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Abstract 

 

The reaction between CuSO4!5H2O and [NMe2H2]Cl in DMF at 95 °C yielded green crystals 

of (NMe2H2)4[Cu6O2(SO4)6(DMF)4] 1. The discrete [Cu6(µ4-O)2(µ3-SO4)4(µ2-

SO4)2(DMF)4]4– anions present in 1 contain two edge-sharing Cu4(µ4-O) tetrahedra, with the 

copper(II) centres bridged by sulfato ligands. These anions are linked into a two-dimensional 

network through hydrogen bonds involving the dimethylammonium cations. When the 

reaction was carried out in the absence of [NMe2H2]Cl, yellow-green crystals of 

(NMe2H2)4[Cu6O2(SO4)6(DMF)2] 2 were obtained. The anions in 2 contain similar 

Cu6O2(SO4)6 aggregates to those in 1, though these differ in terms of the copper(II) 

coordination geometries. In addition, the anions in 2 are linked into chains through bridging 

sulfato ligands. The Cu6O2(SO4)6 aggregates observed in 1 and 2 are related to those present 

in the rare copper sulfate mineral fedotovite, K2Cu3O(SO4)3, and in common with this 

mineral both 1 and 2 decompose in the presence of moisture. The reaction between 

CuSO4!5H2O and [NMe2H2]Cl in DMF at room temperature gave 

(NMe2H2)[Cu2(OH)(SO4)2(H2O)2] 3, the structure of which contains triangular 

Cu3(OH)(SO4) units that share vertices to form tapes. Magnetic measurements revealed that 1 

and 3 are both spin-canting metamagnetic systems. Field-induced responses were observed 

below 5 K, with the critical field indicating metamagnetic behaviour from antiferromagnetic 

to ferromagnetic equal to 110 Oe for both compounds.  
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Introduction 

 

Copper(II) sulfate is one of the first compounds encountered by many budding chemists, with 

the distinctive blue colour of the pentahydrate readily recognisable. It is used in a wide range 

of school experiments including crystal growing, dehydration and copper plating. Copper(II) 

sulfate also has many industrial applications including use as a fungicide, algaecide and 

molluscicide,1-3 and as an activator in the concentration by froth flotation in the mining 

industry.4 A wide variety of copper(II) sulfate minerals are also known in which the 

copper(II) and sulfate ions occur together with anions such as hydroxide,5,6 or cations such as 

sodium or potassium.7 

 

Copper(II) sulfate is often used in combination with multidentate N-donor ligands to form 

coordination networks. Since sulfate is generally a better ligand than nitrate or perchlorate, 

reactions with CuSO4!5H2O are more likely to lead to mixed-ligand products than analogous 

reactions with Cu(NO3)2 or Cu(ClO4)2. For example, reactions of CuSO4!5H2O with 

pyridine-substituted tetrazoles were recently reported to lead to open framework coordination 

networks containing both sulfate and pyridyl-tetrazolate ligands,8 whereas reactions 

involving chelating ligands have afforded sulfate-bridged dimers.9 Sulfates can link 

copper(II) centres into aggregates such as hexamers10 and tetramers,11 that can themselves be 

further cross-linked into extended structures. Coordination networks can even be formed in 

the absence of additional ligands, and a number of anionic copper(II) sulfate  structures have 

been reported in which the charges on the anions are balanced by included ammonium 

cations.12  

 

In this paper we report the synthesis and characterisation of three new copper(II) sulfate 

compounds, in which anionic copper-sulfate aggregates and chains are charge balanced by 

dimethylammonium ions derived either from the hydrolysis of the N,N'-dimethylformamide 

(DMF) solvent13 or from the addition of [NMe2H2]Cl. These compounds have been 

crystallographically characterised as (NMe2H2)4[Cu6O2(SO4)6(DMF)4] 1, 
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(NMe2H2)4[Cu6O2(SO4)6(DMF)2] 2 and (NMe2H2)[Cu2(OH)(SO4)2(H2O)2] 3, and the 

magnetic properties of 1 and 3 have also been investigated. 

 

Experimental Section 

 

General 

The reagents used for the syntheses were purchased commercially and used without further 

purification. The DMF was ACS reagent quality.  

