
Full text not available from this repository.

Official URL: http://dx.doi.org/10.1109/tac.2009.2013032

Copyright © 2009 IEEE.

Reprinted from *IEEE Transactions on Automatic Control*.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Bath’s products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws protecting it.
A Sampled-Data Servomechanism for Stable Well-Posed Systems

Zhenqing Ke, Hartmut Logemann, and Richard Rebarber

Abstract—In this technical note, an approximate tracking and disturbance rejection problem is solved for the class of exponentially stable well-posed infinite-dimensional systems by invoking a simple sampled-data low-gain controller (suggested by the internal model principle). The reference signals are finite sums of sinusoids and the disturbance signals are asymptotic to finite sums of sinusoids.

Index Terms—Disturbance rejection, infinite-dimensional systems, low-gain control, sampled-data control, tracking.

I. INTRODUCTION

There has been much interest in low-gain integral control over the last thirty years. The following principle (tuning integrator) has become well established (see, for example, Davison [1], Lunze [6] and Morari [7]): closing the loop around an asymptotically stable, finite-dimensional, continuous-time plant, with square transfer function matrix \(G \), compensated by an integral controller \(\frac{1}{s}I \), will result in a stable closed-loop system that achieves asymptotic tracking of arbitrary constant reference signals, provided that the gain parameter \(\varepsilon > 0 \) is sufficiently small and the eigenvalues of the steady-state matrix \(G(0) \) have positive real parts. This principle has been extended to various classes of infinite-dimensional systems (see Logemann and Townley [5] and the references therein). Moreover, discrete-time and sampled-data versions of the tuning integrator have been developed (for infinite-dimensional systems) by Logemann and Townley in [4].

Hämäläinen and Pohjolainen [2] succeeded in generalizing the above principle to the multi-frequency case in which the reference and disturbance signals to be tracked and rejected, respectively, are (finite) linear combinations of sinusoids having prespecified frequencies. Their solution, inspired by the internal model principle, is a simple low-gain tuning controller and it is shown to work for exponentially stable infinite-dimensional systems with impulse response in the Callier-Desoer algebra. Rebarber and Weiss [8] proved a similar result for the (more general) class of exponentially stable well-posed systems. Ke, Logemann and Rebarber [3] developed a sampled-data version of the tuning regulator presented in [2], [8]. The main result in [3] guarantees approximate tracking and disturbance rejection for stable infinite-dimensional systems which have the property that their impulse responses are exponentially bounded matrix-valued Borel measures. We mention in this context that systems with measure impulse responses are necessarily regular (see [9] and the references therein for details on well-posed and regular systems): whilst verification of the regularity property can sometimes be difficult, it is usually even more difficult to show that the impulse response is a measure.

In this technical note, we consider essentially the same problem as in [2], [3], [8], but we seek a sampled-data solution which applies to exponentially stable well-posed systems (avoiding the assumption that the impulse response of the system is a measure). Adopting an input-output approach, we do not invoke any results from the state-space theory of well-posed systems, so that, for the purposes of this technical note, an exponentially stable well-posed system is simply a system with the property that its transfer function is holomorphic and bounded in a half-plane \(\{ s \in \mathbb{C} : \Re s > \alpha \} \) for some \(\alpha < 0 \). The essence of the main result of the technical note can be described as follows: low-gain sampled-data control based on a discrete-time version of the continuous-time controller given in [2], [8], in conjunction with suitable low-pass filters, achieves approximate tracking and disturbance rejection for exponentially stable well-posed systems.

The technical note is structured as follows. In Section II, we state a number of preliminary technical results used in the technical note. In Section III, we first prove a discrete-time result which is a crucial tool for the proof of the main result of the technical note. We consider a feedback controller with transfer function of the form

\[
\varepsilon \left(K^0(z) + \sum_{j=1}^{N} \frac{K_j}{z - \lambda_j} \right)
\]

where \(K^0 \) is holomorphic and bounded on \(\{ z \in \mathbb{C} : |z| > \alpha \} \) for some \(\alpha \in (0,1) \), \(K_j \in \mathbb{C}^{n \times p} \) and \(\lambda_j \in \mathbb{C} \) with \(|\lambda_j| = 1 \). Applying this controller to a discrete-time plant with transfer function \(P \) which is holomorphic and bounded on \(\{ z \in \mathbb{C} : |z| > \beta \} \) for some \(\beta \in (0,1) \), provided that (i) all the eigenvalues of \(\Re P(\lambda_j) K_j \) have real parts, and (ii) the gain parameter \(\varepsilon \) is sufficiently small. This result is an extension of a result in [4] on low-gain discrete-time integral control.

