of producing electrical power by direct 

conversion, for example, the electrical power produced by sunlight (solar). 

1.2 Power system operation 

The efficient and optimum economIC operations of electrical power generation 

systems have always occupied an important position within electrical power utilities; 

this is required to keep continuous and reliable supply of electrical energy to 

consumers within reasonable prices, whilst maintaining system security and safety 

requirements for the environment. 
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With an increase in energy costs and the uncertainties over availability, there is a 

potential need to optimise the loading over the electrical generating plants for the 

whole power system. In other words, it is important to meet the demands of the 

consumers as economically as possible with regard to operational system security 

constraints. This must take account of the expected variations in the consumer 

demands as well as the capability and flexibility of the plant to respond to the 

requisite changes. However, it is impractical to provide customers with an absolute 

reliable power supply because of the occurrence of random equipment failures and 

economic constraints. In order to guarantee that the reliability of a power system is at 

an acceptable level, every country has drafted its own reliability criteria in design 

and operational regulations. Reliability criteria typically include the stipulations that 

the generating reserve capacity must not be less than a certain percentage of the peak 

system load, etc. Therefore, a sufficient "spinning reserve", surplus capacity that is 

already connected and spinning in synchronism with the system, must be allocated to 

meet contingencies such as errors in the forecasted demands, plant shortfalls, and 

operational security requirement [3]. 

Whilst it is important to economically balance between the generation of plants and 

the consumer demand, it is also important to keep the system frequency and nodal 

voltages within specified limits. The results of a failure to maintain such security can 

lead to system blackout, which means that the entire system or large parts of it may 

completely collapse due to the process of continuous cascading failures or outages. 

Power system brownout or blackout [4] can be caused by one of the following: 

1. Uncleared system fault 

cascade tripping of lines from overload 

2. Frequency collapse 

Insufficient active power available due to loss of a number of 

generating units. 

3. Voltage collapse 

insufficient reactive power support following a large increase in MV Ar 

demand or losses in the transmission lines 

3 
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4. Steady state instability 

Increase of power angle across the system beyond acceptab Ie limit 

following a large increase in active power demand or MW losses. 

5. Transient instability 

Failure of the power system to recover to a stable operating condition 

following a major disturbance. 

However, the power system may be operated in several different states. A typical 

system is found in its 'normal state' in which the frequency and bus voltage are kept 

at prescribed values; these are kept constancy results from a carefully maintained 

balance between the real and reactive power demand by the loads and those supplied 

by the real and reactive power sources. In the 'alert state', the system still operates 

fully synchronised and can continue to do so far any length of time. However, a 

preventative control action may be initiated to return the system to its normal state. If 

the control action fails or a sufficiently severe disturbance occurs, the system will 

enter into the 'emergency state'. In this case, the limits of some of the operating 

variables such as frequency or bus voltages are violated; the generation still tracks 

the load and the system is still synchronised but one or several components are 

overloaded. In the 'restorative state', the system is returned to the 'normal state', 

there is no violation in the operating limits, or to the 'alert state' by means of 

emergency control actions i.e. disconnection of faulted section or load shedding. If 

this control action fails, then the system may see considerable generator tripping, and 

might lead to total blackout [5]. 

To improve system states, an active and reactive power control model is an important 

guide for the operator. It can be used in the control centre to periodically adjust 

control variables in order to reduce fuel cost and power losses and maintain feasible 

frequency, voltages, and active and reactive power flow. The common feature of the 

control action relates to the fact that the frequency is closely associated with the real 

power balance in the overall network while the voltagc level of a bus is strongly 

rclatcd to the reactive po\\'cr injection at thc bus [6]. 
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1.2.1 Energy Management Systems 

The principal task of an electrical power system is to deliver the power requested by 

the customers, without exceeding acceptable voltage and frequency limits. This task 

has to be solved in real time and in a safe, reliable and economical manner. However, 

the efficient operation of power systems depends heavily on an extensive 

measurements, monitoring and control infrastructure, which provides plant operators 

with data from which changes to the condition of plant can be inferred. 

The Energy Management Systems (EMS) co-ordinate and inter-link the varIOUS 

software analysis tools used in the operation and control of a large-interconnected 

system. They monitor the current operating state and levels of security and carry out 

contingency analysis and generation dispatch. The necessity for EMS arises from 

many factors affecting power system operation [7]: 

• Future development of electrical energy demand in industry 

• Availability of primary energy resources for power generation 

• Rapidly changing economical and political constraints when implementing 

expansions of electrical energy systems 

• Functioning of the power system within operational limits because of limited 

availability of generation and/or transmission capacity due to restrictions within 

the necessary system expansion. 

• Strong impact of new technology for a more reliable and economical operation as 

well as rational use of electricity. 

• Increased use of information technology to handle the complex decision-making 

process. 

5 
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The basic features ofa modem EMS maybe described as follow [7]: 

• Monitoring the system states by means of analogue and digital information 

• Interaction with power system in a preventative or corrective manner. 

• Regulation of frequency and voltage 

• Reliable and complete system information despite wrong and missing data. 

• Evaluation of operational risks for the present or future state 

• Actions to improve power security 

• Economical power system operation 

• Optimal primary energy usage observing environmental aspects. 

The economical operation of a power system is one of the main goals of the EMS. It 

requires interaction of major control functions, which are shown in Fig. 1.1. In 

achieving this significant goal of the EMS, the knowledge of future power system 

load is the first prerequisite; and hence, load forecasting is of a considerable interest 

to electrical power utilities. Following the availability of the appropriate load 

forecasts, generation scheduling has to satisfy the main objective of economics. This 

involves an optimisation of costs over a future period time. The electrical load 

forecast and the generation scheduling are important components of daily system 

operation. The overall objective is to supply customers power demand in an 

economical manner taking into consideration system and unit constraints. Unit 

commitment produces commitment and generation schedules for the thermal units 

while the short-term hydro scheduler produces generation schedules for the hydro 

units. The combined unit commitment and short term hydro scheduling problem is 

often referred to as the short- term hydro thermal scheduling problem. However, a 

prime objective of the work presented herein is to perform generation scheduling on 

thermal generating unit (unit commitment program). 

Scheduling thermal po\\'cr system involves two basic economic decisions: a unit 

commitment decision that determines which units should be brought online; and an 

embedded economic dispatch decision that allocates the forecasted load dcmand and 

spinning reservcs among the committed (synchronised) units. A brief discussion of 

EMS components as sho\\'n in Fig. 1.1 is introduced in the following section 
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1.2.1.1 EMS components 

A modem EMS often includes unit commitment and economic dispatch [8]. The 

former deals with a longer time span problem, typically 24-hour to one-week period. 

It schedules the on/off timing of generating units to achieve minimum overall 

operating cost whilst observing a large set of operating constrains. These constraints 

include system reserve requirement, unit minimum up and down times, unit 

generation limits, ramp rate limits and transmission line capacity, etc. Economic 

dispatch deals with the shortest-term problem, typically of 5 to 30 minutes horizon. It 

allocates the optimal sharing of generation outputs among synchronised units to meet 

the forecast load. 

Both the unit commitment and economic dispatch depend on the availability of the 

load forecast. Load forecasting is of prime importance to the utilities, the power 

industry and the nation at large since it determines the required future expansion of 

generation, transmission and distribution of electrical energy [9]. The subject of load 

forecasting is very broad in nature and includes many detailed engineering 

considerations and economic analyses. 

