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SUMMARY 

In a highly competitive food industry producers continue to 

strive to produce better, more acceptable products. The methodology for 

obtaining a sensory profile of a product is well established. A panel of 

assessors score the intensity of each adjective of a vocabulary 

considered to adequately describe every intrinsic sensory character. The 

scores from each judge can then be rationalised and combined using 

Procrustes analysis to provide a consensus of the panel. If such data is 

to be utilised fully it is necessary to be able to express these sensory 

properties, and then in turn preferences, in terms a food technologist 

can understand, product composition. With the use of modern instrumental 

methods the data characterising composition typically consists of as 

many as 600+ recordings (variables) on a far fewer number of samples. 

This thesis considers canonical correlation (CC), redundancy 

analysis (RA), partial least squares (PLS) and principal component 

regression (PCR) as possible exploratory methods. Each aims to identify 

a small number of factors, or pairs of related factors (linear 

combinations of the observed variates) which are assumed to characterise 

the underlying inter-relationship between the two data sources. 

An optimisation criterion is established for the PLS algorithm 

and simulated examples are used to illustrate each technique. CC and RA 

are seen to identify factors which generally poorly summarise{ ! the 

predictor (analytical) data. A worked example shows that this can result 

in regression coefficients with signs contrary to expectation. 

PLS is also compared to the similar inner product method. The 

inner product approach is seen to be inappropriate when the response is 

univariate and also when single factors rather than related pairs are 

preferred. 
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Simulation is used to investigate solution stability under small 

random perturbations for different choices of inter-relation, size of 

data set (including data sets with more variables than samples) and form 

of response. A method is developed to generate a correlation matrix with 

a fixed eigenvalue structure. RA models show optimum fitting ability but 

poor stability, as do the CC models, and PCR models are highly stable 

but with poor fitting ability. In contrast PLS provides stable models 

with generally good fitting ability. The stability of the regression 

coefficients for a response chosen to mimic a Procrustes consensus is 

consistently poor. 

A summary statistic is suggested as an indicator of likely 

instability which is seen to correlate well with the observed results. 

The results obtained from two worked examples show the values of this 

statistic for the simulated data are realistic. 

The performance of three cross-validation statistics for 

assessing model dimensionality are evaluated using the two worked 

examples. The method of Eastment and Krzanowski (1982) is shown to be 

the most reliable. 
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CHAPTER 1 INTRODUCTION 

1.1 FOOD ACCEPTABILITY 

One man's meat is another man's poison. Food acceptability is a 

complex phenomenon; a subjective evaluation governed by the senses of 

sight, smell, taste, touch and hearing, by need, attitude, nutritional 

value, product image, advertising, environment and cost. However, 

despite this complexity the success of a highly competitive food 

industry, in an area of the world where we eat to enjoy rather than to 

survive, illustrates that a general level of acceptance is attainable. 

Early research into food acceptability concentrated on the 

acquisition of attitudinal and preference information, and lay largely 

in the realms of the market research companies. The methodology used 

for obtaining such information included the use of paired comparison 

tests (an assessor is asked to record the most preferred of the two 

samples presented), product rankings and ratings, and scoring a product 

characteristic (e. g. sweetness) relative to ones' ideal. Although 

highly relevant, these approaches are clearly limited in so far as they 

provide information on what is preferred but little or no indication 

why. The increased international exchange of foodstuffs following the 

last war, and the consequential development of new processed and 

convenience foods rendered such information insufficient. Food 

researchers and producers saw the need to know, not only what was 

preferred, but why. 

The 1950's saw the development of descriptive sensory evaluation 

procedures (profiling) as an objective approach for investigating 

sensory properties (Caul, 1957). Products under evaluation were 

presented to a panel of trained assessors who, by discussion and the 
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presentation of reference standards, devised a precisely defined 

vocabulary to describe the sensory characteristics of the foodstuffs, 

and in particular those characters which varied across the products. A 

score (using a pre-defined scale) was then given to indicate the 

intensity of each character in each of the products being evaluated. 

Since its inception there have been many developments and 

refinements to profiling methodology. This is particularly true for 

sensory descriptors, the trend being towards the use of increasingly 

detailed vocabularies (e. g. Williams and Carter, 1977; Etievant and 

Williams, 1985). There are several reasons for this. General terms 

such as 'fruitiness' were found to be too vague. Fruitiness covers 

many subdivisions, and while no overall difference may be detectable 

there may be an increase in some fruity characters and a decrease in 

others. Thus subdivisions of these general terms were developed. A 

score could then be given both for the overall intensity of a character 

and for its subdivisions. The use of vague descriptors also allowed 

for imprecise interpretation, as such terms may have different meanings 

for different panellists. To try and minimise confusion in terminology 

descriptors were defined using reference standards. Standards are 

usually available for referral during the assessments. They are also 

used to clarify the interpretation of the intensity scale to minimise 

differences in its use. This is a real problem in sensory analysis as a 

stimulus of strong intensity to one assessor may be weak to another. 

The use of such detailed defined vocabularies is not without its 

problems. To cover all sensory properties of a product requires a long 

development time. A cider vocabulary of 50 terms (Williams, 1975) was 

taken from 163 suggestions and took several months to be rationalised. 

Despite the presentation of standards varying interpretation of terms 
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across the assessment panel is 'inevitable. The use of profiling 

vocabularies also assumes that the relevant characteristics can be 

adequately expressed in words. It is known that if the sensory 

characters are unusual or the perception phenomena complex assessors 

have difficulty in finding a meaningful set of terms (Thomson and 

Tunaley, 1987). This latter problem is avoided if similarity/ 

dissimilarity estimation coupled with multi-dimensional scaling is used 

to characterise sample differences, although this too has its 

limitations. No information with regard to which characters differ 

across the samples is available. To try and overcome the problem of 

terminology confusion Williams and Langron (1984) devised the method of 

free-choice profiling. This approach allows each assessor to define 

his/her own individual vocabulary which may be extended during the 

course of the trial. Generalised Procrustes analysis is then used to 

rationalise the data provided. 

Conventional sensory profiling methodology is now well 

established and procedural guidelines are available (ASTM Committee E18 

STP, 1981). However, although objective profiling, whether conventional 

or free-choice, has proved valuable for obtaining a perceptual 

characterisation of products, a full understanding of'preference and 

how the intrinsic properties of a product influence food choice can 

only be achieved through integration with chemical compositidn. data. A 

knowledge of these relationships is essential not only for fundamental 

understanding, but also for quality control and assurance purposes, for 

the development of new product guidelines, and for adjusting preference 

levels in products. If food quality is to be given the same 

consideration as, for example, economics, it is necessary to be able to 

express preference and perceptual characteristics in terms the food 
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scientist and technologist can understand, i. e. product composition. 

Indeed one may question at this point the need for sensory evaluation 

data if the ultimate objective is to optimise preference. This 

intermediary is essential as reasons for product preference differ, 

although overall ratings may appear the same. It is only by considering 

preference ratings alongside sensory characterisation data that the 

true origin of preference may be investigated and established. 

The last 30 years have also seen great advances in flavour 

chemistry by way of revolutionary developments in instrumental/ 

analytical techniques, including various forms of chromatography and 

mass spectrometry, and more recently infra red and nuclear magnetic 

resonance spectroscopy. With these techniques came a vast array of 

analytical data. No longer did the chemical/physical information 

consist of a small number of general measurements such as pH, 

viscosity, density, fibre weight etc. but rather consisted of data 

characterising the compounds present in the product, and in many cases 

actually responsible for flavour. It is not unusual for as many as 

6-700 compounds to be identified in one product. Thus in any 

examination the number of components is typically far in excess of the 

number of samples evaluated. 

Although the problems of confusing and ambiguous terminology do 

not exist with such analytical data, instrumentation techniques are not 

without problems. Conflict in the identification of compounds can 

arise. Replicate runs may not produce identical chromatograms. For 

example, compounds which are supposedly the same may differ in 

concentration and appear at slightly different positions on replicated 

chromatograms (see section 5.2 for a description of gas chromatographic 

procedures). The use of expensive mass spectrometry as a confirmatory 
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procedure is required to establish correct identifications. 

Although advances in analytical food chemistry are still being 

made, with new compounds being characterised and identified (e. g. 

Hansen and Lund, 1987; Hussain et al., 1987; Jayatilake and MacLeod, 

1987) and changes monitored in a variety of foodstuffs (Marriot, 1987), 

techniques for this and for sensory evaluation are well established, 

and much of the current interest in flavour and food acceptance 

research lies in the methodology for relating data sources (e. g. 

Martens, M. and Martens, H., 1986; Williams et al., 1988). 
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1.2 DATA ANALYSIS IN FOOD RESEARCH 

A single food acceptance programme can result in the acquisition 

of a vast array of data (chemical and objective sensory, and hedonic 

information), providing considerable scope for the data analyst. This 

may be seen from the diversity of approaches which have been employed. 

Many of the papers cited as examples of the use of the different 

techniques are taken from the proceedings of the 5th Weurman Flavour 

Research Symposium (Martens, M. et al., 1987). 

1.2.1 SENSORY ANALYSIS DATA 

In early sensory work correlation coefficients were used to 

investigate the association between descriptors and between assessors 

sample scores. Often individuals' intensity scores were compared 

directly with one another and with the panel mean (Williams, 1978c). 

Correlations and covariances have also been used as measures of 

dissimilarity. Principal co-ordinate analysis can then be used to 

produce maps showing descriptor or assessor groupings. Langron (1981) 

used this approach to investigate assessor groupings and outliers 

following a generalised Procrustes analysis. 

Perhaps the most widely used method for exploring associations 

between descriptors and producing low dimensional perceptual sample 

maps is principal component analysis (e. g. Pangbourne, 1984; Duus et 

al., 1987; Federer et al., 1987). Typically, intensity ratilgs are 

meaned over the panel, although Bertuccioli et al. (187) suggest 

analysing 'stacked' data matrices to investigate assessor, sample, 

attribute relationships. Factor analysis has also found application in 

sensory work (van Gemert et al., 1987), as has canonical variate 

analysis (Viorol and Daget, 1987). In this context a group is defined 

as the panellists means for a particular product. 
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Univariate analysis of variance has been applied, both to assess 

panellists' ability to discriminate between samples on the basis of a 

particular descriptor and to check assessor consistency (when replicate 

samples are evaluated) (King, 1987; Shepherd et al., 1988). 

Preliminary analyses of this nature are commonly used to eliminate 

unreliable assessors and descriptors. This approach has proved 

particularly popular due to its ability to cater for the complex design 

structures often employed in sensory evaluation experiments. 

All these approaches are limited however, in so far as no 

allowances are made for confusion in the use of terms, or in the use of 

the intensity scale. One technique which does take such features into 

account is generalised Procrustes, analysis (Gower, 1975; Langron, 

1981). Confusion in terminology is catered for by matching assessor 

configurations under orthogonal rotation. The rotation is constrained 

to be orthogonal to ensure the preservation of shape, i. e. of inter- 

point distances within each assessor's perceptual space. Different uses 

of the intensity scale are allowed for by permitting an isotropic scale 

change of each configuration. Inspection of the individual rotation 

matrices then allows differences in vocabulary use to be investigated. 

Langron et al. (1984) showed that the principal dimensions through the 

consensus space (mean of the rotated configurations) displayed a better 

correspondence with external parameters than the principal dimensions 

through the panel mean. It was the availability of this technique, and 

its ability to handle data matrices of varying dimensions that led the 

way to Williams' development of free-choice profiling. This method has 

proved popular for the handling of profile data (Marshall and Kirby, 

1988; McEwan and Thomson, 1989) although its application has been 

restricted by the limited availability of software. The recent 
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development of software suitable for use on a micro computer 

(Dijksterhuis and van Buuren, 1989) should, however, see an increase in 

its popularity. 

Although generalised Procrustes analysis provides a 

rationalisation of sensory profiling data, with the large number of 

attributes recorded (often more than the number of samples assessed) 

redundancy exists, and data summary and interpretation can be 

difficult. Schlich et al. (1987) and Gains et al. (1988) have 

considered this problem and proposed methods for removing essentially 

redundant variables. Both assess the correspondence between principal 

component solutions. Schlich et al. (1987) use the RV coefficient as a 

measure of similarity (Escoufier, 1973, Robert and Escoufier, 1976) and 

suggest forward selection while Gains et al. (1988) compared three 

methods using backward elimination and concluded that the method of 

Krzanowski (1987a) was the most appropriate. 

All the methods outlined above assume that the data are metric, 

i. e. that the difference between an intensity score of 2 and 3 is the 

same as between, for example 7 and 8. Psychological research has shown 

however, that people do not estimate their responses In this way 

(Powers and Quinlan, 1974). Although, many examples of the use of 

non-metric multi-dimensional scaling methods can be found in the food 

research literature (e. g. MacFie and Thomson, 1984), the uselof ordered 

category scales with profile data has been largely ignored by sensory 

workers. Non-parametric analysis of variance has proved unpopular due 

to its inability to handle complex design structures, and the 

difficulty of comparing sample means. Techniques such as PRINCALS 

(Gift, 1983), non-metric principal components, remain largely in the 

realms of the psychologists. Multivariate analysis with ordered 
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categories, e. g. multiple correspondence analysis (Greenacre, 1984) 

has been considered in this context by van Buuren (1987) but its 

application to the analysis of sensory data remains largely unexplored. 

1.2.2 PREFERENCE DATA 

Many of the univariate techniques applied to analyse profile 

data have also been used to investigate preference assessments. Simple 

statistical tests (e. g. t and rank tests) are commonly used to compare 

preference scores and rankings, as is analysis of variance (Shepherd 

and Griffiths, 1987; Hellemann and Tuorila, 1987). Typically, 

comparisons are made between mean scores for sub-populations and 

between individuals' preferences. Although it is clearly inappropriate 

to mean preference scores, as opposing preferences cancel out, examples 

can be found in the literature where this has been done, including the 

two papers cited above. Assessors may be grouped using either 

pre-defined variables (e. g. age, demographic indicators) or natural 

groupings in the data. Natural groupings may be explored in a number of 

ways. Metric and non-metric clustering techniques applied to stores and 

ranks, with hierarchical models fitted (Chatfield and Collins, 1980) 

and MDPREF (Carroll and Chang, 1970) are two of the more frequently 

used methods (e. g. Shepherd et al., 1988). MDPREF uses a singular 

value decomposition of individual preference rankings, and has the 

ability to handle both metric and non-metric data. 

1.2.3 ANALYTICAL DATA 

With the vast array of information produced by modern 

analytical techniques multivariate data reduction techniques are 

required to explore patterns and regularities in the data. Principal 

component analysis remains one of the more popular (Maarse et al., 

1987). This method, coupled with the SIMCA methodology for expressing 
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confidence regions around the dimensions and cross-validation for 

assessing dimensionality has been strongly advocated by S. Wold and 

co-workers (1983b, 1984a, 1984b). This, and other methods of pattern 

recognition and classification, such as canonical variate and 

discriminant analysis and K nearest neighbour clustering have also 

proved popular amongst food researchers and chemometricians (Alvarez et 

al., 1987). Discriminant analysis with a group defined as the 

replicate observations for a given sample has been adopted as the 

standard procedure for processing pyrolysis mass spectra (Windig et 

al., 1983). Factor analysis has been used, both to explore data 

patterns and to test hypotheses about the compounds present (van Gemert 

et al., 1987; Malinowski and Howery, 1980). This approach is less 

popular however, due to the need to specify the dimensionality a 

priori, and the often misleading results when an 'incorrect' choice is 

made (Seber, 1984). 

1.2.4 RELATING DATA SETS: SENSORY AND PREFERENCE DATA 

PREFMAP (Carroll, 1972) is currently one of the most popular 

approaches used to model sensory and preference data. PREFMAP is a 

regression technique which allows linear and quadratic models to 

be fitted to sensory attributes or other external factors, such as 

assessor sex, production parameters etc. PREFMAP, like MDPREF, has the 

ability to handle rank category data, non-monotonic models are fitted. 

Non-linear models are particularly relevant for modelling preference. 

If the samples assessed cover the full range from 'too little' to 'too 

much' hedonic ratings generally follow a parabolic or multinodal 

distribution. Examples of the use of the different levels of preference 

mapping (metric, non-metric, linear, non-linear) may be found in 

Schiffman et al., 1981. 
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1.2.5 RELATING DATA SETS: ANALYTICAL AND SENSORY DATA 

Non-statistical Methods 

Many of the methods used for exploring sensory-analytical 

relations are not of a statistical nature. To assess aroma characters 

for example, panellists can be asked to sniff the compounds as they are 

emitted from the gas chromatography column and then describe the odour. 

There are clear disadvantages with this approach, however. No 

information on the interactive effects of compounds is available, only 

one evaluation can be carried out at a time, assessors become tired, 

and have difficulty in instantly recognising and naming aromas. 

Multiple evaluations are required to ensure reliable data, and the 

assessment conditions (temperature and concentration) do not always 

reflect those of the natural foodstuff. Attempts have been made to 

overcome these difficulties by trapping the gases for later evaluation 

but these too are not without their problems (Williams, 1978a). 

However, the method has proved useful for tracing the possible cause of 

flavour notes. 

Another approach particularly popular in the 1970's is the use 

of threshold values (Meilgaard, 1975). Threshold values are based on 

the premise that the lower the concentration of a compound detectable 

by the human instrument, the more likely it is to contribute to the 

flavour of the product. The range of threshold values reported for 

different compounds vary by a factor of 10. The concentration by 12 

which a compound exceeds its threshold is taken as a measure of its 

contribution to the overall flavour. Problems are encountered with this 

method also. Controversy exists over how threshold values combine in 

mixtures. The value obtained is dependent on the medium (i. e. air, 

water etc. ) in which it is assessed, and a common exponential function 
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relating intensity of stimulus to concentration must be assumed for all 

compounds. Also such measurements provide no indication of the 

associated sensory descriptors. Thus statistical approaches which look 

at a product as a whole and search for underlying patterns, rather than 

those that begin with individual compounds and attempt to build a 

picture have increased in popularity in recent years. 

Statistical Methods 

von Sydow and co-workers at the Swedish Institute for Food 

Preservation and Research are considered the pioneers in this area. 

They were among the first to use regression modelling to identify 

compounds associated with the aroma characteristics of bilberries and 

beef (von Sydow et al., 1970; Persson and von Sydow, 1972; Persson et 

al., 1973). As well as linear models they fitted functional models of 

the type y=a Sn +c and y-a log(S) +c 

where S represents the stimuli, a function of the chromatographic peak 

areas, and a, c and n are constants. Examples of the functions used are 

given in Williams, 1978b. These functions were chosen on the basis of 

the psychological research of Stevens (1951) and Fechner (1860) who 

purported that the relation between a human response and a stimuli took 

one of the above forms. In choosing the compounds to be included, the 

model was fitted to each combination of up to 6 variables (compounds), 

with the correlation coefficient and a goodness of fit statistic 

reported for each. The models were validated, only those which gave 

'good' results over several data sets were chosen. Although many useful 

relations were established using these functional models, the linear 

models showed higher correlations and better goodness of fit statistics 

(Persson and von Sydow, 1974). Subsequent work therefore saw a tendency 

towards linear modelling. 
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In addition to multiple regression much use has been made of 

stepwise and multiple discriminant analysis. The appeal of this method 

is largely due to the lack of assumptions made regarding the metric 

nature of the sensory data. The functions simply identify instrumental 

parameters which enable the samples to be categorised in terms of a 

sensory character. Many citations of the use of the method with 

different products are given in Williams, 1978b. Rouseff and Nagy 

(1987) compared the ability of discriminant analysis, SIMCA and the K 

nearest neighbour method to classify fruit juice preference and found 

the latter gave highest percentage of correct classifications. A recent 

example of the iterative use of multiple regression and discriminant 

analysis for predicting off-flavours in milk is Leland et al. (1987). 

These methods are somewhat unrealistic for modelling sensory 

profile data however, as they model each attribute separately. In 

reality we do not perceive each sensory character in isolation, but 

rather experience an overall sensation from the food as a whole. 

Canonical correlation and multiple regression using a combination of 

the sensory variates as the response (e. g. principal components or 

dimensions derived from a multi-dimensional scaling analysis) were 

among the first methods used to try and simulate this situation (e. g. 

Schiffman, 1974). Joint factor analysis has been used also, but with 

limited success. van Gernert et al. (1987) state of their restlts '... 

I did not correspond with our expectations'. 

When the data suffers from what Leland et al. (1987) term 'the 

curse of dimensionality' however, i. e. when the number of variates 

approaches or exceeds the number of observations, multiple regression 

based approaches require that some form of data reduction be applied. 

The use of a stepwise procedure is one solution, the reduction 
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techniques used to explore the individual data sets, described earlier, 

are another. In addition to these, threshold values have been suggested 

as a basis for the retention of components, as have the 'must possess 

relevant odours' and 'must show sufficient variation across the 

samples' criteria (Williams, 1978b). While all have their advocates 

they also all have their disadvantages. Difficulties encountered with 

stepwise procedures are well documented (Draper and Smith, 1981). 

Compounds can be insignificant for one solution and significant for 

another, depending on the order in which they were fitted. Data 

reduction techniques such as principal component and canonical variate 

analysis may be criticised because they consider the data set in 

isolation. Components are retained on the basis of their optimal 

properties for that data set alone, which may result in the exclusion 

of information relevant for modelling the response (as may stepwise 

regression). This problem is most relevant for reduction of the 

analytical data, although it is not unreasonable to expect that at 

least some of the compounds showing high variation will have a more 

noticeable impact on the sensory differences detected. 

The 1980's saw the introduction of a new approach to the 

modelling of the multivariate responses, Partial least squares (PLS) 

(Wold, S. et al., 1983b, 1984a, 1984b; Martens, M. and Martens, H., 

1986), a regression technique which claimed to have many of the 

advantages of the multiple regression based methods without the 

disadvantages. There was no need to reduce large data sets, the method, 

like principal components, could handle 'more variables than samples'. 

Like all statistical methods which attempt to identify underlying 

relations between variables, it is based on the philosophy that, 

although the stimuli-response relationship is complex and requires a 
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large number of measurements to cover this complexity, there exist only 

a small number of underlying main phenomena (factors) in a given type 

of product. Two types of model have been fitted, one involving pairs of 

related factors (cf. canonical correlation), and the other identifying 

just one set of factors (cf. regression on principal components). The 

latter has proved the more popular in this application. Further claimed 

advantages were that the method provided solutions which led more 

readily to interpretation than canonical correlation solutions, and 

that the approach for choosing underlying factors considered both 

variation within the predictor data set and the responses, and was thus 

superior to principal component regression. The method has been shown 

to provide what appear to be sensible solutions in a number of 

applications, including sensory work (e. g. Martens, M. et al., 1983a, 

1983b, 1983c; Martens, M., 1986; Bertuccioli et al., 1987), and has 

continued to grow in popularity. Martens, M. and van den Burg's (1985) 

comparison of a PLS solution with that obtained using canonical 

correlation after reduction by principal component analysis showed the 

method in a favourable light. Both metric and non-metric principal 

component analyses were considered. 

Despite its popularity a certain scepticism has existed about 

PLS, primarily due to its formulation as an iterative algorithm with no 

rigorous definition or specification of the optimisation criterion 

used. It claimed to achieve much but nothing had been formally 

presented to substantiate the claims. Indeed, this was the situation at 

the start of this project. The last 5 years however, have seen several 

advances, not only by way of extensions of the algorithms to model 

non-linear relations (Esbensen and Vold, S., 1983) and handle multi-way 

data sets (Vold, S. et al., 1987), but also in the knowledge and 
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understanding of the PLS philosophy and methodology (Helland, 1986; 

Lorber et al., 1987). These theoretical considerations however, have 

concentrated on the special case of a single response variable and have 

focused on PLS compared with principal component regression. This is 

unnecessarily restrictive, particularly when the method is to be 

evaluated with reference to its suitability for modelling sensory- 

analytical relationships. The objective here was to investigate and 

compare this method, not only with principal component regression, but 

also with the more readily accepted methods of canonical correlation 

and redundancy analysis, and this thesis is the result of these 

studies. Several of the PLS results presented are multivariate 

generalisations of the 'univariate response' results, some of which 

have also been recently reported by Höskuldsson (1988). 

The methods are presented in Chapter 2, including the number of 

different forms of the PLS algorithm. Throughout particular reference 

is given to the case of a non-full rank predictor data set. A general 

framework encompassing the different approaches is presented in Chapter 

3 and the effect of transformation is discussed. The method of cross- 

validation is considered along with an alternative. An example 

illustrating the underlying philosophy of each technique is presented 

also. Chapter 4 is concerned with a simulation study to investigate the 

stability of the solutions when the data exhibit different izter- 

structures. The methods are used to analyse two data sets 
taken from 

the field of sensory-analytical evaluation in Chapter 5 and conclusions 

and indications for future work are given in Chapter 6. 
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CHAPTER 2 METHODS FOR RELATING MULTI-DIMENSIONAL DATA SETS 

2.1 INTRODUCTION 

In this chapter a number of techniques currently used for 

modelling the inter-relationship between two multi-dimensional data sets 

are presented. The methods are canonical correlation, redundancy 

analysis, Partial Least Squares (PLS), Principal Component Regression 

(PCR), and LInear Structural RELations (LISREL). All are based on the 

general assumption that the inter-relationship may be expressed in terms 

of a set of underlying factors or latent variables, and, with perhaps 

the exception of LISREL (see section 2.7), are essentially exploratory 

in nature. 

These four exploratory techniques are also similar in many other 

respects. They all assume that the factors may be expressed as exact 

linear combinations of the respective observed variables, and least 

squares based procedures are used for their identification. In fact, 

canonical correlation and redundancy analysis correspond to certain 

formulations of the partial least squares approach (see section 2.6). 

Two related component-expansion type models are fitted to the data, but 

the precise form depends on the chosen method (see section 2.2). The 

fundamental difference between these techniques lies in the choice of 

criterion used to identify the factors (or equivalently the subspace 

spanned by them). The implications and inherent assumptions associated 

with the various choices are considered in Chapter 3. 

With LISREL the emphasis is somewhat different. The factors are 

no longer assumed to be exact linear combinations of the observed 

variables; the method focuses on the estimation of parameters associated 

with a hypothesised covariance structure rather than on the 
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identification of components. It is not a 'data reduction' based 

technique in the sense of the other methods (cf. principal component vs. 

factor analysis). 