In Section IV, the main result of Section III is then used in the context of approximate tracking and disturbance rejection for infinite-dimensional sampled-data feedback systems. The continuous-time plant is assumed to have a transfer function \(G \) which is holomorphic and bounded on \(\{ s \in \mathbb{C} : \Re s > \alpha \} \) for some \(\alpha < 0 \). The sampled-data servomechanism consists of a discrete-time feedback controller of the form (1.1) with \(\lambda_j = e^{j\xi_j} \), where \(\xi_j \in \mathbb{R} \) for \(j = 1, \ldots, N \) and \(\tau > 0 \) is the sampling period, in conjunction with two filters with transfer functions \(F_1 \) and \(F_2 \). The reference signal \(r \) is given by \(r(t) = \sum_{j=1}^{N} e^{j\xi_j} \tau_j \), where \(\xi_j \in \mathbb{R} \) for \(j = 1, \ldots, N \) and \(\tau > 0 \) is the sampling period, in conjunction with two filters with transfer functions \(F_1 \) and \(F_2 \). The output \(y \) of the closed-loop sampled-data system can be decomposed as \(y = y_1 + y_2 \), where \(y_1(\cdot) e^{-\tau \cdot} \in L^2(\mathbb{R}_+, C^m) \) for some \(\gamma < 0 \) and \(y_2 \) satisfies

\[
\lim_{t \to \infty} \sup_{t < T} \| y_2(t) - r(t) \| \leq \delta.
\]

Notation: For \(\alpha > 0, \beta \in \mathbb{R} \) and \(\lambda \in \mathbb{C} \), define \(E_{\alpha} = \{ z \in \mathbb{C} : |z| > \alpha \}, C_{\beta} = \{ z \in \mathbb{C} : \Re z > \beta \} \), and \(B(\lambda, \alpha) = \{ z \in \mathbb{C} : |z - \lambda| < \alpha \} \). For a set \(U \subseteq \mathbb{C} \), let \(e(U) \) denote the closure of \(U \).

In the following definitions, let \(\Omega \subseteq \mathbb{C} \) be open and let \(X = C^m \) or \(X = C^m \). We define

\[
H^m(\Omega, X) := \{ f : \Omega \to X | f \text{ is holomorphic and bounded} \}
\]

\[
H^m_{\alpha}(E, X) := \bigcup_{0 < \alpha < 1} H^m(E_{\alpha}, X)
\]

\[
H^m_\alpha(C, X) := \{ f : C \to X | f \text{ is holomorphic} \}.
\]

\[
\sup_{x \geq \delta} \int_{-\infty}^{\infty} \| f(x + is) \|^2 ds < \infty
\]
For $\beta \in \mathbb{R}$ and $1 \leq q < \infty$, we define the exponentially weighted L^q-space $L^q_\beta(R^n, X)$ by

$$L^q_\beta(R^n, X) := \left\{ f \in L^q_{\text{loc}}(R^n, X) : f(\cdot)e^{-\beta \cdot} \in L^q(R^n, X) \right\}.$$

We write $\mathcal{H}\mathcal{B}_\beta := \mathcal{H}\mathcal{B}(\Omega, \mathbb{C})$, $\mathcal{H}\mathcal{B}^2(\mathbb{C}) := \mathcal{H}\mathcal{B}^2(\mathbb{C}, \mathbb{C})$, and $L^q_\beta(R^n, X)$ is a discrete-time input-output operator. For $\alpha \in \mathbb{C}$, let $\sigma(\alpha)$ denote the spectrum of α. For $N \in \mathbb{N}$, set $\mathcal{N} := \{1, 2, \ldots, N\}$.

II. PRELIMINARIES

In this section, we present some technical results for both discrete-time and continuous-time systems. The proofs of Lemmas II.1, II.2, and II.3 are straightforward: they can be found, for example, in [3].

Lemma II.1. Assume that H is a discrete-time input-output operator with impulse response $v \in L_1(Z_\mathbb{C}, C^{\infty, m})$ and transfer function H. If $v : Z_\mathbb{C} \to C^{\infty, m}$ satisfies $\lim_{k \to -\infty}(v(k) - \xi^k v) = 0$, where $\xi \in \mathcal{N}_\mathbb{C}$ and $v \in C^{\infty, m}$, then

$$\lim_{k \to \infty} \left[(Hv)(k) - \xi^k (Hv)(\xi^k v) \right] = 0.$$

Let $\tau > 0$ denote the sampling period and let $F(Z_\mathbb{C}, C^{\infty, m})$ and $F(R^n, C^{\infty, m})$ denote all $C^{\infty, m}$-valued functions defined on $Z_\mathbb{C}$ and R^n, respectively. The ideal sampling operator $\mathcal{S}_\tau : F(R^n, C^{\infty, m}) \to F(Z_\mathbb{C}, C^{\infty, m})$ is defined by