The best estimated topological details of the system from the online SCADA system, 

standing for supervisory control and data acquisition system, are also needed to 

provide the most up to date information on the system conditions such as location of 

the generating sources, load distribution and transmission network topology. State 

estimation is often used in such systems to combine telemetered system data with 

system models to produce the best estimate of the current power system conditions or 

state. In a power system, the state variables are the voltage magnitudes and relative 

phase angles at the system nodes. Measurements are required in order to estimate the 

system performance in real time for both system security control and constraints on 

economic dispatch. 

Security assessment concerns the determination of the current level of security of the 

power system [10]. Security problems are generally divided into static and dynamic 

categories where the latter includes transient instability. Static security assessment of 

7 
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a power system addresses whether, after a disturbance, the system reaches a viable 

steady state operating condition without violating any operating constraints, such as 

the margins of bus voltages, thermal limits of transmission lines and boundaries of 

reactive power flows. In power system operation, static security assessment is 

performed daily on the most representative situation. The analysis is restricted to a 

small set of contingencies, usually based on operator's experience, and fast load flow 

techniques are used. 

The dynamic security assessment monitors transient and steady state instability, 

providing a complete set of results for the current operating state of the system and 

contingencies applied to it at a rate commensurate with the rate of change of the 

state. Examples of both static and dynamic security assessment can be realised when 

a failure of a network element can cause the violation of one or more operating 

constraints or the loss of stability of the network. Namely, the following phenomena 

can occur: (I) lines or transformers overload; (2) voltage limit violation in one or 

more buses; (3) loss of synchronism of one or more generators; and (4) frequency 

decrease. The first two phenomena, concerning steady-state performance of an 

electrical network, are analysed in the static security assessment, while the other two 

are considered in the dynamic security assessment. This security evaluation helps the 

dispatch operators in detecting (before they occur) operating conditions where some 

contingencies can result in catastrophic system failures. 

Electrical power systems are, in general, highly interconnected for both security and 

economy reasons. Each interconnection typically consists of many generation control 

areas. Among other things, each control area is responsible for supplying the 

customer load within the area, either with its own generation sources or with power 

purchases from the other control areas. Control areas are connected by transmission 

lines that are called tie lines. Although a control area is responsible for supplying its 

own load, an essential aspect of an interconnected system is that all generators in the 

system respond to changes in frequency via the governor speed control mechanism. 

When a customer connects new load to the system, the load is supplied by kinetic 

energy stored in the rotating masses of turbine generators, and system frequency 

throughout the interconnection begins to drop. All generators in the system respond 

8 
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and bring the frequency to a new steady state thereby balancing total system 

generator and total system load. The automatic generation control (AGe) program's 

job is now to economically readjust generator so that this new load is supplied by its 

own control area's generator sources and to return frequency to its original value 

[11 ]. 

AGC uses measurements obtained from SCADA, such as generator MW outputs and 

tie line MW flows and issues controls through SCADA for changes in generator 

outputs. The modem AGC of the power system control has two basic functions: 

economic dispatch control (EDC) and load frequency control (LFC) [12]. The aim of 

EDC is to minimise the total production cost of supplying all the loads on the power 

system. It has been recognised that system component failures can cause the system 

to transfer from a 'normal state' into 'alert' or even 'emergency states'. For example, 

when a transmission line is switched off by the automatic protection devices upon 

detecting a fault condition, the remaining transmission circuits in the system will 

have to take up the power that was originally flowing in the now opened line. One or 

more of the remaining lines may now be overloaded. The economic dispatch may 

refer to "security constrained dispatch" if the effect of post-contingency system states 

is considered to ensure that plausible initial failure does not lead to overloading any 

of the remaining system components. Therefore, security dispatch implies the 

continuity of supply service, even in the event of an equipment failure and must 

handle several physical constrains. Amongst these post-outage constraints is the line 

loading constraints. Thus, the security problem is an additional and important aspect 

of power system operation and has a profound influence on the overall economic 

dispatch problem. 

The objective of the LFC phase is to regulate the system frequency and schedules tie 

line interchange. It is an online control process that uses the economic dispatch unit 

loading to match the system load demand (including network losses) with the power 

generation. 

9 
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1.2.2 Motivation for improving power system operation 

With the increase of generating plants, utilisation of extra high voltage (EHV) and 

increase in the number and importance of interconnected tie lines, power system 

operation is becoming a more complex task. The constraints imposed on the utility's 

operating environment in recent years for various security, economic, environmental 

and regulatory reasons has made the task of the system operator increasingly more 

difficult. Also, the power industry worldwide is in a period of rapid change with the 

traditional vertically integrated electrical utility structure being replaced by 

competitive markets in unbundled electricity services. The major consequence of 

restructuring is the emergence of separate entities for generation, transmission and 

distribution. The goal of this restructuring is to reap the benefits of lower prices and 

innovation resulting from the establishment of competitive market places for 

electricity products and services. Moreover, power systems are operating closer to 

their design capabilities and security margins. This, coupled with continuously 

escalating fuel costs, has made it mandatory for utilities to operate the system as 

optimally as possible. In this operating environment, more complex decision-making 

processes are required. 

The foregoing problems provide important motivation to explore programmmg 

techniques from the vast pool of artificial intelligence (AI) techniques. The goal of 

AI is to produce intelligent machines, which simulate or emulate human beings' 

intelligence such as expert systems, fuzzy systems, artificial neural network (ANN) 

and evolutionary computational models. These techniques are vastly different from 

each other in both structure and performance, despite having similar objectives. The 

difference lies essentially in the way that knowledge is represented in the system, and 

how it is obtained. In addition, one approach to deal with these complex real world 

problems is to integrate the use of two or more techniques in order to combine their 

different strengths (and overcome each other's weaknesses) to generate hybrid 

solutions such as fuzzy neural network (FNN) [14]. 

I I 
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1.3 Importance of the subject of this thesis 

In recent years, there has been a rapid move towards the optimisation of power 

system operation. This trend has been driven by a variety of influences including the 

appearance of heavily stressed systems, the desire for economic operations, the 

availability of the computational power and new techniques. In general, power 

system optimisation can be classified into two subproblems: active power and 

reactive power optimisation. Active power optimisation deals with determining the 

optimum commitment and dispatch of the generating units, in order to minimise the 

total production cost, while meeting the system demand, transmission losses and 

reserve requirements. Reactive power optimisation is effectively used to provide 

enough VAr sources to maintain acceptable voltage levels throughout the system, 

thus enhancing the security margin while minimising the total active power losses 

[15]. The work presented herein is principally concerned with the first problem using 

the forecasted load demand. 

Forecasting playing an important role in the operation and planning of electrical 

power systems. Depending on the time period of interests, the load forecast can be 

classified as short-term, mid-term and long term. The short-term load forecasting is 

necessary in planning the level and mix of generating capacity that will be used to 

support actual demand, and the sequence in which power stations are brought into 

operation. The mid-term load forecasting are used in preparing operating plans, 

financial planning and tariff setting. The long-term load forecasting of electricity 

consumption and demand are used in the planning of investment in generating 

capacity and the development of fuel supplies. The importance of accurate forecasts 

is that it ensures the availability of supply of electricity, as well as providing the 

means of avoiding over- and under-utilisation of generating capacity and making the 

best possible use of capacity. It has significant effects on power system operations as 

the operation and the control of the power system may be quite sensitive to the 

forecasting error [16]. 

12 
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The objective of unit commitment control function is to mInImISe the total 

operational cost to meet the predicted load within the study period of 24-hour (or 

longer) lead-time by controlling the start up and shut down timing of the generating 

units. It is part of the overall hierarchical control scheme to ensure economic and 

secure operation of the system. The utilisation of unit commitment module has the 

benefit of relieving the complicated discrete unit selection problem from the 

generation dispatch problem, where the unit availability from the unit commitment 

solution is part of the input data for the economic dispatch solution algorithm. 

