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The Two-Fold Singularity of Discontinuous Vector Fields*

M. R. Jeffrey! and A. Colombo!

Abstract. When a vector field in R® is discontinuous on a smooth codimension one surface, it may be si-
multaneously tangent to both sides of the surface at generic isolated points (singularities). For a
piecewise-smooth dynamical system governed by the vector field, we show that the local dynamics
depends on a single quantity—the jump in direction of the vector field through the singularity.
This quantity controls a bifurcation, in which the initially repelling singularity becomes the apex
of a pair of parabolic invariant surfaces. The surfaces are smooth except where they intersect the
discontinuity surface, and they divide local space into regions of attraction to, and repulsion from,
the singularity.
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1. Introduction. A piecewise-smooth dynamical system contains discontinuities that ap-
proximate sudden changes in the governing vector field. These systems have enjoyed wide-
spread application in recent years, from control theory and nonlinear oscillators to economics
and biology. Nevertheless, research into the theory of piecewise-smooth dynamics is at a
relatively early stage.

Such systems consist of a finite set of ordinary differential equations,

(1.1) X=G'(X), XeR CR"

whose right-hand sides are vector fields G* defined on disjoint regions R’ and smoothly ex-
tendable to the closure of R’. The R’ are separated by an n — 1 dimensional set ¥ which we
call the switching surface. The union of ¥ and all R’ covers R™. The literature in real-world
piecewise-smooth problems is now extensive, and we refer the reader to [2, 3, 6, 7, 10] for an
overview. Our concern will be vector fields with no constraint on the degree of discontinuity
across the switching surface, so-called Filippov systems [5], where the continuous flow defined
by (1.1) may be nondifferentiable and irreversible, and may contain sliding orbits which are
confined to the switching surface.

The theory of singularities in piecewise-smooth systems has proven to be a rich source
of novel dynamics, particularly near points where the vector field is tangent to the switching
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THE TWO-FOLD SINGULARITY 625

surface [3, 4, 11], commonly referred to as “fold” points where the surface is smooth. Here we
discuss a particular problem at the very heart of nonsmooth dynamics—points where a vector
field is tangent to both sides of a switching surface in systems of three dimensions. This “two-
fold” problem has been most notably brought to the fore by Teixeira [14, 15, 16], including
a case we call the “Teixeira singularity” which epitomizes the current state of nonsmooth
singularity theory. In [15], the Teixeira singularity is shown to violate conditions set out for
a particular definition of structural stability in a nonsmooth system, and asymptotic stability
is determined only under limited conditions of hyperbolicity. This singularity is our main
subject of interest because, despite these results, confusion still surrounds this pivotal point
of nonsmooth dynamics.

The reason is that much of our intuition fails in the face of discontinuities. Indeed,
there is not yet even a consensus on the definition of topological equivalence in nonsmooth
systems, or how definitions of structual stability (e.g., [1, 7, 10, 12, 15]) reflect the robustness
of dynamics in a nonsmooth model. Here we study the dynamics directly, without reliance
on these definitions, revealing explicit behavior that should be reflected in general theories on
structural stability.

Adopting a transparent geometric approach, we study the dynamics around the Teixeira
singularity and reveal the simplicity characterizing its local behavior. The interesting case is
when the flows of two fields G* and G7 on either side of ¥ consist locally of orbits which always
return to 3, spiraling around the singularity between impacts and giving rise to intricate
dynamics (see Figure 1). Then the dynamics depends on the relative directions of the vector
fields G' and G/ at the singularity, that is, the quantity tan’/tan @/, where 6%/ are the
angles subtended by G%/ at the singularity, to an arbitrary reference direction in ¥. When
G' and G/ are antiparallel at the singularity, a bifurcation takes place: on one side of the
bifurcation all local trajectories reach the sliding region of ¥ in finite time, and on the other
side two invariant manifolds separate the local state space into regions of attraction to, and
repulsion from, the singularity.

In section 2 we state the problem in terms of standard concepts and state the central
result, Theorem 1. In section 3 we provide a local coordinate expression. In section 4 we
derive a map that essentially treats the switching surface as a Poincaré section of the flow,
revealing a bifurcation of invariant manifolds and proving the theorem. Dynamics on the
invariant manifolds is studied in section 5. The preservation of straight lines in the system is
key to dealing with the discontinuity, exposing a strict relation between dynamics crossing the
switching surface and sliding dynamics on the switching surface which is found in section 6.
Near the bifurcation small nonlinear effects must be included, as discussed in section 7.

