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COMPLEX EXTENSION OF OPTICAL FLOW AND ITS

PRACTICAL EVALUATION FOR UNDERSAMPLED DYNAMIC

MRI

M.J.EHRHARDT. M.MAURITZ

Abstract. Reconstructing high-quality images from undersampled dynamic
MRI data is a challenging task and important for the success of this imaging

modality. To remedy the naturally occurring artifacts due to measurement

undersampling, one can incorporate a motion model into the reconstruction
so that information can propagate across time frames. Current models for

MRI imaging are using the optical flow equation. However, they are based on

real-valued images. Here, we generalise the optical flow equation to complex-
valued images and demonstrate, based on two real cardiac MRI datasets, that

the new model is capable of improving image quality.

1. Introduction

Magnetic resonance imaging (MRI) is a powerful medical imaging modality that
allows for noninvasive visualisations of the human body. In particular, for dy-
namic MRI, there is a variety of applications, e.g. cardiac imaging [25, 2], dy-
namic contrast-enhanced magnetic resonance imaging [13], [9] and flow imaging
[24]. However, the imaging times in MRI are inherently slow, leading to motion
artifacts that degrade image quality. This issue can be addressed from a software
perspective where one aims for acquisition speedups by decreasing the number of
measurements and using mathematical modelling to improve image quality. In this
article, we follow this approach and solve the ill-posed inverse problem Atρt = yt
(the index t denotes the t-th motion state of the considered subject; the MRI for-
ward operator At includes subsampling of measurements and hence may depend on
t) of undersampled dynamic MRI by considering the variational problem

min
ρ,v
∑
t

∥Atρt − yt∥
2
+R(ρ, v),

whereR is a regularisation term that incorporates prior knowledge about the images
into the reconstruction. More precisely, we aim to jointly reconstruct the temporal
image sequence ρ and the velocity field v associated with the temporal evolution.
To this end, we model the underlying motion using the optical flow equation [6].
This was already done for MRI and real-valued images [1]. Here, we generalise this
idea by explicitly taking into account that images are complex-valued, i.e. we for-
mulate an optical flow equation for complex-valued images. This is important since
omitting the phase may lead to reconstruction artifacts. This problem can be seen
in fig. 1. The figure shows reconstructions from fully sampled MRI measurements.
The images on the right show a nonnegative real-valued reconstruction where some
structures, marked by red boxes, of the complex-valued reconstructions on the left
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are missing. The top row shows the magnitude of the reconstructions, while the
bottom row depicts complex values: The hue represents the normalised phase and
the brightness represents the magnitude. In particular, one can see that structures
where the phase is different are missing in the real-valued images.

1.1. Related work. Dynamic inverse problems in general have been studied ex-
tensively. An overview of the topic can be found in [14, 23]. The particular topic of
undersampled (dynamic) MRI has also been widely studied and many different ap-
proaches have been proposed to enhance reconstruction quality. Many works lever-
aged compressed sensing making use of the fact that MRI images can be sparsely
represented in suitable domains [17, 16, 10]. In dynamic imaging, the temporal
relation between motion states should be taken into account to improve the results.
One approach is to decompose the (temporal) sequence of images into a low-rank
part (background between time frames) and a sparse part (modelling dynamics be-
tween frames) [12, 18] . This way, the image sequence is represented suitably for the
undersampled MRI problem. Another approach is taken in [26], where the motion
between different motion states is estimated based on the frame-wise undersam-
pled reconstruction of each state. Subsequently, this motion information is used to
get a final reconstruction incorporating all motion states into a single reconstruc-
tion. Joint reconstruction and motion estimation approaches are also promising.
This was investigated in [1, 29] where the underlying motion was modelled using
(locally affine) optical flow. Besides classical image reconstruction, learning-based
approaches have been considered in dynamic MRI. Those aim at learning spatiotem-
poral dependencies within the image sequence, and/or mimic the iterative nature
of classical reconstruction algorithms [21, 20, 28].