Economic dispatch is the heart of the application programs in a power system EMS 

control centre. It plays the most important role of sharing the load among the 

synchronised units to minimise energy cost while taking into consideration the 

security of the system. 

A number of estimates have shown that a 1 % reduction in power production costs 

can result in annual savings of up to one million dollars for each 1000 MW of 

installed capacity. This economic incentive has led to a concerted effort in the search 

for algorithms that can provide any improvements in system operation costs [17]. 

1.4 Aim of this work 

The overall aim of this work is to achieve an economic improvement in the operation 

of power systems. The three main areas treated in this thesis, power system load 

forecasting; unit commitment; and economic dispatch, are essential ingredients 

required for a successful implementation of economic operation strategies in power 

systems. Increasing fuel costs and tighter economics have forced the utilities to look 

for improved methods of more accurately predicting loads. The first three chapters of 

the work presented herein are focused on investigating and in the development of 

new hybrid techniques based on statistical and AI techniques to exploit the benefits 

of their co-ordination, thereby improving on the load forecasting techniques 

presently in existence. 

13 
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The next three chapters concentrate on active power optimisation which 

economically determine the optimum commitment and dispatch of the generating 

units, in order to minimise the total production costs while meeting the forecasted 

load demand, transmission losses and reserve requirements; this should also satisfy 

system and unit constraints. In this respect, many techniques have been utilised to 

solve the unit commitment problem to get better solutions and many of them suffer 

from high complexity and slow converge. Thus, there is a need to develop more 

accurate and efficient algorithms. The study presented herein aims to explore the 

potential of genetic algorithm (GA) for optimising the operation of electrical power 

system. Special emphasis is placed on the effectiveness of the enhanced genetic 

based algorithms by integrating this technique with other techniques based on ANN 

and priority list (PL). 

The work presented in this thesis, attempts to achieve this by: 

• Thorough understanding of the load forecast problem and factors affecting its 

accuracy; 

• Investigating and comparing different statistical and AI techniques to ascertain 

the most suitable load forecast technique; 

• Investigating the performance of adaptive hybrid techniques In reducing load 

forecast error; 

• Assessing the problems that are associated with the optimisation and briefly 

reviewing techniques employed to overcome them; 

• Investigating the importance of involving the load forecast uncertainty In the 

generation scheduling problem to achieve a feasible solution. 

• Establishing a new hybrid technique for addressing the generation scheduling 

problem, taking into consideration security constraints such as spinning reserve 

requirements to avoid overloading transmission lines. 

1-1 
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1.5 The principal contributions of this work 

The main contributions of this study to the field of power systems are: 

• A deeper understanding of the load-forecasting problem with different time 

horizons and load data characteristics. 

• A clear demonstration of the improvements in the load forecast accuracy by 

using adaptive techniques. Hitherto, the published work relates to adaptation 

schemes based on ANN technology only. In this work, the improvements are 

achieved through adaptation schemes based on the ANN, FNN and Auto­

Regressive Integrated Moving Average (ARIMA) models. 

• Demonstration of the new hybrid adaptive techniques for mid-term electric load 

forecasts using ANN & ARIMA. Several methods to extract the load demand 

trend are examined to ensure the enhancement in forecast accuracy. 

• Development of an advanced hybrid technique based on FNN and ANN for daily 

peak load forecasting of the Egyptian National Grid. Also, a comparison of the 

results of the proposed technique with the results of the ANN and FNN when 

they are used on their own. 

• A better understanding of the currently available techniques to solve the short­

term generation scheduling problem. 

• The uncertainty of load forecast imposes a risk in short-term planning, because of 

the unit commitment decision's large influence. For example, if the load forecast 

for the next day or week is in error, the electric utility runs the risk of committing 

either too much or too little capacity. In either case, the electric utility can incur 

additional costs. The work presented herein takes the uncertainty of the load­

forecast into consideration while solving the short-term generation scheduling 

problem. 

15 
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• Development of advanced hybrid techniques based on ANN, GA and PL to solve 

the short-term generation scheduling problem. The ANN is used to preschedule 

the generating units taking into consideration load forecast uncertainty and then 

the GA or the GA &PL adjusts the final scheduling. 

• A comparison of the proposed advanced hybrid techniques with recently reported 

approaches utilising Lagrangian relaxation (LR) and other hybrid techniques. 

• A verification of the flexibility of the proposed hybrid techniques using different 

problem formulations and constraints. 

1.6 Thesis layout 

Chapter 2 

A general review of load forecast in EMS is introduced. The importance of load 

forecast for economic power system operation, planning and control is demonstrated. 

The impact of important factors on short-term load forecasting is discussed. Also, the 

existing methods employed to solve the problem of load forecasting are briefly 

reviewed. The most popular methods are further investigated. 

Chapter 3 

New hybrid techniques based on ANN and ARIMA are proposed. Different methods 

to adjust the trend component are presented. Comprehensive studies based on 

statistical and AI techniques are presented. A summary of the results of mid-term 

load forecasting performed on leddah City in Saudi Arabia is presented. 

Chapter 4 

Comparative studies based on short-term load forecasting usmg real data of the 

National Grid of Egypt are performed. Different techniques based on AI and ARIMA 

to forecast Egyptian electric load with different forecast pcriods, ranging from onc-

16 
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hour to one-week, are studied. Forecasting of irregular days and peak load demand is 

performed. 

Chapter 5 

The problem of short-term generation scheduling is presented. The formulation of 

unit commitment is given and this includes production cost as objective function and 

prevailing constraints like systenl load demand, system spinning and operating 

reserve, unit generation limit, minimum up and down times, ramp up and down rates 

and transmission line capacity. Also, a survey of the generation scheduling 

techniques is discussed. 

Chapter 6 

A brief review of a GA is introduced. A new hybrid techniques based on ANN, GA 

and PL is presented to overcome the problems encountered in GA. The application of 

the proposed techniques to small and medium systems consisting of 6 and 26 

generating units, respectively, is illustrated. A comparison between the proposed 

hybrid technique with other recently reported techniques using the LR and other 

hybrid techniques is presented 

Chapter 7 

The performance of the proposed hybrid techniques is examined via the simulations 

performed on the IEEE reliability test system consisting of 26 generating units. The 

effects of different constraints such as optimal power flow constraints (transmission 

line capacity limits) and ramp rate are studied, taking into consideration transmission 

line losses. 

Chapter 8 

This project's conclusions are provided with recommendations for further \\orks that 

need to be performed. 

17 
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Chapter 2 

Electric Load Forecasting 

2.1 Introduction 

Customer load demands in electric power systems are subject to changes because 

human activities follow daily, weekly and monthly cycles. The load demands are 

generally higher during the daytime and early evenings when industrial loads are 

high, lights are on and so forth, and lower during late evenings and early mornings 

when most of the population is asleep. Estimating the power system load expected at 

some time in the future is an important task in order to commit enough generating 

units to exactly balance any network load at whatever time it occurs. In the long 

term, the installation of new plant and network expansion is dependent upon an 

estimate of the future peak consumer demand up to several years ahead. Therefore, 

load forecast plays a crucial role in all aspects of operation, planning, and control of 

an electric power system. It is an essential function for operating a power network 

both reliably and economically. 

