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SigF is an alternative sigma factor that is highly conserved among species of the genus Mycobacterium. In this
study we identified the SigF regulon in Mycobacterium smegmatis using whole-genome microarray and promoter
consensus analyses. In total, 64 genes in exponential phase and 124 genes in stationary phase are SigF dependent
(P < 0.01, >2-fold expression change). Our experimental data reveal the SigF-dependent promoter consensus
GTTT-N;5_;7,-GGGTA for M. smegmatis, and we propose 130 potential genes under direct control of SigF, of which
more than 50% exhibited reduced expression in a AsigF strain. We previously reported an increased susceptibility
of the AsigF strain to heat and oxidative stress, and our expression data indicate a molecular basis for these
phenotypes. We observed SigF-dependent expression of several genes purportedly involved in oxidative stress
defense, namely, a heme-containing catalase, a manganese-containing catalase, a superoxide dismutase, the star-
vation-induced DNA-protecting protein MsDps1, and the biosynthesis genes for the carotenoid isorenieratene. Our
data suggest that SigF regulates the biosynthesis of the thermoprotectant trehalose, as well as an uptake system for
osmoregulatory compounds, and this may explain the increased heat susceptibility of the AsigF strain. We identified
the regulatory proteins SigH3, PhoP, WhiB1, and WhiB4 as possible genes under direct control of SigF and propose
four novel anti-sigma factor antagonists that could be involved in the posttranslational regulation of SigF in M.
smegmatis. This study emphasizes the importance of this sigma factor for stationary-phase adaptation and stress

response in mycobacteria.

The success of Mycobacterium tuberculosis as a pathogen can
be attributed to its capacity to adapt to environmental changes
throughout the course of infection. These changes include
nutrient deprivation, hypoxia, various exogenous stress condi-
tions, and the intraphagosomal environment. A large cohort of
genes that facilitate this adaptation has been identified, and
among them are many genes for transcriptional regulators such
as sigma factors that modulate gene expression in response to
different physiological cues. Sigma factors interact with the
RNA polymerase to allow binding to specific promoter se-
quences and initiation of gene transcription. Mycobacteria har-
bor sigma factors of only the ¢’ family, which fall into four
different categories. SigA (group 1) is the essential primary
sigma factor in mycobacteria, and SigB (group 2) is its nones-
sential paralog. SigF (group 3) and extracytoplasmic function
(ECF) sigma factors (group 4) are alternative sigma factors,
which allow adaptation to a wide range of internal and external
stimuli. Alternative sigma factors vary considerably in type and
numbers between species, mirroring their different require-
ments for stress response (15).

Thirteen sigma factors have been identified in M. tuberculo-
sis (23, 29). Eleven of these are classified as alternative sigma
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factors, and many of them are recognized as virulence deter-
minants. Loss of the alternative sigma factor SigF decreased
the virulence of M. tuberculosis in mice (5) and disease-asso-
ciated tissue damage in mice (13) as well as guinea pigs (20).
Loss of SigF also leads to an altered cell wall composition due
to a lack of virulence-related sulfolipids (13), and overexpres-
sion of sigF" has been shown to affect the regulation of other
cell wall-associated proteins involved in host-pathogen inter-
action (40).

SigF was originally thought to be absent in nonpathogenic,
fast-growing mycobacteria such as Mycobacterium smegmatis
(9). However, it has since become clear that SigF is well con-
served among mycobacteria (30, 31) and regulates more than
just virulence. While SigF is related to stress response and
sporulation sigma factors in other bacteria (8), its role as a
stress and stationary-phase sigma factor in M. tuberculosis is
under debate (40).

In M. smegmatis, loss of sigF’ increases susceptibility to oxi-
dative stress, acidic pH, and heat shock (12) and disables the
synthesis of protective carotenoids (28). This suggests that SigF
mediates a general stress response. However, there is still a
paucity of basic knowledge pertaining to the SigF-regulated
genes and how SigF fits into the regulatory network of sigma
factors. Twenty-seven sigma factors have been proposed for M.
smegmatis (35, 38). This is twice the number of sigma factors
found in M. tuberculosis and possibly reflects the larger genome
size and the more variable environments to which this species
is required to adapt. Based on this observation, it has been
suggested that the regulatory circuits involving SigF will differ
between tuberculous and environmental mycobacteria given
the different natures of their environments (31), but data on
the regulation of SigF activity in M. smegmatis are lacking.
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In this study we report on the SigF regulon of M. smegmatis
during exponential- and stationary-phase growth. We propose
a new SigF promoter consensus for M. smegmatis based on our
experimental data, and we identify novel target genes under
the direct control of this sigma factor. We provide a rationale
for the phenotypes of the AsigF strain observed in previous
stress challenge experiments and propose candidate genes in-
volved in the posttranslational regulation of SigF in M. smeg-
matis.

