**Bacillus subtilis** as a Platform for Molecular Characterisation of Regulatory Mechanisms of *Enterococcus faecalis* Resistance against Cell Wall Antibiotics

Chong Fang¹, Emanuel Stiegeler†, Gregory M. Cook², Thorsten Mascher¹, Susanne Gebhard¹*

¹ Department Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany, ² Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand

**Abstract**

To combat antibiotic resistance of *Enterococcus faecalis*, a better understanding of the molecular mechanisms, particularly of antibiotic detection, signal transduction and gene regulation is needed. Because molecular studies in this bacterium can be challenging, we aimed at exploiting the genetically highly tractable Gram-positive model organism *Bacillus subtilis* as a heterologous host. Two fundamentally different regulators of *E. faecalis* resistance against cell wall antibiotics, the bacitracin sensor BcrR and the vancomycin-sensing two-component system VanS-VanR, were produced in *B. subtilis* and their functions were monitored using target promoters fused to reporter genes (*lacZ* and *luxABCDE*). The bacitracin resistance system BcrR-BcrAB of *E. faecalis* was fully functional in *B. subtilis*, both regarding regulation of bcrAB expression and resistance mediated by the transporter BcrAB. Removal of intrinsic bacitracin resistance of *B. subtilis* increased the sensitivity of the system. The *lacZ* and *luxABCDE* reporters were found to both offer sensitive detection of promoter induction on solid media, which is useful for screening of large mutant libraries. The VanS-VanR system displayed a gradual dose-response behaviour to vancomycin, but only when produced at low levels in the cell. Taken together, our data show that *B. subtilis* is a well-suited host for the molecular characterization of regulatory systems controlling resistance against cell wall active compounds in *E. faecalis*. Importantly, *B. subtilis* facilitates the careful adjustment of expression levels and genetic background required for full functionality of the introduced regulators.

**Introduction**

*Enterococcus faecalis* is one of the most common causes of nosocomial infections. Increasing incidences of infections with antibiotic resistant strains, particularly with vancomycin resistant enterococci (VREs), therefore pose a major health risk [1,2]. Vancomycin is a glycopeptide antibiotic that targets the lipid II cycle of cell wall biosynthesis by binding to the terminal D-Ala-D-Ala moiety of peptidoglycan precursors on the surface of the cell, thus inhibiting their incorporation into the cell wall [3]. Many other antimicrobial substances also target the lipid II cycle [4], including bacteriocins and mammalian defensins [5,6], both of which will likely be encountered by *E. faecalis* in its natural gut habitat. Furthermore, many enterococcal isolates were found to be highly resistant against bacitracin [7,8], yet another inhibitor of cell wall biosynthesis [9].

The molecular mechanisms leading to resistance are often well known. In the case of vancomycin, high-level resistance is for example ensured by target alteration through replacement of the terminal D-Ala-D-Ala by D-Ala-D-lactate. In VanA-type strains, this is accomplished through the action of the VanHAX system, while in VanB-type strains the VanHBBXB proteins mediate resistance [10,11]. High-level bacitracin resistance of *E. faecalis* is conferred by the ATP-binding cassette (ABC) transporter BcrAB, which presumably removes the antibiotic from its site of action (i.e. the cytoplasmic membrane) [7]. The precise mechanism of bacitracin resistance by ABC-transporters is not yet fully understood [12].

The expression of most resistance genes is induced in the presence of the respective antibiotic. For example, the *van* operons are induced in the presence of vancomycin by the two-component systems VanS-VanR or VanSb-VanRb for VanA- and VanB-type resistance, respectively [11,13]. Bacitracin-dependent induction of *bcrAB* is mediated by the one-component transmembrane regulator BcrR [7,14]. While the regulators and target promoters, as well as the conditions leading to induction are known, we lack in-depth understanding of the molecular mechanisms of regulation. For example, while both VanS and VanSb respond to vancomycin,
their sensory domains differ considerably in size with 37 amino acids for VanS and 103 residues for VanSp, and share only low sequence similarity [15]. It is therefore difficult to envisage the same sensing mechanism for both proteins. It is similarly unclear how BcrR detects bacitracin, because the protein lacks any obvious extracellular domains but is nevertheless able to directly interact with its substrate [14,16]. Additionally, it is not known how a membrane-bound transcriptional regulator like BcrR activates transcription from its target promoter. While a direct interaction with RNA-polymerase has been proposed [16], experimental evidence is lacking to date.

