The Squeeze On Real Wages -
And What It Might Take To End It

Paul Gregg *, Stephen Machin** and Mariña Fernández-Salgado*

April 2014 – Revised

* Department of Social and Policy Sciences, University of Bath

** Department of Economics, University College London and Centre for Economic Performance, London School of Economics

Abstract

UK workers have been experiencing unprecedented falls in real wages and living standards. Taking a balanced view of the available data suggests that since 2008 real weekly wages have fallen by around 8 percent, which amounts to a fall in annual earnings of about £2000 for the typical (median) worker. Three factors are important drivers of these unprecedented real wage falls. First, unemployment has been exerting a larger downward pressure on wages than in previous recessions. Second, low wages and low business investment have created the conditions for an extremely poor productivity record through both the recession and recovery, though this has been good news for jobs. Third, and pre-dating the recession, due to rising inequality the wages of typical British workers are no longer keeping up with productivity gains made in the economy. If sustained increases in real wages are to occur, this requires a return to strong productivity growth and a re-coupling of median wages to productivity.

JEL Keywords: Real wages; Unemployment.

JEL Classifications: J31; J64.

Acknowledgements

This work is partly based on data from the New Earnings Survey/Annual Survey of Hours and Earnings, produced by the Office for National Statistics (ONS) and supplied by the Secure Data Service at the UK Data Archive. The data are Crown Copyright and reproduced with the permission of the controller of HMSO and Queen's Printer for Scotland. The use of the data in this work does not imply the endorsement of ONS or the Secure Data Service at the UK Data Archive in relation to the interpretation or analysis of the data. This work uses research datasets which may not exactly reproduce National Statistics aggregates. We would like to thank two anonymous referees for their helpful comments on an earlier draft.
1. Introduction

Compared to earlier economic downturns, the deep recession and protracted period of economic stagnation that occurred in the aftermath of the financial crisis of 2008 has seen different behaviour in the UK labour market. Apart from for those aged under 25, employment saw only minor falls – by about 2 percent – relative to the sizable 7 percent fall of GDP that occurred. Employment started to recover alongside output and stood at 0.5 million higher than pre-recession levels by the end of 2013, whilst output remained a little below peak levels. Again the exception is those aged under 25, for whom the employment recovery has only just started. This poor output performance coupled with strong employment means that productivity remains well below peak levels and lies some 15 percent below levels seen at a similar stage after previous recessions. This is what has become to be widely been referred to as the “productivity puzzle”.

At the same time as this pattern of relatively strong employment and poor productivity performance, the UK has experienced a significant fall in real wages. The scale of the real wage falls are historically unprecedented, certainly in the last fifty years where broadly comparable records exist (see Taylor et al, 2014). When assessed over the range of measures and data available, median real weekly wages have fallen by around 8 percent since early 2008. This equates to an annual earnings loss of about £2000 in today’s prices. Falls in hourly wages are slightly less marked owing to an increased extent of part-time working but the overall impression is similar. The most recent data suggests little in the way of reversal as the lack of real wage growth has continued through 2013.

Of course, these patterns are linked. Falling real wages combined with difficulty accessing loans from banks for investment have combined to encourage
firms to use extra workers rather than new investment in capital to meet demand. Business investment fell by 14 percent from 2008 to 2009 and has yet to recover this lost ground. Hence, the extraordinarily poor period of flat productivity and the (relatively) good picture for employment that has been seen. In turn poor productivity performance offers little scope of rises in real wages, thereby completing the circle.

Academic research around this subject remains limited. In an earlier paper (Gregg et al, 2014) we undertook an initial analysis of whether there may have been a structural shift in the evolution of real wages by studying whether one can garner evidence of a changing role of unemployment in explaining falling real wages. This, alongside related contributions by Pessoa and Van Reenen (2014) and Blundell et al. (2014), who respectively explore productivity movements and cyclical shifts in the composition of the employed, formed a special session at the 2013 Royal Economic Society conference.

In this paper, we seek to make three new contributions in terms of studying what has happened to real wages more recently compared to the previous part of the last twenty five years. We first offer a thorough, descriptive analysis exploring movements in real wages across various sources of wage information, concepts of pay and inflation measures. The aim is to ascertain the robustness of the evidence on falling real wages and to generate a better understanding as to why the extent of measured falls vary in different settings. We look at different data sources, variations across major groups in the workforce and explore in more detail the evidence for nominal wage stickiness.

The second aim is to rehearse what we know about the reasons why real pay has been falling. We argue that three factors have been important drivers of these unprecedented real wage falls. First, unemployment has been exerting a larger
downward pressure on wages than in previous recessions. Second, median wages have historically tracked productivity growth in a mutually reinforcing relationship. Productivity gains then create room for rising real wages and rising real wages create the incentive for firms to invest in labour saving technologies. Low wages have in turn created incentives for firms to meet demand by hiring more workers rather than through investment. Hence the weak productivity record, though it has been good news for jobs, which has restricted the room for real wage rises. Third, and pre-dating the recession, wages of typical British workers have no longer kept up with productivity gains made in the economy. This stems from a growing contribution of total compensation going towards supporting pensions, not just for current but also already retired workers, and because it is the highest paid (the top 1 or 2 percent) who have taken a disproportionate share of the gains from productivity leaving little room for wage gains by ordinary workers.

The third contribution of the paper is to offer a consideration of when or if the pattern of observed real wage falls could end. This entails a discussion of the scope for economic recovery and policy change to be able to reverse the observed declines. The extent to which the three reasons we argue caused falls in real wage growth can be alleviated is critical to this discussion.