MATERIALS AND METHODS

Bacterial strains and growth conditions. Mycobacterium smegmatis strain
mc?155 (33) and an isogenic sigF (MSMEG_1804) deletion strain (12) were
routinely grown in batch culture in Luria-Bertani broth supplemented with
0.05% (wt/vol) Tween 80 (LBT) at 37°C on a rotary shaker at 200 rpm. Genta-
micin was added to a final concentration of 5 pg ml~! where required. Culture
growth was monitored by measuring the optical density at 600 nm (ODg).
Samples were diluted in saline (8.5 g/liter NaCl) to bring the ODyg, to below 0.5
when measured in cuvettes with a 1-cm light path length in a Jenway 6300
spectrophotometer. Starter cultures were grown to exponential phase (ODgq, =
0.5 *= 0.2) and used immediately to inoculate 100 ml fresh LBT in 1-liter flasks
to an initial ODyg, of 0.005.

Cell harvest. Batch cultures were harvested in exponential phase (n = 0.26 =
0.04 h™') and stationary phase (n = 0.07 = 0.01 h™!) using cold glycerol-saline
(36). In brief, cultures were mixed with 2 volumes of cold glycerol-saline (3:2
[volfvol]; —20°C) and centrifuged for 20 min at 10,000 X g and —20°C. After
centrifugation, the supernatant was decanted and the cells were resuspended in
1 ml glycerol-saline (1:1 [vol/vol]; —20°C), snap-frozen in a dry-ice/ethanol bath,
and stored at —80°C.

RNA extraction. Total RNA was extracted with TRIzol (Invitrogen, Carlsbad,
CA) following the manufacturer’s recommendations. Frozen samples (—80°C)
were centrifuged for 15 min at 13,000 X g and 4°C. Cells were resuspended in 1
ml TRIzol reagent and disrupted using 0.5-ml zirconium beads (0.1-mm diam-
eter) in a Mini-BeadBeater (BioSpec Products, Bartlesville, OK) at 5,000 oscil-
lations per min for three cycles of 30 s. The samples were chilled on ice for 30 s
after each cycle. At the end of the extraction procedure, RNA pellets were air
dried and redissolved in 50 pl diethyl pyrocarbonate (DEPC)-treated ultrapure
water. Remaining DNA was removed with Turbo DNase (Applied Biosystems/
Ambion, Austin, TX) following the manufacturer’s instructions. RNA quality
was assessed by electrophoresis on a standard 1% agarose gel, and RNA quantity
was determined with a NanoDrop ND-1000 spectrophotometer (Thermo Fisher
Scientific, Waltham, MA).

Microarray resources. Glass slide DNA microarrays with 7,736 unique 70-mer
oligonucleotides (spotted in triplicates) representing every open reading frame
(ORF) of the M. smegmatis mc>155 genome were acquired from the Pathogen
Functional Genomics Resource Center (PFGRC) established by NIAID/JCVI
(http://pfgre.jevi.org). Standard operating procedures (SOP) for RNA labeling
and array hybridization as well as layout and annotation files for the microarray
were downloaded from the PEFGRC website. The open-source free TM4 software
suite (www.tm4.org) was used for microarray analysis.

Synthesis/labeling of cDNA. Mycobacterial RNA was aminoallyl (aa) labeled
according to SOP M007 from PFGRC. In brief, cDNA was first reverse tran-
scribed from 5 ug extracted total RNA using 3 pg random primers and Super-
Script IIT reverse transcriptase (both from Invitrogen) with a 25 mM aa-dUTP
labeling mix (2:3 aa-dUTP to dTTP). The 5-(3-aminoallyl)-dUTP was purchased
from Sigma-Aldrich (St. Louis, MO). Synthesized cDNA was then coupled to
either cyanine-3 or cyanine-5 (Cy-3/Cy-5) fluorescent dyes (GE Healthcare Bio-
Sciences, Little Chalfont, United Kingdom) for 1 1/2 h. The concentration of
c¢DNA and incorporation of dyes were measured with a NanoDrop ND-1000
spectrophotometer. Labeled probes were mixed and prepared as recommended
for immediate hybridization to the microarray.

Microarray hybridization. The microarrays were hybridized according to SOP
MO008 from PFGRC except that slides were handled individually in 50-ml conical
tubes instead of Coplin jars. In brief, slides were blocked for at least 2 h and
washed with filtered (0.22-wm) ultrapure water, followed by a final wash with
isopropanol. Wet slides were centrifuged dry for 10 min at 800 X g at room
temperature. Slides were then immediately hybridized with the prepared samples
and incubated for at least 18 h. After hybridization, slides were washed, centri-
fuged dry as described above, and immediately scanned. Wash buffers were
filtered (0.22 wm) prior to use. Hybridizations comparing wild-type and AsigF

J. BACTERIOL.

TABLE 1. Primer pairs for selected genes for real-time PCR

Locus Gene Primer sequence (5" — 3')

MSMEG_1804  sigF GCTCAAGGAACTCCACTTGC (forward)

GATGGACAGCGTGTTGTACG (reverse)
MSMEG_2758  sigA GAAGACACCGACCTGGAACT (forward)
GACTCTTCCTCGTCCCACAC (reverse)
MSMEG_2927

opuCB  TCTGTCGTTCCTCGCCTATC (forward)

AAACCGAAGAACACCAGCAT (reverse)
MSMEG_6213  mcat GGCAAGGACGAGATAATCCA (forward)
TCGTCGGTGAACTGTTTGAG (reverse)
MSMEG_6232  katA GCAGACCCATCTGGTCAAGT (forward)
AGTTCCCATTCCGGGTAGTC (reverse)
MSMEG_6467  dpsl ACAACGATCTGCATCTGACG (forward)
GTCACGCTCGACGGAGTAGT (reverse)
MSMEG_6515  treS GGCGACTTCTACGTCTGGAG (forward)
CGGGTTGTCGTAGTTGAGGT (reverse)

strains in both exponential and stationary phases were repeated in four biological
replicates including dye swaps.