Sensory perception of antimicrobial substances by bacteria is a first and essential step in antibiotic resistance, and a thorough understanding of the mechanisms involved would provide an important basis for the development of new drugs to combat resistance. However, in many genera, e.g. the enterococci, investigations are hampered by the difficulty to manipulate these bacteria genetically. Although more and more genetic tools are becoming available for enterococci, poor transformability of many strains, including clinical isolates, still impedes studies involving, for example, high-throughput or detailed mutagenic approaches. To circumvent these problems, heterologous hosts have been chosen, often using E. coli [17], or electro-transformable laboratory strains of E. faecalis [7,14]. The latter provide improved transformability, but no additional genetic tools, while the former host does not appear well suited to study resistance against cell wall active compounds, due to the major differences between the Gram-positive and Gram-negative cell envelope. Alternatively, Bacillus subtilis has been used successfully for the functional expression of the VanS-VanR two-component system of E. faecalis, as well as of the VanB-type resistance proteins [1,18]. Like E. coli, B. subtilis is easy to manipulate and a large number of genetic tools are available. The G+C contents of B. subtilis (43.5%) and of E. faecalis (37.5%) are comparable, which is of great advantage for heterologous gene expression. Furthermore, the transcription machinery in both organisms is sufficiently similar to facilitate the interaction of heterologous transcriptional regulators with the native machinery, as has been shown in vitro for activation of B. subtilis RNA polymerase by E. faecalis BcrR [16]. Importantly for the present application, the intrinsic resistance mechanisms of B. subtilis against cell wall antibiotics are well understood [19,20], allowing directed deletion of genes to create a clean genetic background.

In the present study, we have used two well-understood examples from E. faecalis to develop and validate B. subtilis as a platform for studying the regulatory mechanisms leading to resistance against cell wall-active antibiotics. To test the feasibility of our approach and determine the optimal genetic background of the host, we chose the one-component regulator BcrR and could show full functionality with highly similar behaviour to its native context. This set-up was then applied to the VanSR-VanRB two-component system. A previous attempt at heterologous expression of this system in B. subtilis had resulted in a constitutively active behaviour [18]. Optimization of expression levels and growth conditions now resulted in vancomycin-dependent induction of the target promoter, further supporting the suitability of B. subtilis as host organism.

**Materials and Methods**

**Bacterial strains and growth conditions**

All strains used in this study are listed in Table 1. E. coli DH5α and XL1-blue were used for cloning. E. coli and B. subtilis were grown routinely in Luria-Bertani (LB) medium at 37°C with agitation (200 rpm). B. subtilis was transformed by natural competence as previously described [21]. Selective media contained ampicillin (100 μg ml⁻¹ for E. coli), chloramphenicol (5 μg ml⁻¹ for B. subtilis), kanamycin (10 μg ml⁻¹ for B. subtilis), erythromycin 1 μg ml⁻¹ with lincomycin 25 μg ml⁻¹ (for macroline-lincosamide-streptogramin B (mls) resistance in B. subtilis) or spectinomycin (100 μg ml⁻¹ for B. subtilis). Bacitracin was supplied as the Zn²⁺-salt. Unless otherwise stated, media for strains carrying pXT-derived constructs contained 0.2% (w/v) xylose for target gene expression. Solid media contained 1.5% (w/v) agar. Growth was measured as optical density at 600 nm wavelength (OD₆₀₀).

**Construction of plasmids and genetic techniques**

All primer sequences used for this study are listed in Table 2; all plasmid constructs are listed in Table 1.

Transcriptional promoter fusions of P_βgal to luxC or bacterial luciferase (luxABCDE) were constructed in vectors pAC6 [22] or pAH328 [23] by the sites of EcoRI/BamHI and EcoRI/SpeI, respectively, obtaining plasmids pES601 and pNTlux101, respectively. The transcriptional promoter fusion of P_βgal to bacterial luciferase was cloned into the EcoRI and SpeI sites of vector pAH328 creating plasmid pCF133. The exact regions contained in the constructs are given in Table 1.

For heterologous, xylose-inducible expression of bcrR or bcrR-bcrAB in B. subtilis (pES701 and pES702) the respective DNA fragments were amplified from the plasmid pAMbcr1 [7] and cloned in the vector pXT [24] using the BamHI and EcoRI restriction sites, placing the genes under the control of the vector’s xyIα promoter. Plasmid pCF132 was constructed by inserting vanRSp78 from E. faecalis V583 into the BamHI and HincIII sites of vector pXT for heterologous, xylose-inducible expression in B. subtilis.

Constructs for unmarked gene deletions in B. subtilis were cloned into the vector pMAD [25]. For each operon to be deleted, 800–1000 bp fragments located immediately before the start codon of the first gene (“up” fragment) and after the stop codon of the last gene (“down” fragment) were amplified. The primers were designed to create a 17–20 bp overlap between the PCR-products (Table 2), facilitating fusion of the fragments by PCR overlap extension and subsequent cloning into pMAD. Gene deletions were performed as previously described [25].

All constructs were checked for PCR-fidelity by sequencing, and all created strains were verified by PCR using appropriate primers.

