This paper describes the main features of the Renardus cross-search and cross-browse service. Renardus is made up of a number of participating subject gateway services. Cross searching is based on the Z39.50 protocol. A review of data models in use by partner services helped define a minimum set of Dublin Core-based metadata elements that could be utilised as a common model for the Renardus service. This provides the basic infrastructure for interoperability between all participating gateways. The Renardus Service also uses mapping between subject classification schemes to enable subject browsing across all gateways with the Dewey Decimal Classification (DDC). The paper outlines the use of classification systems by Renardus partner gateways, the general mapping approaches taken by the project, the definition of mapping relationships, and technical solutions. There follows a description of how the mapping information is used within Renardus and several features that have been implemented to aid end-user navigation in deep subject-browsing structures.

Key words: information retrieval, metadata, classification mapping, interoperability

1 INTRODUCTION

Renardus (IST-1999-10562) was a research project funded between 2000 and 2002 by the European Commission as part of the Information Society Technologies (IST) programme. Project partners included various national libraries, research centres and subject gateway services from Denmark, Finland, Germany, the Netherlands, Sweden and the UK; the project being co-ordinated by the National Library of the Netherlands (Heery, et al., 2001). The project developed a pilot Web-based broker service that enabled searching and subject-based browsing across a range of distributed subject gateway services (http://www.renardus.org/). The pilot service developed by the project has now migrated to an operational Renardus service hosted by the Goettingen State and University Library (SUB), managed by participating gateways through the Renardus Consortium (Huxley, 2002; Huxley, et al., 2003).

1 Corresponding author: Michael Day, UKOLN, University of Bath, Bath BA2 7AY, United Kingdom. E-mail: m.day@ukoln.ac.uk
Subject gateways are services that provide access to Internet resources that have been reviewed, selected and described by subject specialists. The exact selection criteria largely depend on the perceived usage base of the gateway, but typically include factors relating to the content and presentation of the resource and the integrity of the information and site provider (e.g., http://www.sosig.ac.uk/desire/ecrit.html). Subject gateways are almost always based on the manual creation of descriptive metadata and usually provide end users with both search and subject-browse facilities. The existence of rich metadata means that gateways can offer more sophisticated search options than other Web indexes. The application of subject classification schemes means that gateway services often provide hierarchical browse structures for browsing (Koch, 2000). As the Internet itself is constantly evolving, subject gateways also need robust collection development policies that include the regular checking and updating of resources included in the database.

The Renardus project developed a pilot broker system that enabled searching and browsing across a number of distributed subject gateways through the use of a common metadata profile and by the mapping all locally-used classification schemes to a common scheme. This paper will first explore some of the issues faced by the project in developing the pilot broker, and then outline how Web-based terminology services may be able to influence future developments.

2 DEVELOPMENT OF THE RENARDUS DISTRIBUTED SEARCH FUNCTION

Content providers for the Renardus project were subject gateway services from Finland, Germany, the Netherlands, Sweden and the UK. These varied widely in their nature and details of technical implementation. Some services were focused on relatively limited subject ranges, e.g. both the German Centre for Documentation and Information in Agriculture's DAINet service (http://www.dainet.de/) and Nova University's NovaGATE (Price, 2000) covered just agriculture, forestry and related subjects. The Goettingen State and University Library provided four gateways covering mathematics, the earth sciences, and Anglo-American history and literature (Fischer & Neuroth, 2000). Other services were more comprehensive in scope, e.g. the Finnish Virtual Library (http://www.jyu.fi/library/virtuaalikirjasto/) and DutchESS (Peereboom, 2000). One of the partner gateways, the UK Resource Discovery Network (http://www.rdn.ac.uk/), was itself a growing federation of gateway services with its own requirements for interoperability (e.g., Dempsey, 2000; Powell, 2001).