 

Powder X-ray diffraction patterns were recorded on a Bruker AXS D8 Advance 

diffractometer with copper K! radiation of wavelength 1.5406 Å at 298 K. DMF-saturated 

samples were placed in 0.5 mm diameter Lindemann capillaries, and measured with a 2" 

range of 3-60°. The step size was 0.016° with a time per step of 134.5 s. Simulated X-ray 

powder patterns were generated from single crystal data that were imported into 

PowderCell,14 with the step size of 0.02° and time per step of 1.00 s. 

 

Magnetic susceptibility measurements were obtained using a Quantum Design SQUID 

(superconducting quantum interference device) MPMS-XL susceptometer. This 

magnetometer works between 1.8 and 400 K for direct current (DC) applied fields ranging 

from –70 to 70 kOe. Measurements were performed on polycrystalline samples of 1 (33.0 

mg) and 3 (36.7 mg). Alternating current (AC) susceptibility measurements were measured 

with an oscillating AC field of 3Oe and AC frequencies at 1000 Hz. The magnetic data were 

corrected for the sample holder. 

 

Synthesis of (NMe2H2)4[Cu6O2(SO4)6(DMF)4] 1 

CuSO4!5H2O (0.060 g, 0.24 mmol) and [NMe2H2]Cl (0.013 g, 0.16 mmol) were dissolved 

with stirring in DMF (12 cm3). The reaction mixture was placed in a 30 cm3 thick-walled 

glass vial and heated at 95°C for 24 h to yield tiny green crystals. The PXRD pattern of the 

product showed a good match with the pattern simulated from the X-ray single crystal 
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structure (Fig. S1). The sample was carefully dried under a flow of nitrogen and stored in a 

sealed flask under nitrogen. 

 

Synthesis of (NMe2H2)4[Cu6O2(SO4)6(DMF)2] 2 

CuSO4!5H2O (0.60 g, 2.4 mmol) was dissolved with stirring in DMF (12 cm3). This solution 

was placed in a 30 cm3 thick-walled glass vial and heated at 95°C for 24 h. The powder X-ray 

diffraction pattern of the resultant tiny yellow-green crystals matches that simulated from the 

X-ray crystal structure (Fig. S2). The sample was carefully dried under a flow of nitrogen and 

stored in a sealed flask under nitrogen. 

 

Synthesis of (NMe2H2)[Cu2(OH)(SO4)2(H2O)2] 3 

CuSO4!5H2O (0.6 g, 2.4 mmol) and [NMe2H2]Cl (0.13 g, 1.6 mmol) were dissolved with 

stirring in DMF (12 cm3). This solution was placed in a vial and left undisturbed at room 

temperature. Turquoise crystals started to appear after a week, but the crystals were left in the 

mother liquor for a further two weeks after which they were harvested. The powder X-ray 

diffraction pattern of the product matches that simulated from the X-ray crystal structure (Fig. 

S3).   

 

X-ray crystallography 

X-ray diffraction data on structures were collected on a Nonius Kappa CCD diffractometer, 

using Mo-K# radiation of wavelength 0.71073 Å at 150 K. Crystal data and details of the 

structural refinements are given in Table 1. The structures were solved using SHELXS-97 

and refined using full-matrix least squares in SHELXL-97.15 The final refinements were 

generally straightforward. Unless noted below, all non-hydrogen atoms were refined 

anisotropically in the final least squares run, and hydrogen atoms were included at calculated 

positions. In the structure of 2, one of the dimethylammonium cations (that based on N(3)), 

was disordered in a 80:20 ratio. Only the major occupancy fragment atoms therein were 

refined anisotropically.  Oxygen bound hydrogen atoms for 3 were located and refined at 
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0.98 Å from the relevant parent atoms, whereas in 1-3 nitrogen bound hydrogen atoms were 

located and refined at 0.92 Å from the relevant parent atoms.  