$$(\mathcal{S}_\tau u)(k) := u(k\tau), \quad \forall k \in Z_\mathbb{C}.$$

The (zero-order) hold operator $\mathcal{H}_\tau : F(Z_\mathbb{C}, C^{\infty, m}) \to F(R^n, C^{\infty, m})$ is defined by

$$(\mathcal{H}_\tau v)(t) := v(k\tau), \quad \forall t \in [k\tau, (k+1)\tau).$$

Lemma II.3. Assume that H is a continuous-time input-output operator with impulse response $h \in L^1(R^n, C^{\infty, m})$ and transfer function H. Let $u : R^n \to C^{\infty, m}$ be measurable. If u is bounded, then

$$\lim_{t \to \infty} \sup_{t \in \mathbb{R}} \| (Hu)(t) \| \leq \| h \|_1 \lim_{t \to \infty} \sup_{t \in \mathbb{R}} \| u(t) \|.$$

Moreover, if u satisfies $\lim_{t \to \infty} \| (Hu)(t) - \xi t u \| = 0$, where $\xi \in \mathcal{T}_0$, then

$$\lim_{t \to \infty} \left[(Hu)(t) - \xi t (Hu)(\xi) u \right] = 0.$$

Proof: Since the transfer function F of F is a strictly proper stable function, there exists $\gamma \in (0, \alpha)$ such that $F \in H^2(C_{\mathbb{C}})$, and hence, $HF \in H^2(C_{\mathbb{C}})$. Let g denote the impulse response of HF. By the Paley-Wiener Theorem, $g \in L^2(R^n)$. Therefore, it follows easily from Hölder’s inequality that $g \in L^1(R^n)$ for every $\beta \in (\gamma, \alpha)$.

We close this section with the statement of a result from the fractional representation theory of feedback systems. To this end, let $\Omega \subset \mathbb{C}$ be open and let Q denote the quotient field of $H^\infty(\Omega)$, i.e., $Q := \{n/d : n, d \in H^\infty(\Omega), d \neq 0\}$.

Definition II.6.

(i) A left-coprime factorization of $H \in Q^{\infty, m}$ (over $H^\infty(\Omega)$) is a pair $(D, N) \in H^\infty(\Omega, C^{\infty, m}) \times H^\infty(\Omega, C^{\infty, m})$ such that $\det D \neq 0$, $H = D^{-1} N$ and D, N are left coprime, i.e., there exist $X \in H^\infty(\Omega, C^{\infty, m})$, $Y \in H^\infty(\Omega, C^{\infty, m})$ satisfying $DX + NY = I$.

(ii) A right-coprime factorization of $H \in Q^{\infty, m}$ (over $H^\infty(\Omega)$) is a pair $(N, D) \in H^\infty(\Omega, C^{\infty, m}) \times H^\infty(\Omega, C^{\infty, m})$ such that $\det D \neq 0$, $H = ND^{-1}$ and N, D are right coprime, i.e., there exist $X \in H^\infty(\Omega, C^{\infty, m})$, $Y \in H^\infty(\Omega, C^{\infty, m})$ satisfying $XN + YD = I$.

Proposition II.7. Let $H \in Q^{\infty, m}$ and $K \in \mathcal{K}^{\infty, m}$. Assume that there exist a left-coprime factorization $(D_H, N_H) \in H$ and a right-coprime factorization $(N_K, D_K) \in K$ (both over $H^\infty(\Omega)$). If the matrix $N_H N_K + D_H D_K$ has an inverse in $H^\infty(\Omega, C^{\infty, m})$, i.e.,

$$\inf_{z \in \mathbb{N}} \| (N_H(z) N_K(z) + D_H(z) D_K(z)) \| > 0$$

then $(I + HH)\mathcal{K}^{-1} \in H^\infty(\Omega, C^{\infty, m})$.

The proof is straightforward and is therefore omitted (see also [10, Lemma 3.1], of which Proposition II.7 is a special case).

III. A DISCRETE-TIME RESULT

The following proposition will be crucial in the proof of Theorem IV.1, the main result of this technical note. It is also interesting in its own right.

Proposition III.1. Let $N \in \mathbb{N}$ and let $\lambda_j \in \mathbb{C}, |\lambda_j| = 1$ for all $j \in \mathbb{N}$ be such that $\lambda_j \neq \lambda_k$ for all $j, k \in \mathbb{N}, j \neq k$. Assume that $P \in H_\infty(\mathbb{E}_1, C^{\infty, m})$ and that there exist $K_j \in C^{\infty, m}$ such that

$$\sigma(\lambda_j P(\lambda_j) K_j) \subset C_0, \quad \forall j \in \mathbb{N}.$$