**Antimicrobial susceptibility assays**

All cultures were grown in Mueller-Hinton (MH) medium for antibiotic susceptibility assays [26]. Minimal inhibitory concentration (MIC) of bacitracin and vancomycin were determined by broth-dilution assays. Freshly grown overnight cultures of B. subtilis in MH medium were used as inoculum at a dilution of 1:500. After 24 h incubation in the presence of two-fold serial dilutions of the antibiotic the MIC was scored as the lowest concentration where no growth was observed.

**β-Galactosidase assays**

Cells were inoculated from fresh overnight cultures and grown in LB medium at 37°C with aeration until they reached an OD₆₀₀ between 0.4 and 0.5. The cultures were split into 2 ml aliquots and challenged with different concentrations of bacitracin with one aliquot left untreated. After incubation for an additional 30 min at 37°C with aeration, the cultures were harvested and the cell pellets were frozen at −20°C. β-galactosidase activities were determined as described, with normalization to cell density [27].
Luciferase assays

Luciferase activities of B. subtilis strains were assayed using a Synergy 2 multi-mode microplate reader from BioTek controlled by the software Gen5. LB medium was inoculated 1:500 from overnight cultures, and each strain was grown in 100 μl volumes in a 96-well plate. Cultures were incubated at 37°C with shaking (intensity: medium), and the OD_{600} was monitored every 10 min. At an OD_{600} of 0.02 (4–5 doublings since inoculation; corresponding OD_{600} = 0.1 in cuvettes of 1 cm light-path length), each bacteriocin was added to final concentrations of 0.03, 0.1, 0.3, 1 μg ml^{-1}, or vancomycin to final concentrations of 0.01, 0.025, 0.05, 0.25 μg ml^{-1}; in all cases one well was left untreated. Cultures were further incubated for 2 h, and the OD_{600} and luminescence (endpoint-reads; 1 s integration time; sensitivity: 200) were monitored every 5 min. OD_{600} values were corrected using wells containing 100 μl LB medium as blanks. Raw luminescence output (relative luminescence units, RLU) was normalized to cell density by dividing each data-point by its corresponding corrected OD_{600} value (RLU/OD).

**Table 1.** Plasmids and strains used in this study.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vectors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAC6</td>
<td>Vector for transcriptional promoter fusions to lacZ in B. subtilis, integrates in amyE; cm’</td>
<td>[22]</td>
</tr>
<tr>
<td>pAH328</td>
<td>Vector for transcriptional promoter fusions to luxABCD in B. subtilis; integrates in sacA; cm’</td>
<td>[23]</td>
</tr>
<tr>
<td>pMAD</td>
<td>Vector for construction of unmarked deletions in B. subtilis, temperature sensitive replicon; mls’</td>
<td>[25]</td>
</tr>
<tr>
<td>pXT</td>
<td>Vector for xylose-inducible gene expression in B. subtilis; integrates in thrC; spc’</td>
<td>[24]</td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAMbr1</td>
<td>E. coli-E. faecalis shuttle vector containing a 4.7 kb EcoRI-fragment encompassing the bcrR-bcrABD locus of E. faecalis AR01/DGV5</td>
<td>[7]</td>
</tr>
<tr>
<td>pCF102</td>
<td>pMAD containing the joined “up” and “down” fragments for unmarked deletion of bcrRS-bceAB</td>
<td>This study</td>
</tr>
<tr>
<td>pCF104</td>
<td>pMAD containing the joined “up” and “down” fragments for unmarked deletion of psdRS-psdAB</td>
<td>This study</td>
</tr>
<tr>
<td>pCF119</td>
<td>pMAD containing the joined “up” and “down” fragments for unmarked deletion of yxdJK-yxdLM-xyxA</td>
<td>This study</td>
</tr>
<tr>
<td>pCF132</td>
<td>pXT containing the vanRSP operon of E. faecalis V583</td>
<td>This study</td>
</tr>
<tr>
<td>pCF133</td>
<td>pAH328 containing P_{vanYB} of E. faecalis V583 from -215 to +65 relative to the vanYB start codon</td>
<td>This study</td>
</tr>
<tr>
<td>pES601</td>
<td>pAC6 containing P_{bcrA} of E. faecalis AR01/DGV5 from -219 to +170 relative to the bcrA start codon</td>
<td>This study</td>
</tr>
<tr>
<td>pES701</td>
<td>pXT containing bcrR of E. faecalis AR01/DGV5</td>
<td>This study</td>
</tr>
<tr>
<td>pES702</td>
<td>pXT containing the bcrR-bcrAB region of E. faecalis AR01/DGV5</td>
<td>This study</td>
</tr>
<tr>
<td>pNTlux101</td>
<td>pAH328 containing P_{bcrA} of E. faecalis AR01/DGV5 from -219 to +170 relative to the bcrA start codon</td>
<td>This study</td>
</tr>
<tr>
<td>E. coli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH5α</td>
<td>supE44 ΔlacI159(q80lacZJ2M15) hsdR17 recA1 endA1 gyrA96 thi-1 relA1</td>
<td>[39]</td>
</tr>
<tr>
<td>XL1-Blue</td>
<td>recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac F Dlac’ lacU169 lacZ ΔlacZJ2M15</td>
<td>Stratagene</td>
</tr>
<tr>
<td>E. faecalis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR01/DGV5</td>
<td>Plasmid-cured clinical isolate; bac’</td>
<td>[7]</td>
</tr>
<tr>
<td>V583</td>
<td>Sequenced clinical strain containing plasmids pTEF1, pTEF2, pTEF3; van’</td>
<td>[40]</td>
</tr>
<tr>
<td>B. subtilis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W168</td>
<td>Wild-type, tyrC2</td>
<td>Laboratory stock</td>
</tr>
<tr>
<td>SGB34</td>
<td>W168 thrC:pES702</td>
<td>This study</td>
</tr>
<tr>
<td>SGB35</td>
<td>TMB035 thrC:pES702</td>
<td>This study</td>
</tr>
<tr>
<td>SGB36</td>
<td>TMB035 thrC:pES702 amyE:pES601; kan’, spc’, cm’</td>
<td>This study</td>
</tr>
<tr>
<td>SGB40</td>
<td>W168 thrC:pES701 amyE:pES601; spc’, cm’</td>
<td>This study</td>
</tr>
<tr>
<td>SGB42</td>
<td>W168 thrC:pES702 amyE:pES601; spc’, cm’</td>
<td>This study</td>
</tr>
<tr>
<td>SGB43</td>
<td>TMB035 thrC:pES701 amyE:pES601; kan’, spc’, cm’</td>
<td>This study</td>
</tr>
<tr>
<td>SGB273</td>
<td>TMB1518 sacA;pNTlux101; cm’</td>
<td>This study</td>
</tr>
<tr>
<td>SGB274</td>
<td>TMB1518 thrC:pES701 sacA;pNTlux101; spc’, cm’</td>
<td>This study</td>
</tr>
<tr>
<td>TMB035</td>
<td>W168 bceAB;kan’</td>
<td>This study</td>
</tr>
<tr>
<td>TMB1518</td>
<td>W168 with unmarked deletions of the bceRS-bceAB, psdRS-psdAB, yxdJK-yxdLM-xyxA loci</td>
<td>This study</td>
</tr>
<tr>
<td>TMB1560</td>
<td>TMB1518 sacA;pCF133; cm’</td>
<td>This study</td>
</tr>
<tr>
<td>TMB1562</td>
<td>TMB1518 thrC:pCF132 sacA;pCF133; spc’, cm’</td>
<td>This study</td>
</tr>
</tbody>
</table>