2. The two-fold problem. Consider a region in which the vector field (1.1) is discontin-
uous along a smooth codimension one switching surface . Let

(2.1) Y={XeR:h(X)=0}

in terms of a scalar valued function h (X).
Definition 1. In a dynamical system

X = {X+ (X) for h(X) >0, X~ (X) for h(X) < 0} ,
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Figure 1. Coordinates and tangency sets.

where X* € R3 are smooth vector fields, a point X, € X is a two-fold singularity if
(2.2) X*(X,)-Vh(X,) =0 and (X*(X,)-V)*h(X,)#0.

We begin with a local coordinate description of a three dimensional piecewise-smooth
dynamical system in which the two-fold singularity is generic. In the neighborhood of any
point on X, we can choose a coordinate x perpendicular to ¥ such that

(2.3) S={XeR:z=0}.

We can distinguish coordinates (y,z) in ¥ by writing a general vector in R3 as
(2.4) X = [z,x] = [z, (y, 2)], x € R2

The corresponding dynamical system is

« T X)), X (X)], z>0
(2.5) X—{[j:_(x)’k_(x)]’ x<0}.

Generically, there exist tranverse n — 2 dimensional tangency sets S* given by
(2.6) SF={Xex:i*=0}.

We can choose the x = (y, z) coordinates such that

(2.7) StT={XeX:y=0}, ST={XeX:z=0};

see Figure 1. The tangency sets ST are perpendicular in these coordinates, intersecting at
the singularity p € ¥ where the x component of both vector fields vanishes, a';;,t = 0, at
r =y =2z =0. They possess unique (up to sign) normal unit vectors ST = [0,s] satisfying
ST xS~ #0.

The tangency sets partition X into four regions. Where #+ < 0 < 2~ we have the sliding
region ¥¢, and where = < 0 < T we have the escaping (or “unstable sliding”) region 3,
If we choose the sign of s* such that x* - s* > 0 (as in Figure 1), these can be written as

(2.8) 25|:{x62:si-x20}, S =I{xe¥:sT x<0}.
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Orbits pass from one flow to the other by traversing ¥ in the two crossing (or “sewing”)
regions

(2.9) Sr={xe¥:st - x<0<s x or s -x<0<st x}.

Throughout this paper we distinguish between “orbits” that may meet the switching
surface only in X and “sliding orbits” that are contained in ¥5¢¢. More precisely, we give
the following definition based on [1].

Definition 2.

o An orbit is a piecewise-smooth curve v C R3 whose segments in x > 0 are trajectories
of X = X* and whose segments in x < 0 are trajectories of X = X, whose intersec-
tions with x = 0 consist of crossing points or tangency points, such that v is maximal
with respect to these two conditions.

e A sliding orbit is a smooth curve v C % such that v is a trajectory of the Filippov
sliding vector field expressed in (6.1)—(6.2).

Two-folds may contain two different forms of tangency point.

Definition 3. Tangency of the vector field to ¥ is

e visible on ST if sign (¥*) = £1, and

e invisible on ST if sign (¥*) = F1.

That is, “visible” implies that the orbit tangent to ¥ at ST (or S™) extends locally into the
region > 0 (or x < 0). We will refer to a two-fold singularity consisting of two coincident
invisible tangencies as the Teizeira singularity. In this case both the smooth flows of X+
consist locally of orbits which always return to X, spiraling around the singularity between
impacts, giving rise to intricate dynamics. Then we may define a second-return map ¢ that
maps a point from X, through one smooth vector field until it hits 3, and then through the
other vector field until it impacts ¥ again. The following have been proven in [15].

T1: The two-fold singularity is structurally stable if and only if at least one of the tangency

sets is visible. Thus the Teixeira singularity is structurally unstable.

T2: The Teixeira singularity is asymptotically stable provided that (i) the second-return
map ¢ is hyperbolic, and (ii) the Filippov sliding vector field is hyperbolic with the
phase portrait of an attracting node and the eigendirection associated with the eigen-
value of smaller absolute value in the sliding region 5.

Structural stability of a piecewise-smooth system, defined in [1, 3, 9], in short requires
that orbits, sliding orbits, and switching surfaces of a system be mapped through a homeo-
morphism onto those of all neighboring systems in the parameter space. T2 is a paraphrasing
of the statement “the U[Teixeiral-singularity is asymptotically stable provided that it is an
S-singularity,” and for a precise definition we refer the reader to [15]. We will define the
Filippov sliding vector field in (6.1).