Image acquisition. Slides were scanned using an Axon GenePix4000B microar-
ray scanner (Molecular Devices, Sunnyvale, CA) at a 10-pm pixel size and
autoadjusted photomultiplier (PMT) gain. Fluorescences at 532 nm (Cy3) and
635 nm (Cy5) were measured simultaneously and saved in separate 16-bit gray-
scale TIFF images, which were then analyzed with the TM4 programs Spotfinder,
MIDAS, and MEV.

Data analysis. Spots were identified with the fixed-circle segmentation method
and quantified with 5% top background cutoff in Spotfinder (version 3.1.1). The
spot signal intensities were normalized in MIDAS (version 2.19) using total array
intensity and the LOWESS algorithm options. The gene expression ratio (n-fold
change from AsigF strain to wild type) was calculated from the normalized signal
intensities and averaged for each set of biological replicates. Ratios were tested
for significance (P < 0.05 and P < 0.01) with a one-sample ¢ test in MeV (version
4.3.02).

Quantitative real-time PCR. The gene expression ratios detected by microar-
ray analysis were confirmed by quantitative real-time PCR (qRT-PCR). Selected
genes and primer pairs are listed in Table 1. Gene sequences were retrieved from
JCVI/CMR (http://cmr jevi.org/tigr-scripts/ CMR/GenomePage.cgi?database =gms).
Total RNA (1 pg) from stationary-phase batch cultures of M. smegmatis mc>155
wild-type and AsigF strains was reverse transcribed with random primers (1 pg)
and SuperScript III reverse transcriptase (both from Invitrogen) according to the
manufacturer’s protocol. Real-time PCR was performed using a SYBR green
assay (Invitrogen) and optimized primer concentrations in a 7500 fast real-time
PCR system (Applied Biosystems, Foster City, CA). Relative gene expression
was determined from calculated threshold cycle (C;) values using MSMEG_2758
(sigA) as an internal normalization standard. n-fold changes were tested for
significance with a Student ¢ test.

Promoter search. Of 134 SigF-dependent genes (microarray analysis under
standard growth conditions; P < 0.01, gene expression ratio r < 0.5), the 400-bp
regions immediately 5’ to the annotated start codons were scanned visually for
sequences similar to the SigF-dependent promoter upstream of MSMEG_1802
identified in our previous study (12). Such a sequence was found in 49 of these
regions. For use as training sets, three separate sets, each containing all 49
promoters, were generated by adjusting the spacing between the —10 and —35
elements to 15 bp, 16 bp, or 17 bp, respectively, by deleting bases before the —10
region or by inserting an “N.” These three sets were then used in separate
analyses to create a custom position weight matrix (PWM) for a virtual footprint
analysis of the M. smegmatis genome using PRODORIC (24) (http://prodoric.tu
-bs.de). Search parameters were adjusted to ensure that a minimum of 80% of
the training set promoters were recovered. For the 16-bp and 17-bp spacing sets,
the settings were as follows: sensitivity = 0.7, core sensitivity = 0.6, and core
size = 5. For the 15-bp spacing set, the settings were as follows: sensitivity = 0.8,
core sensitivity = 0.6, and core size = 5. Only hits within 300 bp 5’ of an
annotated start codon (JCVI/CMR) were considered. Of promoters identified by
more than one of these analyses, the hits with the lower PWM score were
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TABLE 2. SigF-dependent gene expression (P < 0.01) in M.
smegmatis grown in LB-Tween batch cultures

No. of genes with expression

SigF-dependent in AsigF strain®:

Mean growth rate p,

= enes
h™", = SD (ODgg) (Pg< 0.01) Reduced Increased
(ratio of <0.5) (ratio of >2)
0.25 £ 0.02 (0.4 = 0.05) 218 62 (11) 33
0.07 £ 0.01 (4.0 = 0.2) 239 122 (71) 2(2)

“ The ratio is that of AsigF strain to wild-type gene expression. Genes unique
to the growth phase are in parentheses.

removed, leaving a list of 130 genes. To generate a consensus sequence, all 130
identified promoters, plus the 12 promoters of the training set that were not
recovered by the virtual footprint analysis, were adjusted to a spacing of 16 bp as
before. This set was then used to create a sequence logo of the SigF promoter
consensus using the WegLogo tool (7) (http://weblogo.berkeley.edu/logo.cgi).
Microarray data accession number. All data have been deposited at the
Gene Expression Omnibus (GEJO, NCBI) under accession number GSE19145.