 

Table 1 – Crystal data and structure refinement details for compounds 1-3. 
Compound 1 2 3 
Chemical formula C20H60Cu6N8O30S6 C14H46Cu6N6O28S6 C2H13Cu2NO11S2 
M 1466.36 1320.17 418.33 
Crystal system Monoclinic Triclinic Monoclinic 
Space group P21/n P1$  P21/n 
a/Å 13.1050(3) 8.5880(2) 6.8990(1) 
b/Å 10.5140(2) 10.6840(3) 17.0780(4) 
c/Å 18.7530(5) 12.8170(3) 10.3860(3) 
!/° 90.00 106.496(1) 90.00 
"/° 103.183(1) 104.593(1) 90.779(1) 
#/° 90.00 105.935(2) 90.00 
Unit cell volume/Å3 2515.81(10) 1012.49(4) 1223.58(5) 
Temperature/K 150(2) 150(2) 150(2) 
Z 2 1 4 
No. of reflections measured 39253 15974 22218 
No. of independent reflections 5766 4615 2802 
Rint 0.1191 0.0492 0.0879 
Final R1 values (I > 2$(I)) 0.0582 0.0326 0.0389 
Final wR(F2) values (I > 2$(I)) 0.1230 0.0760 0.0811 
Final R1 values (all data) 0.0890 0.0450 0.0636 
Final wR(F2) values (all data) 0.1379 0.0813 0.0910 
Goodness of fit on F2 1.077 1.068 1.069 

 

Results and Discussion 

 

Compounds 1 and 2 were initially obtained serendipitously from reaction mixtures containing 

copper(II) sulfate pentahydrate and dicarboxylic acids in DMF, though subsequently the 

presence of the dicarboxylic acid was found to be unnecessary. Compound 1 was prepared by 

heating a mixture of CuSO4!5H2O and [NMe2H2]Cl in DMF at 95 °C for 24 hours. Powder 

X-ray diffraction studies on the resulting tiny green crystals revealed that 1 is metastable, 

with the compound undergoing a series of structural changes over the course of a month. 

Compound 2 was prepared as tiny yellow-green crystals by heating CuSO4!5H2O in DMF at 

95 °C for 24 hours. As with 1, compound 2 is metastable, undergoing a series of structural 

changes over several weeks, as witnessed by changes in the powder X-ray diffraction patterns. 

When water was added to the DMF solvent, the reaction gave a turquoise solid that was 
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shown by powder X-ray diffraction to be Cu3(SO4)(OH)4, which is the mineral antlerite.16 

Compound 3 was prepared from a mixture of CuSO4!5H2O and [NMe2H2]Cl in DMF at room 

temperature, with the resultant turquoise crystals harvested after three weeks.  

 

Compounds 1-3 are all moisture-sensitive, with 1 and 2 decomposing rapidly in the presence 

of water and 3 decomposing more slowly. These decompositions occur with absorption of 

water to form pastes and colour changes to pale blue. The sensitivity of 1-3 prevented 

accurate microanalysis from being obtained, though in all cases the powder X-ray diffraction 

patterns of the DMF-saturated samples (Figures S1-S3) show a good correspondence to those 

simulated from the X-ray single crystal analyses (vide infra).   

 

The crystal structure of (NMe2H2)4[Cu6O2(SO4)6(DMF)4] 1 contains dimethylammonium 

cations and discrete [Cu6O2(SO4)6(DMF)4]4– anions. The anions contain two edge-sharing 

Cu4(µ4-O) tetrahedra (Fig. 1a), with the four triangular Cu3 faces not involving the shared 

edge each capped by a µ3-sulfato ligand.  Two µ2-sulfato ligands bridge between pairs of 

non-shared vertices on the two tetrahedra, and each copper centre not involved in edge-

sharing is also coordinated to a DMF ligand (Fig. 1b).  Hence the anion can be represented as 

[Cu6(µ4-O)2(µ3-SO4)4(µ2-SO4)2(DMF)4]4–.  Selected bond lengths and angles for 1 are 

presented in Table 2.  The Cu6O2(SO4)6 core is unusual, with the only previous example 

observed in the mineral fedotovite (vide infra).  

 

Table 2.  Selected bond lengths (Å) and bond angles (°) for 1.  Primed atoms generated by 
the symmetry operation –x + 2, –y, –z.   

