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ABSTRACT 

This thesis examines the behaviour of acoustic waves when they encounter structures 

placed within their path. The interaction of waves with these structures may be complex and 

involves Lamb wave generation and diffraction in addition to simple reflection and 

transmission phenomena. More complicated issues such as diffraction by materials of finite 

acoustic impedance have no simple analytical solution, and the numerical model developed 

within this thesis is used to simulate these effects. The model uses the method of finite 

differences to approximate elasto-dynamic equations and is implemented on a staggered grid 

formulation. The influence of modelling artefacts such as numerical instability and numerical 

dispersion are considered, and a procedure to limit their effect during simulations is 

developed. Examples of undesirable numerical behaviour, as well as solutions to problems 

commonly encountered during modelling are included, alongside detailed examples of the 

model validation. 

The finite difference model is used to examine the problem of diffraction by a two- 

layer barrier comprising acoustically soft and elastic layers. The results indicate that in 

addition to the diffracted wave, there are two additional acoustic waveforms in the shadow 

region of the barrier. This is consistent with experimental findings. Analysis of the simulated 

data reveals that the extra waves result from Lamb waves leaking from the back of the elastic 

layer. The model is then used to explore alternative geometries capable of reducing both the 

Lamb wave and diffracted wave amplitudes. The investigation is then extended to consider 

the how these waves affect materials characterisation experiments employing both Cartesian 

and Cylindrical co-ordinate systems. The outcome of the simulations forms the basis of 

several recommendations for improved experimental technique. 

The model is also used to analyse the acoustic field present at the tip of a needle 

hydrophone. It accurately simulates the experimentally determined frequency response for 

this type of sensor. Further simulations suggest that flatter frequency response could be 

obtained using an alternative sensor geometry. This is confirmed by experimental evaluation 

of the sensors incorporating the revised design. 
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MODELLING OF ACOUSTIC FIELDS 

1.1 Introduction 

The aim of this thesis is to examine the interaction of acoustic waves with complex 

structures placed within their path, and the subsequent diffracted fields that may result. 

Specifically, the effect of diff-raction during several materials characterisation processes will be 

discussed. The manner in which the frequency response of needle hydrophones is influenced by 

diffracted waves will also be considered. In order to achieve this, it is necessary to generate a 

means of predicting the propagation of acoustic radiation; in this case by means of a numerical 

model. Whenever a model is developed it is essential to validate the results against other known 

standards; in this study, inter-comparison with both experimental and analytical results will be 

performed. Once the validity of the model has been shown it will then be used to examine 

problems for which solutions have previously been unobtainable. 

Historically, the only available modelling option was to attempt to derive an analytical 

solution that adequately described the situation. However, with the advent of modem 

computers, a number of techniques based upon numerical methods have been developed and 

this has dramatically increased the number of solvable problems. This chapter will outline 

some of the techniques available to model acoustic fields, their limitations and their suitability 

for modelling acoustic fields relevant to this study. 
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1.2 Analytical Modelling 

Common starting points for the development of analytical models are solutions of 

partial differential equations such as the wave equation (or its constant frequency variant the 

Helmholtz equation). In order to apply the general solution of such equations to a specific 

problem, the constraints imposed by the geometry of the situation must be taken into 

consideration. To accomplish this requires the selection of a relevant co-ordinate system, as 

well as application of any relevant initial and boundary conditions. Major simplifications 

and/or assumptions are also often employed to obtain a solution. The following are examples 

of such simplifications: 

Boundary Condition Assumptions 

1. The Dirichlet boundary condition: where a physical parameter is zero at the 

boundary (e. g. a perfectly compliant material in acoustics where the acoustic 

pressure is zero). 

2. The Neumann boundary condition: where the I st derivative of a physical parameter 

is zero at the boundary (e. g. a perfectly rigid material where the normal component 

of acoustic particle velocity is zero). 

3. The Sommerfeld radiation condition: where all of the energy of the radiation is 

allowed to propagate in such a way as to simulate radiation into free space. 

Geometric Assu! liptions 

1. Infmite Extent: where an object is considered to have features in one or more 

co-ordinates that extend to infinity. 

2. Infinitesimal Extent: where an object is considered to have features in one or more 

co-ordinate that are infmitesimally small. 

Source AssuWtions 

The source of acoustic radiation is assumed to be either an: 

I. Ideal Plane Wave Source. 

2.1deal Point Source. 

3.1deal Line Source. 

Clearly these simplifications may not be physically realisable, although under some 

circumstances the assumptions made may have only a minimal effect on the final results. 

However this is not always true, and the net effect of such simplifications is that the resultant 
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solution may only be a poor representation of the particular physical problem under 

investigation. 

Another range of conditions is imposed upon the analytical solution if it is to cater for 

heterogeneous media. Whenever the material of propagation changes, it is necessary to 

explicitly incorporate the interface boundary conditions into the model. Thus, the specific 

details of the problem geometry become embedded in the analytical model, and generality is 

lost. The combined consequence of these factors results in analytical models that rely upon 

unphysical. oversimplifications and are only capable of solving specific problem geometries. 
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1.3 Numerical Modelling 

Advances in modem computing methods have greatly expanded the range of tools 

available for the solution of partial differential equations (PDEs), and thus acoustic field 

modelling. There are a number of techniques commonly used to model acoustic and/or elastic 

wave propagation including: integral transform, Pseudo-Spectral (PS), Finite Element (FE) and 

Finite Difference (FD) methods. A brief overview of the development of numerical acoustic 

propagation modelling can be found within Stephen and Swift (1994), whilst Chin et al (1984) 

provide an excellent summary of the relative merits of many numerical modelling techniques. 

An overview of the four main numerical modelling methods will now be presented. It will 

become evident,, however, that integral transform methods tend to be less generally applicable 

since they rely upon various assumptions about the geometry of the problem in question. 

1.3.1 Integral Transform Methods 

There are a number of different integral transforms including, but not limited to: the 

Laplace Transform, the Fourier Transform, the Mellin Transform and Green's Functions. A 

thorough discussion of many of these can be found Boas (1983). However, all integral 

transforms share the same common purpose: to transform the problem from one domain to 

another in which the solution to the problem is simpler. The solution of PDEs using integral 

transform methods can be surnmarised as follow: 

1. Apply the appropriate integral transform to transform the PDE into a new domain. 

This will yield a PDE expressed in terms of a transformed variable (i. e. the integral 

transform of the required solution). 

2. Solve the new PDE for the transformed variable. 

3. Apply an inverse integral transform to the transformed variable solution to obtain the 

required answer in the original domain. 

However, the integral within the inverse transform may be difficult to evaluate. As 

described by Chin et al (1984), the essence of numerical techniques for integral transform 

methods is to approximate the required integral and thus permit its evaluation. Two common 

approximations arc asymptotic and modal expansion of the integral. Asymptotic 

approximations are based upon the assumption that a pre-specified error term is negligible 

provided a sufficient number of terms are included in the asymptotic expansion of the 

function/integral of interest. For the majority of acoustic problems, the integral transform 

process involves expressing the problem in a frequency related space (e. g. k-space) and 
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therefore the issue of "sufficient number of terms", can be addressed by ensuring that 

propagation is evaluated after a significant number of cycles. Consequently, asymptotic 

expansions are an effective means of catering for far-field (large number of cycles in the spatial 

domain) or long propagation time (large number of cycles in the temporal domain) solutions. 

The alternative approach of modal expansion obtains a solution by the summation of 

truncated series of oscillatory modes that satisfy the boundary conditions of the problem. For a 

simple case this is a compact and convenient solution, but as the number of oscillations 

increases for a given geometry, more and more modes (some of which may be compound) need 

to be included. Therefore, this method is of use if the number (and complexity) of modes 

needed for accurate approximation can be kept low by ensuring that either wavelength is long 

relative to the geometry of the problem, or that propagation time is kept low relative to the 

highest frequency. Consequently modal expansions are suitable for solving low frequency or 

near-field problems. The approximations necessary for either of these methods are rarely 

applicable for problems specified within the intermediate region between the near and far fields 

and thus integral transform methods are only applicable for certain combinations of geometry 

and frequency (wavelength). This lack of generality is a major restriction, and renders this 

method unsuitable for use in this work. 

1.3.2 Pseudospectral Methods 

Pseudospectral (PS) modelling relies upon calculating the spatial and temporal 

derivatives of the relevant governing equations in separate manners. The spatial derivatives are 

dealt with by decomposing the spatial domain into various subdomains, using curvilinear 

mapping functions where necessary to cater for specific geometries. Within each of these 

subdomains, the governing partial differential equations can be treated as ordinary differential 

equations, and the spatial derivatives can be calculated by spectral methods. The subdomains 

are then recombined to produce a global solution that is then propagated in time by more 

conventional (e. g. 4th order Runge-Kutta) time-stepping schemes. 

Some of the earlier PS methods, such as that described by Fornberg (1987), used 

techniques based purely upon Fourier transform techniques to evaluate the spatial derivatives, 

and as such were only applicable to problems that had periodic boundary conditions. More 

recently however authors such as Wojcik et al (1997) have used absorbing boundaries known 

as "Perfectly Matched Layers" to circumvent this limitation. The use of Chebyshev spectral 

methods has been proposed as a means of tackling the need for periodic boundary conditions 

spatial derivatives, and Nielsen and Hesthaven (200 1) have recently used this technique to 
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simulate propagation within elastic media. However, both of these methods come at the cost of 

added complexity, and being restricted to using only absorbing boundary conditions may also 

prove problematic during this research, since the simulation of plane wave propagation requires 

rigid boundaries to support the pressure wave as it propagates. 

One of the major advantages of the PS method is the ability to use computational grids 

that are very coarse compared to meshes that would be used for similar Finite Element or Finite 

Difference techniques. This can dramatically reduce the computational cost of the simulation. 

Certainly, spectral methods yield very accurate calculations of spatial derivatives in smoothly 

varying fields, such as would be found in homogeneous media. However, as highlighted by 

Mould et al (1999), field discontinuities, for example at the interface between two materials of 

different materials parameters (particularly density), can lead to modelling effors, such as 

spurious reflections and Gibbs phenomena. The solution to this is to use finer spatial intervals, 

which in turn negates the ability to use coarse grids. Some of the problems to be considered in 

this thesis include interfaces between materials of significantly different densities (e. g. 

diffraction from a metal wedge submerged in water), and thus the computational benefit of 

coarse grids would be lost. 

1.3.3 Finite Element Methods 

Finite Element (FE) techniques represent the domain not as a set of points, but as a set 

of subdomains (finite elements), where adjacent finite elements have points of interconnection, 

called nodes. Within each finite element the governing PDE is converted into an Ordinary 

Dfferential Equation (ODE), and solutions to these separate ODEs must be continuous (along 

with its derivatives to a finite order) across the boundary between adjacent elements. Dealing 

with the PDE in this manner results in a large system of ODEs that is often conveniently 

specified in matrix formulation since linear algebra methods may be used to find a solution. 

An introduction to the solution of PDEs by FE methods can be found in both Lapidus and 

Pinder (1982), and Morton and Mayers (1994). 

By relating the behaviour of the entire element to the nodal behaviour, it is only 

necessary to evaluate the field variables at the nodes, thus ensuring continuity across adjacent 

elements. This is summarised by Morton and Mayers (1994) who state that one of the benefits 

of the FE method is that having decomposed the problem space into finite elements, the 

problem can be solved without the need to pay attention to the particular shape of the element; 

only the values at its nodes are of concern. The process of dividing the total domain into the 

discrete finite elements is referred to as meshing. Since the location of nodes is unrestricted, it 
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is possible to generate meshes for problems with complex geometry without the constraints of 

having to impose a regular (e. g. Cartesian, cylindrical) grid pattern on the problem space. This 

also means that nodal positions can be made to coincide with the interfaces between different 

materials within the domain,, however arbitrary their geometry may be. Chin et al (1984) notes 

that these properties make FE techniques particularly attractive for modelling structures. 

Consequently FE methods are used extensively in mechanical and civil engineering and thus 

there is a wide range of commercially available FE simulation packages: PAFEC, ABACUS, 

ANSYS to name but a few. 

The starting point for FE models of acoustic propagation is usually the Helmholtz 

equation. Thus, the problem is expressed in terms of single frequency, continuous wave 

excitation. If a time domain solution is required, then the FE model must be run at a number of 

different excitation frequencies, each result being incorporated into a composite frequency 

domain solution. An inverse Fourier transform must then be applied to convert the composite 

frequency solution into the time domain, however this process was rarely automated within the 

software and the user had to conduct this process manually. Recent developments have also 

catered for the analysis of transients by factorising the system matrix and then providing 

re-solutions at successive timesteps. This type of solution has recently been implemented by 

the commercial package PAFEC vibro-acoustics software (SER Systems Ltd, Nottingham, 

UK) in collaboration with the National Physical Laboratory, London, but the system is 

computationally very intensive and hence slow. 

One of the inherent limitations of any numerical scheme is its domain size. When 

modelling a self-contained structure (e. g. structural vibrations within a bridge or engine) both 

the problem space and the mesh used to model it are of finite extent. However, it is often 

necessary to try and map a region of infinite extent onto a finite sized computation domain; this 

is particularly the case when modelling an acoustic field propagating out into an infinite fluid 

region. If this is not modelled correctly there exists the possibility that spurious reflections 

from the computational boundaries will create artefacts that interfere with the "true" solution. 