In the cases where at least one of the tangency sets is visible, the dynamics is rather
straightforward, and asymptotic stability then relies only on the form of the Filippov sliding
vector field, which has been further considered in [16]. Henceforth we will be interested only in
the case of coincident invisible tangencies, the Teixeira singularity. According to T1 and T2,
the Teixeira singularity is structurally unstable, with asymptotic stability determinable only
when the return map and Filippov field are hyperbolic.
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Our aim is to shed light on this problem without recourse to T1 and T2 by an explicit
study of the local dynamics. We will show that the vector field is indeed structurally unstable
at a certain parameter value and unfold the resulting bifurcation. This allows us to determine
regions over which the singularity is attracting or repelling. This last issue must be considered
with care, since the singularity is not a stationary point of the vector field. The convergence
of sliding orbits upon the singularity causes confusion over the local dynamics, which we will
study in detail, revealing regions of attraction to and repulsion from the singularity instead
of asymptotic stability.

The central result, which will be proven in section 4, is the following theorem.

Theorem 1. A two-fold singularity can be expressed in a local approrimation as

X = {X+ for x >0, X~ fora:<0}
in coordinates X = [x,y, z], where ¥ = {X eER3:z = 0}, and
(2.10) Xt =[-ya,1,VF], X =[b,V",1]

for a,b,V* € R. For the Teizeira singularity a,b > 0, this satisfies the following:

() IfVtV~= > 1 and V* <0, every orbit of (2.10) crosses ¥ an infinite number of times.
There exist a pair of invariant surfaces that meet at the singularity.

(i) fVTV- <1lorV*t >0 0or V- >0, every orbit of (2.10) crosses ¥ a finite number
of times.

A bifurcation takes place at VTV~ =1 for V* < 0. Furthermore, the following will be

shown.

(i) f V*V~ > 1 and V* < 0, one of the invariant surfaces is asymptotically attractive,
and encloses the escaping region »°¢ within the domain of repulsion of the singularity;
the other invariant surface is asymptotically repulsive and encloses the sliding region
¥¢ within the domain of attraction of the singularity.

(i) FVTV- <1lor VT >0o0r V- > 0, sliding orbits are repelled from the singularity,
and
(ii.i) if V't > 0, every orbit crosses 3 at most once from x < 0 to = > 0,

(ii.ii) if V7~ > 0, every orbit crosses ¥ at most once from = > 0 to < 0, and
the sliding region.
The topology and dynamics of the locally invariant surfaces for (i) will be determined in
sections 4-5.

3. Local approximation. To determine the fate of orbits in the neighborhood of the sin-
gularity, we derive a local approximation for the vector field. First, local cubic tangencies to
> are prohibited by conditions

(3.1) #t <0, & >0,

and there are assumed to be no local equilibria, i.e., X+ # 0. Under these assumptions,
in a sufficiently small neighborhood of the singularity, the vector fields’ projection onto the
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THE TWO-FOLD SINGULARITY 629

switching surface X is approximately constant. That is, by a Taylor expansion up to linear
order in the z-direction and zeroth order in the y, z-directions, we can express the vector field
as

(3.2) [a’;"r,)'cﬂ = [—ya,v"'] , [j:_,)'c_} ~ [zb,v_] ,

where v = (1,V ") and v~ = (V' 7, 1) are nonzero vector constants, and a,b > 0. Henceforth
we can set a = b = 1 without loss of generality. More details are given in the appendix.

The flows of each vector field in this parabolic approximation map points on ¥, through
the smooth regions = > 0 and = < 0, to return points on X according to

(3.3) ot Sy <0} = {Z:y >0}, ¢ {Y:z2<0}—{X:2>0}
and given explicitly by
(3.4) T ix e x—2yvT, O X=X —2z2v .

As observed by Teixeira [15], this deceptively simple map is the key to understanding coinci-
dent invisible tangencies. In what follows we study its geometry.

The overlap of the domains of ¢* is the escaping region ¥, and the overlap of their
ranges is the sliding region 9.

The local dynamics is given by an alternating series of iterations of the maps ¢+ and ¢~.
Any point on the escaping region can only be a start point of the series, and any point in
the sliding region can only be an end point of the series. The term “escaping” refers to the
fact that, arbitrarily close to £¢ with & # 0, orbits of X+ move away from X, In this
section we will regard points arbitrarily close to X€¢ as in fact being on X°¢. In section 6,
we will deal with the sliding orbits that apply to points exactly in X°¢ with x = 0. Our goal
here is to understand under what conditions all points on the escaping and crossing regions
eventually reach the sliding region, and what happens when these conditions are not met.

To label points on ¥ let m € Z, then let every Xa,, be mapped by ¢, and let every Xo,,,_1
be mapped by ¢, so that

(3.5) s - Xo, <0, s - Xom_1 < 0.

We can rewrite the maps (3.4) locally as oblique reflections in the line S*:

Xomi1 = Xom _ V' Xom — Xom-1 _ V_
(3.6) ¢+ : [X2m+1 — Xom| [vF|’ (O [X2m — X2m—1] V=]’
st (X2m+1 + X2m) =0, s - (X2m + X2m—1) =0.

