Citation for published version:

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication

Publisher Rights
Unspecified

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Order-Invariance of Cylindrical Algebraic Decomposition via Triangular Decomposition

David J. Wilson

1st Draft - October 2012
Introduction

These notes are a product of research seminars held at the University of Bath in Autumn 2012. The research group of Bath consisted of James Davenport, Russell Bradford, Matthew England, Acyr Locatelli and David Wilson. They were joined by Scott McCallum of Macquarie University who was at Bath as a visiting researcher.

Contents

<table>
<thead>
<tr>
<th>Introduction</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Importance of Order-Invariance</td>
<td>1</td>
</tr>
<tr>
<td>2 Order Invariance of Maple CAD</td>
<td>1</td>
</tr>
<tr>
<td>3 Well-Oriented Sets of Polynomials</td>
<td>3</td>
</tr>
<tr>
<td>References</td>
<td>5</td>
</tr>
</tbody>
</table>
1 Importance of Order-Invariance

Practical uses of cylindrical algebraic decomposition usually depend on sign-invariance as defined below:

Definition 1.
Let \(F \subseteq \mathbb{R}[x_1, \ldots, x_n] \). A set \(X \subseteq \mathbb{R}^n \) is said to be \(F \)-sign-invariant if for every \(f \in F \) the sign of \(F \) is constant (strictly positive, strictly negative, or zero) on \(X \). A cylindrical algebraic decomposition \(D \) of \(\mathbb{R}^n \) is \(F \)-sign-invariant if each cell \(D \in D \) is \(F \)-sign-invariant.

We similarly say a set \(X \subseteq \mathbb{C}^n \) is \(F \)-sign-invariant if for every \(f \in F \) the value of \(f \), when \(x_1, \ldots, x_n \) are thought of as complex variables, is uniformly zero or non-zero. A cylindrical decomposition \(C \) of \(\mathbb{C}^n \) is \(F \)-sign-invariant if each cell \(C \in C \) is \(F \)-sign-invariant.

However, as documented in [McC85], in general a stronger condition is needed for proofs by induction over a cylindrical algebraic decomposition. This is the concept of order-invariance which is defined as follows:

Definition 2.
Let \(f \in \mathbb{R}[x_1, \ldots, x_n] \) and let \(a \in \mathbb{R}^n \). We say the order of \(f \) at \(a \) is the least non-negative integer \(k \) such that some partial derivative of \(f \) of order \(k \) does not vanish at \(a \).

Let \(F \subseteq \mathbb{R}[x_1, \ldots, x_n] \). A set \(X \subseteq \mathbb{R}^n \) is said to be \(F \)-order-invariant if for every \(f \in F \) the order of \(F \) is constant on \(X \). A cylindrical algebraic decomposition \(D \) of \(\mathbb{R}^n \) is \(F \)-order-invariant if each cell \(D \in D \) is \(F \)-order-invariant.

It is clear that this is stronger than sign-invariance, and the concept allows for inductive proofs on the validity of simplified projection operators (for example [McC85], [Bro01]) from Collins’ original ([Col75]) method. In short, lifting over an order-invariant cylindrical algebraic decomposition produces a sign-invariant cylindrical algebraic decomposition (whereas lifting over a sign-invariant cylindrical algebraic decomposition does not guarantee sign-invariance). Order-invariance and sign-invariance are very different, as shown in the following example.

Example 1.
Consider the equation \(f(x, y) = y(x^2 + y^2) \). This has the graph shown in Figure 1. We see that \(f \) has order 3 at the origin: the first derivatives \(f_x = 2yx \) and \(f_y = x^2 + 3y^2 \) both vanish, as do the second derivatives \(f_{xx} = 2y, f_{xy} = 2x \), and \(f_{yy} = 6y \). However, away from the origin on the \(x \)-axis, say at \((1,0)\), the order is 1 (\(f_y \) does not vanish). The minimal sign-invariant cylindrical algebraic decomposition (3 cells, split by the \(x \)-axis) is therefore not the same as the minimal order-invariant cylindrical algebraic decomposition (9 cells, due to adding in \(x = 0 \) to the sign-invariant cad).

2 Order Invariance of Maple CAD

Order invariance in classical cylindrical algebraic decomposition is a by-product of sign-invariance of discriminants, resultants and coefficients. Initial experiments with MAPLE suggested that the Maple CAD (based on [CMXY09]) may
always produce an order-invariant CAD. For instance, inputting Example 1 into Maple (or, indeed, QEPCAD) produces an order-invariant CAD.

However, the following example disproved that conjecture:

Example 2.
Let \(f(x, y, z) = z^2 - xy \), the graph of which is shown in Figure 2. Note this is related to the Whitney Umbrella, \(\hat{f}(x, y, z) = z^2 - y^2x \) but is slightly simpler.

Then a subset of the solutions to \(f \) is the \(x \)-axis: \(\{(a, 0, 0) \mid x \in \mathbb{R}\} \). If \(a \neq 0 \) then \(f_y = -a \neq 0 \) and so \(f \) has order 1. However at the origin \(f_x, f_y, f_z = 0 \) and \(f_{zz} \neq 0 \) so \(f \) has order 2. Therefore an order-invariant cylindrical algebraic decomposition must distinguish the origin as an individual point on the axis.

We can input \(f \) into Maple and compute both a cylindrical decomposition of \(\mathbb{C}^3 \) and a cylindrical algebraic decomposition of \(\mathbb{R}^3 \). The former produces the output shown in Figure 3, which we can see does not distinguish the origin as a special point.

Similarly we can input \(f \) into the CylindricalAlgebraicDecompose algorithm and obtain the output shown in Figure 4. Once again we note that the
origin is not a distinguished point, therefore the Maple cylindrical algebraic decomposition algorithm does not produce an order-invariant cylindrical algebraic decomposition.

\section{Well-Oriented Sets of Polynomials}

Looking at the examples we have found where Maple fails to produce an order-invariant CAD reveals that they are polynomials which are not well-oriented, as defined in [CJ98].

Definition 3 ([CJ98]).

Let P be the McCallum projection operator (as defined in [McC85] and [McC88]) and let $F \subseteq \mathbb{Z}[x_1, \ldots, x_n]$. Then F is said to be well-oriented if whenever $n > 1$ the following conditions hold:

WO 1. For every $f \in \text{prim}(F)$ (the set of primitive parts of polynomials in F with positive degree in x_n), $f(a, x_n) = 0$ for at most a finite number of points $a \in \mathbb{R}^{n-1}$; and

WO 2. $P(F)$ is well-oriented.

McCallum even suggests a stronger condition that can be considered, that of very well-orientedness where the allowance of a finite set of nullifying points is removed.

Well-orientedness is needed for both the McCallum ([McC85]) and Brown-McCallum ([Bro01]) projection operators to produce an order-invariant cylindrical algebraic decomposition. This fact, along with experimentation, leads to the following conjecture:

Conjecture 1.

Let $F \subseteq \mathbb{R}[x_1, \ldots, x_n]$. Then the Maple cylindrical algebraic decomposition algorithm produces an order-invariant cylindrical algebraic decomposition if F is well-oriented with respect to the given projection order.

Remark 1.

This reverse implication of the conjecture does not hold. There exists non-well-oriented sets of polynomials for which Maple still produces an order-invariant cylindrical algebraic decomposition.

The calculation of discriminants and resultants (in a similar fashion to the McCallum projection operator) hints that this conjecture has potential validity. However, the algorithm needs to be finely studied to see if a proof is possible.
Figure 4: Output of CylindricalAlgebraicDecompose in Maple for $f = z^2 - xy$
References

