Mini-symposium: The Hip

(ii) The Role of Imaging in Follow-up of Newly Introduced Implants

H.S. Gill (DPhil)*, Professor of Healthcare Engineering, Dept. of Mechanical Engineering, University of Bath

S. J. Mellon (PhD), Research Fellow, Nuffield Dept. of Rheumatology & Musculoskeletal Sciences (NDORMS), University of Oxford

E. C. Pegg (PhD), Research Fellow, NDORMS, University of Oxford

S. Ostlere (MD), Consultant Radiologist, Nuffield Orthopaedic Centre

H. Pandit (FRCS), Honorary Senior Clinical Lecturer, NDORMS, University of Oxford and Orthopaedic Surgeon, Nuffield Orthopaedic Centre

D.W. Murray (FRCS), Professor of Orthopaedic Surgery, NDORMS, University of Oxford and Consultant Orthopaedic Surgeon, Nuffield Orthopaedic Centre

*corresponding author

1 Abstract

A wide variety of orthopaedic implants are in clinical use and many new devices are brought to the market each year. The vast majority of these devices have no published clinical data. The concept of phased introduction has been developed. The use of radiostereometry and cross-sectional imaging in the follow-up and phased introduction of new orthopaedic implants is discussed.

1 Keywords

RSA, implant assessment, follow-up, cross-sectional imaging

1 Introduction

The mainstay of orthopaedic treatment for end-stage joint disease, particularly for the hip and the knee, remains joint replacement. To service this need a considerable number of joint replacement implants have been developed and new devices are being introduced on an ongoing basis. Some of these new devices are incremental changes to existing designs and others embrace either new designs, concepts or materials. Whilst regulation has increased and pre-clinical testing has become obligatory, the majority of implants in use have very little published clinical data available. By definition new devices will have no track record. The National Joint Registry for England and Wales recorded that 123 brands of acetabular cups, 13 brands of resurfacing implants and 146 brands of femoral stems were used in 2010(1). Of these devices, for 42% of the brands of acetabular cup and 47% of the brands of femoral stem no data had been submitted to the Orthopaedic Data Evaluation Panel (ODEP). The aim of this article is describe and discuss the use of various imaging modalities in
the staged introduction and continued assessment of orthopaedic implants. The article focuses on
the use of radiology and cross-sectional imaging for hip and knee implants, illustrated by examples
of the use of these techniques. The discussion of robust assessment methodologies and staged
release is particularly topical given the recent media attention on implants. The use of inappropriate
materials in breast implants(2) has revealed weaknesses in the regulation process and the early
failure of metal-on-metal hip replacements demonstrate the need for continued assessment of
implants(3).

1 Key Failure Modes

Amongst the most authoritative sources of information on failure modes of orthopaedic implants
are the Swedish Hip and Knee Registries. The single largest reason for revision remains aseptic
loosening, accounting for more than half of all hip revisions(4) and over a quarter of all total knee
replacement revisions(5). Aseptic loosening reflects a failure of the fixation of the implant. Given the
relationship between aseptic loosening and wear debris(6), methods that can measure implant
motion relative to the host bone and that can measure wear in vivo are useful for the assessment of
new designs and materials. The most established technology for such measurements is
radiostereometry or RSA. Adverse events can be considered as another class of failure, this article
will focus on tissue response and the use of cross-sectional imaging to aid in the diagnosis of this
failure type. These failure modes are summarised in Figure 1, together with their associated imaging
modalities.

1 RSA

RSA for assessing orthopaedic implants originated from the work of Goran Selvik and Lars Ingvar
Hansson in Sweden(7, 8). The basis of the technique is the use of two xray sources to simultaneously
image the object(s) of interest(9). If the locations of the xray sources and the image planes (xray
plates) are all known, the principles of photogrammetry can be used to reconstruct the three-
dimensional (3D) information regarding the object(s) of interest. For example, RSA imaging of a hip
prosthesis implanted in a femur (Figure 2) will allow the 3D position of the prosthesis to be
reconstructed. Early systems used easily identifiable markers (spherical tantalum beads) attached to
the prosthesis components; later model-based systems removed the need to modify components.
The 3D location of a prosthesis becomes more useful if its position relative to the host bone is
known, for this purpose small tantalum beads are also inserted into the bone at the time of surgery.
Thus the 3D location of the prosthesis relative to the axis system defined by the beads, and thus
relative to the bone, can be established. Taking serial measurements at different time intervals
thereby allows the migration of the implant relative to the bone to be calculated. RSA
measurements are highly accurate, typically accurate to at least 0.1 mm.

The reason why migration is of interest is that continued early migration has been shown to be
indicative of failure. The very high accuracy of measurement means that adequately powered
studies can be performed using relatively small cohorts, thereby exposing only small numbers of
subjects to new designs/materials. The landmark work in this area was performed by Ryd et al(10)
and Karrholm et al(11). Ryd et al demonstrated that the early migration pattern of total knee
replacement tibial components were predictive of whether revision for mechanical loosening would
be required. Most of the study cohort demonstrated movement of approximately 1 mm in the first
year and then a much slower rate of movement. Those that continued to migrate after the first year
went on to require revision. Karrholm et al studied the Lubinus SP I (Waldemar Link GmbH, Hamburg, Germany) femoral component. Those stems that migrated more than 1.2 mm per year had a greater than 50% risk of revision by 7 years.