Some notation is introduced in section 2.2 and the five 

techniques are investigated in sections 2.3 - 2.7. Within each section a 

brief review of the relevant literature is followed by a presentation of 

the standard formulation of the method, including, where known (see 

section 2.6), a specification of the associated optimisation criterion. 

Various adaptations to the basic methods which have been proposed are 

also considered. In particular the two adaptations of the mode A version 

of the PLS algorithm (sections 2.6.8 and 2.6.10) are studied in some 

detail, and the equivalence of the two is established (see section 

2.6.10). A further adaptation leading to a standard eigen-analysis is 

also considered briefly (section 2.6.12). Properties of the solutions 

obtained are investigated. Particular emphasis is placed throughout on 

the effect of column rank deficiency. Finally a summary of the effect of 

various linear transformations on the solutions is presented for the 

component-based methods. 
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2.2 NOTATION AND TERMINOLOGY 

Let the nxp matrix X- (x1... xp) and the nxq matrix Y 

(yl... yq) denote the two data sets, whose n rows contain measurements on 

p predictor and q dependent variables respectively, for the same n 

individuals or experimental units. For ease of notation and without loss 

of generality it will be assumed that each variable is centred to zero 

mean so that XT1n =0 

and YT1n s0 where 1n . (1... 1n)T 

and has been scaled in some suitably meaningful way; to unit variance 

for example. (The effect of scale change with respect to each of the 

methods is discussed in Chapter 3). It will also be assumed that all 

relationships between X and Y are linear. 

Any nxl vector lying in the manifold of X, (denoted by M(X)), 

that is any vector which may be expressed as an exact linear combination 

of x1... xp will be termed a factor in X. Any such set of s factors will 

be denoted by Fs = (f1... fs). The pxl coefficient vector defining fi in 

terms of X will then be denoted by ai, 

giving fi .X ai i. l... s 

and Fs .X As (2.1) 

Factors lying in M(Y) are defined similarly and will be denoted by Gs 

(g1 ... gs), with corresponding coefficient vectors bi, i=1... s 

Gs =Y Bs (2.2) 

It is necessary to impose orthogonality/normalisation 

constraints on Fs and Gs and/or As and Bs when identifying the factors 

and coefficients. The usual choice of constraints, however, depends on 

the method of analysis and will not, therefore, be specified here. 

In addition it will be assumed that the inter-relationship 

between X and Y, as conveyed by the factors, may be expressed in one of 
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two forms, which will be referred to as model 1 and model 2 

respectively. Model 1 is of the form 

Model 1X- FSPST + Ds 

a f1p1T + .... fspsT + Ds 

Y- GSQsT + ES 

e g1g1T + .... gsgsT + ßs 

and GS = FSCS + HS 

(2.3) 

(2.4) 

(2.5) 

where Ps (pxs) and Qs (qxs) are matrices of loadings and Ds and Es are 

the residuals remaining after fitting s dimensions. The relation between 

the two sets of factors is assumed to be given by equation (2.5), where 

Cs (sxs) is again a loading matrix and Hs the residual. The precise form 

of P, 0 and C again depends on the technique and will not, therefore, be 

specified any further at this stage. 

Model 2 is based on only one set of factors, Fs, and may be expressed in 

the form 

Model 2X= FsPsT + Ds 

= f1p1T + .... 
LPTD 

s 

Y=Fs0sT+ Es 

= f1g1T + .... 
fsgsT + Es 

where P, Q, D, and E have the same interpretation as for model 1. 

(2.6) 

(2.7) 
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2.3 CANONICAL CORRELATION 

2.3.1 INTRODUCTION 

Canonical correlation analysis was first formulated by Hotelling 

(1936) as a method of examining the relationship or association between 

two sets of variables. The problem posed by Hotelling was one of finding 

a set of linear combinations of one set of variables (i. e. factors in 

one data set) which are most highly correlated with some corresponding 

linear combination of the variables of the second set. The method thus 

fits into the model 1 framework introduced in section 2.2, the inter- 

relationship being expressed through two sets of factors. Like many 

multivariate techniques the method received only largely theoretical 

attention prior to the advent of powerful computers in the 1960's. This 

work centred primarily around investigating distributional properties 

associated with the method and considering how other techniques were 

related to, or special cases of, canonical correlation. The latter has 

been discussed in detail by Bartlett (1948) and McKeon (1966) and more 

recently by Muller (1981,1982). 

Although undoubtedly the most widely known of all the techniques 

being considered here, canonical correlation analysis has found little 

practical application due largely to the difficulty in interpretation 

which is often encountered (Kendall, 1968). This aspect of the method 

will be discussed in Chapter 3. Many authors have suggested additional 

analyses which may aid interpretation; Cooley and Lohnes (1962) and 

Meredith (1964), for example, suggested examining the correlations 

between the original variables and the derived factors, while Stewart 

and Love (1968) proposed the use of a general canonical correlation 

index, also termed the index of redundancy (e. g. Gleason, 1976) (see 

section 2.4). A constrained canonical correlation analysis with the 
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elements of the coefficient vectors constrained to be -1,0 or +1, has 

also been proposed by Desarbo et al. (1982), as an alternative to the 

traditional analysis. In addition to the classical formulation of 

Hotelling, canonical correlation has been defined in many ways, for 

example, using the theory of projectors (Rao and Yanai, 1979; Yanai, 

1974), and as the maximum likelihood solution of a reduced rank 

regression problem when it is assumed that the rows of the error E are 

independently distributed as Nq(0, E), with E unknown (Tso, 1981). The 

method has been generalised by Kettenring (1971) to include more than 

two sets of variates and has also been considered in the general context 

of relating k data sets by van de Geer (1984). Canonical correlation is 

viewed as one of a number of alternative measures of multivariate 

correlation by Ramsay et al. (1984) and further references to 

alternative definitions and generalisations may be found in this paper. 

A non-metric canonical correlation has also been developed (van der Burg 

and de Leeuw, 1983). 

2.3.2 THE STANDARD CANONICAL CORRELATION PROBLEH 

Canonical correlation analysis may be presented as either a 

sequential (pairs of factors are extracted sequentially) or a global (s 

pairs of factors are determined simultaneously) optimisation problem. 

Up to d= rank(%TY) pairs of factors may be determined. 

Formulation of the sequential optimisation problem 

The first pair of factors, f1 -X a1 and gl -Y bi are chosen to 

be that pair for which the correlation, corr(fl, gl) is a maximum. 

This correlation may be written 

corr(X al, Y bl) = cov(X a1, Y bl) / �(var(X al). var(Y bl)) 

= f1Tg1 / �(f1Tf1. g1Tg1) 

a a1T%TY b1 / �(a1T%T% a1. b1TYTY b1) 
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since both data matrices are assumed to be mean centred. Adding the 

constraints a1T%T% a1 =b1TYTY b1 - (n-1) 

ensures that both f1 and gl are scaled to unit variance, and the problem 

may then be written as: 

Find al and b1 to maximise 

ý1 = +(a1, b1) = a1TXTY b1 

subject to a1TXTX a1 = b1TYTY b1 = (n-1) 

Using Lagrange multipliers and differentiating with respect to a and b, 

it is easy to show (Anderson, 1958) that the maximum correlation, pl 

say, satisfies the equations 

p1xTx a1 = xTY b1 

p1YTY b1 = YTX a1 (2.8) 

with p1 = +1 / (n-1) 

Assuming that both xTx and YTY are of full rank (a relaxation of these 

assumptions is considered in Section 2.3.4) and that p1 # 0, it follows 

that b1 satisfies b1 - (YTY)-1YTX a1 / p1 (2.9) 

so that a1 satisfies 

(%TY(YTY)-lYT% - p12%T%)a1 -0 (2.10) 

It follows that p12 is the largest root (eigenvalue) of the 

determinantal equation 

I%TY(YTY)-lYT% 
-x %T%I =0 

and a1 is the corresponding eigenvector normalised so that 

a1TgTg al - in-1) 

(2.11) 

b1 may be obtained from (2.9), or as the eigenvector corresponding to 

the largest eigenvalue (p12) of 

IYT%(%T%)-1%TY 
-x YTYI =0 (2.12) 

By convention pl is taken to be the positive square root of p12, 

implying a constraint on a1 or bl. pl is known as the first canonical 
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correlation, and the factors, f1 -X a1 and gl -Y bl, are the first 

pair of canonical variates. Equations (2.11) and (2.12) indicate the 

symmetry of the technique with respect to the two data sets. 

Determination of subsequent pairs of factors (2 2 
fslzsl 

After extracting the first pair, (fl, gl), the second pair, 

(f2, g2) are determined by maximising the correlation between f2 and 921 

subject to the additional restriction that f2 be uncorrelated with fl 

and g2 with gl. So the problem may be written as: 

Find a2 and b2 to maximise 

+2 - f(a2, b2) - a2T%TY b2 

subject to aiTXTX aj - biTYTY bj - (n-1) Sij i, j - 1,2 

Again using Lagrange multipliers, and proceeding as above, it can be 

shown that p22 corresponds to the second largest eigenvalue of the 

determinantal equations (2.11) and (2.12), with a2 and b2 the associated 

eigenvectors. 

Similarly the kth pair of canonical factors (fk, gk) are obtained by 
TT 

I ýI_ L\. iýsi 

maximising ka $(akrbk) m ak+%`Y bk 

subject to aiT%T% aj = biTYTY bj = (n-1) 3i j i' J=1... k 

and the solutions satisfy 

pk%T% ak = %TY bk (2.13) 

pkYTY bk = YT% ak (2.14) 

with Pk = (n-1) 

pk2 corresponds to the kth largest root of (2.11) and (2.12) and ak and 

bk are the associated eigenvectors. 

Formulation of the global optimisation problem 

The global problem may be formulated as follows: 

Find two sets of s factors 

Fs = (fl... fs) =X As = X(al... as) 
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and Gs = (gl... gs) =Y Bs = Y(bl... bs) 

with s<d= rank (XTY) to maximise 
S 

trace(ASTXTY BS) = trace(FSTGS) -E aiT%TY bi (2.15) 

i-1 

with As and Bs chosen subject to the orthogonality constraints 

AsT%T% As = (n-1)Is (2.16) 

BsTYTY Bs = (n-1)Is. 

The solution of this global problem again may be found using partial 

differentiation with Lagrange multipliers with the result that the s 

columns of As and Bs correspond to the first s eigenvectors of (2.11) 

and (2.12) respectively, the same as those determined sequentially. 

An alternative method of solution, which allows one to find the 

global optima at once, without having to use Lagrange multipliers is 

given by Ten Berge (1983). This method, provided by the application of 

a generalisation of Kristof's theorem on the trace of certain matrix 

products (Kristof, 1970), has two advantages over the standard approach. 

The solutions obtained are of a more general form and the method is not 

dependent on the assumption that X and Y have full column rank. However, 

the approach given here is more appropriate for comparing the method 

with the other techniques and investigating the effect of rank 

deficiency. 

2.3.3 PROPERTIES OF THE CANONICAL VARIABLES 

The main properties of canonical variables are as follows: 

1. The canonical variables or factors within each set have unit 

variance and are uncorrelated, i. e. 

cov(X ai, X aj) = Si j 

cov(Y bi, Y bj) 

or equivalently 

aiTgTX ai = (n-l)Sij iºj = 1... s (2.17) 
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biTYTY bi - (n-1)Sij 

with Sij the Kronecker S. 

2. Each canonical variable is correlated with and only with the 

corresponding variable from the other set, i. e. 

cov(X ai, Y bß) - pi. 6i3 

or equivalently 

aiT%TY bi - pi(n-1) Sij 

with pi 

0< pi <1 iý d. rank(%TY) 

01>d 

(2. is) 

Pre-multiplication of (2.13) by ajT gives 

piajT%T% ai - ajTXTY bi 

and the result follows from (2.17). Properties (2.17) and (2.18) are 

known as biorthogonality. 

3. In general As and B. are not orthogonal. Orthogonality in As and Bs 

arises only when (XTX)-1XTY(YTY)-1YTX and (YTY)-1YTX(XTX)-1XTY 

respectively are symmetric. This will occur, for example, in the 

special case when xTx and YTY equal (n-1)Ip and (n-1)Iq 

respectively. 

2.3.4 THE CANONICAL CORRELATION PROBLEM WHEN X AND/OR Y ARE RANK 

DEFICIENT 

In section 2.3.2 the standard determinantal equations for the 

canonical correlation problem, (2.11) and (2.12), were obtained under 

the assumption that both x and Y were of full column rank, i. e. rank(X) 

=p and rank(Y) - q, thus ensuring that xTx and YTY were both invertible 

with a unique inverse. These conditions are not always satisfied 

however. In sensory data analysis for example, if x and Y contain 

measurements on analytical variables and sensory attributes 

respectively, it is common that at least one, if not both data sets will 

26 



be column rank deficient. The effect of relaxing these assumptions will 

now be investigated. 

Case 1 Rank(X) < p, Rank(Y) =q 

Without loss of generality, since the method is symmetric in x 

and Y, assume that x is rank deficient, with rank(X) = rx < p, and that 

rank(Y) = q, with q< (n-1). 

Consider the determination of the ith pair of factors, fi =X ai and 

gi =Y bi, where 1<i<s, and s< rank(XTY) < min(rx, q). As before the 

relationships pixTx ai = xTY bi 

pi YTY bi YTS ai 

hold, and since Y is full rank (YTY)-1 exists, so again 

bi - (YTY)-lYTX ai / pi 

Note, since 1<i< rank(XTY) it is assured that pi # 0, and ai 

satisfies (2.10), as in the full rank case. This eigenvector ai, 

associated with the assumed distinct ith largest root of (2.11) is not 

unique however, when rank(X) < p. 

Let ai be an eigenvector associated with the ith largest root, p12, of 

(2.11) and let 1 be any px1 vector (1 # 0) satisfying xTx 1-0. 

Since rank(X) < p, there exists at least one such vector 1. 

Now xTxl=0 * 1T%Tx1m0 -º x1-0 

and so ai*, where ai* ai +1 is also an eigenvector associated with 

pit and ai*T%T% ai* = (n-1). 

Hence the vector of coefficients ai is not uniquely determined. 

The associated canonical variable fi, is unique, however, since 

fi*=Bai*=%ai+%1=%ai 

Consider now the coefficient vector bi, from (2.13), one (non-unique) 

solution for ai in terms of bi is 

ai - (%T%) XTY bi / pi 
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where ()- denotes any generalised inverse. Substituting this 

expression into (2.14) gives 

(YTX(XTX) XTY - pi2YTY)bi -0 

Now YTx(xTx)-gTY is simply the matrix YTY where 
i- 

x(XTX)-XTY, the 

multivariate regression of Y on x, and Y is unique for any choice of 

generalised inverse of xTx (Rao, 1973). Hence YTX(XTX)-gTY is unique 

and since Y is full rank, the eigenvector bi associated with the 

(distinct) eigenvalue pit is unique also. Since pi - corr(fi, gi), both 

of which are uniquely determined it follows that pi is also unaffected 

by rank deficiency in one of the data sets. 

Case 2 Rank(X) < p, Rank(Y) <q 

When both data sets are column rank deficient, both coefficient 

vectors ai and bi will be non unique. This can be seen by extending the 

argument given above. 

Both XTY(YTY)-YTX and YTX(XTX)-XTY are unique for any choice of 

generalised inverse for YTY and xTx respectively, but there exists at 

least one pxl vector 1,1 #0 such that xTx 1-0 implying that ai is 

not unique and at least one qx1 vector m, m00 such that YTY m-0 

implying that bi is not unique also. 

However, as before, provided pit is a distinct eigenvalue of (2.11) and 

(2.12), both fi and gi are uniquely determined and pi is unaffected by 

this rank deficiency. 

Case 3 Rank(X) = (n-1), Rank(Y) <q 

Thus far it has been assumed that pit is a distinct eigenvalue 

of (2.11) and (2.12), thus ensuring that the pair of factors (fi'gi) 

associated with pi are uniquely' determined, whatever the rank of X and 

Y. If this condition is not met, and pi = pj for some i#j, the 

factors (fi, fi) and (gi, gj), will be unique only up to an orthogonal 
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rotation in M(fi, fi) and M(gi, gj) respectively. 

When n<p (and/or n< q) it follows with probability 1 that the p 

variables x1... xp will span the entire (n-1) dimensional space and that 

rank(X) - (n-1). This then implies that Y- %($T%)-XTY -Y and that all 

the non-zero pit, i-1... d satisfy 

YTY bi - Pi2YTY bi 

Hence pi -1 for all i, i-1... d. In this case not only the 

coefficients, but also the canonical variables are non-unique. 

Choice of generalised inverse 

Without loss of generality consider X. The choice of 

generalised inverse of %T% is essentially arbitrary. A generalised 

inverse is any pxp matrix, Z say, satisfying 

Z(xTx)Z aZ and (XTX)Z(XTX) a xTx 

(Rao, 1973). Alternatively, the data set may be transformed by an 

orthogonal rotation, R (pxp) say, so that after transformation it is of 

the form 

with 

BR=[81: 0] 

RTBT% R- 
A` 0 

0: 000 

T.. 
- ,.,.. 2 

0: 0J LO 0 

x1 is of dimension nxrx and A (rxxrx) is diagonal. Such a 

transformation always exists and x1 is unique, so long as the non-zero 

eigenvalues of xTx are distinct (Rao, 1973). The analysis is then 

performed with x replaced by X1, thus reducing the problem to one of 

smaller order. The pairs of factors (f1, gl)... (fs, gs), s<d= 

rank(x1TY) will be the same as would be obtained using any generalised 

inverse (provided the corresponding canonical correlations are 

distinct), and the coefficient vectors, a1*... as*, say, may be 

re-transformed to give p dimensional vectors, ai ,i=1... s, using 

ai =R1ai 

IJC_ 
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where R1 contains the first rx columns of R. 

It can be shown that this procedure is equivalent to choosing the 

Moore-Penrose generalised inverse of X. This transformation will be 

considered again in Chapter 3.. 

2.3.5 SOLUTION WHEN ONE DATA SET, Y SAY, CONTAINS ONLY ONE VARIABLE 

When q-1 so that Y contains only one variable, y say, there 

exists at most only one non-zero canonical correlation and this is equal 

to the multiple correlation coefficient. The coefficient vector bl is a 

scalar, may be taken to be equal to 1 without loss of generality. This 

is equivalent to assuming that y is scaled to unit variance. From 

equation (2.8) it follows that 

p1xTx al - xTy (2.19) 

and hence p1a1 - (XTx)-1xTy (2.20) 

assuming now that x is full rank. So plat is simply the usual least 

squares estimate of ß, ß, in the standard linear model y-Xß+c, 

where c is the error term. 

Premultiplication of (2.19) by a1T and applying the constraint (2.17) 

then gives (n-1)pl - a1TxTy. 

and ply 
Tx 

al -Y g(XTX)-1BTy from (2.20) 

so (n-1)pl2 - yTx(xTx)-lxTy 

and since it is assumed that yTy -'(n-1) it follows that 

p12 = yTx(xTx)-1$Ty / yTy 

the squared multiple correlation coefficient. 

(2.21) 

In this special case, therefore, canonical correlation analysis reduces 

to the multiple regression of y on (x1... xp). 

2.3.6 SUMMARY OF THE MAIN FEATURES OF CANONICAL CORRELATION 

The properties summarised'in this section will be discussed in 

Chapter 3. No attempt will be made to justify any of the features at 
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this stage. 

1. The canonical correlations, pl... pd, d- rank(%TY) are invariant 

under any scale change, and any non-singular transformation applied 

to either data set. 

2. The analysis takes no account of the pattern, i. e. the inter-point 

distances between individuals, within each data set. 

3. Canonical correlation is concerned with the identification of that 

subspace of M(X), spanned by. fl... fd, and that subspace of M(Y), 

spanned by gl... gd which contains information on the 

inter-relationship between the two sets of variables xl... xp and 

yl... yq. The complementary subspaces, that is the subspaces of 

M(X) and M(Y) orthogonal to M(f1... fd) and M(gl... gd) respectively, 

are specific to each data set, and are completely unrelated. 
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2.4 REDUNDANCY ANALYSIS 

2.4.1 INTRODUCTION 

Redundancy analysis is the name given by van den Wollenberg 

(1977) to the method of extracting factors (redundancy variables) which 

maximise the redundancy statistic proposed by Stewart and Love (1968). 

This statistic is defined to be the proportion of the total variance of 

the variables in one set explained by a factor (assumed by Stewart and 

Love to be a canonical variable) of the other. The redundancy index is 

the sum over all factors and is a measure of the degree to which one set 

of variables can predict the other. The index was originally proposed 

as a summary statistic to be used in conjunction with canonical 

correlation, and its introduction immediately gave rise to questions and 

controversy over its meaning, its properties and its utility, especially 

as a measure of multivariate association (Nicewander and Wood, 1974, 

1975; Cramer and Nicewander, 1979; Miller, 1975). Unlike canonical 

correlation the redundancy index distinguishes between the dependent and 

independent variables and is not symmetric in X and Y. A mathematical 

basis for redundancy was established by Gleason (1976). 

The procedure suggested by van den Wollenberg (1977) exhibits 

some similarity to canonical correlation analysis in so far as mutually 

orthogonal factors are extracted from each data set, and the eigen 

equation used for the determination of the factors in X mirrors that 

used to obtain factors in Y. However, due to the non-symmetry of the 

index, the pairs of factors obtained are not related in any natural way. 

Johansson (1981) suggested two alternative methods for choosing factors 

in Y which were naturally related to the redundancy factors of X. One of 

these alternatives provided the basis for Tyler's (1982) study of the 

optimality of the redundancy transformations. Additional properties and 
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interpretations of the redundancy variables are also provided by Tyler 

(1982). Although definition of the index is always credited to Stewart 

and Love it is equivalent to the measure of predictive efficiency first 

proposed by Rao (1964). The redundancy factors also arise from the 

maximum likelihood solution of a reduced rank regression problem when it 

is assumed that the rows of the error E are independently distributed as 

N(O, I) (Davies and Tso, 1982). 

The affect of affine transformation has been considered by 

Dawson-Saunders and Tatsuoka (1983), and an investigation into the 

relationship between redundancy analysis, canonical correlation and 

multivariate regression is given by Muller (1981). Generalisations of 

the redundancy index to allow for combinations of the dependent 

variables have been proposed by Miller and Farr (1971) and Tyler (1982), 

and the application of redundancy analysis to qualitative variables has 

been considered by Israels (1984). A hybrid redundancy/canonical 

analysis is investigated by Desarbo (1981). Redundancy analysis is also 

embedded in van de Geer's (1984) system for identifying linear relations 

among k data sets and is considered in the general context of matrix 

correlation by Ramsay et al. (1984). 

2.4.2 DEFINITION OF THE INDEX OF REDUNDANCY 

Stewart and Love (1968) defined the ith redundancy statistic, 

with 1<i<d= rank(XTY), as 

Yi2(Y) = pi2(n-1). L(Y, gi)TL(Y, gi) / tr(YTY) (2.22) 

where pi is the ith canonical correlation with associated canonical 

variate gi, (see section 2.3.2), and L(Y, gi) is 

L(Yogi) = YTgi(giTg1)-1 (2.23) 

= YTgi / (n-1) from (2.17) 

the qx1 vector of loadings of y1... yq on gi. Note tr - trace. 
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The redundancy index, I2(Y), is then given by 

d 
E ri(Y) (2.24) r2(Y) =2 

i=1 

r2(x) is defined similarly. Gleason (1976) showed that 

r2(Y) - tr(YTX(XTX)-1XTY) / tr(YTY) (2.25) 

q2q 
=i Elvar(yi). r yi. g 

/iElvar(Yi) 

where ryi. x 
is the multiple correlation coefficient for the regression 

of yi on X. The index is thus a weighted sum of the q correlation 

coefficients. From (2.25) it is clear that the index does indeed have 

the interpretation alluded to by Stewart and Love (1968). 

From (2.14) it also follows that (van den Wollenberg, 1977) 

yi2(Y) - aiT%TY YTx ai / (n-1). tr(YTY) (2.26) 

and similarly yi2(x) - biTYTX xTY bi / (n-1). tr(XTx) 

When the data are normalised so that tr(YTY) - (n-1). q and tr(XTX) _ 

(n-1). p, the situation usually assumed in the literature, the redundancy 

statistic may be interpreted as the mean squared loading of the 

variables of one set on a canonical variable of the other, which in this 

case is also equal to the mean squared correlation. 

Hence, when the variables yl... yq are each standardised to unit variance 

the redundancy statistic, yi2(Y) may be written (Stewart and Love, 1968) 

Yi2(Y) a pit C(Yl91) 
TC(Y, 

gi) /q (2.27) 

where C(Y, gi) is the qxl vector of correlations of each yj, j=1... q, 

with the ith canonical variable, gi. Again y12(X) is defined similarly. 

The redundancy index, when applied to standardised data reduces to 

(Dawson-Saunders and Tatsuoka, 1983; Israels, 1984) 

T2(Y) s tr(YTX(XTX)-1XTY) / (n-1). q 
q 

=E r2 /q 
i=1 yi'X 
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and may be interpreted as the mean squared multiple correlation 

coefficient for the separate regressions of yi, i=1... q on X (Miller, 

1975). 

2.4.3 THE REDUNDANCY ANALYSIS METHOD 

As with canonical correlation analysis, redundancy analysis may 

be presented either as a sequential or global optimisation problem. 

van den Wollenberg (1977) formulated the method as a sequential 

optimisation problem so this approach will be considered first. Once 

more at most d= rank(XTY) factors may be extracted from each data set. 