According to the time horizon, different types of load forecast can be classified as 

short-term, mid-term and long-term. Short-term load forecasting (STLF) over an 

interval ranging from an hour to a week is important for different functions such as 

unit commitment, economic dispatch, energy transfer scheduling and real-time 

control. The time period for mid-term load forecasting (MTLF) ranging from one 

month to five years is used by utilities to purchase enough fuel and from which the 

various electricity tariffs are calculated. Long-term load forecasts (LTLF) covering 

from five to 20 years or more are used by planning engineers and economists to 
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detennine the type and the size of generating plants that minimise both fixed and 

variable costs. The latter is commonly named "Master Plan". 

Accuracy in load forecasting has a significant bearing on an electricity utility's 

operation and production costs. Accurate load forecasting is particularly important, 

especially with the present rapid changes occurring in the structure of the utility 

industry as a result of deregulation and privatisation, which in tum is pushing the 

utilities to operate at high efficiency. Each utility seeks the best model to improve the 

perfonnance by reducing the forecasting error. 

Several traditional models for demand forecasting have previously been proposed 

with a varying degree of success. These models include time series models [18], 

regression models [19], Kalman filter methods [20] and exponential smoothing 

methods [21]. Extensive practical experience with these conventional statistical 

methods has confinned their theoretical limitations that inhibit further perfonnance 

improvements and their ability to meet system reliability. However, AI methods with 

their capability to fonn complex nonlinear mappings between inputs and outputs 

have shown great potential for application in electric load forecasting [22]. 

In this chapter, the problem of STLF and the factors affecting it are discussed. Also, 

this chapter reviews the applications of statistical and AI methods to demand 

forecasting, considering the most popular methods viz., time series, ANN and FNN. 

2.2 Load forecast in EMS 

The EMS is playing an important role in the secure and economic operation of 

modern power systems. It helps in the determination of the generation level of each 

unit by minimising utility's production costs while meeting system and unit 

constraints. In achieving the goal of the EMS, a know ledge of future power system 

load is the first mandatory requirement and therefore, load forecasting is an 

important part of efficient an EMS. It is a necessary part for establishing both a 

power station operation and unit operation plans, together with generation and 

spinning reserve planning and planning of energy exchange. Consequently, the 
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optimal utilisation of generators and power stations is very much dependent on the 

accuracy of load forecasting. 

2.2.1 Usage of STLF 

The STLF program is generally used in two-usage modes; real time and study mode 

[23]. In the real- time mode, the hourly (or half-hourly) values of the load for the 

specified forecast period are predicted. This forecast data is used to drive the basic 

scheduling functions of the EMS or to provide dispatcher information. Real-time 

mode execution of the forecasting procedure uses the historical load and weather 

files, automatically or dispatcher-entered weather forecast data, and real-time 

telemeterd data. The 24-hour forecast must be generated at least once a day. In 

addition, there may be frequent re-forecasting whenever weather forecasts change 

markedly, abnormal events occur, telemetered data indicate a significant deviation of 

the values of the actual load from the forecasted ones, or simply to update and refine 

the current day's forecast based on the most recent load and weather information. In 

the study mode, the STLF procedure is used to produce historical loads or forecast 

future loads within or outside the forecast period. This load data is used for security 

analysis of past, current, or possible future system conditions. 

2.2.2 Components of STLF 

The major components of STLF systems are the STLF model, the data sources, and 

the man- machine interface (MMI). The STLF model implements the system load 

representation model. The tentative model usually contains unknown parameters; an 

estimation approach, such as least squares, can be used to determine these constants. 

Finally, the adequacy of the fitted model must be checked. If the model is 

unsatisfactory, it has to be respecified, and the iterative cycle of model specification, 

estimation and diagnostic checking must be repeated until a satisfactory model is 

found. The final model is then used to obtain the forecasts. The stability of the 

forecast model can be assessed by checking the forecasts against the new 

observation. 
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An important component of an appropriate forecast method is the availabi lity of 

suitable data; one cannot expect to construct accurate empirical forecast models from 

a limited or an incomplete database. The data sources are the historical load and 

weather database, the parameter database, the manually entered data by the 

dispatchers, and the automatic real-time data obtained from the AGC function of the 

EMS and the data link to a weather forecasting service. The manually entered data 

may include weather updates, load forecast parameter data, or execution commands. 

The telemetered measurements in the real-time database are used by the AGC to 

determine the measured loads. 

The implementation of the STLF models constitutes a part of the EMS application 

software package. To be useful to the dispatchers, the forecasting software must be 

user friendly. A good MMI is imperatively required. The system operators interface 

with the STLF through the dispatcher workstation. For effective usage, the 

forecasting system must provide a number of user-oriented features. It is normal to 

include a check for data entries in order to isolate bad/anomalous data to avoid 

contamination of the data base. A very useful feature is a posterior error analysis 

capability to perform forecast error analysis. 

The outputs of the STLF are provided to the dispatcher workstations and the other 

EMS functions that require the load forecasts. The primary objective of STLF is to 

drive the scheduling functions that determine the most economic commitment of 

generation sources consistent with reliability requirements, operational constraints, 

environmental and equipment limitations. A second purpose of STLF is for 

predictive assessment of the power system security. The system load forecast is an 

essential data requirement of the offline network analysis function for the detection 

of future conditions under which the power system may be vulnerable. This 

information permits the dispatchers to prepare the necessary corrective actions, i.e. 

bringing peaking units on line, load shedding, and power purchase to operate the 

power systems securely. Fig. 2.1 shows both the input data to STLF model and its 

usage. 
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The term operating reserve refers to the reserve that the utility has to maintain to 

prevent a blackout in case of sudden loss of some generation or tie line support. 

Operating reserve includes two components- spinning and supplemental reserves. 

Spinning reserve refers to the remaining capacity on generators, which are 

synchronised to the grid but are not operated at their maximum output levels. In 

practice, utilities may also maintain other types of operating reserve such as rapid 

start gas turbine units, hydro units, etc., that can be brought up to full power in less 

than ten minutes. The reserve capacities are set at levels dictated by the desired 

measure of security and reliability for the power system operation. Therefore, by 

reducing the forecast error, the reserve might be reduced without affecting the 

reliability and security of the system. 

In addition, forecast error in load prediction results in increased operating costs. 

Underproduction of load results in a failure to provide the necessary reserves which, 

in turn, translates to higher costs due to the use of expensive peaking units. 

Overproduction of load, on the other hand, involves the start up of too many units 

resulting in an unnecessary increase in reserves and hence operating costs. For the 

predominantly thermal British power system, it was estimated that in 1985 the 

increase in operating costs associated with a 1 % increase in forecasting error was 10 

million pounds per year [16]. 

2.2.4 System load 

The system load is the sum of all individual demands at all the related nodes of that 

power system. Loads may be classified broadly as residential, commercial and 

industrial, and other. Residential loads have the most constant annual growth and the 

most seasonal fluctuations. Seasonal variations of the residential system components 

in many cases are responsible for the seasonal variations in system peak. Commercial 

loads are also characterised by seasonal fluctuations due to the extensive use of air 

conditioning. Industrial loads are considered base loads that contain little weather 

dependent variation [23]. 
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The system load behaviour is influenced by a number of factors such as [24]: 

Economic trends: These cause long term fluctuations according to economIC 

growth. Factors such as service area demographics, levels of industrial activities, etc. 

influence the load. These economic factors operate with considerable longer time 

constants than one week. Therefore, they are not explicitly represented in STLF. 

However, it is important to account for these factors in the updating of forecasting 

models from one year to the next or from one season to another. 