RESULTS AND DISCUSSION

To determine the genes of M. smegmatis mc*155 that are
regulated by the alternative sigma factor SigF, a genome-wide
gene expression study was conducted for wild-type M. smeg-
matis mc?155 and an isogenic AsigF mutant (12) using microar-
ray analysis. Comparing these two strains, 218 and 239 genes
were differentially regulated (P < 0.01) in exponential- and
stationary-phase cells, respectively (Table 2). Using a threshold
value of a >2-fold difference in gene expression, the data
revealed 65 genes in exponential-phase cells and 124 genes in
stationary-phase cells under SigF control (Table 3). The ma-
jority of these genes showed reduced expression in the AsigF
strain, in accordance with SigF as an initiator of gene tran-
scription. Only 3 of the 65 genes in exponential phase and 2 of
the 124 genes in stationary phase had a higher expression
signal in the AsigF strain. Of the 124 SigF-dependent genes in
stationary-phase cells, 73 genes were exclusively identified in
this growth stage, while 51 genes showed reduced expression
in exponential and stationary phases. Only 14 genes were
unique to the exponential-phase SigF regulon. The entire ex-
pression data can be found in Data Set S1 in the supplemental
material. To validate the microarray results, we performed
real-time PCR on selected genes (Fig. 1). Expression ratios
showed the same trend for all genes and were significantly
different from 1 (P < 0.01).

An improved SigF promoter consensus for M. smegmatis.
Previous studies have identified two genes directly regulated by
SigF in M. smegmatis: chaB of the sigF operon (12) and crtI of
the carotenoid synthesis gene cluster (28). The promoter motif
preceding both genes is identical to the SigF consensus se-
quence of M. tuberculosis (13). A further 104 SigF-regulated
genes have been proposed by an in silico analysis of the M.
smegmatis genome based on the SigF consensus sequence of
M. tuberculosis (28). However, only 12 genes of this theoretical
regulon, in addition to chaB and crtl, proved to be SigF de-
pendent (P < 0.01) in our study, which accounted for fewer
than 4% of the identified genes.

We used our microarray data to conduct a promoter motif
search tailored to M. smegmatis. Using the SigF-dependent
promoter upstream of MSMEG_1802, mapped in our previous

ROLE OF M. SMEGMATIS SigF REGULON IN STRESS ADAPTATION 2493

study (12), 400 bp upstream of the annotated start codon of
134 SigF-dependent genes (P < 0.01 and r < 0.5 only) were
visually checked for sequence similarities. Forty-nine possible
candidate genes were found. The spacing between the —10 and
—35 elements varied between 14 and 19 bp, but the majority of
promoters had a spacing of 15 to 17 bp (Fig. 2A). All 49
promoters were therefore adjusted to 15, 16, or 17 bp and used
as separate training sets to create custom position weight ma-
trices for virtual footprint analysis using the PRODORIC tool
(24) as described in Materials and Methods. A total of 477
sequence hits were obtained, of which 153 were located within
300 bp 5’ of an annotated start codon. Of promoters identified
more than once, the hits with the lower PWM score were
removed, which led to a data set of 130 separate promoters. Of
these, 62 had a spacing of 15 bp, 49 had a spacing of 16 bp, and
19 had a spacing of 17 bp (Table 4). Seventy percent of pro-
moters were located within 100 bp of the annotated start codon
(Fig. 2B).

A position weight matrix of the identified promoters was
created and a sequence logo for the resulting SigF consensus
generated using the WebLogo tool (7) as described in Mate-
rials and Methods. This consensus for SigF-dependent promot-
ers in M. smegmatis was identified as GTTT-N;5_,,-GGGTA
(Fig. 2C).

Of the 130 genes identified here, 20 had previously been
proposed by Provvedi and colleagues (28) to be directly rec-
ognized by SigF, but for 6 of these the predicted promoter site
differs from the site predicted by our analysis. Our consensus is
supported by experimental data: 72 of the 130 genes show a
significant reduction in expression (P < 0.05) in the AsigF
strain in exponential- and/or stationary-phase cells. The re-
maining 58 genes carry the identified SigF promoter consensus
but were not differentially expressed. They are most likely part
of specific SigF-regulated stress response regulons or could
represent false-positive hits.

SigF regulates genes with purported roles in oxidative stress
response and pigment production. A phenotypic characteristic
well established for the M. smegmatis AsigF strain is its pro-
nounced sensitivity to hydrogen peroxide (12, 28). The protec-
tion against reactive oxygen species in pathogenic mycobacte-
ria has attracted much attention due to its implication in
survival within the host. The main detoxifying enzymes, cata-
lase-peroxidase, KatG, and the alkyl hydroperoxide reductase
AhpC, are conserved and well studied across the genus (16).
However, none of these enzymes appear to be involved in the
SigF-mediated hydrogen peroxide resistance (12). Accord-
ingly, the katG and ahpC genes were SigF independent in the
present study.