Formulation of the 

1 977) 

uential optimisation problem (van den Vollenber se 

The first factor, f1 -X a1, is chosen to be that factor for 

which the redundancy statistic y12(Y) -Y (a1) say, defined in (2.26), 

is a maximum. To ensure that (2.26) holds it is necessary to add the 

constraint a1TxTx al = (n-1) 

so that f1 is scaled to unit variance. The problem may then be written 

Find a1 to maximise 

fi - "(al) - a1TBTY YT% al 

subject to a1TXTX al - (n-i) 

Using a Lagrange multiplier and differentiating with respect to a it can 

be shown (van den Wollenberg, 1977) that al satisfies the equation 

(XTY YT% - U1XTX)al =0 (2.28) 

with ý1 (n-1)"p1 

2 
and y (a1) = ul / tr(YTY) 

It follows that Ul is the largest root of the determinantal equation 

I %TY YT% -x %T% I=0 

and al is the corresponding eigenvector normalised so that 

a1T%T% al = in-1) 

(2.29) 
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The factor f1 -X a1 is known as the first redundancy factor of X and 

Y (a1) is the first redundancy statistic. 

van den Wollenberg (1977) suggests that the factor g1 -Y bl be 

estimated similarly. So b1 is the eigenvector corresponding to the 

largest eigenvalue v1 say, of 

IYTx xTY -x YTYI -0 (2.30) 

and Y12(x) - 
Y2(b1) 

- vl / tr(XTX) (2.31) 

Provided xTx and YTY are full rank and ul and vl are distinct 

eigenvalues of (2.29) and (2.30) respectively, al and b1 will be 

uniquely determined. A relaxation of these assumptions is considered in 

section 2.4.7. 

Unlike canonical correlation analysis the values 
2 (al) and 

Y (bl) are, in general, not equal, the two equations (2.29) and (2.30) 

are not related and both eigen-structures must be computed. 

Determination of subsequent factors (f2-L92 "' sIAS1 

The second factors (f2, g2) are chosen to maximise the redundancy 

statistics 
y (a2) and 

y (b2) respectively, subject to the additional 

restrictions that f2 be uncorrelated with fl, and g2 with gl (cf. 

canonical correlation). So the problem for f2 may be written as: 

Find a2 to maximise 

02 - O(a2) - a2T%TY YT% a2 

subject to aiT%T% aj = (n-1) Sij i, j = 1,2 

Again using Lagrange multipliers and proceeding as above it can be shown 

that u2 is the second largest eigenvalue of (2.29), with a2 the 

corresponding eigenvalue, and 
y (a2) = u2 / tr(YTY). Similarly b2 is the 

eigenvector corresponding to the second largest eigenvalue v2, of 

(2.30), and y2(b2) = v2 / tr(XTX). 

Similarly the kth factor, fk' is obtained by maximising 
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ks ý(ak) = akT%TY YT% ak 

subject to aiT%T% aj = (n-1) di 
j 

i, J-1... k 

and the solution satisfies 

(XTY YT% - ukgTg)ak -0 

with y (ak) - Uk / tr(YTY) 

(2.32) 

uk corresponds to the kth largest eigenvalue of (2.29) and ak is the 

associated eigenvector. 

The coefficients bk, and factor gk are obtained similarly. 

Clearly from this formulation of redundancy analysis it is not necessary 

to extract factors from both data sets, since they are determined 

independently. 

Formulation of the global optimisation problem 

The global optimisation problem for van den Wollenberg's 

redundancy analysis may be formulated in the same manner as described 

for the canonical correlation problem, (see section 2.3.2), with the 

optimisation criterion (2.15) replaced by two criteria 

trace (ATgTy yTg As) - trace (FsTy yTFs) -E aiTgTy yT 
s% ai 

i=i 

s 
and trace(BsTyTg %Ty Bs) = trace (GsT% gTGs) .E biTyTg gTy bf 

i=i 

for As and Bs respectively, with As and Bs chosen subject to the 

orthogonality constraints (2.16). The problem may be solved using 

Lagrange multipliers as above, with the result that the s columns of As 

and Bs correspond to the first s eigenvectors of equations (2.29) and 

(2.30) respectively, the same as those determined sequentially. Although 

not illustrated by Ten Berge (1983), the generalisation of Kristof's 

theorem (1970) is also applicable to this optimisation problem. 

Rao (1964) terms the transformation As the principal component 

transformation of X relative to Y, and uses 
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S 

tr(YTY). (1 
i=1 

(2.33) 

as a measure of predictive efficiency. 

2.4.4 PROPERTIES OF VAN DEN WOLLENBERG'S REDUNDANCY FACTORS 

Property 1 of section 2.3.3 also holds for the redundancy 

factors, namely: 

1. The factors within each set have unit variance and are uncorrelated. 

2. In general the factors are not biorthogonal, i. e. in general 

cov(X ai, Y bb) # pi. 61j 

Equation (2.18) will hold when, and only when, %T% " (n-1)Ip and YTY 

(n-l)Iq, and the method becomes equivalent to canonical 

correlation with 
Y 

(ai). q =Y (bi). p = pit 

3. As with canonical correlation, in general As and Bs are not 

orthogonal. Again orthogonality arises when (XTX)-1XTY YTS and 

(YTY)-1YTx %TY respectively are symmetric. 

A fourth property will be given for the factors fi, i-1... s, and 

corresponding redundancy statistics y (ai). The result similarly holds 

for gip i=1... s and y (bi). For ease of notation y (ai) will be 

denoted y12. 

4. Yi2 is the proportion of the total variance of Y explained by 

fi =X ai. This follows by observing that the variance explained is 

given by tr(YTfi(fjTfi)-1fiTY) / tr(YTY) 

(fiTfi)-1(fiTY YTfi) / tr(YTY) 

2 
Yi 

Thus it follows that Yi2 satisfies 

21 
0<Yi2 <11 <darank(XTY) 

Yi a 
0i>d 

and that the redundancy index defined in (2.24) satisfies 
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o< r2 <1 

since i2 is the proportion of the total variance in Y explained by 

the linear prediction of Y by X. 

2.4.5 EXTENSIONS TO VAN DEN WOLLENBERG'S REDUNDANCY ANALYSIS PROPOSED 

BY JOHANSSON (1981) 

In view of the fact that the redundancy transformations for X 

and Y proposed by van den Wollenberg (1977) are unrelated and that the 

two sets of factors are extracted independently Johansson (1981) 

suggested two alternative methods for determining factors g1... gs more 

naturally related to fl... fs. The g1... gs are derived contingent on the 

optimally chosen fl... fs. Clearly, since the factors derived using 

van den Wollenberg's approach maximise 'explained variance', (see 

section 2.4.4), it is natural that his method be used to extract factors 

from the set of predictor variables, X, and that an alternative approach 

be considered for obtaining factors from the dependent data set, Y. 

Method 1 

Given the set of factors fl... fs of X derived according to 

(2.32) the first method for choosing g1... gs may be defined: 

Find bi, i=1... s to maximise 

oi = 0(bi) a aiT%TY bi 

with bi chosen subject to the constraints 

(2.34) 

biTbJ 6 ij 

Thus with this approach the coefficient vectors bl... bs not gl... gs are 

chosen to be orthogonal. The solution to this problem (Johansson, 1981), 

is given by bi = YT% ai / fi i=1... s 

where $i is defined by (2.34) and 

"i2= Yi2(n-1). tr(YTY) (2.35) 

The relation (2.35) was noted by Tyler (1982), who refers to 
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Yi2tr(YTY) / (n-1) as the ith redundancy statistic. It can also be 

shown (Tyler, 1982) that bi is the eigenvector corresponding to the ith 

largest eigenvalue of 

IYT%(%T%)-1BTY 
-x II -0 

assuming that X is full rank. 

Method 2 

This second method may be defined as follows: 

Find bi, i=1... s to maximise 

(2.36) 

fi = +(bi) = aiT%TY b1 (2.34) 

with bi chosen subject to the constraints 

bi TYTY b3 = (n-1)bij 

Thus with this method the factors rather than the coefficient vectors 

are chosen to be mutually orthogonal. Johansson refers to this 

derivation of gl... gs as the least squares solution. The solution in 

this case (Johansson, 1981) is given by 

bi = bi* / k1 (2.37) 

2L *T T,. 
wnere kn-l) x; = Ui II n{ 

I i-1 1 
bi* _ (YTY)-1YT% a4-IE ci; bi 

ýý1 i_1 -J JI 

and cij = aiTxTY bj 
6 J-- 

assuming Y is full rank. 

Clearly with this method bl... bs must be obtained sequentially. Unlike 

Method 1 bi, i=1... s is not an eigenvector of any common eigen- 

equation. The maximum 01 is given by 

i-1 
aiTgTY(YTY)-'YT % al -E 

2/(n-1) 

j-i 
cij 

2.4.6 PROPERTIES OF FACTORS DERIVED USING JOHANSSON'S METHODS 

The main properties of the factors gl... gs obtained using these 

two methods may be summarised as follows: 

1-1 
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Factors obtained using Method 1 

1. The coefficient vectors bl... bs are mutually orthogonal 

biTbß Sij 

2. In general the factors gl... gs are not mutually uncorrelated. 

3. At most d= rank(XTY) factors may be identified. 

(2.38) 

4. The vectors b1... bs are related to a1... a 

bi = YTx ai / �(Yi2. (n-1). tr(YTY)) (2.39) 

or equivalently Bs = YTx As s-1 / �((n-1). tr(YTY)) 

where s= diag(Y1"'Ys) 

5. Each gi is correlated with, and only with, the corresponding 

redundancy factor fi, i. e. 

cov(X ai, Y bi) pi6ij 

with Pit - Yi2. (n-l)tr(YTY) / biTYTY bi 

6. The orthogonal transformation B applied to Y preserves the index of 

redundancy, i. e. T2(Y BIX) = 
9(YIx) (Tyler, 1982). 

7. b1... bs are the eigenvectors associated with the first s eigenvalues 

of JYTY 
-XII=0 (2.40) 

where Ya g(XTX)-1XTY, assuming X is full rank. That is bl... bs are 

the first s eigenvectors associated with a principal component 

analysis of Y. 

8. The redundancy factor fi is proportional to the ith principal 

component of Y (Tyler, 1982). 

Let ti be the ith principal component of Y with 
T1T 

ti =Y bi = %(%`B)-1%`Y bi 

From (2.39) bi « YT% ai 

so %TY bi 41 %TY YT% ai = ui%T% ai from (2.32) 

Thus ti aX ai = fi 

9. fi is proportional to the linear regression of gi on X (Tyler, 

(2.41) 
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1982). This follows from (2.41). 

Factors obtained using Method 2 

1. The factors gl... gs are scaled to unit variance and are mutually 

uncorrelated, i. e. cov(Y bi, Y bi) - Sij (2.42) 

2. At most s<d- rank(XTY) factors may be determined. 

3. In general Bs is not orthogonal. 

4. The factors must be estimated sequentially. This follows 

immediately from (2.37). 

5. The transformation B applied to Y does not preserve the index of 

redundancy, i. e. I'2(Y BIX) # r2(YIx) (Tyler, 1982). 

2.4.7 REDUNDANCY ANALYSIS WHEN X AND/OR Y ARE RANK DEFICIENT 

As for the canonical correlation problem (see section 2.3.4) a 

study of the effect of rank deficiency may be split into a number of 

distinct cases. It will be assumed here that the factors fl... fs are 

estimated using van den Wollenberg's (1977) approach and that gl ... gs 

are determined using one of the two methods suggested by Johansson 

(1981). Since van den Wollenberg's method for choosing Gs is the mirror 

image of that used for Fs any observations made for Fs also apply to his 

choice of Gs. 

Case 1 Rank(X) < p, Rank(Y) -q 

Let rx denote rank(X) < p, and rank(Y) - q, with q< (n-1) and 

consider the determination of the ith pair of factors, fi =X ai, 

gi -Y bi, where 1<i<s, and s"< rank(XTY) < min(rx, q). As before the 

coefficient ai satisfies (2.32), and since i< rank(XTY) it is assured 

that ui # 0. However, applying the argument of section 2.3.4 (case 1) 

for the canonical correlation problem, it follows that this eigenvector 

ai associated with the assumed distinct ith largest root, ui, of (2.29) 

is not unique when rank(X) < p, although the factor fi is. 
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From the argument of section 2.3.4 it also follows that both bi 

and gi obtained using each of Johansson's methods remain unique, since 

fi remains unique, and both calculations of bi do not require the 

inversion of X. The redundancy statistic Yi2 is not affected by this 

rank deficiency in x (cf. canonical correlation). 

Note that equation (2.36) will now contain a generalised inverse of xTx 

since the true inverse will not exist when rank(X) < p. 

Case 2 Rank(X) - p, Rank(Y) <q 

Since redundancy analysis is not symmetric in x and Y, the 

reverse situation to case 1 must also be considered. The presence of 

rank deficiency in Y will not influence the determination of ai 

associated with the assumed distinct ith root of (2.29) as no inversion 

of YTY is required. Both the coefficient vector ai and the factor fi 

will be unique. This is also true for the bi and gi obtained using 

Johansson's Method 1 but not for the coefficients determined using 

Method 2. Due to the presence of (YTY)- in equation (2.37) the vectors 

bi* will be non-unique, although gi* -Y bi*, and hence ki and ci3 

remain uniquely defined. Once more the redundancy statistic Yi2 is 

unaffected. 

Case 3 Rank(X) < p, Rank(Y) <q 

The results for this case are a combination of those give for 

cases 1 and 2 and may be summarised as follows. Again it is assumed that 

i< rank(XTY) and that the non-zero eigenvalues of (2.29) are distinct. 

1. coefficient vector ai - non-unique, factor fi - unique 

Johansson's Method 1 

2. coefficient vector bi - unique, factor gi - unique 

Johansson's Method 2 

3. coefficient vector bi - non-unique, factor gi - unique. 
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Case 4 Rank(X) - (n-1), Rank(Y) <q 

Consideration of this situation for the canonical correlation 

problem illustrated that the canonical correlations pi, i-1... d were 

no longer distinct and that pi - 1, i-1... d, thus rendering both the 

coefficients and the factor scores non-unique. This phenomenon does not 

carry over to redundancy analysis, however. When rank(X) - (n-1), Y-Y 

(see section 2.3.4, case 3) and it follows that the redundancy 

statistics will be distinct provided the eigenvalues of YTY - YTY, 

(equation 2.40) are distinct. The bi obtained using Method 1 is the ith 

eigenvector of YTY, with gi the ith principal component, and since fi is 

proportional to the ith principal component of 
i 

(equation 2.41) it 

follows that fi cc gi. The second method of Johansson, in this case 

provides factors gl... gs corresponding exactly to f,... fs. The bi, 

i-1... s, are proportional to the component loadings. The redundancy 

index I2 =1 when Y=Y. 

2.4.8 SOLUTION WHEN ONE DATA SET, Y SAY, CONTAINS ONLY ONE VARIABLE 

When Y contains only one variable, y say, there exists only one 

non-zero redundancy statistic Y12, which is equal to the squared 

multiple correlation coefficient (cf. canonical correlation). 

Redundancy analysis in this case reduces to the multiple regression of y 

on X, and the coefficient vector a1 again takes the same form as (2.20), 

with p12 = Y12. We will not consider the reverse situation, i. e. p=1 

and q>1 as this is unlikely to ever occur in practice. 

2.4.9 SOLUTION WHEN X to Y 

In the special case, X=Y, redundancy analysis reduces to a 

principal component analysis. The factors flogo fs are the standardised 

principal components and the coefficient a1... as are the usual principal 

component loadings rescaled. When X=Y equation (2.29) reduces to 
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IxT% xT% 
-x %Tx I-0 

and the redundancy statistic Yi2 is simply the proportion of variance in 

X accounted for by the ith principal component. All the methods for 

determining bl... bs reduce to simply determining the vectors al... as 

(with a scale adjustment for Johansson's Method 1). 

2.4.10 SUMMARY OF THE MAIN FEATURES OF REDUNDANCY ANALYSIS 

This section contains a brief summary of the features of 

redundancy analysis which will be discussed further in Chapter 3. 

1. The redundancy statistics y (al)... Y2(ad), d- rank(XTY) are 

invariant under any scale change or non-singular linear 

transformation of X but not of Y. However, orthogonal transformation 

of Y is permitted. 

2. When choosing Fs, account is taken of the inter-point distances 

between individuals as provided by the Y variables, but no account 

is taken of the corresponding information provided by the X data 

set. 

3. Redundancy analysis as used for determining factors in X is 

concerned with the identification of that subspace of M(%), spanned 

by fl... fd' which provides the optimal prediction of Y from Fd 

4. The subspace of M(Y) spanned by gl... gd when method 1 is used 

contains that information in Y which can be predicted by X. 

If the aim is to derive pairs of factors it is desirable that the pairs 

be related in a natural way. Thus van den Wollenberg's approach for 

choosing factors in Y will be considered no further and the redundancy 

statistic will always refer to yi2(Y) - y2(ai) - Yi2, the prediction of 

Y from X. In particular subsequent investigations and studies will 

concentrate on the Gs determined using Johansson's Method 1 as these 

factors are naturally related to Fs, and preserve the redundancy index. 
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2.5 PRINCIPAL COMPONENT REGRESSION 

2.5.1 INTRODUCTION 

When the matrix X- xl... xp, of predictor variables exhibits 

rank or near rank deficiency least squares estimates of the coefficients 

relating Y to X in the classical linear regression model may be very 

unstable and have large variances. An example of this instability is 

given by Wainer (1978), and for a theoretical treatment see Silvey 

(1969). A commonly used alternative to least squares which attempts to 

avoid these problems is Principal Component Regression (PCR), (e. g. 

Massy (1965)). Estimates of the coefficients are obtained by regressing 

Y on a subset of the principal components of X, rather than on X 

directly (or equivalently on all the principal components of X). The 

solutions may be re-expressed in terms of the original X. Thus the form 

of relationship fitted using this approach follows the model 2 framework 

introduced in section 2.2. The principal components of X are the 

factors fl... fs, with s the number of factors retained for modelling Y. 

Although not normally considered in this application X may, of course, 

also be modelled in terms of fl... fs. 

Properties of the regression coefficients obtained using this 

and alternative procedures, notably ridge regression, (Hoerl and 

Kennard, 1970) for the case q=1, have been investigated and compared 

by a number of authors (e. g. Marquart, 1970; Hocking et al., 1976). A 

comparison of the PCR solution with that obtained using PLS (see section 

2.6.10), again for the case q=1 is also provided by Naes and Martens, 

H. (1985), Naes et al. (1986), Helland (1986) and Lorber et al. (1987), 

and the minimum variance properties of the solutions have been studied 

by Greenberg (1975). 

The number and choice of principal components, fl... fs to be 
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included in the model (2.6) is open to question and debate. The most 

commonly used procedure, and the one on which the afore-mentioned 

studies are based, is to retain those components of x corresponding to 

the s largest eigenvalues of xTx, with s determined by visual 

inspection. The limitations of this approach have, however, been noted 

by a number of authors, for example, Jolliffe (1982). The main 

criticism is that components associated with small eigenvalues of xTx 

may be highly correlated with the response, and that equally well, 

predominant component(s) may have a low correlation. Alternative 

procedures for choosing the components to be retained (for q- 1) which 

attempt to balance 'the correlation with y' against the variation 

accounted for in x' have been proposed by Lott (1973) and by Hill et al. 

(1977). Further references to work on the principal component 

regression may be found in the afore-mentioned papers. 

For the purposes of this presentation only the method based on 

retaining the first s principal components of x will be considered. The 

reason for this is two fold, firstly, PCR, unlike the other component 

based methods considered in this chapter does not extract factors which 

in some sense attempt to model the inter-relationship between x and Y. 

Even if the correlation with y is considered when choosing the 

components the factors are still constrained to the principal 

directions, although, of course, any choice of fi =X ai, may be 

written explicitly as a linear combination of the principal components 

of X. Secondly, when q=1a high or low correlation is well defined 

(once the definition of 'high' and 'low' have been decided upon), but 

when the method is extended to the modelling of more than one response 

variable, the question arises of what decision should be taken when a 

component shows a high correlation with some responses and a low 
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correlation with others. Should the component be included or not? As 

will be shown in Chapter 3 the PLS approach (introduced in section 2.6) 

attempts to overcome some of these limitations. 

2.5.2 THE PRINCIPAL COMPONENT REGRESSION METHOD 

For consistency the same form of presentation as used in 

sections 2.3 and 2.4 will be followed. In this case up to d- rank(X) 

factors may be determined. 

Formulation of the sequential optimisation problem 

The first factor, fl -X al, is chosen to be that factor for 

which the variance, var(f1) - f1Tf1 /(n-1), is a maximum, with al chosen 

subject to the constraint a1Ta1 = 1. 

So the problem may be written as: 

Find a1 to maximise 

ý1 = ý(al) = a1T%T% al 

subject to a1Ta1 =1 

It is easy to show that a1 satisfies 

(%T% - 11 2I)a1 
=0 

with $1 a X12 

and var(f1) = X12 / (n-1) 

Thus it follows that 112 is the largest root of the determinantal 

equation%T%-X II =0 

and a1 is the corresponding eigenvector normalised so that 

a1Ta1=1 

(2.43) 

11 is known as the first singular value of X and the factor fl =X a1 is 

the first principal component. 

Determination of subsequent factors f2... fs 

The factor fk, k=2... s is obtained by maximising 

fk = $(ak) = akT%T% ak 
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subject to aiTaj - Sij 

with var(fk) _k/ (n-i) 

and it may be shown that ak satisfies 

(XTX - Xk2I)ak =0 

i, j -1 ... k 

(2.44) 

with k= ßk2 the kth largest root of (2.43), and ak the corresponding 

eigenvector. 

The loadings Qs = q1 ... qs in (2.7) are found by regressing Y on Fs, thus 

T T-1T 
Qs = (Fs Fs) F5 Y (2.45) 

= 5-2FsTY 

or equivalently qiT = (fiTfi)-1fiTY = Xi-2fiTY 

The loading vectors Ps = pl... ps are calculated similarly 

Ts= : 
TF_1sTx 

=T 

This is the only solution for which pi - ai, i"1... s. From (2.7) and 

(2.44) it follows that 

YaX As s_2AsT%TY + 8s 

so Ass-2AsTXTY is the estimate of the matrix of coefficients relating Y 

to x in the general linear model, obtained using PCR. 

A Note that As 
s-2A5T 

is a generalised (Moore-Penrose) inverse of xTx. 

Formulation of the global optimisation problem 

The method for choosing f1... fs may be formulated as a global 

optimisation problem thus: 

Find a set of s factors, F. =X As, with s< rank(X) to maximise 

s T 
trace(AsTX 1 As) = trace (FsTFs) =E aiTXTX ai 

i=1 

with As chosen subject to the constraints 

AsTAs = Is 

with the result that the s columns of As correspond to the first s 
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eigenvectors of equation (2.44), the same as those determined 

sequentially. 

2.5.3 PROPERTIES OF THE PRINCIPAL COMPONENT FACTORS 

In this section a brief summary of the main features of the 

principal component solutions will be presented for completeness and 

comparison with the factors obtained using the other approaches 

considered. 

1. The coefficient vectors are chosen to be mutually orthogonal and 

each is scaled to unit length, i. e. 

si 
Taj ai3 (2.46) 

2. The factors fl... fs are mutually uncorrelated, i. e. 

cov(X ai, X aj) - xi2.6ij / (n-1) (2.47) 

with xi - 

f> 0i<d- rank(X) 

0i>d 

3. The method is unaffected by the presence of rank deficiency in 

X (or Y). 

4. The variances 11 ... Xd2 are invariant under orthogonal 

transformation of X but non-singular linear transformation and scale 

change is not permitted. 

5. The method takes account of the inter-point distances between 

samples as defined by the predictor variables xl... xp, assuming the 

usual Euclidean metric. 
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2.6 PARTIAL LEAST SQUARES (PLS) 

2.6.1 INTRODUCTION 

Partial Least Squares (PLS) is the name given by H. Vold (1978a) 

to the method of extracting underlying related factors (termed latent 

variables) by means of an alternating sequence of simple linear and/or 

multiple regressions. The precise form of the algorithm used in any 

given situation is determined by the hypothesis regarding the nature of 

the inter-relationship, the emphasis placed on various aspects of the 

model and any data constraints (see section 2.6.2). The basic design of 

the general algorithm for extracting one pair of related factors (f1'g1) 

was presented in 1975 (Vold, H., 1975c), although several tentative 

versions had been suggested prior to this (e. g. Vold, H., 1974,1975a, 

1975b). Indeed the NIPALS algorithm (Non-linear Iterative Partial Least 

Squares, an early name for PLS) for determining principal components and 

canonical variates, presented by Vold in 1966 (Vold, H., 1966a, 1966b) 

are special cases of the PLS approach. Following the publication of 

several tentative suggestions, a generalisation of the 'two data set, 

two factor' algorithm to a 'multi-data set, multi factor' procedure was 

presented in 1978 (Vold, H., 1978b). A comparative evaluation of the 

various generalisations and modifications considered during this 

formative period using a worked example may be found in Noonan and Vold, 

H. (1982). Further extensions allowing for the estimation of non-linear 

relationships, for variables observed over time and space, factors with 

a hierarchical structure (Vold, H., 1982) and the estimation of factors 

related by systems of linear equations (Boardman et al., 1981) have also 

been considered. Although an extension of the algorithm to facilitate 

the extraction of more than one factor from a given data set (cf. 

(gs, Gs), s> 1) was envisaged at an early stage in the development of 
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PLS (Vold, H., 1977a, 1977b, 1980a) a generalisation of the algorithm in 

this direction was not presented in detail until 1982 (Apel and Vold, 

H., 1982) A sequence of factors extracted from one data set, f1... fs, is 

termed a latent variable of dimension s by H. Vold, and is not the same 

as a set of s inter-related factors (extracted from s data sets) in the 

sense of the generalisations discussed above. An adaptation of the 'two 

data set, two factor, algorithm, employing ridge regression as opposed 

to multiple regression has also been considered by Jagpal (1982). A 

detailed account of H. Vold and co-researchers work on the PLS algorithm 

and its extensions, together with further references may be found in 

Jöreskog and Vold, H. (1982b). 

H. Vold and co-workers have been concerned almost exclusively 

with the development of these extensions, generalisations and 

modifications. Very little has been presented with regard to the 

properties of the solutions, particularly for the generalisations. The 

method is always presented in algorithmic form with no definition of the 

optimisation criterion employed. A study of the properties of the 1- 

dimensional PLS estimates of factors assumed to be related via an 

independent set of simultaneous equations is provided by Dijkstra 

(1981,1983), and some results are given in Jöreskog and Vold, H. 

(1982b). Additional references to other studies may also be found 

therein. 