The upper condition specifies that the direction of reflection is v*, while the lower condition
specifies that the start and end points have the same perpendicular distance from S*. This
is illustrated in Figure 2. Projecting the upper equation along s™ (for ¢™) or s~ (for ¢~) and
then eliminating the quantities |x;11 — X;|, we obtain

st “Xom 4

S - Xom—1_ _
(37) Xom+1 — X2m — —Qﬁv 5 Xom — Xo9m—-1 = —2—v.

ST -V

Notice that both denominators are equal to 1 as given by (3.2).
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Figure 2. Local mapping: In the parabolic approzimation, points are reflected in ST and S™. In this
example the point Xam_1 is reflected obliquely in S~ to Xom, and then in ST to Xomi1, remaining in the
crossing regions. The sliding region is shaded.

T,
;2 T,
Ty 2
> L2 2 N2
¢ ¢ o 30
T T, T, T’

Figure 3. The first four iterates of the escaping region on 3. In this example they map repeatedly into the
CT0SSINgG TEGLONS.

It is tempting to consider these two dimensional maps in their obvious cartesian form, but
it is not clear how to apply principles of asymptotic stability from smooth dynamical systems.
For example, Teixeira [15] remarks that the second-return map x,,, — X, 12 (the map ¢t og¢~
or ¢~ o ¢™) is nonhyperbolic if, in the notation of Theorem 1, 0 < VTV~ < 1. It is unclear
whether this condition says anything about the stability of the system because orbits only
cross Y over a finite time period before entering the sliding region.

Instead we can exploit the fact that the maps (3.7) preserve straight lines through the
origin. That is, any point on the line x5, = R (cos fa,,,sin s,,) for R € R variable maps to
a point on another line, X9, 11 = R’ (cos [Oa, + f (021)] , sin [Oop, + f (02,1)]). So to study the
images of ¥ and 3¢ under successive iterations of ¢+, we need only consider the rotation
of their boundaries, which are straight lines through the origin, as illustrated in Figure 3.
This rotation constitutes the angular behavior of (3.7). In the next section we shall see that,
under certain conditions, this angular map has two fixed points, corresponding to invariant
manifolds of the second return map derived from (3.7). In section 5 we will study the radial
behavior of (3.7) restricted to the two invariant manifolds.

4. The tangent map. Let us introduce the quantities

- +
S X9 S’ - Xom—1
(4.1) Toy = - Tem Torm_1 = - Temm

+ bl — bl
ST - Xom S - Xom—1
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THE TWO-FOLD SINGULARITY 631

which are, respectively, the tangent Tb,, of the angle made with s™ by a vector xs,, in the
domain of ¢ and the tangent T5,,_1 of the angle made with s~ by a vector Xs,,_1 in the
domain of ¢~. These domains are defined in (3.3). We define corresponding quantities for the

vectors v* as

s™-vTt
4.2 vVt = - _
( ) S“l‘.v"l" V S_'V_

st.v™

T,, is positive for points x,, in the escaping and sliding regions, negative in the crossing
regions, and zero on the boundary of 3. Moreover, it is well defined, except on the boundary
of ¥ (where sliding dynamics apply; see section 6), whereas V* are always well defined due
to conditions (3.1).

From (3.7) and (4.1)—(4.2) we obtain maps for T5,, and T5,_1:

1 1
4.3 T =— Toyy=————.
(4.3) LT OV Ty, 2V — Ty
Clearly, a positive V* or V™~ implies that points in the crossing regions (7}, < 0) are mapped
into the sliding region (7}, > 0) after at most two iterations, or one iteration if both V* are
positive. More precisely, note that an iterate of (4.3) lies in the crossing regions only if it
satisfies

(4.4) 2V < Ty, <0, 2V~ < Ty 1 < 0.

We therefore have the following lemma.
Lemma 4.1. The following statements hold for the Teixeira singularity, as expressed in
(2.10) with a,b > 0:
(i) if V't >0, every orbit crosses ¥ at most once from x < 0 to x > 0,
(ii) of V= > 0, every orbit crosses ¥ at most once from x >0 to z < 0, and
(iii) if 0 < VIV~ <1 and VE < 0, every orbit crosses ¥ at least once before impacting
the sliding region.
Proof.
(i) If VT >0, (4.4) implies that any Tb,, is mapped by (4.3) to Th;,+1 > 0, a termination
point in the sliding region. Therefore, there is at most one crossing point 75, in the
region y < 0 < z, where orbits cross from z < 0 to x > 0.
(ii) If V= > 0, (4.4) implies that any T5,,—1 is mapped by (4.3) to Ts,, > 0, a termination
point in the sliding region. Therefore, there is at most one crossing point 15, 1 in
the region z < 0 < y, where orbits cross from x > 0 to z < 0.
(iii) If 0 < VTV~ < 1 and V* < 0, then for any T}, > 0 we have from (4.3) that

