Performance of an Attenuator Type Wave Energy Converter in Multi-directional Waves

Liang Sun 1, Jun Zang 1, Rodney Eatock Taylor 2,3, Paul H. Taylor 2,3

1 University of Bath, 2 University of Oxford, 3 National University of Singapore

Background

The Pelamis is an attenuator type wave energy converter (WEC), which can capture energy from the relative pitch and yaw motions of the modules as the waves pass them. A second-order potential flow solver, DIFRACT®, has been applied to investigate the performance of the simplified Pelamis in multi-directional waves.

Waves and Simplified WEC

The basic idea in present research is to superpose all the wave components from different directions but with the same frequency as a single incoming wave. Different wave spreadings have been considered.

The wave energy converter has been simplified as 5 rigid rectangular boxes (draft=2m) connected by 4 ideal hinge joints (without damping and friction) which only allow the relative pitch and yaw motions between rigid modules.

Numerical Results

In multi-directional seas, smaller relative pitch motions are obtained. Especially for s=5, the reductions of relative pitch motions at peak values are up to 27%. With the increase of spreading factor s, the relative pitch motions approach those in uni-directional waves.

It seems that there are no significant differences in vertical shear forces for uni-directional waves and multi-directional waves when s=15 and 25. However for multi-directional waves when s=5, peak shear forces have been reduced by up to 26%. Largest vertical shear forces are found at hinge 2.

Concluding Remarks

- Numerical results have shown that compared with the results for uni-directional waves, up to 27% of reductions of relative pitch motions of the converter and up to 26% of vertical shear forces acting on the simplified PTO (Power Take-Off) have been obtained when wave spreading factor s=5.
- The research has suggested that the design of wave energy converters needs to be optimised for different locations with different wave conditions.

*http://www.mendeley.com/groups/2020743/diffraction/papers/*