Structure of GeS$_2$ at high pressures and temperatures: a combined approach using x-ray and neutron diffraction

Anita Zeidler,$^{(1)}$ James W E Drewitt,$^{(1)}$ Philip S Salmon,$^{(1)}$ Adrian C Barnes,$^{(2)}$ Wilson A Crichton,$^{(3)}$ Stefan Klotz,$^{(4)}$ Henry E Fischer,$^{(5)}$ Chris J Benmore,$^{(6)}$ Silvia Ramos,$^{(7)}$ Alex C Hannon$^{(8)}$

(1) Department of Physics, University of Bath, Bath BA2 7AY, UK
(2) H. H. Wills Physics Laboratory, Royal Fort, Tyndall Avenue, Bristol, BS8 1TL, UK
(3) European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, Grenoble cedex, F-38043, France
(4) IMPMC, Université Pierre et Marie Curie F-75252 Paris, France
(5) Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, Grenoble cedex 9, F-38042, France
(6) Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
(7) Diamond Light Source Ltd., Diamond House, Harwell Science & Innovation Campus, Didcot, Oxon. OX11 0DE, UK
(8) ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK

Abstract. The change in structure of glassy GeS$_2$ with pressure increasing to ≈ 5 GPa at ambient temperature was explored by using $in situ$ neutron and x-ray diffraction. Under ambient conditions, the glass structure is made from a mixture of corner- and edge-sharing Ge($S_{1/2}$)$_4$ tetrahedra where 47(5)$\%$ of the Ge atoms are involved in edge-sharing configurations. The network formed by these tetrahedra orders on an intermediate range as manifested by the appearance of a pronounced first sharp diffraction peak in the measured total structure factors which occurs at a scattering vector $k = 1.02(2)$ Å$^{-1}$ and which has a large contribution from Ge–Ge correlations. The intermediate range order breaks down when the pressure on the glass increases above ≈ 2 GPa but there does not appear to be a significant alteration of the Ge–S coordination number or corresponding bond length with increasing density. The results for the glass are consistent with a mechanism in which there is a replacement of edge-sharing by corner-sharing Ge centred tetrahedral motifs with increasing density. The change in structure with increasing temperature at a pressure of ≈ 5 GPa was also investigated by $in situ$ x-ray diffraction as the glass crystallised and then liquefied. At 5.2(1) GPa and 828(50) K the system forms a tetragonal crystal, with space group $I42d$ and cell parameters $a = b = 4.97704(12)$ and $c = 9.5355(4)$ Å, wherein corner-sharing Ge($S_{1/2}$)$_4$ tetrahedra pack to form a dense three-dimensional network. A method is described for correcting x-ray diffraction data taken $in situ$ under high pressure, high temperature conditions for a cylindrical sample, container and gasket geometry with a parallel incident beam and with a scattered beam that is defined by an oscillating radial collimator. A method is also outlined for obtaining coordination numbers from direct integration of the peaks in measured x-ray total pair distribution functions.
1. Introduction

Glasses with the AX \(_2\) stoichiometry are at the heart of many materials of scientific and technological importance [1], where A denotes an electropositive species such as Si, Ge or Zn and X denotes an electronegative species such as O, S, Se or Cl. In these materials the basic structural motifs, which are usually \(\text{A}(\text{X}_{1/2})_4\) tetrahedra, link to form a network in which two characteristic length scales appear at distances greater than the nearest-neighbour [2, 3, 4, 5, 6]. One of these length scales is associated with an intermediate range and manifests itself by the appearance of a so-called first sharp diffraction peak (FSDP) in the measured diffraction patterns at a scattering vector \(k_{\text{FSDP}}\) where \(k_{\text{FSDP}}r_{\text{AX}} \approx 2.5\) and \(r_{\text{AX}}\) is the nearest-neighbour distance for unlike chemical species [7, 8, 9]. The other is associated with an extended range which has a periodicity given by \(\approx 2\pi/k_{\text{PP}}\) where \(k_{\text{PP}}\) denotes the scattering vector of the principal peak and \(k_{\text{PP}}r_{\text{AX}} \approx 4.8\) [6]. The nature of the network can be changed substantially by altering the type and connectivity of the basic structural motifs via a change in the atomic constituents or adjustment of the temperature and pressure. This leads to an interplay between the importance of the ordering on the intermediate and extended length scales [4, 6].

For example, in the case of the archetypical ‘strong’ glass forming system GeO\(_2\) [10], the glass network under ambient conditions is made from an arrangement of corner sharing Ge(O\(_{1/2}\))\(_4\) tetrahedra [4, 11]. When the pressure is increased to \(\approx 15\) GPa, in situ x-ray and neutron diffraction experiments show that the FSDP disappears, by moving to progressively higher \(k\)-values and merging with the principal peak, as the network re-organises to form a dense octahedral glass [12]. In comparison, GeSe\(_2\) is a more ‘fragile’ glass forming system than GeO\(_2\) [13] and the glass network under ambient conditions is made predominantly from a mixture of corner- and edge-sharing Ge(Se\(_{1/2}\))\(_4\) tetrahedra with a small but significant number of homopolar or ‘wrong’ bonds [14, 15]. When the pressure on this glass is increased from ambient to \(9.3\) GPa, in situ x-ray diffraction experiments show a breakdown of the intermediate range order, as manifested by a disappearance of the FSDP, whereas the extended range order is enhanced, as manifested by a gain in intensity of the principal peak [16]. Similar behaviour is observed for the liquid phase of GeSe\(_2\) as the density is increased at constant temperature by applying a pressure between 0.5 and 4.1 GPa at 1120 K [17]. When the temperature of the liquid is increased at much lower pressures, the density first increases [18] and neutron diffraction experiments show a disruption of the network as manifested by a disappearance of the FSDP [19, 20].

It is therefore of interest to understand the relation between the ordering on different length scales and the topological features of network structures. In this context, the GeS\(_2\) system has long been regarded as an important test case for examining contrasting models for topological disorder [21], especially as the crystal structures form both 2-dimensional (2-D) [22] and 3-dimensional (3-D) [23] networks under ambient conditions. These crystal structures differ by the way in which the basic structural motifs, Ge(S\(_{1/2}\))\(_4\) tetrahedra, interconnect: the former comprises chains of corner-sharing motifs linked by edge-sharing motifs to form a layered structure whereas the latter comprises a network of purely corner-sharing motifs. Pressure should be a sensitive probe of the network topology of the glass since the stronger (‘intra-molecular’) bonds within layer-like assemblies of motifs should be less sensitive...
Structure of GeS\textsubscript{2} at high pressures and temperatures

to change in density compared to the weaker ‘inter-molecular’ bonds between such assemblies [21]. More recently, these ideas have been extended to include the notion of polymorphism i.e. the ability of a liquid or glass to undergo an abrupt change in structure with change of state variables, analogous to the polymorphic transitions that occur between different crystalline structures of the same compound [24]. The structural changes observed for liquid GeSe\textsubscript{2} under high pressure and high temperature conditions may provide evidence for such a 2-D to 3-D transformation [17].

In the present work a combination of x-ray and neutron diffraction is used to investigate the changes in structure that occur for glassy GeS\textsubscript{2} when (i) the pressure is increased to \(\simeq 5\) GPa at room temperature and (ii) the temperature is increased at this high pressure to induce crystallization and eventual liquefaction. Part of the motivation is provided by the structural analogies that exist between GeS\textsubscript{2} and GeSe\textsubscript{2} [25, 26, 27, 28, 29] and by the previous x-ray and neutron diffraction work on liquid and glassy GeSe\textsubscript{2} which shows that substantial structural alterations occur with change of density [30]. The information provided by these experiments does, however, focus on the topological as opposed to chemical ordering of the network. This follows from the close similarity in the atomic form factors for Ge and Se, and the close similarity in the coherent neutron scattering lengths for Ge and Se of natural isotopic abundance, which means that conventional x-ray and neutron diffraction experiments amount to a measurement of the Bhatia-Thornton [31] number-number partial structure factor \(S_{NN}(k)\) [20, 32, 33]. In contrast, there is a significant difference in both the x-ray form factors of Ge and S and their coherent neutron scattering lengths which means that x-ray and neutron diffraction experiments provide more information on the chemical ordering. In addition, unlike the case of GeSe\textsubscript{2}, the bond lengths in GeS\textsubscript{2} are significantly different which aids in the interpretation of the measured pair distribution functions. Although the crystallization of amorphous GeS\textsubscript{2} under pressure increasing to 9 GPa has been investigated by x-ray diffraction [34], along with the structure of permanently densified GeS\textsubscript{2} glasses [35], little information has been obtained on the glass structure as a function of pressure and temperature by \textit{in situ} diffraction techniques. An exception is the early x-ray diffraction work of Tanaka [36] on the glass structure at pressures up to 7 GPa made using Mo K\textalpha\ radiation and a diamond anvil cell. Like GeSe\textsubscript{2}, the GeS\textsubscript{2} system is also a more fragile glass former than GeO\textsubscript{2} [37, 38].

The paper is organised as follows. The essential theory required for understanding the x-ray and neutron diffraction experiments is described in section 2. The experimental method is then given in section 3 in five distinct subsections. In the first, the method used to prepare the glassy GeS\textsubscript{2} samples is outlined and, in the second, the neutron and x-ray diffraction experiments made under ambient temperature and pressure conditions are reported. In the third, the x-ray diffraction experiments made \textit{in situ} under (i) high pressure and ambient temperature or (ii) high pressure and high temperature conditions are described and, in the fourth, an account is given of the procedure required for the x-ray data reduction. In the fifth, the neutron diffraction experiments made \textit{in situ} under high pressure and ambient temperature conditions are reported. The results are then presented in section 4 in six distinct subsections. In the first, the structure of glassy GeS\textsubscript{2} at ambient temperature and pressure is described. The changes in this structure observed by x-ray diffraction are then given, starting with the pressure dependence of the glass structure at room temperature. The structure of the glass recovered from high pressure is then described, followed by the structure of GeS\textsubscript{2} at high pressures and high temperatures, and ending with
the structure of crystalline GeS\(_2\) as measured in situ under high pressure and high temperature conditions. Finally, in the sixth subsection the structure of glassy GeS\(_2\) at high pressure and ambient temperature, as determined by in situ neutron diffraction experiments, is described. The results are discussed in section 5 and conclusions are drawn in section 6.

2. Theory

In an x-ray or neutron diffraction experiment on glassy GeS\(_2\) the coherent scattered intensity can be represented by the total structure factor \[F(k) = \sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} c_\alpha c_\beta f_\alpha(k)f_\beta^*(k)[S_{\alpha\beta}(k) - 1] \] (1)

where \(\alpha\) and \(\beta\) denote the chemical species, \(n = 2\) is the number of different chemical species, \(c_\alpha\) represents the atomic fraction of chemical species \(\alpha\), \(f_\alpha(k)\) and \(f_\beta^*(k)\) are the scattering length (or form factor) and its complex conjugate for chemical species \(\alpha\), \(S_{\alpha\beta}(k)\) is a Faber-Ziman [40] partial structure factor and \(k\) is the scattering vector. \(S_{\alpha\beta}(k)\) is related to the partial pair distribution function \(g_{\alpha\beta}(r)\) by the Fourier transform relation

\[g_{\alpha\beta}(r) - 1 = \frac{1}{2\pi^2 n_0 r} \int_0^\infty dk k [S_{\alpha\beta}(k) - 1] \sin(kr) \] (2)

where \(n_0\) is the atomic number density and \(r\) is a distance in real space. The scattering lengths are independent of \(k\) for the case of neutron diffraction experiments but not for the case of x-ray diffraction experiments. In order to compensate for this \(k\) dependence, the total structure factor can be rewritten as

\[S(k) - 1 = \frac{F(k)}{\langle f(k) \rangle^2} \] (3)

where \(\langle f(k) \rangle = c_\alpha f_\alpha(k) + c_\beta f_\beta(k)\) is the mean scattering length. We note that this function should be interpreted with care because the weighting factors for the \(S_{\alpha\beta}(k)\) functions are \(k\) dependent. The corresponding real space information is provided by the total pair distribution function which is obtained from the Fourier transform relation

\[G(r) - 1 = \frac{1}{2\pi^2 n_0 r} \int_0^\infty dk k [S(k) - 1] \sin(kr). \] (4)

For the case of x-ray diffraction experiments, the normalisation defined by equation (3) has the advantage that it allows for a better resolution of the peaks in \(G(r)\). For \(r\) values smaller than the distance of closest approach between the centre of two atoms \(G(r) = G(r = 0) = 0\). The mean coordination number of atoms of type \(\beta\), contained in a volume defined by two concentric spheres of radii \(r_i\) and \(r_j\) centred on an atom of type \(\alpha\), is given by

\[\bar{n}_{\alpha}^\beta = 4\pi n_0 c_\beta \int_{r_i}^{r_j} dr r^2 g_{\alpha\beta}(r). \] (5)