As may be expected, many of these gateways had developed (or adopted) their own technical solutions. Metadata standards also varied, although most of these converged on implementations of the Dublin Core metadata element set developed and maintained by the Dublin Core Metadata Initiative (DCMI). The objective of Renardus was to provide integrated access to the Internet resource catalogues provided by all participating gateways. Its first challenge was to devise a technical basis for doing so. After a review of broker models used to integrate access to distributed and heterogeneous information resources, the project chose to base the Renardus cross-search facility on the ANSI/NISO Z39.50 protocol and developed a project specific profile.

In order to develop this, the project first undertook a detailed survey of all the data models in use by partner gateways and used the results to agree a minimum set of Dublin Core-based metadata elements that could be utilised as a common model (exchange format) for the Renardus service. The Dublin Core metadata element set was chosen because it offered a good
prospect for interoperability with future partners or services (Neuroth & Koch, 2001). The survey looked at the semantics and syntax of all metadata elements used by participating services and their obligation, i.e. whether elements were mandatory, recommended or optional. Specific issues for Renardus were the language of the metadata content and whether specific schemes were used for dates, language codes, subjects, etc. From the data collected, the project defined a core set of elements that Renardus could use to link the diverse metadata used by participating services. The resulting data model, an application profile of Dublin Core (Heery & Patel, 2000), is summarised in Table 1.

Table 1. The Renardus Application Profile

<table>
<thead>
<tr>
<th>Element/Refinement</th>
<th>Scheme</th>
<th>Obligation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td></td>
<td>Mandatory</td>
</tr>
<tr>
<td>Title.Alternative</td>
<td></td>
<td>Optional</td>
</tr>
<tr>
<td>Creator</td>
<td></td>
<td>Recommended</td>
</tr>
<tr>
<td>Creator</td>
<td>LastName, FirstName</td>
<td>Recommended</td>
</tr>
<tr>
<td>Description</td>
<td></td>
<td>Mandatory</td>
</tr>
<tr>
<td>Subject</td>
<td></td>
<td>Mandatory</td>
</tr>
<tr>
<td>Subject</td>
<td>Renardus-DDC</td>
<td>Mandatory</td>
</tr>
<tr>
<td>Subject</td>
<td>DDC, LCC, LCSH, MeSH, UDC</td>
<td>Recommended</td>
</tr>
<tr>
<td>Identifier</td>
<td>URI</td>
<td>Mandatory</td>
</tr>
<tr>
<td>Language</td>
<td>ISO 639-2</td>
<td>Recommended</td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td>Recommended</td>
</tr>
<tr>
<td>Type</td>
<td>DCMI Type Vocabulary</td>
<td>Recommended</td>
</tr>
<tr>
<td>Country</td>
<td>ISO 3166-1</td>
<td>Recommended</td>
</tr>
</tbody>
</table>

Source: Neuroth & Koch (2001)

Participating gateways were then expected to map their existing metadata schemas to this application profile. The minimum set of metadata that they were expected to provide included the Dublin Core elements 'title,' 'description,' 'subject' and 'identifier,' with an additional 'subject' field with a Dewey Decimal Classification (DDC) code extracted from the classification mapping information developed for the cross-gateway browse service (see section 3, below). Other elements were not mandatory, but their presence would greatly assist with enhancing the search functionality offered by Renardus. Additional 'administrative' elements included a 'Full Record URL' that would lead the users of Renardus to the metadata record created by the participating gateway and a service identifier ('SBIG ID') that would indicate which gateway the record originated from. All participating services were also expected to provide a collection level description record. More details on the Renardus application profile are available in the paper by Neuroth & Koch (2001).

Each participating service had to set up a Renardus Z39.50-compliant server and import records from their database normalised according to the Renardus profile. Once set up, the Renardus broker service can then search across these services in response to user queries and retrieve records in detailed or brief format (Figure 1). The interface offers both a simple and advanced search. The simple version searches the elements 'title,' 'description,' 'subject' and the DDC caption in 'subject.' Advanced searching enables field specific searches of all of these elements, 'creator' and document 'type,' with filtering by the document 'type,' 'language' and
'country' elements. In the advanced search, users can also select which particular gateways they would like to search.