1 1

4.5 T = = <
(4.5) T yE T, T 2 VE = [T

0

for V* if m is even or V~ if m is odd. Therefore, an iterate T}, exists for all orbits;
thus there always exists at least one crossing point. [ |
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\

V-

Figure 4. Tangent mapping and bifurcation diagram: (a) No invariant manifolds for VTV~ < 1, (b)
bifurcation along VTV~ =1, (c) two fived points 7s = 7 and 70 = 1/ (r.VIV™) in VIV™ > 1. 7, = 0 is
the boundary of X°¢. Lines with Tm =2 —1/ (2V+V7) map to the Tmy2 graph asymptotes (dashed) which are
the boundaries of X¥. The bound T, < 2 ensures the existence of the intermediale step Tymi1.

More insight is given by the second-return maps (T, — Tom,1 followed by To,iq —
Tom+2 and vice versa). These are a pair of Mobius transformations expressible concisely as

T — 2
2VHV= (1, —2) + 1

(46) Tm+2 =

for To,, = V19, and Th,,—1 = V " To,m_1, shown in Figure 4. For this to make sense, the
intermediate (m + 1)th iterate must lie in the crossing region, limiting the angle subtended
by T,, to the boundaries of the escaping region, with the conditions (4.4).
From this second-return map (4.6) we have the result as stated in Theorem 1:
() If VTV~ > 1 and VF <0, every orbit of (2.10) crosses ¥ an infinite number of times.
There exist a pair of invariant surfaces that meet at the singularity.

(i) fVTV- <1lorV*t >0 o0or V- >0, every orbit of (2.10) crosses ¥ a finite number

of times.

Proof of Theorem 1. The local approximation (2.10) is obtained by a constant scaling of
the Teixeira singularity vector field given in [15]. Then consider the second-return map (4.6).
If V¥V~ > 1, the map has two fixed points—one at 7, with eigenvalue (1 —2/7,)72 < 1
which is therefore stable (asymptotically attracting), and one at 1/ (7,V TV ™) with eigenvalue
(1 —2V*+V~71,)"2 > 1 which is therefore unstable (asymptotically repelling), where

/ 1

Note that 7, > 0 and 1/ (7V TV ™) > 0. Then the following hold:
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(i) f VTV~ > 1 and V* < 0, the equilibria V¥r, < 0 and V*/(r,VTV ™) < 0, of the
T — Tinto maps from (4.6), lie in the crossing regions. From (4.6), the T,,, — T}42
maps are monotonic; therefore, all trajectories tend asymptotically toward the equi-
libria either in forward or in reverse time and thus cross ¥ an infinite number of
times. The smooth segments of orbits starting and ending at crossing points along
the {7}, Tin+1} directions thus form invariant surfaces; the surfaces intersect ¥ along
lines through the singularity given by x = [ (1,V*7,) and x = [ (1,VT/(r,VTV ™))
for [ € R.

(i) If VTV~ > 1 and V* > 0, then the equilibria V7, > 0 and V*/(r,VTV ™) > 0, of
the T}, — T),+2 maps, lie in the sliding or escaping regions, so the equilibria are outside
of the range of (4.6). If VTV~ < 1, there are no real-valued equilibria. In either case
there are then no admissible limit points (i.e., in the crossing regions), so all trajectories
intersect the sliding and escaping regions after finitely many iterations. [ |

More explicitly, from (4.7), the maps Tb,, — Topio and Toy,—1 — Tomi1, respectively,

have stable equilibria T; and T given by

T T 1
4. 5 -8 —1_ \/17—7
(4.8) v+ V- V+y-—

and unstable equilibria TJ and Tj; given by

(N

(4.9) VeV BTt

These exist only in the crossing regions, Tl}_L, g < 0; otherwise, we have one of the cases where
VT or V™~ are positive. They are invariant manifolds of the second-return maps derived from
(3.7). From (4.4) it is clear that they divide ¥ such that the stable manifolds T;E enclose
the escaping region, while the unstable manifolds T(}—L enclose the sliding region. It is easy to
show from (4.8)—(4.9) that each pair {Td,T;; } and {T;},T5 } forms a straight line through
the origin since TSiT:F =1

At VTV~ =1, the invariant manifolds of each map coalesce and annihilate in what we
refer to as the “nonsmooth diabolo” bifurcation for reasons that will become apparent.