In practice, the measured reciprocal space functions will be subjected to a modification function \(M(k)\) which results, for example, in truncation of the data sets at some maximum value \(k_{\text{max}}\) owing to the finite measurement window function of a
diffraction. In consequence, equation (4) needs to be modified and it is convenient to re-write it as

$$r [G'(r) - 1] = \frac{1}{2\pi^2 n_0} \int_0^\infty dk k [S(k) - 1] M(k) \sin(kr) = r [G(r) - 1] \otimes M(r) \quad (6)$$

where \otimes denotes the one-dimensional convolution operator. In this expression the function $r [G(r) - 1]$ is convoluted with a symmetrical $M(r)$ function. For example, the measurement window is usually represented by the step function $M(k) = 1$ for $|k| \leq k_{\text{max}}$, $M(k) = 0$ for $|k| > k_{\text{max}}$ whence $M(r) = \sin(k_{\text{max}}r)/\pi r$. Alternatively, the adoption of a Lorch [41] modification function $M(k) = \sin(ak)/\pi ak$ for $|k| \leq k_{\text{max}}$, $M(k) = 0$ for $|k| > k_{\text{max}}$ gives $M(r) = [\sin(\pi(r + a)/a) - \sin(\pi(r - a)/a)]/2\pi a$ where $a = \pi/k_{\text{max}}$ and the sine integral $\text{Si}(x) = \int_0^x \sin(t)/t \, dt$ [5]. If the oscillations in the structure factor have not ceased before k_{max} then an application of the Lorch or related modification function will give a smoother pair correlation function at all r values by comparison with the use of a step modification function but at the expense of a loss in resolution of the first peaks in r space. We note that for r values smaller than the distance of closest approach between the centre of two atoms $G'(r) = G'(r = 0) = 0$ (see Appendix A).

The notation $S_X(k)$ and $S_N(k)$ will be used in order to distinguish between the total structure factors measured by x-ray and neutron diffraction and the corresponding total pair distribution functions will be labeled by $G_X'(r)$ and $G_N'(r)$, respectively. The method used to extract coordination numbers n_i^a from integration over peaks in $G_N'(r)$, which is more complicated than in the case of neutron diffraction owing to the occurrence of k dependent scattering lengths, is outlined in Appendix A. This integration procedure avoids the process whereby a peak shape function in r space is assumed and its Fourier transform is then fitted to the reciprocal space data at high k values. The coherent neutron scattering lengths for Ge and S are $b_{\text{Ge}} = 8.185(20)$ and $b_{\text{S}} = 2.847(1)$ fm [42]. The partial structure factors in $S_X(k)$ and $S_N(k)$ are therefore weighted differently: the ratio of the Ge to S scattering lengths $f_{\text{Ge}}(k)/f_{\text{S}}(k)$ is equal to 2.875 for all k values in the case of the neutron diffraction but, at $k = 0$, is equal to 2 in the case of x-ray diffraction if neutral atoms are assumed.

3. Experimental method

3.1. Sample preparation

The GeS$_2$ glass was prepared from high purity Ge (99.999%) and S (≥99.998%) following the procedure outlined in [43]. The elements were weighed in a high purity argon filled glove box in the correct proportions to give a total sample mass of ≈ 3 g and were sealed under a vacuum of ≈ 10$^{-5}$ torr in a cleaned silica ampoule of 7 mm inner diameter and 1 mm wall thickness. The sealed ampoule was heated in a rocking furnace at 1 °C/min to 950 °C, dwelling at intermediate temperatures of 119 °C (the melting point of sulphur), 445 °C (the boiling point of sulphur) and 937 °C (the melting point of germanium) for 4 h periods, and was maintained at the highest temperature for ≈ 24 h. The furnace was then placed in a vertical position and left for 5 h, cooled to 920 °C at 1 °C/min and left for 4 h, before the ampoule was rapidly quenched into icy water. The sample ingots thus formed were visibly homogenous and yellow in colour and there was no deposit left elsewhere on the inside of an ampoule. A glass transition temperature T_g of 514(2) °C (mid-point) was obtained from the reversible part of the heat flow measured using a TA Instruments Q100 modulated differential
scanning calorimeter with a scan rate of 3 °C/min, modulation of ±1 °C per 60 s and a nitrogen gas flow rate of 50 ml/min. By comparison, the \(T_g \) value estimated from the total heat flow takes a smaller mid-point value of 493(3) °C. These results compare with literature values of 453(2) °C [37], \(\approx 473 °C \) [44], \(\approx 490 °C \) [45], 491(5) °C [29], \(\approx 495 °C \) [46] and \(\approx 520 °C \) [47]. Some of this spread in values can be attributed to the method used to measure \(T_g \) e.g. the result of [29] was obtained from the total heat flow measured in a differential scanning calorimetry experiment and is in agreement with the present value. A more recent modulated differential scanning calorimetry experiment on GeS\(_2\), using a scan rate of 3 °C/min with a modulation of ±1 °C per 100 s, gave mid-point \(T_g \) values of 508 °C (reversible heat flow) and 489 °C (total heat flow) [48]. Before each diffraction experiment, a glassy sample was extracted from its ampoule and part of it was finely powered in a mortar and pestle.

3.2. Neutron and x-ray diffraction experiments under ambient conditions

The neutron diffraction experiment on glassy GeS\(_2\) was made using the GEM diffractometer at the ISIS pulsed neutron source [49]. The finely powdered sample was held at ambient temperature (\(\approx 25 °C \)) in a cylindrical vanadium can of 4.8 mm internal diameter and 0.1 mm wall thickness and diffraction patterns were taken for the sample in its container, the empty container, the empty instrument, and a vanadium rod of diameter 5.99 mm for normalisation purposes. Each complete diffraction pattern was built up from the intensities measured for the different detector groups. These intensities were saved at regular intervals and no deviation between them was observed, apart from the expected statistical variations, which verified the diffractometer stability [51]. The data were analyzed using the program GUDRUN [50] which makes the necessary corrections detector by detector before merging the results to give the neutron total structure factor \(S_N(k) \). It was checked that \(S_N(k) \) obeys the sum-rule relation \(\int_0^\infty [S_N(k) - 1] k^2 dk = -2\pi^2 n_0 \) and gives rise to a well-behaved total pair correlation function \(G_N'(r) \). This function should oscillate about \(G_N'(r = 0) = 0 \) at small \(r \) values and, when these small \(r \) oscillations are set to zero, the Fourier back-transform should be in good overall agreement with the original reciprocal space data set [52]. The number density of the glass \(n_0 = 0.0359(1) \text{Å}^{-3} \) (see figure 1) was taken from Feltz et al [26].

The x-ray diffraction experiment on glassy GeS\(_2\) was made using beamline 11-ID-C at the Advanced Photon Source (APS) with an incident energy of 115.19(6) keV and a single element germanium solid state detector. The loosely packed glass powder was placed in a washer and sealed each side with kapton 77-80 tape to give an approximate slab geometry with a sample thickness of 1.5 mm at the incident beam position. Diffraction patterns were measured for the sample in the kapton container and the empty kapton container. The data were analysed using the ISOMER-X software package which made corrections for the detector deadtime and deviation of the vertical scanning path taken by the detector from a circle centred at the sample position [53]. The atomic form factors were taken from [54] and the Compton scattering correction was taken from [55].

3.3. X-ray diffraction experiments at high pressures and temperatures

The x-ray diffraction experiments were made using the ID30 high pressure beamline of the European Synchrotron Radiation Facility (ESRF) with the Paris-Edinburgh
The mass density, \(\rho \), and corresponding number density, \(n_0 \), of GeS\(_2\) for the as-prepared glass [26], the high temperature crystalline \(\alpha \) phase [22], the low temperature crystalline \(\beta \) phase [23], the crystalline \(\gamma \) phase as prepared at 1100 °C and 6–6.5 GPa and recovered to ambient conditions [68], the high-temperature high-pressure crystalline \(\delta \) phase as prepared by a sol-gel process [69], the crystalline \(\gamma \) phase at 5.2(1) GPa and 828(5) K as found in the present work, and the glass for samples that have been pressurised at 1.5, 3, 4.5, 6 or 9 GPa and recovered to ambient conditions [35, 71].

Figure 1. The mass density, \(\rho \), and corresponding number density, \(n_0 \), of GeS\(_2\) for the as-prepared glass [26], the high temperature crystalline \(\alpha \) phase [22], the low temperature crystalline \(\beta \) phase [23], the crystalline \(\gamma \) phase as prepared at 1100 °C and 6–6.5 GPa and recovered to ambient conditions [68], the high-temperature high-pressure crystalline \(\delta \) phase as prepared by a sol-gel process [69], the crystalline \(\gamma \) phase at 5.2(1) GPa and 828(5) K as found in the present work, and the glass for samples that have been pressurised at 1.5, 3, 4.5, 6 or 9 GPa and recovered to ambient conditions [35, 71].

The diffraction patterns were collected by using a two dimensional MAR345 image plate detector and, for the pressure experiments, the large background scattering from the sample cell was minimized by using the ID30 oscillating radial collimator system in the diffracted beam which gave an effective scattered beam width of 100 \(\mu \)m. At each pressure point three measurements of approximately 2 minutes exposure were made: (i) with the incident beam passing through the centre of the sample, (ii) with
the cell moved sideways so that the incident beam passed through the BN sample container, and (iii) with the cell moved further sideways so that the incident beam passed through the gasket material (boron impregnated epoxy). In the case of the high temperature run, a further measurement was made so that the incident beam passed through the graphite heater and Au foil. For the room temperature measurements the pressure in the cell was calculated from the position of the BN (002) peak according to the equation of state given by Le Godec et al [57]. The change in temperature and pressure on heating the sample was determined by reference to the position of the BN(002), Au(111) and Au(200) peaks and using the equations of state and thermal expansion coefficients given by Le Godec et al [57] for hexagonal BN and by Heinz and Jeanloz [58] and Anderson et al [59] for gold.

3.4. X-ray data reduction for high pressure and temperature experiments

The data from the detector were processed using the FIT2D program [60] by first selecting from the image plate only the unobstructed scattering from the sample, i.e. that passing through the collimator but not hitting the sides of the anvils, thus avoiding parasitic scattering from the anvils. The data were at this stage corrected for geometrical effects, such as non-orthogonality of the detector relative to the incident beam, and polarization of the incident beam. FIT2D was then used to integrate the scattered intensity over Debye-Scherrer cones to give a one dimensional ‘powder’ pattern of intensity versus scattering angle 2θ [39]. Use of the oscillating radial collimator system enables an elimination of all the container scattering for 2θ ≳ 10° and all the gasket scattering for 2θ ≳ 5° (see Appendix B). The precise scattering angle at which the cut-off occurs depends on the sample diameter and is affected by any distortion that the sample may undergo on compression/heating. The x-ray structure factors were subsequently calculated by using the following analysis procedure.

i) The diffraction pattern was measured for the sample centred in the incident beam. For this situation, the illuminated volumes of the sample, container and gasket for each scattering angle 2θ were calculated from the known geometry of the incident beam and oscillating radial collimator, and the sample and container diameters (see Appendix B).

ii) The BN container scattering was measured with the cell moved sideways relative to the incident beam. This intensity was scaled, using the calculations made in i), to be commensurate with the volume of BN illuminated when the sample is positioned so that the incident beam passes through its centre. The scaled container intensity was then subtracted from the intensity measured in stage i).

iii) The gasket scattering was also measured with the cell moved sideways relative to the incident beam. This intensity was scaled, using the calculations made in i), to be commensurate with the volume of gasket illuminated when the sample is positioned so that the incident beam passes through its centre. The scaled gasket intensity was then subtracted from the result of stage ii). In practice, this additional correction was very small and was not necessary for the ambient temperature run.

iv) Once the data were corrected for the container and gasket scattering, the resulting intensity was scaled to account for the change in illuminated volume of the sample with scattering angle. A correction was not made for attenuation by the sample, container and gasket materials of the incident and scattered beams (see Appendix B).

v) The resulting data for the sample were normalised to electron units by scaling
Table 1. The change in effective sample radius with increasing pressure for the diffraction experiment on glassy GeS$_2$ made using the ID30 high pressure beamline at room temperature.