2. Documenting the Rise and Fall of Real Wages in the UK
To document what has happened to real wages over time, we analyse wage data from various sources over the twenty five year time period from 1988 to 2013. The start date is determined by the fact that 1988 is the first year where we have Consumer Price Inflation (CPI) data. The CPI has become the preferred measure of price inflation. It is used as the government’s inflation target which the Bank of England
Monetary Policy Committee is required to achieve (see ONS, 2012). So in this paper we principally use the CPI as the measure of consumer prices to compute the real consumer wage. Where relevant, we also note any pertinent differences from considering other alternative price series.

What do Different Wage Measures Tell us?

Figure 1 shows real wage movements since 1988 at three points of the wage distribution, namely the 10th, 50th and 90th percentiles. The Figure uses New Earnings Survey/Annual Survey of Hours and Earnings (NES/ASHE) data and indexes the three wage growth series to 0 in 1988, thus showing cumulative growth over time. The ASHE series is derived from employer pay records and is widely seen as the most accurate wage data available. It is approximately a 1 percent sample of all workers. It is also a panel, covering the same population in every year, and we exploit this feature later. The data presented is weighted to reflect the level of employment levels and patterns seen in the Labour Force Survey.¹

The left hand panel of Figure 1 expresses the wage growth series in real terms using the CPI and is thus real consumer wages, whilst the right hand panel deflates by the GDP deflator and shows real product wages (i.e. the real cost of employing workers for firms given the prices they charge for their output). Figure 2 shows movements over time in the CPI and the GDP deflator.² Looking over the full period shows that the choice of price deflator makes little difference to the overall longer run patterns of real wage growth shown in Figure 1, although there are some subtleties that arise in different years. For example, between 2001 and 2008 the CPI rose slower

¹ The weighting only starts in 1997 and shows somewhat faster earnings growth than is seen in the raw unweighted data. It therefore probably paints what one might think of as the most optimistic picture on patterns of real wage growth.

² Appendix Table A1 shows annual price inflation for these two measures in the three time periods we focus upon, together with the retail price index (RPI), and two more recently available inflation indexes (the RPIJ, which covers the same basket of goods as the RPI using a methodology similar to that of the CPI, and CPIH, which adds owner occupiers’ housing costs to the CPI).
than the GDP deflator and this reversed from 2008. This means that real product wage, shown in the right hand panel of Figure 1, shows slower increases between 2001 and 2008 and smaller falls since when compared to real consumer wages.

However, the broad picture shown by Figure 1 is of real weekly wages of the typical (median) worker rising pretty consistently to around 2003, except for a brief period of stagnation through the recession of the early 1990s. This was followed by a period of slower wage growth between 2003 and 2008, and very sharp declines after this.\(^3\) By 2003 wages of the typical worker (at the median) reached over 30 percent above levels seen in the late 1980s. After slowing from then up to 2008, real wages then fell sharply, falling on this measure by 8 percent in just four years, before stabilising in 2013 at levels last seen in the early 2000s.

The Figure also shows that the period from 1988 to 1999 was associated with faster growth for high earners (the 90\(^{th}\) percentile) and slower growth for lower paid workers at the 10\(^{th}\) percentile.\(^4\) Real wages of the lowest paid did fall through the recession of the early 1990s, although not by as much in the recent period. From 1999 the pay of lower wage workers stopped falling further behind median wages, probably due the introduction of the UK’s national minimum wage (NMW) even though this directly covered only around 5 percent of the workforce (Machin, 2011). The wages of the highest paid continued to pull away though until 2008. Since then wages have fallen pretty much equally for all groups.

Table 1 shows the magnitudes of real wage growth in these three sub-periods for a range of alternative sources of earnings data and measures of earnings. From

\(^3\) For the longer term evolution of real wages deflated by the retail price index (data on which goes back longer in time) see the Figures in Gregg et al (2014). The overall nature of change (of rising real wages, followed by a slowdown and then sharp falls is also shown there. Reduced wage growth in the slowdown period is more marked for the RPI deflated wages, whilst the 2008-13 falls are similar.

\(^4\) The observed pattern of rising wage inequality in the UK over the last forty years has been well documented - see Machin (2011) for more detail.
1988 to 2003, real weekly wages rose at 1.8 percent per annum for the typical (median) worker according to the ASHE data used in Figure 1. This eased to 1.5 percent per annum between 2003 and 2008. After that, a sharp decline set in, of -1.6 percent a year. One important thing to note, and something we return to later, is that the 2003 to 2008 period of slow wage growth occurred in a period of good productivity growth and near full employment. The fall in median real wages on the CPI measure over the whole 2008-2013 period is 8 percent, or around £2000 for a typical worker in today’s prices in the ASHE data (based on 2008 median annual earnings in ASHE, final row of Table 1, expressed in today’s prices, based on the CPI Index, which is almost exactly £25,000).

Whilst the ASHE database is widely thought of as the mostly reliable series for earnings, it is not the only data source available and is somewhat dated compared to other more up to date sources (for example, April 2013 being only just released at the time of writing). It also had some revisions to its earnings measures and weighting, most notably in 2004/5. Table 1 therefore also shows growth for average and median hourly wage growth since 1988 based on the Labour Force Survey (LFS)5 and the ONS Average Weekly Earnings (AWE). The LFS data is based on a survey of households rather than employer records and thus may be subject to some reporting biases if people are giving a general sense of their earnings rather than referring to official records, such as monthly pay slips. However, it also will capture very short-term jobs which might be missed by the annual ASHE series. The other main ONS weekly wage data series, Average Weekly Earnings, which is also employer based, but is reported monthly rather than annually and thus is more up to date but only average weekly earnings is available.