Time factor: Three principal time factors affect the load pattern. These are seasonal 

effects, weekly/daily cycle, and legaVreligious holidays, which play an important 

role in load patterns. The seasonal fluctuations rely on the climatic influences 

(temperature, length of the day, etc.) and varying human activities (holidays, 

seasonal work, etc.). There are seasonal events that produce an important structural 

modification in the electricity consumption patterns such as the shifts to and from 

day- light savings time, start of the school day and significant reductions in activities 

during holidays. Weekly fluctuations- type of day, are due to the presence of working 

and weekends days. The existence of holidays and weekends has the general effect of 

significantly lowering the load values to levels well below normal. Daily 

fluctuations- the day shape during the day, depend on the human activities such as 

work, school and entertainment. 

Weather factors: Most utilities have large components of weather sensitive loads 

such as those due to air conditioning. Thus, weather factors such as temperature, 

wind speed, and humidity, etc., have a significant effect on the variation in the load 

patterns. In many systems, temperature is the most important weather variable for its 

effect on the load. 

Random disturbances: A power system IS continuously subjected to random 

disturbances reflecting the fact that the system load is a composite of a largc number 

of diverse individual demands. There are also certain events such as \\idesprcad 

strikes, shutdown of industrial facilities, and special tclevision programmes. 
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2.3 Literature review 

Load forecast has been a central and an integral process in the planning and 

operation of electric utilities. Many techniques have been investigated to tackle this 

problem in the last two decades. The IEEE load forecasting working group has 

published, in two phases, a documentary bibliography on load forecasting. The first 

bibliography has covered general philosophies of load forecasting [25]. The second 

bibliography has focused on the economic issues of load forecasting [26]. There are 

additional publications that have reviewed load forecasting such as the work of Bunn 

[16] which has reviewed the STLF procedures in the electricity supply industry, and 

the work of Rahman [27] that has analysed and evaluated five short-term load 

forecasting techniques. 

Different forecasting techniques have been applied to the problem of load forecast. 

Fig. 2.2 summarises some of these techniques. Most of these techniques fall in the 

realm of statistical techniques such as time series and regression method. The 

exception to this is a more recent one, which is based on AI that implies the use of 

intelligence in the forecasting procedure. This can be looked upon as using complex 

reasoning to produce the forecast, to learn from experience or perhaps to be able to 

construct a model automatically from raw historical data. 

Stochastic time series approach [28] is the most popular prediction technique. It is 

still used today by many power companies because of the ease of understanding and 

implementation and the accuracy of its results. Wiener [29] first presented and 

developed techniques for the design of optilTIUm linear systems for filtering and 

prediction of stationary time series. The idea was extended by Box and Jenkins [30] 

for handling a special class of nonstationary processes. These algorithms are 

primarily based on applying ARMA (autoregressive moving average) or ARIMA 

models to the historical data. Statistical analyses are then employed to estimate 

model parameters. Extensive analysis has been performed [31] to select the method 

of estimating the model parameters. The drawback of this technique is that a longer 

computational time for the parameter identification is, however, required. 
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In the multiple regression method [19,35], the load is found in terms of explanatory 

variables such as weather and nonweather variables, which influence the electrical 

load. The explanatory variables are identified on the basis of correlation analysis 

between each of these (independent) variables with the load (dependent) variable. 

Experience about the load to be modelled helps an initial identification of the 

suspected influential variables. The estimation of the regression coefficients is 

usually found using the least square estimation technique. Statistical tests such as F­

statistic test [35] are performed to determine the significance of the model. The 

problem encountered in this technique is that the relationship between the load and 

weather variables is nonlinear and hence leads to a large prediction error. Also, 

finding functional relationship between weather variables and current load demand is 

difficult. 

In the Kalman filter approach [36], the load is modelled as a state variable using state 

space formulation, which is designed by two sets of equations- the system state 

equations and the measurement equations. The identification process is the main 

difficulty of this approach as the model has to be known prior to using the Kalman 

filter. Also, this technique requires noise covariance matrix estimations that are not 

easily estimated. A close look at these models indicate that they require a large 

number of complex mathematical relationships resulting in a heavy computational 

burden and hence there is always the possibility of numerical instability due to 

improper modelling of the stochastic component of the load. 

General exponential smoothing [35] applies an unequal set of weights to past data. 

These weights decay in an exponential manner from the most recent data value to the 

most distant value. The basic notation inherent in exponential smoothing is that there 

is some underlying pattern in the values of the variables to be forecast and that the 

historical observation of each variable represents the underlying pattern as \\'cll as 

random fluctuations. The goal of this forecasting method is to distinguish between 

the random fluctuations and the basic underlying pattern by smoothing (averaging) 

the historical values. This amounts to eliminating the randomness found in the 

historical sequence and basing a forecast on the smoothed data pattern. The model 

parameters are estimated in a manner so as to minimise the square of the residual 
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uSIng a weighted least square criteria. The drawback of this method IS that, its 

accuracy depends heavily on the smoothing constant. 

The AI techniques can be divided into different techniques as evident from Fig.2.2. 

Knowledge based method [37] introduces the expertise into load forecast. It takes 

into consideration non-statistical factors such as social events or a sudden weather 

change. However, expressing the knowledge of an expert in the form a set of rules 

and upgrading the rules are usually very difficult. 

Fuzzy logic (FL) [38] IS able to model uncertain or ambiguous data often 

encountered in real life. It is able to simultaneously handle numerical data and 

linguistic knowledge. However, FL requires a thorough understanding of the fuzzy 

variables of the input/output relationships as well as good judgement to select the 

fuzzy rules and membership functions that influence most of the solution of the 

application. 

The advantage of ANN [39- 41] for load forecasting can be attributed to the fact that 

it combines both time series and regression approach. As for time series, the ANN 

traces previous load patterns and predicts (i.e. extrapolates) a load pattern using 

recent load data. Moreover, it uses weather information for modelling. It is able to 

perform nonlinear modelling and adaptation and does not require assumption of any 

functional relationship between load and weather variables. 

The application of ANNs for STLF has received much attention recently. Amongst 

the ANNs available, based on supervised learning, those have been proven effective 

are back propagation ANN [42,43], diagonal recurrent ANN [44], and radial basis 

function ANN [45]. In addition, unsupervised ANNs such as self-organising feature 

maps (SOMs) are also used to classify the load profiles, prior to applying supervised 

ANNs [46]. 

However, the inability of an ANN to provide an insight into the nature of the 

problem being solved and to establish rules for the selection of optimum network 
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topology remains a practical disadvantage of this technique. In summary, ANN and 

fuzzy systems have their own shortcomings. 

The integration of ANN sand FL is referred to as a FNN [47]. Current STLF methods 

almost exclusively fall into this category of employing a FNN [48]. With this 

integrated approach, some of the uncertainties in the input/output pattern 

relationships are removed by the FL thereby increasing the effectiveness of the ANN 

i.e., the drawbacks of the two techniques when used on their own are overcome. 

2.4 Forecasting methods 

A wide variety of techniques for load forecasting have been reviewed in the previous 

section. These techniques vary in complexity, data requirements, flexibility and the 

ability to meet user specifications. These specifications usually require that the load­

forecast program be reliable during all seasons, during periods of unusual weather 

conditions, during holidays and days involving special events, and also respond 

accurately and consistently to system changes. In order to produce a highly accurate 

load forecast, the study presented herein is concerned with a comparison between the 

most popular forecast techniques. This section, therefore, introduces a brief review of 

some of the statistical and AI techniques used in this study. Particular emphasis is 

placed on discussing the merits and drawbacks of each method. 