 
Cu(1)-O(1)' 1.937(3) Cu(1)-O(2) 1.946(4) 
Cu(1)-O(1) 1.949(3) Cu(1)-O(6)' 1.972(4) 
Cu(2)-O(3) 1.966(5) Cu(2)-O(1) 1.943(3) 
Cu(2)-O(7) 2.029(4) Cu(2)-O(14) 1.988(5) 
Cu(3)-O(1) 1.931(3) Cu(2)-O(11)' 2.127(4) 
Cu(3)-O(15) 1.972(4) Cu(3)-O(4) 1.961(5) 
Cu(3)-O(10) 2.114(4) Cu(3)-O(8) 2.107(4) 
O(1)'-Cu(1)-O(2) 173.55(16) O(1)'-Cu(1)-O(1) 86.08(14) 
O(2)-Cu(1)-O(1) 93.59(16) O(1)'-Cu(1)-O(6)' 96.46(15) 
O(2)-Cu(1)-O(6)' 83.63(17) O(1)-Cu(1)-O(6)' 176.64(15) 
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O(1)-Cu(2)-O(3) 91.71(17) O(1)-Cu(2)-O(14) 174.55(18) 
O(3)-Cu(2)-O(14) 86.6(2) O(1)-Cu(2)-O(7) 95.27(15) 
O(3)-Cu(2)-O(7) 145.7(2) O(14)-Cu(2)-O(7) 83.29(19) 
O(1)-Cu(2)-O(11)' 93.00(15) O(3)-Cu(2)-O(11)' 119.7(2) 
O(14)-Cu(2)-O(11)' 92.33(19) O(7)-Cu(2)-O(11)' 93.46(18) 
O(1)-Cu(3)-O(4) 93.17(17) O(1)-Cu(3)-O(15) 176.64(16) 
O(4)-Cu(3)-O(15) 87.72(18) O(1)-Cu(3)-O(8) 91.49(14) 
O(4)-Cu(3)-O(8) 129.9(2) O(15)-Cu(3)-O(8) 85.46(16) 
O(1)-Cu(3)-O(10) 87.40(15) O(4)-Cu(3)-O(10) 143.8(2) 
O(15)-Cu(3)-O(10) 93.80(17) O(8)-Cu(3)-O(10) 86.15(16) 

 

The copper(II) centres involved in edge-sharing, Cu(1), have distorted square planar 

geometries, coordinated to two oxo and two µ3-sulfato ligands.  The Cu(1)–O bond lengths 

lie between 1.937(3) and 1.972(4) Å, with cis O–Cu(1)–O bond angles between 83.63(17) 

and 96.46(15)°, and the Cu(1) centre lies 0.072 Å from the mean plane defined by the four 

coordinating oxygen atoms.  The Cu(1)!!!Cu(1)' separation is 2.840(1) Å.   

 

In contrast, Cu(2) and Cu(3), are both five-coordinate, with geometries between those 

expected for ideal square pyramidal and trigonal bipyramidal structures, as witnessed by " 

values of 0.48 and 0.55 respectively.17 Both of these copper(II) centres are coordinated to an 

oxo ligand, three sulfato ligands and a DMF molecule. The DMF oxygen atom and oxo 

ligand are almost co-linear [O(1)–Cu(2)–O(14) 174.55(18)°, O(1)–Cu(3)–O(15) 176.64(16)°], 

with the three oxygen atoms from the sulfato groups approximately co-planar.  

 

In the crystal structure of 1, the anions are linked into sheets by hydrogen bonding to the 

dimethylammonium cations (Fig. 1c). The hydrogen bonds primarily involve the non-

coordinated oxygen atoms of the sulfato ligands [O(12), O(13), O(9)] acting as acceptors, 

though notably the coordinated oxygen atom O(8) acts as an acceptor in place of the non-

coordinated atom O(5), presumably for geometrical reasons.  There are no strong interactions 

between the hydrogen-bonded sheets.  
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Figure 1.  The structure of (NMe2H2)4[Cu6O2(SO4)6(DMF)4] 1, showing (a) the edge-sharing 

tetrahedra of the central Cu6 aggregate, (b) the [Cu6O2(SO4)6(DMF)4]4– anion, and (c) hydrogen 

bonding between the dimethylammonium cations and the [Cu6O2(SO4)6(DMF)4]4– anions linking the 