Our analysis revealed a number of alternative genes that could
play a role in oxidative stress resistance in M. smegmatis. SigF
regulates the expression of two potential H,O,-detoxifying en-
zymes: the heme-containing catalase KatA (MSMEG_6232) and
a manganese-containing catalase (MSMEG_6213). Expression of
both genes was 20-fold decreased in stationary-phase cells (P <
0.01) and 3-fold decreased in exponential-phase cells (P < 0.05)
in the AsigF strain relative to the wild type. Neither of these
catalases is found in other mycobacteria, except for a homolog of
MSMEG_6213 in M. avium. Both enzymes supply M. smegmatis
with an alternative route of hydrogen peroxide degradation,
which is not available to other mycobacteria. Additionally, we
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TABLE 3. SigF regulon (P < 0.01) in M. smegmatis grown in LB-Tween batch cultures

Expression in

Gene category AsigF strain Locus Gene product
SigF-regulated genes exclusive to Decreased” MSMEG 0266  Arginine decarboxylase
stationary phase (n = 0.07 = MSMEG_0267  Esterase
0.01 h™ ") MSMEG 0536  Intracellular protease, Pfpl family protein

MSMEG_0600  Dehydrogenase

MSMEG 0637  Iron-sulfur binding oxidoreductase

MSMEG_0670  FAD-dependent oxidoreductase

MSMEG_0671  S-(Hydroxymethyl)glutathione dehydrogenase

MSMEG_0684  Aldehyde oxidase and xanthine dehydrogenase, molybdopterin binding

MSMEG 0963  Hypothetical protein

MSMEG_1112  Aconitate hydratase, putative

MSMEG_1315  Small conductance mechanosensitive ion channel (MscS) family
protein

MSMEG 1358  Conserved hypothetical protein

MSMEG_1605  Phosphate transport system regulatory protein PhoU

MSMEG 1766 ~ Conserved hypothetical protein

MSMEG_1767  Conserved hypothetical protein

MSMEG 1768  Conserved hypothetical protein

MSMEG_1769  UsfY protein

MSMEG_1775 Cytochrome P450 monooxygenase

MSMEG_1781 Hypothetical protein

MSMEG 1783  Hypothetical protein

MSMEG_1787  RsbW protein

MSMEG 1792  Conserved hypothetical protein

MSMEG_1794  Dehydrogenase

MSMEG_1801 Hypothetical protein

MSMEG_2160  Hypothetical protein

MSMEG 2344 Dehydrogenase

MSMEG_2345  Lycopene cyclase

MSMEG 2346 Phytoene synthase

MSMEG_2347  Phytoene dehydrogenase

MSMEG 2376  Conserved hypothetical protein

MSMEG_2913  Hydrolase

MSMEG_2925 Permease membrane component

MSMEG_2926  Glycine betaine/carnitine/choline transport ATP binding protein
OpuCA

MSMEG_3184  Malto-oligosyltrehalose trehalohydrolase

MSMEG 3186 Glycogen-debranching enzyme GlgX

MSMEG_3304  Succinate semialdehyde dehydrogenase

MSMEG 3311  Acyl carrier protein

MSMEG_3418  Conserved hypothetical protein

MSMEG 3536 Sugar transport protein

MSMEG_3541 Cytochrome ¢ biogenesis protein transmembrane region

MSMEG 3543 Soluble secreted antigen MPTS53

MSMEG_3560  Conserved hypothetical protein

MSMEG 3673 4-Alpha-glucanotransferase

MSMEG_4195  Conserved hypothetical protein

MSMEG 4562  Conserved hypothetical protein

MSMEG_4993  Hypothetical protein

MSMEG 5342  Conserved hypothetical protein

MSMEG_5343  Conserved hypothetical protein

MSMEG_5400 Dehydrogenase

MSMEG_5542  Transcriptional regulator, HTH_3 family protein

MSMEG 5590  Carboxylate-amine ligase Nfa27300

MSMEG_5606  Cytochrome bd-I oxidase subunit IT

MSMEG 5616  Glyoxalase/bleomycin resistance protein/dioxygenase

MSMEG_5721  Acetyl coenzyme A acetyltransferase

MSMEG 5826 Pyruvate decarboxylase

MSMEG_5936  Conserved hypothetical protein

MSMEG 6210  Conserved hypothetical protein

MSMEG_6213  Manganese-containing catalase

MSMEG 6232 Catalase KatA

MSMEG_6305  Conserved hypothetical protein

MSMEG 6354 Serine esterase, cutinase family protein

MSMEG_6355  Hypothetical protein

MSMEG_6501 Hypothetical protein

MSMEG_6541  Anti-sigma factor antagonist

MSMEG_6542 B12 binding domain protein

Continued on following page
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TABLE 3—Continued