2.4.1 Time series method 

A time series is a collection of observations generated sequentially through time. The 

rationale behind of the time series approaches is based on the understanding that the 

load pattern is nothing more than a time series signal with known seasonal, weekly 

and daily periodicites, which give a rough prediction of the load for a given season, 

day of the week and time of the day. The difference between the prediction and the 

actual load can be considered as a stochastic process. Through an analysis of this 

random signal, more accurate prediction is achievable. Different techniques are used 

for the analysis of this random signal such as Box-Jenkins and Fourier analysis. 
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2.4.1.1 Box-Jenkins forecasting 

This forecasting procedure was developed by G.E.P Box and G. M. Jenkins almost 

three decades ago, and is still very popular amongst forecasters. The Box-Jenkins 

methodology assumes three general classes of a model that can describe any type or 

pattern of stationary time series data. A time series is said to be stationary if there is 

no systematic change in the mean value and its variance. Examples of such models 

are the autoregressive (AR) model, the moving average (MA) model and the ARM A 

model which is obtained by combining together components of the first two types 

mentioned. 

In the autoregression process, the current value of the time series yet) is expressed 

linearly in terms of its previous values (y(t-I), y(t-2), ... ) and a random noise aCt). 

The order of this process depends on the oldest previous value at which yet) is 

regressed on. For an autoregressive process of order p (i.e. AR (p », time series can 

be written as: 

yet) = aCt) + ¢ly(t -1) + ¢2y(t - 2) + .......... + ¢Py(t - p) (2.1) 

where ¢1 , ....... ,¢ p are the autoregression parameters. By introducing the backshift 

operator B that defines y(t -1) = By(t) and consequently y(t - m) = B
m 
y(t), 

equation (2.1) can now be written in the alternative form: 

¢(B)y(t) = aCt) (2.2) 

where 

A MA model assumes that the current value of the time series yet) can be expressed 

linearly in terms of current and previous values of a white noise series aCt), a(t-l ), .... 

The noise series is constructed from the forecast errors or residuals when signal 

observations become available. The order of the process depends on the oldest noise 
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The procedure for Box-Jenkins techniques [28] depends firstly, on identification of 

the model, which is determined by analysing the raw load data. This analysis 

includes the plot of autocorrelation, and partial autocorrelation functions. The use of 

these tools leads to initial estimations of the required data transformation and the 

degree of differencing to obtain a stationary process. Secondly, an estimation of the 

parameter of the identified load-forecasting model is usually achieved through the 

use of efficient estimation methods such as maximum likelihood and unconditional 

least square. Finally, model checking is performed by testing whether the residual 

series is a white noise. If the residual is not white noise, the inadequacy of the model 

has to be corrected in view of the autocorrelation and partial autocorrelation 

functions of the residual. Fig. 2.3 shows the flow chart of the box and Jenkins 

forecasting method. A major limitation of this approach is that human decisions need 

to be made in both data transformation and model identification. 

2.4.1.2 Fourier analysis model 

An alternative to the use of a difference model for the load data series is VIa a 

harmonic series representation based on Fourier analysis of the data sequence. In this 

method, the load at time t, y (t), is modelled using a fitting function and is expressed 

as: 

y(t) = B(t) f(t) + aCt) (2.12) 

where, f(t), B(t) and aCt) are the fitting function vector of the process, coefficient 

vector and a white noise, respectively. The coefficients of the model can be estimated 

using weighted or discounted mean square error. The function f(t) is expressed by a 

harmonic series and can be expressed as: 

Ie 
f(t) == C + Lai sinwJ + hi COSWJ (2.13) 

i=1 
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0.= 1 
} 1 -(AC·+f)Th·) + e J J 

(2.15) 

There are different ways to categorise ANNs. Firstly, according to the training phase, 

the ANN may be separated into two groups; supervised or unsupervised. Supervised 

neural networks, such as multilayer perceptron, need the correct desired output 

(teacher) for a controlled adaptation of the weights in order to minimise a certain 

energy function (e.g. error between neural output and desired output). They thus 

require pairing each input vector with a desired output together these are called a 

training pair. While, for unsupervised training, such as self-organised Kohenen 

network, the training set consists solely of input vectors. These types of training 

processes group similar input sets into clusters according to the statistical properties 

of the training set. 

Secondly, according to the data flow, if the data flows only in the forward direction, 

the ANNs are called feed-forward networks. Networks with connections that allow 

data to flow both forward and backward are called feedback· networks. Back 

propagation is an example of a feed-forward network while, a recurrent network is an 

example of the latter. A typical feed-forward ANN consisting of three layers is 

illustrated in Fig. 2.5 where a layer represents a topological set of neurons. 

Fig. 2.4 Schematic of an artificial neuron 
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The advantage of the ANN s are they posses the ability to learn from experience, 

generalise from previous examples to new ones, and to extract pertinent information 

from examples containing irrelevant or incomplete data. They have the ability to 

learn and construct a complex nonlinear mapping through a set of input/output 

examples. They are particularly well suited to solve pattern recognition problems that 

are either computationally burdensome or impossible for conventional iterative 

programs to solve. Also, they have a superior noise rejection capability that can 

effectively deal with uncertainties in the actual process. Once trained, their response 

to new data is very fast and this is so because they consist of a large number of 

parallel processing units. 

2.4.2.1.1 ANN learning 

The connection weights that determine the way in which neurons interact can be 

modified during the networks operation to provide a high degree of adaptability. This 

adaptation process is the so called learning which means that the network has 

recognised the input patterns once the weights are adjusted or tuned via some kind of 
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learning process. The back-propagation learning algorithm [52] is a technique for 

optimising the interconnection weights in an ANN by minimising the global error 

between the desired and actual output of all the cases evaluated during the training 

sessIOn. 

Training the ANN requires the following steps: 

• Input signals of {Xi' X 2 , •••••• ,X N} are given to the input layer. The training 

phase is initiated during which the neuron produces its output signal while 

passing the summed signals through a sigmoid function and an output vector is 

produced. Calculations in multi-layer ANN are performed on a layer by layer 

basis, beginning with the hidden layer closest to the input layer. The weighted 

values of the input vector are summed in the form of: 

N 

Ac; = IXiWij (2.16) 
i=1 

where Ac. = active level of neuron j in the hidden layer 
J 

Xi = i 1h input from the input layer 

W .. = interconnected weight applied between i 1h neuron of input layer and 
lj 

jlh neuron of hidden layer. 

• The nonlinear sigmoid activation function, equation (2.15), is applied to the 

activation level to drive the value of hidden neurons, OJ. The same process is 

• 

applied for networks with additional hidden layers with the output of the 

preceding layer serving as inputs to the next layer in the network. 

In the output layer the output nodes are defined as the weighted sum of the 

outputs from the preceding layer. The output neurons are computed as follow: 
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where OK = output of the kth neuron in the output layer 
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(2.17) 

Wjk = interconnected weight applied between /h neuron in the hidden layer 

and k th neuron of the output layer 

FacO = the sigmoidal function and represented in equation (2.15). 

J max = number of neurons in the hidden layer 

• According to the difference between the actual and target outputs, the network's 

weights are adjusted to reduce the output error. Then, the error at the output layer 

propagates backward to the hidden layer until it reaches the input layer. 

• In order to adjust the weight of the output layer, the global error, E, for the entire 

training set is computed using equation (2.18) as the average sum of the squared 

differences between the actual network output, Ok' and the target or desired 

value, Td ,which emanates from the training data. 
k 

(2.18) 

where NO = number of neurons in the output layer. 