aggregates into sheets.  The non-oxygen atoms of the DMF ligands and all hydrogen atoms except 

those involved in hydrogen bonding have been removed for clarity.  Primed atoms are generated by 

the symmetry operation –x + 2, –y, –z.   
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The crystal structure of (NMe2H2)4[Cu6O2(SO4)6(DMF)2] 2 contains dimethylammonium 

cations and [Cu6O2(SO4)6(DMF)2]4– anions. Selected bond lengths and angles are presented 

in Table 3.  The structure of each [Cu6O2(SO4)6(DMF)2]4– aggregate is broadly similar to the 

discrete [Cu6O2(SO4)6(DMF)4]4– aggregates in 1 – two edge-sharing Cu4(µ4-O) tetrahedra are 

bridged by sulfato groups (Fig. 2a).  However, there are two significant differences between 

the aggregates in 1 and 2.  Firstly, in 2, the copper(II) centres involved in edge-sharing, Cu(1), 

exhibit square pyramidal geometry, with a " value of 0.04, in contrast to the equivalent 

square planar centres in 1.  In 2, Cu(1) is additionally coordinated to an oxygen atom from 

the sulfato ligand bridging between the copper(II) centres at the ends of the two tetrahedra.  

The axial contact – Cu(1)–O(10) 2.214(2) Å – is longer than those in the basal plane 

[1.952(2) – 1.999(2) Å], but significantly shorter than the analogous non-bonded contact in 1 

[Cu(1)!!!O(10) 2.666(4) Å].  

 

Table 3.  Selected bond lengths (Å) and bond angles (°) for 2.  Primed atoms generated by 
the symmetry operation –x + 2, –y, –z.  Double primed atoms generated by the symmetry 
operation x + 1, y, z.   

 
Cu(1)-O(1) 1.952(2) Cu(1)-O(1)' 1.990(2) 
Cu(1)-O(2) 1.999(2) Cu(1)-O(8)' 1.972(2) 
Cu(1)-O(10) 2.214(2) Cu(2)-O(1) 1.9494(19) 
Cu(2)-O(3) 2.102(2) Cu(2)-O(6) 2.021(2) 
Cu(2)-O(12)' 2.122(2) Cu(2)-O(13)" 1.946(2) 
Cu(3)-O(1) 1.956(2) Cu(3)-O(4) 1.985(2) 
Cu(3)-O(7) 2.021(2) Cu(3)-O(11) 2.143(2) 
Cu(3)-O(14) 1.991(2)   
O(1)-Cu(1)-O(8)' 169.88(9) O(1)-Cu(1)-O(1)' 86.99(8) 
O(8)'-Cu(1)-O(1)' 94.62(8) O(1)-Cu(1)-O(2) 94.90(8) 
O(8)'-Cu(1)-O(2) 82.22(9) O(1)'-Cu(1)-O(2) 172.19(8) 
O(1)-Cu(1)-O(10) 97.79(8) O(8)'-Cu(1)-O(10) 92.05(8) 
O(1)'-Cu(1)-O(10) 94.47(8) O(2)-Cu(1)-O(10) 92.78(8) 
O(13)"-Cu(2)-O(1) 168.09(9) O(1)-Cu(2)-O(6) 90.67(8) 
O(13)"-Cu(2)-O(6) 85.90(9) O(1)-Cu(2)-O(3) 93.21(8) 
O(13)"-Cu(2)-O(3) 81.94(9) O(13)"-Cu(2)-O(12)' 92.62(9) 
O(6)-Cu(2)-O(3) 138.44(9) O(6)-Cu(2)-O(12)' 121.35(8) 
O(1)-Cu(2)-O(12)' 98.89(8) O(3)-Cu(2)-O(12)' 98.86(9) 
O(1)-Cu(3)-O(4) 94.78(9) O(1)-Cu(3)-O(14) 171.96(9) 
O(4)-Cu(3)-O(14) 82.64(9) O(1)-Cu(3)-O(7) 94.10(8) 
O(4)-Cu(3)-O(7) 146.40(10) O(14)-Cu(3)-O(7) 84.09(9) 
O(1)-Cu(3)-O(11) 100.90(8) O(4)-Cu(3)-O(11) 110.28(9) 
O(14)-Cu(3)-O(11) 87.13(9) O(7)-Cu(3)-O(11) 99.69(9) 
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The second significant change involves the number of coordinated DMF molecules. In 2 

there are only two DMF ligands per anion, so Cu(2) is not solvated.  Instead, it forms a Cu–O 

bond to a sulfato ligand from a neighbouring aggregate [Cu(2)–O(13) 1.946(2) Å]. These 

interactions occur pairwise, and link the aggregates into chains that run along the a axis (Fig. 