Expression in

Gene category AsigF strain Locus Gene product
MSMEG 6612  ATPase, MoxR family protein
MSMEG_6615  hypothetical protein
MSMEG_6616  S-(Hydroxymethyl)glutathione dehydrogenase
MSMEG_6663  C5-O-methyltransferase
MSMEG 6727  Amino acid permease-associated region
MSMEG_6728  Conserved hypothetical protein
MSMEG 6751 Hypothetical protein
MSMEG_6767  Mycocerosic acid synthase
Increased” MSMEG 3297  Transcriptional regulator, CadC
MSMEG_5934  Conserved hypothetical protein
SigF-regulated genes exclusive to Decreased MSMEG_2343  Methylesterase
exponential phase (p = MSMEG 3254  RDD family protein, putative
0.25 = 0.02h™") MSMEG_3443  Hypothetical protein
MSMEG 5078 Glucose-1-phosphate adenylyltransferase
MSMEG_5117  Proline dehydrogenase
MSMEG 5119 1-Pyrroline-5-carboxylate dehydrogenase
MSMEG_5188  CAAX amino protease family protein
MSMEG 5189  Oxidoreductase
MSMEG_5335  Formamidase
MSMEG 5336  Amidate substrates transporter protein
MSMEG_5337  Putative regulatory protein, FmdB family
Increased MSMEG 2751 Hypothetical protein
MSMEG_3298  Response regulator receiver domain protein
MSMEG _3299 Putative oxidoreductase
SigF-regulated genes in both Decreased MSMEG 0451 Oxidoreductase, FAD linked
exponential and stationary MSMEG_0672  Conserved hypothetical protein
phases MSMEG_0685 Oxidoreductase, molybdopterin-binding subunit
MSMEG_0696  Alanine-rich protein
MSMEG _0697 Integral membrane protein
MSMEG_1076  Conserved hypothetical protein
MSMEG 1097  Glycosyl transferase, group 2 family protein
MSMEG_1558  Conserved hypothetical protein
MSMEG 1758  Hypothetical protein
MSMEG_1770  Conserved hypothetical protein
MSMEG _1771 Methylase, putative
MSMEG_1772  Conserved hypothetical protein
MSMEG 1773  Conserved hypothetical protein
MSMEG_1774  Conserved hypothetical protein
MSMEG 1777  UstY protein
MSMEG_1782  Oxidoreductase, short-chain dehydrogenase/reductase family
MSMEG 1788  Conserved hypothetical protein
MSMEG_1789  Conserved hypothetical protein
MSMEG 1790  Conserved hypothetical protein
MSMEG_1802  ChaB protein
MSMEG_1804 RNA polymerase sigma-F factor
MSMEG_1950  Conserved hypothetical protein
MSMEG_1951 Conserved domain protein
MSMEG_2112  Secreted protein
MSMEG 2115 Conserved hypothetical protein
MSMEG_2337  Isopentenyl-diphosphate delta-isomerase, type 2
MSMEG 2415 Hemerythrin HHE cation binding region
MSMEG_2830  ISMsm4, transposase
MSMEG 2924 Permease binding protein component
MSMEG_2927  ABC transporter, permease protein OpuCB
MSMEG 2958  Conserved hypothetical protein
MSMEG_3022  Transglycosylase-associated protein
MSMEG 3185 Putative maltooligosyl trehalose synthase
MSMEG_3255  DoxX subfamily protein, putative
MSMEG 3419  Hypothetical protein
MSMEG_3439  Hypothetical protein
MSMEG 4618  Isochorismatase family protein
MSMEG_5402  Dehydrogenase DhgA
MSMEG 5543  Hypothetical protein
MSMEG_5550  Protein-glutamate methylesterase
MSMEG 5617 Immunogenic protein MPT63

Continued on following page
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TABLE 3—Continued

Expression in

Gene category AsigF strain Locus Gene product
MSMEG 5722 Conserved hypothetical protein
MSMEG_5799  Nucleoside-diphosphate-sugar epimerase
MSMEG_6211 Hypothetical protein
MSMEG_6212  Hemerythrin HHE cation binding domain subfamily protein
MSMEG_6467 Starvation-induced DNA-protecting protein
MSMEG_6500  Conserved hypothetical protein
MSMEG _6579 Conserved hypothetical protein
MSMEG_6610  Protein of unknown function DUFS5S, putative
MSMEG_6665 Integral membrane protein
MSMEG_6819  Conserved domain protein

¢ AsigF strain/wild-type ratio of <0.5.
b AsigF strain/wild-type ratio of >2.

found the SigF promoter upstream of sod4 (MSMEG_6427),
encoding a superoxide dismutase, which is highly conserved in
mycobacteria.

MSMEG 6467, encoding a probable starvation-induced
DNA binding protein, MsDpsl, exhibited reduced expression
in the AsigF strain in both exponential phase (r = 0.04, P <
0.01) and stationary phase (r = 0.03, P < 0.01). Dps proteins
have been linked with oxidative stress resistance in bacteria
(1). MsDps1 was first identified in carbon-starved M. smegma-
tis cultures (17) and is preceded by promoter motifs recognized
by the sigma factors SigF and SigH (6). A homolog of this gene
can be found in other environmental mycobacteria (e.g., M.
avium, M. avium paratuberculosis, or M. kansasii). In B. subtilis
stress-induced production of Dps is controlled by SigB, which
is the functional equivalent to mycobacterial SigF (2).

Carotenoids are able to scavenge reactive oxygen species
(ROS) (42). M. smegmatis produces the yellow carotenoid
isorenieratene under light exposure and nutrient starvation
(28). The synthesis of this carotenoid was shown to be SigF
dependent in M. smegmatis ATCC 607, and the authors sug-
gested that this is a unique feature of that strain (28). However,
our study reveals that strain mc*155 also produces this carot-

enoid (Fig. 3) and that the expression of the corresponding
biosynthesis genes MSMEG_2343 to MSMEG _2347 is SigF
dependent (Table 3). All genes of the cluster showed de-
creased expression in the AsigF strain in both growth stages
(see Data Set S1 in the supplemental material). Supporting our
expression data, a difference in pigmentation was observed for
the mc?155 wild-type and AsigF strains when grown on LBT
agar plates under illumination (Fig. 3). The wild-type colonies
developed a distinct yellow color over the course of a week,
whereas the AsigF strain retained its white color (Fig. 3).
Complementation of the AsigF strain restored the original phe-
notype (data not shown).