The PLS approach, as developed by H. Wold, was designed 

primarily for application in what he termed the causal-predictive 

analysis of complex, theory-poor, inter-disciplinary problems, as 

typically found in economics and the social sciences. The method was 

seen as a general, data analytic, least squares counterpart to 

Jöreskog's LISREL approach which uses maximum likelihood estimation 
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under the assumption that the data are normally distributed (e. g. 

Jöreskog and Sorbom, 1978,1981), (see section 2.7). The PLS approach in 

contrast does not require any distributional assumptions. A discussion 

of the comparative aspects of the two approaches can be found in several 

of Vold's papers, for example, Vold, H. (1980b), Jöreskog and Vold, H. 

(1982c), and also in Dijkstra (1981,1983). Fornell and Bookstein (1982) 

also compare LISREL and PLS solutions under a number of model 

specifications. Examples of the applications of the PLS method in the 

social sciences and economics include, Hui and Jagpal (1979) and Noonan 

and Vold, H. (1977,1980). Further references to the applications of 

PLS are given in Jöreskog and Vold, H. (1982b). 

The PLS method has not, however, found application only in the 

socio-economic sciences. The basic algorithm for extracting two sets of 

factors (cf. Fs, Gs) using only an alternating sequence of simple linear 

regressions was picked up by a number of chemists, notably S. Vold and 

co-workers and H. and M. Martens, and used as an alternative to 

canonical correlation and principal component regressions whenever the 

identification of possible underlying relationships was required. 

Examples of the use of PLS in chemistry and the natural sciences 

include, the quantification of substances according to spectro- 

fluorimetric analysis (Lindberg et al., 1983), the evaluation of 

titrations (Lindberg and Kowalski, 1988), multivariate calibration of 

instruments (e. g. Sjöstrom et al., 1983; Vold, S. et al., 1983a; 

Karstang and Eastgate, 1987), the study of structure-activity 

relationships (Hellberg et al., 1982), analysis of volcanic rock data 

(Bisani et al., 1983), oil exploration feasibility studies (Esbensen and 

Martens, H., 1987), and as discussed in Chapter 1, the investigation of 

sensory-analytical relationships (e. g. Martens, M. et al., 1983a, 1983b, 
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1983c; Martens, M. and van der Burg, 1985; Martens, M., 1986). Further 

references to the application of PLS in the natural sciences may be 

found in the afore-mentioned papers and also in Martens, H. and Russwurm 

(1983) and Martens, M. et al. (1987). In addition to these areas of 

application Aastveit and Martens, H. (1986) suggest using PLS to 

interpret ANOVA interactions and Martens, H. et al. (1987) consider 

using PLS with an observed predictor replaced by design variables as an 

alternative to analysis of variance. 

Although designed for so called causal-predictive analysis, the 

simple regression based procedure (for relating two data sets), proposed 

by H. Wold (1982) is symmetric in the treatment of X and Y (see section 

2.6.6). In order to emphasise the predictive/dependent nature of many 

of the problems to which the method is applied (and to also allow for 

the possibility of extracting more than d- rank(Y) factors from X 

(assuming rank(X) > rank(Y)), see section 2.6.9) the algorithm was 

adapted by S. Wold and co-workers (e. g. Wold, S. et al, 1981,1983a, 

1983b, 1984a, 1984b). A further modification, which leads to the same 

predictive results (see section 2.6.10) has also been proposed by 

Martens and affiliated researchers (e. g. Martens, H., 1985; Nxs and 

Martens, H., 1985; Nms et al., 1986). All results presented in the 

afore-mentioned references are based on these two adaptations. 

Extensions of these algorithms to allow for the smoothing of coefficient 

vectors (Martens, H. et al., 1983), non-linear relationships (Esbensen 

and Wold, S., 1983) and consideration of multi-way data sets (Wold, S. 

et al., 1987) have also been suggested. 

Again, knowledge is limited with regard to the statistical 

properties of the solutions obtained using these algorithms (e. g. no 

distributional properties have been established), particularly for the 
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cases where both data sets are multi-dimensional (i. e. p, q > 1). S. Vold 

et al. (1984c) show that the S. Vold algorithm, applied when q-1 (i. e. 

one dependent variable) is equivalent to the conjugate gradient method 

for calculating a generalised inverse, and Manne (1987) further shows 

the method to be equivalent to the bidiag algorithm of Golub and Kahan 

(1965). The Martens algorithm, for q-1, has also received the 

attention of Nis and Martens, H. (1985); Nws et al. (1986) and Helland 

(1986) who compare the performance of PLS and PCR when dealing with 

multicollinear data and investigate the structure of the PLS method in 

the light of the concept of a "relevant" factor defined by Naes and 

Martens, H. (1985). A theoretical consideration (again with q- 1) is 

also provided by Lorber et al. (1987). 

It was stated by Vold, S. et al. (1984a) that his PLS approach 

extracts factors which both approximate X (cf. principal components) and 

model Y (cf. regression) and the results of Helland (1986), Lorber et 

al. (1987) and given herein support this conjecture. However, the 

technique has evolved through generalisations of, what appear to be, 

ad-hoc algorithms, and at no stage in any of these afore-mentioned 

studies has an optimisation criterion, for which the obtained factors 

and parameters are the optimum solution, been specified. Indeed H. Vold 

states that when the basic method is extended to multi data set/multi 

factor models no overall least squares criterion is satisfied (Vold, H., 

1982). It is possible however, to define an optimisation criterion for 

the various 'two data set', algorithms as will be shown in Chapter 3. 

This aspect of PLS has also been independently addressed by Höskuldsson 

(1988) who provides a similar presentation and discussion of the S. Vold 

formulation of PLS to that presented herein. The precise nature of the 

assumed model relating the two data sets (cf. model 1 or model 2) 
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depends on which form of the algorithm is chosen and will be specified 

in the relevant sections. 

2.6.2 THE PLS MODEL AND CHOICE OF ALGORITHM 

The PLS Model 

It is assumed by H. Wold (1982) that the inter-relationship 

between X and Y may be expressed in terms of two sets of underlying 

related factors, Fs and Gs, and that the relationship follows the model 

1 format presented in section 2.2. (equations (2.1) - (2.5)). 

Choice of Algorithm 

H. Wold (1982) proposed three alternative algorithms for the 

estimation of the factors fl... fs and gl... gs. With regard to the choice 

of algorithm for any particular application, he offers the following 

rules and guidelines: 

1. If the relationship between the pairs of underlying factors (fi'gi)' 

i=1... s, is of prime importance (equation 2.5) then use the 

multiple regression based algorithm (referred to as mode B). 

2. If the observed variables, xl... xp and yl... yq' are regarded as 

'formative' then choose mode B, that is if the observed variables 

are thought to determine the underlying factors. 

3. If one wishes to focus primarily on the loading vectors, Ps and Qs, 

(equations (2.3) and (2.4)) then use the simple regression based 

algorithm (mode A). 

4. If the observed variables are regarded as 'reflective', that is the 

factors are thought to determine the observed variables, then choose 

mode A. 

5. It is suggested that 'causal-predictive' relationships are best 

studied using mode C (a combination of simple linear and multiple 

regression) with the multiple regression feature used to extract 
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factors from X, Fs, and simple regression used to extract the 

factors Gs. 

6. If, however, the number of observed variables is high relative to 

the number of observations H. Wold (1982) always prescribes the use 

of mode A. 

These suggestions and recommendations will be considered briefly in the 

light of the solutions obtained using each algorithm, and will be 

discussed in more detail in Chapter 3. 

The mode B algorithm will be considered first, followed by the 

mode C version and finally the mode A approach. With the PLS method the 

pairs of factors (f1, g1)... (fs, gs) are always determined sequentially, 

as the residuals, Di and Ei (equations (2.3) and (2.4)), remaining after 

extracting i pairs of factors provide the data input into the algorithm 

to determine the (i+1)th pair, (fi+1, gi+1)' 

2.6.3 MULTIPLE REGRESSION BASED ALGORITHM (MODE B) 

The iterative algorithm used to determine the first pair of 

factors, fl -X al, g1 =Y bl, is as follows: 

Step 1 Choose an arbitrary column of Y, yl say, (recall that Y is 

centred) and set 

91 
(0) 

= yl / s(y) 

where s 
2(y) 

- Y1TY1 / (n-1) 

and k=1 

Step 2 Compute an estimate of the coefficient vector al; a, 
(k) 

using 

al(k) a (gT$)-1gTg1(k-1) 

assuming X is full rank. 

Step 3 Estimate the factor f1 by f1(k) where 

f1(k) a% a1(k) / s(a) 

and s2(a) a a1T(k)BT% a1(k) / (n-1) 

(2.48) 

(2.49) 
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Step 4 Compute an estimate of the coefficient vector b1; b1(k) using 

b1(k) = (YTY)-l7Tf1(k) (2.50) 

assuming Y is full rank also. 

Step 5 Update the estimate of the factor gl by 

g1(k) -Y b1(k) / s(b) (2.51) 

where s2(b) = b1T(k)YTY b1(k) / (n-1) 

Step 6 Compare g1(k) and gl(k-1) 

if 11g, (k) 
_ g1(k-1)IJ < specified tolerance (commonly taken to 

be 10-5) then the procedure is said to have converged. If this 

condition is not satisfied set ke k+1 and return to step 2. 

Convergence of this iterative procedure 

This iterative algorithm is almost always convergent (unit 

probability) for any initial value of g1(0) (Lyttkens et al., 1975). 

The algorithm is an example of the use of the power method for 

extracting the largest eigenvalue and corresponding eigenvector of a 

particular matrix. It is shown by Morrison (1976) that an iterative 

procedure of the form 91 
(k) 

aZ gl(k-1) 

for some matrix Z, where g1(k) is scaled in some way converges to the 

eigenvector corresponding to the largest eigenvalue of Z (except, of 

course, in the extremely unlikely event that the initial value gl(O), is 

chosen to be orthogonal to this eigenvector g1). Convergence will, 

therefore, only be a problem when the largest eigenvalue is a repeated 

(or almost repeated) root of Z. A discussion of the rate of convergence 

of the power method may be found in Atkinson (1978). 

Solution on convergence 

At convergence g1(k) - 91 
(k-1) 

= g1 

and similarly 

with 

fl(k) = f1(k-1) . f1 

a1(k) = a1 
(k-1) 

=a1* 

58 



and b1(k) = b1(k-1) = bl* say. 

The reason for using a1* and b will become apparent. 

Substituting these solutions in equations (2.48) - (2.51) gives 

a1* - (%T%)-1BTg1 (2.52) 

f1 =X a1* / s(al*) -X al say 

b1* _ (yTy)-lyTf1 (2.53) 

and gl =Y b1 / s(b1*) =Y bl 

Hence s(a1*). a1 = (XTX)-1XTY bl (2.54) 

and s(bl*). bl - (yTy)-'Y Tx 
al (2.55) 

Pre-multiplying (2.54) and (2.55) by a1TXTX and b1TYTY respectively and 

applying the constraints 

b1TYTY bl = g1Tg1 = (n-1) 

TXT 
X a1 = f1Tf1 = (n-1) 

it follows that s(al*) = s(bl*) 

= Pi 

where pl - corr(fl, gl). Hence al and bl satisfy the standard canonical 

correlation equations (2.8) introduced in section 2.3.2, and since the 

power method extracts the eigenvector corresponding to the largest 

eigenvalue of Z it follows immediately that pl is the first canonical 

correlation and that f1 and gl are the first pair of canonical variates. 

Note the precise form of Z referred to above, may be found by repeated 

substitution, and in this case is of the form 

P12Z = y(YTY)_1YT$(XTX)-1xTY 

The convergence criterion can, however, be applied to any of the vectors 

estimated. If applied to all for example, Z has the more familiar form 

P12Z = (XTX)-1XTY(YTY)-1YTX (2.56) 

This result was established by H. Wold in 1966 (Wold, H., 1966b) and 

marked the beginning of his work on the PLS approach. 
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Identification of the loadings pl and gl 

The loading vectors are found by regression. pl is given by 

p1T = (f1Tf1)-1f1T% 

= f1 T% / (n-1) 

and similarly q1T (g1Tg1)-1g1TY 

T 
g1Y / (n-1) = 

(2.57) 

(2.58) 

Thus pl and ql correspond to the loading vectors L(X, fl) and L(Y, gl) 

introduced in section 2.4.2. The coefficient c11 relating fl and gl 

(equation 2.5) is also obtained by regression. Thus 

cii a (fiTfl)-1f1Tgl (2.59) 

Pl 

Equation (2.5) relating f1 and gl (with s- 1) is termed the first 

'inner relation' of the model, with equations (2.3) and (2.4) defining 

the first pair of 'outer relations'. The residual matrices D1 and E1 are 

given by D1 =%- f1p1T and E1 =Y- g1g1T 

(cf. equations (2.3) and (2.4)). 

Extraction of subsequent pairs of factors 

The same algorithm (steps 1- 6) is used to extract subsequent 

pairs of factors, (f2, g2)... (fs, gs) with residuals used in place of X 

and Y, i. e D1 and E1 are used in the determination of (f2, g2), and Di 

and Ei are used in the extraction of (fi+1, gi+1)" The loadings '2"s 

and g2... gs are also calculated similarly, i. e. 

pi+1T (fi+lTfi+1)-1fi+1T Di 

fi+1TDi / (n-1) 

fi+lTX / (n-1) (2.60) 

since 

and 

similarly 

fi+l = Di aci+1 for some a +1 

FiTD1=0 

qi+1 = gi+1TY / (n-1) T (2.61) 
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and cii is given by 

cii - (fiTfi)-1fiTgi - fiTgi / (n-1) (2.62) 

Solution for subsequent dimensions 

Having stated the form the algorithm takes, the solutions will 

be investigated. The first point to note is that when X and Y are 

replaced by the residuals Di and Ei, i-1... (s-1), DiTDi and EiTEi are 

not full rank. In particular, 

and 

rank (DiTDi) -p-i 

rank (EiTEi) -q-i 

It is necessary, therefore, to use some form of generalised inverse for 

DiTDi and EiTEi in the algorithm. This indeterminancy does not, 

however, affect the uniqueness of the solutions as the following 

illustration will show. 

Assume X and Y are full rank and that pl... pd, d- rank(XTY), 

are distinct eigenvalues of (2.11) and consider a1... CE and al... as, 

s<d. Assume also that cz1... cc and a,... ai, i<s, are unique with 

fý = xa3 a D3-1 jj-1... i 

and consider the (i+l)th dimension. Since arl = al and DO -X it follows 

that the result is true for i=1. 

Now rank(Di) =p-i, with Diacj = 0, j-1... i 

and let ai+1 and aci+1* with aci+1* - aci+l + Ail, Ai - (acl... aci) (1 # 0) 

be two alternative solutions for aci+1. 

$O °i+1 and a +1* 
satisfy 

*T-T 
pi+l°i+l = pi+1°`i+i - ýDi Dii Di gi+1 

(since Pi+1 and 8i+1 are unique). 

Now °`jT°i+1 =0 since Diaj -0j. 1... i 

and similarly ajTai+1* ° 0. 

Hence aj aj ljýlj. p 
Tai+1* 

- 'Xi a, 
+, 

+ 'Xi 
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where lj is the jth element of 1, thus implying a1+1 - °j+1*' 

If ai+l is unique it follows that ai+l is unique also, and by induction 

this holds for all i, i-1... s. 

With regard to the properties exhibited by the factors 

(f2, g2)... (fs, gs), as might be expected intuitively, these pairs of 

factors correspond to the second and subsequent pairs of canonical 

variates. This result is easy to establish and for completeness is 

illustrated below. 

Let ai+1 and ßi+1 denote the coefficient vectors defining the 

(i+l)th pair of factors in terms of Di and Ei respectively, so 

fi+1 2 Di ai+1 and gi+1 - Ei ßi+1 

then from (2.54) and (2.55) making the appropriate substitutions 

T-T 
s(°Ci+1 °`i+l . (Di Di) Di gi+1 

and s(13 i+1*)'ßi+i - (EiTEi) EiTfi+1 

and ai+l* and ßi+1* are defined as in (2.52) and (2.53) with D replacing 

X and E replacing Y. 

Thus s(ai+i ). fi+l Di(Di Di) Di gi+1 

and Di(DiTDi)-DiT = xT(xTx)-1xT - gi(giTFi)-lgiT 

Assume now that the previously extracted pairs of factors f1... fi and 

gl... gi correspond to the first i pairs of canonical variates so that 

xTx AiCi= xTY Bi and YTY BiCi = YTx Ai 

where Ci = diag(p1... Pi). 

Then FiTgi+1 ac iBiTYTY bi+1 

T 
- CiGi gi+1 

T 
CiGi Ei ßi+1 

-U 

so s(°Ci+1*)fi+1 - %(%T%)-1BTY bi+l 

or equivalently s(a. 
1+1 

* )X TX 
ai+1 °ZTY bi+1 

62 



and similarly s(ßi+1*)YTY bi+1 - YTx ai+1 

i. e. the coefficient vectors ai+1 and bi+l satisfy the canonical 

correlation equation (2.14). Thus it follows that the (i+l)th pair of 

canonical variates are extracted and the result is proved by induction. 

Thus the mode B algorithm is simply a numerical procedure for extracting 

pairs of canonical variates from the two data sets X and Y. The only 

difference between this approach and the standard procedure presented in 

section 2.3.2 is that here the loadings p1... ps and gl... gs form an 

integral part of the computational method in so far as they are required 

in the calculation of D and E, whereas they do not appear as part of the 

standard solution. They may, of course, be computed following the 

standard analysis as an interpretational aid (cf. redundancy index), 

although commonly the the correlations rather than the loadings are 

suggested for this purpose (see section 2.3.1). 

H. Wold (1982) recommends using this mode B algorithm when the 

relationship between the factors, i. e. the 'inner relation', (2.5) is 

the prime focus of the analysis. This suggestion is consistent with the 

aim of a canonical correlation analysis which is to maximise the 

correlation between corresponding pairs of factors or equivalently to 

minimise the residual, Hs, in equation (2.5). This aspect of the 

problem, that is, the choice of method will be considered further in 

Chapter 3. 

2.6.4 MULTIPLE/SIMPLE REGRESSION BASED ALGORITHM (MODE C) 

As might be expected this algorithm exhibits considerable 

similarity to the mode B version. The one important difference is in 

step 4 of the iterative procedure. Consider again the extraction of 

fl =X a1 and gl =Y bl. Steps 1,2,3,5 and 6 of the algorithm are as 

described in section 2.6.3 (equations (2.48), (2.49) and (2.51)) but 
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step 4 described therein, is replaced by 

Step 4 Compute an estimate of the coefficient vector bl, bl(k), using 

T(k) T(k) (k) -1 T(k) bi = (f 1 fi ) fi Y 

= f1T(k)Y / (n-i) (2.63) 

Thus instead of regressing f1(k) on Y to give a set of multiple 

regression coefficients, each yip i-1... q is regressed on f1(k) giving 

a set of simple regression coefficients. b1 therefore, may in this 

case, be thought of as a loading vector. 

Solution on convergence 

As before, let the solutions at convergence be given by g1, fl, 

a1* and bl*. Then substituting these solutions in equations (2.48), 

(2.49), (2.51) and (2.63) again gives (2.52) but (2.53) is replaced by 

b1* - YTfl / (n-1) (2.64) 

and gl -Y bl* / s(bl*) -Y bl 

As before (2.54) holds, and (2.55) is replaced by 

s(bl*). bl - YT% al / (n-1) (2.65) 

so al satisfies (XTX)-1XTY YT% al - ulal 

or equivalently (XTY YT% - u1XTX)al -0 

where ul - (n-1). s(al*). s(bl*) 

(cf. equation 2.28) and thus it follows immediately that a1 defines the 

first redundancy factor. Also, b1 is a scalar multiple of that bl 

obtained using Method 1 proposed by Johansson, (1981) (see section 

2.4.5). The two solutions differ by a scaling factor because the PLS 

algorithm normalises the factor gl to unit variance whereas Johansson 

normalised bl to unit length. This may also be verified by observing 

that the bl obtained here satisfies 

(YT%(%T%)-1%TY - u1I)b1 m0 

(cf. determinantal equation 2.36). 
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Again, throughout this presentation it is assumed that X is full rank. 

The loadings pl and ql and coefficient cll are again calculated 

according to equations (2.56) - (2.58). 

Solution for subsequent dimensions 

Subsequent dimensions are determined in exactly the same manner 

as described in section 2.6.3 for the mode B algorithm, that is, all the 

calculations are as presented for the first dimension but with X and Y 

replaced by the appropriate residuals. Note that although only the 

diagonal elements of the matrix Cs, (equation 2.5), relating P. and Gs 

are calculated (see section 2.6.3), with this method, unlike with 

canonical correlation, not all the off diagonal elements cij will be 

zero, in general. 

Using an approach analogous to that presented for the mode B 

algorithm it may be shown that the subsequent factors f2... fs extracted 

from the X data set using this algorithm correspond to the second and 

subsequent redundancy factors (see section 2.4). 

A similar result does not hold for the factors g2... gs, however. 

That is the factors g2... gs extracted by this PLS algorithm do not 

correspond, in general, to the second and subsequent factors extracted 

using the first method suggested by Johansson (1981). This follows 

immediately by observing that the factors extracted using PLS are 

mutually uncorrelated, while those obtained using Johansson's approach 

are not, as Johansson chooses to orthogonalise the coefficient vectors 

b1... bs. However, the factors obtained are related. The subspace of M(Y) 

spanned by the s factors g1... gs extracted using PLS is precisely that 

subspace of M(Y) spanned by the factors obtained using Johansson's 

approach. This relationship may be proved by induction as follows. 

Let gl... gs be the factors extracted using PLS and let gl*toogs 
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represent the factors obtained using Johansson's method. Now since gl* a 

gl it follows that M(gl*) - M(gl) and the result holds for i-1. 

Assume now that the result holds for 1<jýi, with i<s and consider 

M(Gi+1) and M(Gi+1*)' 

Let z be any vector such that Gi+1*Tz s0i. e. z is orthogonal to 

M(Gi+1*) then ZTGi+1 a ZT(Gi : gi+1ý 

s iý ' zTgi+1) 

since M(Gi) - M(Gi*). 

Also since 

it follows that 

Now 

SO 

fi+1TGi* =0 (property 5, section 2.4.6) 

fi+1 T Gi =0 
T 

gi+1 a EiEi fi+1 

TT 
Z gi+1 aZTEiEi fi+1 

. zTY YTfi+1 

but 

SO 

gi+1 
*«yYT fi+1 

ZTgi+1 a ZTgi+1* °o 

Conversely let z be any vector such that Gi+1Tz =0 

then zTGi+l* = (0 : zTgi+1*) 

and zTgi+l* « zTy YTfi+1 

but zTgi+1 « zTY YTfi+l 

so it follows that zTgi+1* '0 also. 

* 
Thus any vector z orthogonal to M(Gi+1 i is also orthogonal to M(Gi+1) 

and conversely any z orthogonal to M(Gi+1) is also orthogonal to 

M(Gi+l*). Hence it follows that M(Gi+1) - M(Gi+l*) and by induction the 

result holds for all i, 1<i<s. 

Note that for this method FsTGs is upper triangular and not diagonal, 

i. e. for i<j, corr (fj, gi) - 0. 
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2.6.5 ADAPTATIONS OF THE PLS MODE C ALGORITHM VHICH ALSO RESULT IN THE 

EXTRACTION OF THE REDUNDANCY FACTORS, f1... fs 

It is interesting to note at this stage two adaptations of this 

algorithm that also allow for the extraction of successive redundancy 

factors. Each is concerned with the form of the residuals Di and Ei 

used at each stage of the procedure. 

Adaptation 1 

If, instead of assuming that the relationship between X and Y 

follows the model 1 form (equations (2.3) - (2.5)) it is assumed that 

the model 2 relationship is more appropriate (equations (2.6) and 

(2.7)), i. e. only one set of underlying factors, Fs, are required, and 

the 'loading' and 'residual' calculations are adjusted accordingly the 

method will still extract the redundancy factors. 

In this model 2 situation the loading qi, i-1... s, is found by 

regressing Ei-1 (or equivalently Y) on the factor fi rather than gi. 

The factors g1... gs, in this situation, are essentially a by-product of 

the estimation procedure since they do not enter into the final 

solution. So in this case qi is given by 

qiT - (f1 T f1)-1fiTEi-1 

- fiTEi-1 / (n-1) i-1... s 

with fiQi 
T 

and E0 aY 

The proof of this result follows by induction in a manner 

analogous to that presented for the mode B algorithm, and is, therefore, 

omitted from this presentation. Although the factors gl... gs extracted 

using this adaptation do not constitute part of the solution it may be 

observed that the gl... gs obtained are proportional to the factors 

determined using Johansson's first method (see section 2.4.5), differing 
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only by a scaling factor. In this instance the factors gl... gs obtained 

are not mutually uncorrelated in general. 

Adaptation 2 

An alternative modification which also leads to the extraction 

of the redundancy factors fl... fs and factors gl... gs proportional to 

those obtained using Johannson's Method 1 is to use the same iterative 

algorithm, to calculate the loadings vectors pl... ps and residuals 

D1... Ds_1 as before, but to use loading vectors gl... gs of the form 

qiT - (b1 T b1)-lb iT 

and residuals Ei = Ei-1 - gigiT 

Again the equivalence of this method may be established using proof by 

induction. Adaptations of a similar form to these will be considered in 

sections 2.6.8,2.6.10 and 2.6.12 for the mode A algorithm. 

Thus the mode C algorithm proposed is closely related to the 

method of redundancy analysis and in particular redundancy analysis 

coupled with the first modification suggested by Johansson. Again the 

loading and 'inner relation' coefficients calculated as part of the 

estimation procedure here do not appear as part of the standard analysis 

which focuses purely on the coefficient vectors and associated factors. 