Let $K_0 \in H_\infty(\mathbb{E}_1, C^{\infty, m})$ and set

$$K_\infty(z) := \sum_{j=0}^{\infty} K_j \frac{z}{z - \lambda_j}.$$

Then there exists $\varepsilon > 0$ such that

$$K_\infty(I + PK)^{-1} \in H_\infty(\mathbb{E}_1, C^{\infty, m}), \quad \forall \varepsilon \in (0, \varepsilon^*).$$

Although Proposition III.1 is contained as a special case in [3, Theorem 3.1], we prove this result to make the technical note self-contained. We emphasize that the proof given here is new, with coprime factorizations playing a pivotal role and thereby providing an alternative approach to that developed in [3]. It is convenient to first state and prove the following lemma which will facilitate the proof of Proposition III.1.
Lemma III.2: For $\rho > 0$, set $B_{\rho} := \mathbb{B}(1, \rho) \cap \mathbb{E}_1$, and let $U \supset \text{cl}(B_{\rho})$ be open. Let $Q \in H^\infty(U, \mathbb{C}^p \times \mathbb{M})$, $H \in H^\infty(U, \mathbb{C}^m \times \mathbb{P})$, and $K \in \mathbb{C}^m \times \mathbb{P}$. If

$$\sigma(Q(1)K) \subset C_0$$

then there exists $\varepsilon^* > 0$ such that, for all $\varepsilon \in (0, \varepsilon^*)$,

$$z \mapsto \left(I + \varepsilon Q(z) \left(H(z) + \frac{K}{z - 1} \right)^{-1} \right) \in H^\infty(B_{\rho}, \mathbb{C}^p \times \mathbb{M}).$$

Proof: Note that, by (3.3), $\text{rk} K = p$, so that $K^* K$ is invertible. Setting

$$D(z) := \frac{z - 1}{z} I_p, \quad N(z) := H(z) D(z) + \frac{1}{z} K,$$

we conclude that (N, D) is a right coprime factorization of $H(z) + K/(z - 1)$ over $H^\infty(B_{\rho})$, since $N(z) D^{-1}(z) = H(z) + K/(z - 1)$ and

$$(K^* K)^{-1} K^* N(z) + (I_p - (K^* K)^{-1} K^* H(z)) D(z) = I_p.$$

By Proposition II.7, it is sufficient to show that there exists $\varepsilon^* > 0$ such that

$$\inf_{z \in \mathbb{E}_1, \rho} |\text{det}(\varepsilon Q(z) N(z) + D(z))| > 0, \quad \forall \varepsilon \in (0, \varepsilon^*).$$

Seeking a contradiction, suppose that such a constant ε^* does not exist. Then there exists $\varepsilon_n \downarrow 0$ and $z_n \in \text{cl}(B_{\rho})$ such that

$$\text{det} (\varepsilon_n (z_n - 1) Q(z_n) H(z_n) + \varepsilon_n Q(z_n) K + (z_n - 1) I_p) = 0, \quad \forall n \in \mathbb{Z}_p.$$ (3.4)

Since $\lim_{n \to \infty} \varepsilon_n = 0$, we may conclude from (3.4) that

$$\lim_{n \to \infty} z_n = 1.$$ (3.5)

Moreover, we obtain from (3.4) that

$$\frac{1 - z_n}{\varepsilon_n} \in \sigma((z_n - 1) Q(z_n) H(z_n) + Q(z_n) K), \quad \forall n \in \mathbb{Z}_p.$$ (3.6)

Consequently, by (3.3) and (3.5), there exists $\beta > 0$ and $n_0 \in \mathbb{N}$ such that

$$\frac{1 - z_n}{\varepsilon_n} \in C_\beta, \quad \forall n \geq n_0.$$ (3.7)

Furthermore, since the function $z \mapsto (z - 1) Q(z) H(z) + Q(z) K$ is bounded on $\text{cl}(B_{\rho})$, it follows from (3.6) that there exists a constant $M > 0$ such that

$$\frac{|1 - z_n|}{\varepsilon_n} \leq M, \quad \forall n \in \mathbb{Z}_p.$$ (3.8)

As a trivial consequence of (3.7), $\text{Re} z_n < 1$ for $n \geq n_0$. Invoking this, together with (3.8) and the fact that $|z_n| \geq 1$ for all $n \in \mathbb{Z}_+$, we obtain

$$\frac{1 - \text{Re} z_n}{\varepsilon_n} \leq \frac{M (1 - \text{Re} z_n)}{|1 - z_n|} \leq \frac{\sqrt{2} (1 - \text{Re} z_n) + |z_n|^2 - 1}{M} \leq \frac{M}{\sqrt{2} (1 - \text{Re} z_n)}, \quad \forall n \geq n_0.$$ (3.9)

By (3.5), $\text{Re} z_n \to 1$ as $n \to \infty$, and hence, $\frac{(1 - \text{Re} z_n)/\varepsilon_n}{\varepsilon} \to 0$ as $n \to \infty$, contradicting (3.7).