*Bac, bacitracin; cm, chloramphenicol; fs, fusidic acid; kan, kanamycin; mls, macrolide-lincosamide-streptogramin B group antibiotics; rif, rifampin; spc, spectinomycin; van, vancomycin; r, resistant.
doi:10.1371/journal.pone.0093169.t001
Results and Discussion

Functional transfer of the BcrR-BcrAB bacitracin resistance system to B. subtilis

In E. faecalis, expression of the genes bcrAB that encode the bacitracin resistance transporter BcrAB is controlled solely by the one-component regulator BcrR [14]. This regulator is encoded by a gene directly upstream of the transporter operon, but as an independent transcriptional unit [7]. To test if BcrR could be functionally produced in B. subtilis, we introduced a transcriptional fusion of its target promoter, P_{bcrR}, to lacZ ([pES601], together with an expression construct of bcrAB controlled by a xylose-inducible promoter ([pES701]), into the wild-type strain. Addition of increasing concentrations of bacitracin led to a strong upregulation of the promoter activities with a threshold concentration for induction of 0.3 μg ml⁻¹ (Fig. 1A). No promoter activities above background (ca. 1 Miller Unit (MU)) could be detected in a strain lacking BcrR (data not shown), demonstrating that the observed induction was indeed due to BcrR activity. It was shown previously that the sensitivity of BcrR is increased in a strain of E. faecalis lacking BcrAB, and this was attributed to competition between the transporter and BcrR in bacitracin binding [14]. While B. subtilis itself does not contain a BcrAB-like transporter, it nevertheless possesses a transport system for bacitracin resistance, BceAB, belonging to a different family of transporters [28]. To test if this unrelated transporter could also influence the sensitivity of BcrR, we next introduced the expression and reporter constructs into a strain carrying a bceAB:kan deletion (TMB035). Here, the threshold for induction was ten-fold lower at 0.03 μg ml⁻¹ bacitracin, with 0.1 μg ml⁻¹ leading to full induction. Furthermore, the maximal amplitude of induction was significantly increased (p = 0.006) to more than 200-fold (Fig. 1B). Therefore, the BceAB transporter of B. subtilis appeared to decrease the availability of bacitracin for detection by BcrR, similar to the effect of BcrAB in E. faecalis.