H. Wold recommends this method of analysis be used when the 

'causal-predictive' nature of the relationship between X and Y is the 

focus of the analysis. Although 'causal-predictive' is a somewhat vague 

term by extracting factors which satisfy giTfj = 0, i<j, i, j = 1... s, 

the solution may be thought to follow a causal type pattern in so far as 

this relation implies that the ith factor extracted from X cannot be 

'causal' for g1 ... gi-1' in Y. Also these f1... fs minimise tr(EsTEs) when 

model 2 is inferred. 
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2.6.6 SIMPLE REGRESSION BASED ALGORITHM (MODE A) 

This algorithm goes one step further than mode C in that the 

multiple regression performed at step 2, as well as that performed at 

step 4 is replaced by a set of simple linear regressions. Considering 

again the determination of f1 -X a1 and gl -Y bl, steps 1,3,5 and 6 

follow the mode B algorithm (equations (2.49), (2.51)), step 4 is as 

given for the mode C algorithm (2.63) and in this instance step 2 takes 

an analogous form: 

Step 2 Compute an estimate of the coeficient vector al; al(k) using: 

a1 
T(k) 

_ (g1 T(k-1)91 (k-1))-1g1 T(k-1)g 

- g1T(k-1)% / (n-1) (2.66) 

i. e. each xi, i-1... p is regressed separately on gl to give a set of 

simple regression coefficients. So a1 may also be thought of as a 

loading vector in this case. 

Solution on convergence 

Again let the solutions on convergence be given by g1, f1' a1* 

and bl*. Substituting these in equations (2.49), (2.51), (2.63) and 

(2.66) gives (2.64) (cf. mode C), and in this case (2.52) is replaced by 

al* XTgl / (n-1) (2.67) 

fl aX a1*/ s(al*) aX al 

The relation (2.65) holds once more and (2.54) is replaced by 

s(al*). a1 = XTY b1 / (n-1) 

and a1 satisfies (XTY YT% - TI)al =0 

where Ti = (n-1)2s(a1*). s(b1*) 

with a1 scaled so a1T%T% a1 - (n-1). 

(2.68) 

(2.69) 

Thus the coefficient vector al determined here does not in general, 

correspond to that obtained using any of the other approaches considered 

thus far in this chapter. Note also that bl satisfies 
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(YTx xTY - T1I)b1 -0 (2.70) 

and that like canonical correlation this method is symmetric in the 

treatment of X and Y. 

The loadings pl and ql and the 'inner relation' coefficient c11 

are determined, as before, using simple regression ((2.57) - (2.59)) and 

need not be re-specified here. The residuals also have the form 

presented in section 2.6.3 for the mode B algorithm. 

Solution for subsequent dimensions 

Subsequent pairs of factors are obtained using the same method 

as employed with modes B and C, i. e. the algorithm is repeated with X 

and Y replaced by the appropriate residuals. The three methods differ 

only in calculations performed at steps 2 and 4, or equivalently in the 

choice of matrix from which the eigenvectors ai and bi, i-1... s are 

extracted. In all other respects they are identical. Again only the 

diagonal elements of Cs (equation (2.5)), relating f1... fs and gl... gs 

are determined although, in general cij, i#j will be non-zero. 

In section 2.6.3 it was shown that the coefficient vectors ai, 

i=1... s obtained using the mode B algorithm all satisfied the same 

eigen-equation, with vector ail the eigenvector associated with the ith 

largest eigenvalue of (2.11). This property similarly held for the 

vectors bi and was also true for the coefficients ai obtained using the 

mode C algorithm but not for bi (see section 2.6.4). With this mode A 

approach however, no such property holds in general for either ai or bi, 

i=1... s, i. e. in general the vectors ail i-2... s do not correspond 

to the eigenvectors associated with the second and subsequent roots of 

I%TY YTx-x II -0 (2.71) 

and similarly for the bi's. This feature may be demonstrated by 

considering the second a2. 
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As before, let a2 be the coefficient vector defining f2 in terms 

of D1. Making the appropriate substitutions in (2.69) gives 

(D1TE1E1TD1 - T2I) a2 -0 

with T2 - (n-1)2s(a2*). s(132 
*) 

Now f2 = D1 °r2 - %(I - alp1T) a2 

so a2 satisfies (I - alp1T)D1TE1E1TX - tt2I)a2 -0 

and (I - alp1T)D1TE1E1TX expands to 

(I - alp1T)(I - p1a1T)%TY(I - b1g1T)(I - g1b1T)YTX 

which does not reduce to BTY YT% in general. It may be shown that such a 

reduction occurs when, and only when, 

pl « a1 and ql x bl (2.72) 

and this will happen when, and only when, f1 is proportional to a 

principal component of X, and similarly gl is proportional to some 

principal component of Y. For (2.69) and (2.70) to be satisfied for 

dimension i, 1<i<s, it is necessary for (2.72) to hold for all j, 

j=1... (i-1). Since the method is symmetric in X and Y it also follows 

that b2 is the eigenvector associated with the second largest root of 

IYT% xTY-XII-0 (2.73) 

when, and only when, (2.72) holds. 

2.6.7 PROPERTIES OF THE PLS RODE A FACTORS 

The properties of the factors obtained may be summarised as 

follows: 

1. The factors within each data set have unit variance and are 

uncorrelated. 

2. In general As and Bs are not orthogonal, although al... s and 

ß1... ßs are, i. e. a 
Taj 

=0i#ji, j=1... s 

ß, Tßj 
=0 

where f1f1 = D1cz1 1aX ai+l and gi+1 - Bißi+i -Y bi+1 (D0 - X, 
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EO m Y). This property holds for all the PLS algorithms and may be 

proved by induction (cf. section 2.6.3). 

3. The maximum number of pairs of factors which may be extracted using 

this method is d- min(rank(X), rank(Y)). 

2.6.8 ADAPTATION OF THE PLS MODE A ALGORITHM PROPOSED BY S. VOLD 

This adaptation of the mode A algorithm, developed by S. Vold 

and co-workers (e. g. Wold, S. et al., 1983a, 1983b, 1984a, 1984b) unlike 

the original procedure allows the number of factors extracted from X to 

be greater than rank(Y) (assuming rank(X) > rank(Y)). In common with 

the adaptations of the PLS mode C algorithm presented in section 2.6.5 

the adjustment to the method comes in the choice of loading vectors pi 

and qi, i-1... s and hence the residuals used when progressing from one 

dimension to the next. The iterative part of the procedure remains the 

same (except for an adjustment in standardisation), the factors are 

again chosen to be mutually uncorrelated. Although two set of factors, 

(fi, gi) i-1... s, are determined, with this approach the gi's are 

essentially a by-product of the estimation procedure. The relationship 

fitted follows the model 2 form (see section 2.2) in contrast to H. 

Vold's approach which assumes the relationship follows the model 1 form. 

There is a change in aim and emphasis with this and the adaptation 

considered in section 2.6.10. The method is no longer symmetric in the 

treatment of X and Y. For completeness and clarity the algorithm is 

presented in full. 

The Algorithm 

The iterative algorithm proceeds as before (see section 2.6.6) 

with one modification. The standardisation is applied to the coefficient 

vectors not to the factors. This does not however, affect the 

convergence or the resultant solution in any way. Again illustrating the 
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solution for the first dimension, (steps 2- 5), the algorithm proceeds 

as follows: 

Step 2 Compute an estimate of the coefficient vector al; al(k) 

a1(k) = xTgl(k-1) / s(g) 

where s2(g) - g1T(k-1)g xTgl(k-1) 

Step 3 Estimate the factor fl by f1(k) 

f1(k) -% al(k) 

Step 4 Compute an estimate of the coefficient vector bl; bl(k) using 

b1(k) - YTf1(k) / s(f) 

and s2(f) - f1T(k)y yTf1(k) 

Step 5 Update the estimate of the factor gl by 

g1(k) -Y b1(k) 

Solution on convergence 

For this first dimension the solutions for al and b1 satisfy 

(2.69) and (2.70), but in this case 

Tl = s(f)"s(g) 

with a1 and bl scaled so that 

a1Ta1= b1Tb1 . 1. 

Identification of the loadings pland ql 

It is at this point that this algorithm differs from the mode A 

procedure. In this case both pl and ql are found by regressing X and Y 

respectively, on the factor f1 so 

p1T = (f1Tf1)_1f1TX as before 

and q1T = (f1Tf1)-lf1TY 

Hence gl does not enter the model. The corresponding residual matrices, 

D1 and E1 are given by (2.6) and (2.7) (cf. section 2.6.5). 

Note that the algorithm presented here differs on two accounts from that 

presented and used in the SIMCA program (e. g. Wold, S., 1983). Firstly, 
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having calculated fl and the corresponding pl the solution is 

restandardised; pl is replaced by pl / �(plTpl), giving a loading vector 

of unit length, and a1 and f1 are adjusted accordingly. Secondly, the 

loading q1 given here is replaced by 

q1* ' c11b1 

where c11 = (f1Tf1)-1f1Tg1 (equation 2.59) 

However, it is easy to show that ql " q1*. This equality also holds for 

the subsequent loadings g2... gs. A GENSTAT macro (Rogers, 1986) for 

performing a PLS analysis also avoids this standardisation of pi. 

Solution for subsequent dimensions 

Subsequent (pairs of) factors are determined in exactly the same 

way with X and Y replaced by the appropriate residuals, Di and Ei 

respectively. However with this adaptation it is not necessary to 

calculate Ei at each stage. The same solutions (ai+1' fi+l' pi+l and 

qi+1) are obtained when using Di and Ei or Di and Y, although the gi's 

differ. Again the solutions obtained do not in general satisfy a common 

eigen-equation (cf. (2.69)). The coefficient vectors ai, i-2... s will 

correspond to the eigenvector associated with the ith largest root of 

(2.71) when, and only when, aj - pj, j-1... (i-1) (cf. mode A), that is 

in the unlikely event that the preceeding factors correspond to 

principal components of X. 

2.6.9 PROPERTIES OF S. VOLD'S PLS FACTORS 

The results presented here by no means constitute a thorough 

investigation of the method but are rather a summary of the properties. 

The method is considered again in greater detail in Chapter 3. 

Properties 1,2 and 6 are also reported by H6skuldsson (1988), as is the 

relation aaTpj - 0, for i<j (see property 4). 

1. The factors f1... fs are mutually uncorrelated, but are not scaled to 
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unit variance, i. e. 

FSTFS = diag(11... 15) with 11 = fiTfi 

2. The coefficient vectors a,... s (a1 -c) defining the factors in 

terms of the appropriate residual are mutually orthogonal, and 

scaled to unit length i. e. 

aiTaj - Si j i, j-1... s 

3. In general a1... as are not chosen to be orthogonal, and will not be 

scaled to unit length unless the scale is adjusted after arl and ai 

have been determined. 

4. The vectors As s (al... as) are related to As - (Cl... (xs) say, thus 

As a As(PSTAs)-1 (2.74) 

where PS . (pl... ps) 

This result may be established as follows. Consider the ith 

dimension, 1<i<s, then 

fi ý Di-1°Li - (X - Fi-1Pi-1Tý°Ci 

T 
so X a1 = fi + Fi-1P1-1 a`i 

but PiT ai = (fiTfi)-1fiTDi-lai ' (fiTfi)-lfiTfi =1 

so X ai - FiPITai 

Also for i<j 

a. 
Tpj 

= a. 
TDj-1Tfj(fjTf3)-l 0 

1 3. 

so X ai = FsPsToi 

and thus X As = FSPSTAs 

Now PsTAs is upper triangular with (PsTAs)11 - 1, ie1... s and is 

therefore invertible, so 

FS =X AS aX As(PsTAs)-1 and the result follows. 

5. The matrix ASPsT applied to X 

ASPsT = As(AsTXTX AS)-1ASTXTX 

is an orthogonal projector onto M(As) C M(%T) (Rao, 1973). 
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6. If Ti+l denotes the largest eigenvalue of DiTEiEiTDi nDiTY YTDi 

associated with the (i+l)th factor (cf. (2.69) with X replaced by Di 

and T1 by Ti+1) then Ti+l satisfies 

Ti(2) < Ti+1 < Ti(2) + Ti(ai - Pi)T(°LI - Pi) 

where Ti(2) denotes the second largest eigenvalue of Di-1TY YTD 

Proof The lower bound may be established by noting that for this 

modification of PLS mode A 

YTDi- YTDi-1 - YTfipiT - (A - B) say 

and applying the result 

%i((A - B)T(A - B)) > Xi+l(ATA) for any i, 

where Xi(C) denotes the ith largest eigenvalue of a symmetric C 

(Rao, 1980). 

To establish the upper bound observe also that 

DiTY TTD1 - D1-1TY YTDi-1 - Ti ai aiT + Ti ( ai - pi) (ai pi )T 

and applying the result 

X1(ATA + BTB) < Aj(ATA) +Xk (BTB) j+k < 01 (Rao, 1973) 

it follows that 

X1, (DiTY YTDi) Ti+1(Di-1TY YTDi-1 Tia`i«iT) 

+ >1(Ti(a`1 - P1)(ai - Pi)T) 

Ti(2) + Ti(aci - Pi)T(aci - Pi). 

Note that when a1 = pi (and fi is a principal component of 

Ti(2), but in general Ti+1 will be Di-1TY YTDi-1) then Ti+1 =' 

greater than Ti(2) 

Höskuldsson (1988) also reports this lower bound for Ti+l and claims 

in addition that Ti+1 < Ti, on the basis of the inequality 

((I - acipiT)TDi-1TY YTDi-1(I - aiD 
T)) < X(Di-1TY YTDi-1)' 

a result which holds when (I - ccipiT)T(I - zip, 
T) 

= Ip (Poinacre 

Separation Theorem, (Rao, 1973)) but is not satisfied here in 
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general. 

7. The maximum number of factors, s, fl... fs derivable using this 

modification of the PLS mode A approach is 

s- minimum number of principal components of X required to span 

M(Y) 

where Y is the least squares projection of Y onto M(X). 

Proof Without loss of generality assume that X is full rank p and 

let X-TA VT denote the singular value decomposition (SVD) of X. 

Let k denote the number of distinct singular values, with kSp and 

mi the geometric multiplicity of the ith distinct value 

k 

mi >1i=1... k and E mi 
i=1 

T is then of the form T= [T1IT2... ITk] with Ti a set of mi 

orthonormal vectors spanning the subspace of M(X) associated with 

the ith largest singular value. 

Consider then Ti, i-1... k and the projection of Y onto M(Ti) 

and let ri denote the rank of this projection. The orthonormal 

vectors tl... tm. spanning M(Ti) may then be chosen such that the 

first ri span M(Yi), the projection of Y onto M(Ti) with the 

remaining ri+l... rm 
i 

orthogonal to M(Yi). This procedure may be 

repeated for each i. 

The columns of T, A and V may then be re-ordered so that 

T= [Z1IZ2] with the corresponding A= rAl 01 and V= [VlIV21 

11 
k 

9 '47 
where Z1 (nxr), r=E ri, contains those tj, j=1... p correlated 

i=1 

with Yi for some i and Z2 contains those t3 orthogonal to Y. Hence 

%TY is of the form [V11V2] Al 
TY 

which reduces to 1A1Z1TY 

0 A2 2TY 0 
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Now since al is the eigenvector corresponding to the largest root of 

(2.71) it follows that fl = Z1A1V1Ta1 and thus that f1TZ2 = 0. 

The second factor is found by repeating the procedure with X 

replaced by D1, the residual remaining after removing fl. Now D1 is 

of the form 

1V1Ta1(f1Tf1)-if1TZ1A1V1TI01 D1 - [Z1A1V1TIZ2A2V2T] - [Z1jý 

- [Z1A1V1TR1IZ2A2V2 TJ 

where R1 - Ir - al(f1Tfl)-if1TZl/l1VJT 

so D1TY - 1TV1lz1TY 

0 

thus f2 is also some linear combination of Z1 only and, by induction 

this argument follows for all subsequent factors extracted. 

The maximum is reached when DsTY-0, i. e. when the residual 

after extracting s factors is orthogonal to Y and this is achieved 

when M(fl... fs) = M(Z1), and since the set f1... fs are independent 

it follows that s= rank (Z1) =r= minimum number of principal 

components required to span M(Y) and the proof is complete. 

2.6.10 ADAPTATION OF THE MODE A ALGORITHM PROPOSED BY H. MARTENS 

The modification suggested by H. Martens and co-workers (e. g. 

Naes and Martens, H., 1985; Martens, H. 1985; Nws et al., 1986) shows a 

number of similarities to the algorithm presented in the previous 

section (2.6.8). Indeed it will be shown subsequently that the two 

approaches are equivalent in many respects. Again the algorithm allows 

the number of factors extracted from X to be greater than rank(Y) and is 

concerned with fitting a model 2 type relationship involving a single 

set of factors. As with all the alternatives considered the modification 

is in the choice of loading vector and hence residual used when 

progressing from one dimension to the next. 
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The Algorithm 

Since the iterative algorithm used is precisely that used by S. 

Wold (see section 2.6.8) it need not be repeated here. The difference 

is in the choice of pi and qi, i=1... s. Throughout pi is set equal to 

ai, i. e. Pi =ai i- 1... s (2.75) 

As a result of this choice of pi the factors are not constrained to be 

mutually uncorrelated, and it is thus necessary to update the loadings 

Qi . (q1... qi) as each dimension is added, qi cannot be appended to 

Qi-1' These 0i are once more obtained by regression thus 

0i s YTFi(FiTFi)-1 (2.76) 

Di and Ei are calculated according to (2.6) and (2.7). 

Solution 

It may be shown that ai - ai when this algorithm is used, as 

illustrated below. 

Consider firstly the second dimension. Making the appropriate 

substitutions in (2.69) and (2.70) and eliminating ß2 gives 

T2 a2 a Dl TE1E1T D1 a2 

with 

Now 

T2 - s(f2)"s(82) 

f2 - D1a2 - (B - f1a1T)a2 -X a2 

since ac1Tocl =0 and thus a2 = oc2. 

Assume now that the result is true for the first i dimensions so 

= ai . and aj 
Tak 

= djk j, k=1... i 

and consider dimension i+l. 

Again Ti+1°i+1 = DiTEiEiTDia. 
1+1 

with Ti+l the largest eigenvalue and ai+l = (I - AiAiT)ai+1 

but AiTa 
+1 

a AiTDiTEiE 
TDi"i+1 

and DiAi =0 

so ai+l = °i+l 
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with ajTak -6jkj, k - 1... (i+1) 

and by induction the result is proved for all i, i-1... s. 

Although at first glance these two algorithms (S. Wold's and H. 

Marten's) appear very different, as the following theorem indicates they 

are equivalent in many ways. 

Theorem Denoting the solutions obtained using the S. Wold algorithm by 

oi, ai, fi, pi and qi with residuals Di and Ei and the solutions 

obtained using the Martens algorithm by oci* - aifipiQi* and 

residuals Di* and Ei*, i-1... s the following relationships hold: 

1. ai`ai 
* 

2. M(fl... fi) = M(fl*... fi*) 

3. Ei " Ei 
* 

4. FiQiT - Fi*Qi*T i-1... s 

Proof It follows from the two formulations that the results are true 

fori=1. 

Consider then relation 2 and assume that 

M(fl*... fi*) for 1<i<s 

Now f i+1 a Di a1+1 

with aci+1 the eigenvector corresponding to the largest eigenvalue, T 

say, of DiTEiEiTDi so a1+1 satisfies 

(DiTEiEiTDi - 't I) a1+1 =0 

similarly fi+1* = D. "1+1* 

where ai+1 is the eigenvector corresponding to the largest eigenvalue, 

'* say, of Di*TEi*Ei*TDi* and 

(Di*TEi*Ei*TDi* -T I)ai+1* =0 

Now since M(f1... fi) = M(f1*... fi*) it follows that Ei = Ei* 

Considering then DiTEi and Di*TEi 

DiTEi = %TEi -PiFiTEi 
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- %TEi - PiFiT(Y -p (F T 1F TT) 
- gTEi 

and Di*TEi - %TEi - Ai*Fi*TEi 

- %TEi - Ai*Fi*T(Y - Fi*Qi*T) - gTEi 

so DiTEi - Di*TEi 

Hence DiTEiEiTDi- Di*TEEi*TDi* 

and it follows that °Li+1 - "i+1* thus proving relation 1. 

Now fi+1 -% ai+1 

and fi+l ` (X - FiPi T 
ia, +1 

Now let 1 be any nx1 vector such that 

1Tfj -0j-1... (i+1) 

then 1T(% - FiPiT)°`i+l -0 -+ 1T% ai+1 -04 1Tfi+1* -0 

and since M(fl... fi) - M(fl*... fi*) it follows that 

1Tfj =0f 1Tfj* =0j-1... (i+1) 

Similarly it may be shown that 

1Tfj* =0f 1Tf1 0j=1... (i+1) 

so M(fl... fi+1) = M(fl*... fi+1*) 

and by induction the result follows for all i=1... s. 

From this result relations 3 and 4 follow immediately and by 

induction the four relations are true for all i, i-1... s and the proof 

is complete. 

2.6.11 PROPERTIES OF H. MARTENS'S PLS FACTORS 

For completeness the properties of the solutions obtained using 

this approach, all of which follow from the results provided by the 

preceeding theorem and the properties stated for the S. Wold algorithm 

are presented. 

1. The factors f1*... fs* extracted (maintaining the convention 

introduced in the previous section) are related to the factors 

fl... fs by the linear transformation 
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Fs* _X As* .X As(PsTAs*) - Fs(P5TAs*) 

where P. " (pl... ps) as obtained using the S. Wold algorithm. This 

result follows immediately from equation (2.74) and result 1 of the 

above theorem. 

2. In general the factors fl*... fs* are not mutually orthogonal. They 

* 
will be uncorrelated only when (PST As )TL PsTAs* is diagonal, where 

L- diag(11... 1s) and 11 - fiTfi' 

** 
3. The coefficient vectors a,... s- al ... as are mutually orthogonal 

and each is scaled to unit length. 

4. The coefficient vectors a2*... as* are not eigenvectors associated 

with the second and subsequent roots of (2.71) in general. 

5. The matrix As*As*T applied to X is an orthogonal projection onto 

M(As*) c M(ST). 

6. Properties 6 and 7 given in section 2.6.9 specifying upper and lower 

bounds for Ti+l and a maximal value for s apply here. 

We see, therefore, that the two adaptations presented by S. Wold 

and H. Martens are equivalent, each is a slightly different 

computational procedure for identifying the same subspace of M(X). 

Indeed with any approach which identifies a subspace of a vector space, 

the basis defining the subspace is not unique. When studying the method 

further either form of solution may be used. 

2.6.12 A FURTHER ADAPTATION OF THE PLS MODE A ALGORITHM LEADING TO THE 

IDENTIFICATION OF THE INNER PRODUCT FACTORS 

All versions of the mode A algorithm presented thus far have 

failed to satisfy a common eigen-equation, and thus cannot be formulated 

as a global optimisation problem. The same algorithm can be modified to 

achieve this however, namely by replacing (2.60) and (2.61) for the 

calculation of the loadings pi and qi, i=1... s with 
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Pi - (aiTai)-lai 

and 4i = (biTbi)-lbi 

(2.77) 

(2.78) 

respectively. By taking the loading vectors to be proportional to the 

corresponding coefficient vectors, the ai and bi obtained, (i - 2... s), 

are the ith pair of eigenvectors associated with the common ith largest 

root of (2.71) and (2.73). The residuals Di and Bi are calculated 

according to (2.3) and (2.4) (cf. model 1). 

Note that if the scaling of ai and bi is adjusted so that each is scaled 

to unit length, as is the more usual convention, pi - ai and qi - bi 

(cf. equation 2.72). 

A presentation following the format of previous sections, which 

results in precisely this choice of factors is as follows (assuming the 

scaling of ai and bi is adjusted to give vectors of unit length). Up to 

d= rank(XTY) pairs may be chosen. 

Formulation as a sequential optimisation problem 

Choose the first pair (fl, gl) to be those factors for which the 

covariance, cov(fl, gl) = a1TXTY bl is a maximum, with a1 and bl chosen 

subject to the constraints a1Ta1 = b1Tb1 = 1. 

The problem may then be written as: 

Find a1 and b1 to maximise 

f1 = +(alºbl) = a1T%TY bl 

subject to a1Ta1= b1Tb1 =1 

The resultant a1 and bl satisfy (2.69) and (2.70) respectively with 

Ti = f1 

the largest root of (2.71) and (2.73). 

Note that this Tl does not equal the Tl = (n-1)2s(al*). s(b1*) of H. 

Wold's algorithm due to the standardisation adjustment. 
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Determination of subsequent factors (kAk), k=2... s 

These (fk, gk) are chosen to optimise 

k ý(akrbk) = ak XTY bk 

subject to aiTaj = biTbj - Sij iv J-1... k 

The chosen (ak, bk) satisfy 

(xTY YT% - TkI)ak =0 

and (YTX %TY - -rkl)bk =0 

respectively with Tk -k 

the kth largest root of (2.71) and (2.73). 

The function k is termed the inner product criterion (Ten Berge and 

Knol, 1984) with fk the kth inner product factor of X, and similarly gk 

of Y. 

Formulation as a global optimisation problem 

This method may be written as a global optimisation problem with 

the same results. The optimisation function in this instance is 

S 
trace(AsT%TY BS) = trace(FSTGS) =E aiT%TY bi 

i=i 

with As and Bs chosen subject to AsTAs = BsTBs = Is. 

2.6.13 PROPERTIES OF THE INNER PRODUCT FACTORS 

1. The coefficient vectors for each set of factors are mutually 

orthogonal and scaled to unit length (cf. (2.38) and (2.46)). 

2. In general the factors Fs and Gs within each set are not mutually 

uncorrelated. 

3. Each gi is correlated with, and only with, the corresponding fit 

i. e. cov(filgj) = Tiaij 

2.6.14 THE PLS MODE A APPROACH WHEN X AND/OR Y ARE RANK DEFICIENT 

Unlike with the other methods presented so far when the PLS mode 

A algorithm is used (either the original or any of the variants) the 
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presence of rank deficiency in either data set does not affect the 

uniqueness of the solutions (provided the largest eigenvalue of 

DiTEiEiTDii-0... (s-1), is distinct). The indeterminancy exhibited by 

the other approaches does not occur here because the algorithm does not 

require matrix inversion. It is this feature of the method which has 

proved to be particularly appealing especially when handling large data 

sets with n<p (see Chapter 1 for a discussion). 