Besides MRI, dynamic inverse problems arise in other fields of imaging. For
instance, in dynamic PET imaging the continuity equation was used as the motion
model to describe temporal changes between time points [22]. In tomography, an
approach based on a template and its temporal deformation was taken [7].

When it comes to working with complex-valued images, two approaches are
conceivable: First, one can parameterise the images using real and imaginary part.
This is the standard approach that is basically always followed. However, in MRI
imaging often the magnitude of the image is of most interest and one would like to
pose prior assumptions on the magnitude. This is difficult to incorporate using real
and imaginary part because calculating the magnitude is a nonlinear operation,
hence the overall regularisation would involve a nonlinear operator. Therefore,
one can work with a magnitude and phase parameterisation of the complex-valued
images. This makes regularising the magnitude easier but comes at the cost that
now the MRI forward operator is nonlinear. This was considered in [11, 27].

2. Methods

2.1. MRI modelling. Solving the inverse problem in MRI imaging in its simplest
form leads to inverting the discrete Fourier transform. Given enough measure-
ments (i.e. enough coverage of Fourier space/k-space) this problem is well-posed
by the stable invertibility of the Fourier transform. In practice, however, multi-
ple receiver coils (here are the measurements detected) and undersampling lead to
an ill-posed inverse problem. The MRI forward operator maps a complex-valued
image ρt (which in our case is a time slice of a temporal sequence of images) to
some complex space Yt, where Yt depends on the undersampling factor and the
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Figure 1. Comparison between real-valued and complex-valued
reconstructions in MRI. Left: Complex-valued reconstruction.
Right: Real-valued reconstruction. Top row: Magnitude represen-
tation. The bottom row shows the same images but as a complex-
valued image: The hue represents the normalised phase and the
brightness represents the magnitude. The red boxes point to some
missing structures in the real-valued image.

number of receiver coils. For instance, in a continuous setting one could choose
ρ ∈ Lp((0, T );BV (Ω)), hence ρt ∈ BV (Ω), or similar spaces with more regular-
ity [6]. In a discrete setting (which will be considered in this article) we take
ρ ∈X = CNt×Nx×Ny , where Nt, Nx and Ny denote the number of dimensions in the
temporal, x and y direction, respectively. Therefore, it is ρt ∈Xt = CNx×Ny for each
time slice. We next introduce the forward operator describing the measurements.
Denoting by Nc the number of receiver coils, we have Yt = CNc×Nk,t , t = 1, . . . ,Nt,
as the measurement space. Here, Nk,t denotes the number of measured k-space
points at time t after the undersampling has been applied. With the Fourier oper-
ator F , the coil sensitivity operators Ct,i and the undersampling operators St (see
section 4.4 for details) we can find for the i-th component (i.e. coil) of the MRI
forward operator At at time point t

At∶Xt → Yt, (Atρt)i = StFCt,iρt.(1)

Hence, we model MRI measurements as

yt = Atρ
†
t + εt

where ρ†
t ∈Xt is the ground truth image that we want to reconstruct and εt is some

additive noise.
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2.2. Modelling motion for complex-valued images. In this work, we use the
optical flow equation as a motion model to regularise the dynamic inverse problem.
The optical flow equation is often used in computer vision and has proven valuable
for 2D images [1, 5, 6]. Its defining property is constant image intensity along a
trajectory with d

dt
ρ = v [14]. Thus, the underlying PDE reads

∂tρ + ⟨v,∇ρ⟩R = 0

and during the reconstruction, both the image ρ as well as the velocity field v have
to be reconstructed. Note, that since velocity and density are multiplied by each
other, using the optical flow equation makes the problem nonconvex. To be able to
apply the optical flow equation in MRI imaging (where complex-valued images are
reconstructed), we propose to generalise this equation by allowing both the image ρ
and the velocity v to be complex-valued. The inner product is therefore replaced by
the standard inner product for complex vector spaces. This leads us to the model