Figure 1. Renardus Search Results (Detailed Record View)

3 DEVELOPMENT OF THE RENARDUS CROSS-BROWSE FUNCTION

One of the most important services offered by gateways is subject browsing, typically based on classification schemes. The advantages of using classification systems to support subject access and navigation, multilingual access, for broadening or narrowing searches, etc. have been described elsewhere (e.g., Koch & Day, 1997). The Renardus project, therefore, proposed that it should provide some kind of subject browsing across all participating services (Koch, et al., 2003). Older projects, like the EU-funded DESIRE project (http://www.desire.org/), had already investigated the use of classification schemes by gateways and experimented with automatic classification technologies (Koch & Vizine-Goetz, 1999). Renardus, by contrast, was concerned with investigating ways in which users could browse a single subject hierarchy giving access to the content of all partner gateways. The problem was that different gateway services use a wide range of classification schemes to provide access to resources. These included subsets of well-known universal schemes like the Dewey Decimal Classification or Universal Decimal Classification, but also some specialised systems designed for particular subject areas or schemes.
produced locally by the gateway itself. In order to achieve consistent browse access to the content of partner gateways, Renardus decided that all of the different classification systems used needed to be mapped to a common classification system that could be used as a common switching language and browsing structure. The scheme chosen was the Dewey Decimal Classification (DDC).

A universal scheme like DDC had important advantages over other candidate schemes for an application like cross browsing in a universal service like Renardus. One of the main advantages to Renardus was that its online availability (e.g., in the form of WebDewey) meant that it could be integrated as a useful tool in the Renardus mapping process. Other advantages included the scheme's universal subject coverage, its global use, the large number of digital resources that had been classified using it, and the speed and frequency of updates, especially with regard to the content of digital resources. The basis for the use of the DDC by Renardus was a research agreement with the scheme's owner, OCLC Forest Press, part of OCLC Online Computer Library Center (http://www.oclc.org/dewey/). The license allowed the project to use the full DDC classification system to construct and offer the Renardus cross-browsing pages.

As has been said before, the classification solutions that had been adopted by the gateways participating in Renardus were very heterogeneous. In order to help prepare the mapping effort, it was necessary to conduct a detailed review of the schemes in use by partner gateways. An analysis showed, for example, that several gateways used specialised subject schemes with deep structure. For example, one gateway had 800 thematic classes structured in five levels. Other subject structures were not so extensive, with one or two levels of hierarchy and between 18 and 60 classes that would require mapping.

3.1 The mapping process

Some practical principles were required to maintain consistency in the mappings and to ensure that the resulting Renardus browse interface was balanced. Firstly, it was agreed that mapping relationships would be expressed between a pair of classes and not between a DDC class and individual resources. Secondly, the mapping was to be carried out in one direction only, from the DDC to the local classification (the gateway's local browsing system). In order to help establish a balanced Renardus service during the development stage, it was suggested that gateways should finish mapping the top level of a local browse hierarchy, before moving progressively down through other levels. While the ultimate goal was to map DDC to all local classes, priority was given, however, to mapping the most frequently used classes in the local gateway.

In producing these initial guidelines, the project was aware that there were a large number of issues that required discussion. These issues included the specifics of how the DDC should be used to create a browse structure and how the mappings should be displayed in the Renardus browse interface. Other problematic issues included the depth of the mapping (on both sides), how Renardus should treat local classes that contained both generalities and specialities, the exclusion of non-topical classes (e.g. auxiliary tables). It was recognised that some of the subject areas that provide the main focus of a gateway could be located deep within the DDC hierarchy. It was also not clear how the project would solve the conflict between the compact structures that are often used in specialised subject classifications and the 'shattering' of the same discipline within universal systems. For example, engineering is expressed in 800 classes within the specialised Ei Thesaurus (http://www.ei.org/) but dispersed in around 2,300 categories in the
Another problematic issue was the influence of the degree of subject overlap between the Renardus participants on the mapping practice. It remained to be seen what would be the best trade-off between consistency, accuracy and usability in the Renardus cross-browsing service.