2.6.15 SOLUTION WHEN ONE DATA SET, Y SAY, CONTAINS ONLY ONE VARIABLE 

Algorithms fitting a model 1 relationship 

When H. Wold's original mode A algorithm or the adaptation 

leading to derivation of the inner product factors is used, and q-1, 

only one pair of related factors will be determined since gl a yl. The 

residual el for the two algorithms is 

el -y- g1(g1Tg1)-lg1Ty -0 

and el -y- glb1T -y-y-0 since b1 -1 

respectively. Although this is also true for the other procedures 

described in the preceeding sections note that in this case the method 

does not reduce to multiple regression, i. e. in general 

fl ty= x(XTX)-1%Ty since f1 ax xTY 

This implies therefore that there exist additional factors in x, which 

will, when used in conjunction with fl, reduce the residual el in (2.7), 

i. e. there exist additional factors in x which are correlated with y. 

This inability of the model 1 mode A algorithms to allow for the 

extraction of further factors in x led to the development of the 

adaptations presented in sections 2.6.8 and 2.6.10. Note that these 

comments also apply to the case q>1. 

Algorithms fitting a model 2 relationship 

This limitation does not occur with the S. Wold/Martens 

85 



algorithm. As shown in section 2.6.9 up to d- minimum number of 

principal components of x required to span M(y) factors may be derived. 

Indeed it has been. shown by Helland (1986) that the subspace of M(XT) 

spanned by al*... as* (or equivalently by al... as) is also spanned by 

xTyr (XTX)XTyr (%Tx)2xTy ... (XTX)s-1XTy (2.79) 

Helland also shows that the maximum number of independent factors which 

may be obtained when q-1 equals the number of different eigenvalues of 

%Tx for which at least one eigenvector, associated with any given 

eigenvalue is correlated with xTy. This is consistent with the 

generalisation given in section 2.6.9 for the case qý1. 

2.6.16 SOLUTION WHEN X=Y 

When X=Y equation (2.68) reduces to 

s(al*). a1 = xTx a1 / (n-1) 

so al is proportional to the vector defining the first principal 

component of X. The corresponding loading pl is 

p1 = xTx a1 / (n-1) = s(a1*). a1 

In this special case the algorithm extracts factors corresponding to the 

(standardised) principal components of X. These solutions will again be 

unique provided the non-zero singular values of x are distinct. 

S. Wold's approach also extracts standardised principal 

components, while the Martens method and the inner product approach 

derive principal components with the conventional standardisation (see 

section 2.5). 

2.6.17 SUMMARY OF THE MAIN FEATURES OF PLS MODE A AND THE ADAPTATIONS 

The features of the method summarised here will be investigated 

further in Chapter 3. 

1. The factors fl... fs and gl... gs are not invariant under any non- 

singular transformation of x or Y or under change of scale but 
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orthogonal transformation of either set is permitted. 

2. The analysis takes into account the spatial pattern within each data 

set, i. e. the inter-point distances between individuals. 

3. The solutions are unaffected by: the presence of rank deficiency in 

either X or Y. 

4. The two factor PLS mode A (H. Wold's) and the inner product solution 

do not reduce to multiple or multivariate regression when the 

maximum number of factors, s-d, are included in the final 

solution. This property does hold for the S. Wold/Martens adaptation 

however. 

5. With the exception of the inner product approach (section 2.6.12) 

the method cannot be defined in terms of a global optimisation 

problem. 

H. Wold (1982) recommends using PLS mode A when the loading 

vectors are the prime focus of the analysis and when the number of 

individuals (n) is close to or less than the number of variables (p 

and/or q). Considering the second recommendation first, this suggestion 

clearly follows from the fact that this approach is unaffected by rank 

(or near rank) deficiency in either data set. The reason for the first 

recommendation is not so clear however, particularly since the 

optimisation criterion for the method is not defined by H. Wold. 

However, being defined using simple linear regression, ai and bi may be 

interpreted as loadings and there exist conditions under which they 

correspond to pi and qi. 
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2.7 LINEAR STRUCTURAL RELATIONS (LISREL) 

The LISREL approach to modelling the inter-relationship between 

sets of variables was developed by Jöreskog and associated workers (e. g. 

Jöreskog and Sorbom, 1978,1981,1982) in an attempt to combine 

psychometric methods (viz. factor analysis) and econometric methods 

designed for systems of equations. Like all the methods considered in 

this chapter LISREL assumes that the inter-relationship between the data 

sets is conveyed by means of underlying latent factors. The observed 

variables are viewed as indicators of these factors. The form of 

relation which may be fitted is very flexible. For example, it may be 

assumed that in addition to the factors in X, some of the factors in Y 

have a causal effect on other factors in Y. More succinctly, if as 

before, fl... fs and gl... gs represent the two sets of factors, LISREL 

allows the estimation of inter-relationships of the form: 

Gs GR + FC +H 
ss5S5s 

where rii s 0, i-1... s. 

However, for the purpose of this brief discussion it will be assumed 

that Rs -0 so that equation (2.5) holds. 

Also, with LISREL it is not necessary to assume that the same number of 

factors are associated with each data set. However here, without loss of 

generality, it will be assumed, for simplicity, that s factors are 

associated with each data set. The form of model fitted in this case 

closely resembles the model 1 form given in section 2.2, except for one 

subtle but important difference. With LISREL modelling it is not assumed 

that the underlying factors may be expressed as exact linear 

combinations of the appropriate observed variables, i. e. the relations 

(2.1) and (2.2) are not assumed. LISREL focuses on an explanation of 

the observed covariance structure in terms of the underlying hypothesis- 
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ed model, rather than on explaining variances, which is essentially the 

aim with the other techniques. Thus the difference in aim between 

LISREL and PLS (we may consider PLS since the various forms and special 

cases incorporate all the described techniques) mirrors the difference 

between factor and principal component analysis (see, for example, 

Schonemann and Steiger (1976) for a discussion). As with factor 

analysis, the factor scores, Fs are not actually estimated. Detailed 

comparisons of LISREL and PLS may be found in many of the references 

quoted in section 2.6 and also in Jöreskog and Wold, H., 1982a). 

The method of solution advocated by Jöreskog is that of maximum 

likelihood under the assumption that the two sets of observed variables 

follow a multinormal distribution. From the model given by equations 

(2.3) - (2.5) and assuming now that the matrices of coefficients 

correspond to population rather than sample values, and with x and Y 

replaced by the random variables x and y respectively, the joint 

covariance matrix E of (x, y) 
T is of the form 

EfPT + Ed p EfC QT 
E 

QCTEfPT Q(CTEfC 0T+ Eh) QT +e 

where Em denotes the covariance matrix of variable in. In any 

application some parameters may be set equal to specific values or equal 

to each other. The remaining free parameters are estimated by 

fitting E to S, where 
Tx XTY 

S-TT/ (n-1) 
YXYY 

using maximum likelihood. 

The likelihood function is given by 

LIK =n tr(S E 1) 
- log IS E1I - (p + q) 

with log likelihood (ignoring the constant) 

log(LIK) =n tr(S E 1) 
- log ýE 11 
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For the log IS 9-11 to exist S must be positive definite, and this may 

well not be the case when X and Y consist of chemical instrumentation 

measurements and sensory attributes for example. Although the 

minimisation of the log(LIK) does not require S to be positive definite 

it may still happen that the maximum likelihood estimates will not 

exist. Also when using this optimisation technique it is possible that 

the solution may be inadmissible, providing, for example, negative 

variances (e. g. Fornell and Bookstein, 1982). It is interesting to 

note, however, that under additional specific assumptions regarding the 

form of the coefficient matrices the maximum likelihood method will 

provide solutions identical to those obtained using canonical 

correlation (Fornell and Bookstein, 1982). The parameters of the model 

may also be estimated using unweighted least squares, with fitting 

function ý- tr(S - E) 
2/2 

which is unaffected by any rank deficiency in S. Facilities for 

estimating the parameters using both maximum likelihood and unweighted 

least squares are provided in the latest version of the LISREL program 

LISREL V (Jöreskog and Sorbom, 1981). 

Thus the LISREL approach, as stated by H. Vold (1982) is 

somewhat complementary to the methods considered in previous sections, 

the philosophy underlying the method being more akin to factor rather 

than component analysis. As with any approach, the technique has its 

advantages and its disadvantages. LISREL modelling is more formally 

defined than PLS, with a well defined, established optimisation 

criterion. Also, standard errors of the parameter estimates are readily 

available, although, of course, if the distribution of the observed 

variables deviates from normality the standard errors must be 

interpreted with caution. However, although considerable flexibility is 
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allowed for in the model several a priori decisions need to be made. For 

example, the dimensionality of the latent factors must be set, and the 

model may require that some coefficients be set to specific values. 

These may be difficult and unrealistic decisions to have to make when a 

study is purely exploratory and little theoretical knowledge is 

available on which to base the decisions. Also, the factor scores, Fs 

and Gs, are not estimated, so any underlying groupings of the samples 

which may be associated with these factors will not be highlighted, 

whereas with component procedures they may be. In view of these 

comments, the fact that the likelihood based procedure is unsuitable for 

small samples, and the difference in aim of the LISREL approach, this 

method will not be considered further. The remainder of this thesis 

will be concerned with investigating the component based procedures 

(sections 2.3 - 2.6) in more detail. 
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2.8 DISCUSSION 

In this chapter a number of techniques for relating multivariate 

data sets have been considered, some of which are well established and 

familiar, for example, canonical correlation, and others such as PLS 

mode A which are less so. It is clear that the component based methods 

are similar in many respects, in so far as they all attempt to identify 

underlying factors which may be assumed to characterise the main 

phenomena present in the samples. By using different criteria to 

estimate these factors the properties of the solutions vary 

dramatically. This is particularly noticeable when one considers the 

effect of rank deficiency on the uniqueness of the solutions, especially 

when this deficiency is due to a lack of observations. 

In the following chapter the methods will be compared further. 

This study will serve both to illustrate why these differences occur and 

to highlight the underlying assumptions about the nature of the data, 

associated with each approach. Further insight will also be gained into 

the criteria employed by the various PLS approaches and how they differ 

from the standard inner product criterion (see section 2.6.12). 
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CHAPTER 3A COMPARISON OF THE METHODS 

3.1 INTRODUCTION 

In this chapter a general framework for comparing the methods 

introduced in Chapter 2 will be presented. Frameworks for comparing 

different multivariate techniques have been considered by a number of 

authors, for example, Greenacre (1984) and Schweder (1987). In such 

presentations however, the normalisation and orthogonality conditions 

imposed are typically dependent on the settings for the undefined 

elements of the model and as such vary across the methods (for instance 

conventionally PC models exhibit orthogonalised coefficients whereas the 

canonical model displays uncorrelated scores). In contrast the 

framework presented here aims to focus solely on the choice of 

optimisation criterion by which the subspaces are chosen, with the same 

normalisation and standardisation conditions maintained throughout. As a 

result the canonical and redundancy models will not follow the 

conventional form presented in Chapter 2 (see section 3.2). The effect 

of data transformation is also discussed and the singular value 

decomposition used to support the points made (sections 3.4 and 3.5). 

Suitably constructed examples are used to further illustrate the 

properties of the solutions (section 3.7). The question of choosing the 

dimensionality of the model, s, is addressed in section 3.6. The method 

of cross-validation is considered along with an alternative based on the 

optimisation of a likelihood function. The chapter concludes with a 

brief discussion. 
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3.2 TWO GENERAL OPTIMISATION PROBLEMS 

Problem 1 Fitting a relationship of the model 1 form (see section 

2.2) 

Consider the following sequentially defined optimisation 

problem: 

Determine vectors ai and ßi defining the ith pair of factors fi and gi 

respectively, i-1... s to maximise ýi - f(ai'ßi) 

$i - +(airßi) - C(ai). K(ßi). aiTXTRj-1Si-1Y ßi (3.1) 

where Ri_1 (n wi) and Si_1 (nom) are symmetric and idempotent, C(ai) and 

K(13j) are scalar functions of ai and ßi respectively, which for this 

purpose may be assumed to be of the form 

C((zi) _ (°iTXTR1_1X a. )h (3.2) 

and K(ßi) a (13 
1TYTSi_lY ßi)1 (3.3) 

where h and 1 are specified scalars and ai and ßi are chosen subject to 

the standardisation conditions 

°LiT J= 6ij (3.4) 

ßi T ßj 
s aij (3.5) 

R and S may depend on cx... oci_1 and 01... 13i_1 respectively, hence the 

subscript (i-1). 

Note, it is necessary to considera sequential rather than global 

optimisation problem in order to be able to incorporate the PLS mode A 

approach into the scheme (see section 2.6). 

The solutions for a and ßi maximising ýi may be obtained using partial 

differentiation with Lagrange multipliers. 

Clearly this optimisation problem cannot incorporate all the 

component-based approaches considered in Chapter 2 since they do not all 

depend on the identification of pairs of factors but on the 

identification of a subspace of M(X) (spanned by fl... fs) only. 
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Therefore it is necessary to consider an alternative optimisation 

problem which involves only the extraction of one set of factors. 

Problem 2 Fitting a relationship of the model 2 form 

This alternative problem may be formulated as follows: 

Determine c ti, i-1... s to maximise ýi - j((xi) 

$i - O(a C(a ). a. 
T%TRi-1Si-lY(YTSi-lY) lYTSi-1Ri-1X 

°`i (3.6) 

where C(a), Ri-1 and Si-1 satisfy the conditions given for problem 1 

and ai is chosen subject to the constraint (3.4). 

Note that in this case Si-1 cannot depend on ßi-1' 

The solution for ai may again be found using Lagrange multipliers. 

It is not necessary for the purpose of comparing the procedures 

to specify the associated loading vectors P and Q since the prime focus 

of this investigation is on the manner in which the subspaces of M(X) 

and M(Y) are chosen. With regard to the maximum number of dimensions 

which may be estimated the comments of Chapter 2 apply here. 

With the exception of PCR (section 2.5) and Johansson's second 

adaptation of redundancy analysis (method 2) all the component-based 

procedures discussed in Chapter 2 can be expressed in the form of one of 

the two optimisation procedures given here. 
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3.3 CANONICAL CORRELATION, REDUNDANCY ANALYSIS, PLS AND THE GENERAL 

OPTIMISATION PROBLEMS 

This section is concerned with illustrating how the methods 

presented in Chapter 2 fit within the framework of the two optimisation 

problems outlined in section 3.2. 

3.3.1 CANONICAL CORRELATION AND THE OPTIMISATION PROBLEMS 

Problem 1 and Canonical Correlation 

Since canonical correlation is traditionally presented as a 

method for extracting pairs of related factors the method with respect 

to Problem 1 will be considered first. 

Lemma 1 The maximal value, f(ai, ßi) of (3.1) equals the ith 

largest canonical correlation pi when 

h=1=-V2 (3.7) 

Ri-1 = (In - Fi-1(Fi-l 
TFi-1)-1Fi-1T) 

(3.8) 

and Si-1 = (In - Gi-1(Gi-1TGi-1)-1Gi-1T) (3.9) 

where Fi-1 =X Ai-1 Ai-1 ° 

and Gi-1 =Y Bi-1 RO = SO ' In 

Proof Substituting these values for h and 1 in (3.2) and (3.3) and 

differentiating 
i-1 i-1 

T 
fi = $i(a, ßi) +E Pýijal + Ejßi ßj - llii - tii (3.10) 

j 

with respect to a and ß, pre-multiplying by jT and ßj T, j=1... i 

applying the constraints (3.4) and (3.5), and observing from the 

definition of Rand S1_1 that R% J= S1_1Y ßj = 0, j<i (see 

section 2.6.3) it may be shown that 

11ij=ýij=0 j=1... i (3.11) 

implying that the optimisation of this 0 automatically results in 

orthogonal a's and ß's. Also scaling cL and ßi to unit length (or any 

other length 1) does not affect the maximal 4. 
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From the definition of f1 - +(acl, ß1) it follows that +(acl, 131) - p1 and 

the factors fl and gl obtained here are simply the usual canonical 

variates (see section 2.3) rescaled so that the coefficient vectors are 

unit length rather than the factors standardised to unit variance. 

Assume now that the result is true for the first (i-1) dimensions, 

0<i< rank(XTY) and consider dimension i. Since fj - pj, j-1... (i-1) 

it follows that M(% acl... X aci-1) - M(% a1... % ai-1), where al ... ai-1 

define the first (i-1) canonical variables of X obtained as described in 

section 2.3, and similarly M(Y ß1... Y ß1-1) = M(Y bl... Y bi-1). 

From the definition of Ri-1 and Si-1 in (3.8) and (3.9) it follows that 

Ri-1% - Di-1 and Si-1Y - $i-1 are the residuals input into the PLS mode 

B algorithm for the calculation of dimension i (see section 2.6.3). Thus 

applying the proof given therein it follows that the ith pair of 

canonical variates (fi, gi) satisfy 

fi -X ai x Ri-i% aci and gi =Y bi a Si-1 131 

with ýi -a Pi 

Hence by induction the result holds for all i. 

Note that X aj #X aj due to the change in normalisation and orthogonal- 

ity conditions. Indeed it may be shown that X aj «% aj - P(% aj; F3-1) 

where P(% 4%; Fj_1) denotes the orthogonal projection of X aj onto 

M(Fj_1) = M(% Aj_1) and similarly for b3 and ßj 

Although this is a somewhat cumbersome way of presenting the 

method it serves to highlight two points: a) the important feature of 

the method is that the optimisation is constrained by the inclusion of 

Ri_i and Si_1 in the definition of ýi to subspaces of M(X) and M(Y) 

orthogonal to M(Fi_1) and M(Gi_1) respectively, and b) the choice of 

normalisation employed in the standard problem is for computational 

ease. Provided $ follows the definition given here any normalisation may 
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be used. This formulation of the problem allows the difference between 

this and the other approaches being considered (notably PLS mode A for 

which no standard eigen-analysis is possible) to be clarified, as will 

be seen in subsequent sections. The spanning set (al... cci) is simply a 

Gram-Schmidt orthogonalisation of (a1... ai). 

Problem 2 and Canonical Correlation 

Consider now the method in the light of the second problem 

presented. Tso (1981) shows that the solution to the reduced rank 

regression problem defined by equation (2.7) with s< rank(XTY) under 

the assumption that E- Nq(0, E), with E unknown, leads naturally to the 

subspace of M(X) spanned by the first s canonical variates of X. This 

subspace also arises in the following situation: 

Lemma 2 The maximal f(ai) of (3.6) equals pit, with pi the ith 

largest canonical correlation when 

h-1=-1 

Ri-1 = (In - Fi-i(Fi-1TFi-1)-1Fi-iT) 

and Si-i ' Ri-i or Si-i ° In 

Proof For this problem the optimisation function fi is given by 

i-1 
fi ýý°iý+3IInj°iTYj-nii 

(3.12) 

(3.13) 

(3.14) 

and again it may be shown that Iiij - 0, j-1... i. From the definition 

of ý1 = +(ocl) it follows that ý1 = («1T%Tg cý)-1ajTXTy(yTy)-1yTX a1 

which from (2.10) is p1 
2. 

From the study of PLS mode B (section 2.6.3) 

it follows that pi2 is the largest eigenvalue of 

(Di-1TDi-1) Di-1TEi-1(Ei-1TEi-1) Ei-1TDi-1 (3.15) 

(cf. equation (2.56)), where Di-1 and Ei-1 are the appropriate 

residuals, defined according to (2.60), (2.61), (2.3) and (2.4). Thus if 

it is assumed that M(% ctl... X (xi-1) = M(% a1... % ai-1) it again follows 
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from (3.8) that Ri_1X - Di_1. The same cannot be inferred for Ei-1 

however, since (3.13) does not lead to the residual Ei_1 of (2.61) and 

(2.4). However it may be shown that (3.15) reduces to 

(Di-1TD1_1) D1_1TY(YTY)-1YTDi-1 

(cf. Si-1 - In), which may also be written 

(Di-1TDi-1) Di-1TRi-lY(YTRi-1Y)-1YTRi-lDi-1 

(cf. Si-1 - Ri-1)" So it follows that ýi - +(ai) - pi2 with 

X ai «X ai - P(% a; Fi-1) 

The interpretation of this optimisation scheme closely resembles 

that for the problem 1 formulation. The correlation between a factor 

X °Ci and the response variables is again constrained to a subspace of 

M(X). This ýi may be written 

r 
i`}' corr2(Ri-1% °`i, uj ) 

j=1 
(3.16) 

where uj denotes the jth standardised principal component of Y and ry - 

rank(Y). Again the solution X ai, i-1... s obtained by this method are 

simply a Gram-Schmidt orthogonalisation of the usual canonical variates. 

Both choices of factors span the same subspace of M(X). 

3.3.2 REDUNDANCY ANALYSIS AND THE OPTIMISATION PROBLEMS 

Problem 2 and van den Wollenberg's Redundancy Analysis 

As the approach proposed by van den Wollenberg (1977) for 

extracting (fi, gi) is such that fi and gi are not related in any natural 

way (see section 2.4.3) his method cannot realistically be viewed within 

the problem 1 framework. 

The relationship between redundancy analysis and the problem 2 

formulation of section 3.2 may be summarised in the following lemma. 

Lemma 3 The maximal value of +(ai), as defined by (3.6) equals 

tr(YTY). Yi2, where Yi2 is the ith largest redundancy statistic when 
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h--1,1 -0 (3.17) 

Ri-1 - (In - Fi-1(Fi-1TFi-1)-iFi-1T) 

and Si_1 - Ri-1 or Si-1 = In 

Note, the only difference between this and Lemma 2 is (3.17). 

Proof As might be expected the proof follows the same lines as 

presented for the canonical correlation problem. 

For this problem also it may be shown that Yiij - Of j-1... i, i-l... s 

i. e. the imposed scaling and standardisation constraints do not affect 

the maximal value of ýi. 

Consider i-i. Substituting (3.17) into (3.6) it follows that ý1 - 

0(al) - (Cý TxTxcý)-la1T%TY YTx al which is Y12. tr(YTY) by comparison 

with equation (2.26), noting that a1TBT% al - (n-1) in that case. Hence 

it follows immediately that X a1 is a scalar multiple of the first 

redundancy factor. Indeed when scaled in this manner f1 and a1 

correspond to those obtained using the reduced rank regression approach 

of Davies and Tso (1982). 

Assume now that +j - Yj2tr(YTY) for j-1... (i-1) and consider 4i. Since 

the result holds for j-1... (i-1) it may again be inferred that 

M(% 0x1... X ai-1) - M(% al". % ai-1) (cf. lemmas 1 and 2) and hence from 

the definition of Ri-1 that Di-1 = Ri-1B, where Di-1 is the residual 

used in the PLS mode C algorithm (see section 2.6.4). 

Now it was stated in section 2.6.5 that a modification to the mode C 

algorithm by way of using a residual Ei-1 of the form 

T 
Ei-1 = Ei-2 - fi-1(fi-1Tfi-1) 1 

fi-i Ei-2 

(adaptation 1) also resulted in the derivation of the redundancy factors 

and hence the optimal Yi2. This choice of Ei-1 is precisely Si-lY when 

Si-1 = Ri_i and thus it follows that fi = yi2tr(YTY) and by induction 

the result is true for all i. Since Ri-1 is idempotent it follows that 
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Si_1 " In is also permissible. 

Again this formulation of the redundancy problem may be thought 

somewhat cumbersome. However, it will facilitate the comparison with 

PLS mode A. This choice of 4i may be interpreted not as the optimisation 

of (3.16), but rather as the optimisation of a weighted sum where the 

weight w, is chosen to be the singular value associated with u. Thus 

the difference between this and the formulation for the canonical 

correlation problem is the inclusion of these weights. This is seen by 

observing that Y YT -U 
2UT, 

where Q- diag(wl... ) so r 
Y 

ýi S Z`y wj2corr2(Ri-l% ai, uj) 
j=1 

(3.18) 

The implications behind the choice of 4' will become apparent in 

the following sections. 

Problem 1 and the extension proposed by Johansson (1981) 

Clearly since the adaptation proposed by Johansson (1981) was 

designed to overcome the 'un-relatedness' of the factors and hence of 

the subspaces of M(X) and M(Y) identified by van den Wollenberg's 

approach, it (method 1) must be considered in the light of the first 

problem posed. 

Lemma 4 The maximal value of 4'(x1,13 
1 

), as defined by (3.1) 

equals �(tr(YTY)). yi, where Yi2 is the ith largest redundancy statistic 

when h= -', 1=0 (3.19) 

Ri-1 = (In - Fi-1(Fi-1TFi-1)-1Fi-1T) 

and Si-1 = (In - Gi-1(Gi-1TGi-1)-1Gi-1T) or Si-1 = In (3.20) 

Proof Proceeding as described in lemma 1 using either choice of Si-11 

it follows again that raj - 0, j=1... i, i=1... s, i. e. the vectors 

0c... ai are automatically orthogonal and the normalisation condition 

(3.4) does not affect the maximal 4. Assuming that Si-1 takes the first 
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form given in (3.20) it may be shown that j=0, j=1... (i-1). The 

same is not true of kii however. In this case &ii - indicating an 

alternative normalisation for ßi would result in a different optimal ". 

Considering again i-1, substituting (3.19) into (3.6) gives +(a1'ß1) - 

(41, TgTg 
c)-%Oo 

T%TY ßl which from equation (2.35) is �(tr(YTY)). yl, 

observing that oc1T%T% c= (n-i) in (2.35). Thus the result is true for 

i=1. Note also that the ßl obtained is precisely that obtained using 

Johansson's method 1. 

Using the method of induction once more, assume that Oj - �(tr(YTY)). yj, 

j-1... (i-1) and consider ¢i. From the definition of Ri-1 in (3.8) and 

the first definition of Si-1 in (3.20) and applying the same arguments 

as in the preceding lemmas, it follows that Ri-1% and Si-1Y are the 

residuals Di-1 and Ei-1 used in the PLS mode C algorithm. The results of 

section 2.6.4 are immediately applicable and it follows that 

�(tr(YTY)) . Yi for this form of S. Note that orl... oci and ßl... ßi are 

proportional to those obtained using PLS mode C but the PLS algorithm 

reports fi = Ri-i% cx1 and gi = Si-lY ß1 not fi =X ocl and gi -Y ß1. The 

case S= In is satisfied by observing Di-1TEi-1 = Di-1TY = XTRi-1Y. 

This choice of S gives factors gi corresponding precisely to those 

determined by Johansson's method 1. 