0 = ∂t(ρ
1
+ iρ2) + ⟨v1 + iv2,∇(ρ1 + iρ2)⟩C(2)

⇐⇒

⎧⎪⎪
⎨
⎪⎪⎩

0 = ∂tρ
1 + ⟨v1,∇ρ1⟩R + ⟨v

2,∇ρ2⟩R

0 = ∂tρ
2 + ⟨v2,∇ρ1⟩R − ⟨v

1,∇ρ2⟩R.

for ρ = ρ1 + iρ2 ∈ X and v = v1 + iv2 ∈ V 2 (note, that the velocity is a 2D vector).
Here, V is a suitable space for the velocities such that the derivatives needed for the
priors are well-defined. In the discrete setting, we may choose V = X. Associated
with the above two equations we introduce the optical flow operator

M(ρ, v) = (
∂tρ

1 + ⟨v1,∇ρ1⟩R + ⟨v
2,∇ρ2⟩R

∂tρ
2 + ⟨v2,∇ρ1⟩R − ⟨v

1,∇ρ2⟩R
) .(3)

For our discrete space X = CNt×Nx×Ny the temporal derivative ∂t∶X → X and the
inner product ⟨⋅, ⋅⟩R∶X ×X →X are to be understood pointwise.

We use the same discrete versions of the differential operators as in [6]. This
means we use forward differences in time and central differences in space with
Neumann boundary conditions for the differential operators involved in the optical
flow equation. For the differential operators of other parts of the optimization
function we use forward differences with Neumann boundary conditions (see [6] for
more details).

Remark (Choices on optical flow model). There are other possible generalisations
of the optical flow equation to complex-valued images. For instance, one could in-
troduce separate velocities for real and imaginary part, hence decoupling both com-
ponents. Also, a single velocity for both the real and imaginary part would be an
option. Finally, only one of the two parts could be regularised by the optical flow
equation and the other one evolves freely. However, these variants do not explicitly
model interchange between real and imaginary part. To be able to model such an
interchange, we used the above approach.

Remark (Alternative choice for motion model). An alternative motion model
would be to use the continuity equation in density and momentum variables in-
stead of density and velocity variables (see, for example, [4]). This way, the motion
model does not incorporate a nonconvexity into the optimisation problem. Un-
fortunately, finding meaningful regularisers for the momentum variables is more
challenging than for the velocities. For instance, an object moving along the x
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axis with constant velocity will have a zero gradient of the corresponding velocities.
The momentum, however, is nonconstant as it also changes when the mass of the
underlying object changes. Therefore, we decided to use the optical flow equation.

3. Optimisation and Implementation

Based on [1, 6] we minimise

F (ρ, v) = ∑
t

∣∣Atρt − yt∣∣
2
+ α1R1(ρ) + α2R2(v) + α3R3(M(ρ, v))(4)

with respect to ρ = ρ1 + iρ2, v = (v1x, v
1
y) + i(v

2
x, v

2
y). Here, yt is the measured MRI

signal at time point t, and At andM are operators related to the MRI measurements
and the optical flow equation, respectively (see (1) and (3)). The regularisers for
the variables ρ and v are chosen to promote smoothness (the “level of smoothness”
can be controlled via the εi parameters)

R1(ρ) = Hε1(∇ρ
1
) +Hε1(∇ρ

2
)

R2(v) = Hε2(∇v
1
x) +Hε2(∇v

1
y) +Hε2(∇v

2
x) +Hε2(∇v

2
y),

where ∇ denotes the spatial gradient and Hε is the Huber loss with parameter ε.
Defining for x ∈ R2

hε(x) =

⎧⎪⎪
⎨
⎪⎪⎩

∥x∥22
2ε

if ∥x∥2 ≤ ε,

∥x∥2 −
ε
2

else,

we have Hε(x) = ∑
N
i=1 hε(xi) for x ∈ (R2)N . Finally, we use a soft constraint

R3(M(ρ, v)) = Hε3(M(ρ, v))

since we cannot expect the optical flow equation to be satisfied perfectly. Compared
to the classical L1 loss the Huber loss is differentiable, and the parameter ε controls
the extent of smoothness within the Huber loss, i.e. it controls whether the Huber
loss is more similar to the norm ∥ ⋅ ∥2 or the squared norm ∥ ⋅ ∥22. Tuning this
parameter allows us to adapt to the considered problem and find a better model.