2b). The coordination geometries of Cu(2) and Cu(3) are broadly similar to those of the 

equivalent atoms in 1, being between those expected for ideal square pyramidal and trigonal 

bipyramidal geometries, as witnessed by " values of 0.49 and 0.43 respectively. A 

consequence of these changes is that the µ2-sulfato ligand in 1 is replaced by a µ4-sulfato 

ligand in 2.   
 

 
Figure 2.  The structure of (NMe2H2)4[Cu6O2(SO4)6(DMF)2] 2, showing (a) the 

[Cu6O2(SO4)6(DMF)4]4– anion, with the non-oxygen atoms of the DMF ligands removed for clarity, 

and (b) linking of the [Cu6O2(SO4)6(DMF)4]4– aggregates into chains. Primed atoms are generated by 

the symmetry operation –x + 2, –y, –z.   

 

As with 1, hydrogen bonds are observed between the NH groups of the dimethylammonium 

cations and the sulfato oxygen atoms, with non-coordinated atoms O(5) and O(9) acting as 

hydrogen bond acceptors along with coordinated oxygen atoms O(6) and O(12). These 
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hydrogen bonds link the one-dimensional coordination polymers into a three-dimensional 

network.  

 

The crystal structures of 1 and 2 both have features in common with the structure of the rare 

copper sulfate mineral fedotovite, K2Cu3O(SO4)3,18 which was first observed as a sublimate 

from the Tolbachik volcanic eruption in Kamchatka, Russia.  Fedotovite contains the only 

previously reported example of the same [Cu6(µ4-O)2(µ3-SO4)4(µ2-SO4)2]4– building blocks 

(Fig. 3a) as in 1, though the µ2-sulfato groups bridge between these aggregates to form a two-

dimensional coordination network (Fig. 3b), which is linked into a three-dimensional 

structure by the potassium ions. Notably, like 1 and 2, fedotovite has been observed to be 

unstable in air.  
 

 
Figure 3.  The structure of K2Cu3O(SO4)3, fedotovite, showing (a) the Cu6O2(SO4)6 aggregates, and 

(b) linking of the aggregates into sheets. Potassium cations have been removed for clarity.  
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The crystal structure of (NMe2H2)[Cu2(OH)(SO4)2(H2O)2] 3 reveals a different solid-state 

architecture to those observed for 1 and 2. In particular, 3 consists of triangular Cu3(µ3-

OH)(µ3-SO4) units that share vertices to form tapes running along the crystallographic a axis 

(Fig. 4a). These tapes are reinforced by µ4-SO4 ligands (Fig. 4b).  Selected bond lengths and 

angles for 3 are presented in Table 4.   

 

 
Figure 4.  The structure of (NMe2H2)[Cu2(OH)(SO4)2(H2O)2] 3, showing (a) the linked Cu3(OH) 

triangles, and (b) the [Cu2(OH)(SO4)2(H2O)2]– tapes.   

 

Table 4.  Selected bond lengths (Å) and bond angles (°) for 3.  Primed atoms generated by 
the symmetry operation x + 1, y, z. Double primed generated by the symmetry operation –x, –
y + 2, –z + 2. Triple primed generated by the symmetry operation –x + 1, –y + 2, –z + 2.   