This problem is particularly significant when conducting FE modelling of acoustic 

fields due to the continuous nature of the source fimction. Since the FE solution is computed 

globally across the domain, reflections from computational boundaries will automatically be 

included within the solution. One method of alleviating this problem is to terminate the edges 

of the FE model with "wave envelope" elements. These elements are intended to simulate 

propagation to infinity, and consequently remove spurious computational boundary reflections. 

However, as reported by Hurrell and Esward (2003) and the references therein, these elements 
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must be applied carefully if spurious reflections are to be avoided. Other methods of allowing 
FIE models to cope with open field propagation are emerging such as using a mapping function 

proposed by Gan et a] (1993) to map the Sommerfeld radiation condition at infinity for use at a 

much reduced distance. However, this technique is limited to cylindrical geometries, and a 

more general means of dealing with the reflection from the computational boundary is still 
being sought. An alternative approach is to couple the FE solution to a boundary elements 

method (BEM) solver. The BEM expresses the problem only in terms of field values inside 

and outside of a boundary surface. Radiation to infinity simply requires the evaluation of the 

field beyond the boundary surface to some infinite extent. However BEM can produce non- 

unique solutions, and requires special techniques to approach this problem, particularly at 

higher frequencies. 

Although FIE solutions are ideal for modelling enclosed structures, there is the need for 

ongoing work to overcome some of the limitations that are faced when modelling more general 

acoustic propagation problems. Modified FE methods have been successfully employed to 

model acoustic and elasto-acoustic propagation in a variety of situations. Ludwig et al (1989) 

use FIE methods to examine propagation of transient waves in an elastic halfspace, whilst 

Murphy and Chin-Bing (1989) use a radiation boundary condition to examine ocean acoustic 

propagation. However, these extensions to standard FE methods are not necessarily generally 

applicable, and thus are not widely available on commercial FE packages. 

1.3.4 Finite Difference Methods 

The basis of a FD model is the PDE describing the propagation of acoustic waves, and 

a domain of interest through which acoustic radiation propagates. The continuous domain of 

interest is overlaid with a discrete grid and the PDE governing wave propagation is then solved 

at each node on the grid by applying a finite difference approximation to the differential 

components within the PDE. These finite difference approximations are commonly found by 

truncation of Taylor series expansions of the appropriate PDEs to a specified order. 

Smith (1985) presents a good introduction to FD methods. Unlike FE methods, it is rare to 

approximate the Helmholtz equation using FD methods, and more common choices of PDEs to 

solve by FD methods are the wave equation and the equations of elastic wave propagation. 

if the temporal dependence is discretised in a similar way, it is also possible to step 

through consecutive time intervals and thereby solve the PDE across the domain at each time 

step. Thus, by using FD methods it is possible to obtain a result in the time domain directly. 

This is advantageous since the results so obtained bear a close initial representation to 
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experimental results, and thus may appear more intuitive. Similarly, by observing a time- 

marching simulation one may gain insight into the source of a particular feature of the acoustic 

field. If a frequency domain representation of the solution is needed, then simple application of 

a forward Fourier transform to the time domain waveforms will yield a solution in frequency 

space. 

It should be noted that when constructing the mesh for an FD solution the grid is fixed. 

If there is a boundary between two different material types then either the grid increments need 

to be altered to accommodate the geometry, or material parameters need to be approximated at 

particular nodes to represent the required geometry. This is in contrast to FE methods where 

the mesh always fits the geometry of the problem. 

As mentioned in Section 1.3.3,, the modelling of acoustic fields, and the mapping of an 

infmite region onto a finite computation domain, is problematic. However, the generation of 

solutions in the time domain has benefits in this context. By extending the computational 

domain, it is possible to create a time delay between the signal of interest and the reflection 

from the computation boundary. The signal of interest can then be time gated to isolate it from 

the spurious reflections. Clearly, extension of the computational domain in this manner 

increases the computation burden. An alternative method of dealing with computational 

boundary reflections is to use an Absorbing Boundary Condition (ABC). There are many 

ABCs available for FD schemes,, but each has the same goal as wave envelope elements in FE 

modelling: to simulate propagation to infinity and thus eradicate reflections from the 

computational boundary. However, the ABC accomplishes this by attempting to absorb all 

wave field components incident upon it, thus simulating a wave that only radiates out of the 

computational domain. 

FD methods have become popular in the oceanic research, non-destructive testing 

(NDT) and geophysics communities. Within oceanic research it is common practice to apply a 

parabolic approximation to the wave equation to yield a computational scheme that propagates 

a wave in one direction only (referred to as a "One-Way Wave Equation" - OWWE). A 

number of examples of FD solution to OWVVEs, and their application in solving oceanographic 

problems can be found in Jensen et al (1994) while Stephen (1990) reviews a wide range of 

different FD methods that can be applied to acoustic propagation. 

FD techniques are used in the NDT community to model acoustic wave propagation 

expressed in terms of particle displacement. Bond (1978) and Harker (1984) both use a 

formulation based upon tracking the horizontal and vertical components of particle 

displacement. The geophysics community also use a variety of different FD techniques to 
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simulate seismo-acoustic propagation, but many FD models are based around the 

stress-velocity formulation initially described by Virieux (1986). The insensitivity to material 

parameters and general applicability of the Virieux method has resulted in its application both 

in the ocean acoustics and NDT communities [see Stephen (1990) and Chang and Randall 

(1988) respectively]. 

Although commonly used to solve a range of different problems, the availability of 

commercial FD models is severely limited. The majority of sites conducting FD modelling do 

so using custom software that has been written "in-house". To date, there appears to be only 

one commercially available software package: Wave2OOO. This package however, appears to 

use a displacement only formulation, as opposed to the more flexible Virieux stress-velocity 

formulation. It has also been designed with the intention of simulating results obtained 

experimentally, and thus data can only be obtained by placing a pseudo-transducer at 

appropriate locations in the field, and examining its output. Clearly, it would be more desirable 

to have direct access to the field variables so that the user could conduct their own post- 

processing as necessary. 
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1.4 Summary and Conclusions 

The closed form expressions provided by analytical solution of a PDE are often 

convenient and compact. However, the assumptions required to solve a problem analytically 

are often overly restrictive, and there may be reduced correlation between them and the 

physical reality of the problem. Thus, analytic methods may provide appropriate solution for 

limited circumstances/geometries, but are not generally applicable. Integral transform methods 

are more widely applicable, but still have restrictions upon their usage. 

By far the most generally applicable methods of acoustic modelling are the PS, FE and 
FD techniques. All three methods are computationally more expensive than analytic or integral 

transform methods, but have much greater generality, although for simple geometries the 

computational cost of PS methods is kept to a minimum. PS and FE method have the major 

advantage of being able to adapt the problem mesh to suit the geometry of the problem, 

whereas FD methods may need to approximate material parameters to conform with the 

constraints of the discretisation grid. However, if the simulation involves media with 

significant density variations, much of the computational benefit of PS is negated, by the need 

for finer sampling. This factor, along with the problems associated with need for periodic 

boundary conditions, are therefore considered to be make PS methods less suitable for use in 

this study. 

Both "finite" methods face the problems of spurious reflections obtained from the 

computational boundaries, but users of both methods have developed means of minimising 

problems of this type. However, techniques to deal with edge reflections appear slightly better 

developed in FD than analogous developments in FE modelling. The major distinction between 

FE and FD methods is the domain in which their solutions are obtained. FE methods are used 

to solve the Helmholtz equation and thus yield solutions in the frequency domain, whilst FD 

modelling of the wave equation obtains time domain solutions. This difference has a number of 

effects: 

* If both time and frequency domain representations of the solution are required, FD 

is often computationally much cheaper because: 

oA FD time domain simulation needs to be run once. Results are then 

Fourier transformed to yield spectral representation. 

0A FE frequency domain simulation needs to be run a number of times to 

generate a composite spectrum that can be inverse Fourier transformed to 

yield a temporal solution. 
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0 Time gating to isolate particular waveform features is possible in FD methods but 

not in FE modelling. This technique can also be used to remove computational 

boundary reflections. 

0 Observing the evolution of a wave field as a FD simulation progresses may help to 

identify which areas within a given geometry cause particular features in the 

acoustic field. Each FE simulation only produces results at a single frequency, and 

thus lacks this possibility for additional insight. 

Both FE and FD methods have general applicability, but for this study, the advantages 

offered by FD methods in terms of a time domain solution appear to outweigh the meshing 

benefits that are offered by FE modelling. It was therefore considered that the goals of this 

project were best served by FD acoustic modelling. However, the lack of a range of 

commercially available FD simulation packages required that custom software had to be 

written to fulfil these modelling requirements. 
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1.5 The Way Forward 

In order to develop a FD model capable of solving complex acoustic propagation 

problems, it is necessary to consider both an initial equation describing the motion to be 

modelled and a means of representing it numerically. The next chapter starts by deriving the 

acoustic wave equation, as well as introducing Fl) approximations of this equation. It then 

proceeds by describing the development and testing of a simple one-dimensional acoustic 

simulation package based on FD approximations of the wave equation. Jensen and 
Ferla (1990) note that there is always the "fundamental problem of how to ascertain that a 

numerical solution generated by a complex computer program ... ... 
is an accurate solution 

of the posed mathematical problem". This issue of validation will be discussed at length 

throughout this work, and starts with initial investigation of the quality of results produced by 

the simple one-dimensional model developed in this chapter. 

The lessons learnt from this exercise are utilised in Chapter 3 where the 

implementation of a full two-dimensional FD model is described. Clearly, a two-dimensional 

model has the capability of supporting both longitudinal and shear wave modes, and thus a 

more comprehensive description of wave propagation, in the form of the elasto-dynamic 

equations of motion, is defined. In order to provide greater modelling flexibility and reduce the 

effect of numerical artefacts,, an improved FD scheme based upon "staggered grids" is 

introduced. Chapter 3 closes by examining the differences between various FD operators, in 

terms of both computational cost, and quality of simulated results. 

Numerical models may produce results within which numerical errors manifest 

themselves, and are deleterious to the quality of results. The concept of phenomena such as 

numerical instability and numerical dispersion is introduced in Chapters 2 and 3, but Chapter 4 

enhances the discussion by presenting means of identifying, and distinguishing between, these 

occurrences. To complement this discussion, a procedure for preparing a Fl) model so as to 

avoid such undesirable affects is also presented. Chapter 4 continues by presenting a few 

examples of apparently simple modelling scenarios that are either difficult to implement or that 

have unexpected consequences; where possible, remedial action to overcome the modelling 

difficulty is suggested. The remainder of Chapter 4 is devoted to a range of test simulations 

designed to begin the model validation process. Within these simulations, qualitative 

evaluation of the models ability to predict propagation of acoustic waves across a variety of 

interfaces between fluid-fluid and fluid-solid regions, at both normal and oblique incidence, is 

presented. 
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Chapter 5 begins the investigation of diffraction problems. Having proven the FD 

model's ability to predict reflection and transmission phenomenon in the previous chapter, its 

ability to simulate diffractive wave fields is investigated with comparison between simulated 

and analytical solutions for diffraction by wedges and half-planes. A barrier comprising a two- 

layer structure of ideally rigid and ideally compliant materials (the so-called "hard-soft" 

barrier) will then be examined. Although the FD model agrees well with the analytical solution 
for diffraction by such a barrier, the field produced in an experimental examination of this 

problem is found to exhibit some significant differences. 

The relevance of the "hard-soft" barrier to materials characterisation experiments, and 

the consequent need to understand the diff-raction process is discussed at the start of Chapter 6. 

Refinements to the I'D model to more accurately represent the experimental configuration are 

then prepared and presented. Interpretation of the modelled results provides insight to the 

mechanisms responsible for the differences between analytical and experimental results, and the 

model is then used to ascertain what practical methods can be used to minimise the effects of 

diffraction (and other related effects) in the context of an experimental configuration. This 

chapter then goes on to consider an alternative materials characterisation experimental set up, 

where the performance of an acoustic panel is considered, not in isolation, but as part of a 

larger structure of similar panels. A critical assessment of this new method is undertaken, and 

its merits as a materials characterisation method are presented. 

All of the modelling work undertaken thus far has used the FD model to simulate 

problems expressed in terms of two-dimensional rectangular co-ordinates. As will be discussed 

in Chapter 3, minimal variations to the kernel of the FD model can be employed to extend the 

capability of the model to simulate three-dimensional simulations in cylindrical co-ordinates, 

providing that the system is axi-symmetric. Extension to this new co-ordinate system is 

presented in Chapter 7. In order to validate the new axi-symmetric 3D code, an inter- 

comparison between the FD model and both an analytical and an alternative numerical model is 

conducted for a circular plane piston source, radiating in a rigid baffle, and subject to both 

continuous and transient excitation. The model is then used to consider two separate cases in 

which complex acoustic propagation effects (e. g. diff-raction, re-radiation) have a limiting effect 

on measurement quality. 

The first case, the acoustic impedance tube, is another acoustic materials 

characterisation configuration, designed with the intention of eliminating some of the 

diffraction problems discussed in the Chapter 6. However, other problems are known to limit 

the performance of such apparatus, and the first half of this chapter is devoted to an 
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examination of such phenomena by means of the FD model, and a consequent set of 

recommendations for improved measurement practice when using the pulse tube. 

The second case explored with the FD model is that of the frequency response of 

needle-type hydrophones. Hydrophones of this type are known to exhibit a non-smooth 

frequency response that is attributed to radial resonances arising from diffracted edge waves 

interfering with each other as they pass in front of the active sensing element. This hypothesis 

is verified with the FD model,, and then the frequency response as a function of a range of 

alternative geometries for the tip of the needle hydrophone is explored. The frequency response 

of a standard needle hydrophone is established experimentally and compared with the result of 

a FD simulation of an identical problem. Subsequently one of the geometric modifications 

investigated earlier is applied to the needle hydrophone, and its new frequency response is again 

experimentally determined. The benefits of the FD model as a design tool to optimise sensor 

performance are then discussed, along with any limitations that this approach may have. 