The considered optimisation problem (4) is nonconvex due to the optical flow
equation. To deal with the nonconvexity we follow the same strategy as in [1, 6]
and apply a block coordinate descent (see algorithm 2). This means we iteratively
optimise the minimisation function only for ρ or v while keeping the other variable
fixed. Each resulting subproblem is solved using the FISTA algorithm [3] (applied
to f + g with f smooth and g = 0, see algorithm 1) with early stopping (iterations
where stopped if the relative L2 error was below δ = 10−5). Furthermore, motivated
by the coarse-to-fine approach in image registration, we smoothed the density ρ
and the velocity v after each sub-optimisation using a Gaussian smoothing with
standard deviation σ/iouter. Here, σ is again a tunable parameter, and iouter ∈
{1, . . . , nouter} denotes the current outer iteration, i.e. the smoothing decays with
growing iterations. For the maximal number of iterations we used nouter = 200,
nρ = 1400 and nv = 3200. The optimisation algorithm was implemented in Python
using SIRF [19] for reading the MR data and applying the associated measurement
operators, and CIL [15] to implement the actual optimisation algorithm. The code
will be made available upon publication and is attached for the review process.



6 M.J.EHRHARDT. M.MAURITZ

Algorithm 1 FISTA with early stopping for minimizing smooth function f

1: Inputs:
smooth function f with Lipschitz constant L, initialisation
xinit

Algorithm parameters n, δ
2: Initialize:

x0 ← xinit, x̂
1 ← xinit, t

1 ← 1
3: for j = 1 to n do
4: xj ← x̂j − 1

L
∇f(x̂j)

5: tj+1 ←
1+
√

1+4(tj)2

2

6: x̂j+1 ← xj + ( t
j
−1

tj+1
)(xj − xj−1)

7: if ∥xj − xj−1∥2/∥x
j−1∥2 < δ then

8: break
9: return xj

Algorithm 2 Optimization of F (ρ, v)

1: Inputs:
Measurement y
Model parameters α1, α2, α3, ε1, ε2, ε3
Algorithm parameters σ,nouter, nρ, nv, δ

2: Initialize:
v1 ← 0, v̂1 ← 0, ρ1 ← 0, ρ̂1 ← 0

3: for i = 1 to nouter do
4: ρi+1 ← FISTA(ρ↦ F (ρ, v̂i), ρ̂i) with nρ iterations
5: ρ̂i+1 ← smoothσ/i(ρ

i+1)

6: vi+1 ← FISTA(v ↦ F (ρ̂i+1, v), v̂i) with nv iterations
7: v̂i+1 ← smoothσ/i(v

i+1)

8: if 1
2
∥vi+1 − vi∥2/∥v

i∥2 +
1
2
∥ρi+1 − ρi∥2/∥ρ

i∥2 < δ then
9: break

10: return ρi+1, vi+1

3.1. Models for comparison. We compare our proposed method (4) (we call this
model OF and label corresponding reconstructions OF, too) to three slightly different
variants:

(a) Frame-wise model (FW): For each time point a separate reconstruction is
computed and no correlation between time points is assumed. This corre-
sponds to optimising (4) for the density ρ only and setting α2 and α3 to
zero. Thus, we minimise