Thus through this lemma an optimisation procedure has been 

established which incorporates the mode C approach. The relation between 

this and Johansson's solution (for gl... gs) is the same as described in 

section 3.3.1 for the canonical correlation problem, namely the PLS 

factor g1 is a projection of the corresponding Johansson factor onto the 

subspace of M(Y) orthogonal to that spanned by the previously chosen 

factors, i. e. Y bj Y ßj - P(Y ßj; Gj-1), where Y bj and Y ßj denote 

the PLS and Johansson factors respectively. 
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3.3.3 PLS MODE A AND THE OPTIMISATION PROBLEMS 

Problem 1 and H. Vold's mode A algorithm 

Lemma 5 The maximal value of $(mi, ßi), defined in (3.1) equals 

the largest eigenvalue of Di-1TEi-lEi-1TDi-1 where Di-1 and Bi-1 are 

defined according to (2.3) and (2.4) respectively using the mode A 

algorithm of section 2.6.6 to identify F, G, P and 0 when 

and 

h-1-0 (3.21) 

Ri-1 ý (In - Fi-1(Fi-1TFi-1)-1Fi-iT) 

Si-1 ' (In - Gi-1(Gi-1TGi-1)-1Gi-iT) 

Proof As for all lemmas considered it may be shown that the 

optimisation of this + subject to (3.4) and (3.5) results in hij - tj - 

0, j-1... (i-1), i-1... s so orthogonality in a and ß is guaranteed. 

The same is not true for both tai and i 
however in this case as nii - 

tii - +i, indicating that a change in the normalisation of either O tor ß 

would result in a change in the maximal + and in the subspaces 

identified. The remainder of this proof proceeds by induction in an 

analogous manner to lemmas 1 to 4. The maximisation of fi in (3.10) 

leads naturally to the first pair of singular vectors u and ßi of 

xTRi-1Si-1Y which, when Ri_i and Si_1 are defined according to (3.8) and 

(3.9) corresponds to Di_1TEi_1, with Di_1 and Ei_i the residuals input 

into the mode A algorithm. 

Note since + is not invariant under a change in normalisation of 

a or ß it follows that the scaling of the PLS factors Di-lcx. and E 

to unit variance is an adjustment after a. and ßi have been determined 

according to this lemma. 

Thus this PLS approach may also be defined within the framework 

of the first sequential optimisation procedure given in section 3.2. In 

particular, from this definition of + it follows that the PLS approach 
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aims to optimise the covariance between the projected fi and gi, i. e. 

the technique focuses on the covariance between the two spaces after the 

effect of the previously obtained factors has been removed. 

Further insight into this choice of optimisation criterion will 

be obtained when the effect of transformation is investigated and the 

method is considered in the light of the SVD in the following sections. 

Problem 2 and the S. Vold/Martens adaptation 

Since the two adaptations are equivalent (see section 2.6.10) 

either formulation may be used. The method is considered in the light 

of the second problem posed as only one set of factors are of interest. 

Lemma 6 The maximal d(a) in (3.2) equals the ith PLS statistic, 

defined to be the largest eigenvalue of Di-1TEi-lEi-1TDi-1, where Di-1 

and Ei_1 are defined according to (2.6) and (2.7) respectively, using 

the algorithm of section 2.6.8 or 2.6.10 to determine F, P and Q when 

h-1-0 

Ri-1 (In - Fi-1(F1_1TFi-1)-1F1_1T) 

and Si-1 = Ri-1 or Si-1 = In 

Proof The maximisation of (3.14) for these conditions is again 

established by induction in an analogous manner, with nii fi and 

OF j=1... (i-1). The eigenvector ai associated with fi defines the ith 

PLS factor obtained using the Martens algorithm and Ri_1S ai is 

proportional to the corresponding S. Wold factor. The first choice of 

Si-1 mirrors the algorithm exactly and the equivalence of using 

Si-1 = In follows from the idempotency of Ri-1. Again the S. Wold factor 

fi is a projection of the corresponding Martens factor onto the subspace 

of m(x) orthogonal to that spanned by the previously chosen factors, 

i. e. X aj «X aj - P(% oEj; Fj_1), where X aj and X aj denote the S. Wold 

and Martens factors respectively. 
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This approach may therefore also be viewed within the general 

framework of section 3.2. This PLS method attempts to identify a set of 

factors fl... fs (or equivalently a subspace of M(X)) for modelling Y, 

with the factors chosen successively to maximise 

r 
fi = Ey wj2cov2(Ri_1% (Zi, uj) 

j. l 
(3.22) 

A definition of PLS as a method which successively optimises covariance 

has also been presented by Höskuldsson (1988). 

Problem 1 and the Inner Product Method 

All that remains is to consider the optimisation problem which 

results in the inner product factors. This method also fits in this 

general framework thus: 

Lemma The optimal +(aci, ßi) equals the ith largest eigenvalue 

of %TY YT% and results in the determination of the coefficients defining 

the ith pair of inner product factors when 

h=1=0 

Ri-1 = In 

and Si-1 = In 

Proof Follows from the definition of the problem given in section 

2.6.12. 

Problem 2 and the Inner Product Method 

Lemma 8 The optimal +(a) equals the ith largest eigenvalue of 

%TY YT% when 

h=1=0 

Ri-1 = In 

and Si-1 = In 

A model 2 formulation of the inner product approach was not considered 

in section 2.6 as it is not possible to define a residual Ei of the form 
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given in equation (2.7). However, it can be shown that the inner product 

factors fl... fs arise naturally when the conditions of Lemma 8 are 

satisfied. The optimal +i in this instance may then be interpreted as 

ZW cov2(X oi, uj) 
j_l 

(cf. (3.22) with Ri_i a In)' 

Thus unlike the other approaches this method does not remove the 

influence of the previously extracted factors when optimising + and 

choosing the next optimal pair. 

This section has served to illustrate how the methods all fit 

into a general framework and that with the exception of the inner 

product factors they differ only with respect to the choice of $ and in 

particular the setting of h and 1, i. e. whether $ defines a correlation 

a covariance or a combination of the two. They may all be defined with 

respect to the constraints (3.4) and (3.5) and use the same form of 

projection R (and S). 
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3.4 THE EFFECT OF DATA TRANSFORMATION 

The summary of each method presented in Chapter 2 stated the 

transformation conditions under which the methods, and in particular the 

subspaces of M(X) and M(Y) identified, are invariant. These results will 

now be considered further. Three transformations will be considered: 

a. affine transformation (generated by translation and non-singular 

linear transformation) 

b. euclidean transformation (generated by translation and rotation/ 

reflection) 

c. similarity transformation (the euclidean transformation plus 

isotropic scale change) 

A transformation of X will be denoted 

X' - sXX L+ Cx 

where sx is a non-zero scalar 

Cx =1Tcx and cx is a pxl vector of constants 

L is a pxp matrix 

For case a. L is any non-singular matrix (sx is incorporated in L) 

b. L is any orthogonal matrix, and sx =1 

c. as b but with sx #1 

A transformation of Y may be written similarly 

Y, =syYM+Cy 

3.4.1 TRANSFORMATION AND CANONICAL CORRELATION 

Lemma 9 Canonical correlation is invariant under transformations 

a, b and c applied to x or Y. 

Proof All the methods considered here are invariant under translation. 

Each method optimises a covariance or correlation, both of which are 

invariant under translation. 

Consider now + defined according to Lemma 1 and let pl and pl denote the 
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optimal values of ý1 obtained when using X and Y and X' and Y' 

respectively. Assume then that pl # pl and let (a1, ß1) and ((x1', ß1') 

denote the solutions associated with these optimal pl and pl. So 

Pi =+(ý, 1) #Pl=+'(0ý', l1) 

but 4(al*, ßl*) 

where ai* = sXL al' and ßl* - syM ßl' 

so (al, ßl) and (al*, ßl*) both optimise 4l, but the optimal value of 

is unaffected by the normalisation of a or ß (Lemma 1) and is unique 

provided pl is a unique eigenvalue of (2.11). Assuming then that pl is 

distinct it follows that pl = pl. Contradiction. 

Assume now that pj - pj for j-1... (i-1) and consider dimension i. 

Let pi = $(a , ßl) and pi = V(or. 
1' , ßi') . 

Since Pi = pj, j=1... (i-1) it follows that 

M(% al... X (Xi-1) = M(%' al' ... %' ai-11) 

and similarly for the subspace of M(Y), so it may be inferred that 

M(Ri_1X) - M(Ri_1'%'), where Ri_l is defined according to (3.8) and 

similarly, for Si_1Y. 

So Pi - V((xi'Pßi') - Vai*Pßi*) 

with a*=s, L al, and ßi* - syM ßi' and applying the same argument as 

given above for pl and pl it follows that pi = pi and by induction the 

result is true for all i, i=1... s, s< rank(XTY). 

Since in this proof no constraints have been imposed on L, H, sX or sy 

it follows that the result holds for transformations a, b and c. 

Note Ri_1'X' ai' a Ri_1X a but a'f sXL a, i=2... s and similarly 

for ß. However when the conventional standardisation and normalisation 

conditions (2.17) are used X'ai' =X ai and sXL ail = ai. 

108 



3.4.2 TRANSFORMATION AND REDUNDANCY ANALYSIS 

Lemma 10 Redundancy analysis is invariant under transformations 

a, b and c of X and under transformations b and c of Y, but affine 

transformation of Y (a) is not permitted. 

Proof The proof of this result follows in an analogous manner to that 

presented in Lemma 9 for the canonical correlation problem. Again 

(o`i ßi with oc 
*- 

sXL ai 
' 

and ßi* - syM ßi' , and since 

the optimal 4i for the redundancy problem defined in Lemma 3 is also 

invariant to changes in the normalisation of ai it follows that ýi is 

unaffected by a transformation of X which results in an oci* of different 

length. The same cannot be inferred for ßi however, as a change in the 

normalisation of ßi will result in a different optimal "i and hence in 

the identification of different subspaces of M(X) and M(Y). However if 

the transformation of Y is constrained to be orthogonal (case b) the 

standardisation of ß remains unchanged since 

Q *T Q*= ßi' 
TMTM 

F+i' = Ri' 
T ßi' =1 

and thus the optimal +i is unaffected also. 

A similarity transform is also permitted since in this case 

$'(a', ßi') = sy+(ai, ßi) with ßi*Tßi* sy2 

In contrast to a general non-singular transformation each ýi, i-1... s 

is multiplied by a common scale factor. A constant scale adjustment over 

all dimensions does not affect the subspaces chosen. 

3.4.3 TRANSFORMATION, PLS MODE A AND ITS VARIANTS 

Lemma 11 PLS mode A and its variants (including the inner product 

method) are invariant under transformations b and c of X and Y, but 

transformation a is not permitted. 

Proof Since the optimal +i defined according to Lemma 5 and 7 were 

shown not to be invariant under changes in the standardisation 
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conditions applied to cx and ßi one may infer that only transformation b 

which satisfies this constraint and transformation c which results in 

being multiplied by a constant scale factor for all i are permitted. The 

remainder of the proof follows by induction in an analogous manner to 

that presented for Lemma 9. 

The model 1 formulation for each method resulting in an optimal 

solution for a and ß has been used in these proofs. The results also 

hold for the model 2 formulations however. The presence of uj in (3.16) 

indicates that any non-singular transformation of Y is permitted for the 

canonical problem since uj, j-1... ry, is an orthonormal spanning set 

for M(Y) which could equally well be replaced by an alternative 

orthonormal basis. The presence of wj in the optimisation functions $ 

for the other techniques, (equations 3.18 and 3.22) indicates that only 

euclidean and similarity transformations are permitted as the singular 

values wj, j=1... ry are only invariant under these transformations. 
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3.5 CANONICAL CORRELATION, REDUNDANCY ANALYSIS, PLS AND THE SINGULAR 

VALUE DECOMPOSITION (SVD) 

Having established the transformations under which each 

technique is invariant it is now informative to consider each in the 

light of the appropriate transformation associated with the SVD of each 

data set. Following the notation used previously in this and Chapter 2 

the SVD of X and Y will be denoted 

X_TAVT and Y- UQVT (3.23) 

respectively, with TTT - VTV - Ip, UTU - WTW - Iq (3.24) 

and A- diag(ý,... X 
p) 

S2 - diag(tal... Q) 

(> X4 >0i<j, i, j< rank(X) 
and ,iai 

�J =0i> rank(X) 

and similarly for i, i-1... q. Without loss of generality it will be 

assumed here that both X and Y are full rank. If this is not the case 

they may be reduced to a problem of smaller order for which this 

condition is satisfied (see section 2.3.4). 

3.5.1 CANONICAL CORRELATION AND THE SVD 

Since canonical correlation is invariant under any non-singular 

transformation X and Y may be replaced by XV /1 1 
and YV 97 1 

respectively, (L =V X-1 and M=V SF'), with no change to the subspaces 

identified. Applying these transformations and using the same notation 

as introduced in the previous section, it follows that 

cc. pi = a' 
TTTU ßi' / �a 'Ta'. �ßi' T ßi' =a' 

TTTU 
ßi' 

(3.25) 

for the model 1 problem 

and Pit = 
TTTU 

UTT al' (3.26) 

in the model 2 case. 

Note when these transformations are applied to X and Y both the 

conventional standardisation conditions and the alternative (3.4) and 
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(3.5) considered in this chapter provide the same solution (with a scale 

adjustment in the length of a and ß). Both the factors and the 

coefficients are mutually orthogonal. 

By writing the problem in this manner it becomes clear why this 

technique is invariant under non-singular transformation and the 

implications this has for data analysis. T and U are simply one choice 

of a pair of orthonormal bases spanning M(X) and M(Y) respectively, 

which could be replaced by any two alternative bases. Although these 

dimensions are associated with the optimum properties of a PCA, i. e. the 

variation explained by any given direction ti is proportional to the 

corresponding eigenvalue Xi, with Xi a maximum subject to the constraint 

(3.24) these properties do not feature in. the method. Canonical 

correlation, as shown by (3.25) and (3.26), is concerned purely with 

identifying directions within M(X) and M(Y), (fi, gi), i-1... s, which 

exhibit a high correlation. No account is taken of the spatial pattern 

or structure within each data set, hence the invariance to non-singular 

transformation. This indicates why canonical correlation solutions may 

be difficult to interpret. Since the method takes no account of 

internal structure (A and 2) the directions obtained may account for 

very little variation within the data set (i. e. they may be highly 

weighted on the small principal components) while still being highly 

correlated, thus rendering a likely difficult interpretation. The 

method only investigates the relationship between M(X) and M(Y). It is 

essential therefore, that if the data under consideration are such that 

the inter-point distances between the observations, as defined by one or 

other of the two sets of variables are meaningful, and an inherent 

feature of the data, that canonical correlation be used with caution, if 

it is used at all. For given data sets the canonical correlation 
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solution could resemble that obtained using a method which does take the 

internal structure into account, but this is by no means guaranteed. 

3.5.2 REDUNDANCY ANALYSIS AND THE SVD 

The transformation L=VÄ1 may also be applied to X when 

modelling the inter-relation in terms of the redundancy factors, with no 

change in the subspace of M(X) identified, but for this problem M must 

be constrained to be orthogonal so M-V. The redundancy statistic, yi2 

then reduces to 

Yi2 = al'TTTU 22UTT cci' / tr(22) 

for the model 2 problem and 

Yi a ai, 
TTTU2 ßil /�(tr(gý)) 

(3.27) 

(3.28) 

for model 1. 

The comment of section 3.5.1 with regard to the alternative 

standardisation conditions also apply here (assuming the normalisation 

of Johansson's method 1, not PLS mode C is followed for ß). 

Presenting the problem in this form serves not only to highlight 

the aspects of the data featured in the method but also the manner in 

which the method differs from the canonical correlation approach (i. e. 

the presence of the matrix Q). With regard to the M(X) the comments 

given in section 3.5.1 above, are also applicable here; namely the 

method focuses purely on M(X) and not on the internal spatial pattern of 

the observations as defined by xl... xp, hence the invariance once more 

to affine/non-singular transformation. Again the factors f1... fs chosen 

may account for little variation in the data set, that is they may be 

highly weighted on lower principal components. 

The same in not true of M(Y) however. Redundancy analysis 

focuses not only on the M(Y) but also on the structure of the data set, 

as defined by yl... yq and indicated by the presence of Q in (3.27) and 

1) 
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(3.28). When investigating the inter-relationship between X and Y, the 

method weights each of the basis vectors ul... uq according to its 

ability to summarise the variation in Y. Thus the vectors are chosen 

not only on the basis of their ability to summarise the inter- 

correlation between X and Y but also on their ability to model Y. The 

inclusion of Q, results, as stated in section 2.4.6 in fi corresponding 

to the ith principal component of Y. Thus although fl... fs may not 

provide a good summary of the variation in X they do provide the best s 

dimensional subspace of X for modelling Y (with 'best' defined as 

explaining maximum variation). Also while the correlation between fi and 

gig i-1... s will be less than (or equal to, should wi - o), i, j 

1... q) that for the corresponding ith pair of canonical variables these 

factors are guaranteed to provide the 'best' s dimensional summary of 

the variation in Y. 

3.5.3 PLS MODE A, ITS VARIANTS AND THE SVD 

The SVD representation may also be used to illustrate the 

philosophy behind the PLS approach, and the implications of the 

differences between this technique and the other approaches being 

investigated. The appropriate transformations for this method are L-V 

and M-W. For PLS mode A in the model 1 situation the optimisation 

statistic 0i reduces to 

ýi a IT A TTRi-1Si-1U Q ßi, (3.29) 

with ýi a 'TA TTRi-1U 42UTRi-1T Aa' (3.30) 

for the model 2 (S. Vold/Martens) version. The inner product approach 

reduces similarly (with R=S= In). 

From this representation of + it is clear that the PLS approach 

goes one step further than redundancy analysis. Not only is the spatial 

pattern of the observations within M(Y) considered, but also the spatial 
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distribution within M(X) is addressed in the modelling, as seen by the 

presence of A in addition to 2 in (3.29) and (3.30). Consideration is 

given to the inter-relation between the data sets and also to the 

ability of the factors to summarise the variation within the component 

data sets. Correlations between the higher principal dimensions are 

given higher weighting (defined by X and w) than less important 

dimensions. Thus PLS does indeed exhibit the property of approximating 

X and modelling Y, alluded to by S. Wold and co-workers (1984a). 

These comments with regard to the features of the data sets 

considered when modelling also apply, of course, to the inner product 

approach as this method differs from PLS only in the choice of R and S. 

This difference requires further consideration. As stated in section 

2.6.12 the inner product factors fl... fs and gl... gs determined under 

the standardisation conditions (3.4) and (3.5) satisfy 

FsTGs= diag(Tl... TS) (section 2.6.13, property 3), 

that is, fi is correlated with, and only with gi. The factor fi is 

uncorrelated with all other gj, ja1... s, i#j extracted from the 

Y data set. Thus while the PLS model 1 formulation (PLS mode A) focuses 

on the subspaces orthogonal to those spanned by the preceding factors 

from the same data set the inner product approach considers primarily 

the inter-relation between factors. 

The choice of optimisation method must depend therefore on the 

primary focus of the analysis. If the inter-relation is of prime 

importance and independence across the factors is desired then the inner 

product method is most appropriate, whereas if independence of factors 

within a data set is preferred then the PLS method is more appropriate. 

Constraints with regard to the maximum dimensionality of fitted models 

are, in any practical application, also likely to be the same for both 
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models. 

This orthogonality constraint for the inner product solution 

also applies to the model 2 formulation although for this model it is 

less easy to justify geometrically (cf. comment of section 3.3.3 

regarding model 2, the inner product and the PLS algorithm) . Also if it 

is desired that in the limit (s -d- maximum setting for s) the least 

squares solution is obtained, i. e. FdQdT = X(XTX)-1XTY, the PLS approach 

must be preferred since this is not achieved with the inner product 

method (see section 2.6.17). It is also intuitively more sensible for 

this model to consider an optimisation procedure with 

orthogonality/projection constraints imposed on the factors Fi_1 rather 

than on some Gi_1 which do not feature in the model. Note that the 

canonical model satisfies both properties, and the redundancy subspaces 

M(Fs) and M(Gs) are unchanged whether within or across data set 

orthogonality is chosen for Gs. 

Further evidence of the influence of A in the PLS model can be 

observed by considering the result of Helland (1986) for the model 2 

formulation with q-1, (equation 2.79), in the light of the SVD. When 

expressed in principal axes form the spanning set for M(As) (2.79) 

becomes A TTu w, (A2)A TTu w, (A4)A TTu w, ... (A2s-2)A TTu co 

This result of Helland (1986) may be generalised to the multivariate 

case as follows: 

Theorem The coefficient vectors a1... as obtained using the S. 

Wold/Martens PLS algorithm may be expressed as a linear combination of 

Ld, xTx Ld, (XTx)2Ld, ... (xTx)s-2Ld, (xTx)s-1Ld (3.31) 

where Ld = (11... 1d) and li is the eigenvector corresponding to the ith 

largest eigenvalue of xTY YTx and d= rank(XTY) i. e. (11.6.1d) are the 

vectors obtained using the inner product method. 
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Proof Using the S. Wold algorithm which provides uncorrelated PLS 

factors the ith coefficient vector at. is chosen to satisfy 

D; 
_1TY 

YTD; 
_1a; 

_ 't; a; (3.32) 
--_-- i-i T 

with fi . Di-1cx1 Di-1 =X -J Elf jpj+ (3.33) 

and pj . (ffTff) 
lfjTDD_1 

. (f3Tf3)-1fjTx . c3fjTX say (3.34) 

Note, -ri is the largest eigenvalue arising from (3.32). 

Using a recursive back substitution of (3.34) and (3.33) in (3.32) the 

LHS of (3.32) becomes 

%TY YT% ai -3 E1 Ti pi 
T 

ai. J+iý Ei'[J pj 
T 

"'i .k E1Ck%T% ak 

TT 
i-i i-i 

T 
=gYY%ai - Esýa3 + Es3ai 

3=1 j=1 

where Ck, si and Si are scalars. 

(3.35) 

Now if ll... ld are eigenvectors of ZTY YT% with associated eigenvalues 

el... Ad and 1d+1 ' 1p are any further set of orthonormal vectors chosen 

to span the (p-d) subspace of M(%T) orthogonal to M(Ld) (assuming X is 

full rank p) then any ai may be written as a linear combination of 

11... 1p. 

Let ai =L ci so %TY YTx ai =XTY YT% L ci Ld 9dci " Ldci* say (3.36) 

The remainder of the proof will be established by induction. 

For i= it al = 11 and the result holds. 

For i=2, from (3.35) T2acl = xTY YT% ci. - s1a1 + S1%T% al 

= Ldc2* - s111 + S1XT% 11 from (3.36) 

=1 E (%T%)kLdck2 
k=0 

for suitably chosen coefficients ck2 and the result holds for is2. 

Assume now that the result is true for a1... ai_1 so 
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aj = 

jE1(%T%)kLdckj 
j-1... (i-1) (3.37) 

ka0 

with ckj a (dxl) vector of coefficients and consider al. Substituting 

(3.37) in (3.35) and noting the relation (3.36) it follows immediately 

that (3.39) hold for j-i also. By induction (3.37) then holds for all 

i, i l... s and the result is proven. 

When d-1 the result reduces to that of Helland (1986). In this 

case ai is written as a linear combination of just i vectors and it 

follows that 11, (XTX)l1,... (XTg)i-111 are a spanning set for the i 

dimensional space. In this multivariate generalisation there are a total 

of (i. d) vectors (i > 1) spanning an i dimensional space. Thus there is 

clear redundancy in this set. Further work is required to specify 

constraints on ckj which will reduce the number of vectors to an 

independent spanning set of just i vectors. 
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3.6 ASSESSMENT OF THE DIMENSIONALITY, s, OF THE MODEL 

Thus far in this thesis the dimensionality of the fitted model 

has been denoted by s and the maximum possible s has been considered for 

each method when fitting the two model formulations. The question of 

how to choose s however, has not been addressed. In practice one does 

not wish to fit the maximum number of dimensions automatically as the 

intention with these exploratory techniques is to summarise the 

inter-relation using a model of low dimensionality. Also, when using 

the model 2 formulation fitting the maximum number of dimensions is 

equivalent to multivariate regression (except for the inner product 

model). In this section approaches which have been proposed and used 

for the determination of s will be discussed briefly and an alternative 

method, requiring less computation will be suggested for assessing a 

model with one set of factors, F (model 2). 

3.6.1 CROSS-VALIDATION 

Much interest has been shown in recent years in the method of 

cross-validation (Stone, 1974; Geisser, 1974; Mosteller and Tukey, 

1977). First developed by Mosteller and Wallace (1963) it is a method 

for objectively choosing a model and/or assessing its predictive 

ability. S. Wold (1976,1978) suggested using cross-validation to 

determine the optimum number of principal components and his method has 

been developed further and modified by Eastment and Krzanowski (1982). 

The technique has found application in the area of spline smoothing 

(Silverman, 1984) and a generalised cross-validation is considered by 

Golub et al. (1979) in the context of choosing a good ridge parameter. 

Cross-validation also lends itself to the determination of the 

optimal dimensionality of a PLS model and is the method advocated by the 

Wolds' and co-workers (Wold, H., 1982; Apel and Wold, H., 1982). Since 
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the methods of canonical correlation and redundancy analysis correspond 

to particular modes of PLS, namely modes B and C respectively (see 

Chapter 2) it is also applicable to these methods. 

Briefly the philosophy behind cross-validation is as follows. 

Given two data sets X and Y the procedure is to subdivide the data into 

a number of distinct groups. Each group is deleted in turn, the 

parameters of the chosen model being estimated from the remaining data. 

This model is then used to predict the deleted data points. A suitable 

function of the differences between the predicted and the true values is 

then calculated (termed PRESS). This is summed over all the deleted 

groups to give a total PRESS for the model. The model selected is the 

one which optimises a chosen function of this total PRESS. 