5 More precisely, it uses the General Household Survey before 1993 as the LFS did not include wages prior to then (see Machin, Murani and Van Reenen, 2014, for more details).
These alternative series suggest show similar wage growth prior to 2008 but slightly less marked falls since 2008 for median and mean weekly wages than for comparable series in ASHE. Compared to the 8 percent ballpark fall in ASHE, the falls in real mean and median weekly wages since 2008 range from 4 to 7 percent for these alternative series. However, an issue here is that in 2013 cuts to higher rate taxation saw high earners shift some of their earnings into the new tax year, from April, to attract a lower tax liability. This inflated earnings in the second quarter of the year and reduced them in the preceding quarter. Thus there is a noticeable spike in monthly data in April 2013 in the Average Weekly Earnings series reported by ONS and the second quarter in the LFS data. The data we report for AWE is the three monthly average including March and thus this spike is reduced but the LFS numbers are materially affected by the treatment of this period. The annual average fall in real wages in the LFS data between 2008-13 are larger (by -0.2 to -0.4 percent pa) if an average of quarter 1 and 2 for 2013 is used. This implies an extra 1 percent fall in real wages over the period in the LFS data.

On the nuances that follow from considering different wage/earnings measures, Table 1 also shows that hourly wages on all measures showed slightly faster growth than weekly wages in the period 1988 to 2003. This is because average hours of work fell, partly because of increased part-time working in the workforce but mostly due to full-time workers cutting back of hours of work as living standards rose. The ASHE data also reports annual earnings for workers who stay in the same firm through the full year. Here the measured fall in real wages since 2008 is the largest among the available sources being down by 10 to 11 percent.

Hence, considering all the different sources, a balanced picture is of falls somewhere in the region of 8 percent over the five years since the onset of the
financial crisis, or around £2000 lower for the typical worker.

The final column of Table 1 shows the latest data available for the different real wage series. The ASHE data shows real wages to be broadly flat in the year to April 2013. The Labour Force Survey, which is released quarterly, suggests that real wages continued falling in the year to quarter 4 of 2013 (we average quarters 3 and 4 to improve reliability). The ONS Average Weekly Earnings series can be followed up until the 3 months to December 2013 also shows continued real wage falls. Thus the alternative series to ASHE suggest that real wages continued to fall in 2013, by something around 1 percent or £230 per year for median workers). The different series tend to show similar trends over extended periods but can differ over 1 year comparisons. Thus the latest data would suggest, on balance, that the fall in real wages has slowed in 2013 but not yet stopped.

3. The Extent of Falling Real Wages Across Major Groups and Individuals

Figure 1 showed that the recent real wage falls have occurred across the distribution. This is in direct contrast to previous recessions where, if they occurred at all, they were confined only to the lowest paid. Next we therefore turn to exploring variation in the extent of falls across major groups and also to explore movements for individual workers, exploiting the ASHE panel.

Differences Across Major Groups of Workers

The picture so far has explored average wage movements among those in employment in any period. Figures 3 and 4 therefore start to explore the data to look for variations across demographic groups. The Figures start in 1997 so as to show weighted series and Figure 3 starts by showing median real wage growth for men and women separately. Median wages for women grew somewhat faster than for men
prior to 2009. Indeed male real wages showed a slight fall in 2008 ahead of women. The fall from peak levels of real wages are substantially smaller for women at 7.5% since 2009 compared to 10.7% for men since 2008.

Figure 4 shows real wage movements for 18 to 24 year olds, 25-29, 30-34, 35-49, 50-59 and those aged 60+. The older age groups have seen relatively more modest falls in real wages in the region of 8 percent from peak levels. The falls for the younger age groups amount to real falls of 11 to 14 percent. For workers aged 18-25 the fall in real wages in the recent period has been so extreme that, in real terms, wages are back to levels not seen since 1998. As these are weekly wages they will be affected by movements in part-time working, perhaps connected to increased educational participation. In addition they are affected by compositional shifts associated with sharp falls in youth employment in this period. Yet for the slightly older group, those aged 25 to 29, who saw relatively little change in employment and education participation levels real wage falls have been around 12% and have taken wages back to the level last seen fourteen years ago in 1999. By contrast for older workers the falls represent a return to wage levels seen around 2004.

Real Wage Changes at Individual Level

We next turn to look at wage movements at the level of the individual by exploiting the panel aspect of the ASHE data. Figure 5 shows the extent of variation in individual real wages over the period of the major earnings falls, 2009 to 2012, and for the prior four year period, 2005 to 2008.

Our earlier analysis of ASHE showed an 8 percent fall in median weekly wages for the workforce as a whole, but when looking at individual pay growth like we do in Figure 5, we need people to study the sample who are in employment in both periods. Thus, young workers who enter the labour market after 2009 are not
included, making those in employment in both periods older in 2012 than the workforce as a whole. Likewise workers moving into the workforce by 2012 or leaving after 2009 are not included and these are generally lower paid individuals. It is normal that as people age we see earnings grow, especially for those aged under 40 and those retiring at the end of their working lives earn far more than those just entering after leaving education. By looking at those in employment in both 2009 and 2012 we are thus focusing on those on the upward part of the wage trajectory and not the wages of those entering and exiting the workforce in these years. Hence it comes as no surprise that the real wage falls for those in employment in both years are smaller than for the workforce as a whole, with the median wage falling by around 4.5 percent.