<table>
<thead>
<tr>
<th>Applied pressure /GPa</th>
<th>Effective sample radius /mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>0.65</td>
</tr>
<tr>
<td>0.75</td>
<td>0.55</td>
</tr>
<tr>
<td>1.49</td>
<td>0.53</td>
</tr>
<tr>
<td>2.08</td>
<td>0.52</td>
</tr>
<tr>
<td>3.07</td>
<td>0.52</td>
</tr>
<tr>
<td>3.97</td>
<td>0.52</td>
</tr>
<tr>
<td>4.60</td>
<td>0.47</td>
</tr>
<tr>
<td>4.96</td>
<td>0.45</td>
</tr>
</tbody>
</table>

to match the sum of the self-scattering, $\sum_{\alpha} c_{\alpha} f_{\alpha}(k) f^{\ast}_{\alpha}(k)$, and Compton scattering, $(d\sigma/d\Omega)_{\text{Compton}}$, contributions to the x-ray differential scattering cross-section for the sample

$$\left(\frac{d\sigma}{d\Omega} \right)_{x} = \left(\frac{d\sigma}{d\Omega} \right)_{\text{Compton}} + \sum_{\alpha} c_{\alpha} f_{\alpha}(k) f^{\ast}_{\alpha}(k) + F(k)$$

where $F(k)$ is defined by equation (1). The Compton scattering corrections were made using the tables given by Hubbell et al [61] and the form factors for neutral Ge and S atoms were taken from [54].

In practice the analysis procedure needed to be adjusted because the sample was compressed in the cell, thus reducing its diameter. At each pressure point, this diameter was therefore altered in order to obtain a reasonable fit to the sample self-scattering. Table 1 shows the sample radius used in the analysis at each applied pressure for the ambient temperature run. The x-ray total structure factor $S_X(k)$ at each state point was then obtained by using equation (3) such that

$$S_X(k) - 1 = \left(\frac{d\sigma}{d\Omega} \right)_{x} - \left(\frac{d\sigma}{d\Omega} \right)_{\text{Compton}} - \sum_{\alpha} c_{\alpha} f_{\alpha}(k) f^{\ast}_{\alpha}(k)$$

where $|\langle f(k) \rangle|^2 = \sum_{\alpha} \sum_{\beta} c_{\alpha} c_{\beta} f_{\alpha}(k) f^{\ast}_{\beta}(k)$.

3.5. Neutron diffraction experiments using a high pressure set-up

The neutron diffraction experiment on glassy GeS$_2$ at high pressure and ambient temperature (≈ 25 $^\circ$C) was made using a VX5/180 type Paris-Edinburgh (PE) press with two support pillars and standard single toroid anvils [62] made from sintered cubic boron nitride (BN) [63] mounted on the diffractometer D4C [64] at the Institut Laue-Langevin (ILL). An incident wavelength of 0.6960(1) Å was used to optimise the incident flux of neutrons and enabled the use of cadmium (Cd) as an effective shielding material to reduce background scattering. This background scattering was further reduced by using neutron absorbing 10B$_4$C flags (i.e. vertical slits placed a few cm upstream of the sample) to collimate the incident beam. A pellet of finely powdered glass, pre-compacted to the correct geometry, was held in a single toroid gasket made
from a Ti–Zr alloy with a mean coherent neutron scattering length of zero. The gasket and collimation provided by the neutron absorbing BN anvils defined a cylindrical sample geometry with the incident and scattered beams in a plane perpendicular to the axis of the cylinder i.e. they both passed through the gasket material. The sample diameter and height under ambient conditions were 6 mm and 1.6 mm, respectively.

Diffraction patterns were measured for the sample in the gasket with a small applied load to ensure that the gasket takes the shape of the anvils (effectively ambient pressure) and at 4.9(5) GPa. The latter was estimated by assuming a linear dependence between the pressure at the sample position and the force applied to the piston once deformation of the gasket material starts to occur. To estimate the container scattering, diffraction patterns were measured for an empty unsquashed Ti–Zr gasket and also for several empty Ti–Zr gaskets that had been recovered from different high pressures. To assist in the data normalisation at different pressures, diffraction patterns were measured for two differently sized vanadium pellets in a squashed or unsquashed Ti–Zr gasket at ambient pressure. In addition, a diffraction pattern was measured with closed anvils to assist in estimating the background scattering and, to examine the effect of sample self-shielding on the background count rate at small scattering angles [65], diffraction patterns were measured for two differently sized neutron absorbing Cd pellets in a squashed or unsquashed Ti–Zr gasket at ambient pressure. In practice, the sample self-shielding correction using Cd was not made.

The data reduction followed a procedure [52] where the data collected for the sample were corrected for container and background scattering, taking into account both self-attenuation and multiple scattering effects, and inelasticity corrections were applied. The procedure is not, however, trivial as the scattering geometry changes with pressure (e.g. the sample compresses as the anvils close) and it is not possible to make all of the necessary measurements for the data reduction at each pressure point. The practical details of the data reduction will be given in a forthcoming paper (Drewitt et al, private communication).

To make a comparison with the ambient pressure PE press results, the total structure factor for a bulk sample of glassy GeS$_2$ in a vanadium container (internal diameter 4.8 mm, wall thickness 0.1 mm) was also measured by using D4C under ambient conditions with an incident neutron wavelength of 0.6960(1) Å. The data reduction followed the procedure described elsewhere [52].

4. Results

4.1. Structure of GeS$_2$ at ambient pressure and temperature by neutron and x-ray diffraction

The total structure factors $S_N(k)$ and $S_X(k)$ measured for glassy GeS$_2$ under ambient conditions are compared in figure 2 and the first three peak positions are summarised in table 2. Both functions display a well defined FSDP at $k_{FSDP} \approx 1.02$ Å$^{-1}$ which, by comparison with the measure partial structure factors for glassy [14, 15] and liquid GeSe$_2$ [19, 66], will have a dominant contribution from the Ge–Ge correlations (also see section 5.1). The FSDP is often associated with oscillations of periodicity $2\pi/k_{FSDP}$ in r space whose extent is controlled by the correlation length $2\pi/\Delta k_{FSDP}$ where Δk_{FSDP} is the full width at half maximum of the FSDP [9]. The latter, obtained by reflecting the low k side of the FSDP about its maximum, is 0.37(2) Å$^{-1}$ for $S_N(k)$
and $0.32(2) \text{Å}^{-1}$ for $S_X(k)$ which give a mean correlation length of $\approx 18 \text{Å}$.

Figure 2. The measured total structure factors $S_N(k)$ and $S_X(k)$ for glassy GeS$_2$ at ambient temperature ($\approx 25 ^\circ \text{C}$) and pressure as measured by using the neutron diffractometer GEM or the x-ray diffractometer on beamline 11-ID-C. The vertical bars represent the measured data points with statistical errors and the solid (red) curves are the Fourier back-transforms of the corresponding total pair distribution functions $G'_N(r)$ or $G'_X(r)$ given by the solid (black) curves in figure 3 after the unphysical oscillations at r values smaller than the distance of closest approach between the centres of two atoms are set to the calculated $G'_N(r = 0) = G'_X(r = 0) = 0$ limit. In the case of $S_N(k)$ the Fourier back-transform is indistinguishable from the data points at most k values.

The total pair distribution functions $G'_N(r)$ and $G'_X(r)$ for glassy GeS$_2$ under ambient conditions are shown in figure 3 and the first few peak positions and nearest-neighbour coordination number are summarised in table 2. The first peak in these functions at $2.22(2) \text{Å}$ is assigned to Ge–S correlations by comparison with the crystal structures of GeS$_2$ [22, 23, 67, 68, 69]. This assignment assumes the absence of homopolar bonds that are observed in the measured partial pair distribution functions for glassy GeSe$_2$ [14, 15]. Integration of the first peak in $G'(r)$ (see Appendix A for the method employed in the case of the x-ray data) then gives a coordination number
Structure of GeS$_2$ at high pressures and temperatures

Figure 3. The measured total pair distribution functions for glassy GeS$_2$ at ambient temperature and pressure. $G_N'(r)$ was obtained by Fourier transforming the $S_N(k)$ function of figure 2 after applying a cosine window function over the range $29.95 \leq k(\text{Å}^{-1}) \leq 34.95$ while $G_X'(r)$ was obtained by Fourier transforming the $S_X(k)$ function of figure 2 after spline fitting and applying a cosine window function over the range $19.975 \leq k(\text{Å}^{-1}) \leq 25.575$. The broken (red) curves show the extent of the unphysical small r oscillations.

$n_{\text{Ge}}^S = 4.02(5)$ which is consistent with the formation of tetrahedral Ge(S$_{1/2}$)$_4$ motifs. The large measured k range means that a small second peak at 2.94(2) Å in both $G'(r)$ functions can be clearly resolved and this is assigned to Ge–Ge correlations between edge-sharing tetrahedral motifs by comparison with the structure of the high temperature monoclinic α phase of crystalline GeS$_2$ [22]. This phase forms a layered structure in which chains of Ge centred corner-sharing tetrahedra are cross linked by pairs of Ge centred tetrahedra that share a common edge. There are equal numbers of corner- and edge-sharing tetrahedra and the shortest Ge-Ge distance of 2.92 Å corresponds to the edge-sharing configuration. For the glass, the peak in $G'(r)$ at 2.94 Å is therefore assigned to the distance between the centres of edge-sharing
Table 2. Several of the parameters describing the structure of glassy GeS$_2$.
The positions k_{FS}, k_{PP} and k_3 of the first three peaks in the measured $S(k)$ functions are given together with the positions r_{GeS}, r_{GeGe} and r_3 of the first three peaks in the corresponding $G'(r)$ functions. The functions were measured using either neutron diffraction (ND) or x-ray diffraction (XRD) and all of the measurements were made at ambient temperature.

<table>
<thead>
<tr>
<th>$S(k)$</th>
<th>k_{FS} (Å$^{-1}$)</th>
<th>k_{PP} (Å$^{-1}$)</th>
<th>k_3 (Å$^{-1}$)</th>
<th>$G'(r)$</th>
<th>r_{GeS} (Å)</th>
<th>r_{GeGe} (Å)</th>
<th>r_3 (Å)</th>
<th>\bar{n}_{Ge}^S</th>
<th>Method</th>
<th>Diffractometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.03(1)</td>
<td>2.35(1)</td>
<td>3.70(2)</td>
<td>2.22(2)</td>
<td>2.94(2)</td>
<td>3.46(5)</td>
<td>3.97(5)</td>
<td>ND$^{(a)}$</td>
<td>GEM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.01(1)</td>
<td>2.30(1)</td>
<td>3.70(2)</td>
<td>2.22(2)</td>
<td>2.94(2)</td>
<td>3.45(2)</td>
<td>4.07(5)</td>
<td>XRD$^{(a)}$</td>
<td>11-ID-C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.12(5)</td>
<td>2.20(5)</td>
<td>3.72(5)</td>
<td>2.24(2)</td>
<td>–</td>
<td>3.53(2)</td>
<td>3.9(1)</td>
<td>XRD$^{(b)}$</td>
<td>ID30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.03(2)</td>
<td>2.42(5)</td>
<td>3.75(5)</td>
<td>2.21(2)</td>
<td>–</td>
<td>3.46(3)</td>
<td>4.3(2)</td>
<td>ND$^{(a)}$</td>
<td>D4C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.12(2)</td>
<td>2.52(5)</td>
<td>3.77(5)</td>
<td>2.20(2)</td>
<td>–</td>
<td>3.42(3)</td>
<td>4.2(2)</td>
<td>ND$^{(c)}$</td>
<td>D4C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$^{(a)}$ ambient pressure; $^{(b)}$ recovered from 4.96(7) GPa; $^{(c)}$ in situ at 4.9(5) GPa

(ES) tetrahedra and integration of the unsmoothed functions gives a coordination number \bar{n}_{Ge}^S of 0.46(5) for $G_N'(r)$ and 0.48(5) for $G_X'(r)$. In the high temperature crystalline phase of GeS$_2$, each Ge atom in an edge-sharing unit has one nearest-neighbour Ge atom in the adjacent edge-sharing unit such that the corresponding coordination number is given by $\bar{n}_{Ge}^S = (N_{Ge}(ES)) / N_{Ge}$, i.e.