The final chapter presents the findings of this thesis in a concise form by drawing 

together all of the points raised in the individual chapters. Any recommendations for improved 

measurement technique that have arisen from the preceding work are also re-iterated here. The 

thesis closes by summarising the benefits of the numerical model that has been developed, both 

in terms of numerical solution to specific problems, and with regard to enhancement of 

scientific understanding. 

15 



2. ONE DIMENSIONAL MODELLING 

2.1 Introduction 

This chapter introduces acoustic modelling using Finite Difference methods, and also 

provides an overview of some of the limiting aspects of such models, as well as methods of 

addressing them. Initially the one-dimensional (I D) wave equation will be derived, followed by 

a derivation of the simple FD operators that will be used to provide a Fl) approximation to the 

ID wave equation. This approximation forms the basis of the ID model, which is completed 

by the definition and implementation of the necessary initial and boundary conditions. The 

concepts of numerical stability, consistency and convergence are also introduced. 

A validation of the model, by comparing modelled results with those obtained from 

analytical solution, is then presented. Discrepancies between the model and analytical results 

are analysed and the problem of numerical dispersion highlighted. The issues associated with 

numerical dispersion are then discussed and an approach to address this problem is presented. 
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2.2 Derivation of Required Equations 

2.2.1 The One-Dimensional (ID) Wave Equation 

The first stage in the development of any model is the derivation of the equations that 

describe the physical phenomena under investigation. Consider a lossless fluid constrained by 

rigid boundaries of a cylinder with cross sectional area, A, as shown in Figure 2.1. Consider 

also an infinitesimal volume of that fluid starting at x and occupying a volume A. & The fluid 

within this volume is assumed to be at equilibrium pressure po and have an equilibrium density 

of po. This volume will be subject to a displacement u when acted upon by a small amplitude 

propagating acoustic wave. 

The adiabatic Bulk Modulus, K, is the pressure change, Ap, per fractional change in 

volume AVIV, and is thus given by 

An ap 

Aý4' 
v (3 v 

Equation 2.1 

Hence, the acoustic pressure, p, can be written as 

p-po +Ap=po -K 
AV 

V 

Equation 2.2 

However, the cross-sectional area, A, is constant, which leads to 

AV Au c9u 
Ax a 

Equation 2.3 

By combining Equations 2.2 and 2.3 it is found that 

P=PO -K 
au 

ax 

Equation 2.4 

Thus, the net force, F, acting upon the infinitesimal volume of gas, as a result of an acoustic 

wave propagating in the x-direction, is given by 

-[p(x + Ax) - p(x)IA - 

Equation 2.5 

By application of Newton's 2 nd Law we find that 
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-[p(x+Ax)-p(x)IA=pOAAx. 
U 

()12 

p(x + Ax) - p(x) 
= _po alu 

Ax at, 

Equation 2.6 

Taking the litnit of the left hand side of Equation 2.6, as Ax tends to zero, yields the first order 
derivative of p as a function of x. An expression for the left hand side of Equation 2.6 can be 

obtained from Equation 2.4 by differentiating with respect to x to give 

alu 
aX 2 ax 

Equation 2.7 

Combining Equation 2.6 with Equation 2.7 yields the one-dimensional lossless wave equation 
for propagation in fluids 

a2U ()2U 

aX 2 
C2 at2 

Equation 2.8 

where the phase speed, c, is given by 

I- 

-PO 
c2K 

Equation 2.9 

2.2.2 Derivation of Finite Difference Operators 

To determine a fmite difference approximation, it is necessary to truncate the Taylor's 

series expansion of a function. Consider the expansion of a function p about point x, by an 

increment Ax, as described by Smith (1985). Depending on whether the series expansion is 

conducted at a point slightly ahead of, or slightly behind the point x, determines which of the 

two equations is obtained: 

p(x - Ax) = p(x) - Ax. 'dp + 
(Ax)' 

. 

d'p 
+ higher order terms 

A2 dx 2 

Equation 2.10 

dp (AX)2 d2p 
p(x+, Ax)=p(x)+Ax. -. -+higher order terms. 

A2 dX2 

Equation 2.11 
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Truncation of either series after the first order derivative term leads to expressions that will 

have a leading error term of order (Ax). These truncated series are called the first order, 

backward and forward difference operators, and using the nomenclature of Morton and 

Mayers ( 1994) are denoted S- and 5+ respectively. Expressions for these operators are thus 

ap 
g- p(x) - p(x - Ax) 

ax Ax 

Equation 2.12 

and 

ap p(x + Ax) - p(x). 
ax Ax 

Equation 2.13 

Subtraction of Equation 2.12 from 2.13 yields the central difference approximation for a first 

order derivative, 45, which has leading errors of order (AX) 2, and is given by 

. 
ýp p(x + Ax) - p(x - Ax) 

ax 2. Ax 

Equation 2.14 

Adding Equation 2.10 to 2.11 gives 

p(x + Ax) + p(x - Ax) = 2p(x) + Ax 
2d 

2p 

+ terms of order 4 and higher, 
dX2 

Equation 2.15 

which can be truncated to leave an expression for the centred second order derivative, d, which 

has a leading error term of order (AX) 2, and is given by 

a2 P p(x + Ax) - 2. p(x) + p(x - Ax) 
&2 (, AX) 2 

Equation 2.16 
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2.3 A 1D Finite Difference Acoustic Model 

2.3.1 Implementation of the ID Wave Equation 
Clearly, the ID wave equation as defined in Equation 2.8 is equally applicable to 

acoustic pressure, as it is to displacement. Denoting acoustic pressure, p, in its more general 
form ofp(xt) a generalised version of the wave equation is 

i o2 o2 

c2 C72 
P(X't) = 

&2 
P(X't)' 

Equation 2.17 

By defining a discretised grid of x,, =nAx and t .. =mAt such that p' (x, t) = p(nAx, mAt) , 
it is n 

possible to incorporate two FD approximations of the form 2.16 into 2.17 to obtain 

pm+' -2'+ p'-' pm - 2pnm + pn' n Pn n n+l -1 
c2 

(At)2 (AX)2 

Equation 2.18 

which is a second order representation of the lossless 1-dimensional wave equation. This can be 

re-arranged to vield an expression for the variable ofp at the (m+])'h timestep, 

2C2) M 2C2(pm 
+Pml)_Pm-l, Pn = 

2(l 
-k+k 

m+l Pn 
n+l n- n 

Equation 2.19 

where k is defined as, k == AtlAx. 

From Equation 2.19 it can be seen that it is possible to define any new point on the 

space/time computational grid in terms of values at previous points. This provides the basis 

for modelling wave propagation; any new point at the (m+])'h timestep can be generated in 

terms of values at timestep m or earlier. Having obtained all values at time m+], the model is 

then advanced one step to evaluate the (m+2)htimestep. 

It is also necessary to consider what initial conditions are to be used. In this particular 

case, the medium is assumed to be at equilibrium prior to the presence of a propagating 

acoustic wave. Since the model above has been defined using acoustic pressure as the field 

variable, the initial condition is simply achieved by setting acoustic pressure to zero at all 

points on the computation grid. 
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2.3.2 Application of a Source Function 
The wave equation as expressed in Equation 2.8, is homogeneous, and as such, makes 

no provision for the application of a source (driving) function. This requires the 

inhomogeneous wave equation, given by 

a2U 

-I 

a2U 

+f (x, t) 
aX2 C2 at2 

Equation 2.20 

where f(x, t) is an arbitrary source function. A similar modification can be made to the FD 

approximation of the wave equation, given by Equation 2.19. This yields 

I)2m22 M-1 
p, " = 2(l -kc )p, +kc (p,, 

+, + pn' 1) - p,, + g(Ax, At) 
n+ 

Equation 2.21 

where g(Ax, At) represents a source function on the computational grid. The choice of source 

function now needs careful consideration,, since its temporal variations can either be continuous 

or localised. If the former were selected then a simple choice of source function would be a 

sinusoid. However, this source will only drive the system at a single frequency. As mentioned 

in Chapter 1, FD solutions are obtained in the time domain and a full frequency response can 

be obtained by simple application of Fourier transform techniques. 

However, in order to exploit this, it is necessary to use a source function that has a 

broad spectral content. This could be achieved by using a continuous source containing 

multiple higher harmonic components (e. g. a swept sine wave/chirp). However, as will be 

seen below, it will be necessary to be able to isolate signals reflected from different interfaces. 

If a continuous source function is used,, analysis of this kind becomes somewhat complicated, 

and it is more convenient to utilise a source function that is inherently localised in space and 

time. 

As an idealised linear acoustic wave propagates through a medium, the particles 

composing the medium are displaced from their equilibrium position, before the internal 

restoring forces bring the particle back to its original position (potentially via some damped 

oscillatory motion). Once all particles have been restored to their equilibrium positions there 

will have been no mass flow. In order to simulate this type of acoustic disturbance it is 

IA swept sine wave (chirp) can be considered as a sinusoid of continuously varying 

frequency, and can be expressed mathematically as sin 
ff, 

+ 
fncr 

Xt dt where f, is the start 
tP 

frequency, fi, cr 
is the frequency increment and tp is the time period of the repeating signal 
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necessary to ensure that any source function used has a mean level of zero; a non-zero DC level 

is indicative of mass flow. 

It can be seen from Equation 2.19 that a value of a point p"' depends on the values n 

of the two points immediately preceding it, pn'andpn'-l 
, and on the values of points either side 

of the point behind it, p,,, and pn' I. 
Thus, if a function is discontinuous in either the zeroth or n+1 n- 

the first order derivatives,, then any discrete scheme will be unable to accurately model the 

discontinuity unless the spacing increment is infinitesimally small. Obviously the purpose of 

any numerical scheme is to attempt to model a situation whilst departing from the requirement 

for an infmitesimally spaced continuum. In order to prevent such a "discontinuity error" it is 

necessary to ensure that any function, and its first derivative, are smoothly varying 

In order to comply with the requirements for a source function listed above, a two 

cycle sinusoidal toneburst with a Gaussian envelope was used. This type of signal is localised 

in space, has zero DC level (no mass flow), and is smoothly varying in both zeroth and first 

order derivatives. This function has a broad frequency spectrum - the final requirement for a 

source function. 

2.3.3 Boundary Conditions and their FD Representation 

Having defined a means to compute field variables within the interior of a discretised 

grid, it is now necessary to develop a method for computation of points that lie on the boundary 

of the computation domain. The two basic forms of boundary conditions are the Neumann and 

Dirichlet Boundary conditions. The simplest of these, the Dirichlet boundary condition 

requires that a physical parameter be set to zero at the boundary for all time. Thus, a perfectly 

compliant material, where acoustic pressure, p(x, t) is zero at the boundary, offers a Dirichlet 

type boundary condition. 

The Neumann boundary condition requires that the first derivative of a parameter be 

zero at a boundary, such as the acoustically hard boundary at which the normal derivative of 

displacement (i. e. acoustic particle velocity) is zero. The current FD model is being developed 

in terms of acoustic pressure. As such, the setting of the first derivative of acoustic pressure to 

zero at the boundary does not offer such a conveniently idealised boundary as the Dirichlet 

variant. 

Implementation of the Dirichlet condition at both ends of the I'D grid can be achieved 

by setting the first and last points of the data grid to zero, for all time (i. e. for a grid of length, 

L, and of duration t) 

M0 form= 0 PO = PL I 
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Equation 2.22 

Equation 2.19 can then be used to calculate the value of acoustic pressure at all other nodes in 

the range I <x<L- 1. 

For the simple case of ID propagation, the ability to simulate a Neumann Boundary 

condition (the acoustically rigid boundary) is an interesting study, but not essential for the work 

of this chapter. However, once the FD model is expanded to cater for 2D propagation, 

acoustically rigid boundaries will be essential in the modelling of plane waves, as they will be 

required to support the pressure waves at the edges of the computational domain. in such a 

situation, the pressure release behaviour of an acoustically soft (Dirichlet) boundary would 

reduce the amplitude of the incident wave at the edges and the wave would no longer be plane. 

Thus, the principles required to implement a Neumann boundary are presented here. In order to 

generate this type of boundary condition at both ends of the grid such as, 

ip(X, t) 
- 

cýl)(xet) 
::::::: 

03 

a 

x=O a x=L 

Equation 2.23 

it is necessary to evaluate the derivative of the computational variable at the end points. 

Clearly it is possible to use a first order forward or backward difference approximation of the 

forni, 2.12 or 2.13, but these expressions are only accurate to the first order. 