• The gradient decent algorithm adapts the weights according to the gradient error, 

1.e., 

(2.19) 
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• The error signal is multiplied by the derivative of the sigmoid function 

[OK (1- Ok)] for the k'h neuron of the output layer, thereby producing the 

8 value for the neuron as: 

(2.20) 

(2.21 ) 

where ilWjk = update factor for interconnection weight between j'h neuron in 

the hidden layer and kth neuron of the output layer. 

1] = derivation proportional factor and is called learning rate term. 

• An identical process is performed for each weight proceeding from a neuron in 

the hidden layer to a neuron in the output layer. Adjustment of the weights 

between the input layer is slightly different, since the hidden layers have no 

target vectors. Instead, the b values from the output layer are used to adjust the b 

values in the first hidden layer and these are then propagated backwards to all of 

the preceding layers. 

• The value of b for the weights in the hidden layer preceding the output layer is 

represented by the following equation: 

NO 

bj = OJ(l- OJ )L.,bkWjk (2.22) 
k=! 

• With some manipulation and introduction of momentum and learning rate term 

CX,l1 to improve the convergence characteristic, we conclude the following 

iteration equation: 

L1W. (n + 1) = 1J8 .X + aL1W. (/1) 
II J I Ij 

(2.2J) 
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The training continues until a certain stop-criterion is satisfied. Typically, training is 

halted when the average error between the desired and actual outputs of the neural 

network over the training data sets is less than a predetermined threshold. Once the 

neural network is trained, it produces very fast output for a given input data. To 

enable the neural network to predict the load efficiently, it must have most of the 

load features. On the other hand, repetitive characteristics amongst different inputs 

will only result in excess training time and may lead to network confusion. 

However, the relationship between the input and output variables is not clear to 

capture the system dynamics due to the black-box-like representation of ANN. Also, 

most of the ANNs make use of only numerical data, and are unable to handle fuzzy 

information inherent in the human brain information processing. 

2.4.2.2 FNN 

FL is able to simultaneously handle numerical data and linguistic knowledge. It 

attempts to model the impreciseness of human reasoning by representing 

uncertainties in the variables that are used by assignment of a set of values to the 

variable. Each value has a degree of membership of the set, which represents the 

probability of the variable having that value [53]. A membership function is 

generally, denoted by Jl(x) where x is the variable whose degree of membership is 

being described, identifies the degree of membership over the range of possible 

values known as the universe of discourse. This function can be defined to represent , 
an adjective, known as a linguistic value or fuzzy set, which describes the set of 

values. 

Fuzzy inference is the process of formulating the mapping from a given input to an 

output using FL. It is composed of four components as shown in Fig. 2.6: a 

fuzzification, knowledge base, inference engine, and defuzzification. The 

fuzzification transforms the crisp inputs into degrees of match with linguistic values. 

The knowledge base is divided into rule base and database. Rules may be provided 

by experts or from numerical data. In either case, rules are expressed as a collection 

of IF-THEN statements. A database defines the membership functions of the fuzzy 
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• Layer 1: "Generate the membership grades" 

0: = uA; (x) (2.26) 

where x is the input to node i, Ai is the linguistic label (small, large, etc.) associated 

with this node function and OJ is the membership function of Ai and it specifies the 

degree to which the given x satisfies the quantifier Ai. Different membership 

functions can be used such as generalised bell "gebell", triangular and trapezoidal­

shaped. 

• 
• 
• 
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Fig. 2.7 Structure of the FNN 
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• Layer 2: "Generate the firing strength". Every node in this layer multiplies the 

incoming signals and sends the product out. Each node output represents the 

firing strength of a rule. 

m 

Oi
2 = Wi = II U Aj (x) 

j=i 
(2.27) 

• Layer 3: "Normalise the firing strengths". The ith node in this layer calculates 

the ratio of the i th rule's firing strength to the sum of all rules' firing strengths. 

(2.28) 

where NR is the number of rules. 

• Layer 4: " Calculate rule outputs based on the consequent parameters" 

(2.29) 

where Wi is the output of layer 3, and {Pi' qi' ri } is consequent parameters. 

• Layer 5: "Sum all the inputs from layer 4" 

(2.30) 

Each ANFIS training epoch, using the hybrid learning rule, consists of two passes. 

The consequent parameters are obtained during the forward pass using a least- square 

optimisation algorithm and the premise parameters are updated using a gradient 

descent algorithm. During the forward pass, all node outputs are calculated up to 

layer 4. At layer 4, the consequent parameters are calculated using a least squares 

method. Next, the outputs are calculated using the new consequent parameters and 

the error signals are propagated back through the layers to determine the premise 

parameter updates. 
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By employing a hybrid learning procedure, the ANFIS can refine fuzzy IF-THEN 

rules obtained from human experts to describe the input-output behaviour of a 

complex system. However, if human expertise is not available, reasonable initial 

membership functions can be set up and the learning process starts to generate a set 

of fuzzy IF-THEN rules to approximate a desired data set. The only limitation of this 

network configuration is that it should be of feedforward type. Also, higher order 

Sugeno fuzzy models are possible, but they introduce significant complexity with 

little obvious merit [54]. Due to these minimal restrictions, the adaptive network's 

applications are immediate and immense in various areas. 

2.5 Summary 

This chapter has presented a brief survey in the area of forecasting system load. Load 

forecast is important for optimum operation and planning of a power system. The 

load forecast can be classified according to the lead-time into three categories. These 

are short-term, mid-term and long term. Various practical considerations associated 

with the components and the requirements of an STLF model in EMS are discussed. 

The STLF provides a critically important decision tool in system operations. A good 

STLF system can save the utility significant sums of money by reducing the error in 

load predictions. Thus efforts aimed at the implementation of accurate and effective 

STLF are highly worthwhile. Several different types of load forecasting techniques 

with the advantages and the drawbacks of each one are discussed. A selection has 

been made based on the applicability to load forecast problem. The time series are 

capable of describing time-correlated random phenomena, periodicities and trends. 

Another potentially useful area of investigation in STLF is the application of AI. The 

area of AI is a very active field of research and has shown a great potential in the 

application of electric load forecasting. 
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Chapter 3 

Mid-Term Load Forecasting 

3.1 Introduction 

MTLF, ranging from one month to five years, is needed for operational planning, 

maintenance, energy contracts, fuel management and revenues from sales. While, the 

accuracy of MTLF plays an important role in the operation of electric utilities, the 

provision of reliable electric demand forecasts in a typical fast developing utility 

constitutes a difficult task. The development of the demand for electricity in rapidly 

developing areas is associated with many factors. Some of these factors are related to 

the rapid increase in economic activity, the unstable dynamic load growth due to 

religious festivals and other social occasions, and the presence of highly variable and 

severe weather conditions. Several traditional models for demand forecasting have 

previously been proposed with varying degrees of success, such as time series 

models, regression models and expert system methods. The disadvantage of these 

models fall into three groups: (a) the numerical instability resulting from the neglect 

of weather information; (b) the difficulty of finding functional relationships between 

weather variab les and instantaneous load demand; and (c) the set of rules that govern 

an expert system are difficult to upgrade, as well as imposing a heavy computational 

burden. In addition, these models have not proved to be flexible to respond to rapid 

system-load changes. However, direct implementation of previous forecasting 

models in developing countries may result in misleading or erroneous results. 

Recently, the application of the AI techniques, VIZ. ANN and FNN, to load 

forecasting have received attention as they have permitted modelling of complex and 

nonlinear relationships through a training process with the use of historical data. 
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They can also be used for models based on weather information without the 

requirement to make assumptions for any functional relationship between load and 

weather variables. This chapter presents comprehensive studies using AI and 

statistical techniques for forecasting the monthly peak demand of a typical fast 

growing utility serving the western region of Saudi Arabia. Several methods to 

extract the load demand trend are examined to ensure the enhancement in forecast 

accuracy. 