F (ρ) = ∑
t

∣∣Atρt − yt∣∣
2
+ α1R1(ρ)

with respect to ρ = ρ1 + iρ2 applying algorithm 1 with nρ iterations, where

R1(ρ) = Hε1(∇ρ
1
) +Hε1(∇ρ

2
)

as above.
(b) Time derivative model (DT): The term containing the optical flow equation

is replaced by a term containing time derivatives only. This means we fix
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the velocities to zero and optimise (4) for the density ρ only. Thus, we
minimise

F (ρ) = ∑
t

∣∣Atρt − yt∣∣
2
+ α1R1(ρ) + α3R3(M(ρ,0))

with respect to ρ1 + iρ2 applying algorithm 1 with nρ iterations, where

R1(ρ) = Hε1(∇ρ
1
) +Hε1(∇ρ

2
).

and

R3(M(ρ,0)) = Hε3([∂tρ
1, ∂tρ

2
]).

as above promote spatial and temporal regularity, respectively.
(c) Optical flow using ground truth velocities (Cheat-OF): With this model we

want to investigate how our method would perform if we had access to the
velocities underlying the motion, i.e. this model gives us the best possible
reconstruction within our framework. To this end, we use our model (4)
with fully sampled data to determine ground truth velocities vGT. Then,
we optimise (4) for the density ρ only while fixing the velocity to be vGT.
Thus, we minimise

F (ρ) = ∑
t

∣∣Atρt − yt∣∣
2
+ α1R1(ρ) + α3R3(M(ρ, vGT))

with respect to ρ = ρ1 + iρ2 applying algorithm 1 with nρ iterations, where

R1(ρ) = Hε1(∇ρ
1
) +Hε1(∇ρ

2
)

and

R3(M(ρ, vGT)) = Hε3(M(ρ, vGT)

as above.

3.2. Metrics. We consider two metrics to compare the quality of two images:
PSNR (which is also used as the metric for the hyperparameter optimisation) and
SSIM (which is the secondary alternative metric to compare image quality). To
compute them, we use the respective functions provided by scikit-image where the
”data range“ parameter is obtained from the ground truth image. Also, we com-
pute the metrics for each time point and compute the final metric as the average
over all time points.

3.3. Hyperparameter optimisation. Hyperparameter optimisation was carried
out using scikit-optimize to find good sets of parameters for each model. We chose
PSNR (computed on the dynamic mask, see section 4.2) as the metric to be min-
imised by the Bayesian optimisation. For the Bayesian optimisation we used the
Optimizer class with a Gaussian process as the base estimator and expected im-
provement as the acquisition function. For the model in (4) and its optimisation we
used the following hyperparameters. The regularisation parameters α1, α2, α3, the
smoothness parameters ε1, ε2, ε3 and the algorithm parameter σ which gives the ini-
tial amount of smoothing of the density and velocity after each outer optimisation
step. The number of tested parameters depends on the model. The more model
parameters exist, the more combinations of parameters were considered within the
Bayesian optimisation. More details can be found in the code.
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4. Data

We work with two datasets taken from the OCMR dataset [8] containing cardiac
cine series (long-axis view). The data consists of multi-coil k-space data acquired
with Cartesian sampling on a Siemens MAGNETOM Avanto scanner (1.5T) (see [8]
for more details). We use fully sampled data and apply the subsampling manually.
A fully sampled reconstruction of both datasets can be found in fig. 2. Based on
subject 1, we additionally consider a simulated dataset that resembles a real-world
MRI image but satisfies the optical flow equation perfectly. This way, we can assess
the model capacities and our optimisation procedure in an idealised setting.

4.1. Ground truth images. To assess the reconstruction quality, we need a suit-
able “ground truth” image to compare the results to. One possibility would be
to use the fully sampled measurements to get reconstructions for each time frame
separately using the FW model. In doing so, however, one gets time trajectories that
are slightly irregular and do not resemble realistic motion (see fig. 2 second column
on the right) due to, e.g., in-frame motion. Therefore, we use a “dynamic ground
truth” that results from minimising (4) with fully sampled data and high dynamic
regularisation parameters. This results in reconstructions that are more regular in
time (see fig. 2 first column on the right). This approach also has the advantage
that we have “ground truth” velocities available that describe the dynamics within
the ground truth image sequence. These can be used to assess the quality of our
reconstructed velocities.