$$\bar{n}_{Ge}^S = \frac{N_{Ge}(ES)}{N_{Ge}}$$

and, since there are equal numbers of Ge atoms involved in corner- and edge-sharing tetrahedra, this expression takes the value of 1/2. Hence if there are no extended chains of edge-sharing units, use of equation (9) for the glass gives a ratio $N_{Ge}(ES)/N_{Ge}$ of 47(5)% which compares with a ratio of 34(5)% for the case of glassy GeSe$_2$ [14, 15]. The third peak in the $G'(r)$ functions at ≈ 3.45 Å will, by comparison with the structure of glassy GeSe$_2$, have a large contribution from Ge–Ge and S–S correlations with a mean S–S distance that is longer than the mean Ge–Ge distance [29]. This assignment is supported by the asymmetry of the third peak e.g. a shoulder appears on the high r side of the third peak in $G_N'(r)$ at $\approx 3.72(5)$ Å and a corresponding distance of 3.75(5) Å is estimated from $G_X'(r)$ by peak reflection. If these longer distances are assigned to the S–S distance within Ge centred tetrahedra then the ratio r_{SS}/r_{GeS} is 1.689 for $G_N'(r)$ and 1.676 for $G_X'(r)$ which compares with a value of $\sqrt{8/3} = 1.633$ for regular tetrahedra. Distorted Ge(S$_{1/2}$)$_4$ tetrahedra are a feature in both the low- and high-temperature phases of crystalline GeS$_2$ [22, 23]. Thus, the neutron and x-ray data for GeS$_2$ under ambient conditions both point to a model in which the structure is dominated by tetrahedral Ge(S$_{1/2}$)$_4$ motifs in which 47(5)% of the Ge atoms are involved in edge-sharing connections. These motifs link to form a network in which there is intermediate range order, as manifested by the appearance of an FSDP in the measured total structure factors, which has a dominant contribution from the Ge–Ge correlations.
4.2. Pressure dependence of the structure of glassy GeS$_2$ at ambient temperature by x-ray diffraction

Figure 4 shows the $S_X(k)$ obtained for glassy GeS$_2$ over the pressure range $0.11(2) \leq p($GPa$) \leq 4.96(7)$ at room temperature. The measurement at ambient pressure (100 kPa) is not shown for clarity of presentation but is in good agreement with the results reported in section 4.1 showing an FSDP at $k_{FSDP} = 1.03(2)$ Å$^{-1}$. The Bragg peak at ≈ 2 Å$^{-1}$ is the remaining contribution from the intense BN (002) reflection from the sample cell that was not completely removed by the correction procedure. Figure 5 shows the pressure dependence of k_{FSDP} as determined from a Lorentzian fit. The peak position moves to higher k with increasing pressure, which is consistent with a shortening of the periodicity of the corresponding intermediate range order in real space [9]. The height of the FSDP is also plotted in figure 5 and remains reasonably constant up to a pressure of ≈ 2 GPa before showing a substantial decrease. This sharp decline is accompanied by a change in the third peak at $k_3 \approx 3.7$ Å$^{-1}$ which becomes notably sharper and displaced to higher k. The observed shift with pressure of the FSDP position to increasing k values, and the decrease in the FSDP height, are consistent with the results obtained by Tanaka [36].

![Figure 4. The x-ray total structure factors $S_X(k)$ for glassy GeS$_2$ at ambient temperature (≈ 25 °C) and different pressures as measured by using the x-ray diffractometer on beamline ID30. The data sets correspond to pressures of 0.11(2), 0.75(2), 1.49(3), 2.08(3), 3.07(4), 3.97(4), 4.60(5) and 4.96(7) GPa. The Bragg peak at ≈ 2 Å$^{-1}$ is the remaining contribution from the intense BN (002) reflection that is not completely removed by the correction procedure.](image_url)

Figure 6 shows the pair distribution functions $G'_X(r)$ obtained from the $S_X(k)$ by using equation (6) with a Lorch [41] modification function. The number densities were estimated from the values measured for permanently densified samples that had been subjected to the same pressure and recovered to ambient conditions [35, 71] (see figure 1). The measured k range was limited to $0.4 \leq k$ (Å$^{-1}$) ≤ 8 and, in consequence, the peaks in $G'_X(r)$ are broadened considerably and do not give precise positions and intrinsic widths. The first peak in $G'_X(r)$ at ambient pressure is located at $r_{GeS} =$...
Figure 5. The pressure dependence of the position and height of the first sharp diffraction peak (FSDP) in the total structure factor $S_X(k)$ for glassy GeS$_2$ at ambient temperature as measured using the x-ray diffractometer on beamline ID30. The vertical and horizontal lines associated with each data point show the error bars. The closed symbols correspond to the measured $S_X(k)$ functions shown in figure 4 and the open (red) symbols correspond to a second experimental run using a smaller sample size (see the text). The light broken (red) curve shows a linear fit to the FSDP positions for a pressure range extending from ambient to 3 GPa and the dark broken (blue) curve is drawn as a guide for the eye.

4.3. Structure of glassy GeS$_2$ recovered from 4.96(7) GPa by x-ray diffraction

At the end of the first experimental run, the pressure was released and the sample was recovered from the pressure cell. The recovered sample was homogeneous and dark brown in colour compared to the yellow colour of the as-prepared sample. This change of appearance is consistent with the red shift in the optical absorption edge in densified and glassy GeS$_2$ [21, 35, 70]. The recovered sample was mounted on the diffractometer, without the pressure cell and oscillating radial collimator system, and diffraction patterns of the unencumbered sample were acquired for incident wavelengths of 0.3311 Å and 0.1582 Å to obtain high counting statistics over a wide k range. Several of the parameters describing the structure are listed in table 2 and a number density of n_0...
Figure 6. The x-ray total pair distribution functions $G'_X(r)$ for glassy GeS$_2$ at ambient temperature and different pressures as obtained by Fourier transforming the $S_X(k)$ functions given in figure 4 after the application of a Lorch [41] modification function with $k_{\text{max}} \approx 8$ Å$^{-1}$. The small peak at ≈ 1.2 Å is a Fourier transform artefact.

$= 0.041$ Å$^{-3}$ was estimated from the measured density for a GeS$_2$ glass permanently densified at 5 GPa and recovered to ambient conditions [35, 71] (see figure 1).

Figure 7 shows the $S_X(k)$ measured for the recovered sample over the range $0.5 \leq k$(Å$^{-1}$) ≤ 15.5. The FSDP in $S_X(k)$ is at 1.12(5) Å$^{-1}$ indicating that the glass has not recovered to its original state, in agreement with the experiments on recovered glasses reported by Miyauchi et al [35]. The FSDP position corresponds to a pressure of about 3 GPa for the samples studied in situ (see figure 5) which may indicate that there are structural similarities between the recovered sample and the glass at this pressure. The corresponding total pair distribution function $G'_X(r)$ is also shown in figure 7. The increased measurement k range gives an improved resolution of the features in $G'_X(r)$. Clearly resolved peaks are found at 2.24(2), 3.53(2) and 5.47(5) Å and there is, perhaps, a shoulder at ≈ 2.9 Å which suggests the presence of edge-sharing tetrahedra in the recovered sample. The first peak in $G'_X(r)$ gives a coordination number $\bar{n}_{\text{Ge}} = 3.9(1)$.

4.4. Structure of GeS$_2$ at high pressures and high temperatures by x-ray diffraction

In the second experimental run, diffraction patterns were again recorded for glassy GeS$_2$ as the sample was pressurised from 100 kPa to 4.7(1) GPa at room temperature. Due to the smaller sample size the scattering from the sample container (which now incorporated a graphite heater) and gasket was more significant than for the first run but the results were, nevertheless, consistent. The sample was then heated and remained glassy with no observable change in the FSDP position or height until a
Structure of GeS$_2$ at high pressures and temperatures

Figure 7. The solid (black) curves give the total structure factor $S_X(k)$ (upper panel) and corresponding total pair distribution function $G'_X(r)$ (lower panel) as measured using the x-ray diffractometer on beamline ID30 for a sample of glassy GeS$_2$ recovered to ambient conditions after pressurisation at 4.96(7) GPa. In the lower panel, the broken (red) curve shows the extent of the unphysical small r oscillations. For comparison, the broken (blue) curve shows $S_X(k)$ for as-prepared GeS$_2$ under ambient conditions (see figure 2) or the corresponding $G'_X(r)$ as obtained by Fourier transforming $S_X(k)$ after truncating at the same value ($k_{\text{max}} = 15.5$ Å$^{-1}$) as for the ID30 data.

A pressure of 5.2(1) GPa and a temperature of 828(50) K was obtained. At this point the sample crystallised and examination of the image plate showed significant texturing with some isolated Bragg spots in the Debye-Scherrer rings. It was, however, possible to obtain the crystal structure which is described in section 4.5. A transformation to the same crystal structure, after treatment of the glass at 6 GPa and 873 K, is reported by Miyauchi et al [35] although details are not given.

On further heating this crystalline phase was observed to disappear in the powder pattern at 5.1(1) GPa and 1048(50) K. Examination of the image plate showed little
Structure of GeS\textsubscript{2} at high pressures and temperatures

18 evidence of any continuous Debye-Scherrer rings and a large number of individual Bragg spots suggesting that the sample had annealed to form a small number of large and highly oriented crystals. Finally as the temperature of the sample reached 1054(50) K at 4.9(1) GPa virtually all of the Bragg spots had disappeared and a larger diffuse background was observed on the image plate suggesting that the majority of the sample had at this stage melted. Examination of the powder pattern confirmed the underlying liquid like structure with the first peak at $\approx 2 \, \text{Å}^{-1}$. However, there was no evidence of any FSDP at $\approx 1 \, \text{Å}^{-1}$ as observed in the glass and liquid \[72\] at ambient pressures. The sample was then quenched at this pressure to ambient temperature in about 5 min and the pressure on the sample was then reduced to ≈ 1.5 GPa. Bragg diffraction from large and highly oriented crystallites was, however, observed on the image plate.

4.5. Structure of crystalline GeS\textsubscript{2} at 5.2(1) GPa and 828(50) K

A set of clearly distinguishable peak positions was located, by taking the second derivative of the intensity $I(2\theta)$ collected in situ after devitrification, and the peak profiles were fitted by using a pseudo-Voigt function. The peak positions were automatically indexed, with the wavelength fixed at 0.3311 Å, using CrysFIRE \[73\] which gave centred and primitive tetragonal cells with a high figure of merit e.g. the ITO program \[74\] gave FoM(20) = 93.8 for cell parameters $a = c = 7.0365$ Å, $b = 9.5313$ Å; the TREOR program \[75\] gave M(20) = 48, F(20) = 127 (0.001581, 100) for $a = b = 4.9773$ Å, $c = 9.5376$ Å; and the TAUP program \[76\] gave F(20) = 28.57 for an I-centred unit cell with $a = b = 4.9763$ Å, $c = 9.5383$ Å. We proceeded with the smallest cell with highest implied symmetry and used CHEKCELL \[77\] for space group determination. The best estimated space group, corresponding to the highest number of checked reflections and lowest number of calculated reflections, was $I4_1/amd$. However, we preferred the acentric space group $I4\bar{2}d$ as it gave an equivalent error for only three more calculated reflections. A Le Bail \[78\] fit in GSAS \[79\] using 9 fitted parameters (2 cell, 5 background and 2 peak shape parameters) allowed us to refine the cell parameters using this symmetry choice. The fit gave $a = b = 4.97697(17)$ Å and $c = 9.5353(5)$ Å with a cell volume $V = 236.193(17)$ Å3 which corresponds to a volume per formula unit (fu) of 236.193/Z or ≈ 59 Å3 fu−1 where, considering the density and space group symmetry, Z is most likely equal to 4.

We point out that a similar cell and lattice with $I4\bar{2}d$ symmetry has previously been observed by Prewitt and Young \[68\] for a sample of GeS\textsubscript{2}, recovered to ambient conditions after synthesis at high pressure and temperature, and also by Grande \textit{et al} \[80\] for the selenide analogue GeSe\textsubscript{2} as prepared at 3 GPa and 773 K and recovered to ambient conditions. Shimada and Dachille \[34\] have also reported formation of the Prewitt and Young phase after heat treatment of glassy GeS\textsubscript{2} at 400–500 °C under a pressure in the range 1–5 GPa for a period of 2–4 days. Prewitt and Young \[68\] described the $I4\bar{2}d$ structure with Ge on a 4a site at (0,0,0) and S on a 8d site at ($\frac{1}{2}$, $\frac{1}{2}$, $\frac{3}{8}$). We used these cell coordinates as initial atomic positions and refined the in situ diffraction data using GSAS. The fit gave Rietveld profile reliability factors of $wR_p = 0.1212$ and $R_p = 0.0857$ or, for the data with the background subtracted, $wR_p = 0.1059$ and $R_p = 0.0781$ with reduced $\chi^2 = 0.763$ for 20 fitted parameters. The fitted data are shown in figure 8 and the fitted parameters are summarised in table 3. The region for scattering angles $2\theta = 5.9–6.5^\circ$ was excluded from the fit due to the presence of BN (002) and graphite (002) peaks from the container materials.
(the intensity of both peaks was < 10% of the maximum peak intensity.)