The Figure shows movements between 2005 and 2008 (left-hand side) and 2009 to 2012 (right-hand side) for comparison. The sharp shift into negative territory is marked with a clear peak in the more recent period at around -5 percent. There is also a very strong spike at -11 percent which would reflect three years of wage freezes, given CPI inflation. Despite this positive selection in terms of workers employed both in 2009 and 2012, Figure 5 shows that just under 30 percent of workers experienced real wage falls of more than 10 percent, and 15 percent of workers had falls in excess of 20 percent. There is, however, considerable heterogeneity in the nature of real wage growth. In terms of real increases, about 40 percent of workers had real wage gains and 25 percent experienced real wage gains in excess of 10 percent. Between 2005 and 2008, median real wage growth for those in employment in both years was just under 7 percent, again showing the effects of positive selection. So the turnaround in individual wage growth across the two periods is very large. In the earlier period just 30 percent experienced real wage falls and for
around 15 percent these falls were more than 10 percent. This picture is essentially the same if we focus on those who are employed with the same firm over the three year window. There has long been discussion of nominal rigidities in pay adjustment. It is commonly believed that real wages can fall due to high price inflation, but it is widely thought that nominal wages do not fall (see, inter alia, Bewley, 1999). Given the recent unprecedented real wage falls of this magnitude over a short window we have documented (even for workers staying in the same job), it looks to be quite plausible that this stylized fact of the operation of labour markets is being put to the test in the recent UK experience. Indeed, looking at individual changes in weekly wages each year from 2009 to 2012 we see that around 20 percent of the workforce had nominal wage freezes (i.e. their weekly earnings are exactly the same one year on, before factoring in inflation). Furthermore a broadly constant fraction – of around 20 percent of workers - had nominal wage falls in excess of 1 percent (i.e. they earn less one year on than they started with before taking inflation into account). Of course this may reflect a number of changes in pay, such as overtime working, bonuses and shorter hours of work. If we focus on weekly basic pay, excluding overtime and bonuses, the fraction seeing nominal wage falls is around 17 percent in each year.

Taking this further, Figure 6 shows the distribution of wage growth for each of the three years for hourly basic pay, thus excluding overtime and bonuses, for workers employed by the same employer at the beginning and end of each annual period. This is the tightest measure of earnings available as it excludes variations in pay due to more volatile components of earnings (e.g. overtime and bonuses), hours of work or job changes. Falls in this measure really do represent nominal wage cuts. Again a sizable group, amounting to somewhat over 20 percent of the workforce, experienced
nominal wage freezes (defined as wage growth of between -0.5 and +0.5 percent). The size of this group actually increases between 2009-2010 and 2011-2012, reaching almost 25 per cent in the year to April 2012. A further 14 percent see nominal hourly basic wage falls of more than 0.5 percent. This is slightly larger in 2009 to 2010 than in the other years, but they are broadly similar. Some 8 to 10 percent in each year experience nominal wage cuts of 5 percent or more.

If we consider workers who are employed by the same employer in all three years (about 80 percent of the sample employed in any one of the three years), we find that 30 percent have had a nominal wage cut in at least one of the three years. Note this is for a measure of pay that strips out changes in hours, overtime and bonus payments etc. A smaller group experience nominal wage cuts more than once. Further, some 20 percent had a nominal wage cut of at least 5 percent in one of the three years. Hence, there is clear evidence that whilst wage freezes are by far the most common story explaining real wage falls, nearly one third of workers employed in same job for three years saw a nominal wage cut in basic hourly pay in at least one year. Thus it appears that nominal downward wage rigidities are breaking down in this period of unprecedented cuts in real wages.

4. Why Have Real Wages Fallen?
As we have already stated, the recent falls in real wages experienced are highly unusual for the UK, even through periods of economic crisis. Hence the next obvious question is what we can say about why these falls have occurred. Since as far back as Victorian times, real wage growth has been broadly in line with productivity growth. As we make goods and services of higher value in every hour we work, the more pay levels can rise. Rising wages allow for greater consumption of goods produced, thus
boosting demand. Further, rising wages encourage firms to boost productivity by investing in labour saving technology, creating a virtuous circle.

In addition to wage-productivity links, it has long been established that the rise and fall of unemployment across the economic cycle also influences pay movements. Hence to understand the recent real wage falls we might naturally explore how sensitive wages are to movements in unemployment, around underlying trend wage growth and the relationship between productivity and this underlying level of trend wage growth.

We consider three (not necessarily mutually exclusive) explanations of what have been important drivers of the unprecedented real wage falls. These are:

i) downward pressure on wages from unemployment;

ii) the poor productivity record through the recession and recovery;

iii) the distribution, across major groups of workers, of the returns available from productivity gains made in the economy.

Real Wages and Unemployment

Table 2 builds on earlier research we undertook exploring how wages have become more sensitive to unemployment in the last decade or so (see Gregg et al, 2014). It presents ‘wage curves’ based on the ASHE data discussed earlier and is regional panel of real median wages (CPI deflated) and unemployment levels.\(^6\) Panel A estimates the sensitivity of wages to unemployment around an underlying trend rate of growth in real wages. The unemployment effect here is thus driven by the aggregate economic cycle, through the rise and fall in unemployment, and regional movements around the UK wide average. Panel B introduces year dummies instead of a trend in wage growth. This nets out the aggregate cycle and the estimates are just

derived from regional variation in wages and unemployment movements not the aggregate economic cycle.