Trehalose biosynthesis, osmoprotection, and heat stress.
The microarray data suggested that seven glycosidases in-
volved in the metabolism of trehalose and glycogen are under
SigF control. Trehalose is found in a number of bacteria, where
it is usually accumulated as an osmoprotectant or stored as an
additional carbon source in response to stress (3, 11). In my-
cobacteria, trehalose is essential for growth (25, 41), and tre-
halose-containing glycolipids are components of their waxy,
highly impenetrable cell wall (3, 11). Three different trehalose
biosynthesis pathways (OtsAB, TreYZ, and TreS) have been
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FIG. 1. Validation of microarray data with real-time PCR. Gene expression ratios (AsigF strain/wild type) of the six genes MSMEG_1804 (sigF),
MSMEG_2927 (opuCB), MSMEG_6213 (mcat), MSMEG_6232 (katA), MSMEG_6467 (dpsI), and MSMEG_6515 (treS) were determined by both
microarray analysis (solid bars) and quantitative real-time PCR (open bars) for stationary-phase (n = 0.07 = 0.01) LBT batch cultures of M.
smegmatis mc*155 wild-type and AsigF strains. Relative gene expression ratios were tested for significance (**, P < 0.01; *, P =< 0.05). Results are
shown as means * standard deviations for four (solid bars) or three (open bars) biological replicates.
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FIG. 2. Identification of the SigF promoter consensus. Visually
identified promoter motifs upstream of 49 SigF-regulated genes (from
microarray analysis) were used for a genome-wide virtual footprint
analysis. (A) Promoter spacing variation between the —10 and —35
elements in the training set. (B) Number of promoters sorted into
categories according to their distance to the start codon. (C) Derived
SigF promoter consensus determined using the WebLogo tool.

characterized in M. tuberculosis (10) and in M. smegmatis (41).
Two of these systems, TreS (MSMEG_6515) and TreYZ
(MSMEG_3186-MSMEG_3185), showed reduced expression
in the AsigF strain, and our promoter analysis further identified
the TreS pathway, but not the TreYZ pathway, to be under
direct control of SigF. Two genes encoding the glycogen-de-
branching enzyme GlgX, MSMEG_3186 (in an operon with
TreYZ) and MSMEG_6507, exhibited lower expression in the
AsigF strain. Glycogen is converted to trehalose by trehalose
synthase (TreS). The genes of the OtsA-OtsB pathway were
SigF independent in both exponential- and stationary-phase
cells (see Data Set S1 in the supplemental material). Treha-
lose-containing glycolipids are important for cell wall integrity
(26), and it has been shown that trehalose synthesis is a pre-
requisite for the survival of M. smegmatis at elevated temper-
atures (41). Considering this, the heat-sensitive phenotype that
we observed previously for the AsigF strain (12) could be

ROLE OF M. SMEGMATIS SigF REGULON IN STRESS ADAPTATION 2497

caused by its decreased ability to synthesize trehalose as a
thermoprotectant.

Furthermore, we could identify a potential system for the
uptake of osmoregulatory compounds under direct control of
SigF. The genes MSMEG_2927 to MSMEG_2924 are anno-
tated as components of an ATP-binding cassette (ABC) trans-
porter homologous to the OpuC transporter of Bacillus subtilis
for the uptake of glycine betaine/L-proline/carnitine/choline,
which is controlled by the functionally equivalent sigma factor,
SigB (18, 19, 37).

Potential SigF-dependent regulators. Our promoter analysis
predicted a SigF-dependent promoter sequence upstream
of sigH3 (MSMEG_0573), whiBI (MSMEG_1919), whiB4
(MSMEG_6199), and phoP (MSMEG_5872). SigH and its
paralogs have been shown to be upregulated under heat and
oxidative stress in M. smegmatis (32). WhiB proteins are reg-
ulatory proteins unique to actinomycetes (34). In M. tubercu-
losis expression of whiB4 has been observed at elevated tem-
peratures (14), and WhiB1 has been similarly linked with heat
and oxidative stress resistance in Corynebacterium glutamicum
(21). Inactivation of phoP in M. tuberculosis led to an altered
cell envelope composition and stress responses in vitro, as well
as an attenuation of the pathogen in vivo (39). Direct control of
phoP by SigF has been predicted previously (28), but the se-
quence motif we identified here is located at a different site.

Regulation of SigF. (i) Expression of the genomic region
surrounding sigF. In M. smegmatis, sigF’ is part of an operon
with its anti-sigma factor RsbW encoded upstream (designated
UstX in M. tuberculosis) and a ChaB family protein encoded
upstream of rsbW. This arrangement of the sigF' gene with its
anti-sigma factor is conserved in mycobacteria (30). The mi-
croarray analysis showed a reduced expression of chaB in the
AsigF strain at both time points (» < 0.24, P < 0.005), whereas
rsbW was less compromised (» < 0.7, P < 0.02). This result is
in accordance with our previous study, where we reported that
sigF’ is transcribed from two different promoters: a SigF-de-
pendent promoter preceding chaB and a SigF-independent
promoter preceding rsbW (12). The lack of expression from the
promoter upstream of chaB would have a more pronounced
effect on chaB expression than on rsbWW expression, as the latter
is also transcribed from the SigF-independent promoter.