In the discussion section, we will briefly comment on the results being similar
when using the frame-wise “ground-truth”.

4.2. Mask focusing on dynamic parts in images. We are primarily interested
in the dynamic parts of the image and want to improve image quality in these
regions particularly. Since large parts of the images are basically constant in time,
computing loss metrics between ground truth images and reconstructions over the
whole image would consequently result in focusing on the wrong parts. Therefore,
we computed masks focusing on the dynamic parts of the images (see fig. 2 right
column), and computed the image metrics on these masks only.

4.3. Simulated data. We test our proposed model on simulated data. To this
end, we used a dataset from [8] (subject 1 in fig. 2) and solved (4) for fully sampled
data. Then, we smoothed the obtained velocities in space and time and used the
resulting velocities to simulate a sequence of images starting with the image at
the first time point from solving (4). The thus obtained images and velocities
are therefore guaranteed to satisfy the optical flow equation and the velocities are
smooth enough to be reconstructable. Based on these simulated ground truth
images we generated measurements by applying the MRI forward operator At.
Finally, Gaussian noise (zero mean) was added where the standard deviation was
chosen such that unregularised reconstructions yielded qualitatively similar images
to unregularised reconstructions based on the original measured data.

4.4. Undersampling. We next describe the used undersampling. The data we
are working with has been acquired with a standard Cartesian sampling scheme,
and we consider four times undersampling in the phase encoding direction with full
sampling of the rows in the readout direction. More precisely, we use the same
x = 15 percent central rows in each time frame and randomly select 25 − x percent
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Figure 2. Each row shows a reconstruction for a different data
set. The first column shows a dynamic ground truth (obtained as
a reconstruction using (4) and fully-sampled data). The second
column shows the same for a frame-wise ground truth (obtained
from reconstructing each time frame separately (FW model) using
fully-sampled data). The last column shows an overlay of the re-
constructions with the dynamic masks. Within each column, the
left side shows one time slice of the reconstructions, the right side
shows time-space images along the red lines.

of the outer rows (same number of rows on each side of the central rows) in such a
way that the selected outer rows between consecutive time frames do not overlap.

5. Experiments and results

5.1. Simulated data. The results for the simulated data are summarised in ta-
ble 1 and can visually be inspected in fig. 3. The top row in that figure shows the
magnitude of the simulated images. In the second row, the same images are rep-
resented as complex-valued images where the hue represents the normalised phase
and the brightness represents the magnitude. From this row of images, we see that
the phase varies spatially, but its temporal changes are small.

The other rows depict the difference between the reconstructions using the re-
spective model and the simulated images (magnitude images are compared). We
can clearly see that DT improves over the frame-wise approach FW, and that OF im-
proves over DT. The improved reconstruction qualities can also be seen in PSNR
values in table 1 (first column), where OF improves over FW and DT by 10dB and
4dB, respectively. Moreover, we see, that Cheat-OF , for which ground truth veloc-
ities are available in the reconstruction, is basically not improving over OF. Similar
observations can be made by comparing the SSIM values in table 1.

This good reconstruction result of the OF model is backed by the reconstructed
velocities depicted in fig. 4 (bottom row). We see that the general form of the
velocities has been recovered compared to the ground truth velocities (top row),
hence a good reconstruction quality is expected.