An analysis using DISAGL [79] shows a 3-D structure made from corner-sharing Ge centred tetrahedra (see figure 9) with 4 Ge–S bond lengths of 2.144(2) Å and a S–Ge–S bond angle of 108.00(3)°. The bond angle Ge–S–Ge between adjacent tetrahedra is 106.9(1)°. By comparison, the structure of the recovered material studied by Prewitt and Young [68] had a Ge–S bond length of 2.2123 Å with S–Ge–S and Ge–S–Ge bond angles of 105.7° and 107.5°, respectively. The nearest-neighbour bonds are therefore shortened and the tetrahedra are more regular at high pressure and temperature whereas the angle between adjacent tetrahedra is slightly more distorted. The structure is of the SiS$_2$-type which is shared by α-ZnCl$_2$ [81, 82, 83] and GeSe$_2$ [80]. The calculated density of the high pressure and temperature phase, $\rho = 3.844$ g cm$^{-3}$, is \approx 30% greater than the monoclinic phases of GeS$_2$ [22, 23] where $V/Z = 75.8$ Å3 fu$^{-1}$ for the Pc structure and 77.3 Å3 fu$^{-1}$ for the high temperature $P2_1/c$ structure. It is also 20% greater than that of the expanded tetragonal structure for GeS$_2$ reported by MacLachlan et al [69] (ZnBr$_2$-type structure with $V/Z = 71.6$ Å3 fu$^{-1}$) and approximately 16% more compressed than the ambient determination of the same SiS$_2$-type structure by Prewitt and Young [68].

We note that GeSe$_2$ has shown evidence for other 3-D structures in tetragonal subgroups of $I42d$ [84] under high pressure and temperature conditions. These structures are extremely difficult to distinguish from the $I42d$ structure by powder diffraction methods. Any distortion due to lowering of the site-symmetry is minute and, consequently, any breaking of the 00l: $l = 4n$ or hkl: $h+k+l = 2n$ reflection conditions for the $I42d$ space group [85] will lead to peaks with very small diffraction intensities (e.g. the (002) reflection for the $I4$ (and $P4$) structure or the (003) reflection...
Table 3. Crystal structure data for GeS$_2$ at 5.2(1) GPa and 828(50) K as obtained from the final GSAS refinement. The u_{ij} are the refined anisotropic temperature factors.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>I$\bar{4}2d$ (no. 122)</td>
</tr>
<tr>
<td>a (Å)</td>
<td>4.97704(12)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>9.5355(4)</td>
</tr>
<tr>
<td>Volume V (Å3)</td>
<td>236.20(12)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Formula weight per Z (g)</td>
<td>136.72</td>
</tr>
<tr>
<td>Calculated density (g cm$^{-3}$)</td>
<td>3.845</td>
</tr>
</tbody>
</table>

u_{11}, u_{22}, u_{33} (Å2) | 0.0654(9), 0.0654(9), 0.0757(14) |
u_{12}, u_{13}, u_{23} (Å2) | 0, 0, 0 |

x, y, z | 0.2565(6), 1/4, 1/8 |
u_{11}, u_{22}, u_{33} (Å2) | 0.064(5), 0.145(6), 0.126(4) |
u_{12}, u_{13}, u_{23} (Å2) | 0, 0, 0.041(3) |

Overall 2θ range | 3–24$^\circ$ |
2θ region excluded from fit | 5.9–6.5$^\circ$ |
Number of fitted data points | 2832 |
Number of calculated reflections | 81 |

Space group number 122, I$\bar{4}2d$, has 16 general positions: $(0, 0, 0)^+ + (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})^+ + x, y, z; -x, -y, z; y, -x, -z; -y, x, -z; -x+1, y, -z+\frac{1}{3}; x+\frac{1}{2}, -y, -z+\frac{2}{3}; -y+\frac{1}{2}, -x, z+\frac{2}{3}; y+\frac{1}{2}, x, z+\frac{2}{3}$.

4.6. Pressure dependence of the structure of glassy GeS$_2$ at ambient temperature by neutron diffraction

The total structure factor $S_N(k)$ measured for glassy GeS$_2$ in the PE press on D4C at ambient pressure and at 4.9(5) GPa are illustrated in figure 10. In the correction procedure the number density of the glass was taken to be 0.0359(1) Å$^{-3}$ at ambient pressure [26] and was estimated to be 0.0436 Å$^{-3}$ at 4.9 GPa from the density measured by Prewitt and Young [68] (see figure 1). Several of the parameters describing the structure are listed in table 2. In figure 10 the data are compared with the $S_N(k)$ function measured in the present work for a bulk sample of GeS$_2$ at ambient pressure using the same neutron diffractometer D4C with the same incident neutron
wavelength. The ambient pressure $S_N(k)$ function measured with the PE press shows some troughs/peaks at ≈ 2.70 and 4.85 Å^{-1} and other features that result from an incomplete subtraction of the Ti-Zr gasket scattering (the empty gasket used for the container measurement at ambient pressure was not identical to the gasket used for the sample run). Nevertheless, the ambient pressure data sets are in agreement within the experimental error at most k values and the FSDP position at $1.03(2) \text{ Å}^{-1}$ is in agreement with the results given in section 4.1, indicating that the method used to pre-compress the powder pellet for the PE press had little effect on the structure of the illuminated portion of the glass. With pressure increasing to 4.9 GPa, the FSDP moves to $1.12(2) \text{ Å}^{-1}$ and its intensity decreases significantly, whereas the third peak moves from $3.75(5)$ to $3.77(5) \text{ Å}^{-1}$ and its intensity increases. The data therefore follow the same trends with increasing pressure that were reported for the measured $S_X(k)$ functions in section 4.2. As found in the x-ray diffraction experiment of section 4.3, the recovered sample was dark brown in colour.

Figure 11 shows the measured total pair correlation function $G'_N(r)$ for glassy GeS$_2$ at ambient pressure and at 4.9(5) GPa and several of the corresponding parameters are listed in table 2. The data are compared with the $G'_N(r)$ function obtained by Fourier transforming the ambient pressure $S_N(k)$ function shown in figure 10 with the same cut-off value $k_{\text{max}} = 15.45 \text{ Å}^{-1}$. This k range is too small to enable the Ge–Ge correlations for edge-sharing tetrahedra to be resolved at $\approx 2.9 \text{ Å}$. The nearest-neighbour Ge–S distance and coordination number change little as the pressure is increased to 4.9 GPa while the peak initially at $r_3 = 3.46(3) \text{ Å}$ broadens and shifts to a smaller distance of $3.42(3) \text{ Å}$. We note that the value obtained for n_{Ge}^2 does depend on the value used for the number density in the data analysis procedure.
Figure 10. The total structure factors $S_N(k)$ for glassy GeS$_2$ at ambient temperature (≈ 25 °C) as measured by using the neutron diffractometer D4C with the Paris-Edinburgh press at either (a) ambient pressure or (b) 4.9(5) GPa. The vertical bars represent the measured data points with statistical errors, and the solid (red) curves are the Fourier back-transforms of the corresponding total pair distribution functions $G_N'(r)$ given by the solid (black) curves in figure 11 after the unphysical oscillations at r values smaller than the distance of closest approach between the centres of two atoms are set to the calculated $G_N'(r = 0) = 0$ limit. For reference, the $S_N(k)$ function measured for a bulk sample of GeS$_2$ under ambient conditions by using the same neutron diffractometer D4C with the same incident wavelength is given by the broken (blue) curve in both (a) and (b) (see the text).

e.g. if $n_0 = 0.051 \text{ Å}^{-3}$, corresponding to the density measured in the present work for crystalline GeS$_2$ at high pressure and high temperature (see section 4.5), then the data corrections change and a higher coordination number $\bar{n}_{Ge} = 4.9(2)$ is obtained. This coordination number does, however, correspond to the same mean Ge–S bond length of 2.20(2) Å whereas an increase in bond length with increase of coordination number is anticipated since the radius of the Ge nearest-neighbour coordination shell should lengthen to accommodate additional S atoms.
Figure 11. The measured total pair distribution functions $G'_N(r)$ (solid (black) curves) for glassy GeS$_2$ at ambient temperature as measured by using D4C with the Paris-Edinburgh press at either (a) ambient pressure or (b) 4.9(5) GPa. In (a) $G'_N(r)$ was obtained by Fourier transforming the $S_N(k)$ function of figure 10(a) after spline fitting and in (b) $G'_N(r)$ was obtained by Fourier transforming the $S_N(k)$ function of figure 10(b) after spline fitting and applying a cosine window function over the range $13.95 \leq k(\text{Å}^{-1}) \leq 15.45$. The dotted (red) curves show the extent of the unphysical low r oscillations. For reference, the $G'_N(r)$ function measured for a bulk sample of GeS$_2$ under ambient conditions is given by the broken (blue) curve and was obtained by Fourier transforming the corresponding $S_N(k)$ given in figure 10 after truncation at the same maximum k value as the PE press data.

5. Discussion

5.1. Structure of glassy GeS$_2$ under ambient conditions

The results for the structure of glassy GeS$_2$ under ambient conditions can be readily discussed by comparing the measured total structure factors, $S_N(k)$ and $S_X(k)$, and corresponding total pair distribution functions, $G'_N(r)$ and $G'_X(r)$, with their
reconstruction from the measured partial pair correlation functions for glassy GeSe$_2$ [14, 15]. The comparison of the reciprocal space data sets in figure 12 shows that the main features of the total structure factors can be readily reproduced from the measured $S_{\alpha\beta}(k)$ for GeSe$_2$. The dominant contribution to the FSDP in both $S_N(k)$ and $S_X(k)$ arises from the Ge–Ge correlations and there is also a small contribution from the Ge–S correlations. The principal peak is relatively small owing to a near cancelation of peaks in $S_{\text{GeGe}}(k)$ and $S_{\text{SS}}(k)$ by a trough in $S_{\text{GeS}}(k)$. In real space (figure 13), the first peak in $G'(r)$ is dominated by nearest-neighbour Ge–S correlations and the peak from the Ge–Ge distance in edge-sharing tetrahedra is not particularly pronounced owing to the Fourier transform artifacts that arise from the small k_{max} value. The next peak in $G'(r)$ has a contribution from both Ge–Ge and S–S correlations with a shorter mean Ge–Ge distance.

The peak positions and coordination numbers obtained from the present work (section 4.1 and table 2) are consistent with other studies. For example, previous neutron diffraction work gives an FSDP at 1.02–1.04 Å$^{-1}$ [29, 86] with a principal peak at 2.35(2) Å$^{-1}$ [29]. In real space, most neutron and x-ray diffraction and extended x-ray absorption fine structure (EXAFS) studies give a nearest-neighbour Ge–S distance of 2.21–2.23 Å with a corresponding coordination number $\bar{n}_{\text{Ge}}^\text{S} \simeq 4$ [26, 28, 29, 87, 88]. The Ge–Ge distance for edge-sharing tetrahedra is reported to be in the range 2.89–2.95 Å [28, 88, 89] and the corresponding coordination number $\bar{n}_{\text{Ge}}^\text{Ge}(\text{ES})$ is quoted to be 0.30(6) [88], 0.44(3) [89] or 0.50(3) [28]. The mid-value $\bar{n}_{\text{Ge}}^\text{Ge}(\text{ES}) = 0.44(3)$ was obtained from neutron diffraction results in which the edge-sharing Ge–Ge peak could be resolved in the real space total pair correlation function [89]. The next longest Ge–Ge distance is in the range from 3.44(2) [88] to 3.47(2) Å [28] as compared to the value of 3.45(2)–3.46(5) Å obtained in the present work. Raman and Mössbauer spectroscopic studies point to the existence of Ge–Ge and S–S homopolar bonds [44, 48, 90] (although the presence of Ge–Ge bonds has recently been disputed [91]) but they appear as a small fraction of the total number of heteropolar Ge–S bonds [29, 48].