Recall that difference operators of the fonn Equation 2.16 are accurate to the second 

order. Thus, to avoid degradation of the accuracy of the solution, a second order boundary 

approximation should be used. A suitable choice of operator for this task is the centred 

operator of equation 2.14, which, when expressed in terms of discretised grid variables is 

,mmm OP 
n 

Vn+l - Vn-I 

a 2. Ax 

Equation 2.24 

In order to utilise this more accurate approximation, it is necessary to temporarily 

introduce points that lie outside the conventional computational grid. Considering Equation 

2.24 in the context of a point at x:: --O it is seen that 

mm P+l - P-l- =0 

2. Ax 
mm 

-P +1 

Equation 2.25 

By now using Equation 2.25 in the FD approximation of the wave equation, Equation 2.19, at 

position x=O, one obtains 
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M+l 2C2)pm 2C2 (pm + pm pm-1 po = 2(l -k0 +k 1 -1 0 

= 2p M+ 2k 2C2 (pm + pm) _ pm-1 
0100 

Equation 2.26 

A similar process can be used at the point x=L at other end of the computation grid, to yield 

pm+l = 2pm + 2k 
2C2 (pm 

I_ 
pm) _ pm-1 LL L- LL 

Equation 2.27 

2.3.4 Interface Conditions 

Up to this point, it has been assumed that the wave propagation to be modelled exists 

only in a homogeneous fluid medium. However, the behaviour of a waveform as it encounters 

an interface between two different homogeneous media is of interest. Thus, a procedure must 

be developed to cater for such interactions. For simplicity, it will be assumed that the media in 

which the waves propagate are incompressible liquids. Two fundamental equations used in 

acoustics are (i) the equation of continuity 

&=-I VP 

C7 P,, 

Equation 2.28 

and, (ii) the velocity potential, defined as 

ii = V(D 

=ý 
C'ý 'ý 0 

Equation 2.29 

Combining Equations 2.28 and 2.29 yields 

V(Pý 
'tD 

+p =09 
C7 

Equation 2.30 

and hence 

CID 
Po-=-p 9 

C7 

Equation 2.31 
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where po is the density of a medium, (P is the acoustic velocity potential and u is the acoustic 

particle velocity. The boundary conditions at the interface require continuity of pressure and 

continuity of the normal component of particle velocity. As indicated above, the wave is purely 

one dimensional, travelling in the x-direction. Thus, the normal component of particle velocity 
is known. Let x=B be the position of the interface, and the media be known as medium I and 

2 respectively, then we can formulate the interface conditions as 

Pl (X't)1 
x=B 

- Pl (X't)1 
x=B 

, iv 
, 
(X, t) c"kp c 

2(X3t) 

x=B 
a 

x=B 

Equation 2.32 

If the functional (x, t) is dropped for convenience, and the second part of Equation 2.32 is 

differentiated with respect to time it is seen that 

x=B x=B 

OID 0 týID2 

C7 
a C7 

x=B x=B 

Equation 2.33 

Finally, Equations 2.31 and 2.33 are combined to give 

472 

x=B 
P2 

x=B 

Equation 2.34 

Having explicitly defined the interface conditions, it is now necessary to implement 

them on a FD grid. Consider an interface between two media occurring at the n th grid point 

along the x-axis, as shown in Figure 2.2. 

It will be necessary to consider the "Interface Point" as being in both medium I and 2, 

and as such a wave equation of the form Equation 2.3 will have to be defmed for both media. 

These equations are expressed in terms of variables p, and p2, where p, and p2are the acoustic 

pressures in medium I and 2 respectively. Consider a Taylor's expansion of the form of 

Equation 2.10 for the (n-I)th point in the grid, which then results in an expansion in terms of 

pi(x, t) (the interface point when considered as belonging to medium 1), and its derivatives at 

the interface. It should be emphasised that equating pressures at the interface is only valid 

because the current model is restricted to cope with propagation from one fluid medium into 

another. Re-arrangement of a discretised version of Equation 2.18 yields 
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, 
92 

pý (x, t) 2 [pm 
ar2 2 n-1 - pl + Ax 

Equation 2.35 

A similar process applied to P2 (X) 0 (the interface point is considered as belonging to medium 2) 

yields 

o2 P2 (XI 0 9P 2 m Ax 
a2 (AX)2 

[Pn+l 

- P2 - 

Equation 2.36 

By substituting each of these second derivative terms into their respective wave equations and 

rearranging, two equations for the first derivative terms are obtained 

(AXY d2p, CPI (XI 0 
ac Ax 

[ 

2(c, )2 & 
+PI-Pn-1] 

I (AX)2 02 CP2 (Xý 0 P2 m Equation 
a- Ax 

12(C2 

)2 . 72 
+P2-Pn+l 

1- 

2.37 

Substituting the two expressions of Equation 2.37 into Equation 2.34, and making use of the 

first expression of Equation 2.32, yields an expression of the form 

I 

lqlp(xýt) 1 
2 C7 

21 
PI 

(CI)2 )2 P2 (C2 

I [Vml 

-M 

n+ Pn 
(AX)2 P2 

mm 

-Pn-I 
- Pn 

A 

Equation 2.38 

In order to perform a simple check on the validity of Equation 2.38, consider the case 

of no interfacel in which case medium 2 is identical to medium 1. and hence p, ý p2, and 

CI 7: ý C2. Applying these identities produces 

I g2 
p(x, t) p,,,, -2p,, +p,, n+ n-I 

c2 072 (Ax)2 

Equation 2.39 

which can be clearly be seen to be the wave equation, Equation 2.17, with a centred second 

order finite difference approximation of the form Equation 2.16 applied to the right hand side 

term. A complete FD implementation of Equation 2.39, again utilises a centred second order 

finite difference operator to represent the second order derivative to result in 

m+l - 2p' I [Pn 

.n 2 (At)2 

II lp, 

(C. ), 
1 

+= 

P2 (c2)2 
p', -2p m 

n+ n. 
(AX)2 

[A 
pn-l - 2p,, 

A 

I- 

Equation 2.40 
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This can be re-arranged to give the p,, '+' in terms of previous timesteps only, and medium 

dependant variables. Using the simplification 

I-I+1 

)2 A 
'01 

(C, )' 02 (C2 

Equation 2.41 

and by recalling the definition, k= AtlAx, results in 

mm 

nm 
+1 2 

p' + 2Ak 2 Pn+l 
+ 

Pn-I M-1 p =2 I-Ak +n Pn 

101 102 
A 

102 

Equation 2.42 
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2.4 Convergence and Stability 

A method has been presented that allows the one-dimensional, lossless, linear, wave 

equation to be evaluated by means of FD approximations. It is now necessary to investigate 

whether the method presented is appropriate, and whether the solution it generates will be a 

good approximation to the true solution of the wave equation given certain initial conditions. 

There are three terms commonly encountered when discussing these issues: stability, 

consistency and convergence. Many texts on the subject of FD approximations provide a 
discussion of these terms. The defmitions below follow those given in Smith (1985) and 
Strikwerda (1989). 

Stability: A FD scheme is said to be stable if amplification of all components of 

the initial conditions (as a result of successive application of the 

scheme) are bounded. Stability ensures that no components grow 

unbounded. 

Consistency: A FD scheme is said to be consistent if the difference between the 

solution of numerical scheme and the solution of the partial differential 

equation, tends to zero as the grid spacing tends to zero, at every grid 

point. Consistency can be thought of as a measure of the truncation 

error of the numerical scheme. 

Convergence: A FD scheme is said to be convergent if the computed solution 

becomes an increasingly better approximation to the solution of the 

corresponding partial Merential equation, as the grid spacing tends to 

zero. Convergence can be thought of as a measure of the discretisation 

error introduced by approximating the partial differential equation by a 

FD scheme. 

A commonly cited relationship between these three terms is the Lax-Richtmyer Equivalence 

Theorem (see for example Richtrnyer and Morton (1967: pp. 34-36), which states that: 

"A consistent finite difference scheme for a partial differential equation for which 

the initial value problem is well posed is convergent if and only if it is stable. " 

Following the derivation in Strikwerda (1989: pp. 158-160) the scheme (Equation 

2.18) is shown to be consistent, and stable if and only if 

28 



At < 
Ax 

c 

Equation 2.43 

where c is the acoustic velocity in the propagating medium. This is the Courant-Freidrich- 

Lewy (CFL) condition. Thus, if the selection of At and Ax is constrained to comply with the 

CFL condition of Equation 2.43 to avoid instabilities, the Lax-Richtmyer Equivalence Theorem 

tells us that we have also taken the necessary measures to ensure convergence. 

We can also consider a physical interpretation of the CFL condition. Causality 

requires that the time taken for an event to reach a particular location is at least as large as the 

ratio of the distance to the speed of propagation in the medium. The purpose of Equation 2.19 

is to allow the calculation of acoustic pressure at some given location (xy) a timestep At ahead 

in time. This calculation is based upon pressure values at current (and previous) timesteps 

from several locations. To be able to do this, the pressure values at previous timesteps and 

positions must have had sufficient propagation time (Ax1c) to be able to reach (xy). An 

attempt to calculate a pressure value too far ahead in time (i. e. At > Ax1c) will be trying to use 

pressure values before they have had a chance to arrive, and instability will occur. Thus, 

Equation 2.43 is a statement of the principle of causality applied to the numerical 

approximation of the wave equation. 
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2.5 Validation of the Numerical Model 

2.5.1 Proposed Technique 

The first stage in the validation of the FD model is to ensure that a source waveforin 

can be propagated within a homogenous material. Once this has been accomplished, 

propagation across the interface between two liquid media is examined, although in the 

simplest case, the media on either side of the interface are the same. Results obtained from the 

FD simulation are compared with analytical solutions of this problem. Finally, propagation 

across a layer will be investigated, once again using an inter-comparison with an analytical 

solution. To conduct these assessments, two computational nodes (one on either side of the 

interface or layer) are identified, and the time history of acoustic pressure is recorded at each 

node. 

A direct comparison between the time domain waveforms recorded at the two locations 

could be made. However,, slight differences in time domain waveforms may be subjectively 

difficult to identify, and thus it was decided to compare the frequency spectra of the 

waveforms. The time histories at each location may contain multiple waveform pulses and thus 

it will be necessary to isolate appropriate features within the two distinct waveforms from their 

surrounding traces by means of a window function. The selection of appropriate windowing 

functions is subject to much discussion in digital signal processing literature (a good general 

discussion can be found in Proakis and Manolakis (1988: Sect 8.1.1)). The underlying 

problem to be resolved when selecting a window is that of minimising spectral leakageý in the 

frequency domain, whilst isolating the required portion of the time domain trace only. The 

Tukey, or 10% cosine tapered, window provides a good compromise between these two 

requirements, and was thus selected for use in this study. 

2.5.2 Analytical Reference Solutions 

An acoustic wave incident upon the interface between two media will undergo 

reflection and/or transmission. Analytical expressions for the magnitude of the reflection and 

transmission coefficients describing these phenomena are well known (Kinsler, Frey, Coppens 

and Sanders (1982: Chapter 6)). Specifically, for an acoustic plane wave normally incident 

upon a planar interface, the pressure amplitude reflection and transmission coefficients (Rp and 

TP) are 

Spectral leakage occurs when the Fourier transform of a truncated data sequence is 

calculated, and energy appears at frequencies that are not present in the "true' spectrum of the signal. 
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PZ -Z P, 2Z 
p=1, 

-21 and Tp =-2 Pj Z2 + Zi Pi Z2 + ZI 

Equation 2.44 

where P, 
, 

P, and A are the incident, reflected and transmitted pressure amplitudes respectively, 

and Z, and Z2are the characteristic acoustic impedances of the two media. 
However, Equation 2.44 is derived from the basic assumption that the incident acoustic 

radiation is propagating with constant angular frequency, co. Clearly, this is only valid if the 

incident acoustic excitation is continuous and sinusoidal, and this contradicts the suggestions of 

section 2.3.2 for a signal that is localised in time and space. In order to negotiate this problem 

the relevant incident, transmitted and/or reflected signals can be separated into constant 

frequency components. This is conveniently accomplished by means of the computationally 

efficient Fast Fourier Transform (FFT). The ratio of corresponding pairs of frequency 

components such as 

Prl Pr2 Pr3 

* ....... 

pm 
= Rp, 

1, 
Rp2ýR p3'*'* 

Spn) 
pi 

I' 
Pi2 ' PO Pin 

Equation 2.45 

will then yield the relevant complex reflection coefficients. The modulus of each of these 

complex reflection coefficients of Equation 2.45 can then be directly compared to values 

obtained ftom Equation 2.44. Similar calculations can be used to yield values for transmission 

coefficients. 

It is also necessary to evaluate the coefficients of reflection and transmission of 

acoustic pressure resulting from propagation through a layer. For the case of a ID model, we 

are restricted to normal incidence only, and thus, from Brekhovskikh and Godin (1990: pp. 26- 

28), the expression for the total pressure reflection coefficient from the layer is 

R 
(Z 

1+Z2 
XZ2 Z3)eik 2L+ (Z 

1-Z2 
XZ2 + Z3)ek2 

L 

p 
(Z 

1+ 
ZYZ2 Z3)e -ik2L + (Z 

1-Z2 
XZ2 

- 
Z3)ek2L 

Equation 2.46 

whilst the corresponding pressure transmission coefficient across the layer is given by 

TP = 
4Z 

(Z1 
- 

Z2 XZ2 
- 

Z3)e -ik2L + (Z 
1+Z2 

XZ2 + Z3)e ik2 L9 

Equation 2.47 

where k,, denotes the wavenumber in the e medium and L is the thickness of the layer. 
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2.6 Modelled Examples 

2.6.1 Propagation Within a Homogenous Medium 
As mentioned in section 2.5.1 the first stage of validation was to ensure that the I-D 

FD model was capable of propagating an acoustic signal within a homogenous material. It is 

convenient to be able to simultaneously assess whether the FD scheme is capable of 

propagating a waveform in a homogenous material without distortion, and whether the 

interface code is free from error. This can be achieved by specifying a geometry wherein there 

is an interface between two homogenous media, but where the media on either side of the 

interface are acoustically identical. 

A scheme of 256 computational nodes with an interface at node 75 was specified. 