3.2 System data 

Saudi Consolidated Electric Company - West "SCECO-WEST" is the Saudi Arabian 

utility in the Western region. Although the utility supplies almost one-third of the 

country's total demand, leddah City which is located in the western region alone 

consumes almost more than half of SCECO-WEST -generated electricity. More 

details for the "SCECO-WEST" utility can be found in [56]. 

Fig. 3.1 shows the monthly peak demand of leddah City over a nine year (1987-

1996) period. The Figure shows a clear seasonal pattern as well as an upward trend. 

Different variables influence the monthly peak demand such as the weather 

components especially the maximum temperature that influences the residential air 

conditioning demand. In addition, there are other contributing factors that are related 

to the religious and social occasions such as the pilgrimage months and the Ramadan 

(i.e. fasting) month. The pilgrimage to the city of Makkah is an important event in 

Islam and during this event, Muslims from all over the world meet at specified 

periods each year. During this event a large number of people leave leddah City for 

Makkah thereby causing a reduction in the city activities and hence a reduction in 

system demand. During the month of Ramadan, consumers simultaneously increase 

their energy usage for cooking, and cooling or heating, depending on whether this 

month occurs in summer or winter. The effect of Ramadan on the system peak 

demand is not uniform throughout the month. It is more pronounced during the first 

two weeks and is relatively less in the last week of the month. The system peak 

demand drops immediately after the end of Ramadan month because of the Eid that 

immediately follows a break in the fast. This time is characterised by the movement 
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sample data, respectively. Between these two values, the time index Increases 

smoothly in equal steps. 

In the second method, the exponential growth is used to model the seven-year load 

trend; this model reduces the forecast error by a bout 28% when compared with the 

model used in [57]. The ARIMA model is then used to forecast the trend for the last 

two years. 

The last method is based on computing the load growth, which in tum depends on 

the average peak load every year [58]. When the average of each year is calculated, 

the ratios to the final year, as a base value, are used. Then, each year load 

components are multiplied by the corresponding ratio to adjust the load growth. 

3.4 ANN architectures 

Three-layer feed-forward ANN with a Sigmoid function is used to forecast the 

monthly peak load of leddah City using the NeuralWare package [59]. The Back­

propagation algorithm is used to train the ANN. Different input variables are chosen 

and the correlation between each variable to the monthly peak load of leddah City is 

examined. The significant variables with higher correlation are then selected and 

tested to find the most suitable variables to avoid confusing the ANN. The number of 

hidden neurons are selected by trial and error while the output layer has one neuron 

corresponding to the forecasted peak load. Nine years' infonnation for both load and 

temperature of the leddah City are available as mentioned before. The first seven 

years' data is used for training the ANN while the perfonnance of the ANN is tested 

with data from the remaining two years. 

According to the architecture and the number of inputs to the ANN, five different 

network learning approaches are tried as fellow: 

Case "a": "Direct use of ANN ". This approach is based on adjusting the trend using 

the first method described in section 3.3. The number of inputs to the ANN is 

therefore 1 1, as shown in table 3.1. The hidden layer has 14 neurons. 
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Case "b": The ANN has the same number of input and hidden neurons as in above 

"a" but this approach is based on the second method of adjusting the trend 

component instead of modelling the trend by a time- index feature component. 

Case "c": "Hybrid technique ARIMA! ANN". Because of the complexity of the time 

series which consists of a moving trend as well as a cyclic seasonal variation, the 

adaptive ARIMA model is first used to forecast the monthly load and this is then 

employed as an additional input to the ANN. The input layer therefore has 12 inputs 

as in case "a" plus the ARIMA's forecast, while the hidden layer has 35 neurons. 

Case "d": This is based on adjusting the load growth of the demand and the input to 

the ANN is equal to 1 0 neurons as in table 3.1, without the time-index feature 

component. The hidden layer has 14 neurons. 

Case "e": The same as in case "c" but in addition to the ANN forecast, the ARMA 

model is used to forecast the residual of the ANN. The final forecast is therefore 

equal to the ANN plus the ARMA forecast. 

Furthermore, in all the five aforementioned learning approaches an adaptive ANN is 

used in which the weights obtained from the training of seven years are used to 

forecast the peak load of the first month of the last two years. To forecast the 

following month's load, the actual data of the first month is added to the ANN 

training-data set and the ANN is retrained to obtain a new set of weights. This 

exercise needs to be repeated every month in order to ensure the requisite accuracy 

of the technique is maintained. 

3.5 Time series forecast 

The ARIMA technique has grown in popularity in recent decades, though it is a 

complex technique that requires much experience to identify the model. In the work 

presented herein, the ARIMA model has played a crucial role as it is used 

extensively throughout the research study carried out. Firstly, it is used to forecast 

the t\\'o years of resu Its for Jeddah City and then in comparing the results \\'ith the 
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ANN (case "a"). MINITAB [60] is used to identify potential models which are then 

analysed to ensure that the residuals are white noise by examining the autocorrelation 

functions of these residuals. Fig. 3.2 shows the autocorrelation and the partial 

autocorrelation functions of the raw data, which demonstrates that this data is not 

stationary and some differencing is required. Several models can be investigated by 

analysing the residuals. Diagnostic checking of all suggested models can then be 

carried out. The most suitable seasonal ARIMA model is found to be ARIMA (3,1,0) 

x (0,1,2)12, as explained in the chapter 2 section 2.4.1.1. The monthly peak load of 

leddah City is then modelled by the equation: 

Where <\>1, <\>2, <\>3; 81, 82 are autoregressive and seasonal movmg average 

parameters of the ARIMA model, a (t) is random shock known as white noise and B 

is back-shift operator that defines y (t-1) = B y (t). In this case, the forecast of the last 

two years is made by either forecasting the total 2 years in advance without any 

adaptation of the parameters of the ARIMA; or by using adaptive ARIMA model, i.e. 

updating the parameter estimates each time a new observation becomes available. 

Secondly, the ARIMA model of order (l, 1,1) is used to forecast the trend 

components as in case "b". Thirdly, the forecast of the ARIMA model is used to 

reduce the forecast error of the ANN by using the ARIMA' s forecast as an input to 

the ANN, as in case "c". Finally, to further improve the forecast, the ARMA model is 

used to forecast the residual of the ANN (case "e") so that the final forecast is equal 

to the ANN plus the ARM A model. Fig. 3.3 demonstrates the residual of the ANN, 

which is stationary and can be modelled by ARMA of order (2,0,2) and can be 

represented by the equation: 

(3.2) 

Where 81, 82 are the parameters of the moving average. 
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Fig. 3.11 Percentage error results for different cases using adaptation 

3.7 Forecast using Fourier series 

61 

From the previous discussion of the forecast results using the ANN and ARIMA 

models, it would appear that "case d" gives the best performance using the third 

method to adjust the trend component. Consequently, this method will be used to 

adjust the trend component herein in this chapter. It should be mentioned that further 

improvements as investigated later may still be attained via different forecast models 

using the ANN and FNN. In this section, the monthly peak demand can be 

decomposed into: 

Monthly peak demand = trend component + weather sensitive load 

+ nonweather cyclic load 

(3 .5) 

In addition to the e component, there i a nonpredictable load fluctuation 

omponent. Thi technique account for the dynamic load growth, weather 

condition and the toeha tic variation of the monthly peak load. The trend 
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