5.2. Structure of GeS$_2$ under pressure

On pressurising glassy GeS$_2$ to $\simeq 5$ GPa at ambient temperature, the most dramatic changes observed in $S_X(k)$ and $S_N(k)$ are a steady shift in position of the FSDP to larger k values and, on increasing the pressure beyond ≈ 2 GPa, a rapid reduction of the FSDP height (see figures 4 and 5). As shown in figure 12, this can be attributed to a change in the intermediate range order associated with the Ge–Ge correlations i.e. to a reorganisation in the arrangement of Ge$(S_{1/2})_4$ tetrahedra. The real space results do not show a change in position of the first peak in $G'_X(r)$ or $G'_N(r)$ with increasing pressure but the peak at $\simeq 3.45$ Å does move to a smaller distance and the peak at $\simeq 5.4$ Å shifts to $\simeq 5.3$ Å (see figure 11). The consistency in value of the nearest-neighbour Ge–S distance and corresponding coordination number $\bar{n}_{\text{Ge}}^\text{S} \approx 4$ leads to the conclusion that the local tetrahedral motifs remain intact at pressures up to $\simeq 5$ GPa. The reconstruction of the $G'(r)$ functions from the measured partial pair distribution functions for glassy GeSe$_2$ shows that the shift in the peak at $\simeq 3.45$ Å to small r is most likely associated with the Ge–Ge correlations (figure 13) and therefore with the change in properties of the FSDP with increasing pressure. This shift might arise from a lengthening of the short Ge–Ge distances in edge-sharing tetrahedra as they transform to corner-sharing motifs and/or a decrease in the Ge–S–Ge angle.
Structure of GeS\textsubscript{2} at high pressures and temperatures

Figure 12. Reconstruction of the measured total structure factors (a) $S_N(k)$ and (b) $S_X(k)$ for glassy GeS\textsubscript{2} under ambient conditions from the measured partial structure factors for glassy GeSe\textsubscript{2} [14, 15]. In (a) the upper solid dark (black) curve gives the $S_N(k)$ function measured by Petri and Salmon [29] plotted against the scaled scattering vector kr_{GeS} with $r_{\text{GeS}} = 2.21$ Å. The upper solid light (red) curve gives the reconstruction of $S_N(k)$ from the sum of the three weighted partial structure factors measured for glassy GeSe\textsubscript{2} where $c_{\text{Ge}}^2 f_{\text{Ge}}(k)^2 S_{\text{GeGe}}(k)/\langle f(k) \rangle^2$ (solid dark (black) curve), $2c_{\text{Ge}} c_{\text{Se}} f_{\text{Ge}}(k) f_{\text{Se}}(k) S_{\text{GeSe}}(k)/\langle f(k) \rangle^2$ (solid light (green) curve) and $c_{\text{Se}}^2 f_{\text{Se}}(k)^2 S_{\text{SeSe}}(k)/\langle f(k) \rangle^2$ (broken (blue) curve) and their sum are all plotted against kr_{GeS} with $r_{\text{GeS}} = 2.36$ Å. The three weighted partial structure factors are displaced vertically by -0.5 for clarity of presentation. The measurements for GeS\textsubscript{2} and GeSe\textsubscript{2} were made using the same neutron diffractometer (D4B) with the same incident wavelength. The curves in (b) have the same identity as in (a) except that the upper solid dark (black) curve gives the $S_X(k)$ function measured in the present work (see figure 2) and $r_{\text{GeS}} = 2.22$ Å. In (a) the $f_\alpha(k)$ represent the (k-independent) coherent neutron scattering lengths [42] and in (b) they represent the x-ray form factors [54].

between corner-sharing tetrahedra. The peak initially at $\simeq 5.4$ Å arises from the Ge–S correlations (figure 13). On recovering the glass from $\simeq 5$ GPa to ambient, the
Structure of GeS\textsubscript{2} at high pressures and temperatures

Figure 13. Reconstruction of the measured total pair distribution functions (a) \(G'_N(r)\) and (b) \(G'_X(r)\) for glassy GeS\textsubscript{2} under ambient conditions from the measured partial pair distribution functions for glassy GeSe\textsubscript{2} \cite{14, 15}. In (a) the upper solid dark (black) curve gives the \(G'_N(r)\) function measured by Petri and Salmon \cite{29} plotted against the scaled distance \(r/r_{\text{GeS}}\) with \(r_{\text{GeS}} = 2.21\) Å. The upper solid light (red) curve gives the reconstruction of \(G'_N(r)\) from the sum of the three weighted partial pair distribution functions measured for glassy GeSe\textsubscript{2}, as obtained by Fourier transforming the weighted Ge–Ge (solid dark (black) curve), Ge–Se (solid light (green) curve) and Se–Se (broken (blue) curve) partial structure factors given in figure 12(a), where all four functions are plotted against \(r/r_{\text{GeSe}}\) with \(r_{\text{GeSe}} = 2.36\) Å. The three weighted partial pair distribution functions are displaced vertically for clarity of presentation. The curves in (b) follow the labeling in (a) except that the upper solid dark (black) curve gives the \(G'_X(r)\) function obtained in the present work by Fourier transforming \(S_X(k)\) given in figure 2 (after truncation at \(k_{\text{max}} = 15.9\) Å\(^{-1}\) to match the limit used in \cite{29}) and \(r_{\text{GeS}} = 2.22\) Å. The agreement between \(G(r)\) and its reconstruction from the \(g_{\alpha\beta}(r)\) for GeSe\textsubscript{2} in the region of the peak at \(r/r_{\text{GeX}} \approx 1.55\) can be improved by using the weighted \(g_{\text{GeGe}}(r)\) and \(g_{\text{SeSe}}(r)\) functions as plotted against the scaled distances \(r/r_{\text{GeGe}}\) and \(r/r_{\text{SeSe}}\), respectively, where \(r_{\text{GeGe}}\) and \(r_{\text{SeSe}}\) are the nearest-neighbour (homopolar) bond lengths \cite{29}.

Comparison of figure 7 suggests that the local ordering is restored, although there is perhaps a small elongation of the Ge–S bond length to 2.24(2) Å, but the intermediate range order remains permanently changed as shown by the shift in position and
intensity of the FSDP (table 2). A hysteresis in the pressure dependence of the optical properties of glassy GeS\(_2\) is also observed [21, 70]. On heating the glass at \(\approx 5\) GPa, the system crystallises to form a 3-D structure comprising corner-sharing Ge(S\(_{1/2}\))\(_4\) tetrahedra (see figure 9).

EXAFS results for glassy GeS\(_2\) samples, pressurised to 6 GPa and recovered to ambient conditions, show an increase in the Ge–S bond distance from 2.224(1) to 2.231(1) Å while the coordination number remains at \(n_{\text{GeGe}} \approx 4\), an observation that is supported by complementary x-ray diffraction and Raman spectroscopy studies [35]. X-ray diffraction and sulphur K-edge x-ray absorption near edge structure (XANES) studies of the densified samples suggest a reduction in the number of edge-sharing Ge–Ge configurations with increasing applied pressure [35]. In situ EXAFS studies of glassy GeS\(_2\) show a reduction of the Ge–S bond length from 2.225 Å at ambient pressure to 2.200 Å at 8 GPa while annealing at this elevated pressure at 270 °C leads to a small elongation of the bond length to 2.205 Å [92]. On recovery to ambient conditions, the final bond length of 2.234 Å was longer than the initial bond length, in agreement with earlier observations made by the same authors [35]. During this treatment of the glass the Ge–S coordination number remained more-or-less the same at \(n_{\text{GeGe}} \approx 4\). The increase in the Ge–S bond length on recovery to ambient conditions was attributed to a change in competition between ordering on the local and intermediate atomic length scales [92].

Raman spectroscopy experiments on glassy GeS\(_2\) under hydrostatic conditions at 300 K show a shift of the \(A_1\) mode, which is assigned to the symmetric breathing vibrations of S atoms in corner-sharing Ge(S\(_{1/2}\))\(_4\) tetrahedra, from 342(1) cm\(^{-1}\) at ambient pressure to a higher frequency of 358(4) cm\(^{-1}\) at 10.8 GPa [93, 94]. This shift is attributed to a decrease of the Ge–S bond length with increasing pressure. The companion \(A_1^*\) mode in the ambient pressure spectra at \(\approx 374\) cm\(^{-1}\), which is assigned to the symmetric stretching vibrations of S atoms in the bridges of edge-sharing Ge(S\(_{1/2}\))\(_4\) tetrahedra, no longer appears as a distinct feature at a pressure \(\approx 6\) GPa. The \(A_1^*\) mode does, however, reappear when the glass is recovered to ambient conditions from 10.8 GPa [93]. Similar observations were made by Weinstein and Slade [95] for glassy GeS\(_2\) under hydrostatic conditions at 13 K and pressures up to 5.6 GPa. These authors also investigated the pressure induced peak broadening.

Raman scattering and optical absorption spectra on the high temperature crystalline monoclinic \(\alpha\) phase of GeS\(_2\) at 300 K under hydrostatic conditions indicate a phase transition at \(\approx 9\) GPa [96] to the tetragonal \(\gamma\) phase of Prewitt and Young [68] i.e. the edge sharing Ge(S\(_{1/2}\))\(_4\) tetrahedra in the two dimensional layered crystal structure of the \(\alpha\) phase transform into corner sharing Ge(S\(_{1/2}\))\(_4\) tetrahedra in the three dimensional structure of the \(\gamma\) phase. A further transition with increasing pressure takes place at \(\approx 15\) GPa to a highly disordered (possibly amorphous) phase [96]. In the case of the low temperature crystalline monoclinic \(\beta\) phase, similar measurements show a phase change at 11.0(5) GPa into an unknown structure [21].

5.3. Comparison with the structure of GeSe\(_2\) under pressure

The structure of glassy GeSe\(_2\) with pressure increasing to 9.3 GPa has been investigated by \textit{in situ} x-ray diffraction at ambient temperature [16]. The FSDP at \(k_{\text{FSDP}} = 1.010(5)\) Å\(^{-1}\) at ambient pressure shifts to higher \(k\) values with increasing pressure and its intensity decreases so that the peak almost disappears by 9.3 GPa. By comparison, the principal peak that is initially at 2.042(5) Å\(^{-1}\) shifts to 2.262(5) Å\(^{-1}\).
and its height increases. In real space, the mean Ge coordination number increases from 4.0(2) at a mean distance of 2.364(5) Å to 4.5(2) at a mean distance of 2.376(5) Å as the pressure is increased from ambient to 9.3 GPa and the peak initially at 3.90(1) Å in $rG_X'(r)$ broadens and shifts to 3.62(2) Å. The results are consistent with the occurrence of two densification processes, namely a conversion from edge-sharing to corner-sharing Ge(Se$_{1/2}$)$_4$ tetrahedra and a gradual increase in the mean coordination number with increasing density. A competition between these mechanisms is attributed to a minimum in the network rigidity at about 3 GPa [97]. A decrease in the number of edge-sharing motifs relative to corner-sharing motifs with pressure increasing to ≈ 3 GPa is supported by Raman spectroscopy results [98].

The results for glassy GeSe$_2$ can be readily discussed by comparing the measured total structure factors, $S_N(k)$ and $S_X(k)$, and corresponding total pair distribution functions, $G_N'(r)$ and $G_X'(r)$, with their reconstruction from the measured partial pair correlation functions for this material under ambient conditions [14, 15]. By contrast to Ge$_2$, the neutron scattering length for Se ($b_{Se} = 7.970(9)$ fm cf. $b_S = 2.847(1)$ fm [42]) and its atomic form factor ($f_{Se}(k) = 34$ cf. $f_S(k) = 16$ electron units at $k = 0$) are much larger than for S which gives an increased weighting factor for those correlations involving the chalcogen atom.

In reciprocal space, the comparison of figure 14 shows that the FSDP in both $S_N(k)$ and $S_X(k)$ has an almost equal contribution from the Ge–Ge and Ge–Se correlations i.e. it is not dominated by the Ge–Ge correlations as in the case of Ge$_2$ (figure 12) which accounts for its smaller relative height. By comparison, the larger weighting given to the Se–Se correlations leads to a relatively intense principal peak at ≈ 2.04 Å$^{-1}$. The changes with pressure associated with the FSDP in GeSe$_2$ are therefore related to an alteration of the intermediate range order associated with Ge correlations. These changes do occur, however, at a slower rate by comparison with glassy Ge$_2$ which suggests a concomitant slower rate for the structural reordering. For example, the rate of change of the FSDP position is ≈ 0.023 Å$^{-1}$/GPa for GeSe$_2$ [16] and ≈ 0.031 Å$^{-1}$/GPa for Ge$_2$ (see figure 5). Also, an extrapolation of the FSDP height for Ge$_2$ in figure 5 suggests that this peak would finally disappear at ≈ 7.8 GPa, a pressure lower than the 9.3 GPa for which an FSDP in GeSe$_2$ still remains. In real space, the comparison of figure 15 shows that the Se–Se correlations within tetrahedral motifs give the major contribution to the peak at ≈ 3.9 Å and will therefore dominate the shifts observed in the second peak with increasing pressure. This contrasts with the case of glassy Ge$_2$ where the Ge–Ge and S–S correlations have an almost equal weighting (figure 13).