It was later shown by Alfaro et al (12), that for polished cemented femoral stems a small amount of distal migration was not indicative of failure, but probably beneficial. This study highlighted the importance of rotational stability of femoral stems, and also the importance of performing true 3D measurements. A key parameter indicative of rotational stability was the migration of the head in the posterior direction, or posterior head migration (PHM). The findings showed the difference between the Exeter (Stryker, Newbury, UK) and the Charnley Elite stems (DePuy, Leeds, UK). The Exeter with its double taper tended to migrate distally, causing it to engage further into the cement mantle. This was thought to have the effect of re-enforcing the cement/bone interface and enhancing the rotational stability of the stem. The Charnley Elite had subtle design differences to its predecessor, and was more cylindrical. There was a greater amount of PHM and less distal migration for the Charnley Elite stem. A subset of the Charnley stems exhibited very high values of PHM, with a mean value of 2.8 mm/year compared to 0.26 mm/year for the Exeter stem. It was suggested that this may be indicative of a higher risk of failure, which was controversial at the time.

A follow-up study set out to test whether the earlier predictions were borne out. Hauptfleisch et al (13) performed a clinical review of all Charnley Elite stems implanted at the centre where the original Alfaro et al study had been performed. Hauptfleisch et al reviewed all patients and found that the revision rate was 17% (95% CI: 10 to 24) at 9 years. They also evaluated radiological signs of loosening, and taking the endpoint as either failure or radiologically loose, the failure rate was 33% (95% CI: 19 to 47) at 9 years. Importantly, all the cases from the original RSA study with high PHM were all revised for loosening.

1 Wear Studies with RSA

RSA technology is also well suited to estimating the amount of in vivo wear, particularly for total hip replacement (THR) implants. It must be borne in mind that RSA cannot actually measure true wear. What the method is able to do is to measure the motion over time of one component relative to another. In the case of a THR using a metal-on-polyethylene bearing, the penetration over time of the femoral head into the polyethylene can be measured if there are radio-opaque markers in the polyethylene or there is a metal backing to the socket. If the socket is made from titanium alloy, the silhouette of the head can be detected within that of the socket. The penetration will be a combination of wear and creep deformation of the polyethylene. This method was used to examine the wear associated with high failure rates due to osteolysis by von Schewelow et al (14) to determine the levels of wear rate associated with osteolysis; these authors concluded a wear rate exceeding 0.2 mm/year is prognostic of failure.

Some of the most significant recent advances in hip replacement technology have been the development of cross-linked polyethylenes. The early work was performed using laboratory tests (15). It is always important to ensure that laboratory findings are applicable to the clinical situation, and RSA is ideally suited to performing in vivo wear assessments.

The effects of different polyethylene sterilisation techniques and types of polyethylene were investigated by Digas (16). The RSA measurements demonstrated that cups sterilised in ethylene
oxide had twice the penetration rate of those that had been gamma sterilised. A powerful bilateral study methodology was used to examine the effects of polyethylene type, 32 patients received a cross-linked polyethylene cup on one side and a standard polyethylene cup on the contra-lateral side. Digas reported that highly cross-linked polyethylene cups showed less penetration after the first year than conventional polyethylene.

Glyn-Jones et al(17) performed a double blind randomised control trial (RCT) to examine the differences in wear between standard polyethylene and Longevity (Zimmer, Warsaw, IN, USA) highly cross-linked polyethylene. As RSA was being used a relatively small cohort was needed, 54 patients were randomised to receive either a standard liner (n=26) or a Longevity liner (n=26), with no other difference between the groups in terms of THR components. Measurements were made within a week post-operatively, and at 6 months, 1, 2 and 3 years. The penetration data demonstrated a bimodal pattern (Figure 3). The early (less than 1 year) penetration was relatively rapid, followed by slower penetration. These authors suggested that creep effects dominated the early phase and, whilst creep probably continued, wear dominated the later phase. There were no differences in creep behaviour between the two types of polyethylene. Fitting lines to the data at 1 year and later allowed the wear rate to be calculated, the standard polyethylene wear was 0.07 mm/year compared to 0.03 mm/year for the cross-linked polyethylene (p<0.01). This study’s findings have important implications for design of studies aiming to compare polyethylene wear; at least three measurement points are needed after the creep domination phase has ended.