MSMEG_1806 (encoding a conserved hypothetical protein),
directly downstream of sigF, was the only gene in the study with
a strong increase in expression in the AsigF strain for both
exponential- and stationary-phase cells (r = 12.9 and r = 21.2,
respectively; P < 0.01). Most likely, the upregulation of
MSMEG _1806 is due to a polar effect of the inserted genta-
micin cassette (aacC-1) into the adjacent sigF" gene. However,
all phenotypic characteristics of the AsigF strain, which were
observed in previous growth and stress challenge experiments
in our laboratory (12), were reversible by complementation of
the deleted sigF’ gene, rendering the increased expression of
MSMEG_1806 without a noticeable impact.

(i) Posttranslational regulation of SigF. There is little evi-
dence of transcriptional regulation of the rsbW-sigF’ operon in
M. smegmatis under standard growth conditions and for most
stress conditions applied in vitro (12, 31). It therefore appears
likely that SigF is regulated mainly at the posttranslational
level. In M. tuberculosis, posttranslational regulation of SigF is
highly complex, involving the anti-sigma factor UsfX as well as
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FIG. 3. SigF-dependent pigmentation of bacterial colonies. M.
smegmatis mc?155 wild-type (WT) and AsigF deletion strains were
grown on LBT agar under standard fluorescent light at 37°C for 5 days.

five anti-sigma factor antagonists, RsfA, RsfB, Rv1364c,
Rv1904, and Rv2638 (4, 27). The latter are not part of the
usfX-sigF operon but are dispersed across the genome. To date
no anti-sigma factor antagonists have been described for SigF
in M. smegmatis.

Close inspection of our microarray data to identify potential
candidates for the regulatory cascade of SigF revealed a region
immediately preceding the SigF locus, where 20 of the 29 genes
from MSMEG_1766 to MSMEG_1794 were affected by the sigF’
deletion (r < 0.5 and P < 0.01 in stationary phase). Furthermore,
11 of these genes were found to contain a SigF promoter. The
region contains an anti-sigma factor (MSMEG_1787) with simi-
larity to M. smegmatis RsbW (43% identities) and three UsfY
proteins. In M. tuberculosis, the usfY gene is part of the sigF locus
(8), but no function has been assigned to it. The close proximity
of usfY genes to sigF’ in both M. smegmatis and M. tuberculosis
indicates that the protein is involved in the control of SigF activity,
although experimental evidence is missing to date.

Control of SigF activity in M. tuberculosis involves five anti-
sigma factor antagonists. A SMART (Simple Modular Archi-
tecture Research Tool) (22) search revealed that these pro-
teins share a STAS domain (sulfate transporter and anti-sigma
factor antagonist domain). We identified four proteins with such
a domain in M. smegmatis, either by homology to the M. tubercu-
losis anti-sigma factor antagonist RsfA (MSMEG_1786) or RsfB
(MSMEG_6127) or by their annotation as STAS domain proteins
(MSMEG_0586 and MSMEG_5551). A fifth STAS domain pro-
tein, MSMEG_6541, was identified from the microarray data,
which showed reduced expression in the AsigF strain in stationary
phase (r < 0.5, P < 0.01) and possesses a SigF-dependent pro-
moter. None of the other four STAS domain proteins mentioned
showed a change in expression in the AsigF strain. Strikingly,
MSMEG_1786 (RstA) is located in the 29-gene region upstream
of sigF', and MSMEG_5551 is located immediately downstream of
a gene under direct control of SigF (MSMEG_5550) (Table 3).

Our analysis has identified four candidate proteins as anti-
SigF antagonists in M. smegmatis: MSMEG_1786 (based
on homology to M. tuberculosis RsfA and the location of its
gene), MSMEG_6127 (based on homology to M. tuberculosis
RsfB), MSMEG_6541 (based on SigF-dependent expression),
and MSMEG_5551 (based on the location of its gene). To-
gether with the presence of a possible second anti-sigma factor

ROLE OF M. SMEGMATIS SigF REGULON IN STRESS ADAPTATION 2501

for SigF, MSMEG_1787, this would suggest careful fine-tuning
of SigF activity, allowing the cell to exert close control over the
large SigF regulon identified in this study. Future work will be
required to elucidate which function each of these proteins has
as part of the SigF cascade in M. smegmatis.

Conclusions. In this communication we report on the SigF
regulon of M. smegmatis mc*155. We present 138 candidate
genes under direct or indirect control of SigF, among them
several catalase genes, the biosynthesis gene for the pigment
isorenieratene, and genes for two of three trehalose-generating
pathways in M. smegmatis. We describe a promoter consensus
for 130 genes, of which more than 50% showed a reduced
expression in a AsigF strain in either exponential- or stationary-
phase batch cultures. We further report indications for a post-
translational regulatory cascade of SigF, as predicted previ-
ously (12), and propose possible anti-SigF antagonists. In
summary, this study has revealed an array of novel SigF-de-
pendent genes which could be involved in defense against
oxidative stress, heat stress, and osmotic stress in M. smegmatis,
suggesting SigF as a key player for stationary-phase adaptation
and stress response in mycobacteria.
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