We next introduced a construct containing bcrR under control of the xylose-inducible promoter followed by bceAB under BcrR-dependent control of its native promoter ([pES702]) into TMB035 (BceAB:kan). In this strain, the induction behaviour was comparable to that of wild-type B. subtilis carrying BcrR alone (Fig. 1C). Introduction of the same construct into the wild-type background produced a strain harbouring both transporters, BceAB and BcrAB. While the induction threshold was not significantly altered compared to strains possessing only one transporter, the amplitude of induction was lowered to approximately 50-fold (Fig. 1D). These data clearly show that both BceAB and BcrAB are able to compete with BcrR for bacitracin binding and closely reflect the behaviour of the system in E. faecalis. As stated above, this competition is most likely due to removal of bacitracin by the transporters.

The decreased sensitivity of P_{bcrR} induction in strains harbouring the construct of bcrR together with bceAB, with the latter being controlled by its native promoter (Fig. 1C and D), further implied that bcrR was expressed in a BcrR-dependent manner in B. subtilis. We therefore wanted to test if this construct was also able to impart bacitracin resistance to the B. subtilis host. The minimal inhibitory concentration (MIC) of bacitracin was strongly reduced from 128 μg ml⁻¹ in the wild-type to 2–4 μg ml⁻¹ in the bceAB-deleted strain TMB035 (Table 3), consistent with earlier reports [20,29]. Introduction of the bcrR-bceAB construct increased the
resistance of the bceB-deleted strain to 32 μg ml⁻¹ (Table 3). This
degree of protection conferred to B. subtilis (i.e. 8- to 16-fold
increase in MIC) is the same as that conferred to E. faecalis itself,
where BcrAB raises the MIC from 32 μg ml⁻¹ to >256 μg ml⁻¹
[7]. The difference in final resistance reached is due to the
differing degrees of intrinsic bacitracin resistance between the two
hosts. Additional expression of the E. faecalis transporter in wild-
type B. subtilis could not further increase its resistance (Table 3). In
fact we have to date been unable to raise the MIC of the wild-type
strain, even with overproduction of its native BceAB transporter
(own unpublished observation), suggesting that the level of
resistance is not limited by transport capacity.

Taken together, our results demonstrate full functionality of the
E. faecalis Bcr-system in B. subtilis, both regarding gene regulation
and bacitracin resistance. Importantly, however, the native
resistance determinants of the B. subtilis host were shown to
interfere with the sensitivity and amplitude of promoter induction
and masked the resistance imparted by the introduced system.
This observation is addressed in the following section.

Development of a sensitive recipient strain

When employing a heterologous host for functional studies of
resistance and associated regulatory systems, it is of vital
importance to consider any potential interference from intrinsic
resistance determinants. One advantage of using B. subtilis as the
heterologous host is that its resistance determinants against cell
wall antibiotics are very well known. Several proteins were shown
to contribute to broad-spectrum protection from charged antimic-
robial peptides, for example by modification of teichoic acids in
the cell envelope [30], but most of these mechanisms are not drug-
specific. In contrast, antimicrobial peptide transporters such as the
BceAB system described above, are thought to function by
removal of the antibiotic from its site of action [12,20,31–33], and
are thus likely to interfere with heterologously introduced

Table 3. Antibiotic susceptibility of B. subtilis strains.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Relevant resistance proteins</th>
<th>Bacitracin MIC* (μg ml⁻¹)</th>
<th>Vancomycin MIC* (μg ml⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W168</td>
<td>BceAB⁺</td>
<td>128</td>
<td>0.25</td>
</tr>
<tr>
<td>TMB035</td>
<td>BceAB⁺</td>
<td>2–4</td>
<td>0.25</td>
</tr>
<tr>
<td>TMB1518</td>
<td>BceAB⁺</td>
<td>4</td>
<td>0.25</td>
</tr>
<tr>
<td>SGB34</td>
<td>BceAB⁺, BcrR-BcrAB⁺</td>
<td>128</td>
<td>0.25</td>
</tr>
<tr>
<td>SGB35</td>
<td>BceAB⁺, BcrR-BcrAB⁺</td>
<td>32</td>
<td>0.25</td>
</tr>
</tbody>
</table>

*Minimal inhibitory concentrations (MIC) determined from three biological replicates; where a range of concentrations is given, results varied between replicates. doi:10.1371/journal.pone.0093169.t003
resistance determinants. B. subtilis possesses three paralogous systems of differing substrate specificities: BecAB mediates resistance against bacitracin, mesoracidin, actagardine and plecostin [20,31]; PsdAB confers resistance against a broad-range of lipid II-binding lantibiotics such as nisin or gallidermin [31]; for YxdlLM no role in resistance has been identified to date, but it’s expression is induced in response to the human cathelicidin LL-37 [34]. All three transporters are encoded together with an operon for a two-component regulatory system, BecRS, PsdRS and YxdlJK, respectively, which controls expression of its corresponding transporter operon [20,31,35].