3.2 Mapping relationships

Many other mapping projects, (e.g. those involved in conversions between two classification systems for use in OPACS or union catalogues) had limited themselves to the establishment of simple connections between pairs of classes. These projects are often unspecific concerning defining the character and degree of the indicated equivalence. However, the structures and levels of detail, the vocabularies, languages and cultural contexts of the locally applied classification systems used by Renardus gateways and the DDC are very different. Renardus, therefore, assumed that a simple equivalence between the content of two classes would be unusual.

For the Renardus subject browsing pages, it was felt that users needed to be advised that certain links from a DDC class, point to a class in a local gateway containing broader or narrower areas of content, or showing major or minor overlaps with the DDC class. This was especially true, as there would quite often be multiple links to classes found within a number of different gateways. One such link might be fully equivalent; another might show a minor overlap. The need for a more detailed specification of the degree of equivalence was even greater when the mapping was used in the Renardus advanced search feature. Using this, a result list could be ranked according to the degree of relationship between the individual resource's local class and the DDC class used for searching.

In order to deal with this problem, Renardus defined five distinct mapping relationships. The local class is deemed to be either fully equivalent, a narrower or broader equivalent, or has a major or minor overlap when compared with the DDC class. These relationships are influenced by the possible relationships between sets in set theory and can be illustrated via Venn diagrams. 'Fully equivalent' means that the subject content of the local page that one is linked to, is generally the same as the subject indicated on the Renardus browsing page. A 'narrower equivalent' indicates that the subject content of the local page is a true subset of the browsing page, whereas "broader equivalent" reflects the opposite, where the local page contains the entire subject content of the Renardus browsing page. A "major overlap" exists when the content of the local page represents a large part of the browsing page plus other related subjects. Conversely, "minor overlap" indicates some equivalence to part of the browsing page but that the class may also include other related subjects. Renardus maps in one direction only, from the DDC to the local classification(s). The three types of equivalence relationship require that one of the two classes is a true subset of the other, i.e. that it cannot also be mapped to another part of the classification scheme. Full equivalence is the intermediate situation where both classes are basically 100% equivalent. The two overlapping relationships require that parts of both classes clearly do not belong to the subject content of the other class. Thus certain logical rules apply which would permit a formal quality control of the mapping process.
3.3 Technical solutions and tools

The main sources that are used for the classification mapping effort were the local classification systems and the enhanced DDC as presented by WebDewey. To support the practical effort, Renardus adapted the CarmenX mapping tool developed by the University Library of Regensburg for the CARMEN project (Hellweg, et al., 2001, 18-19; http://www.bibliothek.uni-regensburg.de/projects/carmen12/). This tool is Web-based and requires the open-source database software mySQL, an Apache Web server, JavaScript, and PHP scripts at the server side. The classification scheme information and mapping information were stored on different servers, partly to fulfil the obligations of the OCLC license. Each gateway participating in the mapping effort needed to provide a machine-readable version of their classification scheme (or schemes) that could be used by the mapping tool.

Figure 2. Renardus Mapping Tool Interface

The user interface of the mapping tool (Figure 2) consists of three windows: one for the local target classification, another for displaying and navigating the source classification (the DDC). The third window receives and displays the mapping information, including relationships and notes. Mapping relationships are displayed as links in both classification windows. The tool was adapted to create and store the mapping information in a mySQL database in a syntax specified by Renardus. This information can be imported using Perl scripts into the main Renardus system in order to create the mapping links on the subject browsing pages and can also be used by each gateway's normalisation scripts so that they can generate a DDC mapping for...
each resource in the local gateway's Renardus database (one of the mandatory fields in the Renardus application profile).