Initially, the media on either side of the interface were set to be water; all the material 

parameters used for the validation of the ID Fl) model are given in Appendix A3. The source 

signal was described in Section 2.3.2, but its temporal waveform. and frequency spectrum can 

be found in Figure 2.3. Spatial and temporal increments were set as 80 in and 0.05 s 

respectively, and the scheme was run for 256 timesteps. It should be noted that the system is 

entirely linear and can be scaled by simple modification of the temporal and spatial increments 

by a multiplication. Thus using a spatial increment of 80 gm and a temporal increment of 

0.05 gs would allow simulation of aI M14z centre frequency pulse. Figure 2.4 shows a spatial 

variation of acoustic pressure at various timesteps as the pulse propagates in this scheme. As 

can be seen, the shape of pulse is preserved at all times, even after it has crossed the artificial 

interface. Evaluation of transmission and reflection coefficients at nodes 50 and 150 (one either 

side of the artificial boundary) revealed Rp = 0.000 and Tp = 1.000, as would be expected. 

This provides some degree of confidence in the ability to simulate the propagation of a 

waveform within a homogeneous medium, and across the interface between two such media. 

2.6.2 Propagation Between Two Homogenous Media - Initial Simulation 

Propagation across the interface between different media was then examined. The 

scheme was modified so that the material after the interface was different from water. All other 

scheme parameters were retained from the previous case. When the simulation was run for 

propagation into a range of materials, reflected and transmitted pulses were observed. The 

Included within Appendix A is a "pseudo-material": increased density water. Its purpose is 

to provide a material with identical longitudinal velocity to water, yet have significantly different 

acoustic impedance. Application of this material will be discussed in section 2.6.3. 
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materials used were deliberately selected to provide a range of acoustic velocities, with some 

values greater than, and others less than, that of water. However, the shape of the transmitted 

waveform. was seen to continually evolve as a result of propagation as can be seen in 

Figure 2.5. Initial waveform. distortion can be identified within this Figure at the trailing edge 

of the pulse at 7.5 s. This distortion increases linearly (both in amplitude and number of 

additional spurious cycles) as a fttnction of propagation distance. The plot recorded at 12.5s, 

has the distorted part of the waveform shown as an enlargement. 

These variations in waveform shape result in a change of the spectral content of the 

waveform. Thus, when the transmission coefficients were evaluated, a significant deviation of 

the results from those predicted by Equation 2.44 was observed. It is reasonable to expect that 

if transmitted waveforms have been corrupted then so too must the reflected pulse, but this is 

not evident when examining the time traces. However, comparison of analytical and FD 

modelled values for reflection coefficient show similar differencesl and thus confirms the 

hypothesis that waveform distortion is occurring on the reflected pulse as well. Figures 2.6 and 

2.7 plot the percentage deviation of FD modelled values from analytical predictions for 

reflection and transmission coefficients respectively. 

2.6.3 Numerical Dispersion 

Changes in waveform shape such as those seen in Figure 2.5 are normally associated 

with propagation through media that are attenuative and/or dispersive. The inhomogeneous 

wave equation (Equation 2.20) upon which the FD model is based is lossless, and makes no 

provision for attenuation. This equation also assumes that acoustic velocity is constant as a 

function of frequency, and thus is unable to cater for dispersive media. It must therefore be 

concluded that the changes in waveform shape (and the consequent effect this has on reflection 

and transmission coefficients) are caused by numerical errors in the FD simulation. 

Errors of this type are given the name "numerical dispersion", and a seminal paper by 

Dablain (1986) thoroughly discusses this issue. Numerical dispersion can be described as the 

variation of phase speed as a function of discretisation interval. If a waveform is sampled at an 

insufficient sampling interval, then numerical dispersion will result. Since both space and time 

are approximated on a discrete grid, there exists the possibility for both spatial and temporal 

dispersion, and each type will have a different effect on the waveform. Dablain summarizes 

these effects as follows: 

"the numerical dispersion in a scheme dominated by temporal error leads the 

signal, whereas the dispersion in a scheme dominated by spatial error follows 

the signal". 
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The waveforyn distortion highlighted in Figure 2.5 is seen to arrive after the main 

signal. Therefore it would seem reasonable to suspect insufficient spatial sampling, and the 

spatial numerical dispersion that arises from it, as being the cause of this error. Consequently, 

it is necessary to specify what spatial sampling interval is required to ensure dispersion-free 

propagation. Spatial dispersion occurs because there are insufficient data points per 

wavelength. Thus, to maintain a pre-requisite number of points per wavelength will be most 

difficult to achieve within the medium with the smallest wavelength. Recalling that wavelength 

is the ratio of wave speed and frequency (A=clj) reveals that the wavelength is a minimum 

whenever wave speed is a minimum or frequency is a maximum. These thoughts relating to the 

selection of spatial sampling interval are summarised by Dablain (1986) when he suggests the 

following equation: 

< 
Cmin 

A 
*S 

Equation 2.48 

where c .. j,, 
is the miniirnum velocity of sound within the simulation, fN is the maximum 

frequency of interest within the simulation and S is the minimum number of points needed to 

cover this maximum frequency for non-dispersive propagation. For a second order scheme of 

the form of Equation 2.19 Virieux (1986) and Levander (1988) suggest S= 10 is adequate to 

minimise spatial dispersion 

A comparison of Figure 2.6 with the data for longitudinal velocity of Appendix A 

shows that the deviation of modelled results from analytical values increases as the longitudinal 

velocity decreases. This is consistent with Equation 2.48 because a reduction in the minimum 

velocity requires a corresponding reduction in spatial sampling interval to ensure dispersion 

free propagation. However, as stated earlier, the spatial and temporal sampling intervals were 

kept constant throughout this simulation, and therefore Equation 2.48 will be violated. It 

should also be noticed that the artificial material "increased density water" does not exhibit any 

errors in reflection and transmission coefficient. Although this material has significantly 

different acoustic impedance from "ordinary" water, it has the same acoustic velocity. This 

also indicates that acoustic velocity is an important factor in the cause of errors in simulation - 

which is consistent with the suggestion that spatial dispersion is the source of these problems. 

2.6.4 Propagation Between Two Homogenous Media - Revised Simulation 

Using the same form of the source signal as in Figure 2.3, but with a larger time 

increment between adjacent points, has the effect of increasing the signal duration. This also 

reduces the bandwidth of the source signal (and therebyfN); this makes it possible to meet both 
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the dispersion limits (using S= 10) for a range of materials selected from Appendix A with the 

same spatial and temporal increments as used previously. This is accomplished because a 

lower frequency signal will have a correspondingly longer wavelength, and will therefore have 

a greater number of spatial sampling points per wavelength. The spectrum of the revised signal 

can be found in Figure 2.8. To confirm the hypothesis that spatial dispersion was the cause of 

the aforementioned effors, the previous simulations were re-run with a source of twice the 

duration (and a corresponding halving offN). The value offNis taken as the frequency of the 

first minimum in the spectrum (in this case I Hz). With all other parameters unchanged, the FD 

scheme should now comply with Equation 2.48 for a range of materials over the frequency 

range of interest in this simulation. The results of these repeated simulations can be found in 

Figures 2.9 and 2.10. 

Figures 2.9 and 2.10 clearly show that the effort taken to account for spatial dispersion 

has had a significant effect on the error on calculated values of reflection and transmission 

coefficient. Examination of at Figure 2.9 reveals that the largest deviation of reflection 

coefficient at fNis 5% (compared to 22% atfNon the initial simulation). Figure 2.10 shows a 

similar improvement in simulated transmission coefficient, with the largest deviation reducing 

from 5% in the initial simulation down to 1% in the revised simulation (both deviations 

determined at their respective values offiN). 

A further reduction offN(by increasing the duration of the time signal) should lead to a 

greater reduction in dispersion error, but it is necessary to consider the cost of these 

modifications. The only way to simulate the wide range of frequencies (as in the initial 

simulation) and yet still comply with Equation 2.48 would be to reduce the spatial sampling 

interval. However, to keep the length of the propagation domain unchanged requires the total 

number of nodes to be increased to compensate for the smaller inter-node separation. 

A reduction in spatial sampling interval would also have an effect on the stability 

condition (Equation 2.43), and thus the temporal sampling interval would need to decrease 

accordingly. As in the spatial case, the number of timesteps required must increase to maintain 

the same total duration of simulation. Thus, to retain the frequency bandwidth of the original 

simulation it would be necessary to halve both spatial and temporal (for stability) increments. 

This would require a doubling of both the number of spatial nodes and the number of 

timesteps. These changes would result in both the computer storage requirements and 

computational run-time increasing by a factor of 4. 
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2.6.5 Propagation Across a Layer 
The final stage of the validation of the ID FD model was to consider propagation 

across a layer of homogenous material contained entirely within another homogeneous material. 
A simulation was prepared with 256 nodes: nodes 140-155 were designated as Methyl Acetate, 

all other nodes were set to be water. Spatial and temporal increments we set as I 10 m and 

0.073 s respectively, and the scheme was run for 350 timesteps. These increments were 

selected to ensure that both the stability condition (Equation 2.43) and the dispersion condition 

(Equation 2.48) are met for a broad range of frequencies. 

Time histories of acoustic pressure were recorded at nodes 100 (in front of the layer) 

and 170 (behind the layer). As expected, both time histories showed a train of pulses 

corresponding to multi-paths within the layer. Pressure reflection and transmission coefficients 

were obtained by comparing the frequency spectrum of the incident pulse with that of the 

spectra of the reflected and transmitted pulses trains. These were compared with the analytical 

solutions for the same geometry as described by Equations 2.46 and 2.47. The results are 

shown in Figure 2.11 and 2.12 that compare the analytical and FD simulated pressure 

reflection and transmission coefficients respectively. 

As can be seen from Figures 2.11 and 2.12 there is good agreement of the FD 

simulated results with the analytical solution. In fact for frequencies up tofN(in this case the 

position of the null first minimum in the incident spectrum ýý 0.9 Hz) the magnitude of the error 

in reflection coefficient is less than 5%. The results for transmission coefficient are even better 

with the magnitude of error less than 1% for frequencies up tofN. 
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2.7 Chapter Summary 

This chapter has described a range of simple FD operators, and shown how they may 

be applied to the ID acoustic wave equation to produce a simple model capable of examining 

acoustic propagation in one dimension. In the process of validation of this simple model, 

numerical dispersion has been encountered and was seen to have a significantly deleterious 

affect on the quality of results obtained from a numerical simulation. This phenomenon can be 

overcome by decreasing the spatial sampling interval, but it is important to remember the cost 

(both in terms of required computer storage, and run time) that modifications of this nature 

incur. Once provisions have been made to alleviate numerical dispersion, the model has been 

shown to produce results that are in good correlation with analytical solutions for a variety of 

simulation geometries. 

Clearly, a ID model is insufficient as a general method of simulating a range of 

acoustic fields. Thus, the next chapter will extend the capabilities of the model to cater for 

propagation in two dimensions. However, the incorporation of a second dimension requires 

careful consideration, in particular, the cost required to minimise numerical dispersion. 

As already seen, a halving of spatial sampling interval necessitates a doubling of the 

number of spatial nodes; this effect will apply equally to both dimensions of a 2D problem. It 

was also demonstrated that to preserve the stability condition, a halving of spatial increment is 

likely to require similar modifications to temporal increment and number of timesteps required. 

Thus, in two dimensions, halving the spatial increment will result in an eight-fold increase in 

the computational cost. 
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Figure 2.1 - Infinitesimal Volume of a Fluid 
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Figure 2.2 - Interface Between Two Media on a FD grid 
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Figure 2.3 - Source Signal and its Spectrum for Initial Simulation 
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Figure 2.4 - Waveform at Various Timesteps as a Result of Propagation Across a 

Water-Water Interface (Boundary at Distance = 6km) 
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Figure 2.5 - Waveform at Various Timesteps as a Result of Propagation Across a 

Water-Trichlorethane Interface (Boundary at Distance = 6km) 
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Figure 2.6 - Deviation of Modelled Reflection Coefficient from Analytical Value 

of Reflection Coefricient for Initial Simulation 
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Figure 2.7 - Deviation of Modelled Transmission Coefficient from Analytical 

Value of Transmission Coefficient for Initial Simulation 
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Figure 2.8 - Modified Source Spectrum for Revised Simulation 
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Figure 2.9 - Deviation of Modelled Reflection Coefficient from Analytical Value 

of Reflection Coefficient for Revised Simulation 
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Figure 2.10 - Deviation of Modelled Transmission Coefficient from Analytical 

Value of Transmission Coefficient for Revised Simulation 
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Figure 2.11 - Comparison of Analytical and FD Simulated Reflection Coefficient 

at a Methyl Acetate Layer in Water 
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Figure 2.12 - Comparison of Analytical and FD Simulated Transmission 

Coefficient across a Methyl Acetate Layer in Water 
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3. TWO DIMENSIONAL MODELLING 

3.1 Introduction 

The principles of acoustic modelling developed in the previous chapter will now be 

expanded to cater for wave motion in two dimensions. The inclusion of a second spatial 

dimension implies that the possibility for shear wave propagation now exists, and thus it is 

necessary to consider the more general case of propagation of waves in elastic media. The 

I-Dimensional wave equation (Equation 2.8) was derived under the assumption that the 

media of propagation are fluids. Consequently, a simple expansion of Equation 2.8 to cater 

for the second spatial dimension is inadequate, and a more comprehensive description is 

required. One of the first tasks of this chapter will be to derive the elastic equations and the 

equations of motion for an elastic medium. 