5. Dynamics on the invariant manifolds. Now consider the dynamics of points on the
invariant manifolds (4.8)—(4.9). A point x,, has radial coordinate

(5.1) R = /(57 - x0)” + (5 - %)

By combining this with (3.7) and iterating twice (and using (4.6) to simplify), we find the
radial maps

R 1 + T2 0 <2v+ — T2m> B2
2m-+2 1 + T22m T2m+2 2m

_ 1+ T22m+1 <2V_ — TQm_1> R2
1+T2 Tom+1 am=1

(5'2) R§m+1
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TSRO\
\\ D Ty

@ VVvT>1 Ts by viv =1 ) viv <«

Figure 5. Invariant manifold bifurcation: (a)—(c) correspond to the parameter values in Figure 4. (a) Tz
and T§ form two stable and two unstable manifolds in the crossing regions, which are respectively repelling
and attracting with respect to the singularity at the center. (b) The manifolds coalesce in a line of fized points.
(c) All points map from the escaping region to the sliding region in finite time.

which on the invariant manifolds simplify to

Rpniz 131 1/VTV-

Rn 15 /1-1/VTV-’

taking the upper signs for T;E and the lower signs for Tg. Since VTV~ > 1,

(5.3)

Ry42 > R,, on the stable manifolds Ti, and
(5.4) Ryy2 < Ry on the unstable manifolds 7.

Therefore, points in 7Ty move toward the singularity, while points in Tg move away from it.
This is illustrated in Figure 5.

We can easily extend this picture out of the switching surface 3, since each {X;,,X;11}
pair contains the start and end points of a smooth orbit segment in the flow of (3.2). Thus
the invariant manifolds form two continuous, parabolic (i.e., quadratic, of the form z o
VFTy? + V=22 — 2V TV ~yz), invariant surfaces U and S, which are smooth except at their
intersections lef and T’ 55 with 3. They form a nonsmooth diabolo (Figure 6), an attractive
cone S which encloses ¢, and a repelling cone U which encloses X%, both with apex at the
origin and nondifferentiable where they intersect 3 at edges along le]f S

6. Dynamics in the sliding region. We have determined the qualitative dynamics of
orbits in the system (3.2), exclusive of any dynamics on the switching surface that occurs
before ejection from the escaping region ¢, and after impact with the sliding region X5
The system (3.2) does not specify the vector field in these regions.

To address this we adopt the Filippov convention,

(6.1) X =[0,f] forall X € X U xec,

where, recalling that we have set a =0 =1,
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Figure 6. The nonsmooth diabolo: Invariant manifolds near a two-fold singularity. The three qualitatively
different types of orbit are shown. a: An orbit starting near the inside of U spirals in toward the singularity
and hits the sliding region (shaded). b: An orbit starting near the outside of U initially spirals inward toward
the singularity, then spirals out away from the singularity, and tends asymptotically toward S. c: An orbit
spirals outward from the escaping region and away from the singularity, approaching S asymptotically.

. (Vh.x—) - (Vh~5(+) *

vh- (X - %)
vt yve '

(6.2) -

In the sliding region ¥ the denominator of (6.2) is strictly positive, so a coordinate transfor-
mation that preserves sliding orbits scales out the denominator and we consider locally

(6.3) f=ovt+yv.

This has Jacobian determinant

=V VvVt —1,

(6.4) bH :' L

I

recall that v = (1,V ") and v- = (V~,1). Then,

+1 & Tpe<0,

(6.5) sign ‘Df‘ =sign (VTV™ —1) = | & T ¢R
- U,S :

The equivalence on the right holds for V* < 0, the parameter regime where the invariant
manifold bifurcation occurs.
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Figure 7. Sliding dynamics and invariant manifolds. (a)—(c) correspond to Figure 5. The normalized
sliding vector field (6.3) has (a) an attracting node at the singularity for VYV ™ > 1, (b) a line of equilibria
extending from the singularity for VIV~ =1, and (c) a saddle at the singularity with unstable manifold in P
(shaded) for VYV~ < 1. These lead to the true sliding vector field (6.2) as depicted.

Thus the existence of the invariant manifolds 7; [fs for VYV~ > 1 coincides with the

existence of a node in f at the singularity Ti) see that the node is attractive, observe that f
points into the sliding region and V* = == < 0, and therefore V* <0, so the sum of the

eigenvalues of Df is simply
(6.6) Tr (Df) —Vt4+V- <.