 
Cu(1)-O(10) 1.970(3) Cu(1)-O(6) 1.984(3) 
Cu(1)-O(11) 1.985(3) Cu(1)-O(1) 2.012(3) 
Cu(1)-O(5)' 2.281(3) Cu(1)-O(2) 2.384(3) 
Cu(2)-O(1) 1.941(3) Cu(2)-O(7) 1.960(3) 
Cu(3)-O(1) 2.019(3) Cu(3)-O(5)' 2.377(3) 
Cu(3)-O(8) 1.932(3)   
O(10)-Cu(1)-O(6) 86.65(12) O(10)-Cu(1)-O(11) 95.92(12) 
O(6)-Cu(1)-O(11) 166.99(12) O(10)-Cu(1)-O(1) 169.40(12) 
O(6)-Cu(1)-O(1) 91.00(11) O(11)-Cu(1)-O(1) 88.69(12) 
O(10)-Cu(1)-O(5)' 90.85(11) O(6)-Cu(1)-O(5)' 94.08(12) 
O(11)-Cu(1)-O(5)' 98.62(12) O(1)-Cu(1)-O(5)' 79.00(10) 
O(10)-Cu(1)-O(2) 103.81(11) O(6)-Cu(1)-O(2) 80.10(11) 
O(11)-Cu(1)-O(2) 86.90(11) O(1)-Cu(1)-O(2) 85.93(10) 
O(5)'-Cu(1)-O(2) 163.78(10) O(1)-Cu(2)-O(7) 90.84(12) 
O(1)"-Cu(2)-O(7) 89.16(12) O(8)-Cu(3)-O(1) 92.33(11) 
O(8)-Cu(3)-O(1)'" 87.67(11) O(8)-Cu(3)-O(5)" 86.42(11) 
O(1)-Cu(3)-O(5)" 103.40(10) O(8)-Cu(3)-O(5)' 93.58(11) 
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O(1)-Cu(3)-O(5)' 76.60(10)   

 

The copper(II) centres Cu(2) and Cu(3) link the triangles together into the tapes. These both 

exhibit tetragonally distorted octahedral geometries, and are coordinated to two hydroxyl 

oxygen atoms and two µ3-sulfato oxygen atoms in the equatorial plane, with two longer 

contacts to the µ4-sulfato oxygen atoms in the axial positions. The copper(II) centre Cu(1) 

also has a tetragonally distorted octahedral geometry, and is coordinated to a hydroxyl group, 

two aqua ligands and a µ3-sulfato oxygen atom in the equatorial plane, and to two µ4-sulfato 

oxygen atoms in the axial positions. 

 

The tapes are supported by the presence of intramolecular hydrogen bonds between the 

coordinated aqua ligands and the non-coordinated oxygen atoms of the µ4-sulfate 

[O(11)!!!O(3) 2.682, H(11A)!!!O(3) 1.76 Å, O(11)–H(11A)!!!O(3) 157°;  O(10)!!!O(4) 

2.754, H(10B)!!!O(4) 1.78 Å, O(10)–H(10B)!!!O(4) 174°].  There are also intermolecular 

hydrogen bonds between the tapes that involve the aqua ligands [O(11)!!!O(4) 2.718, 

H(11B)!!!O(4) 1.74 Å, O(11)–H(11B)!!!O(4) 177°;  O(10)!!!O(3) 2.670, H(10A)!!!O(3) 1.70 

Å, O(10)–H(10A)!!!O(3) 171°] and these link the tapes into sheets.  Furthermore, hydrogen 

bonds are present between the dimethylammonium cations and the coordinated sulfato 

oxygen atoms, though notably the hydroxyl O–H group does not act as a hydrogen bond 

donor.  

 

Although triangular Cu3(µ3-OH) building blocks are relatively well-known in both discrete 

compounds19 and polymeric arrays,16 there are only three previously reported examples of 

compounds containing Cu3(µ3-OH)(µ3-SO4) units, in which the second face of the triangle is 

capped by a sulfato ligand. These are a discrete Cu3 compound that was reported by Beckett 

and Hoskins in 1972,20 and two Cu10(SO4)8 aggregates that were reported more recently.21,22 

 

Given the proximity of the 3d9 copper(II) centres in 1-3, their magnetic properties are 

potentially interesting. In order to explore this, magnetic measurements were undertaken on 
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compounds 1 and 3.  Plots of magnetic susceptibility %T against temperature for 1 and 3 in an 

external magnetic field of 1000 Oe are shown in Figures 5a and 6a, respectively. Both 

compounds display antiferromagnetic interactions at high temperatures, with the greater 

temperature dependence observed for 1 suggesting stronger antiferromagnetic interactions in 

this compound. This result is confirmed by a Curie-Weiss fit to the data above 60 K, which 

leads to Weiss constants (%) of –82.0 and –18.7 K for 1 and 3, respectively (Figure S4). 