5.2. Subject 1. The summarised results of subject 1 can be found in table 1 and
fig. 5. We see that our proposed method OF performs better than FW or DT. The
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Figure 3. Results for the simulated data. The top row shows the
evolution (magnitude) of the simulated ground truth images for
the time points t0, t2, t4, t6 (out of 8 time points). The second
row shows the same images but as a complex-valued image: The
hue represents the normalised phase and the brightness represents
the magnitude. The other rows depict the difference between the
magnitudes of the reconstructions and the magnitude of the simu-
lated images on the dynamic mask. Rows 3-5: FW, DT and OF.

comparison between OF and the frame-wise approach yields PSNR improvements
(a similar pattern can be observed in the SSIM values) of almost 3dB, showing
that the complex optical flow equation helps the reconstruction by describing the
underlying motion. The gains of OF over DT are not very pronounced. However,
they improve to over 1dB when looking at finer structures in more detail as can be
seen in fig. 5 in the third row. Further, the results in table 1 and fig. 5 also show
that the method Cheat-OF including ground truth velocities outperforms all the
other methods by a lot (which is no surprise since this method basically has access
to the fully sampled measurements via the ground truth velocities obtained from
a fully sampled reconstruction using (4)). This improvement can be explained by
comparing the reconstructed to the “ground truth” velocities in fig. 7. We see that
the reconstruction quality is decent for the real part, whereas the reconstructed
imaginary part differs significantly from the “ground truth” velocities’ imaginary
part. Overall, the velocities are not as well reconstructed as for the simulated data,
which explains the improved results using Cheat-OF.
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Figure 4. Reconstructed velocities of one time frame for the simu-
lated data using our proposed complex-valued optical flow method.
First row: Ground truth velocities in x and y direction. Second
row: Reconstructed velocities in x and y direction

5.3. Subject 2. The summarised results of subject 2 can be found in table 1
and fig. 6. We see that OF improves PSNR over FW and DT by 2dB and 1.4dB,
respectively. Therefore, the proposed optical flow model helps with reconstructing
dynamic MRI images. Again, a similar conclusion can be drawn from the SSIM
values. Looking at the reconstructed phase (fig. 6 rows 3 and 4), we see that
all methods reconstruct the phase well on an overall level (row 3). However, the
magnified area in row 4 shows differences in the reconstructed phases in the detailed
structures. Here, OF gives a better result over FW and DT. This improved phase
reconstruction is associated with a better reconstruction of details, as can be seen
in the second row. Again, Cheat-OF, as expected, improves over all other methods.

6. Discussion

Overall, our experiments demonstrated that explicitly considering the complex-
valued optical flow equation (2) is useful for modelling motion between complex-
valued images. In particular, our simulated experiment showed large reconstruction
improvements. This, of course, is to be expected as the underlying ground truth
motion perfectly satisfies the optical flow equation and the corresponding veloci-
ties follow the posed prior assumptions. Still, this simplified example shows that
the optimisation procedure is suitable for the problem, and meaningful results are
obtained. Moreover, we have mentioned already in section 5.1 that Cheat-OF is
basically not improving over OF in the simulation, suggesting that OF is able to
produce nearly optimal reconstructions in case the underlying images satisfy the
considered prior assumptions.

Comparing the ground truth velocities of the simulation (fig. 4) and of the mea-
sured subject 1 (fig. 7) we see that they are of different quality. In particular, the
simulated velocity appears to be much smoother in space, hence they are more in
accordance with our prior modelling. On the other hand, the ground truth velocities
of subject 1 are much rougher in space which is not reflected in the reconstructed
velocity. This of course influences reconstruction quality and partly explains the
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FW 34.1 ± 1.2 27.3 ± 0.7 25.6 ± 0.6 27.7 ± 0.8 26.4 ± 0.9