The enhanced DDC was delivered by OCLC in several XML encoded data files with a XML DTD, tag/attribute information and additional information about hierarchy. It contained 25,500 main schedule entries (notations) and 35,700 different records. Using these files, an initial complete hierarchical set of web pages can be generated allowing a user to navigate through the DDC structure. It was decided, however, that completely empty branches in the lower part of the DDC hierarchy could be removed from the display, assuming they were not required to assist as transitional steps during browsing.

Figure 3. Renardus Browsing Interface

3.4 The cross-browsing feature in Renardus

The Renardus pilot uses the DDC mapping information to support two functions, i.e. to create the cross-browse service and to provide additional information for the advanced search feature. The aim of the Renardus cross browse is to allow users to navigate through the subject hierarchies of the DDC classification and, on finding something suitable, to let them 'jump' from a chosen class to related classes in the local subject gateways. The project called this type of navigation 'browse and jump.' The system specifies the different equivalences and degrees of
overlap in the user interface, enabling the user to visualise the resources in the context of their local browsing structures and to continue browsing there (Figure 3).

The upper part of every browse page displays the available categories in the actual section of the hierarchy, with links to all levels above and one level below for users to follow. The lower half of the browsing pages shows one or more links to related resource collections. The local classification caption, the local classification code and the icon of the gateway that the user would 'jump' to when clicking on the link, are also displayed. The related collections are presented in a ranked order according to the recorded mapping relationship: fully equivalent classes are displayed first and minor overlapping classes last, thus encouraging the user to explore first the collections that are closest in coverage to the chosen DDC class.

It is clear that very large browsing structures - like that represented by the full DDC - need to provide additional assistance to guide users. Investigations by the project did not find any 'tried-and-tested' solutions that Renardus could immediately apply. Therefore, some experimental navigation support features were implemented for practical evaluation.

Figure 4. Renardus Graphical Navigation Overview

A 'graphical navigation overview' link (Figure 4) is available on every browse page. It provides a visual 'fisheye' overview of all the available categories that surround a chosen subject term, normally at one level above and two levels below within the hierarchy. Colours are used to help display the selected class within its context and all other classes that contain mappings. This
feature is intended to increase the speed of users' navigation of the browse structure and to provide an immediate subject overview. Clicking on categories within the graphical display shows the relevant Renardus browsing page for this subject. An experimental text-based version of the browsing overview is also available.

On all browsing pages (apart from the top level) a search box is provided to 'Find a different start-page for browsing.' Using this, several valid alternative browsing pages are usually displayed. This feature offers a short cut for users who know significant terms from a valid category elsewhere in the Renardus DDC structure. This may also be an option if users have difficulty finding exactly where their main area of interest is hidden within the DDC hierarchy. From the alternative list, users can go to a selected browsing page or graphically explore the hierarchical environment of this subject for further navigation.

Renardus also offers a short cut to viewing individual resource descriptions from all related collections with the feature: 'Merge the resource-descriptions from all related collections listed here.' Users will be shown an integrated list of resources from all related collections listed on the page, presented in the usual Renardus search results display. The main disadvantage with this 'virtual browsing' is that users may lose context and the potential additional information available from exploring the local gateway's browse structure. The same kind of search can be carried out on the 'advanced search' page by selecting the "DDC Classification" element for the search.

As noted earlier, the DDC mapping information is also used in the Renardus 'advanced search' feature. While the general subject element allows searching on all local subject information (e.g. uncontrolled keywords, controlled keywords from thesauri and subject headings, classification captions and notations, etc.) the "DDC classification" element enables searches to be made of captions of the mapped DDC classes.

One of the advantages of using a scheme like DDC is that the existence of translations means that it would be possible to 'plug-in' non-English language versions of the classification to generate browsing interfaces in multiple languages. In the final year of the project, Renardus experimented with interfaces to the browsing facility using versions of DDC in French, Italian, German and Spanish.