We estimated the model over two periods - before 2003 and from 2003 onwards - to explore the extent of underlying wage growth given by the time trend in Panel A and the sensitivity of wages to movements in unemployment. The estimation over separate periods allows us to explore whether both underlying wage trends and the sensitivity to unemployment have been operating differently over the last decade than previously. Column 1 of Panel A suggests that prior to 2003 underlying median real wage growth was 0.8 percent per annum, and that this fell to 0.6 percent per annum in the second time period (see column 2). Thus a large part of the apparent slowdown disappears when we allow for the sensitivity of wages to unemployment and for this to change across the two periods. So, in the later period, unemployment applies a larger downward pressure on wages (the coefficient on the lagged unemployment rate going from -0.066 in the first period, to -0.137 in the second, or a statistically significant drop of -0.071. According to this estimate, the magnitude is such that a doubling of unemployment from say 4.5 to 9 percent, slightly more than actually occurred in the downturn, would lower real wages by 13.7 percent based on estimates for the recent period, compared to a little under 7 percent before 2003.\(^7\)

Such estimates being based on a short period with just one cycle and thus may just reflect the correlation in timing between the recent downturn and the unusual fall in wages rather than a deeper shift in the sensitivity of wages to unemployment. Thus the lower panel includes time dummies for each year rather than trend terms. These will pick up the economy wide shift in unemployment and wages in any year and the

\(^7\) Estimating the trend specification for real wages deflated by the GDP deflator rather than the CPI produced very similar results. The real wage-unemployment elasticity changes by -0.074 (as compared to the CPI based change of -0.071 in Table 2). Of course, the more general year dummies specification is identical to that in Panel 2 of Table 2 as it nets out common macroeconomic differences (as the inflation measures are at the aggregate level) through inclusion of the year dummies.
unemployment terms now only reflect deviations in unemployment and wages at the regional level. Thus the estimates are based on regional variations net of the macro-economy depending on whether regions with larger or smaller shifts in unemployment within any year experience smaller or larger movements in real wages in the following year. As the results rest only on regional deviations in unemployment and some regions are quite small there will be some noise in the data induced by variation in sampling that occurs in any survey. Hence the magnitudes of the unemployment effects are smaller, but the key point is that we see the same increase in the sensitivity of wages on unemployment (the elasticity changing by a statistically significant -0.036 between the two time periods). Such a model is asking quite a lot of the data and that it is robust to being based on regional variations is very reassuring. Thus we can be confident that through the recent recession real wages have fallen because of an underlying slowdown in real wage growth combined with an increased sensitivity to unemployment movements that have applied greater downward pressure than seen the past.

Wages and Productivity

Next we turn to what drives the underlying trend growth in wages seen above. The relationship between wages and productivity growth has been long established. Figure 7 shows the trends in productivity per hour worked and total compensation per hour. The latter is a broad measure of total labour costs to firms and includes employer NI and pension contributions. This Figure is an updated version of that presented in Pessoa and Van Reenen (2013). The Figure is expressed in real terms using the GDP deflator and thus reflects real product wages, as this is the most appropriate representation for productivity (though, as Figure 2 showed though, this difference between producer and consumer prices over the whole period is small).
shows that total labour costs have continued to grow in line with productivity. It is thus clear that a part of the pattern of the slowdown in underlying real wage growth connects to the poor productivity performance of the UK economy during the downturn. The poor productivity record reflects the low levels in business investment seen in this period, which fell by 14 percent in the recession and is yet to recover, and the suppression effect of unemployment on wages noted above. Thus firms are found employing extra workers, as workers priced themselves into work, as their relative prices made them more attractive than investment, thus preserving employment and at the same time inducing the stagnation in productivity.

The Distribution of Productivity Gains

Figure 7 shows no sign of a decoupling of productivity and wages if wage costs are measured as total compensation. However, Figure 8 shows two additional measures of labour costs based on wages and not on total compensation. The first is mean wages per hour. This differs from total compensation in that it does not include employer non-wage labour costs, such as pension contributions, but just wages received by workers. The second is median instead of mean wages per hour.

The point that very clearly emerges is that, over the last decade, from around 2003, average wages started to grow more slowly that productivity. The gap between average wages and total compensation per hour suggests that non-wage labour costs, mostly pensions, took a growing share of the productivity growth achieved.

Two further points need to be made here. First, these pension costs are not just those for current workers but all contributions to pension funds to meet the costs of defined benefit (DB) pension schemes run by firms. So a portion of the non-wage labour costs are meeting pensions of already retired workers. Indeed many such DB schemes are now closed to new workers (Pension Protection Fund, 2013) so current
workers will not see such good deals in the future. Greater longevity and poor stock market performance, compared to that expected when such schemes were set up in the 1950s to 1970s, means these funds required higher employer contributions to avoid building up considerable deficits. The other is that low wage workers often do not receive the same generosity of pension deals as higher paid workers, inequalities here are larger than in wages as a whole. Minhat (2008) suggests that pension contributions made by firms on behalf of senior executives in the UK represent around 15 percent of their total compensation, a figure supported by a recent consultancy report (Lane, Clarke and Peacock Consulting, 2014). This is far higher than for typical workers. For instance, the new auto-enrollment system for uncovered workers - NEST (National Employment Savings Trust) – that is gradually being introduced in the UK has employer contributions of just 3 percent, and even less before the scheme is fully functioning in 2018.