Enhancements are also needed to the method of numerically evaluating these 

equations. FD schemes such as those described in Chapter 2 require that all pairs of variables 

(e. g. pressure and particle velocity, or particle velocity and stress) be defmed at the same node 

of the FD grid. Though computationally simple, such schemes yield results that tend to 

exhibit numerical anisotropy and grid dispersion [Dablain (1986)]. As we have previously 

seen, grid dispersion can seriously affect the quality of a modelled result, and measures need 

to be taken to avoid it. 

Madariaga (1976) developed a FD scheme, based upon the first order constitutive and 

elastic motion equations, which utilised staggered FD grids (each grid evaluating one or more 

different variables). Virieux (1984,1986) then utilised the staggered grid FD method to 

examine propagation of seismic disturbances in both elastic and fluid media. The essence of 

a staggered grid formulation is to split the FD grids upon which the various field variables are 

evaluated and then to interleave the individual grids both in space and time. For the stress- 

velocity formulation of elastodynamic propagation the key stage is to isolate the inter- 

dependencies of variables such that calculation of velocities depends only upon values of 

stresses (and vice versa). The success of this staggered grid method is that it ensures that the 

first nearest neighbouring grid nodes to the point being evaluated are the nodes upon whose 

value then new point depends. A graphical representation of this idea can be found in Figure 

3.2 wherein the first nearest neighbour of each velocity node is a stress node (and vice versa). 

The separation of stress and velocity grids also allows the grids to be staggered in time so that 

stress grids are evaluated at even numbered timesteps whilst velocity grids are evaluated at 

odd numbered timesteps. Staggered grid schemes based on the propagation of stress and 

velocity (P-SP) are computationally more complex than the conventional schemes based upon 

the propagation of displacements such as those proposed by Bond (1979) and Harker (1984). 
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Additionally P-SV schemes require the behaviour of more variables to be tracked, and thus 

there is an increased storage requirement. There is also an increase in the number of 

calculations for each given timestep. The computational penalty of employing such schemes, 

both in terms of computational time and storage, would appear to be prohibitive. However, as 

Levander (1988) comments, the advantages of such methods are considerable. 

I The P-SV staggered grid scheme is stable for all values of Poisson's ratio. 

2-Changes of the material of propagation are handled implicitly by simply changing 

the relevant material parameters, rather than requiring explicit interface conditions. 

3 
-Grid 

dispersion and grid anisotropy are small and relatively insensitive to Poisson's 

ratio. 

Levander (1988) also notes that Items I and 2 make such schemes "ideal for 

modelling marine exploration" - the propagation from water into elastic media. A P-SV 

staggered grid of the form specified by Virieux (1984) will be described in detail below, 

before a description of higher order schemes (e. g. Levander (1988), Holberg (1987), Kindelan 

et al (1989)) is presented. 
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3.2 Derivation of Required Equations 

3.2.1 The Equations of Motion 
The following brief derivation of the equations of motion in an elastic solid follows 

the method described by Kolsky (1963: pp. 7-12). It starts by considering an infinitesirnal 

cuboid of an elastic solid, of volume AxAyAz as shown in Figure 3.1. 

In the presence of a propagating wave, there will be a variation in the components of 

stress across parallel faces of the cuboid. In order to evaluate the force acting on each face, 

we take the product of the area of any given face and the value of the stress at its centre. 

There are six components of stress acting in the x-direction, and they are highlighted in red in 

Figure 3.1. By taking the differences in the components of stress acting across each pair of 

parallel faces, it is possible to resolve the resultant stress, and thus any force, acting in the x- 

direction across the infinitesimal cuboid. The value of this resultant force is given by 

azýa Aj Az- 

+ azxy alcxz -rxx + -rxxAXAYA7, +ý My, A7, +7 
ac 

( 

xy 
0'Y' 

+ 

Xz 
+ 

ca: 

+Y 

-rxAxýy& 

Equation 3.1 

which can be simplified to 

+ 
az-xy 

+ 
az-xz 

AxAyAz. 
ax ay az 

Equation 3.2 

Ain lying Newton's Second Law of Motion, and neglecting body forces, derives the equation FP 

of motion in the x-direction as 

alux '"xy +a I-xz P at 2 Ok 0-ý az 
Equation 3.3 

where u, is the displacement in the x direction. Similar equations can be derived for motion 

in the y and z-directions. For the purposes of this study, only two-dimensional problems are 

considered, and thus the generalised equations of the form of Equation 3.3 will be simplified 

to include two spatial co-ordinates only. 

It is also instructive to note that Equation 3.3 has both first and second order 

derivative terms but by transforming the displacement term, u, into a velocity term y., it is 

possible to obtain a hyperbolic equation involving first order terms only. By incorporating 
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this substitution, and the simplification to two-dimensions, the equations of motion in the 

x-direction become 

av 
x 

Ot p 13X 

Equation 3.4 

A similar process for the y-direction yields 

'IV 
y 

at p ax 

a 
", 

Xy 

+ 
Equation 3.5 

No assumption about material behaviour has been made in the derivation of these 

equations of motion and thus they are valid irrespective of the response of a material to a 1-- 
given stress. 

3.2.2 The Elastic Equations for an Isotropic Solid 

In order to be able to make use of the equations of motion, it is necessary to have a 

relationship between the stresses applied to an elastic solid, and the strains produced. 

Hooke's Law provides this stress-strain relation. In its most generalised form, it can be 

written as 
f-Clij 

":: -- 
[Cl#kl [Clkl 

9 

Equation 3.6 

where quantities in [] are tensor quantities. There can be as many as 21 independent 

coefficients of [cluk, when considering 3-dimensional propagation in an aeolotropic (i. e. with 

different propagation properties in each direction), inhomogeneous material. However, the 

number of coefficients decreases as the symmetry of the medium increases. 

For an elastic, isotropic solid, the number of independent coefficients reduces to two, 

and /4 and these are known as the Lame coefficients. Considering a two-dimensional 

problem as before, the various strains are defined as 

c= (3u xg= 
au 

Y'= 
au 

y +au, 

xx ax yy ay , xy ex ay 

Equation 3.7 

The components of strain are defined as 

_xy , rxx = A(exx + c, 
)+ 2p. 6xx, -cyy = A(, 6., x + c, 

)+ 2p. 6yy 1, rxy = pe 

Equation 3.8 
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In order to obtain a set of first order hyperbolic equations for the elastic relations of 
an isotropic solid, the equations of 3.7 must be substituted in Equation 3.8. If both sides are 
then differentiated with respect to time, and then transformed from displacements to velocities 
as described above, the following expressions are finally obtained 

ar 

'= (el + 2, u) 
av' 

+ý 
av' 

at ax 

Equation 3.9 

ar 
yy 

9v' 
+A 

av' (A + 2p) 
at ax 

Equation 3.10 

and 

avx + avy 
at ay ax 

Equation 3.11 

Equations 3.4,3.5 and 3.9 to 3.11 completely define the longitudinal and shear wave 

propagation within isotropic, elastic media. 

3.2.3 Changing to a Cylindrical Co-ordinate System 

The description of wave motion presented so far has been in terms of a Cartesian 

geometry. However, it is often convenient to consider alternative geometries. In particular, 

cylindrical co-ordinates are an attractive choice when examining the fields radiated by 

circular piston transducers. The transformation of equations from Cartesian (xyz) to 

cylindrical (r, 0, z) co-ordinates follows the method outlined in Appendix A of the paper by 

Jurado et al (1995) and requires the following change of variables: 

x= rcosO, 
y =rsinO, and 

Z=Z. 

Equation 3.12 

Clearly, the full formulation as described by Jurado et al (1995) accounts for 3 spatial 

dimensions, whereas this study is based upon the simpler case of 2 dimensions only. An 

axi-symmetric assumption will be used to simplify the problem. This eliminates all tenus that 

contain an angular dependence and reduces the description of the problem in cylindrical co- 

ordinates to the following 6 equations as presented by either Kostek and Randall (1994) or 

Stephen (1990): 
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Equation 3.14 

aE'- 
= 

(A + 2p) OýV" 
+A 

Vr 
+A 

avz 

at ar r az 

Equation 3.15 

a -r,, 
=A -ýV-' + (A + 2, u) 

V' 
+A 

av' 

at ar r az 
Equation 3.16 

a'rzz 
+A+ (A + 2p) ov' 

at r az 
Equation 3.17 

and 

ar rz avz + av, at O-)r az 

Equation 3.18 

Comparison of this set of six equations with their Cartesian equivalents shows a high 

degree of similarity. Apart from the obvious changes of variable, Equations 3.13 and 3.14 are 

of identical form to Equations 3.4 and 3.5 respectively, bar an additional term. An extra term 

is also necessary to bring Equations 3.9 to 3.11 into the same form as Equations 3.15,3.17 

and 3.18. The axi-symmetric cylindrical description also needs an additional equation 

(Equation 3.16). This similarity means the implementation of an axi-symmetric cylindrical 

co-ordinates form of the model can be achieved as a simple extension of the two-dimensional 

Cartesian description. However, it is important to note that these equations describe the wave 

equation in three dimensions in cylindrical co-ordinates (albeit with a simplifying 

assumption). This enhancement is made at the expense of only a marginal increase in 

complexity. 
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3.3 A 2D Finite Difference Acoustic Model 

3.3.1 Implementation of the Isotropic Elastic Equations 
This section describes the FD representation of the elasto-dynamic equations defined 

earlier. It is important to note that although this discussion is expressed in terms of Cartesian 

co-ordinates, the principles presented are equally applicable to an axi-symmetric cylindrical 

co-ordinates description, as presented in section 3.2.3 

FD representations of Equations 3.4,3.5 and 3.9 to 3.11 are accomplished by means 

of first order FD approximations of the form of Equation 2.14. The first step is to map the 

continuous variables, onto their discretised variable equivalents. These relationships are y, " 

Vx 
, vy f4 Vy, zx, " Txx, zyy " Tyy, zý, y (4 Txy, and 11p B. Consider first a discretised 

version of Equation 2.14 as applied to Equation 3.4: 

xk+-L 
k+1 (T. kTkkk 22T. 

X 
)=B 

xx. 
)+ TXY XY V 

I+ Ij 
V 

j+ Ij I+ I, j i+l, j I+ i, j+- I+ I, i-- At 222 Ax Ay 2222 

Equation 3.19 

In this and all following equations, k is the index for time discretisation, and i and j are the 

indices for spatial discretisation in the x and y directions respectively. Rearrangement of 

Equation 3.19 leads to 

k+! k- 1 At k TXXk At k 
_T 

k 
VX 

i+ 
I 
2j = 
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12+B xxi+l, j - i, j)+ 
BI TXY 

I )CY 
ij i+ Ij Ax 
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i+ J AY i+ j+- i+-, i-- 2' 2 2' 2222 

Equation 3.20 

Equations 3.5 and 3.9 to 3.11 are dealt with in a similar fashion to yield 
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Equation 3.21 
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Equation 3.22 

T k+1 
yy _At =Týy + 

j 
xk+ý 2 V, xk+ý 2 Vý + (A + 2p)ij 

At k+! k+1 
22 

j_ and j+ 
VY 

i 
VY 

i Ax I i+ 
2'j AY , , 

Equation 3.23 
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Equation 3.24 

Immediately, it can be seen that all difference operators are made using centred 

approximations, which, as stated in Chapter 2, have the virtue of being accurate to second 

order. Having now defined the equations required for the simulation, it is now necessary to 

defme the FD grid on which they are to be implemented. As mentioned earlier, since a 

staggered grid method is to be used, four grids (and the way in which they inter-relate) will be 

specified. 

The spatial grids on which the variables of Equations 3.20 to 3.24 are evaluated, are 

shown in Figure 3.2. Spatial and temporal variables are divided into discrete subdivisions 

such that x=iAx, y=jAy and t=kAt. However, because of the interleaved arrangement of the 

grids, the actual separation between adjacent nodes is AxI2 (similarly for y and t). It can be 

seen from Equation 3.20 and 3.21 that values of the two particle velocities are dependant only 

upon the values of the three stresses, and relevant material parameters; the two different 

particle velocities are therefore decoupled from each other. Similarly, the values of the three 

stresses depend only upon the values of the two particle velocities and relevant material 

parameters (no inter-dependence of the other stresses). Thus, the two FD grids (one for 

velocities, and one for stresses) can be separated from one another. These two grids can then 

be interleaved in time as well as in space. A display of the time interleaving can be found in 

Figure 3.3. 

As can be seen from Equations 3.20 to 3.24, new values of any of the field variables 

at the (n+])"' timestep depend only upon data from at most I earlier time step (i. e. at the Wh 

timestep). This is computationally attractive since data from all previous timesteps can be 

discarded, and thus memory requirements are dramatically reduced. 

3.3.2 Stability 
As with the ID FD model of Chapter 2, it is necessary to consider under what 

conditions the 2D FD system remains numerically stable. The stability condition quoted by 

Virieux (1986) is 

At < 
Ax 

Cmax -ýF2 

Equation 3.25 

where c,,,,, is the maximum acoustic velocity within the simulation. Comparison between the 

stability conditions for ID and 2D model (Equations 2.43 and 3.25 respectively) reveals only 

an additional 
[2 term in the denominator of Equation 3.25 to account for the second spatial 

dimension. This additional factor requires that At be smaller for any given Ax, and is thus a 

more demanding stability condition than for the ID model. 
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3.3.3 Initial Conditions 
The initial conditions are defined such that all media are in a state of equilibrium at 

time t=0; this requires that all stresses and velocities are initially set to zero. The selection 

of these initial conditions also has the advantage that a propagation of stress and velocity is 

equivalent to a propagation of "time integrated stress" and displacement respectively. 