6. Conclusions

Germanium disulphide provides an excellent test bed for investigating the nature of structural transformations in chalcogenide materials. The overall results for the glass suggest a conversion from edge-sharing to corner-sharing tetrahedra with increasing pressure, a process that also takes place in glassy GeSe$_2$. With increasing temperature at a pressure of ≈ 5 GPa, the Ge$_2$ system crystallises to form the tetragonal space group $I\bar{4}2d$ wherein corner-sharing Ge(S$_{1/2}$)$_4$ tetrahedra pack to form a dense 3-D network. Further information on the transformations that occur in the glass would be provided by in situ diffraction experiments that access a large scattering vector range and thereby provide improved resolution in real space. Additional information on densification mechanisms would be provided by ab initio molecular dynamics
Structure of GeS$_2$ at high pressures and temperatures

Figure 14. Reconstruction of the measured total structure factors (a) $S_N(k)$ and (b) $S_X(k)$ for glassy GeSe$_2$ under ambient conditions from the measured partial structure factors for this material [14, 15]. In (a) the upper solid dark (black) curve gives the $S_N(k)$ function measured by Petri et al [14, 15] for a GeSe$_2$ sample containing Ge and Se of natural isotopic abundance. The upper solid light (red) curve gives the reconstruction of $S_N(k)$ from the sum of the three weighted partial structure factors $c_{Ge}^2 f_{Ge}(k)^2 S_{GeGe}(k)/\langle f(k) \rangle^2$ (solid dark (black) curve), $2c_{Ge}c_{Se}f_{Ge}(k)f_{Se}(k)S_{GeSe}(k)/\langle f(k) \rangle^2$ (solid light (green) curve) and $c_{Se}^2 f_{Se}(k)^2 S_{SeSe}(k)/\langle f(k) \rangle^2$ (broken (blue) curve). The $S_N(k)$ function and partial structure factors were all measured as part of the same experiment using the same neutron diffractometer (D4B) so that the total structure factor and its reconstruction are identical. The three weighted partial structure factors are displaced vertically by -0.5 for clarity of presentation. The curves in (b) have the same identity as in (a) except that the upper solid dark (black) curve gives the $S_X(k)$ function measured using 11-ID-C following the procedure described in section 3.2 (the glass was prepared using the method given in [15]). In (a) the $f_{\alpha}(k)$ represent the (k-independent) coherent neutron scattering lengths [42] and in (b) they represent the x-ray form factors [54].
Figure 15. Reconstruction of the measured total pair distribution functions (a) $G_N'(r)$ and (b) $G_X'(r)$ for glassy GeS$_2$ under ambient conditions from the measured partial pair distribution functions for this material [14, 15]. In (a) the upper solid dark (black) curve gives the $G_N'(r)$ function obtained by Fourier transforming the $S_N(k)$ function of figure 14(a) and the upper solid light (red) curve gives the reconstruction of $G_N'(r)$ from the sum of the three weighted partial pair distribution functions obtained by Fourier transforming the weighted Ge–Ge (solid dark (black) curve), Ge–Se (solid light (green) curve) and Se–Se (broken (blue) curve) partial structure factors given in figure 14(a). The three weighted partial pair distribution functions are displaced vertically for clarity of presentation. The curves in (b) follow the labeling in (a) except that the upper solid dark (black) curve gives the $G_X'(r)$ function obtained in the present work by Fourier transforming $S_X(k)$ given in figure 14(b) after truncation at $k_{\text{max}} = 15.9$ Å$^{-1}$ to match the limit used in [14, 15].

and other methods and some exploratory work, to study the structural, vibrational and electronic properties of the GeS$_2$ system at ambient pressure, has been made [91, 99, 100, 101, 102, 103, 104].
Acknowledgments

We thank Richard Martin (Bath) for preparing the GeS\textsubscript{2} sample used for the ID30 experiment and Duncan Francis (ISIS Facility) for providing us with Ti–Zr gaskets. For the ILL experiments we thank Pierre Palleau, Alain Bertoni, Jean-Luc Laborier and Claude Payre. We also thank the EPSRC for financial support and acknowledge use of the EPSRC Chemical Database Service.

Appendix A. The Fourier transformation of x-ray total structure factors and the extraction of coordination numbers

The expression that relates a partial structure factor \(S_{\alpha\beta}(k) \) to the partial pair distribution function \(g_{\alpha\beta}(r) \) for an isotropic system is given by the sine Fourier transform

\[
S_{\alpha\beta}(k) - 1 = \frac{1}{2\pi^2 n_0 r} \int_0^\infty dk \, k \left| S_{\alpha\beta}(k) - 1 \right| \sin(kr) \quad (A.1)
\]

where \(n_0 \) is the atomic number density. This equation can be re-written as the Fourier transform

\[
-2\pi i n_0 r \left[g_{\alpha\beta}(r) - 1 \right] = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \, k \left[S_{\alpha\beta}(k) - 1 \right] \exp(-ikr) \quad (A.2)
\]

where \(S_{\alpha\beta}(k) \) has been extended to negative argument by defining it as an even function and \(i = \sqrt{-1} \). If a modification function \(M(k) \) is included, the x-ray total structure factor given by equation (3) can be re-defined as

\[
S_{\alpha\beta}^X(k) - 1 \equiv \frac{F(k)M(k)}{|\langle f(k) \rangle|^2} = \sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} M_{\alpha\beta}(k) \left[S_{\alpha\beta}(k) - 1 \right] \quad (A.3)
\]

where the weighting factors for each \(S_{\alpha\beta}(k) \) function are given by

\[
M_{\alpha\beta}(k) = \frac{c_\alpha c_\beta f_\alpha(k) f_\beta^*(k)}{|\langle f(k) \rangle|^2} M(k) \quad (A.4)
\]

and \(M(k) \) is defined so that \(M(k = 0) = 1 \). The Fourier transform of the even function \(\tilde{M}_{\alpha\beta}(k) \) is given by

\[
\tilde{M}_{\alpha\beta}(r) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \, M_{\alpha\beta}(k) \exp(-ikr). \quad (A.5)
\]

By the one-dimensional convolution theorem [105] it follows that, after the inclusion of \(M_{\alpha\beta}(k) \), equation (A.2) can be re-written as

\[
-2\pi i n_0 r h_{\alpha\beta}(r) \equiv \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \, k \left[S_{\alpha\beta}(k) - 1 \right] M_{\alpha\beta}(k) \exp(-ikr)
\]

\[
= - 2\pi i n_0 r \left[g_{\alpha\beta}(r) - 1 \right] \otimes \tilde{M}_{\alpha\beta}(r) \quad (A.6)
\]

where \(\otimes \) denotes the one-dimensional convolution operator. If we consider the partial pair distribution function

\[
d_{\alpha\beta}(r) = 4\pi n_0 r \left[g_{\alpha\beta}(r) - 1 \right] \quad (A.7)
\]

and we define

\[
d'_{\alpha\beta}(r) \equiv 4\pi n_0 r h_{\alpha\beta}(r) \quad (A.8)
\]
then equation (A.6) can be re-written as
\[
d'_{\alpha\beta}(r) = d_{\alpha\beta}(r) \odot \widetilde{M}_{\alpha\beta}(r)
\]
\[
= 4\pi n_0 \int_{-\infty}^{\infty} dr' r' g_{\alpha\beta}(r') \widetilde{M}_{\alpha\beta}(r-r') - 4\pi n_0 \int_{-\infty}^{\infty} dr' r' \widetilde{M}_{\alpha\beta}(r-r')
\]
\[
= 4\pi n_0 \int_{-\infty}^{\infty} dr' r' g_{\alpha\beta}(r') \widetilde{M}_{\alpha\beta}(r-r') - 4\pi n_0 r M_{\alpha\beta}(k = 0)
\]
where we have used the expression for the inverse Fourier transform of equation (A.5)
\[
\mathcal{M}_{\alpha\beta}(k) = \int_{-\infty}^{\infty} dr \widetilde{M}_{\alpha\beta}(r) \exp(ikr)
\]
which gives \(\int_{-\infty}^{\infty} dr \tilde{M}_{\alpha\beta}(r) = \mathcal{M}_{\alpha\beta}(k = 0). \) The \(r \) space representation of the x-ray total structure factor of equation (A.3) is given by the total pair distribution function \(G'(r) \) which is defined by equation (6). This expression can be re-written as the Fourier transform
\[
-2\pi i n_0 r [G'_X(r) - 1] = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk k [S_X(k) - 1] M(k) \exp(-ikr)
\]
\[
= -2\pi i n_0 r \sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} h_{\alpha\beta}(r)
\]
where the last line follows from equation (A.6). Hence, by using equation (A.8), the total pair correlation function \(D'_X(r) \) can be defined where
\[
D'_X(r) = 4\pi n_0 r [G'_X(r) - 1] = \sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} d'_{\alpha\beta}(r).
\]
At \(r \) values smaller than the distance of closest approach between the centre of two atoms where \(g_{\alpha\beta}(r) = g_{\alpha\beta}(r = 0) = 0 \) it follows that
\[
D'_X(r) = -4\pi n_0 r \sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} \mathcal{M}_{\alpha\beta}(k = 0) = -4\pi n_0 r
\]
since \(M(k = 0) = 1. \) Then the limiting value of \(G'_X(r) = G'_X(r = 0) = 0. \)

If there is a clearly defined peak in \(G'_X(r) \) that can be attributed to a specific partial pair correlation function \(g_{\alpha\beta}(r) \) then the coordination number \(\bar{n}_{\alpha\beta} \) of chemical species \(\beta \) around \(\alpha \) can be obtained by direct integration over that peak once a suitably weighted \(k \) space function has been Fourier transformed. For instance, if a peak can be attributed solely to \(g_{11}(r) \) then it is convenient to define a modified x-ray total structure factor
\[
\text{mod} \ S'_X(k) - 1 \equiv \frac{F(k)M(k)}{c_1^4 ||f_1(k)||^2} = \sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} \text{mod} \mathcal{M}_{\alpha\beta}(k) [S_{\alpha\beta}(k) - 1]
\]
where
\[
\text{mod} \mathcal{M}_{\alpha\beta}(k) = \frac{c_{\alpha} c_{\beta} f_{\alpha}(k) f_{\beta}(k)}{c_1^4 ||f_1(k)||^2} M(k)
\]
so that the weighting factor for the \([S_{11}(k) - 1]\) term is simply \(M(k) \). The \(r \) space representation of the modified x-ray total structure factor defined by equation (A.15) is given by
\[
\text{mod} D'_X(r) = 4\pi n_0 r [\text{mod} G'_X(r) - 1] = \sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} \text{mod} d'_{\alpha\beta}(r)
\]
where the \(\text{mod}d'_{\alpha\beta}(r) \) functions are defined by equation (A.9) after \(\mathcal{M}_{\alpha\beta}(k) \) is replaced by \(\text{mod}\mathcal{M}_{\alpha\beta}(k) \). For \(r \) values smaller than the distance of closest approach between the centre of two atoms

\[
\text{mod}\mathcal{D}_{X}(r) = -4\pi n_{0} r \sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} \text{mod}\mathcal{M}_{\alpha\beta}(k = 0)
\]

\[=-4\pi n_{0} r \left\{ 1 + \sum_{\alpha=1}^{n} \sum_{\beta=1}^{n} \text{mod}\mathcal{M}_{\alpha\beta}(k = 0) \right\} \quad (A.17)
\]

since \(M(k = 0) = 1 \). Then the small \(r \) limiting value of \(\text{mod}\mathcal{G}_{X}'(r) \) is given by

\[\text{mod}\mathcal{G}_{X}'(r = 0) = 1 + \text{mod}\mathcal{D}_{X}(r)/4\pi n_{0} r \]

where \(\text{mod}\mathcal{D}_{X}(r) \) is given by equation (A.17) such that \(\text{mod}\mathcal{G}_{X}'(r = 0) \) takes a finite value. Thus, if \(r_{i} \) and \(r_{j} \) define the starting and finishing \(r \) values of a well defined peak in \(\text{mod}\mathcal{G}_{X}'(r) \) that can be attributed solely to \(g_{11}(r) \) then the corresponding coordination number defined by equation (5) is given by

\[\bar{n}_{1}^{i} = 4\pi n_{0} c_{1} \int_{r_{i}}^{r_{j}} dr r^{2} \left[\text{mod}\mathcal{G}_{X}'(r) - \text{mod}\mathcal{G}_{X}'(r = 0) \right] \quad (A.18)
\]

since \(g_{11}(r) = \left[\text{mod}\mathcal{G}_{X}'(r) - \text{mod}\mathcal{G}_{X}'(r = 0) \right] \) for the range \(r_{i} \leq r \leq r_{j} \).