Importantly, Figure 8 shows that median wages per hour fell behind productivity growth far earlier than did the mean, beginning from around the mid-1990s. Moreover, the gap opened up much faster soon after the turn of the millennium. The opening of the gap between mean and median wages is because of rising wage inequality. As top earners had faster wage growth that pulled the average wage up at a faster rate than the median.

Of course, rising wage inequality started before 2000 (see Machin, 2011). Prior to then higher wage growth for high paid workers was matched by stagnation for the lower paid and so from 1979 to the mid to late 1990s, median workers saw pay grow broadly in line with productivity. Since then the lower paid have matched the middle, probably due to the National Minimum Wage, but higher pay for top earners has pulled the average up. Hence it seems that median wages have become de-
coupled from productivity growth, because of rising inequality meaning a growing share of the value from productivity growth being absorbed by pensions and higher salaries for top earners.

5. What Scope is There for Renewed Wage Growth?

Pulling the different pieces of evidence together, we can start a discussion of what it may take for broad based real wage growth to re-emerge. The evidence of Table 2 shows that falling unemployment will lead to higher wage growth for a period. The evidence presented suggests that a fall from 8.5 percent unemployment - the peak in this cycle - to say 5 percent - the typical level from 1998 to 2008 - will result in real wages rising by about 7 percent.

The estimated wage curve uses a very simple dynamic structure, but suggests that wages respond to falling unemployment with a lag of a year or so. So unemployment peaked right at the end of 2011 (see Figure 9) and then edged down until the Summer of 2013, which would suggest real wages stabilising in 2013. But according to the lag structure, real wages will not respond to the strong falls in unemployment since the summer of 2013 till the middle or latter half of 2014. However, the model suggests though once unemployment has stopped falling for a year or so then the rise in real wages will return to the underlying growth rate of just above zero. So the wage recovery will only last till a year or so after unemployment has stopped falling. Introducing more complex dynamics would suggest that half the effect of falling unemployment is felt in the second year after the fall occurs with the rest of the effect coming in a diminishing rate in the following 3 years. Thus if unemployment is on a sustained downward trend the biggest effects on wages will be

8 For more variations, and a number of robustness checks, see Gregg et al (2014).
felt in years 3 and 4 after unemployment starts a period of steady decline, so from the Summer of 2016 if the current downward trend in unemployment continues. Hence we should expect real wages to start rising in the second half of 2014 and for growth to get stronger until a year or two after the fall in unemployment slows significantly.

The second ingredient for a broad based wage recovery and the essential part of a sustained wage recovery is productivity growth. The weak output performance and strong employment picture means that productivity is still 4.5 percent below that seen at the beginning of the crash. Such a prolonged period of declining productivity (with the trough in quarter 4 of 2012) has never been seen before in modern UK history. Whilst growth has returned, productivity in the past year has remained relatively flat with a small 0.3 per cent fall in 2013 compared to 2012.

It is essential that we see a return to the levels of 1.5 to 2 percent annual productivity growth seen in the decade before the crash, if real wage growth is to return on a sustained basis. Part of the extremely poor productivity record reflects low wages, as firms have weak incentives to invest in labour saving technology when workers are easy to hire and cheap. So falling unemployment should kick start investment, as labour becomes scarcer and real wages stop falling investment should return and with it productivity. If this does not occur, there can be little hope of a sustained wage recovery.

Moreover, this is a necessary but not a sufficient condition for a broad and sustained wage recovery. Figure 8 shows worrying trends in thus regard. If some of the patterns documented there continue, then the combination of rising total employer pension contributions and growing wage inequality seen over the last decade before the crash could continue to extract all the growth in the size of the pie, leaving little or nothing extra for typical workers. Therefore, policy aiming to boost wages (outside of
the lowest paid where minimum wages have an effect) needs to focus on boosting productivity, producing sustained increases in revenues of company pension schemes (e.g. through stock market returns and real interest rates of company and government bonds) and addressing the distribution of wage growth not only towards the top 1 percent of employees (see Bell and van Reenen, 2014, for a good discussion of this issue). Generous employer pension contributions for top executives running at around 15 percent of salary represent a nexus of the issues of pay inequality and pensions absorbing the bulk of the gains from productivity.

6. Conclusions
The UK has been experiencing unprecedented falls in real wages and living standards. In this paper we document the nature of these falls, discuss reasons why real wages have fallen, and offer a discussion of what might bring back a return to real wage growth.

In terms of documenting the scale of real wage falls, there are a number of alternative measures of wages available and indeed measures of inflation. Taking a broad view of this evidence suggests that since 2008 real wages have fallen by around 8 percent (with different measures and sources showing falls in the range of 4 to 11 percent). This equates to a fall of around £2000 for the typical (median) British worker. Real wages falls have been widespread and have occurred right across the wage distribution. Moreover, the broad picture from the available data suggests that real wages have continued to fall right through 2013.

The real wages of some groups have been particularly hard hit, most notably the young. Those aged 25 to 29 have seen real falls of 12 percent and those aged 18 to 24 of over 14 percent. Indeed, the fall for those under 25 is so large it has taken real
wages back to levels last seen in 1998. In part this may reflect greater part-time working whilst extending educational studies, but even among those aged 25 to 29 (i.e. those past normal age for finishing education) real weekly wages have fallen back to levels seen in 1999.