3.3.4 Interfaces 
The simple ID model described in Chapter 2 required special consideration of the 

tnterface between two media. Whenever the interface between two media was encountered, a 

special formulation capable of implementing the necessary boundary conditions had to be 

used. As discussed by Kelly et al (1976), this behaviour is common to all models that employ 

a "homogeneous formulation". Simple expansion of Equation 2.42 to include an additional 

spatial dimension, for example Bond (1979), also yields a "homogeneous formulation". 

Dealing with boundary conditions explicitly is viable (if somewhat laborious) so long as the 

boundaries between different materials are aligned with the grids used to discretise the 

material. If this is not the case it is found that as the complexity of the interface geometry 
increases, so does the complexity of the code required to deal with it explicitly. 

In contrast, a heterogeneous description of wave motion (as defined by Equations 3.4, 

3.5 and 3.9 to 3.11) is not subject to these limitations, because it is able to cope with spatial 

variation of material parameters. As stated by Virieux (1986), propagation of the acoustic 

wave across an interface between two media is handled implicitly by the change in materials 

parameters, leaving only the boundaries at the edge of the grid to be dealt with explicitly (as 

in section 2.3.3). To provide an example of the computational elegance of the implicit 

formulation, consider the propagation from an elastic solid into water. It would be reasonable 

to expect that there will be both shear and longitudinal wave components propagating within 

the elastic solid, but water can only support longitudinal waves. We see from Equation 3.3 

and 3.4 that v, and vy will contain components from the incident shear wave. However, 

because the shear modulus of water is effectively zero, subsequent calculation of stresses at 

nodes within the water, contain only longitudinal wave components. Thus, the mode 

conversion is accomplished without the need for special consideration of the interface. 

3.3.5 Boundary Conditions 

Having defined both the grid initial conditions, and a method to conduct FD 

calculations on the interior of the grid, it is now necessary to defme the behaviour at the grid 

edges. The type of boundary condition used depends upon the geometry being modelled. As 

previously mentioned, the simplest boundaries to implement are those corresponding to the 

Neumann (i. e. a free surface condition with a stress free boundary) or Dirichlet boundary 
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conditions (i. e. a rigid surface condition with zero displacement equivalent to zero velocity at 
the boundary). 

Consider first the free surface (Neumann) boundary, which is to be implemented at 
j=0. The method follows that described by Wu and Gong (1993) in which a fictitious line at 
j= -V2 (as can be seen below in Figure 3.4) is used. The unknown variables at j=0 are the 

velocity component v,, and the stress components -c ,,, and ryy, whilst the unknown variables on 
the j= -/2 line are the velocity component vy and the stress component z,, y. The boundary 

condition to be implemented requires that all stresses are zero at the boundary; since the stress 

components and -ryy are evaluated at j=0 this is trivially realised. In order that the stress 

component z, -, y be zero at j=0 we require that -(zy), = y, = (z-y)j 
-- ý/,. Thus y, can now be 

evaluated at j=0 from Equation 3.20. A similar process can be used to evaluate vy on a free 

boundary if required. 

In order to implement a Dirichlet boundary condition, consider again a scenario as 
depicted in Fig 3.4. In this case, zero displacement (analogous to zero velocity) is required at 

the boundary. Since v., is evaluated at j=0, this implementation is elementary, and by 

applying a similar philosophy as above we require that -(vy)j = y, = (vy), 
=- ý,,, and are hence in a 

position to evaluate -r., and zyy. As before, other field variables can be evaluated by a similar 

technique on alternative boundary lines. 

3.3.6 Absorbing Boundary Conditions 

As discussed in Chapter 1, one of the limits facing any numerical model is the 

requirement to map a domain of infinite extent, onto a computation domain of finite size. 

Unless care is taken, reflections may occur at the numerical limits of the grid and may 

interfere with signals of interest within the grid interior. The, problem may be overcome by 

applying boundary conditions that absorb waves incident upon them. These Absorbing 

Boundary Conditions (ABCs) are thus able to simulate an unbounded region. A range of 

different ABCs has been proposed in the literature (Cerjan et al (1985), Clayton and Engquist 

(1977), Hastings et al (1996), Higdon (1990), Peng and Toks6z (1994)). Of these the 

Exponential Damping (ED) method of Cerjan et al (1985) and Optimal Absorbing Boundary 

Condition (OABC) of Peng and Toks6z (1994,1995) have been examined. 

The essence of ED is to extend the computation domain by a number of grid points 

and then apply a damping mechanism within this region. The magnitude of this damping 

increases with depth of penetration into the damping region. Although relatively simple to 

implement the effectiveness of this ABC decreases rapidly as the angle of incidence of the 

wave deviates from the normal. Another drawback of the ED method is the need for the 

additional grid points that make up the damping region. Typically 10-20 grid points are 

needed on each boundary to accomplish effective damping. Consider the case of a 200 by 
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200 point grid. If an additional 20 grid points in each direction are required, the total storage 

requirement increases by 
2402 -2002 

x 100% = 44%. There will be a similar increase in the 
2002 

number of computations required at each time step, due to the additional grid points. 
The OABC of Peng and Toks6z (1994,1995) expresses the values at the edge of the 

numerical grid in terms of a linear combination of values from previous time steps and/or 
interior grid locations. The coefficients of the linear combination are optimised to yield the 

smallest artificial reflections. As discussed by Imhof (1999), the OABC is not only highly 

effective at reducing reflections from the numerical boundary, but it is also efficient in terms 

of memory and CPU usage. However, for certain modelling configurations Simone and 
Hesthohn (1998) found that the OABC produced numerical instabilities in the form of an 

exponentially increasing growth originating within the boundary. Within the calculation of 

the necessary coefficients for the OABC, the poles and zeroes of the complex reflection 

coefficient should lie on the unit circle (in the complex plane). Imhof (1999) analysed the 

performance of the OABC and determined that the instability arises from computational error 

causing these poles and zeroes to lie on the wrong side of the unit circle. He consequently 

proposed some modifications to the original OABC formulation intended to stabilise its 

performance. One of these modifications involved the addition of a stabilising factor to force 

the poles to lie inside and zeroes to lie outside the unit circle. As a result of numerical 

experimentation Imhof suggested that a stabilising factor of 0.01 yielded a good compromise 

between stability and efficiency of OABC. Using this value forces poles to lie on the circle 

radius 0.99 and zeroes to lies on the circle radius 1.01. Using these adaptations Imhof 

reported stability for simulations run beyond 10' timesteps at the expense of slightly less 

absorption of the incident wave 

Based upon the discussion above, the OABC seemed the obvious choice of ABC and 

was incorporated into the FD code. Examination of the performance of the OABC revealed 

that the wave reflected from the boundary for incidence angles between 0 and 45 degrees was 

of the order of 30 dB lower than the incident wave. Although this is a useful reduction, it is 

somewhat less than the reduction of at least 50 dB reported by Peng and Toks6z (11994), but 

the differences are believed to arise from the implementation on staggered grids that 

necessitates certain components of stress and velocity are approximated along different lines. 

Of more concern was the observation that the numerical instability (i. e. exponential 

growth from the boundary) was evident after only 1000 timesteps. Imhof s modifications 

were then included and the onset of numerical instability could be delayed, but not completely 

eradicated. A series of numerical simulations were then conducted with increasing values of 

the stabilising factor, however, even when the stabilising factor was increased to a value 3 
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times that suggested, the numerical instability, and its consequent exponential growth, were 
evident beyond 3000 timesteps. The OABC's effectiveness at absorbing incident energy was 
found to be inversely proportional to the magnitude of the stabilising factor, and echo 
reduction provided by the OA-BC was 3dB poorer when a stabilising factor of 0.03 was used. 
Increasing the factor beyond this level was considered to compromise the absorption provided 
beyond acceptable limits, and thus further increases were not investigated. 

The instability occurred at run-times much lower than reported by Imhof, and 
although these problems could have occurred as a result of inaccurate implementation of the 
OABC this is not felt to be the primary cause. Exhaustive study of the process of calculation 

of the OABC coefficients was conducted, and computed values agreed with published data to 

seven decimal places. Interestingly, all applications of the OABC known to the author are 

geophysical. Within such fields of research,, material velocities are similar to those 

encountered within this work, but the frequencies used and the dimensions of the problem, 

necessitate the use of much larger temporal and spatial increments (typically 4 orders of 

magnitude larger). Instinctively it should be possible to apply the OABC at much higher 

frequencies, by multiplying both spatial and temporal increments by the same factor. Simone 

and Hestholm (1998) allude to the concept of a stability criterion for the OABC, but no 

expression for it is provided. They also attribute the instability of the OABC to numerically 

unspecified behaviour when trying to absorb high frequency components of their source 

signal. Thus there may be subtle effects occurring within the formulation of the OABC that 

limits its stability for high frequency components. It is felt that the differences observed, 

specifically in terms of length of simulation prior to the onset of numerical stability, may be 

associated with this observation but a thorough analysis of the OABC and its performance are 

outside the remit of this work. However, the numerical instabilities that have been observed 

would prove to be severely limiting for research that is to follow and alternatives ABCs were 

needed. 

Despite the computational overhead (as previously discussed), attention returned to 

the ED method, and initial simulations revealed normal incidence boundary reflections that 

were only 24 dB lower than the incident waveform. Reflections at this level would still 

contribute significant energy to the pressure field and are thus unacceptable. Both Simone 

and Hestholm (1998) and Cerjan et al (1985) used damping functions of the form e-(aAy , 

where A is the distance into the boundary layer and a is 0.015, but theoretically any damping 

function could be used. The cause of the reflection from the ED layer is the change in 

"effective" acoustic impedance seen by the incident wave arising from the complex wave 

number of the absorbing layer required a medium that attenuates waves propagating within it. 

To overcome this it is necessary to use a damping function that changes very slowly near the 
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boundary layer (to minimise reflection), but that becomes increasingly greater as propagation 

goes deeper into the boundary layer (to provide the necessary attenuation), and an exponential 

function would seem ideally suited. A range of sample simulations was conducted to 

examine the effect of modifying cc (and the power to which it is raised) on the echo reduction 

provided by the ED ABC. Despite a concerted effort to optimise the damping function, the 

best normal incidence reduction that could be achieved was 32 dB, and this came at the 

expense of two equal amplitude reflections, one from the interface with the ED layer and one 

that had had propagated each way through the ED layer and reflected from the outer 

computational boundary. 

It was concluded that an exponential damping profile was not necessarily the most 

appropriate for this application and attention turned to a profile that was one half-cycle of a 

cosine wave. However to ensure that the damping profile changed from 0 (complete 

damping) to I (no damping) the actual form used was I (I 
- Cos 0) n, 

where Ovaried between 2 

between 0 and 7c radians and n=I initially. Using this damping profile immediately gave a 

boundary reflection that was reduced by 25 dB, with no secondary reflection. By gradually 

modifying the power n it was possible to successively reduce the damping at the start of the 

layer whilst increasing the damping later. This type of absorbing boundary was optimised to 

yield a reduction of 42.6 dB when n=0.09 for a layer that was 25 points wide. Not only was 

this a significant improvement over the exponential damping but also no evidence of 

secondary reflections was seen either. Henceforth, whenever ABCs are mentioned within this 

thesis, the optimised cosine damping profile above will have been used. 
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3.4 Fourth Order Schemes 

3.4.1 Derivation of 4th Order Finite Difference Operators 

One of the limitations of the FD scheme described in section 3.3 is that in order to 

minimise numerical dispersion, the spatial sampling interval must be at least 10 points per 

shortest wavelength (Levander (1988)). Any method of reducing the number of grid points 

per wavelength, whilst maintaining dispersionless propagation, will result in significant 

savings in both computational memory and run time. For example, if the spatial sampling 

interval can be reduced from 10 to 5 grid points per wavelength then the total number of grid 

points is reduced by a factor of 2 in both x and y directions. This results in a factor of 4 

reduction (i. e. 75% saving) in computer memory required. Additionally, since the number of 

nodes has decreased by a factor of 4, so too will the number of calculations required per 

titnestep, and consequently the simulation should run faster. 

One means of accomplishing such a reduction is to increase the accuracy of the FD 

approximation. The standard centred difference operation of Equation 2.14 is accurate to 

order (Axy. Levander (1988) describes a new FD operator that is accurate to order (AV. As 

in Chapter 2, the derivation of the FD operator starts with the Taylor5s Expansion about a 

point p(x). However, the expansion is now truncated after the 4 th order teryn, to yield 

p(x + Ax) = p(x) + Ax. 
dp 

+d 
2p 

+ 
YLP 

+ . 
4LP 

+ O(Ax)'. 
X2 dX3 dX4 dx 2! d 3! 4! 

Equation 3.26 

Similarly, an expansion is conducted in the other direction resulting in 

dp d2p (Ax)' d'p (AX)4 d 
4p 

p(x - Ax) = p(x) - Ax. -+ dX2 X3 
-. 

dX4 
+ O(AX)5. 

dx 2! 3! d 4! 

Equation 3.27 

The function is also expanded with a double increment to produce 

p(x + 2Ax) - p(x) + 2Ax. 
dp 

+. 
d2P+ (2Ax)' d'p 

+ 
(2AX)4 d 4P 

+ O(Ax)' 
dx 2! dX2 3! dX3 4! dX4 

Equation 3.28 

and 

dp 
2Ax 

(2AX) 
2 

+ 
d2p (2AX)3 d'p (2AX) 

4d4p 

+ O(Ax) 
. p(x - 2Ax) = p(x) - dx 2! * dx 

2 3! ' dx' ' 4! * dX 4 

Equation 3.29 
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By successive substitution it is possible to eliminate derivatives of order 2,3 and 4 from 

Equations 3.26 to 3.29, resulting in the relatively simple expression for a 4h order centred 

difference of 

ap 9 (p(x+Ax)-p(x-Ax))- I- (p(x + 2Ax) - p(x - 2Ax)) 
ax 8 24 

Equation 3.30 

Levander (1988) suggests that this FD approximation will provide dispersion free 

propagation at a spatial sampling interval of 5 points per smallest wavelength. This could be 

considered as using a value of S=5 in Dablain's spatial increment equation (Equation 2.48). 