For example, in the case of glassy GeS\(_{2}\) for which \(c_{\text{Ge}} = 1/3 \), \(c_{\text{S}} = 2/3 \) and, in electron units, \(f_{\text{Ge}}(k = 0) = 32 \), \(f_{\text{S}}(k = 0) = 16 \) the Ge–Ge coordination number, \(\bar{n}_{\text{Ge}}^{i} \), for the peak corresponding to edge-sharing tetrahedra can be readily found by using equation (A.18) wherein \(\text{mod}\mathcal{G}_{X}'(r = 0) = -3 \). Alternatively, to obtain the nearest-neighbour Ge–S coordination number, \(\bar{n}_{\text{S}}^{i} \), the modified x-ray total structure factor of equation (A.14) needs to be re-defined as \(\text{mod}\mathcal{S}_{X}'(k) - 1 \equiv F(k)M(k)/\{c_{1}c_{2} [f_{\text{Ge}}(k)f_{\text{S}}(k) + f_{\text{Ge}}(k)f_{\text{S}}'(k)] \} \) and, by using the same arguments outlined above, it follows that if the first peak in the new \(\text{mod}\mathcal{G}_{X}'(r) \) function can be attributed solely to \(g_{\text{GeS}}(r) \) where \(r_{i} \) and \(r_{j} \) define its boundaries then \(\bar{n}_{\text{Ge}}^{i} = 4\pi n_{0} c_{\text{S}} \int_{r_{i}}^{r_{j}} dr r^{2} \left[\text{mod}\mathcal{G}_{X}'(r) - \text{mod}\mathcal{G}_{X}'(r = 0) \right] \) where \(\text{mod}\mathcal{G}_{X}'(r = 0) = -1 \).

Appendix B. The lozenge correction

An oscillating radial collimator system, as used in the x-ray diffractometer set-up of the present work, allows for a considerable reduction in the scattered intensity that is observed from a sample container and gasket in high pressure experiments [56]. This is illustrated in figure B1 which shows the observed scattering volume at different scattering angles \(2\theta \) assuming that the incident beam is perfectly parallel collimated and the detector system defines a scattered beam with similar perfect collimation and the same width \(w \). The sample, its boron nitride (BN) container and the gasket are all assumed to have cylindrical geometry while the incident and scattered beams are both in a plane perpendicular to the axis of symmetry and have an equal height \(h \). In the following we will assume, for simplicity of notation, that \(h \) takes a value of unity.

By inspection of figure B1(a) it can be seen that at large scattering angles the observed scattering volume is situated totally in the sample such that there will be no contribution to the measured signal from either the container or gasket. As the scattering angle is decreased, a critical angle \(\psi_{c} \) is reached (figure B1(b)) below which
the observed scattering volume will include a portion of the container (figure B1(c)).
As the scattering angle is reduced further, a second critical angle \(\phi_c \) is reached below
which the observed scattering volume will also have a contribution from the gasket
(figure B1(d)). Thus, in order to obtain a normalised differential scattering cross-
section due solely to the sample, the appropriate amount of scattering from the
container and gasket needs to be subtracted from the observed signal at each \(2\theta \)
value and the change in scattering volume of the sample with \(2\theta \) also needs to be
taken into account. In principle, it is also necessary to correct for the self-attenuation
of the incident and scattered beams by the sample, container and gasket materials,
the effect of which will depend on the nature of the materials and the x-ray energy
[106]. However, for the x-ray energies used in the present experiment, Monte-Carlo
simulations of the attenuation corrections show they are small compared to other
experimental errors (such as changes in geometry due to distortions of the pressure
cell) and they were therefore not included in our analysis procedure. The corrections
we have applied in practice are described below.

Appendix B.1. Calculation of the critical angles \(\psi_c \) and \(\phi_c \)

Consider the case when the incident and scattered beams have the same width \(w \).
Then Figure B2 shows the point at which the observed scattering volume from the
sample reaches the inner container wall as the scattering angle \(2\theta \) is decreased. By
geometry it can be seen that this critical angle is given by

\[
\psi_c = 2 \arcsin \left(\frac{w}{2r_s} \right)
\] (B.1)

where \(r_s \) is the radius of the sample cylinder. Using the same geometry, we also obtain
the result that the observed scattering volume will include a contribution from the
gasket below the critical angle

\[
\phi_c = 2 \arcsin \left(\frac{w}{2r_{BN}} \right)
\] (B.2)

where \(r_{BN} \) is the outer radius of the boron nitride container. Hence for \(2\theta > \psi_c \),
scattering is only observed from the sample, for \(\phi_c < 2\theta < \psi_c \), scattering is observed
from the sample and container, and for \(2\theta < \phi_c \), scattering is observed from the sample,
container and gasket. There is also an angle, \(\chi_c \), for which the observed scattering
volume reaches the outer gasket wall. In our experiments this takes a very small value
and its effect would correspond to a reduction in our already small gasket scattering
at low angles. We have therefore not applied this correction.

Appendix B.2. Calculation of the sample, container and gasket scattering volumes

Appendix B.2.1. \(2\theta > \psi_c \): At these angles the observed scattering comes only from
the lozenge shaped area in the centre of the sample (see figure B2). In this case the
scattering volume of the sample is found by using the area of a parallelepiped and
may be expressed as

\[
V_s = \frac{w^2}{\sin(2\theta)}
\] (B.3)
Figure B1. Representation of the observed scattering volumes at different scattering angles 2θ. (a) At large scattering angles the scattering volume is located solely in the sample region (light grey shaded region). (b) When the scattering angle is decreased below the critical value ψ_c the scattering volume will start to include parts of the boron nitride (BN) container. (c) For $\phi_c < 2\theta < \psi_c$ the scattering volume includes parts of the sample (light grey shaded region) and the BN container (dark grey shaded region). (d) For $2\theta < \phi_c$ the scattering volume includes parts of the sample (light grey shaded region), BN container (dark grey shaded region) and gasket (solid black shaded region).

Appendix B.2.2. $\phi_c < 2\theta < \psi_c$: Between these angles there are contributions to the observed scattering from both the sample and two small sections of the boron nitride container (see figure B3). The observed scattering volume of the sample may be calculated from the areas of the sections marked a, b and c in figure B3(a). The four sections of shape a correspond to half of the total area of the lozenge defined by the incoming beam and detector collimation giving a volume

$$V_a = \frac{1}{2} \frac{w^2}{\sin(2\theta)}.$$ \hspace{1cm} (B.4)
The four sections of shape b are of identical volume by symmetry and may be determined by reference to the angle α marked in figure B3(b) where

$$\alpha = 2\theta - \frac{\psi_c}{2}$$ \hspace{1cm} (B.5)

and ψ_c is the critical angle given by equation (B.1). Hence the total volume of the four triangular sections marked as b may be written as

$$V_b = 4 \times \frac{1}{2} \frac{w}{2 \sin(2\theta)} r_s \sin \alpha = \frac{wr_s}{\sin(2\theta)} \sin \alpha.$$ \hspace{1cm} (B.6)

Finally, the volume of the two identical sections of shape c is determined from the area of a circular segment with angle $2(\theta - \alpha)$ and is hence equal to

$$V_c = 2(\theta - \alpha) r_s^2.$$ \hspace{1cm} (B.7)

Thus the total volume of the sample that contributes to the observed scattering is

$$V_s = V_a + V_b + V_c = \frac{w^2}{2 \sin(2\theta)} + \frac{wr_s}{\sin(2\theta)} \sin \alpha + 2(\theta - \alpha) r_s^2.$$ \hspace{1cm} (B.8)

The volume of the boron nitride container that contributes to the scattering is indicated by the two triangular-like sections marked as d in figure B3(a). This volume can be simply calculated as the volume of the large lozenge (again given by equation (B.3)) minus the scattering volume of the sample calculated above i.e.

$$V_{BN} = \frac{w^2}{\sin(2\theta)} - V_s.$$ \hspace{1cm} (B.9)

Appendix B.2.3. $2\theta < \phi_c$: As the scattering angle decreases below ϕ_c, scattered intensity will be observed from the epoxy gasket of the pressure cell. In this region the observed sample scattering volume is still given by equation (B.8). However, the observed scattering volume of the boron nitride container is no longer given by equation (B.9) due to the two small triangular-like sections of the lozenge with volume V_g that cut into the gasket. By using the same arguments outlined in Appendix B.2.2 this volume may be written as

$$V_g = \frac{w^2}{\sin(2\theta)} - \left\{ \frac{1}{2} \frac{w^2}{\sin(2\theta)} + \frac{wr_s}{\sin(2\theta)} \sin \beta + 2(\theta - \beta) r_s^2 \right\}$$ \hspace{1cm} (B.10)

where β is defined as

$$\beta = 2\theta - \frac{\phi_c}{2}.$$ \hspace{1cm} (B.11)

The observed scattering volume of the boron nitride container is

$$V_{BN}' = V_{BN} - V_g.$$ \hspace{1cm} (B.12)

We note that if the height h of both the incident and scattered beams is not equal to unity then all of the above expressions for the volume will need to be multiplied by the beam height.
Appendix B.3. Application of the corrections

In principle, in the limit when the self-attenuation corrections are negligible, the container/gasket subtraction could be made by measuring the scattering with and without the sample in the container/gasket assembly and simply subtracting the container/gasket scattering to leave only the scattering due to the sample. At this point equation (B.8) would be sufficient to correct the data for the 2θ dependent change in the observed sample scattering volume. Although this procedure may be carried out under ambient conditions, it is impractical after the system has been pressurised since the density of the various materials will generally have a different pressure dependence, some distortion of the pressure cell may take place (changing its effective dimensions), the Bragg scattering from the container will change as its material is compressed, and there will be a radial pressure gradient with most of the gasket at a lower compression than the sample. We therefore adopted the following strategy.

At each pressure the cell was moved sideways relative to the incident beam so that the centre of scattering was located firstly in the container annulus and then in the gasket annulus. This enabled us to obtain diffraction patterns dominated by either the container or the gasket scattering and, for each 2θ angle, the truncated lozenge shaped scattering volume of the container or gasket was calculated. The scattering per unit volume for both the container and gasket materials was thereby obtained.
as a function of 2θ. To provide an estimate of the container and gasket scattering when the cell is positioned so that the incident beam passes directly through the sample centre, the results were multiplied by either the container volume calculated in equation (B.9) ($= 0$ for $2\theta > \psi_c$) or the gasket volume calculated in equation (B.10) ($= 0$ for $2\theta > \phi_c$). At this point, the scattering from the sample was obtained by subtracting these weighted contributions from the diffraction pattern measured for the sample centred in the incident beam and the data were finally normalised according to equation (B.8). In practice, it was also necessary to refine the value used for the sample radius in the calculations in order to compensate for changes in the cell dimensions with change of pressure.

Appendix B.4. Generalization to other container configurations and beam geometries

For diffraction experiments made at high pressures and high temperatures, a cylindrical graphite heater is placed between the BN sample container and gasket. This will lead to another critical angle $2\theta = \nu_c$ just above which the observed scattering volume will have a contribution from the sample and BN container and just below which the observed scattering volume will have a contribution from the sample, BN container and graphite heater. The formalism of this appendix can be readily generalised to account for this change of container configuration.

The formalism of this appendix can also be adapted to account for changes in the beam geometry and the results obtained above will provide a benchmark for assessing the effect of these changes. For example, a scattered parallel beam need not have the same width as the incident beam and the observed scattering volume sketched in figure B1 is then calculated by considering the area of a parallelogram with opposite pairs of sides having unequal length. Additionally, the collimation system will generally define a non-parallel scattered beam, leading to an observed scattering volume with a trapezoidal cross section, and there will also be issues associated with the beam umbra/penumbra. Also, although the sample in the x-ray beam is aligned to maximise the measured intensity, this position may not correspond to the axis of the sample being placed exactly at the geometrical centre of the diffractometer owing to attenuation of the incident and scattered beams and sample distortion effects. In practice, given the other experimental uncertainties, the equations derived in this appendix can still be used as an effective guide for estimating the various contributions to the observed scattering (the 2θ dependence of the observed sample scattering volume is particularly important in this context), especially if the variation in beam geometry is small.

References

Figure B3. Details of the sections used to calculate the observed scattering volumes for the sample and BN container when $\phi_c < 2\theta < \psi_c$. In (a) the sections of type a, b and c that lie within the sample and the section of type d that lies within the container are identified. In (b) several of the angles and length $w/\sin(2\theta)$ used in the derivation of equations (B.4)–(B.9) are identified.

Structure of Ge\textsubscript{2} at high pressures and temperatures

[68] Prewitt C T and Young H S 1965 *Science* **149** 535
[77] Langier J and Bochu B available from http://www.lmgp.inpg.fr/
[81] Brehler B 1959 Naturwiss. **46** 554
[82] Oswald H R and Jaggi H 1960 *Helvetica Chimica Acta* **43** 72
[100] Paalman H H and Pings C J 1962 *J. Appl. Phys.* **33** 2635