Typically the deleted values consist of samples or experimental 

units, i. e. rows of the data matrices X and Y, thus simulating the 

prediction of future data items. The Wolds' however, suggest an 

alternative deletion scheme which involves removing every gth element in 

the matrix thus splitting the data into g groups (Wold, S., 1978; Wold, 

H., 1982). This scheme is not as conceptually appealing and relies on 

one having access to algorithms for the determination of eigenvalues and 

vectors which can cope with missing observations (such as the NIPALS 

algorithm). The case where the deleted observations are row(s) of the 

data matrices will therefore be considered. Indeed, this deletion 

scheme is implemented in the SIMCA-3B PLS program (Wold, S., 1983) and 

in the UNSCRAMBLER program (Martens, H. et al., 1987b). 

While sample deletion may be used in the assessment of PLS, 

redundancy and canonical correlation models it is not appropriate for 

the assessment of a principal component model, as discussed by Eastment 

and Krzanowski (1982), unless the components are retained on the basis 

120 



of their ability to predict Y rather than to summarise X, which is not 

usual. In order to avoid bias the deleted data should not be used in 

the calculation of the predictive model. When an experimental unit is 

deleted there is no information from which to estimate the principal 

component scores for that unit, except from the unit itself. Eastment 

and Krzanowski (1982) suggest an alternative scheme for assessing this 

model which involves combining estimates obtained when rows and columns 

of the data matrix are deleted. 

Stone (1974) shows that in order to extract the maximum 

information from cross-validation the number of groups should be as 

large as possible, i. e. each deleted group should consist of one and 

only one sample. With large data sets however this can lead to an 

excessive amount of computer time and S. Vold (1978) and H. Wold (1982) 

on the basis of results provided by Geisser (1974) and simulation 

experiments (Wold, S., 1978) suggest that a smaller number of groups, 

typically between 4 and 7 is adequate. In the SIMCA-3B program (Wold, 

S., 1983) the data is split, row-wise into 3 groups. For the purposes 

of this presentation we shall assume that each deleted group contains 

only one experimental unit, although the following is equally applicable 

to larger groups. 

In the context of the models being considered here, the method 

of cross-validation may be presented thus. Consider firstly the model 2 

formulation involving only one set of underlying factors, F. Let x(-i) 

and Y(-1) denote the two data sets after the removal of the ith 

experimental unit (row) and re-centring to column mean zero and let 

As 
(-i) (pxs) denote the estimate of the first s coefficient vectors, 

determined from %(-1) and Y(-i), using the chosen method. As(-i) then 

defines the scores Fs(-i) ((n-1)xs) in terms of %(-i), 
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Fs(-i) . x(-i) As(_i) and Qs(-i) is given by 

Qs 
(-i) 

- YT(-')F 
s 

(-i)(F 
s 

T(-i)F 
s 

(-i))-1 

The deleted sample yT(i) (lxq) is then estimated 

YTs(i) - XT(i)As(-i)QsT(-i) 

giving PRESSi(s) - I(Yi) - Ys(i)lTI(Y(i) - Ys(i)I ( 

n 
and PRESS(s) -E PRESSi(s) 

i-i 

for a model of dimensionality s. 

(3.38) 

If the model 1 formulation is preferred then Bs(-i), G 
S(-') and 

Csý-iý are also calculated, and yT(i) may be predicted from 

" T(i) 
. XT(i)A 

(-i)C (-i)Q T(-i) 
ys sss 

and the PRESS calculated as before. H. Wold (1982) also suggests that 

cross-validation may be applied to other components of the model, for 

example the inner relation G-FC. 

With regard to the criterion for choosing s based on the PRESS 

Eastment and Krzanowski (1982), by analogy with regression analysis 

suggest Xval = PRESS(s-1) - PRESS(s) / PRESS(s) 
df1 df2 

where df1 and df2 are the appropriate degrees of freedom. If the 

statistic is used to determine the number of principal components to be 

retained df1 = (n-l+p-2s) and df2 = (n-2-s)(p-s). When assessing the 

ability of the model to predict Y, df1 =q and df2 = (n-2-s)q. On the 

basis of a simulation study on the use of this Xval in PCA, Krzanowski 

(1983) recommends a threshold level of 0.9, rather than 1 as originally 

suggested (Eastment and Krzanowski, 1982). If Xval is greater than 0.9 

the dimension is considered to be of predictive relevance otherwise it 
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is not. s is chosen to be the maximum value for which this threshold is 

exceeded. Using F-tests with this criterion was also suggested by S. 

Vold (1976) although in his later work he suggests the use of 

Xval - PRESS*(s) / tr(Y - Ys-1) T(Y 
- Ys-1) (3.39) 

where Ys-1 is the prediction of Y using an (s-1) dimensional model 

derived from the complete data sets. (The reason for the (*) in (3.39) 

will become apparent subsequently). A dimension is considered relevant 

if the ratio is less than 1. H. Wold (1982) advocates the use of a 

similar criterion, one he refers to as Stone-Geissers Q2 criterion 

(after Stone, 1974 and Geisser, 1974) where 

Q2 =1- 

[PSSs) 
/E (Y(i) - Y(-i))T(Y(i) 

i 
where i denotes the deleted group. When each group consists of a single 

sample 02 becomes 

02 "1- [(n-1). PRESS(s) / n. tr(YTY)] 

as y(-i) - -y(i)/(n-1). Using this statistic a dimension is deemed 

relevant if 02 > 0. 

PRESS* in (3.39) is a simplified approximation to (3.38), 

suggested by S. Wold (1978 and subsequent papers). When using methods 

which derive components (coefficient vectors) corresponding to 

successive eigenvectors of the same matrix it is of little consequence 

with the current numerical algorithms whether one extracts one, some or 

all of the dimensions. With an approach such as PLS however this is not 

the case as the sth dimension is derived from the residuals remaining 

after fitting the first (s-1) and the model must be fitted sequentially. 

In order to calculate PRESS(s) and avoid the same computations being 

repeated as each additional dimension is fitted it is necessary to save 

the residual matrices Ds-1(-i) and Es-1(-i) (if a model 1 type 

123 



is to be fitted) for input into the determination of the next dimension. 

To remove the need to save these residuals S. Wold (1983) uses the 

following scheme: 

1. Set Do - X, E0 = Y, s1 

-e 
(i) 

]T[(J) 
2. Calculate PRESS (s) -E 

[esi") 

s-1 

[e. 

-1 
es-1 

i 

where es_1T(i) is the ith row of the residual Es_1 and es_1(i) 

is the estimate of es_1(i) obtained after fitting a one dimensional 

model to Ds_1(-i) and Es_1(-i). 

3. Form Xval - PRESS*(s) / tr(Es_1TEs-1). 

4. If Xval <1 then calculate 

- Ds - Ds-1 - fsps T 
Es - Es-1 fsgs T 

(assuming for this illustration that a model involving only one set 

of factors F (model 2) is being fitted), where fs, ps and qsT are 

calculated using the full data sets, i. e. Es is the residual 

remaining after fitting an s dimensional model to X and Y. 

5. If Xval <1 set s- s+l and repeat steps 2 to 4. 

If Xval >1 in step 4 then the sth dimension is not considered to be of 

predictive relevance and the procedure is stopped, with (s-1) the chosen 

dimensionality. 

Although simpler to compute there is an inherent bias in this 

scheme. To ensure unbiased results it is essential that the deleted 

sample is not used when calculating the predictor. By testing the 

predictive relevance of a dimension on the basis of its ability to 

predict the residual remaining after fitting (s-1) dimensions to the 

FULL data sets, all the samples are automatically indirectly used in the 

calculation of the predictor. This bias is noted by Apel and Wold, H. 

(1982) and a correction factor has been derived by S. Wold (1980). It 
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should be noted, however that this salient point is neither discussed by 

S. Wold nor is the correction factor programmed into the cross- 

validation procedure used in the SIMCA-3B program (Wold, S., 1983). 

Indeed a further computational approximation is used in the program, 

namely, the reduced data sets, after deletion of a subgroup, are not 

re-centred to column mean zero prior to model fitting. This bias and 

failure to re-centre the data, along with the fact that the program only 

splits the data into 3 rather than n subgroups may be possible reasons 

why experience has indicated that this cross-validation test does not 

always perform well in practice. Often many more components are flagged 

as relevant than one would consider appropriate. Indeed the following 

comment by M. and H. Martens (1986) would suggest that other researchers 

have also experienced this problem '... new factors ... may be accepted 

... unless common sense indicates that systematic data errors are being 

modelled'. The cross-validation procedure used in chapter 5 for the 

analysis of two experiments from the field of sensory evaluation does 

not contain this simplification or computational approximation. 

3.6.2 LIKELIHOOD BASED APPROACHES 

The methods discussed here relate to a model with one set of 

factors, F and assess the ability of F to model Y. Davies and Tso 

(1982) when formulating the redundancy method as a reduced rank 

regression problem suggested the following approach for choosing s. Let 

Y be the multivariate, full rank regression estimate of Y with 

2w 
q2 

the eigenvalues of Y 
1 ... 

Y, assuming Y is of full rank q. Then 

the log-likelihood ratio for testing a model of rank s against one of 

full rank (i. e. testing the hypothesis that A QT is of rank s) is given 

by q2 
A =E tä 
s i=s+1 

i (3.40) 

125 



and Anderson (1958) shows that the asymptotic distribution of NP 

assuming the errors are i. i. d. 

2N(0,1), 

is 

sx (q-s)(p-s) (3.41) 

If s is found significant then s is increased by 1 until a non- 

significant s is obtained, the dimensionality is then fixed at s 

corresponding to the last significant s. As noted by Davies and Tso 

(1982), this As is equivalent to Bartlett's criterion for testing the 

smallest (p-s) canonical correlations (Kendall and Stuart, 1968). 

Note also that the redundancy dimensions correspond to principal 

components of 
i, 

and that the inclusion of dimension i in the model 

removes w i2 from the sum (3.40). 

While this test may be used to choose s when fitting a 

redundancy (or canonical correlation) model it cannot be used in 

conjunction with methods such as PLS or PCR which permit s to exceed q 

(this is particularly a problem for the case q= 1). An alternative 

approach, also based on the assumption of normality and statistical 

testing which may be used for all the methods is given below. The 

approach is analogous to that of stepwise regression with forward 

selection and proceeds thus: 

1. Set s=1. 

2. Fit a model of dimension s to X and Y, i. e. determine Fs and 0T 

using the chosen method. 

3. Form the residual Es =Y- FSOST = ES-1 - fsgsT 

4. Calculate Wilks A statistic, s= IESTES1 / IEs-1TEs-1I to test the 

null hypothesis H0: gs = 0, where qS is the sth column of 0 (qxs) and 

calculate the test statistic 

TS = -[(n-s-1) - (q-1+1)] ln(s) (Rao, 1973). 
l2J 

Using the approximation due to Bartlett (1947) Ts - )(2q. 
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5. If Ts is significant at the 5% level or better, or if Ts is non- 

significant but Ts-1 is, then set s- s+1 and repeat steps 2 to 4, 

otherwise set the dimensionality at (s-1). 

It is recommended that the procedure continue until two successive 

non-significant dimensions are identified to ensure that the 

dimensionality is not under estimated. In regression analysis it is not 

uncommon for the inclusion of a predictor not only to significantly 

improve the fit but also to cause a previously non-significant predictor 

to be identified as significant also. Proceeding until two non- 

significant dimensions are determined reduces the chance of this 

phenomenon arising. 

One further aspect to be addressed is the rank of the residuals 

Es. Although it may be assumed that Y- EO is full rank as the number of 

fitted dimensions increases Es will likely become rank deficient, 

resulting in a zero determinant. This difficulty particularly arises 

with the redundancy approach when n<p. Redundancy analysis 

successively removes principal components of Y= %(%T%)-%TY =Y in this 

case. So the singular values of Ei are Wi+1" ' q, 0... 0 giving zero 

determinants for all Ei, i>1. One could, of course, use the statistic 

proposed by Davies and Tso (1982) in this instance, which does not 

exhibit this problem, but this difficulty will arise with all the 

methods when sufficient dimensions are fitted. Alternatively one could 

use not the product of all the eigenvalues of EsTEs but just the product 

of the positive ones. Applying this rule AS for the redundancy problem 

with n<p reduces to 
s-2 

Although one may question the suitability of significance 

testing it cannot be denied that this method is computationally simpler 

than the cross-validation approach and has the advantage over the 
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statistic suggested by Davies and Tso (1982) in so far as it may be used 

with the PLS and PCR approaches also. Naturally if used with PCR the 

components would be retained on the basis of their ability to predict Y 

rather than to summarise X. This statistic along with the 

cross-validation statistics will be used to assess the dimensionality of 

models fitted to the two data sets to be analysed in Chapter 5. 
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3.7 ILLUSTRATIVE EXAMPLES 

By way of illustration of the properties discussed the solutions 

obtained from four constructed data sets are presented. A model 2 type 

relation is fitted in each case (single set of factors, Fs) as patterns 

in Bs and Gs can be inferred from those in As and F. Solutions derived 

using canonical correlation, redundancy analysis and PLS are presented, 

and in all instances a two dimensional model is fitted. The inner 

product approach is not considered here because for the data structures 

chosen each PLS dimension is highly correlated with a single principal 

axis of X, so the PLS and inner product models identify essentially a 

common subspace. Also, as discussed earlier, the inner product approach 

is not desirable when fitting a model 2 relationship. 

The four data structures considered differ only with regard to 

the positioning of three inter-correlations of 0.9,0.75 and 0.4 between 

principal dimensions of X and Y, as illustrated in Table 3.1. All 

remaining correlations have been set to ± 0.05. For this example data 

sets containing 10 predictor and 4 response variables have been 

constructed. The singular values associated with each principal 

dimension are also presented in Table 3.1. These and further data 

structures with differing values for p and q are studied in detail in 

Chapter 4. The reasons behind these choices of inter-structure, C= TTU, 

A and Q are discussed in section 4.2 and the method of construction of 

the data sets is given in section 4.3. Data sets containing 50 

observations (n = 50) were constructed, although the choice n does not 

affect the vectors a1 and a2 determined. 

In order to illustrate the relation of the factors to the 

structure of X and Y, all coefficients etc. are expressed relative to 

the principal components of each data set, i. e. relative to TA and U Q. 
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Table 3.1 Choices of inter-structure C- TTU, and the settings for 

the singular values of X and Y 

Structure A Principal Dimension of Y 

1234 

1 0.90 -0.65 0.05 -0.05 
2 -0.05 0.05 -0.05 0.05 
3 0.05 0.75 0.05 -0.05 

Principal 4 -0.05 0.05 -0.05 0.05 
5 0.05 -0.05 0.05 -0.05 

Dimension 6 -0.05 0.05 -0.05 0.05 
7 0.05 -0.05 0.05 0.40 

of X8 -0.05 0.05 -0.05 0.05 
9 0.05 -0.05 0.05 -0.05 10 -0.05 0.05 -0.05 0.05 

Structure B Principal'Dimension of Y 

1234 

1 0.40 -0.05 0.05 -0.05 
2 -0.05 0.05 -0.05 0.05 
3 0.05 0.75 0.05 -0.05 

Principal 4 -0.05 0.05 -0.05 0.05 
5 0.05 -0.05 0.05 -0.05 

Dimension 6 -0.05 0.05 -0.05 0.05 
7 0.05 -0.05 0.05 0.90 

of X8 -0.05 0.05 -0.05 0.05 
9 0.05 -0.05 0.05 -0.05 10 -0.05 0.05 -0.05 0.05 

Structure C Principal Dimension of Y 

1234 

1 0.05 -0.05 0.05 0.40 
2 -0.05 0.05 -0.05 0.05 
3 0.05 0.75 0.05 -0.05 

Principal 4 -0.05 0.05 -0.05 0.05 
5 0.05 -0.05 0.05 -0.05 

Dimension 6 -0.05 0.05 -0.05 0.05 
7 0.90 -0.05 0.05 -0.05 

of X8 -0.05 0.05 -0.05 0.05 
9 0.05 -0.05 0.05 -0.05 

10 -0.05 0.05 -0.05 0.05 
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Table 3.1 continued 

Structure D Principal Dimension of Y 

1234 

1 0.05 -0.05 0.05 0.90 
2 -0.05 0.05 -0.05 0.05 
3 0.05 0.75 0.05 -0.05 

Principal 4 -0.05 0.05 -0.05 0.05 
5 0.05 -0.05 0.05 -0.05 

Dimension 6 -0.05 0.05 -0.05 0.05 
7 0.40 -0.05 0.05 -0.05 

of X8 -0.05 0.05 -0.05 0.05 
9 0.05 -0.05 0.05 -0.05 

10 -0.05 0.05 -0.05 0.05 

Singular Values of X 

Dimension 123456789 10 

X 14.05 10.88 8.42 6.52 5.05 3.91 3.03 2.34 1.81 1.41 

Singular Values of Y 

Dimension 1234 

w 11.01 6.94 4.37 2.75 

The formulations of the methods presented in this chapter have 

served to illustrate alternative orthogonality and standardisation 

conditions which may be used. The subspace of M(X) remains the same 

whichever is chosen, as does B=A 0T, the regression matrix defining Y 

in terms of X. However, focusing on this B does not illustrate how the 

chosen dimensions are related to the principal axes of X and Y. Although 

the use of different standardisations may result in different 

interpretations of the components, in this instance the conventional 

normalisation of the redundancy and canonical solutions will be 

presented as this is the manner in which methods are usually used. The 

PLS solution may be presented in terms of orthogonal A or uncorrelated F 

although the orthogonal A are instinctively more pleasing (Martens 
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formulation). The coefficients extracted although not of the same matrix 

are naturally mutually orthogonal. Thus non-orthogonal A for the 

canonical and redundancy solutions and orthogonal A for PLS will be 

presented. At this stage no stronger recommendation can be offered. In 

Chapter 4 the two alternative standardisations are considered from the 

point of stability and it is perhaps on these grounds that a firmer 

recommendation can be made. For comparative purposes all vectors al and 

a2 are standardised to unit sum of squares to allow the solutions to be 

compared more readily. 

3.7.1 SOLUTIONS OBTAINED USING STRUCTURE A DATA 

Canonical Correlation 

Although for structure A the highest correlation of 0.9 is 

associated with tl and ul, with the other correlations in the first 

column of C all of negligible size, one would not infer this by 

inspecting al, (fl -TA al), as may be seen from the results presented 

in Table 3.2. This a1 suggests that dimensions 10 and 9 are also 

important. Similarly t3 shows the second highest correlation and the 

largest coefficient in a2, but the coefficients for dimensions 7 and 10 

suggest these to be the second most important above the other variates 

of X. 

The reason for this is as follows. As shown in section 3.5 

canonical correlation can be reduced to one of identifying eigenvectors 

of TTU, the vectors so determined defining the factors in terms of the 

standardised principal dimensions, i. e. in terms of T not T A. Thus the 

vector defining the component relative to TA is X1a, where a is the 

singular vector of C. Pre-multiplication of a by X-1 serves to inflate 

the less important dimensions at the expense of the higher ones. Indeed 

the eigenvector defining f1 in terms of T shows a strong resemblance to 
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the first column of inter-correlation matrix, C, as does the second 

eigenvector to the second column. The loading vectors q1 and q2 obtained 

by regressing Y on the two canonical factors, as may be predicted from 

this simple choice of C, showed yl to be the response most closely 

associated with the first underlying factor and y2 with the second. 

Post multiplication of a1 and a2 by ql and q2 gives coefficients, B 

relating X and Y, or in this case TA and U 4, directly. The 

coefficients obtained are illustrated in Figure 3.1. Not surprisingly, 

the features of al and a2 are carried forward to B. With only a two 

dimensional model fitted y3 and y4 are not modelled (b3 a b4 r 0). 

Redundancy Analysis 

Since this approach considers both C and 4, one should expect, 

for some structures at least, to see different factors and hence 

dimensions being identified as important. For structure A however, since 

the two highest correlations are associated with u1 and u2 respectively, 

one could expect to observe a solution which closely resembled that 

derived using canonical correlation. A very similar solution was 

obtained as may be seen from the results presented in Table 3.2 and the 

associated B illustrated in Figure 3.1. The magnitude of the elements of 

a1 and a2 are very similar, and excepting the third element of a1 are of 

consistent sign. This sign difference in a minor coefficient has not 

caused a similar change in B however, and the same conclusions would be 

drawn from this as from the canonical model. Some differences are to be 

expected however, as the columns of C are not mutually orthogonal and 

when multiplied by S2 any such association between the columns gains 

emphasis. Not considering the singular values, A, results in this method 

also producing solutions which can be heavily weighted on the lower 

principal dimensions. 
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Table 3.2 Solutions derived from Structure A 

Canonical Correlation 

Coefficient vectors Regression loadings 

a1 a2 ql q2 

-0.70 -0.02 -1.00 0.09 
0.06 0.03 0.06 0.70 
0.02 0.88 -0.03 0.02 
0.10 0.06 0.02 -0.03 

-0.13 -0.07 
0.17 0.10 

-0.12 -0.27 
0.28 0.16 

-0.37 -0.21 
0.47 0.27 

Redundancy Analysis 

Coefficient vectors Regression loadings 

a1 a2 q1 q2 

-0.74 -0.01 -0.95 0.02 
0.06 0.04 0.03 0.72 

-0.05 0.86 -0.03 0.01 
0.09 0.07 0.01 -0.02 

-0.12 -0.09 
0.15 0.12 

-0.19 -0.16 
0.26 0.19 

-0.33 -0.25 
0.43 0.32 

Partial Least Squares (PLS) 

Coefficient vectors Regression loadings 

a1 a2 q1 q2 

-0.99 -0.02 -0.71 0.04 
0.04 0.08 0.01 0.62 

-0.02 0.99 -0.02 0.02 
0.03 0.04 0.01 -0.01 

-0.02 -0.03 
0.02 0.03 

-0.01 -0.02 
0.01 0.02 

-0.01 -0.01 
0.01 0.01 

134 



Figure 3.1 Regression coefficients B, derived from structure A 
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Partial Least Squares (PLS) 

As may be seen from the results presented in Table 3.2 the 

phenomenon of relatively large coefficients (elements of al and a2) 

being associated with essentially uncorrelated lower principal 

dimensions of X is not observed in the PLS solution. The presence of A 

serves to decrease the magnitude of the coefficients down the principal 

dimensions of X (save for those associated with one of the three 

correlations 0.9,0.75 or 0.4). This trend is further illustrated in B 

(Figure 3.1), all the coefficients save bll and b32 are approximately 

zero. However, the effect of weighting C by A and 2 cannot be fully 

appreciated here as the magnitude of the correlations follows the order 

of importance of the principal axes. 

3.7.2 SOLUTIONS OBTAINED USING STRUCTURE B DATA 

Canonical Correlation 

Because canonical correlation focuses purely on the correlations 

and does not consider A or 2 there is no guarantee that even Aa 

(f sTA a) will exhibit 'desirable' properties with regard to the 

principal dimensions of X (i. e. be associated with the higher principal 

dimensions). This is illustrated in the results derived from the 

structure B data. The solution obtained in this case is presented in 

Table 3.3. The first factor is primarily associated with the 7th 

principal dimension of X, as could be predicted from the structure of C. 

The influence of the other components of the structure matrix is 

negligible as the columns of C are approaching orthogonality. Also with 

the 7th element of al equal to 0.99 the remaining coefficients 

correspondingly are much smaller, and hence the lower dimensions show 

smaller coefficients. With a2 however, the coefficient associated with 

t3 is smaller than the 0.99 in all and as a consequence the importance 
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of the lower dimensions has been inflated. The corresponding ql and q2 

show y4 followed by y2 to be the dimensions associated with the first 

factor and y2 with the second. The resultant B-A QT derived from this 

model is illustrated in Figure 3.2. 

Note, this higher value of 0.99 for a71 is the result of a weighting of 

corr(t7, u4) by ý7-1 compared to A1-1 in the structure A model and ý3-1 

for a2. 

Redundancy Analysis 

Differences between the redundancy and canonical models are 

observable for this data. While the canonical model focuses on the 

correlations of 0.9 and 0.75, and extracts factors which primarily model 

y4 and y2, the redundancy model has identified dimensions which 

correlate most closely with y2 and yl. Again the phenomenon of the 

lowest principal dimensions of X being suggested important (x9 and x10) 

is observable in both a1 and a2, and hence also in B (Figure 3.2). 

Indeed, the coefficient for x1 in a2, the dimension most highly 

correlated with yl is smaller than that for x10 (Table 3.3). 

Consideration of A a2 (f2 -TA a2) however, highlights the association 

with x1, but in a2 this distinction is lost. 

With regard to the subspace of M(X) chosen however, the 

redundancy models obtained from structures A and B identify comparable 

two dimensional spaces. Although 0.9 is the highest correlation (between 

t7 and u4) when multiplied by w4 the weighted correlation increases to 

only 2.48 compared to 5.20 for the second correlation of 0.75 and 4.40 

for the correlation of 0.4. Hence the dimensions associated with these 

latter two correlations are chosen. One must not, of course, infer from 

this that the same would be true for other data sets. The choice of 

subspace is determined by both Cs TTU and Q. Different values for 9 
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Table 3.3 Solutions derived from Structure B 

Canonical Correlation 

Coefficient vectors Regression loadings 

a1 a2 q1 q2 

-0.01 0.03 0.03 0.00 
0.01 -0.05 -0.47 -0.80 

-0.09 -0.72 0.03 -0.02 
0.02 -0.08 0.80 -0.07 

-0.02 0.10 
0.03 -0.13 
0.99 -0.45 
0.05 -0.21 

-0.07 0.27 
0.09 -0.35 

Redundancy Analysis 

Coefficient vectors Regression loadings 

al a2 ql q2 

-0.04 0.44 -0.02 0.70 
0.04 -0.07 0.74 0.02 
0.83 0.12 0.01 0.07 
0.07 -0.12 -0.04 0.01 

-0.09 0.16 
0.12 -0.20 

-0.22 0.27 
0.20 -0.34 

-0.26 0.44 
0.34 -0.57 

Partial Least Squares (PLS) 

Coefficient vectors Regression loadings 

a1 a2 ql q2 

-0.99 -0.01 -0.32 0.05 
0.10 0.07 0.02 0.62 

-0.03 0.99 -0.02 0.02 
0.06 0.04 0.01 -0.02 

-0.05 -0.03 
0.04 0.03 

-0.02 -0.02 
0.02 0.02 

-0.02 -0.01 
0.01 0.01 
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Figure 3.2 Regression coefficients B, derived from structure B 
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