However, Sei (1995) suggests that a "rule of thumb" of 6 points per smallest wavelength 

would be more appropriate. Even using the more conservative value of S=6, there is still a 

significant effect on the amount of computer memory required (an overall saving of 64%). 

Reduction in run-times are not as significant as the reduction in storage because the extension 

of the operator to 4th order accuracy requires calculation an extra of term compared to the 2 nd 

order scheme. However, this computational increase is more than offset by the computational 

decrease resulting from fewer grid points. Thus, reductions in run time of at least 30% are 

achievable by moving from a 2d order to 4th order approximation. In fact in his discussion of 

different FD approximation schemes Sei (1995) states that "the maximum gain for the 

computational cost is achieved when we change from a [2 nd order] to a [4 th order] scheme. " 

The disadvantage of moving to a 4' order FD operator is found when attempting to 

evaluate grid points on the computational boundary. As seen in section 3.3.3, it is necessary 

to generate a "fictitious line" to calculate the values of those field parameters which lie on the 

boundary. However, the move to a 4th order scheme increases the length of the FD operator 

to 4 grid points. Thus, although the principle remains the same as previously described, the 

complexity of calculations for grid points near the boundary increases since some field 

variables need evaluation of two grid points beyond the limits of the boundary, whereas some 

only require one grid point beyond a "fictitious line". 

This issue is clearly illustrated in Figure 3.5, where the evaluation of -cxy, in the 

neighbourhood of the boundary relies upon one grid point, vx, that lies beyond the boundary at 

j=0. This is in contrast to the calculation of and 'ryy, which depends upon of two values of 

vy beyond the boundary. This was implemented in computer code by independently treating 

grid points lying on the boundary (e. g. and ryy) from those points lying near (but not on) 

the boundary. The appropriate boundary conditions could be applied within each of the 

appropriate areas of code in the same manner described in Section 2.3.3. 
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3.4.2 Temporal Dispersion 
The effects of numerical dispersion introduced in Chapter 2 were discussed in the 

context of spatial dispersion. However, testing of the 2D FD model also revealed the 
presence of temporal dispersion. The literature includes many examples where authors 
discuss the problems of spatial dispersion, but much less attention is paid to temporal 
dispersion. Dablain (1986) provides a comprehensive discussion of numerically induced 

dispersions, and in his work suggests a temporal increment of At = 
(0-95j//--4Ax)/cmax 

for a 
4th order scheme, but comments that some temporal dispersion effects are still evident. 
However, Sei (1995) suggests a value of 20 steps per cycle of the highest frequency, for a 4th 

order scheme as described in section 3.4.1. Early experimentation with the 2D FD model 
empirically found even this value to be a little conservative. Consequently, all simulations 
have been prepared with a temporal sampling interval of at least 25 steps per cycle of the 
highest frequency. 

As is to be expected a reduction in the temporal increment will increase 

computational load. Clearly there will need to be an increase in the total number of time steps 

to preserve the total duration of the simulation. However, modifications of this kind do not 
increase the number of computations per timestep since the spatial grid is unchanged. In 

addition, since it is possible to discard values from all but the most recent previous time step 
(Section 3.3.1), no extra computational storage is required. These two factors ensure that 

penalties associated with minimising temporal dispersion are far less than those required to 

alleviate spatial dispersion. 

3.4.3 Fourth Order Weighting Coefficients 
Examination of Equation 3.30 reveals that the Fl) operator comprises two separate 

components: an inner difference, and an outer difference. Each difference pair has a 

weighting coefficient. In this case the inner weight is 9/8, whilst the outer weight is -1/24. 
Intuitively, it seems possible to modify the weighting coefficients to modify the behaviour of 

the operator. Kamel et al (1995) state that Fl) operators are traditionally designed with the 

sole aim of maximising the numerical accuracy for a given order of approximation. However, 

Holberg (1987) proposed a method of designing FD operators based on maximising the 

spectral band over which the peak error in group velocity (GV) is bounded by a pre-specified 

level. The method for calculating the Holberg weighting coefficients was simplified by 

Kindelan et al (1990). The same group then published (Kamel et al (1995)) a set of optimal 

weighting coefficients that improves upon the Holberg scheme over a specified bounded 

bandwidth. This optimal scheme exhibits a much smaller positive group velocity error. 

Figure 3.6 provides plots of the relative GV error against frequency for a range of Fl) 

operators. All of the operators were calculated with the constraint of optimising the 
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frequency bandwidth over which the relative GV error was bounded by 1% (i. e. 0.01). The 

conventional 2 nd order (Virieux) and conventional 4th order (Levander) operators are similar 

since both have a GV error that becomes steadily more negative as frequency increases. 

However, the Levander operator has a bandwidth that is 10% wider before it exceeds the 
lower (-0.01) bound. In contrast, both the Holberg and the Optimal operators have relative 

errors in GV that oscillate within the error bounds. While the GV error for the Optimal 

operator is predominantly negative, the errors introduced by the Holberg operator are more 

evenly distributed between the positive and negative bounds. 

3.4.4 Stabifity 
Levander (1988) gives the stability condition for a general 4'h order scheme (with the 

appropriate corrections) as 

At 
Ax 

CmaxV-2(al + a2) 
9 

Equation 3.31 

where c,,,,,, is the maximum acoustic velocity within the simulation and a, and a2 are the 

magnitudes of the inner and outer coefficients of the 4 th order approximation. For the case of 

Equation 3.3 0 a, and a2 are 9/8 and 1/24 respectively. The weighting coefficients for the 

Optimal FD approximation are given in the paper by Kamel et al (1995), whilst 

Kindelan et al (1990) have tabulated similar coefficient for the Holberg scheme. For the case 

of a2 nd order approximation a, =I and a2= 0 and Equation 3.31 simplifies to Equation 3.25. 

3.4.5 Inter-comparison of FD Scheme Performance 

A simple numerical experiment was conducted to investigate the relative merits of the 

different types of weighing schemes. A computational domain of dimensions 

75mm x 37.5mm was prepared, with all nodes set to represent water. An impulsive plane 

wave (Ricker wavelet - centre frequency 250 kHz) was incident from the left hand boundary 

and was allowed to propagate until it reached the right hand edge, approximately 50 ýts later. 

Figure 3.7 contains a set of snapshots (at 10 [ts intervals) of acoustic pressure plotted using a 

greyscale (in arbitrary units) showing an example of this simulation. 

This simulation was run using each of the 4horder schemes described above, as well 

as the simple 2d order scheme described in section 3.3.1. In each case, the spatial and 

temporal increments were determined by the stability, spatial dispersion and temporal 

dispersion criteria appropriate to that particular scheme. The maximum permitted GV error 

was ± 1%. A table comparing the run time and Computational storage requirements for this 

series of simulations can be found in Table 3.1. 
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The computational cost benefits of moving from a2 nd order approximation to a 4h 

order one are clearly evident; there is almost an order of magnitude reduction in both run time 

and required storage. This is in agreement with the findings of Sei (1995). Use of either 

Holberg or Optimal weighting offers a further reduction by a factor of two in computational 

cost compared with the conventional 0 order scheme proposed by Levander (1988). 

Table 3.1 - Comparison of computational cost for various 2D FD schemes 

Scheme Order Ax (m) At (s) Run Time 
(s) 

Storage 
Required (Mb) 

Virieux 2 9.5E-5 4.5E-8 2420 23.9 

Levander (Conventional) 4 2.5E-4 5. OE-8 263 3.5 

Holberg 4 4. OE-4 4.5E-8 103 1.5 
I 

Kamel et al (Optimal) 
14 

1 
3.75E-4 

I 
4.75E-4 

1 
109 

1 
1.6 

1 

The effectiveness of a model cannot be judged solely in terms of computational cost, 

the quality of the results produced also need consideration. For each of the simulation runs, 

time histories were recorded at two points within the computational domain: one at a distance 

2.5mm from the left hand edge and the other at a distance of 62.5mm from the left hand edge. 

Inter-comparison of data recorded at the first point (distance = 2.5mm) shows no discernible 

difference between any of the waveforms. However, there are noticeable differences between 

some of the waveforms recorded after propagating a distance of 62.5mm, as can be seen in 

Figure 3.8. Waveforms, from the Virieux and Levander schemes (conventional 2nd and 4th 

order respectively) appear to be very similar to each other, and to the origmal source 

waveform. Whereas those wave pulses derived from both the Holberg and Optimal schemes 

appear to be arriving later than those in the other two schemes; this is particularly true for the 

Optimal scheme. In addition, both of these later schemes have produced results that exhibit 

asymmetric waveforms. 

To understand the cause of these differences it is necessary to reconsider the nature of 

dispersion behaviour presented in Figure 3.6. In fact, the dispersion relations presented in this 

figure are derived from this simulation. Both the Levander and the Virieux schemes have 

errors in GV that are initially zero, and then become monotonically more negative. The GV 

error at the centre frequency of the source signal (250 kl4z) is less than 0.1% for both these 

schemes. Thus, the majority of the energy within the source signal will be propagating with a 

GV that is less than 0 
-1% 

lower than expected. 

In contrast, both the Holberg and Optimal schemes have a GV error that starts at its 

minimum permitted value (-I %), after which the GV error increases to some maximum 
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before decreasing again. Therefore, the majority of the energy of the signal is within a 
frequency band that will be propagating with a group velocity lower than it should be. This 
factor causes the "late arrival" of pulses from the Holberg and Optimal schemes. 

The change in pulse shape can be attributed to numerical dispersion caused by the 

error bounds on GV. Consider the magnitude of GV error over the frequency band 
0-700 kHz. The Holberg scheme clearly has not only the largest range of possible group 

velocities, but also has the largest magnitude of GV error. Unsurprisingly, it is the waveform 
produced by the Holberg scheme that exhibits the most significant variations. The Optimal 

scheme has a lower overall GV error magnitude, and the waveform thus produced bears 

closer resemblance to the original waveform. The following points summarise the 

performance of the different FD operators in the context of this set of simulations. 

The Virieux operator is capable of accurate propagation of a waveform with 

no obvious numerical dispersion, but at considerable computational cost. 

" The Levander operator yields results of comparable accuracy to the Virieux 

operator but at a significantly lower computational cost. 

" The Holberg operator is the lowest computational cost operator (at least a 

factor 2 lower than the Levander scheme in both runtime and storage), but 

tends to produce noticeable waveform variations, and a "delayed" waveform. 

" The Optimal operator has a computational cost that is only marginally greater 

than the Holberg operator, and less variations in waveform shape. However, 

the propagation delay of this operator is the greatest. 

Clearly, it would be possible to re-run this simulation with reduced error bound 

(e. g. 0.1%) to further reduce the effects of numerical dispersion. However, this would require 

a reduction in spatial (and possibly temporal) sampling interval for all schemes, and thus the 

computational cost would increase in each case. This quick inter-comparison provides some 

indication of the relative merits of the each of the FD operators at a given (in this case 1%) 

GV error bound. Although the dramatic reduction in computational cost offered by Holberg 

and Optimal FD operators is attractive, the waveform delay and shape variations are thought 

to be a significant limitation that may prohibit their use later on within this study. 

Nevertheless, the benefits of moving from a2 nd order to a4 th order FD operator are obvious. 

Consequently, the Levander 4th order operator will be seen as the preferred operator of choice 

since it appears to provide the best compromise between computational cost and quality of 

simulated result. 
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3.5 Chapter Summary 

The equations describing acoustic propagation in a two dimensional Cartesian 

co-ordinate system have been defined. A simple extension of these equations to cater of the 

3D axi-symmetric cylindrical co-ordinates has also been presented. Both 2 nd and 0 order FD 

methods of approximating these equations were discussed in Sections 3.3 and 3.4. Central to 

the method used was the concept of decoupling the grid upon which stress and velocity are 

defined. This decoupling allows the use of the more stable, and less dispersive, staggered 

grid formulation. Absorbing boundary conditions have also been introduced as a means of 

reducing reflections from the computational boundary. 

This chapter has also expanded upon the notion of numerical stability that was 

presented in Chapter 2, and discusses the Holberg method as a means of providing a bound on 

the dispersion when looking at new FD approximation schemes. A simple inter-comparison 

between various FD schemes provided useful information regarding both the computation 

cost and quality of simulated results. The results of this simulation found the Levander 4th 

order scheme to provide a good compromise between computation cost and quality of 

simulated data. 

It is now necessary to combine all of these different aspects in an attempt to 

thoroughly validate the model. The following chapter will present of range of situations 

where simulated results are inter-compared with analytical solutions. It will also introduce a 

procedure for designing a model in such a way as to remove, or at least minimise, some of the 

undesirable numerical phenomena (e. g. instability, dispersion) that have previously been 

identified. 
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Figure 3.1 - Infinitesimal Volume of an Elastic Solid 
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Figure 3.2 - Spatial Staggering of the Finite Difference Grids 
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Figure 3.3 - Temporal Staggering of the Finite Difference Grids 
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Figure 3.4 - Fictitious Line Required for Evaluation of a2 nd Order Boundary 
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