At the individual level there is considerable variation in size of wage falls. Indeed among those who worked through the recession, in work in both 2009 and 2012, who are a rather select group, some 60 percent experienced saw falls in real wages. Further, nearly a third saw real wage falls in excess of 10 percent and one in six experienced falls in excess of 20 percent. Moreover, there is also considerable evidence of nominal wage cuts. Whilst the bulk of the observed real wage falls stem from wage freezes combined with erosion by inflation, around one third of workers who were employed by the same firm between 2009 and 2012 experienced a cut in nominal hourly basic pay (thus excluding overtime and bonuses) in at least one year of the downturn and for one in five workers this cut exceeded 5 percent of basic hourly pay.

The available evidence suggests these unprecedented real wage falls are being driven by three factors. First, unemployment is exerting a far larger downward pressure on wages than in previous recessions. This can be seen even at the regional level when netting out the economy wide rise in unemployment and fall in wages, which strongly suggests it is not just a coincidence of timing. Second, median wages have historically tracked productivity growth in a mutually reinforcing relationship. Productivity gains create room for rising real wages and rising real wages creates the incentive for firms to invest in labour saving technologies. Low wages have in turn create incentives for firms to meet demand by hiring more workers rather than through investment, hence weak productivity record, though it has been good news
for jobs, which has restricted the room for real wage rises. Third, and this pre-dates the recession, wages of typical British workers are no longer keeping up with productivity gains made in the economy. This stems from a growing contribution of total compensation going toward supporting pensions, not just for current but also already retired workers, and that the highest paid (top 1 or 2 percent) are taking a disproportionate share of the gains from productivity leaving room for few gains by ordinary workers.

These findings set the scene for a discussion of what conditions could bring back real wage growth. The recent rapid fall in unemployment, since the Summer of 2013, should be sufficient to generate real wage rises in the second half of 2014, as there is a lag of around a year before wages respond to changing labour market conditions. Continued falls should lead to a continued wage recovery, but alone such gains will stop around two to three years after unemployment stops falling. For a sustained wage recovery the economy also needs to generate a return to the levels of productivity growth normally seen, but have been notably absent over the last six years. As labour gets scarce and more expensive we should expect firms to increase investment generating productivity improvements. But even this will not be enough for sustained real wage gains to come about unless the distribution of the returns from productivity growth can get channelled back to ordinary workers. This was the historical norm, but it stopped in the early 2000s – importantly before the downturn - with a disproportionate share of productivity gains going to support pension commitments and rapidly rising salaries of very highly paid workers.
References

Lane, Clarke and Peacock Consulting (2014) LCP FTSE 100 Executive Pension Survey 2013.

Taylor, C., A. Jowett and M. Hardie (2014) An Examination of Falling Real Wages, 2010-2013, ONS.
Figure 1:
Real Wage Growth at the 10th, 50th and 90th Percentiles, Weekly Wages, 1988-2013

Notes: From New Earnings Survey/Annual Survey of Hours and Earnings. Weekly earnings, CPI deflator (left Figure) and GDP deflator (right Figure).
Figure 2: Alternative Price Inflation Measures, 1988-2013

Notes: From ONS. Indexed to 1 in 1988.
Figure 3: Median Real Weekly Wages for Men and Women, 1997-2013

Notes: From New Earnings Survey/Annual Survey of Hours and Earnings. Weekly earnings, CPI deflator.
Figure 4: Median Real Weekly Wages by Age Group, 1997-2013

Notes: From New Earnings Survey/Annual Survey of Hours and Earnings. Weekly earnings, CPI deflator.
Figure 5: Change in Individual Real Weekly Pay, ASHE 2005 to 2012

2005 to 2008

2009 to 2012

Notes: From New Earnings Survey/Annual Survey of Hours and Earnings. Weekly earnings, CPI deflator, for those in employment at the beginning and at the end of the period.
Figure 6: Yearly Changes in Nominal Basic Hourly Earnings for Workers in the Same Job, ASHE

2009 to 2010

2010 to 2011

2011 to 2012

Notes: From New Earnings Survey/Annual Survey of Hours and Earnings. The vertical line denotes changes in CPI.
Figure 7: Labour Productivity and Annual Compensation, 1988 to 2012

Notes: From ONS. Indexed to 1 in 1988.
Figure 8: Labour Productivity, Annual Compensation, Mean and Median Wages, 1988-2012

Notes: From ONS and New Earnings Survey/Annual Survey of Hours and Earnings. Indexed to 1 in 1988.
Figure 9: ILO Unemployment Rates, 1988-2013