Also from (6.5), the absence of invariant manifolds for VTV~ < 1 coincides with the
existence of a saddle in f at the singularity. The eigenvectors of Df are

(6.7) Wi = (1,w:|: — V_) ,

and the corresponding eigenvalues are

(6.8) wy =1 <V++V_i\/(V+—V—)2+4>.

The first component of w. is positive, while the second component is positive for w, and
negative for w_. That is,

(6.9) wieey  w_exo

Thus the saddle’s unstable separatrix direction w_ lies in the sliding region, and the stable
separatrix direction w lies in the crossing region.

In the exact sliding vector field f the sliding orbits are the same as the node (VTV™ > 1)
and saddle (V*+V~ < 1) orbits of f, but they reach/depart the singularity in finite time. That
is, the singularity is not an equilibrium point of the sliding vector field f. Furthermore, to
obtain the sliding vector field in the escaping region Y€, the time direction must be reversed
from that of the normalized field. This is illustrated in Figure 7, including the presence of a
line of equilibria when VTV~ =

7. Small perturbations near the bifurcation. Here we investigate the effect of nonlinear
terms on the local dynamics when VTV~ &~ 1. To understand what happens to the line of
equilibria in the sliding region we may appeal to center manifold theory: choose a coordinate
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Figure 8. Perturbed sliding dynamics, showing the effect of positive perturbation A > 0 (top) and negative
perturbation A < 0 (bottom). Triangular arrowheads indicate nonlinear (in)stability. (a)—(c) correspond to
parameter values in Figure 7.

u along the center manifold—the line of equilibria in Figure 7(b). The one-dimensional sliding
field on the center manifold, f = wyu, is structurally unstable at the bifurcation point w, = 0.
A nonlinear perturbation gives the transcritical bifurcation normal form

(7.1) f=wiu+

This introduces an equilibrium in the sliding region: a saddlepoint that exists when VTV~ < 1
for a positive perturbation A > 0, and an attracting node that exists when V'V~ > 1 for
a negative perturbation A < 0, illustrated in Figure 8. In the escaping region 3¢ the same
analysis follows; note that the transformation to f reverses the time direction there. As we
pass through the bifurcation at V™V~ = 1, the field f undergoes a transcritical bifurcation,
as the second equilibrium moves between the sliding and escaping regions. Note, however,
that in the true sliding vector field f, the singularity is no longer an equilibrium, and sliding
orbits reach it in finite time.

Regarding crossing orbits, the line of fixed points in Figure 5(b) illustrates the presence
of a structural instability in the second-return maps, coexisting with the center manifold in
the sliding region. This occurs because the condition VTV~ = 1 means that the reflection
vectors (1, V1) and (V—,1) are colinear, with the same direction but opposite orientation. A
full investigation of higher order behavior is beyond the scope of this paper. One way forward
is to consider the effect of higher order terms on the second-return maps. At VV ™~ =1 the
eigenvalues of the Jacobians of these maps satisfy the Takens—Bogdanov condition [8, 13] that
they are both unity. The eigenvalues for VTV~ < 1 lie on the unit circle, so the origin is
nonhyperbolic, but this does not imply structural instability because orbits evolve under the
map only for a finite time, after which they reach the sliding region.

8. Concluding remarks. A vector formulation has been employed here wherever the anal-
ysis applies in general coordinate systems, for example, when S* are nonorthogonal. The
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vector expressions also generalize naturally to higher dimensions. Specifically, the vector di-
rections Vh and ST are well defined in n dimensions, respectively, by the codimension one
switching surface ¥ and the codimension two tangency sets ST. Only the components Vi - X
and s* - X play an essential role in a neighborhood where the maps (3.7) are valid. The un-
folding parameter VTV~ and the codimension two manifolds S and U will form a foundation
for study in n > 3, where dynamics is possible within the tangency sets S*, and parallel to
the n — 3 dimensional singular set ST NS™.

Theorem 1(i) characterizes the attractivity of the two-fold singularity when the two vector
fields X* form an obtuse angle at the singularity, in the plane spanned by orthogonal s
and s~, measured on the side of the sliding region (the condition VTV~ > 1). The state
space contains regions of attraction and repulsion whose boundaries are a pair of invariant
parabolic surfaces. A stable surface S encloses the escaping region, and orbits are repelled
from the singularity as they approach it. An unstable surface U encloses the sliding region and
orbits are attracted to the singularity as they depart it, until they impact the sliding region or
approach S. Both surfaces are smooth except at their intersections with the crossing regions.
Orbits of the sliding vector field take the form of a stable node at the singularity, though the
node is reached in finite time, and the vector field is undefined at the singularity itself.