1 Cross-sectional Imaging

The recent experience with metal-on-metal implants demonstrate that new designs often introduce new failure modes. It is instructive to note that an RSA study(18) of Birmingham Hip Resurfacing found it to have very low migration and concluded that it probably would not suffer from mechanical loosening. RSA studies can demonstrate that fixation is adequate, but does not necessarily give an insight into all failure modes. The early failures of hip resurfacing were mostly due to neck fracture(19, 20), which is thought to be due to disruption to the femoral head blood supply during the approach(21). A more serious complication emerged with the reporting of pseudotumours after metal-on-metal hip resurfacing by Pandit et al(22). There was a considerable delay in identifying this problem due to the reliance upon x-ray investigation for symptomatic patients; and this provides a useful lesson in dealing with unexpected clinical complications with new implants. Xray investigations did not reveal the presence of the soft tissue reactions (Figure 4) around the implant. The experience with pseudotumours clearly points to the need for using cross-sectional imaging as an adjunct to x-rays. The pseudotumours were found be reliably detected using ultra-sound(23, 24) (Figure 5). The main problem with ultrasound is the reliance on skilled and experienced interpretation of the images(24). Toms et al(25) developed metal artefact reduction sequences (MARS) for MRI scanning of metal-on-metal hip replacements. The MARS MRI technique now allows routine imaging of patients with metal implants and MRI can reveal the presence of pseudotumour (Figure 6).

1 Discussion

The current regulatory framework for orthopaedic implants requires rigorous and standardised pre-clinical tests before implants can be introduced to the market. However, it is clear from the history of orthopaedic devices that small design changes or the use of new materials can have unexpected
negative consequences. For example, introducing a matt finish on the Exeter stem led to dramatic increase in revision(26). The introduction of Boneloc (Biomet, Warsaw, IN, USA) cement was intended to reduce the problems of high polymerisation temperatures(27), but during clinical use of this cement significantly higher early failures were observed for hip stems(28). Phased introduction has been proposed as a method of reducing the consequences of unforeseen complications, and imaging techniques have a clear role in clinical trials forming part of such an introduction scheme.

Radiostereometry or RSA, due to its high accuracy, has a particularly valuable role. Relatively small cohorts are needed for trials because of the high accuracy achievable with RSA. Nelissen et al (29) have recently demonstrated that knee implants tested using RSA have between 22% to 35% fewer revisions at five years compared to non-RSA tested knee implants. There is a clear role for using RSA to assess the effectiveness of materials and designs at improving wear resistance. The usage of RSA for phased introduction requires well designed studies, and perhaps one method is to compare new devices against the current gold standard.

RSA studies cannot, however, give insight to every failure mode. Johan Karrholm recently stated “RSA can tell you what is bad, but cannot necessarily tell you what is good”. For well known failure modes with established patterns of migration, RSA clearly has a strong predictive value. However, if a failure mode is not associated with a repeatable migration pattern, then RSA studies would probably not be able to predict it. It should be borne in mind that the results obtained with RSA measurements are reflective of the whole process of joint replacement not just the implant being assessed. Operative technique, patient selection and rehabilitation may all play a role in the migration patterns of implants and RSA studies should be designed to reduce bias.

It is important to consider RSA studies as forming part of a comprehensive clinical assessment for new devices. The experience of metal-on-metal hip replacement has demonstrated that a true comprehensive approach is needed when confronted with unforeseen complications. This experience has demonstrated the value of cross-sectional imaging, which previously had not been considered as part of a routine follow-up for an orthopaedic implant. However, the very nature of an unexpected complication means that it may not be detected until a device is in widespread use, and most likely the future holds more examples of failures due to unforeseen consequences of the introduction of new implants.

1 Conclusion

Imaging has a number of important roles in the clinical follow-up of newly introduced implants. RSA in particular is an important measurement tool for performing comparative trials of designs and new materials, and is now being recommended as part of the phased introduction of new implants(30, 31). The recent experience with pseudotumours associated with metal-on-metal hip replacement has shown the importance of using cross-sectional imaging to investigate symptomatic patients, particularly in the early adoption phase of new implants. Future developments need to focus on improving the resolution and accuracy of RSA; whilst RSA can detect penetration rate differences between standard and highly cross-linked polyethylene, it probably cannot measure the differences between two different types of cross-linked polyethylene. A major overhead with cross-sectional imaging is the reporting of the images. More automated methods may play a role in allowing more detailed clinical follow-up in a cost-effective manner.
Assessment of implants is now also moving to a functional level and there is a role for imaging here too. Imaging methodologies have been used as research tools to obtain objective functional data, for example performing dynamic tracking of joint motion with MRI(32) or assessing the differences in the kinematic function of knee replacements(33). These have not yet translated into routine clinical use. Further development of these tools will allow implant assessment to be undertaken on an objective functional performance basis.

Figure Captions:

Figure 1: Failure modes and the associated imaging modalities for assessment.

Figure 2: Typical RSA measurement arrangement.

Figure 3: Penetration data for standard (UHMWPE) and Longevity highly cross-linked (HXLPE) polyethylene against time. Blue shaded area shows creep dominated early phase.

Figure 4: Xray of a patient with bilateral pseudotumours.

Figure 5: Ultrasound imaging of resurfacing hip patient with a pseudotumour.

Figure 6: MARS MRI scan of patient with large pseudotumour.

References