We are now in the position to prove Proposition III.1.

Proof of Proposition III.1: We first show that $(I + PK_{\omega})^{-1} \in H^\infty(\mathbb{E}_1, \mathbb{C}^p \times \mathbb{M})$ for sufficiently small ε. Since $\lambda_j \neq \lambda_k$ for all $j, k \in \mathbb{N}$, we can choose $\rho > 0$ sufficiently small such that

$$\text{cl}(B(\lambda_j, \rho) \cap \text{cl}(B(\lambda_k, \rho)) = \emptyset, \quad \forall j, k \in \mathbb{N}, j \neq k.$$ (3.10)

Setting $\Omega_j := E_1 \cap B(\lambda_j, \rho)$ and $\Omega := \bigcup_{j=1}^N \Omega_j$, it is clear that the function

$$z \mapsto P(z) \left(K'(z) + \sum_{j=1}^N \frac{K_j}{z - \lambda_j} \right)$$

is bounded on $\mathbb{E}_1 \setminus \Omega$. Thus, there exists $\varepsilon^\infty > 0$ such that

$$(I + PK_{\omega})^{-1} \text{ is bounded on } \mathbb{E}_1 \setminus \Omega \text{ for all } \varepsilon \in (0, \varepsilon^\infty).$$ (3.11)

Fix $j \in \mathbb{N}$ and set

$$H(z) := K_0(z) + \sum_{k \in \mathbb{N}, k \neq j} \frac{K_k}{z - \lambda_k}.$$ (3.12)

Then there exists an open set $V_j \supset \text{cl}(\Omega_j)$ such that $H \in H^\infty(V_j, \mathbb{C}^m \times \mathbb{P})$, and, furthermore,

$$P(z) K_\omega(z) = \varepsilon P(\lambda_j w) \left(H(\lambda_j w) + \frac{\lambda_j K_j}{w - 1} \right),$$

where $w := \lambda_j z$. Setting

$$H(w) := H(\lambda_j w), \quad Q(w) := P(\lambda_j w), \quad K_0 := \lambda_j K_j,$$ (3.13)

it follows that

$$P(z) K_\omega(z) = \varepsilon Q(w) \left(H(w) + \frac{\lambda_j K_j}{w - 1} \right).$$ (3.14)

Since $P \in H^\infty(\mathbb{E}_1, \mathbb{C}^m \times \mathbb{P})$ and $K_0 \in H^\infty(\mathbb{E}_1, \mathbb{C}^m \times \mathbb{P})$, we see that $Q \in H^\infty(\mathbb{E}_1, \mathbb{C}^m \times \mathbb{P})$ and $H \in H^\infty(U_j, \mathbb{C}^m \times \mathbb{P})$, where

$$U_j := \lambda_j V_j \supset \lambda_j \text{cl}(\Omega_j) = \text{cl}(E_1 \cap B(1, \rho)) = \text{cl}(B_{\rho}),$$

with $B_{\rho} := E_1 \cap B(1, \rho)$ (as in Lemma III.2). Moreover, by (3.1)
The following theorem is the main result of this technical note.

Theorem IV.1: Let $N \in \mathbb{N}$ and let $\xi_k \in \mathbb{R}$ for all $j \in N$ be such that

$$\xi_k \neq \xi_j \text{ for } j, k \in N, j \neq k.$$

Assume that the transfer function G of G is in $H^\infty(C_\alpha, C^{\infty\times\infty})$ for some $\alpha < 0$ and there exist $K_j \in C^{m\times p}$ such that

$$\sigma(G(\xi_j)K_j) \subset C_\alpha, \quad \forall j \in N. \quad (4.2)$$

Let $\tau > 0$ be the sampling period and assume that the transfer function $K_{r,e}$ of $K_{r,e}$ is of the form

$$K_{r,e}(z) = \varepsilon \left(K^0(z) + \sum_{j=1}^{N} \frac{K_j}{z - \xi_j} \right)$$

where $K^0 \in H^\infty(E_1, C^{\infty\times\infty})$. Assume that the transfer functions F_1 and F_2 of the filters F_1 and F_2 satisfy

$$F_1(\xi_j) = I_p \quad \text{and} \quad F_2(\xi_j) = I_m, \quad \forall j \in N. \quad (4.3)$$