As the obtuse angle increases and the vector fields pass the point VTV~ = 1 where they
are colinear at the singularity, a bifurcation occurs which destroys the two invariant surfaces,
and all orbits and sliding orbits flow away from the singularity. In this case (see Theorem 1(ii)),
the two vector fields form an obtuse angle measured on the side of the escaping region (the
condition VTV~ < 1). All orbits originating close to the escaping region will eventually
impact the sliding region, where the sliding vector field takes the form of a saddlepoint with
its unstable manifold in the sliding region.

If one or both of the vector fields points into the sliding region at the singularity, V* > 0,
then all orbits reach the sliding region by crossing ¥ at most once, after which they are repelled
from the singularity. The case V' = 0 means that the vector field X+ is perpendicular to its
tangency set ST (similarly for the “—” case).

At the bifurcation point VTV~ = 1 the vector fields are anticolinear at the singularity.
The Teixeira singularity system then becomes an unfolding of the “fused-focus” in planar
nonsmooth systems [9].

When V* — oo, the vector field X+ is parallel to its own tangency set ST and forms a line
of cusps; that case is too degenerate to be of interest here (similarly for V7). If the tangency
sets ST become tangent to each other at a codimension two point, we can appeal to our
analysis for some basic intuition. The codimension two point splits under perturbation into a
pair of two-fold singularities identified by Teixeira [16], one of the saddle type VTV~ > 1 and
one of the focal type V*V~ < 1, and the dynamics around this singularity certainly merits
further investigation.

The bifurcation in the sliding vector field observed in the bottom row of Figure 8 is related
to Teixeira’s “Qb5-singularity case 2” [16]. We have shown how it occurs necessarily in the
unfolding of the bifurcation.

Is the Teixeira singularity stable? On the question of asymptotic stability, we reiterate
that the singularity is not a stationary point of the vector field. Asymptotic stability can only
refer to the normalized sliding vector field (6.3), whose dynamics are different from the true
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system. Instead we find that state space is separated into regions of attraction and repulsion,
as given by the two regimes of Theorem 1 and the sliding dynamics of section 6. The invariant
surfaces are locally asymptotically stable (S) and unstable (U), except at the singularity. The
dynamics at the singularity is not uniquely defined in the Filippov convention, which we have
followed here.

It is our position that structural stability in nonsmooth dynamical systems is not yet
on as sound a footing as in smooth systems, and the Teixeira singularity is vital to this
continuing investigation. To this end we have described the local dynamics and shown that it
varies smoothly with the parameter V'V~ except at the bifurcation. This implies that the
unfolding of the singularity in the parameter V'V ~ is structurally stable in the usual sense—
intuitively that nearby orbits have the same topology in terms of the number of crossings, the
tendency toward S and away from U, the impact in X, and so on.

We have shown that the characteristic dynamics of the Teixeira singularity involves bifur-
cations simultaneously in the crossing regions (equivalently, out of the switching surface) and
in the sliding/escaping regions. A single parameter V'V~ quantifies the relative direction of
the vector fields at the singularity (or the jump in direction of the overall nonsmooth vector
field through the singularity), controlling the bifurcation and determining domains of attrac-
tion. We have shown how the system behaves under perturbation at the bifurcation, and the
effect of higher order terms here is currently in progress. Also of interest for applications is a
closer look at the dynamics of the T}, map, including the number of iterations in each orbit
and the dynamics around near misses of the sliding boundary, and comparison of this with
physical models.

Appendix A. An explicit expression for the vector fields. At the singularity the z
component of both vector fields vanishes, and locally we can expand to first order in the
coordinates, giving
(A1) [a'ci, ki] ~[x- at + zbF, xA* + zb*t + Ci]

T

in terms of constant scalars b, vectors a®, b*, and 2 x 2 matrices A*. We are interested only
in quadratic tangencies, so we must impose the condition ¢;7,c; # 0, and in general we will

yo 2
assume that ¢t are nonparallel. Transversality of the tangent sets ST requires that a® are

also nonparallel. The unit vectors s satisfy

(A.2) st.at =0,

and the choice of coordinates giving (2.7) is

(A.3) y=—-x-a —abl, z=x-a +uzb,.
This is a differentiable coordinate transformation given the condition

st.at st.a-

(A4) s”-at s -a” 7 0.

The analysis thereafter applies on a neighborhood of the singularity satisfying

(A.5) st (xA* +2b™) < ¢ and s - (xAT +2b™) < 7.
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Writing
[:1':+, )'(+] ~
(A.6) (&7, x|~ [ zc¢7],

we can rescale time independently in the x > 0 and =z < 0 systems without altering the
piecewise-smooth system topologically, letting ¢ — t/c;/|r for x > 0 and t — t/c; for x < 0,
resulting in (2.10) by setting a = 1/¢f and b =1/c; .
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