To obtain a recipient strain that is well suited for the study of resistance mechanisms against cell wall antibiotics from E. faecalis and potentially also other genetically intractable Gram-positive bacteria, we therefore created unmarked deletions of all three entire genetic loci, becRS-becAB, psdRS-psdAB and yxdlJK-yxdlLM-\textit{yxeA}, which is a gene of unknown function that may form a transcriptional unit with \textit{yxdlLM} and was therefore included in the deletion. To test for the absence of interference, we then introduced the \textit{bcrR} expression construct pES701 used above into the triple deletion strain, TMB1518. While our study was in progress, the Losick-laboratory developed a new reporter system for \textit{B. subtilis}, based on the bacterial luciferase operon \textit{luxABCDE}, which allows time-resolved, semi-automated analyses of transcriptional promoter fusions [23,36]. To test the applicability of this reporter for our purposes, we inserted the BcrR target promoter \textit{P}_{\text{bcrR}} upstream of the \textit{lux} operon and introduced this construct into the triple deletion strain harbouring BcrR. At high expression levels of BcrR due to induction by xylose, addition of bacitracin to growing cultures of this strain resulted in a rapid, response, with a more than ten-fold increase of promoter activity within 5 min after addition of 1 \text{ug ml}^{-1} \text{bacitracin} (Fig. 2A). Only background luminescence (ca. 10^3 relative luminescence units (RLU) per OD) was observed in the absence of bacitracin or in a strain lacking BcrR (Fig. 2A and data not shown). Analysis of promoter activities 30 min post-induction showed a similar dose-response behaviour (Fig. 2B) compared to the corresponding \textit{lacZ} reporter strain shown above (Fig. 1B). While the threshold concentration for induction appeared slightly increased for the \textit{P}_{\text{luxR-lux}} construct, possibly due to different growth conditions in 96-well plates compared to test-tubes, the maximal amplitude of induction was approximately doubled to over 500-fold, which can most likely be attributed to the very low background luminescence obtained with luciferase assays. Therefore both the \textit{lacZ} and \textit{lux} reporters are equally suitable to determine dose-response behaviours of regulatory systems, while the \textit{lux} reporter offers higher sensitivity and additionally allows time-resolved analyses for dynamic studies.

To test if the cellular protein levels of a one-component regulator like BcrR affected the promoter induction behaviour, the same experiments were also carried out in the absence of xylose, relying on the basal activities of the \textit{P}_{\text{luxR}} promoter for \textit{bcrR} expression (Fig. 2C and D). Under these conditions, the maximal promoter activities were reduced approximately eight-fold (p = 0.0003). Considering that the difference in \textit{P}_{\text{luxR}} activity in the presence and absence of xylose is ten-fold under the conditions used here [36], this difference in BcrR-activity is likely directly due to a reduced copy number of \textit{bcrR} in the cell. However, the dose-response behaviour was again similar to previous results, with a threshold concentration for induction in the range of 0.03 to 0.1 \text{ug ml}^{-1} \text{bacitracin}. Thus the overall function of BcrR was robust to changes in expression, with differences in protein levels merely affecting the amplitude of induction but not the response to the stimulus.

Qualitative activity assays on solid media for screening applications

To elucidate the molecular mechanisms of stimulus perception and signal transduction in regulatory systems, random or site-directed mutagenesis is often used. Particularly in the case of random mutagenesis approaches, but also for (synthetic) DNA-libraries, assays performed on solid media greatly facilitate screening of large numbers of clones. To evaluate the \textit{lacZ} and \textit{lux} reporters for such applications, the derived \textit{BcrR/P}_{\text{bcrR}} reporter strains were streaked onto agar plates in the absence or presence of bacitracin. Strains harbouring the \textit{P}_{\text{bcrR-lacZ}} fusions showed a blue colouration on \textit{XGal}-containing agar plates in the presence of inducing concentrations of bacitracin, but remained white in its absence (Fig. 3A and B). As observed before in the quantitative assays, presence of the transporters BecAB or BcrAB diminished the intensity of colouration (Fig. 3B, sectors 1 and 2). In the strain possessing both transporters, bacitracin concentrations of at least 10 \text{ug ml}^{-1} were required to produce blue colonies (data not shown), consistent with the low promoter activities reported above for this strain. The reporter strain harbouring BcrR and the \textit{P}_{\text{luxR-lux}} construct showed strong luminescence when grown on agar plates containing 0.3 \text{ug ml}^{-1} bacitracin, and no detectable luminescence in its absence (Fig. 3C and D).