DT 40.1 ± 0.9 29.6 ± 0.3 26.2 ± 0.3 29.8 ± 0.4 27.5 ± 0.5

OF 44.1 ± 0.6 30.2 ± 0.5 27.6 ± 0.4 30.2 ± 0.5 28.0 ± 0.5P
S
N
R

Cheat-OF 44.2 ± 0.3 34.4 ± 0.7 32.0 ± 0.7 33.1 ± 0.4 28.7 ± 1.0

FW 0.943 ± 0.010 0.828 ± 0.014 0.812 ± 0.015 0.847 ± 0.014 0.852 ± 0.018

DT 0.978 ± 0.004 0.869 ± 0.009 0.819 ± 0.012 0.880 ± 0.009 0.869 ± 0.011

OF 0.991 ± 0.001 0.892 ± 0.010 0.873 ± 0.012 0.888 ± 0.011 0.880 ± 0.011S
S
IM

Cheat-OF 0.992 ± 0.001 0.959 ± 0.009 0.942 ± 0.009 0.934 ± 0.004 0.872 ± 0.018

Table 1. Summary of the results. The columns show the metrics
for the respective data sets (with dynamic ground truth GT(dyn)
and frame-wise ground truth GT(FW)). The displayed values are
(average) ± (standard deviation) taken over the considered time
points. The metric for each time point is computed on a dynamic
mask (see section 4.2, fig. 2).

Figure 5. Reconstructions for subject 1. Left to right columns:
Ground truth image, FW, DT, OF and Cheat-OF. First row shows
magnitude of reconstructions. Second row: Difference of recon-
struction to ground truth on the mask. Third row: Magnified area
and corresponding metrics on magnification.
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Figure 6. Reconstructions for subject 2. Left to right columns:
Ground truth image, FW, DT, OF and Cheat-OF. First and second
row show magnitude of reconstructions with respective metrics.
Third and fourth row show the phase of the reconstructions. Sec-
ond and last row are the indicated magnified areas.

Figure 7. Comparison between ground truth velocities (top row)
and reconstructed velocities (bottom row) of subject 1 for a single
time frame.
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differences in reconstruction quality compared to the simulation. In future work, it
will be interesting to investigate different priors that better resemble the underlying
velocities’ structure. For instance, one could use Haar wavelets, include regularisa-
tion in time, or follow a learning-based approach that can derive very specialised
and problem-specific priors.

For our “ground truth” images we argued in section 4.2 that using “dynamic
ground truth” images is more appropriate in our setting. However, we repeated
the procedures for subjects 1 and 2 with “frame-wise ground truth” images (for
the simulation both versions of ground truth images coincide) with similar results,
where PSNR improvements are slightly less pronounced (2.5dB over FW for subject
1 and 1.6dB over FW for subject 2, see table 1 right two columns). This suggests
that the overall results do not depend on the choice of “ground truth” images.

7. Conclusions

Dynamic MRI (like cardiac MRI) is an important clinical imaging modality for
which measurement undersampling is vital to get reasonably fast acquisitions. To
remedy the image reconstruction artifacts naturally appearing due to this under-
sampling, motion models such as the optical flow equation can be used to propagate
information across time frames. Current models have followed this approach for
real-valued images. In this work, we have generalised the procedure to complex-
valued images by proposing a complex version of the optical flow equation that can
account for phase changes between time frames. We tested the new model on two
real cardiac datasets and saw reconstruction improvements of the complex optical
flow model over the comparison methods.

We used central differences for spatial derivatives in the optical flow equation.
In future work, one could analyse which discrete differentiation approach works
best in the context of the complex optical flow equation. Related is the question of
whether a CFL condition changes when transitioning from the real to the complex
optical flow equation.

We also saw that including “ground truth” velocities into the model further im-
proved reconstruction quality implying that the currently chosen regularisation for
the velocities is not optimal. In future work, it will be interesting to further investi-
gate how to best choose regularisers for the velocities to achieve better performance
(such an optimal choice is not even clear for the standard real-valued optical flow
motion model).

Overall, we observed that the complex optical flow model is well-suited for car-
diac MRI data. Of course, other options are conceivable. For instance, the continu-
ity equation is a typical way of describing motion (especially in three dimensions).
Also, a learning-based approach could be vital to adapt the model to the underly-
ing problem so that problem-specific features can be taken into account. It will be
interesting to compare different approaches with each other.
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