Below 20 K (Figs. 5b, 6b) the susceptibility %T increases rapidly and reaches a maximum at a 

temperature of approximate 3 K. The maximum value of %T increases with the decrease of 

the external applied magnetic field from 1000 to 100 Oe. This type of field-induced response 

in the susceptibility is related to the unpaired spins of the d9 copper(II) centres canting to 

each other at very low temperatures. 

 

 
Figure 5. Magnetic susceptibility (%T) vs. temperature for (NMe2H2)4[Cu6O2(SO4)6(DMF)4] 1 (a) at 

1000 Oe and (b) below 20 K for the indicated applied magnetic fields. 
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Figure 6. Magnetic susceptibility (%T) vs. temperature for (NMe2H2)[Cu2(OH)(SO4)2(H2O)2] 3 (a) at 

1000 Oe and (b) below 20 K for the indicated applied magnetic fields. 

 

Magnetisation curves for 1 and 3 at temperatures below 5 K (Figs. 7a, 8a) reveal that the 

magnetisation, M, increases with the external magnetic field, H.  For 1, the magnetisation 

increases slowly with H, reaching approximately 1.2 µB at 70 000 Oe though no saturation 

point was observed. For 3, the magnetisation increases more rapidly and almost reaches a 

saturation of 1.1 µB at 70 000 Oe. Derivative plots of the magnetisation M against external 

magnetic field H are shown in Figures 7b and 8b, respectively. In both cases, metamagnetic 

behaviour is suggested by the presence of an inflection point at a field of 110 Oe, which 

represents the characteristic field at which the magnetic field overcomes the 

antiferromagnetic interactions, allowing for parallel alignment of the spins. 

 

 
Figure 7.  Magnetisation (M) vs. external magnetic field (H) for (NMe2H2)4[Cu6O2(SO4)6(DMF)4] 1 

(a) at the indicated temperatures and (b) its first derivative at 2 K showing an inflection point at a field 

of 110 Oe. 
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Figure 8.  Magnetisation (M) vs. external magnetic field (H) for (NMe2H2)[Cu(OH)(SO4)2(H2O)2] 3 

(a) at the indicated temperatures and (b) its first derivative at 2 K showing an inflection point at a field 

of 110 Oe. 

 

AC (alternating current) magnetic susceptibility studies, which monitor the response of a 

material’s magnetic moment to an applied oscillating magnetic field, were also undertaken 

for the two compounds. The plots of the AC susceptibility in-phase (%') component and out-

of-phase (%'') component for both 1 and 3 show the absence of %'' (Fig. S5, S6) which is 

probably the result of the small canting angle. Therefore the magnetisation is almost 

cancelled when the spin carriers are antiferromagnetically coupled and only slightly canted. 

Canted antiferromagnetic behaviour has been observed previously in copper(II) 

compounds,23,24 including the copper-hydroxy-sulfate mineral brochantite, Cu4(OH)6SO4,25 

though metamagnetic behaviour is unusual. 

 

Conclusions 

 

We have prepared three new copper(II) sulfate compounds, in which the anionic charges on 

the copper-sulfate aggregates are balanced by the presence of dimethylammonium cations 

derived from either the decomposition of the DMF solvent or addition of [NMe2H2]Cl.  Two 

of the new compounds, 1 and 2, contain Cu6O2(SO4)6 aggregates, inter-connected by either 

hydrogen bonding or bridging sulfates, and the only previous report of these aggregates is in 

the rare copper sulfate mineral fedotovite. The third compound, 3, has a tape structure in 

which triangular Cu3(OH)(SO4) units share vertices. Magnetic measurements revealed that 1 
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and 3 are both spin-canting metamagnetic systems, which is similar to the behaviour 

previously observed in some two- and three-dimensional copper(II)-containing networks.23-26  

Field-induced responses were observed below 5 K, with the critical field indicating 

metamagnetic behaviour from antiferromagnetic to ferromagnetic equal to 110 Oe for both 

compounds.  
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