Notes: Quarterly data from ONS. ILO Unemployment Rates for 16+ (seasonally adjusted).
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Weekly Earnings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONS Average Weekly Earnings*</td>
<td>484.00</td>
<td>2.28</td>
<td>2.03</td>
<td>-1.34</td>
<td>-0.90</td>
</tr>
<tr>
<td>ASHE Average Weekly Earnings</td>
<td>511.62</td>
<td>2.26</td>
<td>1.68</td>
<td>-1.70</td>
<td>-0.24</td>
</tr>
<tr>
<td>LFS Average Weekly Earnings**</td>
<td>472.04</td>
<td>1.98</td>
<td>1.50</td>
<td>-1.16</td>
<td>-1.44</td>
</tr>
<tr>
<td>ASHE Average Weekly Basic Earnings</td>
<td>485.10</td>
<td>2.57</td>
<td>1.53</td>
<td>-1.44</td>
<td>-0.24</td>
</tr>
<tr>
<td>Median Weekly Earnings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASHE Median Weekly Earnings</td>
<td>424.64</td>
<td>1.84</td>
<td>1.53</td>
<td>-1.60</td>
<td>0.19</td>
</tr>
<tr>
<td>LFS Median Weekly Earnings</td>
<td>392.00</td>
<td>1.78</td>
<td>0.81</td>
<td>-0.74</td>
<td>-2.10</td>
</tr>
<tr>
<td>ASHE Median Weekly Basic Earnings***</td>
<td>396.81</td>
<td>2.34</td>
<td>1.47</td>
<td>-1.40</td>
<td>0.16</td>
</tr>
<tr>
<td>Average Hourly Earnings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASHE Average Hourly Earnings</td>
<td>14.90</td>
<td>2.67</td>
<td>1.86</td>
<td>-1.22</td>
<td>-0.34</td>
</tr>
<tr>
<td>LFS Average Hourly Earnings</td>
<td>13.39</td>
<td>1.83</td>
<td>1.63</td>
<td>-0.66</td>
<td>-1.02</td>
</tr>
<tr>
<td>Median Hourly Earnings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASHE Median Hourly Earnings</td>
<td>11.70</td>
<td>2.16</td>
<td>1.87</td>
<td>-1.20</td>
<td>0.56</td>
</tr>
<tr>
<td>LFS Median Hourly Earnings</td>
<td>10.73</td>
<td>1.59</td>
<td>1.75</td>
<td>-0.80</td>
<td>-1.82</td>
</tr>
<tr>
<td>Annual Earnings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASHE Average Annual Earnings****</td>
<td>28230.96</td>
<td>1.96</td>
<td>-2.16</td>
<td>-0.82</td>
<td></td>
</tr>
<tr>
<td>ASHE Median Annual Earnings</td>
<td>22790.15</td>
<td>1.39</td>
<td>-1.90</td>
<td>-0.53</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
* The figures on ONS Average Weekly Earnings (AWE) from year 1988 to 1999 are ONS backdated estimates using information on the Average Earnings Index (AEI) as the ONS Average Weekly Earnings series is only available from January 2000. The estimated series is considered to be comparable to the published AWE. Yearly changes refer to the month of April for columns 2 and 3 and to the average of March to May in column 4. The latest Annual growth refers to average wages for October to December of 2012 to October to December of 2013.
** LFS wages are weighted averages constructed using waves 1 and 5 and refer to the 2nd Quarter (April to June) of every year. We use wave 5 from 1993 to 1996, as that is the only wave when wages are reported. Prior to 1993 the LFS did not include wages so we used the General Household Survey from 1988 to 1992. The latest Annual growth refers to wages for the 3rd and 4th Quarter.
*** ASHE Basic Earnings includes other payments. It refers to “Real Per Annum Growth from 2005 to 2008” due to a change in definition in 2005.
**** Annual Earnings are only available in ASHE from 1996 and just represent employees in the same job for more than a year.
Table 2: Regional Median Real Weekly Wages and Unemployment (CPI), 1988-2012

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Trend Specification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔLog(Unemployment Rate[t])</td>
<td>-0.013</td>
<td>-0.012</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.019)</td>
<td>(0.021)</td>
</tr>
<tr>
<td>Log(Unemployment Rate[t-1])</td>
<td>-0.066</td>
<td>-0.137</td>
<td>-0.071</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.021)</td>
<td>(0.023)</td>
</tr>
<tr>
<td>Trend</td>
<td>0.008</td>
<td>0.006</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Region Dummies</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Regional Controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>R-Squared</td>
<td>0.988</td>
<td>0.965</td>
<td>0.986</td>
</tr>
<tr>
<td>Sample Size</td>
<td>165</td>
<td>110</td>
<td>275</td>
</tr>
</tbody>
</table>

B. Year Dummies Specification			
ΔLog(Unemployment Rate[t])	-0.018	-0.011	0.007
	(0.012)	(0.013)	(0.017)
Log(Unemployment Rate[t-1])	-0.022	-0.058	-0.036
	(0.010)	(0.012)	(0.016)
Region Dummies	Yes	Yes	Yes
Year Dummies	Yes	Yes	Yes
Regional Controls	Yes	Yes	Yes
R-Squared	0.994	0.995	0.996
Sample Size	165	110	275

Notes: Robust standard errors in parentheses. The time varying regional controls are from the Labour Force Survey and are the proportion with a degree, female, young and white in the regional workforce.
Appendix

Table A1: Patterns of Change of Different Price Indices, 1988-2013

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CPI</td>
<td>2.87</td>
<td>2.31</td>
<td>3.08</td>
</tr>
<tr>
<td>RPI</td>
<td>3.66</td>
<td>3.50</td>
<td>2.96</td>
</tr>
<tr>
<td>GDP Deflator</td>
<td>3.07</td>
<td>2.48</td>
<td>2.08</td>
</tr>
<tr>
<td>RPIJ</td>
<td>3.12</td>
<td></td>
<td>2.48</td>
</tr>
<tr>
<td>CPIH</td>
<td></td>
<td></td>
<td>3.04</td>
</tr>
</tbody>
</table>

Notes: Source ONS published figures. The Consumer Price Index (CPI) and the Retail Price Index (RPI) are the two main measures of consumer prices produced by ONS. The RPI and CPI measures differ in the methodology used for their calculation and also the CPI does not include housing costs for owner occupiers. The CPIH and the RPIJ measures aim at overcoming these two differences between CPI and RPI: the CPIH includes owner occupiers’ housing costs and is available from 2005; and the RPIJ covers the same basket of goods as the RPI using a methodology similar to that of the CPI and is available from 1997. The GDP Deflator is the deflator for the Gross Domestic Product.