Both reporter constructs are therefore suitable for screening libraries of clones for promoter induction and are applicable for high-throughput approaches. In principle, screens for loss-of-function as well as gain-of-function mutations can be performed, depending on experimental design. This set-up offers a great advantage over studies performed directly in \textit{E. faecalis}, where it is much more difficult to obtain large numbers of transformants than in the naturally competent \textit{B. subtilis}. Importantly, the output of both promoters is sufficiently sensitive to allow assays to be performed at sub-lethal concentrations of the antibiotic, at least in the case of the Bcr-system. The feasibility of this approach was recently demonstrated in a study that identified essential residues in the \textit{B. subtilis} bacitracin resistance transporter BecAB [29], and the same strategy should be applicable to the heterologous set-up described here.

Functional transfer of the VanSR-VanRB two-component system to \textit{B. subtilis}

Following successful transfer of the Bcr-system of \textit{E. faecalis} to \textit{B. subtilis}, we next wanted to test if our set-up could be applied to other regulatory systems. The two-component system VanS-VanR regulating VanA-type vancomycin resistance had previously been shown to be functional in \textit{B. subtilis} [1]. However, heterologous expression of \textit{vanR} encoding the regulatory system for VanB-type resistance had resulted in constitutive expression of the target promoter, \textit{P}_{\text{vanA}}; and the authors could show that this was due to constitutive activity of the sensor kinase VanS\textsubscript{2}, under the conditions chosen [18]. To test if vancomycin-dependent modulation of \textit{VanS} activity could be obtained by optimization of conditions, we introduced an expression construct of the \textit{vanS\textsubscript{2}} operon under control of the xylose-inducible promoter \textit{P}_{\text{xylo}} into TMB1518. The activity of the two-component system was monitored as activation of a \textit{P}_{\text{xylo-lux}} transcriptional fusion. In the absence of xylose, only low levels of the two-component system will be produced in the cell, due to basal promoter activity of \textit{P}_{\text{xylo}}. Under these conditions, addition of increasing concentrations of vancomycin to growing cultures of the reporter strain led to a gradual up-regulation of promoter activity (Fig. 4A). Importantly, and in contrast to previous data, only background activity was observed in the absence of vancomycin.
circles) or 1 m

unmarked deletion of
targeted fashion in
mechanisms. Promising results can then be validated in a more
of ligand binding sites and thus to elucidation of sensory
libraries, or chimeric protein fusions, which may lead to discovery
high-throughput screening of random mutants, synthetic DNA
The high degree of competence of
investigations into the respective modes of vancomycin detection.
heterologous set-up and paves the way for detailed mechanistic
resistance shown here, validates the biological relevance of the
of VanA-type resistance described previously [1] and VanB-type
both
levels have to be adjusted for optimal signal-to-background ratios.
for both the wild-type and TMB1518 (Table 3), and therefore
higher concentrations were not tested. In the previous study,
promoter activities were analysed only in the presence of xylose to
ensure high expression levels of the two-component system [18],
which may have led to the high basal activities observed. We
therefore next repeated the induction experiments, but in the
presence of 0.2% xylose, and indeed found ten-fold increased
promoter activities in the absence of vancomycin (Fig. 4B).
Vancomycin-dependent induction was still observed, but only to a
maximum of ten-fold over the uninduced control, due to the
higher basal activity.

Together with previously published reports [1,18], our data
show that the regulators of vancomycin resistance in E. faecalis can
be functionally produced in B. subtilis, although the expression
levels have to be adjusted for optimal signal-to-background ratios.
The full functionality of the VanRS two-component systems, both
of VanA-type resistance described previously [1] and VanB-type
resistance shown here, validates the biological relevance of the
heterologous set-up and paves the way for detailed mechanistic
investigations into the respective modes of vancomycin detection.
The high degree of competence of B. subtilis, for example, allows
high-throughput screening of random mutants, synthetic DNA
libraries, or chimeric protein fusions, which may lead to discovery
of ligand binding sites and thus to elucidation of sensory
mechanisms. Promising results can then be validated in a more
targeted fashion in E. faecalis.

Additionally, Bisicchia and colleagues had reported that
vancomycin resistance could be imparted on B. subtilis by
expression of the VanB-type resistance operon vanYBWHBBXB,
and a maximum induction of ca. 500-fold was
2
m

was 0.01 m

mg l

2
1, and a maximum induction of ca. 500-fold was
2
m

for vancomycin was determined as 0.25 m

mg l

1 (solid squares), and luminescence normalized to optical density (RLU/OD) was monitored. (A, C) Time-course of promoter
induction over 60 min after bacitracin-challenge. (B, D) Dose-response at 30 min post-induction; the time point is labelled with the arrow in the
panels above. Results are shown as the mean and standard deviation of three biological replicates.
doi:10.1371/journal.pone.0093169.g002

Conclusions

In summary we here show that B. subtilis is well suited to the use
as a host for functional production of regulatory systems that
control resistance against cell wall active compounds in E. faecalis.
Our data also show that care has to be taken regarding the genetic
background of the host strain and that appropriate expression
levels of the regulator genes have to be experimentally determined.
Due to the availability of a range of inducible and constitutive
promoters, for which strength and dynamic behaviour are very
well characterized [36], B. subtilis offers a vast potential for
optimization of expression levels, again supporting its suitability as
a versatile heterologous host. Full functionality of any newly
introduced system should of course be validated by comparison of
its behaviour between B. subtilis and the native host before detailed
mechanistic investigations are commenced.

