Fuel Gas Storage – The Challenge of Methane

Adam Pugsley, Nuno Bimbo, Andrew Physick, Antonio Noguera-Díaz, Jessica Sharpe, Valeska P Ting and Timothy Mays.
URL: http://people.bath.ac.uk/cestjm; http://people.bath.ac.uk/vt233
Department of Chemical Engineering, University of Bath, UK
Centre for Doctoral Training in Sustainable Chemical Technologies, University of Bath, UK

Methane

- Methane combustion emits less carbon dioxide (high H to C ratio) than other fossil fuels and less SO₂ and NOₓ.
- Can be used as a transition fuel for the use of even cleaner alternatives (e.g. hydrogen energy).
- Has a higher heating value of 55.50 MJ kg⁻¹ (compared with hydrogen’s 141.80 MJ kg⁻¹ and gasoline’s 47.30 MJ kg⁻¹).

Methane storage

- As hydrogen, it has a very poor volumetric density (also a gas at normal pressure and temperature).
- To be used in vehicles, it has to improve on its volumetric density (amount per volume) using gas compression, liquefaction or by adsorption.
- The goal is to test new porous materials for methane storage and investigate how adsorptive storage compares with other methods.

Materials

- Carbons
 - Advantages:
 - Reversible, lightweight and cheap
 - Wide variety of structural forms
 - Good thermal stability
 - Ability to modify the structure
 - Nanotube, Pillared Graphene, carbon beads

- Metal-organic frameworks
 - Metal centres strongly bonded to organic linkers
 - High surface area
 - Highly tuneable
 - MIL-101 (Cr) and Basolite samples (HKUST-1)

Equipment

Clockwise from top left: X-ray diffractometer; IsoEx apparatus, Thermal Gravimetric analyser, HTP-1 volumetric sorption analyser, ASAP 2020 sorption analyser (centre), Helium pycnometer and IGA gravimetric sorption analyser

Porous Materials

- High - pressure methane isotherms
 - Experimental high-pressure methane excess for MIL-101
 - Experimental high-pressure methane excess at 300 K for MIL-101, TE7 and HKUST-1

Results

- Comparative density of adsorbed methane at 300 K
 - TE7: 1.90, MIL-101: 1.69, HKUST-1: 0.88
 - Density of materials (in g cm⁻³)

References

- Peng et al., J. Am. Chem. Soc. 2013, 135, 11887–11894
- Mason et al., Chem. Sci. 2014, 5, 32-51