Suppose that r is given by $r(t) := \sum_{j=1}^{N} \varepsilon^{\delta_j} \tau_j, \tau_j \in C^p$, and d_1, d_2 are given by

$$d_1(t) := \sum_{j=1}^{N} \varepsilon^{\delta_j} \bar{d}_{1j} + p_1(t), \quad \bar{d}_{1j} \in C^m, \quad (4.4a)$$

$$d_2(t) := \sum_{j=1}^{N} \varepsilon^{\delta_j} \bar{d}_{2j} + p_2(t) + p_2(t), \quad \bar{d}_{2j} \in C^p, \quad (4.4b)$$

where $p_1 \in L^2_\tau(\mathbb{R}_+, C^m), p_2 \in L^2_\tau(\mathbb{R}_+, C^p)$ for some $\gamma \in (0, 1)$, and $p_2 \in L^2_\tau(\mathbb{R}_+, C^p)$ with $\lim_{t \to \infty} p_2(t) = 0$. Then, for every $\delta > 0$, there exists $\tau_\delta > 0$ such that for every sampling period $\tau \in (0, \tau_\delta)$, there exists $\varepsilon > 0$ such that, for every $\varepsilon \in (0, \varepsilon)$, the output y of the sampled-data feedback system (4.1) can be decomposed as

$$y = y_1 + y_2, \quad y_1 \in L^2_\tau(R^+, C^p) \quad \text{and} \quad y_2 \text{ satisfies}$$

$$\limsup_{t \to \infty} \|y_2(t) - r(t)\| < \delta.$$

Before we prove the theorem, we provide some commentary in the following remark.

Remark IV.2:

(i) Theorem IV.1 says that the output y can be decomposed in the form $y = y_1 + y_2$, where

- the signal y_1 is “small” in the sense that $y_1 \in L^2_\tau(\mathbb{R}_+, C^p)$, implying that the “energy” of the restriction $y_1|_{t=\infty}$ converges to zero exponentially fast (with exponential rate γ) as $t \to \infty$,
- the signal y_2 is “persistent” and, for all sufficiently large $t \geq 0$, $y_2(t)$ is close to $r(t)$ in the sense that $\|y_2(t) - r(t)\| < \delta$.

(ii) Denoting the Lebesgue measure on \mathbb{R}_+ by μ_L, the conclusions of Theorem IV.1 imply that

$$\lim_{t \to \infty} \mu_L(\{t \geq T : \|y(t) - r(t)\| \geq \delta\}) = 0$$

that is, as $t \to \infty$, the error $y(t) - r(t)$ is “bounded in measure” by δ.

(iii) An inspection of the proof of Theorem IV.1 (see (4.22)) shows that if the impulse response of G is a $C^{\infty\times\infty}$-valued Borel measure on $\mathbb{R}_+, p_1(t) \to 0$ and $p_2(t) \to 0$ as $t \to \infty$, then

$$y_1(t) \to 0 \text{ as } t \to \infty, \quad \text{so that } \limsup_{t \to \infty} \|y_1(t) - r(t)\| < \delta.$$
One of the motivations for including the term $p_{21} \in L^2_0(\mathbb{R}_+, C^0)$ in the disturbance d_{21} is that it can be used to model non-zero initial conditions in an exponentially-stable well-posed state-space realization of G.

(v) An inspection of the proof of Theorem IV.1 (see the argument guaranteeing the existence of τ_s) shows that, for given $\{\xi_j : j \in \mathbb{N}\}$, τ_s and ε can be chosen to be uniform for all signals r, d_1 and d_2 with $\tau_j, \tilde{d}_1, \tilde{d}_2$, $j \in \mathbb{N}$, satisfying a pre-specified bound.

(vi) A filter with transfer function F satisfying $F(\xi_j) = I$ for all $j \in \mathbb{N}$ can be constructed in the following way:

$$
F(s) = \frac{1}{h(s)} \sum_{k=1}^{N} \left[h(\xi_k) \prod_{k \in \mathbb{N}, k \neq j} (s - \xi_k) \right] I
$$

where $h(s)$ is a real Hurwitz polynomial, the degree of which is greater or equal to N. It is clear that F is a strictly proper rational function. Moreover, if the ξ_j occur in complex conjugate pairs, then it is easy to see that F has real coefficients.

Proof of Theorem IV.1: Setting $\tau_0 := 2\pi / \text{spur} \{G(\xi_j) \xi_k : j, k \in \mathbb{N}, j \neq k\}$, it follows that if $\tau \in (0, \tau_0)$, then $e^{\xi_j \tau} \neq e^{\xi_k \tau}$ for all $j, k \in \mathbb{N}, j \neq k$. Define

$$
H := F_{1}G_{2}, \quad H_* := S_{c}H_{\mathcal{H}} := S_{c}F_{1}G_{2}H_{\mathcal{H}}.
$$