To minimize interference from intrinsic resistance determinants
against antimicrobial peptides, we have constructed a B. subtilis
strain devoid of the most efficient systems. This strain should
provide a clean genetic background for the study of a broad range
of resistance mechanisms against cell wall active substances,
particularly regarding their regulation. In addition to one-
component regulation of bacitracin resistance and two-component
regulation of vancomycin resistance implemented here, we have
successfully applied this set-up to the functional reconstitution of a
more complex regulatory and resistance network [37]. It should be
noted that the response of *B. subtilis* to antibiotics in general is among the best understood of all bacteria investigated to date [38]. This plethora of available data therefore constitutes an ideal basis for construction of new sensitive recipient strains adapted to the study of resistance and regulatory systems also for other classes of antimicrobials.

Further, we showed that the two reporters, *lacZ* and *luxABCDE*, can both be used for qualitative (high-throughput) screening approaches, for example of random libraries, as well as for the quantitative characterization of regulators. Complementation studies with random or directed mutations can thus be initiated in the genetically accessible, highly competent host *B. subtilis*. Construction of the desired heterologous strains will be further aided by a recently established and fully validated tool-box of vectors, promoters, reporters and epitope-tags for engineering of *B. subtilis* [36]. We therefore envisage that the system developed here will aid investigations into the molecular mechanisms of sensory perception of antimicrobials and subsequent signal transduction, the first essential step of antibiotic resistance. Furthermore, this set-up should also be applicable to the study of unrelated resistance systems or even regulatory cascades of diverse functions from other genetically intractable Gram-positive bacteria.

**Acknowledgments**

The authors would like to thank Richard Losick for supplying vector pAH328.

**Author Contributions**

Conceived and designed the experiments: SG TM GC. Performed the experiments: CF ES. Analyzed the data: CF ES SG. Wrote the paper: SG CF.

**References**


bcrABDR


leading to increased levels of resistance to glycopeptide antibiotics in VanB-type

sufficient to confer high-level bacitracin resistance. International Journal of

S. aureus


petiümen M (2005) Cationic antimicrobial peptides elicit a complex stress

response in Bacillus subtilis that involves ECF-type sigma factors and two-
doi:10.1099/micro.0.27761-0.


as the inducer of expression for the cognate ABC transporter YaeJM.

microbiology. 151: 315–325.

Hiron A, Falder M, Valle J, Débarbouillé M, Maeck T (2011) Bacitracin

and nisin resistance in Staphylococcus aureus: a novel pathway involving the


Gebhard S, Mascher T (2011) Antimicrobial peptide sensing and detoxification


replacement in naturally nontransformable, low-GC-content, Gram-positive


antimicrobial susceptibility tests for bacteria that grow aerobically: 1–94.

Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor, NY:
Cold Spring Harbor Laboratory Press.

two-component regulatory system induces expression of the bacitracin


important for resistance and signalling within the antimicrobial peptide


Kington AW, Liao X, Helmann JD (2013) Contributions of the σEW, σEI, and
σR regulons to the laminibiotic resistance of Bacillus subtilis. Mol Microbiol.

31. Staron A, Fankreiine DE, Mascher T (2011) Peptide antibiotic sensing and
detoxification modules of Bacillus subtilis. Antimicrob Agents Chemother 55:

32. Hiron A, Falder M, Valle J, Débarbouillé M, Msadek T (2011) Bacitracin and
nisin resistance in Staphylococcus aureus: a novel pathway involving the


34. Pietiümen M (2005) Cationic antimicrobial peptides elicit a complex stress
response in Bacillus subtilis that involves ECF-type sigma factors and two-
doi:10.1099/micro.0.27761-0.


as the inducer of expression for the cognate ABC transporter YaeJM.

Bacillus BioBrick box: generation and evaluation of essential genetic building blocks for

ABC transporter, BceAB, in Bacillus subtilis. Mol Microbiol. doi:10.1111/j.1365-
2958.2011.07735.x.

Bacillus BioBrick box: generation and evaluation of essential genetic building blocks for


Bacillus BioBrick box: generation and evaluation of essential genetic building blocks for

Identification and characterization of a bacitracin resistance network in

42. Wecke T, Mascher T (2011) Antibiotic research in the age of omics: from
expression profiles to interspecies communication. Journal of Antimicrobial

from transgenic mouse DNAs into Escherichia coli methylation-restriction

susceptibility studies of vancomycin-resistant Enterococcus faecalis. Antimicrob