3.5 Future work

Funding for the Renardus project ended in 2002. Since then the pilot developed by the project has evolved into a service run by the Renardus Consortium, a co-operative venture of participating gateways and technical partners. The number of participating services has declined slightly since the end of the project, but the number of records being searched has continued to grow. Renardus continues as an active demonstrator broker service and the consortium is prepared to collaborate with other gateways and in relevant research and development opportunities.

Some future work might include further enhancements to the browsing interfaces. While Renardus developed interesting ways of browsing in large subject structures, there remains much that is not known about their effectiveness. That said, however, recent analysis of Renardus usage logs suggests that "systematic browsing of large information systems with the help of classification hierarchies seems to be widely accepted by users, especially when there is graphical support" (Koch, et al., 2004).
4 RELATED WORK

While the Renardus service was specifically designed to support interoperability between subject gateway services, some of the features developed could be useful in any application area where knowledge organisation systems (KOS) need to be integrated. Renardus is just one of a growing number of initiatives concerned with the integration of KOS in digital library contexts (e.g., Hodge, 2000; Zeng & Chan, 2003). Such integration has historically been based on an intellectual mapping of concepts from different vocabularies. There is, however, a growing interest in the use of mappings that are automatically derived, e.g. from the statistical analysis of metadata collections that combine more than one vocabulary (e.g. Vizine-Goetz, et al., 2004) or the semantics of linked resources (e.g. Strötgen, 2004). A well-known example of linking based on the intellectual mapping of vocabularies, is the US National Library of Medicine's Unified Medical Language System (UMLS), whose 'Metathesaurus' integrates terms from multiple (and multilingual) biomedical vocabularies into a consistent database (Bodenreider, 2004). In the UK, the High-Level Thesaurus (HILT) project proposed the building of mapping-based 'terminology services' that would help integrate the vocabularies used by UK cultural heritage and educational organisations (Heery, 2003). The development of terminology services has also been advocated by OCLC Research, who have experimented with the development of services that map various vocabularies to the DDC and Library of Congress Subject Headings (LCSH) (Vizine-Goetz, et al., 2004). OCLC Research have developed a broad vision of modular Web Services that would support a range of operations, including metadata creation, harvesting, enhancement and transformation. Within this general framework, terminology services would enable the flexible use of vocabularies and name authorities in networked environments or, in the words of Dempsey, et al. (2005, forthcoming), would "make vocabularies available as 'pluggable' network resources, which can be accessed and used by other applications." A key issue for all of these initiatives is the need for protocols and standards that allow programmatic access to KOS, the development of several of which is now underway (Binding & Tudhope, 2004). Terminology services have a lot of potential for enhancing the semantic interoperability for all types of KOS. If current proof-of-concept initiatives can demonstrate this potential, it would be useful if vocabulary owners took the lead in providing accessible, up to date, authoritative and sustainable mapping information.

5 CONCLUSIONS

The Renardus service provides integrated search and browse access to the high-quality Internet resources that have been selected and described by various European subject gateway services. Renardus uses a generic broker architecture based on the ANSI/NISO Z39.50 protocol. In order to enable the distributed search function, each gateway adapts and maps a subset of their local metadata elements to a common Renardus-specific application profile that specifies the required data fields and defines the semantics, syntax, encoding systems and cataloguing rules that should be used. In order to facilitate browsing across all services included in Renardus, each gateway provides a mapping from the Dewey Decimal Classification (DDC) system to their local subject browse hierarchy. The information thus provided can then be used by the Renardus system to
provide the DDC-based browse function and to support some advanced search features. Renardus also experimented with developing navigation support features that might help users navigate in large browse structures like the DCC. The way that the vocabulary mapping information is used in Renardus means that it can be viewed as a kind of terminology service, a prototype for the Web Services-based tools being developed by more recent initiatives.

REFERENCES