The transfer functions of H and H_* are denoted by F_{1} and $H_{\mathcal{H}}$, respectively. By Lemma II.5, there exists $\beta \in (0, 0)$ such that the impulse responses of $H, F_{1}G_{2}$ and $G_{2}F_{1}$ are in $L^1(\mathbb{R}_+, C^{0 \times m})$. Hence, by Lemma II.3 and (4.3), $H_*, H_{\mathcal{H}} \in H^\infty_{C}(\mathbb{E}_c, C^{m \times m})$ and

$$
\lim_{\tau \to 0} H_{\mathcal{H}}(e^{\xi_j \tau}) = H(\xi_j) = G(\xi_j), \quad \forall j \in \mathbb{N}.
$$

(4.5)

By (4.2) and (4.5), there exists $\tau_1 \in (0, \tau_0)$ such that

$$
\sigma(e^{\xi_j \tau}H_{\mathcal{H}}(e^{\xi_j \tau}K_j) \subset C_0, \quad \forall (\tau, j) \in (0, \tau_1) \times \mathbb{N}.
$$

(4.6)

In particular,

$$
H_{\mathcal{H}}(e^{\xi_j \tau}K_j) \text{ is invertible, } \forall (\tau, j) \in (0, \tau_1) \times \mathbb{N}.
$$

(4.7)

For $j \in \mathbb{N}$, set $L_j := : K_j(G(\xi_j) K_j)^{-1}$, where we have used that, by (4.2), $G(\xi_j) K_j$ is invertible for every $j \in \mathbb{N}$. Define the functions $v_1, v_2, v_3 \in F(\mathbb{R}_+, C^m)$ by

$$
v_1(t) := \sum_{j=1}^{N} e^{\xi_j \tau} L_j \tau_j, \quad v_2(t) := \sum_{j=1}^{N} e^{\xi_j \tau} L_j G(\xi_j) \tilde{d}_j
$$

$$
v_3(t) := \sum_{j=1}^{N} e^{\xi_j \tau} L_j \tilde{d}_j.
$$

Let $\tau \in (0, \tau_1)$ and set $L_j := : K_j(H_{\mathcal{H}}(e^{\xi_j \tau}K_j)^{-1}$ for $j \in \mathbb{N}$ ($H_{\mathcal{H}}(e^{\xi_j \tau}K_j$ is invertible by (4.7)). Define the sequences $v_1, v_2, v_3 \in F(\mathbb{Z}_+, C^m)$ by

$$
v_1(k) := \sum_{j=1}^{N} e^{\xi_j k \tau} L_j^* \tau_j, \quad v_2(k) := \sum_{j=1}^{N} e^{\xi_j k \tau} L_j^* G(\xi_j) \tilde{d}_j
$$

$$
v_3(k) := \sum_{j=1}^{N} e^{\xi_j k \tau} L_j^* \tilde{d}_j.
$$

Since $\xi_j \in i\mathbb{R}$ for $j \in \mathbb{N}$, a routine calculation yields

$$
\left\| v_1(t) - (\tau, v_1(t)) \right\| \leq \sum_{j=1}^{N} \left\| G(\xi_j) K_j \right\| - \left(\sum_{j=1}^{N} \left\| H_{\mathcal{H}}(e^{\xi_j \tau} K_j) \right\| \right) \left\| v_1(t) \right\| + \sum_{j=1}^{N} \left(\right\| e^{\xi_j \tau} - 1 ||L_j \tau_j|| \right\| \forall t \geq 0.
$$

(4.8)

Let $\delta > 0$. By (4.5) and (4.8), there exists $\tau_* \in (0, \tau_1)$ such that

$$
\left\| v_1(t) - (\tau, v_1(t)) \right\| \leq \frac{\delta}{M}, \quad \forall t \geq 0, \forall \tau \in (0, \tau_*).
$$

(4.9)

where M denotes the L^1-norm of the impulse response of $G_{2}F_{1}$. Similarly, there exists $\tau_* \in (0, \tau_*) \subset (0, \tau_1)$ such that

$$
\left\| v_2(t) - (\tau, v_2(t)) \right\|, \left\| v_3(t) - (\tau, v_3(t)) \right\| \leq \frac{\delta}{M}; \quad \forall t \geq 0, \forall \tau \in (0, \tau_*).
$$

(4.10)

In the following, let $\tau \in (0, \tau_1)$. Invoking the fact that $H_{\mathcal{H}} \in H^\infty_{C}(\mathbb{E}_c, C^{m \times m})$ together with (4.6) and Proposition III.1, we conclude that there exists $\varepsilon > 0$ such that

$$
K_{\varepsilon}(I + H_{\mathcal{H}} K_{\varepsilon})^{-1}(e^{\xi_j \tau}) = K_j \left(H_{\mathcal{H}}(e^{\xi_j \tau} K_j) \right)^{-1}.
$$

(4.12)

The output y_c of the discrete-time controller (see (4.1)) is given by

$$
y_c = K_{\varepsilon} x + S_{c} \left[r - F_{1}G_{2} \tilde{d}_1 + G_{d1} + d_1 \right]
$$

$$
= K_{\varepsilon} x + S_{c}r - K_{\varepsilon} H_{\mathcal{H}} y_c - K_{\varepsilon} S_{c} F_{1} G_{d1} - K_{\varepsilon} S_{c} F_{1} d_2
$$

and thus,

$$
y_c = K_{\varepsilon} (I + H_{\mathcal{H}} K_{\varepsilon})^{-1}(S_{c} r - S_{c} F_{1} G_{d1} - S_{c} F_{1} d_2).
$$

(4.13)

Since p_{11}, p_{21} and the impulse responses of $F_{1}G_{2}$ and F_{1} are L^2-functions, we conclude that

$$
\lim_{t \to \infty} \left(F_{1} G_{d1}(t) \right) = 0, \quad \lim_{t \to \infty} \left(F_{1} p_{21}(t) \right) = 0.
$$

(4.14)

Invoking the fact that the impulse responses of $F_{1}G_{2}$ and F_{1} are L^1-functions, together with Lemma II.2, (4.3) and (4.14), we obtain

$$
\lim_{t \to \infty} \left(F_{1} G_{d1}(t) \right) = 0, \quad \lim_{t \to \infty} \left(F_{1} p_{21}(t) \right) = 0.
$$

(4.15)

showing that

$$
\lim_{l \to \infty} \left((S_{c} F_{1} G_{d1}) (k) \right) = 0, \quad \lim_{l \to \infty} \left((S_{c} F_{1} d_2) (k) \right) = 0.
$$

(4.16)
By (4.11), the impulse response of $K_{\tau, e}(I + H_{-}K_{\tau, e})^{-1}$ is in $l^1(Z_+, C^{m \times r})$, so that it follows from Theorem II.1, (4.12), (4.13), (4.15), and (4.16) that

$$\lim_{k \to \infty} (y_1(k) - v_1^*(k) + v_2^*(k) + v_3^*(k)) = 0.$$

(4.17)

Then, by (4.9), (4.10) and (4.17),

$$\lim_{t \to \infty} \|v_2(t) - r(t)\| \leq \lim_{t \to \infty} \|v_2(t) - (G(F_2)(H_{+}y_+ - v_1 + v_2 + v_3)) (t)\|.$$

(4.18)

Finally, recalling that M denotes the L^1-norm of the impulse response of $G(F_2)$, Lemma II.2 and (4.18) yield

$$\lim_{t \to \infty} \|v_2(t) - r(t)\| \leq M \lim_{t \to \infty} \|v_2(t) - (H_{+}y_+)(t) - v_1(t) + v_2(t) + v_3(t)\|.$$

$$\leq \frac{3\delta}{4M}.$$

(4.19)

and

$$\lim_{t \to \infty} (G(F_2)v_3(t) - d_2(t) + p_{21}(t)) = 0.$$

(4.20)

Setting

$$y_1(t) := (G\mathcal{L}_1) - \sum_{j=1}^{N} G(\xi_j)e^{\xi_j t} \mathcal{D}_{1j} + p_{21}(t)$$

(4.21)

and

$$y_2(t) := (G(F_2)(H_{+}y_+))(t) + \sum_{j=1}^{N} G(\xi_j)e^{\xi_j t} \mathcal{D}_{1j} + d_2(t) - p_{21}(t)$$

(4.22)

it follows that $y = y_1 + y_2$. Denoting the Laplace transform by \mathcal{L} and invoking (4.4), we obtain that

$$\mathcal{L}(y_1)(s) = \sum_{j=1}^{N} \frac{(G(s) - G(\xi_j))}{s - \xi_j} \mathcal{D}_{1j} + G(s)(\mathcal{L}(p_{21})(s) + (\mathcal{L}(p_{21})))$$

(4.23)

Since $G \in H^\infty(C_\alpha, C^{n \times m})$, $p_{21} \in L_1^2(R^+, C^m)$ and $p_{21} \in L_1^2(R_+, C^m)$ with $\alpha < \gamma < 0$, it follows that $\mathcal{L}(y_1) \in H^2(C_\alpha, C^m)$. Hence, the Paley-Wiener Theorem implies that $y_1 \in L_1^2(R^+, C^m)$. Furthermore, since

$$\|y_2(t) - r(t)\| \leq \|G(F_2)(H_{+}y_+ - v_1 + v_2 + v_3)) (t)\| + \|\mathcal{L}(p_{21})(s)\| + \left\|\sum_{j=1}^{N} G(\xi_j)e^{\xi_j t} \mathcal{D}_{1j} - (G(F_2)v_2(t))\right\| + \|d_2(t) - p_{21}(t) - (G(F_2)v_3)(t)\|, \forall t \geq 0.$$

(4.24)

REFERENCES

